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RESEARCH ARTICLE

Using a Novel Absolute Ontogenetic Age
Determination Technique to Calculate the
Timing of Tooth Eruption in the Saber-
Toothed Cat, Smilodon fatalis
M. Aleksander Wysocki1, Robert S. Feranec2*, Zhijie Jack Tseng3, Christopher
S. Bjornsson4

1 Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of
America, 2 Research and Collections Division, New York State Museum, Albany, New York, United States of
America, 3 Division of Paleontology, American Museum of Natural History, New York, New York, United
States of America, 4 Neural Stem Cell Institute, Rensselaer, New York, United States of America

* robert.feranec@nysed.gov

Abstract
Despite the superb fossil record of the saber-toothed cat, Smilodon fatalis, ontogenetic age
determination for this and other ancient species remains a challenge. The present study uti-

lizes a new technique, a combination of data from stable oxygen isotope analyses and

micro-computed tomography, to establish the eruption rate for the permanent upper canines

in Smilodon fatalis. The results imply an eruption rate of 6.0 millimeters per month, which is

similar to a previously published average enamel growth rate of the S. fatalis upper canines
(5.8 millimeters per month). Utilizing the upper canine growth rate, the upper canine erup-

tion rate, and a previously published tooth replacement sequence, this study calculates

absolute ontogenetic age ranges of tooth development and eruption in S. fatalis. The timing

of tooth eruption is compared between S. fatalis and several extant conical-toothed felids,

such as the African lion (Panthera leo). Results suggest that the permanent dentition of S.
fatalis, except for the upper canines, was fully erupted by 14 to 22 months, and that the

upper canines finished erupting at about 34 to 41 months. Based on these developmental

age calculations, S. fatalis individuals less than 4 to 7 months of age were not typically pre-

served at Rancho La Brea. On the whole, S. fatalis appears to have had delayed dental

development compared to dental development in similar-sized extant felids. This technique

for absolute ontogenetic age determination can be replicated in other ancient species,

including non-saber-toothed taxa, as long as the timing of growth initiation and growth rate

can be determined for a specific feature, such as a tooth, and that growth period overlaps

with the development of the other features under investigation.
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Introduction
Timing of development is critical in vertebrate ecology and evolution [1–6]. Changes
in the timing of life history events can have major effects on fitness and changes in the
timing of development of morphological features (i.e., heterochrony) can yield major
changes to the vertebrate bauplan [1–4, 7]. For ancient species, determining the relative
sequence of developmental events is feasible provided that a taxon has a well preserved
ontogenetic sequence of individuals; whereas identifying the absolute ontogenetic age of
development for particular characteristics is much more challenging. Absolute, as opposed
to relative, ontogenetic age for ancient species is often estimated based on the timing of
development in modern analogs, such as age determinations for American mastodon
(Mammut americanum) and mammoth (Mammuthus sp.) based on extant elephant (Loxo-
donta sp.) tooth wear stages [8]. To fully understand how taxa develop, function within
ecosystems and evolve, it is essential to understand when features develop in absolute ontoge-
netic time.

One unique morphological feature that has evolved independently numerous times within
the theriodont lineage (the clade composed of gorgonopsians and eutheriodontians, the latter
including Mammalia), is the saber-tooth morphology of permanent upper canines [9–10].
This feature is most renowned in the machairodontine (Felidae) species Smilodon fatalis, but
has evolved several times in therapsids, including within the gorgonopsids, creodonts, nimra-
vids, barbourofelids, marsupials, and as mentioned above, the felids. The exceptional fossil
record of S. fatalis at Rancho La Brea (southern California) has facilitated numerous investiga-
tions and revealed many aspects of saber-tooth morphology as well as the behavior, life history
and evolution of this species [9–17]. For example, a meticulous study of numerous specimens
from Rancho La Brea documented the relative tooth-eruption sequence, which provides an
understanding of S. fatalis tooth eruption and cranial growth, as well as further clues to S.
fatalis life history and behavior [13]. Despite the tremendous fossil record of this species, par-
ticularly at Rancho La Brea, ontogenetic age determination of the numerous individuals has
remained a challenge. Based on the concept that species of comparable skeletal dimensions
share similar growth rates, estimates of ontogenetic age have been assigned to stages of dental
development in another machairodontine, Homotherium serum, utilizing the extant Panthera
leo as a modern analog [18]. These ontogenetic age estimates are supported by stable oxygen
isotope analyses that indicate similar permanent upper canine (C1) enamel growth rates for
H. serum and P. leo [19]. However, the C1 enamel growth rate for S. fatalis is faster than the
C1 enamel growth rates of H. serum and P. leo [19]. Furthermore, S. fatalis differs from P. leo
in aspects of the relative timing of tooth development, such as the timing of permanent
carnassial eruption relative to permanent incisor eruption, which makes P. leo less suitable as
a modern analog for ontogenetic age estimates of S. fatalis than for ontogenetic age estimates
of H. serum [13, 20].

