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ABSTRACT OF THE DISSERTATION

On Computational Imaging in the Era of Neural Sensing:

the Sensor, the Data and the Algorithm

by

Pradyumna Venkatesh Chari

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2024

Professor Achuta Kadambi, Chair

In recent years, sensing and perception techniques have evolved to be heavily reliant on

learning-based pipelines. There is a specific need to explore computational imaging (joint

design of hardware and software) in the era of AI. This work bridges this gap by under-

standing what we term as “neural sensing” through three pillars: the sensor, the data, and

the learning algorithm. In the context of contactless heart rate monitoring of humans using

visual sensors and beyond, we show that each of these three pillars pose specific, critical

problems with the current state of the art: equity across demographic groups, lack of scal-

able, diverse data, and low signal to noise ratio in sensor measurements inhibiting accurate

vital sign monitoring. We explore each pillar with the aim of addressing these limitations and

demonstrate how a fundamental understanding and treatment of each of this pillars is critical

towards building an operational perception systems. Through this thesis, we make contribu-

tions towards understanding the various pillars of neural sensing for and beyond contactless

heart rate sensing, while also advancing the state of the art in remote plethysmography.
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4.5 The example shows that PRN [1] trained with synthetic data (above)

generalizes better than PRN trained with real data (bottom) on UBFC-

rPPG dataset. The waves are more aligned with the ground-truth PPG wave

(dashed black line) and the power spectrum plot is also more consistent with the

ground-truth for the PRN trained with synthetic data. . . . . . . . . . . . . . . 85
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image. The estimated pulse waves from PRN for generated synthetic videos are

highly correlated to the ground-truth waves, and the heart rates are preserved as

shown in the power spectrum plot. . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 This work proves* that including minorities improves majority perfor-

mance. *When do the provable guarantees hold? The guarantees are certifiable

for fixed backbone binary classification (e.g. one uses a head network with pre-

trained weights and fine-tunes a downstream layer for classification). The fixed

backbone ML is far from a toy scenario (it is considered SoTA by some authors [2])

and also enables provable certification - ordinarily it is hard to prove things for

neural network settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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5.3 Visualizating of Gaussian Mixture Model parameters. We plot GMMs

with different task complexities. The domain gap δ is visualized as the difference

in the ideal threshold locations. The overlap/task complexity metric can be
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per-dataset basis. Within each column, the reader can compare the domain gap
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6.1 Prior implicit neural models represent scenes for diverse applications.

We propose an implicit neural representation (INR) to decompose face

videos and isolate blood flow information. Our INR decomposes input

videos into visual appearance and blood flow (“A-B decomposition”). The decom-

posed data aids in estimating the remote photoplethysmography (rPPG) signal

and heart rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Our implicit representation for rPPG achieves Pareto-optimality across

out-of-distribution (OOD) performance and inter-distribution parity

compared to prior algorithmic and learning-based methods. It performs

better on OOD samples while maximizing parity between in-distribution and

OOD performance. Table 6.1 shows metrics used for this plot. Higher is better

along both axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Sinusoidal Representation Networks (SRNs) can represent both A and

B-functions, while phase-based methods only represent the A-function.

(a) SRNs, such as [6], can capture PPG color variations almost perfectly, while

(b) phase-based motion representations, such as [7] are unable to capture it. . . 119

6.4 To enable fast A-B decomposition, we use implicit neural representa-

tions as decomposing function fitters. Training is done sequentially: first,

the cascaded appearance model learns the A-function. Then, the appearance

model is frozen, and the residual model learns the B-function, thereby complet-

ing the decomposition. The use of multiresolution hash encodings makes dataset-

scale decomposition viable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
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6.5 Using the estimated B-function with the original video, we learn high-

fidelity neural signal strength masks. The network takes the original RGB

frames and the B-function estimate as inputs and returns a spatial strength mask.

Training is supervised through an auxiliary 1-D CNN whose training target is

the prediction of an accurate plethysmograph. The 1-D CNN is discarded post-

training, and the learned mask model is used at inference time on the B-function

to estimate rPPG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.6 Across challenging OOD optical settings, the proposed method can

capture details of the plethysmograph waveform compared to prior

methods. Results shown use models trained on the dataset proposed in [8],

where applicable. Additional results are presented in the appendix. . . . . . . . 127

6.7 In distribution inference on a diverse dataset. Our method better captures

rPPG waveform details across skin tones for in-distribution evaluation on [8]

dataset. While our method and [9] both perform reasonably well across skin

tones, [9] does so with poorer OOD performance (Figure 6.6). More results in

the appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.1 Feature 3DGS. We present a general method that significantly enhances 3D

Gaussian Splatting through the integration of large 2D foundation models via

feature field distillation. This advancement extends the capabilities of 3D Gaus-

sian Splatting beyond mere novel view synthesis. It now encompasses a range

of functionalities, including semantic segmentation, language-guided editing, and

promptable segmentations such as “segment anything" or automatic segmentation

of everything from any novel view. Scene from [10]. . . . . . . . . . . . . . . . . 131
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7.2 An overview of our method. We adopt the same 3D Gaussian initialization

from sparse SfM point clouds as utilized in 3DGS, with the addition of an essential

attribute: the semantic feature. Our primary innovation lies in the development of

a Parallel N-dimensional Gaussian Rasterizer, complemented by a convolutional

speed-up module as an optional branch. This configuration is adept at rapidly

rendering arbitrarily high-dimensional features without sacrificing downstream

performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3 Novel view semantic segmentation (LSeg) results on scenes from Replica

dataset [11] and LLFF dataset [12]. (a) We show examples of original images

in training views together with the ground-truth feature visualizations. (b) We

compare the qualitative segmentation results using our Feature 3DGS with the

NeRF-DFF [13]. Our inference is 1.66× faster when rendered feature dim = 128.