This study is focused on determining the timing of developmental events in S. fatalis,
with an emphasis on understanding the ontogenetic age at which individual S. fatalis had
fully erupted upper canines. A fully erupted permanent dentition is vital for many carnivore
species because it impacts the capacity to acquire prey (e.g., extant conical-toothed felids
ordinarily dispatch their prey via a bite that employs the canines), as well as the ability to pro-
cess and defend carcasses [21–22]. In particular, fully erupted C1s are likely to have been
advantageous for S. fatalis when it came to prey acquisition [10, 14–15, 17, 23].
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Materials and Methods

Absolute Ontogenetic Age Calculation
To calculate absolute ontogenetic ages for the development of particular morphological fea-
tures in ancient species, it is necessary to find a structure (e.g., a tooth) that has a growth period
that overlaps the development of the features of interest, and to have data on the timing of
growth initiation and the growth rate of the key feature. It is possible to use C1 growth rate to
calculate the absolute ontogenetic ages of initiation and conclusion of eruption for nearly all of
the permanent teeth of S. fatalis because the eruption of these teeth occurs while the C1 forms
in this species [13]. What is more, the C1 growth rate can be used to calculate the absolute
ontogenetic timing of other coinciding developmental events (e.g., cranial suture closures and
loss of most of the deciduous dentition).

Determining the absolute ontogenetic age at which C1 growth began is necessary for
calculating the absolute ontogenetic ages of development for particular features of S. fatalis.
Because the C1 growth appears to have begun prior to birth [24], a conservative estimate for
the duration of gestation in S. fatalis can be used to estimate the absolute ontogenetic timing of
C1 growth initiation. In mammals, gestation is correlated with body mass and the duration of
gestation tends to be rather consistent within carnivoran families [21, 25]. The gestation
periods of the extant large felids Panthera tigris (104 to 106 days), P. leo (110 days), P. onca
(101 days), P. pardus (88 to 112 days), P. uncia (90 to 103 days), Puma concolor (82 to 96 days),
and Acinonyx jubatus (90 to 95 days), exemplify this consistency [26–32]. The hyaenids,
Hyaena hyaena,H. brunnea, and Crocuta crocuta, have periods of gestation that average 91
days, 97 days, and 110 days, respectively [33–36]. The gestation periods for large viverrids are
60 to 81 days for Civettictis civetta and approximately 91 days for Arctictis binturong [21, 37–
38]. Considering that gestation is associated with body mass and that the extant large felids and
other feliforms exhibit relatively similar gestation periods, it seems unlikely that the gestation
period of S. fatalis deviated drastically from those observed in the extant large felids (Table 1)
[21, 25]. Because the estimated body mass of S. fatalis (approximately 160 to 280 kg) [39] is

Table 1. Body Mass and Gestation of Feliforms.

Species Body Mass (kg) Gestation (days)

Panthera tigris 75 to 306 104 to 106

Panthera leo 110 to 225 110

Panthera onca 41.4 to 104.5 101

Panthera pardus 20 to 90 88 to 112

Panthera uncia 25 to 75 90 to 103

Puma concolor 35 to 65 82 to 96

Acinonyx jubatus 35.0 to 40.2 90 to 95

Lynx canadensis 4.5 to 17.3 63 to 70

Lynx rufus 4.1 to 18.3 50 to 70

Felis silvestris catus 3.0 to 3.4 63

Crocuta crocuta 40.5 to 69.2 110

Hyaena brunnea 28.0 to 47.5 97

Hyaena hyaena 25 to 55 90 to 92

Arctictis binturong 11 to 32 91.5

Civettictis civetta 7 to 20 60 to 81

Data compiled from [26–38, 40–44].

doi:10.1371/journal.pone.0129847.t001
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most similar to the body mass of P. tigris [26, 29], P. tigris appears to be the best modern
analog for S. fatalis gestation.

Studies have generally shown that deciduous tooth mineralization and permanent tooth min-
eralization do not begin during the early stages of gestation [45–49]. For example, in the small
felid, Felis silvestris catus, tooth buds begin developing at about 28 to 32 days of its 63 day gesta-
tion period [29, 46]. Similarly, calcified tooth germs are not perceptible in fetuses of the rodent
Myocaster coypus before 100 to 105 days of its 125 day gestation period [50]. Given that approx-
imately 1cm of the forming C1 crown is present in S. fatalis at about the time of birth [24] and
given that the average C1 enamel growth rate is 5.8mm/month [19], it appears likely that the C1

of S. fatalis began to mineralize roughly one month prior to birth. Utilizing one month prior to
birth as the point of initial C1 growth, absolute ontogenetic age ranges were calculated for
developmental events using a C1 enamel growth rate range of 5 to 7.5 mm/month determined
previously through examination of stable oxygen isotope values incorporated into tooth enamel
[19, 51] and C1 crown lengths previously assigned to particular S. fatalis developmental events
[13] (see S1 Text).

Although it is possible to assign specific values to the timing of developmental events, onto-
genetic age ranges are more appropriate for describing the timing of developmental events in
the life history of S. fatalis. Tooth development and the fusion of cranial sutures are known to
occur at various ontogenetic ages for different individuals of other felid species due to factors
such as sexual dimorphism [20, 52]. For instance, the timing of initial permanent tooth erup-
tion in P. leo differs by as much as 6 weeks between males and females [53]. In S. fatalis, studies
suggest that there is either no sexual dimorphism in skull size or that the degree of size sexual
dimorphism in S. fatalis is less than that observed in P. leo [54–56]. However, S. fatalis skulls
do appear to exhibit a degree of shape variation that is equivalent to the degree of morphomet-
ric sexual dimorphism in Panthera [56]. The exact nature of S. fatalis sexual dimorphism not-
withstanding, the timing of developmental events in the life histories of mammalian species
can be influenced by other differences that exist between individuals, such as disparities in
nutritional health that alter the rate of cranial suture fusion [57]. Thus, even though there may
be a popular desire to bestow fixed ontogenetic ages to the developmental events in the life his-
tory of S. fatalis, we believe that calculated ontogenetic age ranges serve as more appropriate
guidelines.

C1 Eruption Rate Calculation
In S. fatalis, C1 enamel formation was completed before the loss of the dC1 and the completion
of C1 eruption. Thus, another approach, beyond using the canine growth rate calculated using
stable oxygen isotopes [19], was necessary to determine the absolute ontogenetic ages for these
two developmental events, and that was the calculation of the C1 eruption rate. It should be
noted that C1 growth rate and C1 eruption rate are closely connected processes, but dissimilar
from one another in that C1 growth rate describes the rate of tooth formation, whereas C1

eruption rate describes the rate at which the distal-most portion of the C1 moves in relation to its
alveolar border. It was not possible to calculate the C1 eruption rate by merely measuring the C1

length in specimens of different ontogenetic stages. Preservation of the un-mineralized portion
of this tooth can be inconsistent between specimens. In addition, because the formation of tooth
enamel is a two-part process consisting of matrix formation and subsequent mineralization that
affects stable oxygen isotope values [58], C1 eruption rate calculation using the previously
published C1 growth rate [19] should be more accurate if based on C1 mineralized enamel
lengths (S1 Text). Therefore, calculation of the C1 eruption rate required determination of the
proximodistal lengths of C1 mineralized enamel, which were determined ultimately by using
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micro-computed tomography (μCT) to examine the proximal portion of the C1 of each
specimen (see Fig 1).