Our method demonstrates more fine-grained segmentation results with higher-

quality feature maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4 Comparison of SAM segmentation results obtained by (a) naively ap-

plying the SAM encoder-decoder module to a novel-view rendered image with

(b) directly decoding a rendered feature. Our method is up to 1.7× faster in

total inference speed including rendering and segmentation while preserving the

quality of segmentation masks. Scene from [10]. . . . . . . . . . . . . . . . . . . 144

7.5 Novel view segmentation (SAM) results compared with NeRF-DFF.

(Upper) NeRF-DFF method presents lower-quality segmentation masks - note

the failure on segmenting the cup from the bear and the coarse-grained mask

boundary on the bear’s leg in box-prompted results. (Lower) Our method pro-

vides higher-quality masks with more fine-grained segmentation details. Scene

from [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
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7.6 Demonstration of results with various language-guided edit operations

by querying the 3D feature field and comparison with NeRF-DFF (a)

We compare our edit results with NeRF-DFF method on the sample dataset

provided by NeRF-DFF [13]. Note that our method outperforms NeRF-DFF

method by extracting the entire banana hidden by an apple in the original image

and with less floaters in the background. (b) We demonstrate results with deletion

and appearance modification on different targets. Note that the car is deleted

with background preserved, and the appearance of the leaves changes with the

appearance of the stop sign remained the same. . . . . . . . . . . . . . . . . . . 146

A.1 The MIME effect holds in a multidimensional setting as well. We show

the support for the two finite distributions. Weight vector updates arising out of

samples from regions R3, R4, R5 and R6 lead to an update with a large vertical

(corrective) component (favorable update). Updates arising out of regions R1

and R2 result in an overall update in the horizontal direction (unfavorable update).160

A.2 The MIME effect is complementary to data debiasing methods and

consistent with research aimed at equal representation (ER) datasets.

(a) Training configurations using data debiasing methods [15] show the MIME

effect. (b) While ER datasets are not optimal for the MIME effect (Figure 5 and

6, main paper), optimal overall performance is observed close to ER. . . . . . . 169

B.1 Light transport analysis provides insights on plethysmograph signal

quality. The reflected light arriving at the camera sensor consists of two com-

ponents: (i) the specular component, shown in white, does not contain PPG

information since it arises out of surface reflections, and (ii) diffuse reflection,

shown in red, arising out of subsurface scattering, contains PPG information. . . 174
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B.2 The B-function contains information relevant to the estimation of the

signal strength map. Skin regions show PPG signal (albeit noisy) while oc-

cluded regions show only noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
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viation. A smaller vertical spread indicates a lower error and is desired behavior.

A trend (as in (b)) indicates correlated errors, which is non-ideal. . . . . . . . . 198

B.6 Our predicted neural signal strength masks accurately generalize to

OOD configurations, in addition to performing well on in-distribution

test samples. (a) On inference samples from the [8] dataset, our method is

able to identify high-fidelity details such as eyes, hair and specular highlights.

(b) This high-fidelity nature of the reconstruction continues in OOD inference,
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CHAPTER 1

Introduction

Computational imaging refers to the joint design of hardware and algorithms for visual tasks.

Such control over both hardware and software has enabled several âĂĲsuperhumanâĂİ re-

sults in the past: depth from defocus [17], deblurring through coded exposure [18], seeing

around corners [19], depth using polarization cues [20], and many more such results. In

recent years, however, sensing and perception techniques have evolved to be heavily reliant

on learning-based pipelines. With large models, trained on increasingly large datasets, the

paradigm of what is practically possible with monocular RGB images is rapidly changing.

Tasks like depth estimation [21] are increasingly moving away from the realm of computa-

tional imaging into the realm of large-scale computer vision. With this context, there is a

specific need to explore, understand, and in certain cases redefine the scope of computa-

tional imaging in the era of AI. This thesis works towards understanding this new notion of

computational imaging and AI, which we term as âĂĲneural sensingâĂİ, through the three

crucial pillars of imaging in the era of AI: the sensor, the data, and the learning algorithm.

The first pillar is the design of task-specific sensors. With the context of patient moni-

toring tasks such as contactless heart rate (HR) estimation, we explore settings where careful

consideration towards sensor design is critical, and where scale alone is not sufficient on its

own: specifically, in the context of equity across skin tone groups. We find that naively

designed RGB cameras can disadvantage darker skin tones. To alleviate this, we designed a

novel sensor, that combined a camera and a radar to provide high-accuracy measurements

while being skin tone equitable. Chapter 2 discusses this aspect in further detail. We also
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explore other types of sensors. In Chapter 3, we explore the problem of detecting subtle

touches on surfaces in the wild. This is an important and challenging problem towards real-

izing the potential of ubiquitous sensing and human computer interaction. Existing methods

require either contact-based sensors, limiting usability, or camera-based methods, reducing

accuracy. We propose a speckle-imaging based solution that is deployable in the wild.

Data at scale is arguably the most important component of a learning-based pipeline, and

hence for neural sensing. However, collecting large datasets is a challenging task, especially

while fairly representing demographic groups. In the second pillar, we discuss what we can

do if obtaining minority group data samples at scale is infeasible, again in the context of

equitable patient monitoring. For remote HR estimation, for instance, existing real datasets

mostly contain light skin tone samples. Augmenting datasets to include dark skin tones is

not as simple as changing the skin color: physically realistic color changes because of blood

flow need to also be incorporated. We proposed such a method for synthetic, bio-realistic

face video generation, leading to improved performance and fairness. Chapter 4 further

discusses this aspect. We also explore solutions when it is not possible to acuqire minority

samples, either in the form of real or synthetic data samples. In Chapter 5, both theoretically

and experimentally, we make the surprising discovery that to maximize majority group

classification accuracy, a majority-only training set is not optimal; having some minority

samples is better. While the broader ML community agrees that minority inclusion in

training sets benefits minority as well as overall performance, our observation enforces the

benefit of minority inclusion for all test-time stakeholders. This means that naively creating

equal-representation datasets may not be optimal for all stakeholders, motivating future

research in optimal minority inclusion ratios.

The third pillar is the learning algorithm. In conjunction with the first pillar, we

advanced the field of multimodal sensor fusion algorithms to also consider skin tone equity

as a figure of merit for sensor fusion (discussed in Chapter 2). In conjunction with the

second pillar, we developed rendering algorithms that consider the light transport principles
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of human blood flow, while leveraging the benefits of learning-based methods (discussed in

Chapter 4). Separate from these, we also explore more fundamental contributions to neural

sensing and scene representations, in the context of healthcare. We show that implicit neural

representations, which have shown great promise in tasks such as novel view synthesis, can

also be used as selective function fitters. This has great relevance in extracting extremely low

SNR signals from sensor measurements based on the physical properties of the said signal,

such as in the case of camera-based heart rate estimation. This is discussed in Chapter 6.

We also explore ways to leverage scene representations as a means of enabling 3D perception

from 2D foundation models. In Chapter 7, we show that 3D representations such as Gaussian

Splatting can be leveraged to distill features from 2D foundation models into 3D space. This

enables 3D tasks such as 3D editing, 3D segmentation and so on from 2D models, which are

easier to train and better performing.

Collectively, this body of work aims to advances all three pillars of neural sensing, while

also taking a step towards equitable health sensing techniques for contactless monitoring of

patients, and the development of health sensing systems while being constrained by sparse,

biased training data. This thesis also makes contributions towards novel methods of sensing,

as well as low-level computer vision.

1.1 Some Useful Definitions

A major portion of this thesis explores concepts of inequity (sometimes referred to as bias)

across demographic (or other) groups. Please find below some definitions that help this un-

derstanding, which aim to be consistent with the International Vocabulary of Metrology [22].

True Value: The true value of a quantity is the oracle-known, actual value of a quantity.

Note that the true value of a quantity cannot be known in practice.

Reference Value: The existing best measure of the quantity of interest that is currently

available. In practice, ‘ground truth’ refers to this reference value (which may itself have
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errors when compared with the true value).

Error: Let p be a subset of the global population P, p ⊆ P. The error of a model f(·)

against a reference value r(·) is given by,

e(p) = E
s∈p

[l (f(s), r(s))] ,

where l(·, ·) is an appropriate distance metric.

Inequity: Let G = {g1,g2, ...,gk} be a set of exclusive and exhaustive partitions of the

global population P. Then, we define the inequity of an estimator f(·) over the partition G

as,

i(G) = max
u,v∈G

[|e(u)− e(v)|] .
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CHAPTER 2

Building an Equitable Sensor for Remote

Plethysmography

Figure 2.1: The camera-based iPPG method, which uses subtle skin color changes

as a function of blood flow to measure heart rate, shows inequity between (left)

dark skin tones and (right) light skin tones. The radar-based method is more

resistant to this skin tone inequity due to primarily observing chest motion. Our

proposed fusion method incorporates the complementary performance of the two methods

and fairness properties of the radar to achieve performance and fairness gains over the iPPG

method.

2.1 Introduction

Remote estimation of vital signs has gained growing relevance in recent years. The COVID-

19 pandemic has further emphasized the need for rapid and reliable monitoring of health

indicators. Remote plethysmography, the non-contact monitoring of blood volume flow in
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the human body, is a critical technological step in this direction.