Although the number of identified specimens and number of individuals of S. fatalis at Ran-
cho La Brea is quite large, certain criteria (e.g., C1 of different ontogenetic stages) were needed
to calculate the C1 eruption rate, which severely limited the number of specimens that were
relevant for analysis. ZJT and RSF identified a total of six specimens (LACM A-3748, LACM
A3775, LACMHC 2001–9, LACMHC 2003-R-1, UCMP 152565, and UCMP 152566) as
suitable for C1 eruption rate calculation on the basis that each of these specimens has at least
one intact, erupting C1. Due to the spatial constraints of the μCT bore, the large size of the
specimens, and similarity in ontogenetic stage between some specimens, only three specimens
(LACM A-3748, UCMP 152565, and UCMP 152566) were able to be scanned. For this study, a
SCANCOMedical Viva CT40 μCT scanner was utilized at the Center for Biotechnology and
Interdisciplinary Studies at Rensselaer Polytechnic Institute (Troy, NY). Specimens were
scanned at an energy of 70kVp, an intensity of 114 uA, and a 199 ms integration time.
Scanning was performed near the proximal portion of the C1 with voxel size of 19 μm. The
resulting image stacks had maximum dimensions of 2048 x 2048 pixels. 2100 slices were
produced for UCMP 152565, which was scanned in two parts. 3036 slices were produced for
UCMP 152566, and 5039 slices were produced for LACM A-3748. Three-dimensional
reconstructions of enamel and dentin were created using Mimics version 13.1. Because of the
spatial constraints of the μCT, two specimens (UCMP 152565 and UCMP 152566) yielded

Fig 1. Smilodon fatalis specimen UCMP 152565 with partially formed permanent upper canine. (A)
Photograph of UCMP 152565. Scale bar represents 1 cm. (B) Image of the 3D model created from the uCT
data of UCMP 152565. The model represents the proximal-most portion of the canine. Dark brown color
indicates completely mineralized enamel, whereas light brown is unfinished or unmineralized portion of
canine. Scale bar represents 1cm. (C) A slice from the uCT data of UCMP 152565.

doi:10.1371/journal.pone.0129847.g001
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data (S1 and S2 Datasets) that were sufficient for creating three-dimensional reconstructions
usable in this study. LACM A-3748 was able to be scanned; however the data were incomplete
because the specimen was too large to fit properly within the μCT bore, thereby making it
impossible to generate a complete three-dimensional reconstruction for LACM A-3748 (see S3
Dataset).

Density differences in the form of intensity grayscale values (with fully mineralized enamel
appearing white, and dentin and other bones appearing as darker shades of gray) were utilized
to segment the dentin versus enamel structures in the μCT data. As a consequence of limita-
tions in computing resources, the reconstructions were built from reduced datasets that were
50% of original resolution in the x and y dimensions, and 10–30% in the z direction. The reduc-
tions resulted in an effective x-y pixel size of 38 μm and interslice distance of 57–190 μm, pro-
viding a maximum error of +/-190 μm (i.e., the exact location of the proximal borders of
dentin and mineralized enamel are not resolved below the interslice distance of the reduced
dataset) in the placement of measurement points.

To determine the C1 mineralized enamel length of each specimen, the distance from the
most proximal border of preserved dentin to the most proximal border of mineralized enamel
along the anterior edge of the C1 was subtracted from the overall C1 length. Measurements of
the distance between the most proximal border of preserved dentin and the most proximal
border of mineralized enamel along the anterior edge of the C1 were made within the 3D
window in Mimics to the nearest 0.01 mm. Digital calipers were used to measure the overall C1

length of each specimen, as well as the length of erupted C1 from the alveolar border. The
alveolar border, defined as an anteroposterior straight line across the alveolus on the maxilla
and premaxilla at its distal-most point, represented 0.0 mm. Using the previously published
average C1 enamel growth rate of 5.8 mm/month (range = 5 to 7.5 mm/month) [19, 51], we
estimated S. fatalis C1 eruption rate, utilizing the following equation:

C1Eruption Rate

¼ ðErupted C1Length of Specimen B

� Erupted C1Length of Specimen AÞ=½ðC1Mineralized Enamel Length of Specimen B
� C1Mineralized Enamel Length of Specimen AÞ=ðAverage C1Enamel Growth RateÞ� ð1Þ

The C1 mineralized enamel lengths of two specimens (UCMP 152565 and UCMP 152566)
were used to calculate the C1 eruption rate. The C1 eruption rate and associated lengths of
erupted C1 (which are known via the previously published tooth replacement sequence of
Tejada-Flores and Shaw (1984) [13]) were used to determine the period of time (in months)
from initial C1 eruption to the loss of the dC1, as well as the period of time from initial C1

eruption to the completion of C1 eruption. The period of time from initial C1 eruption to the
loss of the dC1 was added to the absolute ontogenetic age at which the C1 begin to erupt
(calculated using the C1 enamel growth rate range of 5–7.5mm/month [19]) in order to
calculate the absolute ontogenetic age range of dC1 loss. Similarly, the period of time from
initial C1 eruption to the completion of C1 eruption was added to the absolute ontogenetic age
at which the C1 begin to erupt in order to calculate the absolute ontogenetic age range for the
completion of C1 eruption.

Results
Utilizing the absolute ontogenetic age of C1 growth initiation, the C1 growth rate range
previously calculated from stable oxygen isotope values [19] and the previously determined
lengths of C1 associated with particular developmental stages [13], absolute ontogenetic age
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ranges were calculated for a number of S. fatalis developmental events (Fig 2). With the
exception of dC1, absolute ontogenetic age range determination was not feasible for individual
deciduous teeth because S. fatalis specimens with erupting deciduous dentition, aside from the
dC1, are scarce in the fossil record [13]. Based on the data available, the deciduous dentition of
S. fatalis, except for the dC1, was fully erupted by approximately 4 to 7 months of age, and the
dC1 finished erupting between 11.5 to 18 months of age. The first deciduous teeth to be shed
were the deciduous upper and lower first incisors (dI1 and dI1) at approximately 9 to 14
months of age. During this same interval, the permanent dentition begins to erupt with the
emergence of the permanent upper and lower first incisors, as well as the upper and lower
carnassials (I1, I1, P

4 and M1). By the age of 11 to 17 months, the small permanent upper
molars (M1) were in the process of erupting and the maxillo-jugal suture was fused. The
parietals fused by 11.5 to 18 months old. The permanent upper and lower first, second and
third incisors, as well as the carnassials (I1, I1, I

2, I2, I
3, I3, P

4 and M1) were fully erupted at 12
to 19 months of age. The permanent upper third premolars, lower fourth premolars, and upper
and lower canines (P3, P4, C

1, and C1) began to erupt at the age of 12 to 19 months. Over this
same interval, the dC1s were shed. By the age of 14 to 22 months, the dC1s were the only
remaining deciduous teeth. The permanent dentition, with the exception of the C1s, was
complete at 14 to 22 months old. Also, the parieto-occipital suture was fused by 14 to 22
months of age. The C1 crowns finished growing between 16 and 25 months old.

The μCT data from UCMP 152565 and UCMP 152566 revealed mineralized enamel lengths
of 80.4mm and 98.6mm, respectively. The developing C1 of UCMP 152565 had not yet erupted
past the alveolar border and the distal-most portion is 5.4mm above that border. The C1 of
UCMP 152566 had traversed the alveolar border and the distal-most portion is 13.3mm below
that border. Using Eq 1, the C1 eruption rate was calculated to be 6.0mm/month, which is
similar to the average C1 enamel growth rate previously calculated from stable oxygen isotope
values (5.8mm/month [19]). As reported above, the absolute ontogenetic age calculations
based on the average C1 enamel growth rate reveal that the C1 began to erupt at the age of 12 to
19 months. Using the C1 eruption rate, the additional time from initial C1 eruption until the

Fig 2. Absolute ontogenetic age ranges for developmental events. Extant conical-toothed felid data from [20, 26, 52, 59].

doi:10.1371/journal.pone.0129847.g002
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loss of the dC1s was calculated to have been approximately 11 months, which implies that the
dC1s were shed at about 23 to 30 months. Also, based on the C1 eruption rate, it appears that a
period of nearly 22 months was required for the C1s to fully erupt, which suggests that the C1s
finished erupting at roughly 34 to 41 months of age.