Camera-based remote plethysmography is a rapidly developing field. Most methods uti-

lize small changes in the facial skin color as a function of dermal blood volume to cap-

ture pulse rate trends [23, 24]. Over the years, a broad range of methods have been pro-

posed, ranging from physics-based approaches [25, 26, 27], blind source separation-based ap-

proaches [28, 29] and more recently, data-driven learning-based approaches [30, 31]. Through

these advances, the heart-rate estimation performance has steadily approached levels of clini-

cal accuracy. However, more recently, it has been established that most methods for imaging-

based remote photoplethysmography (iPPG) are biased in performance against dark skin

tone participants [32]. This points towards two potential problems: biases in datasets used

for algorithmic evaluation, and potential fundamental biases in the physics of camera-based

remote plethysmogaphy.

Another comparable modality for heart-rate estimation is the use of radio frequency (RF)

devices. These devices capture the variations in chest displacement through cardiac cycles

to estimate the frequency of the heart beat signal. Approaches use different types of radars

and include signal processing [33, 34], as well as deep learning-based methods [35]. Ren et

al. [36] performed a comparison study between a camera and a doppler stepped-frequency

continuous wave radar on one subject and showed that both modalities perform nearly

equally under ideal conditions for extracting heart rates. Additionally, it is noted from our

experiments on multiple subjects that while iPPG and radar are comparable, iPPG slightly

outperforms radar. However, since radar systems primarily capture displacement signals [37],

radar techniques do not theoretically show performance correlation with skin tone and are

therefore fairer.

In this work, we propose a fresh look at multi-modal fusion, from the perspective of

inequity removal. We show that combining iPPG, an inequitable modality, with radar,

an equitable modality, results in a better performing algorithm compared to the unimodal

methods with only small trade-offs in fairness over the equitable method. That is, we show
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that iPPG’s Pareto frontier can be improved upon through carefully designed multi-modal

fusion. To evaluate optimality, we establish a comprehensive set of performance and fairness

metrics tailored to the task of remote plethysmography, evaluated on our novel multi-modal

remote plethysmography dataset. This proposed fusion method, along with the existing

iPPG and radar-based methods, constitute viable remote heart-rate detection approaches

with differing performance and fairness trade-offs that an end-user may select from.

2.1.1 Contributions

The goal of this work is to use camera and 77 GHz radar fusion to create a higher performing

and more equitable remote plethysmograph technique. We make three specific contributions:

Contribution A: Existing unimodal remote plethysmography methods show a Pareto trade-

off between performance and fairness. We show that through carefully chosen modalities,

multi-modal fusion can improve the Pareto frontier for this tradeoff, enabling improvements

in both performance and fairness.

Contribution B: To the best of our knowledge, we present the first RGB and radar plethys-

mograph multi-modal fusion technique incorporating inequity cues as part of a novel dis-

criminative learning framework.

Contribution C: We open-source the first and largest multi-modal remote plethysmography

dataset with representation across skin tones and other demographic markers.

Our code, dataset, and hardware tutorial may be accessed from https://github.com/UCLA-

VMG/EquiPleth.

2.1.2 Scope

This work aims to establish the importance of multi-modal fusion towards achieving high

performing and fair algorithms for vital sign sensing. We do not consider or incorporate
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other confounding effects, such as motion, resolution, and compression. These are relevant

engineering aspects that need to be considered when looking at deployability of the technol-

ogy. In this work, however, we constrain our focus on the analysis and mitigation of skin

tone inequity (as opposed to other kinds of biases).

2.2 Related Work

Image-photoplethysmography is biased against darker skin tones. To improve fairness and

performance of unimodal iPPG, we fuse it with another sensing modality (radar). In what

follows, we expand on background context.

Image Photoplethysmography Heart-rate estimation using image-photoplethysmography

(iPPG) has been actively studied since the early 2000s [38, 39, 40]. Typically, early methods

observed and took advantage of changes in optical absorption of hemoglobin molecules at

the surface of the skin during a blood volume pulse with a RGB camera. The work that

followed focused on reducing error due to motion with region of interest (ROI) alignment

and clever modeling of physical properties of light reflectance [27, 26]. Remote heart-rate

estimation is also achieved with Ballistocardiogram (BCG) methods which extract motion

information due to the Newtonian reaction of a blood volume pulse [41]. Color analysis and

BCG methods are not limited to use with RGB cameras. Near Infrared (NIR) imaging with

active illumination has been employed to combat the effects of unreliable illumination in the

visible spectrum [42], despite having a worse signal to noise ratio (SNR) to RGB cameras

[43]. Infrared (IR) or thermal imaging has used BCG [44] and temporal temperature differ-

entials [45]. Other work focused on visualizations of the blood volume pulse with Eulerian

magnification [23] and augmented reality [46].

More recently, deep learning approaches have been utilized to attain state of the art

results. [30] used an attention-based Convolutional Neural Network (CNN) to explicitly
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fuse skin-reflection and motion information. [31] introduced spatio-temporal CNNs to iPPG

to enable temporal context-aware networks. Other work has extended these architectures

[47], incorporated meta-learning [48], improved PPG waveform characteristics [49], and aug-

mented iPPG datasets with synthetic examples [50, 1]. Our work builds on previous iPPG

work through multi-modal fusion with Frequency Modulated Continuous Wave (FMCW)

radar to reduce inequity across skin tones while improving performance.

Radar Plethysmography Vital sensing using radar was pioneered in the 1970s for respiratory-

rate detection [51]. Today, radar research has diverse applications in respiratory-rate, heart-

rate, and blood-pressure detection. For heart-rate estimation, various hardware setups are

used, including FMCW [33], Ultra Wide Band (UWB) Impulse [52], and Continuous Wave

Doppler radars [53]. Vital sign detection is performed by observing millimeter (mm) level

displacements in the chest. The average adult has chest displacements for breathing and

heart pulses of 1-12 mm and 0.01-0.5 mm, respectively [54]. Through single-subject analy-

sis, [36] note that both camera and radar-based methods perform nearly equally under ideal

conditions. That is, both are potentially viable methods for remote heart-rate estimation.

Since heart-rate detection is more prone to noise, applications and experimental results are

often done with subjects laying down to avoid interference due to motion. In contrast, our

work assumes that the participant is sitting. Our work also presents a deep learning method

for learning plethysmograph signals using FMCW radar.

Fairness in iPPG Fairness in machine learning has been a rapidly growing area of research

in the last decade. It has spanned ensuring fairness in classification [55], word embeddings

[56], and computer vision [57]. Dataset inequity is a common problem and it has been shown

that performance is lower for women and darker skin tones in machine learning problems due

to underrepresentation [58]. In the iPPG field, fairness has been less studied. However, [32, 1]

show that dataset inequity as well as lower SNRs result in darker skin tones producing poorer

performance than lighter skin tones. In this work, we introduce a skin tone representative
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dataset and propose to reduce inequity across skin tones through multi-modal fusion.

Multi-modal Fusion Multi-modal fusion is the process of combining two or more modali-

ties to achieve better performance for a given task than any singular modality on its own. In

deep learning, architectures either fuse modalities in a middle latent space or at a late stage

once each modality independently gives a prediction. For mid-level fusion, Restricted Boltz-

mann machines [59] are a common choice in popular architectures such as Deep Belief Net-

works [60] and Stacked Autoencoders [61]. In late-level or decision-level fusion, predictions

from various modalities are simply aggregated using majority voting, weighted voting, or a

meta-classifier. These architectures and formulations of multi-modal fusion have achieved

great success in classification-based problems [62]. Unfortunately, they do not easily trans-

late to a regression-based problem such as plethysmography. Nonetheless, several works have

attempted fusion such as RGB+Mid-Infrared (Thermal) [63] and RGB+Near-Infrared (NIR)

[64]. Our work proposes the first machine-learning-based fusion of RGB+radar modalities

in order to boost performance and reduce inequity across skin tones.

2.3 Problem Formulation

The goal of this work is to fairly estimate a plethysmograph signal of blood volume pulses

from non-contact sensing data. In particular, a human subject is sensed by a non-contact

sensing method, f , that processes data from M modalities (e.g. images, radar matri-

ces, etc.). For the i-th training example, let this data be represented as an irregular list

xi = [v1
i ,v

2
i , ...,v

M
i ], with each vm

i ∈ RNm . This subject has a ground truth and predicted

plethysmograph signal, denoted as vectors yi ∈ RK and f(xi) = ŷi ∈ RK , respectively. The

corresponding heart rate of the plethysmograph signal is hi ∈ R+. The sensor data, plethys-

mograph signal, and heart rate are drawn from distributions X, Y, and H respectively.

Unique to this work’s formulation (as compared to others in iPPG literature), the subject
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also has a protected attribute ai ∈ A. This attribute describes skin tone categories, such

that A = {light,medium, dark}. Subjects are labeled according to a modified Fitzpatrick

skin tone scale [1] as light for I/II, medium for III/IV, and dark for V/VI. For brevity, the

sample indexing is dropped here onward; x, y, h, and a denote xi, yi, hi and ai respectively.

2.3.1 Performance

To assess general performance, we use heart rate prediction metrics as in previous iPPG

work [31, 47]. Table 2.1 summarizes metrics for heart-rate accuracy. Several results are

reported using the absolute percent error (APE) metric due to the Association for Advance-

ment of Medical Instruments (AAMI) defining a threshold heart-rate error as no greater

than 10% relative error [65], as well as its prevalence in evaluating heart monitors and phys-

ical monitoring devices [66, 67]. We note that all performance measures are evaluated over

the entire testing dataset, consisting of samples from the light, medium and dark skin tone

groups.

2.3.2 Fairness

To evaluate fairness, we adopt standard metrics from the fairness community [68]. A plethys-

mograph method can be considered fair if the outcome for the general population is the same

as for a sub-population with a given attribute, a. In our case, to facilitate experimental anal-

ysis, we evaluate fairness in terms of similarity of outcome between the light and dark skin

tone groups. The following definitions introduce metrics for quantifying fairness and are

summarized in Table 2.1.

2.3.2.1 Threshold Test

The threshold test [69] is a notion of sufficiency of fair performance. The test shows the

proportion of test samples in the light (L) and dark (D) categories that fall outside of the
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Table 2.1: We use multiple heart-rate performance and fairness metrics for eval-

uation. Performance and fairness are not necessarily correlated properties. A complete

analysis of algorithms requires a two dimensional comparison.