Discussion

Species Comparison
Determining the timing of tooth development and eruption in S. fatalismakes it possible to
compare aspects of the life history of this saber-toothed species to those of several extant coni-
cal-toothed species. The data suggest that dC1 eruption, and thus eruption of the deciduous
dentition, in S. fatalis did not conclude until 11.5 to 18 months of age. In contrast, the entire
deciduous dentition is completely erupted at about 1.5 to 2 months in P. tigris and by 2 to 3
months in P. leo [20, 26]. S. fatalis and P. leo are also dissimilar in that the parietals appear to
have fused at 11.5 to 18 months in S. fatalis as opposed to 26 to 28 months in P. leo [20].
Tejada-Flores & Shaw (1984) [13] point out that the closure of this suture and the growing
sagittal crest in S. fatalis indicate that this relatively young age class possessed a large
attachment area for the temporalis muscles. Permanent tooth eruption began at a slightly later
age in S. fatalis (9–14 mo.) compared with many of the extant conical-toothed species such as
P. concolor (8 mo.), P. leo (8-9 mo.), and P. tigris (8.5-9.5 mo.) [20, 26, 27]. Conversely,
permanent carnassial eruption finished at a younger age in S. fatalis (12–19 mo.) than it does
in P. leo (18–24 mo.) [20]. Notably, permanent carnassial eruption coincides with permanent
incisor eruption in S. fatalis, whereas permanent carnassial eruption takes place after
permanent incisor eruption in P. leo [13]. Nevertheless, on the whole, S. fatalis appears to have
had delayed dental development compared to dental development in similar-sized extant felids
[20, 26]. Another one of the more distinctive features of S. fatalis tooth development is that the
dC1s appear to have been retained until approximately 23 to 30 months of age, which suggests
that S. fatalis possess both the erupted dC1s and the erupting C1s for a period of about 11
months. This period of time is greater than those observed in several extant conical-toothed
felids (e.g., P. leo possess both the erupted dC1s and the erupting C1s for a period of about 3
months) [20, 27, 52, 53, 59–62]. Considering that the upper canines of saber-toothed
carnivores seem to have been at a greater risk of fracture from medio-laterally directed forces
than are the conical upper canines of extant felids [63], this relatively prolonged period of time
that the deciduous upper canines remain in place alongside the erupting permanent upper
canines may be noteworthy. Further exploration is currently underway to evaluate the
possibility that this pattern of canine replacement (i.e., deciduous canines remaining in
position alongside permanent canines for a large percentage of the permanent canine eruption
process) functions as a protective mechanism that reduces the likelihood of saber-tooth
fracture.