Metric Expression

P
er

fo
rm

an
ce

Mean Absolute Error (MAE) ↓ 1
N

∑N
i=1|hi − ĥi|

Root Mean Square Error (RMSE) ↓
√

1
N

∑N
i=1(hi − ĥi)2

Mean Absolute Error (MAPE) ↓ 1
N

∑N
i=1

|hi−ĥi|
hi

Pearson Corr. Coefficient (R) ↑
∑N

i=1 (ĥi−µĥ)(hi−µh)∑N
i=1 (ĥi−µĥ)

2
∑N

i=1 (hi−µh)2

Fa
ir

ne
ss Threshold Test ↓ PX[APE(Ĥ) > 10% | a] ,∀ a ∈ {L,D}

Performance inequity ↓ |Da=D(H, Ĥ)−Da=L(H, Ĥ)|

threshold defined by AAMI.

2.3.2.2 Performance Inequity

In order to measure inequity through performance metrics, we follow [70] by evaluating a

performance metric, D on attribute groups and taking a pairwise difference.

2.4 Plethysmography and Skin Tone Inequity

This section is composed of two parts. First, we establish that iPPG performance is

fundamentally inequitable as a function of skin tone. Second, we show that fusing a bet-

ter performing inequitable modality with a worse performing equitable modality leads to

improvements in both overall performance and inequity over the inequitable modality.
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Table 2.2: Notation used for light transport modeling of iPPG. The left column

shows the notation used and the right column describes the notation.

Notation Description

µa,eum(λ) Eumelanin absorption coefficient

µa,phm(λ) Phomelanin absorption coefficient

µa,der(λ) Dermal absorption coefficient

µs,der(λ) Dermal scattering coefficient

µa,bld(λ) Blood absorption coefficient

µa,ski(λ) Skin absorption coefficient

µoxy(λ) Oxygenated hemoglobin abs. coefficient

µdox(λ) Deoxygenated hemoglobin abs. coefficient

fmel Skin melanin fraction

feum Epidermal eumelanin fraction

fbld Dermal blood volume fraction

foxy Oxygenated hemoglobin fraction in blood

2.4.1 Motivation: iPPG has Skin Tone Inequity

We utilize existing biorealistic graphical rendering models [71, 72] and extend them to iPPG.

A two layer skin model is assumed. The incident light undergoes attenuation while passing

through the epidermis, while it undergoes scattering driven reflection at the dermis. Table 2.2

describes and summarizes the various symbols and notations used.

We start with describing the epidermal transmission. Following the Beer-Lambert Law,

Tepi(λ) = e−µa,epi(λ), (2.1)

where µa,epi(λ) is the absorption coefficient of the epidermis. Typically, this is modeled as a

convex combination of skin tissue and melanin absorption,

µa,epi(λ) = fmelµa,mel(λ) + (1− fmel)µa,skin(λ). (2.2)
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µa,skin(λ), the skin tissue absorption coefficient, is a biological parameter which is known.

µa,mel(λ) may be defined as,

µa,mel(λ) = feumµa,eum(λ) + (1− feum)µa,phm(λ), (2.3)

where µa,eum(λ) is the absorption coefficient of eumelanin and µa,phm(λ) is the absorption co-

efficient of pheomelanin (both known biophysical parameters). By combining Equations 2.1,

2.2, and 2.3, the epidermal transmission may be accurately modeled.

We move towards describing the dermal reflection. This model follows the Kubelka-Munk

theory for scattering-dependent reflection. Specifically, the fraction of reflected light, as a

function of wavelength, is given by,

Rd(λ) =
(1− β(λ))2(eK(λ)dder − e−K(λ)dder)

(1 + β(λ))2eK(λ)dder − (1− β(λ))2e−K(λ)dder
. (2.4)

Here, dder is the dermal skin depth [72]. Also, β(λ) and K(λ) are deterministically related

to µa,der(λ) (dermal absorption coefficient) and µs,der(λ) (reduced dermal scattering coeffi-

cient [73]), as given in [71, 72]. The dermal absorption coefficient and the blood absorption

coefficient are understood as convex combinations shown below:

µa,der(λ) = fbldµa,bld(λ) + (1− fbld)µa,ski(λ), (2.5)

µa,bld(λ) = foxyµoxy(λ) + (1− foxy)µdox(λ). (2.6)

Here, various factors include blood reflection, skin baseline reflection, oxygenated blood re-

flection and deoxygenated blood reflection respectively. Given the expressions for epidermal

transmission and dermal reflection, the expression for overall reflection is given by,

R(λ) = T 2
epi.Rd(λ). (2.7)

Then, the overall intensity captured in channel c of the camera is given by,

Ic =

∫
λ

E(λ)Sc(λ)R(λ)dλ, (2.8)

where E(λ) is the source spectral distribution and Sc(λ) is the camera spectral response for

channel c.
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iPPG Signal Strength The iPPG signal arises out of a variation in the blood volume

fraction, fbld under the skin. Our interest is in the signal strength across camera channels,

Σc, which can be defined as the maximum variation in the captured intensity (proportional

to signal amplitude). Mathematically,

Σc = ∆Ic ≈
∣∣∣ ∂Ic
∂fbld

∣∣∣ ·∆fbld. (2.9)

Since R(λ) is the only term dependent on fbl,

Σc ≈

∣∣∣∣∣
∫
λ

E(λ)Sc(λ)
∂R

∂fbld

∣∣∣
fbld

dλ

∣∣∣∣∣ ·∆fbld, (2.10)

where fbld is the average blood volume fraction, typically around 0.05. This approximation

holds true since fbld only varies by a small amount, typically around 0.05.

This plethysmographic signal variation occurs in addition to the average skin tone color,

given by

Γc =

∫
λ

E(λ)Sc(λ)R(λ)
∣∣∣
fbl

dλ. (2.11)

Since Σc and Γc are both dependent on fmel, we refer to these as Σ(fmel) and Γ(fmel)

subsequently.

Effect of Imaging Noise on iPPG Imaging noise refers to the inherent noise that arises

due to the image capture process in a commercial camera. This arises due to various effects

related to photon arrival processes, thermal noise in electronics and the quantization noise

associated with digitally capturing images [74]. For pixels below the saturation level, the

noise can be modeled as follows:

σ2
pixel =

Φt

g2
+

σ2
r

g2
+ σ2

q , (2.12)

where Φ is the radiant power of light collect, t is the exposure time, g is the sensor gain

(a constant for a given image), and σr and σq are camera noise parameters (also constant).
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Figure 2.2: The iPPG per-pixel SNR drastically worsens with increasing skin

melanin fraction. Using biophysical skin reflectance models, we estimate the iPPG signal

strength as a function of skin melanin fraction. Along with the monotonic decrease in signal

strength with melanin fraction, we also note finer trend differences between the SNR for the

red, green and blue channels, as well as dependence on the spectral properties of the light

source.

Using this noise model, we can the estimate the iPPG signal to noise ratio (SNR) for a pixel

of a particular intensity and color channel c as follows:

SNRc =
Σct

g
√

Γct
g2

+ σ2
r

g2
+ σ2

q

. (2.13)

Here, we assume that the radiant power of light collected Φ is equal to the average skin tone

color.

Figure 2.2 shows the iPPG per-pixel SNR plots for the three camera color channels, across

two lighting conditions (indicated by the light source ‘temperature’). We use average camera

response functions Sc(λ) to identify responsiveness of each of the channels to incident light,

as well as exemplar camera noise parameters. Specifically, we used σr = 140.7, σq = 0.08

and g = 1.06. These parameters are representative and are calculated for a typical cell

phone camera. Their specific values do not affect the trends and hence are not of primary

importance. We note that the SNR monotonically decays with increasing skin melanin

fraction. This trend is consistent across color channels and scene lighting conditions. That
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is, given a fixed scene and camera configuration, the underlying physical signal is poorer for

dark skin tones.

2.4.2 Resisting inequity through Sensor Fusion, a Proof

In this section, we prove that sensor fusion, even if some of the individual sensors are in-

equitable, can lead to overall resistance of inequity. Consider a temporal signal s ∈ Rn.

Without loss of generality, we assume normalized signals such that ∥s∥2= 1. Our sensing

setup consists of modalities m ∈ {M1,M2}. Each modality m captures a noisy observation

of the signal ym ∈ Rn.

An additional property of a sample is its attribute a ∈ {light, dark}. The observed signal

is then given by ya
m. Both modalities behave differently for different attributes. For example,

a modality may have different expected performance for samples with different attributes.

Let the theoretical Signal to Noise Ratio (SNR) of a signal ya
m be denoted by the operator

S(ya
m). We use the SNR to define modality-wise fundamental performance and fairness.

Without loss of generality, we assume that the modality M1 is better performing as compared

to the modality M2 (in our practical setting, M1 would correspond to the RGB modality

while M2 would correspond to the radar modality). That is,

E
a,ya

M1

[
S(ya

M1
)
]
> E

a,ya
M2

[
S(ya

M2
)
]
. (2.14)

Additionally, we note that according to our required conditions, the modality M1 is

inequitable in terms of attribute a, while the modality M2 is equitable. That is,∣∣∣∣ E
yLight
M1

[
S(yLight

M1
)
]
− E

yDark
M1

[
S(yDark

M1
)
] ∣∣∣∣ > ϵ, and∣∣∣∣ E

yLight
M2

[
S(yLight

M2
)
]
− E

yDark
M2

[
S(yDark

M2
)
] ∣∣∣∣ < ϵ,

(2.15)

for some suitable small ϵ. We also assume without loss of generality that the ‘dark’ attribute
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is the worse performing attribute group on average. That is,

E
yLight
m

[
S(yLight

m )
]
≥ E

yDark
m

[
S(yDark

m )
]
, ∀m ∈ {M1,M2}. (2.16)

We wish to characterize the improvement in signal quality arising as a result of combining

observations from the two modalities M1 and M2. That is, we wish to understand the

performance and inequity properties of a combined measurement signal ya
comb that is optimal

in the SNR sense, as follows:

C∗ = argmax
C

E
[
S(C(ya

M1
,ya

M2
))
]
, ∀ a.

ya
comb = C∗(ya

M1
,ya

M2
), ∀ a.

(2.17)

Here, C(·, ·) is an appropriately chosen combining operator.