Behavioral and Ecological Implications
Although the S. fatalis fossil record at Rancho La Brea is extensive, there is a scarcity of S. fatalis
specimens from younger age classes, which Tejada-Flores and Shaw (1984) suggest is not
merely the result of the poor preservation of more fragile juveniles. Explanations for this scar-
city include parental behavior that kept cubs in close proximity to den sites and that preferred
den sites were not common near Rancho La Brea [13]. P. leo cubs become somewhat mobile at
approximately 4 to 6 weeks old, which is also the approximate age at which they are introduced
to the rest of pride [53]. Similarly, P. tigris cubs tend to remain at den sites until they become
fairly mobile at 1 to 2 months old and P. onca cubs do not leave den sites until about 2 months
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of age [28, 59, 64]. Our results suggest that S. fatalis individuals of less than 4 to 7 months of
age were not frequently preserved at Rancho La Brea, and are consistent with the ideas that den
sites were rarely located near Rancho La Brea and that parental behavior restricted the cubs to
the den sites [13]. The results also seem to be consistent with the concept that there may have
been a prolonged period of parental care upon consideration that it appears S. fatalis juveniles
did not possess fully erupted deciduous upper canines until 11.5 to 18 months of age. Watts
et al. (2009) [65] showed that for an extant dietary specialist, the bone-cracking C. crocuta, the
protracted development of the specialized feeding apparatus affects the rapid feeding perfor-
mance of juveniles not only on carcasses containing bone, but also on softer foods, which rep-
resents a handicap to feeding in general and makes maternal aid crucial to juvenile survival
while the specialized feeding apparatus is still developing. In a similar way, the relatively
delayed completion of deciduous upper canine eruption in S. fatalis could have impacted hunt-
ing in juveniles by rendering them less effective as predators prior to possessing their deciduous
upper canines, which could have made S. fatalis juveniles more reliant on parental support
while the deciduous upper canines were still developing. In addition to the explanations that
parental care restricted the cubs to the den sites and that den sites were rarely located near Ran-
cho La Brea [13], the dearth of S. fatalis specimens from younger age classes may be due to
predator avoidance behavior that typically prevented S. fatalis cubs from leaving cover to
directly feed on carcasses mired in the asphalt seeps. P. tigris cubs are known to be present at
kill sites by as early as 3 months of age, but the cubs remain concealed within cover while
tigresses make the kills alone; subsequently tigresses lead the cubs to the kill sites [59, 64]. On
other occasions, tigresses transfer the kills, meeting their cubs at alternate locations [59]. Simi-
larly, P. leo adults exhibit the behavior of moving kills to their cubs and P. leo adults sometimes
move kills into cover while they are in the presence of other predators [53]. Given that there is
a relative abundance of carnivores preserved at Rancho La Brea that has been attributed to
predators becoming trapped in the asphalt seeps as they attempted to feed on the carcasses of
mired animals, the asphalt seeps may have attracted an array of predators, potentially making
it an especially hazardous area for young S. fatalis cubs to move out of cover [23, 66–73]. Thus,
it appears plausible that infrequent den site selection near Rancho La Brea, parental behavior
that restricted cubs to the den sites and predator avoidance behavior that prevented cubs from
directly visiting carcasses mired within the asphalt seeps all contributed to the infrequent pres-
ervation of S. fatalis individuals from younger age classes.

Saber-Tooth Development
The data, as expected, suggest that the upper canines of S. fatalis finished erupting at an older
absolute ontogenetic age (34–41 mo.) than the absolute ontogenetic age at which they finish
erupting in P. leo (24–36 mo. [20]). Yet, the difference in these absolute ontogenetic ages at
which the C1s finish erupting is not as different as one might expect if predictions were made
on the basis of C1 crown heights alone (43–52 mm in P. leo vs. ~130 mm in S. fatalis) [13, 30].
The S. fatalis C1 crown growth rate (5.8 mm/mo.) was faster than that of P. leo (2.9 mm/mo.)
[19] and the data from this study suggest that the C1 eruption rate of S. fatalis was faster than
the C1 eruption rate of P. leo [20, 30]. It is apparent, however, that C1 growth rates are not
uniform for all saber-toothed carnivores. The C1 growth rates for Smilodon (5.8 mm/mo. for S.
fatalis and 6.3 mm/mo. for Smilodon gracilis) are faster than the C1 growth rate of the scimitar-
toothed sabercat, H. serum (2.8 mm/mo.) [19, 51, 74]. What is more, there are marked
distinctions in the types of tooth morphology [75, 76] and tooth growth exhibited by saber-
toothed carnivores (e.g., unlike the C1s of S. fatalis, the C1s of Thylacosmilus atrox appear to
have been hypselodont [77]). Despite these differences, the evolution of saber-teeth may be
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based upon similar evolutionary changes. In particular, it is thought that regulation of the
dental epithelial stem cell niche might have the evolutionary flexibility to produce variation in
tooth shape, growth rates, and timing of root development [78, 79]. The loss of fibroblast
growth factor 10 (Fgf10) signaling appears to be associated with a shift from crown formation
to root development; a delay in this change from crown formation to root formation could lead
to the development of hypsodont teeth and the absence of this transition to root formation
could generate hypselodont teeth [78, 80]. Therefore, future research may reveal that despite
the substantial differences in tooth crown height, growth rate, and growth duration among the
various saber-toothed and conical-toothed carnivores, the evolution of saber-teeth may involve
similar changes to dental epithelial stem cell niche regulation.

This study emphasized the calculation of absolute ontogenetic age for the development of
the dentition of S. fatalis, but this technique for absolute ontogenetic age determination should
be applicable in some other species. In particular, if a starting ontogenetic age (i.e., initiation of
growth) and growth rate can be calculated for a particular morphological feature, it is possible
to calculate its absolute ontogenetic age of completion and the absolute ontogenetic ages of any
features that develop simultaneously. Although, hypothetically, it is possible to construct abso-
lute ontogenetic age estimates via linking together multiple developmental processes (e.g., the
sequential growth periods of several different teeth), we suspect that approach may prove to be
less accurate. Absolute ontogenetic age estimates contingent on a linked series of developmen-
tal processes are likely subject to a greater degree of inaccuracy because each additional devel-
opmental process includes another range of values due to the variation that exists between
individuals of a given species. The technique utilized in this study (focusing on C1 growth and
eruption) may not be useful for absolute ontogenetic age determination in all ancient species,
as C1 growth and eruption may not coincide with the majority of tooth developmental events,
but it would seem that studies on taxa with tusks (e.g., proboscideans, walruses, and narwhals)
would yield accurate ontogenetic age determinations akin to this study. Rountrey et al. (2012)
proposed a similar methodology for aging young woolly mammoths (Mammuthus
primigenius) [81]. Another useful technique for ontogenetic age determination that has been
used to study ancient species, including S. fatalis, is the analysis of pulp cavity closure using
radiographs of mandibles and lower canines [55, 82, 83]. It appears that this technique was
difficult to apply to S. fatalis because this saber-toothed felid has a relatively reduced lower
canine, whereas the technique was more effective for studying the conical-toothed felid,
Panthera atrox [55]. All in all, absolute ontogenetic age determinations should be possible
within taxa that preserve anatomical features that record incremental growth, and whose
growth trajectories overlap with those of other structures.

Conclusions
Based on our results, Smilodon fatalis individuals of less than 4 to 7 months old were not fre-
quently fossilized at Rancho La Brea. It appears that during development S. fatalis possessed
both the erupted dC1s and the erupting C1s for roughly 11 months and that the C1s of S. fatalis
ultimately finished erupting at approximately 34 to 41 months of age. Despite the widespread
interest in this particular life history event, it would be prudent to consider that future analysis
of additional specimens may facilitate the refinement of the C1 eruption rate and enhance
absolute ontogenetic age determination accuracy for the developmental events that occur
subsequent to C1 crown growth completion (i.e., the absolute ontogenetic age that the dC1s are
shed and the absolute ontogenetic age that eruption of the C1s completed). Comparison with
the tooth development of the extant conical-toothed felid P. leo suggests that S. fatalis required
more time to develop its complete permanent dentition, but less additional time than would be
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expected if predictions were based solely on C1 crown heights; an outcome that is attributable,
at least in part, to the relatively faster C1 growth and eruption rates of S. fatalis. The data
from μCT analyses reveal a C1 eruption rate that is comparable to the previously identified
average C1 enamel growth rate. Overall, this new technique provides a strategy by which it is
possible to determine the absolute ontogenetic age of extinct individuals of some species.
Although the present study focuses primarily on tooth development, it also demonstrates that
it is possible to ascertain the absolute ontogenetic age of other developmental events (e.g., the
fusion of cranial sutures). Analysis of juvenile and sub-adult specimens that possess associated
postcranial material and an intact C1 would present the opportunity to obtain many additional
insights regarding S. fatalis development and life history.
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