We wish to quantify the benefit of multi-modal combination in terms of the gains obtained

over the modality M1. The quality gain factor Qa is therefore given by,

Qa =
E [S(ya

comb)]

E
[
S(ya

M1
)
] . (2.18)

We have established the required terminology for our result.

Theorem 1: Let QLight and QDark be the quality gain factors for the light and dark attributes

respectively. Then, optimally combining observations ya
M1

from a better performing but

inequitable modality M1 and ya
M2

from a worse performing but equitable modality M2,

where a ∈ {light, dark}, ensures,

QDark > QLight. (2.19)

That is, the worse performing attribute sees a greater relative gain in signal strength.

Proof: The optimal combination method for two signals with known SNRs is the Maximal

Ratio Combining [75]. The resulting expected SNR is given by,

E [S(ya
comb)] = E

[
S(ya

M1
)
]
+ E

[
S(ya

M2
)
]
, ∀ a. (2.20)
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Then, the quality gain factor is given by,

Qa =
E
[
S(ya

M1
)
]
+ E

[
S(ya

M2
)
]

E
[
S(ya

M1
)
]

= 1 +
E
[
S(ya

M2
)
]

E
[
S(ya

M1
)
] . (2.21)

Then, from Equations 2.15 and 2.21, we can infer that,

QDark > QLight. (2.22)

This completes the proof. ■

We therefore establish that fusion with a worse performing but less inequitable modality is

in fact beneficial in terms of inequity mitigation.

2.4.3 Overall Inferences

We now summarize the inferences from the theory section, which serve as a motivation for

our multi-modal fusion hypothesis for inequity alleviation.

1. The RGB modality is inequitable against darker skin tone samples. This arises funda-

mentally as a result of poor Signal to Noise Ratio.

2. Combining the RGB modality with a poorer but equitable modality results in larger

improvements for the darker skin tone samples as compared to the lighter skin tone

samples.

2.5 Implementation of Fusing RGB Camera and Radar for Plethys-

mography

In the previous section, we discussed inequity in the context of plethysmography. We now

discuss the specific fusion of camera and 77 Ghz radar to resist inequity. Referring to notation
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from Section 2.3, let v1 denote an RGB modality measurement, and let v2 denote a FMCW

radar modality measurement. Then, x = [v1,v2], our overall measurement. Our goal is to

learn a robust functional mapping f from the measurement space to the plethysmograph

space,

y = f(x)

= f([v1,v2]).
(2.23)

Figure 2.5 describes our overall pipeline. We use a late fusion parameterization for the

mapping f . The unimodal plethysmography signal estimates are first obtained. A fusion

architecture combines these to obtain the final fused plethysmography estimate. That is,

y = f([v1,v2]) = gf (g1(v
1), g2(v

2)), (2.24)

where g1(·) and g2(·) are the modality specific estimators for RGB and radar respectively.

The function gf (·) is the late fusion model. We describe each of these components in the

following text.

2.5.1 RGB Camera

The RGB measurements v1 ∈ [0, 1]T×C×H×W are tensor-valued. Here, T is the numbers of

frames, C is the number of image channels (3), and H and W are the image height and

width respectively. We use the Physnet spatio-temporal network by [31] as one of the inputs

for fusion. The PPG network g1(·) estimates the PPG waveform ŷRGB from video inputs v1

with T = 64 frame samples as input.

The PPG network is updated using a negative Pearson loss between the estimated wave-

form ŷ and the ground truth waveform y to enforce waveform reconstruction, similar to

previous work [31]. This is given by,

20



Figure 2.3: We use a 77 Ghz FMCW radar setup for non-contact radar plethys-

mography. Chirp signals are bounced off the subject’s chest in order to capture subtle

motion. By exploiting the dependency of the phase on the distance of flight, we are able to

measure this motion.

LP (y, ŷRGB) =1− 1√
a1 × a2

(
N

N∑
i=1

yiŷi −
N∑
i=1

yi

N∑
i=1

ŷi

)
,

a1 =

N
N∑
i=1

y2
i −

(
N∑
i=1

yi

)2


a2 =

N
N∑
i=1

(ŷi)
2 −

(
N∑
i=1

ŷi

)2
 ,

(2.25)

where N is the length of y and ŷRGB. The overall loss function used, LRGB is given by,

LRGB = LP (y, ŷRGB). (2.26)

2.5.2 Radar

FMCW radar emits and receives (reflected) chirps, which are linearly frequency modulated

electromagnetic (EM) waves, enabling the estimation of the distance travelled by the chirp

before reflection. Aardal et al. [37] showed that one contributor to detecting a heartbeat is
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a large reflection at the air/skin interface and experimentally demonstrated that heartbeat

detection is primarily reliant on physical displacements of the chest. Therefore, we assume

radar is not directly affected by skin tone. The transmitted and received signal, s(t) and

u(t) respectively, can be modeled as:

s(t) = Ascos(2πfct+ πkt2), 0 < t < Tc. (2.27)

u(t) = Aucos(2πfc(t− td) + πk(t− td)
2), td < t < Tc. (2.28)

where k is the frequency slope (the rate of change of frequency of the chirp), fc is the starting

frequency of the chirp, Tc is the duration of the chirp transmission, and td is the time delay

between the start of transmission and initial reception of the reflected wave. Then, the

bandwidth of the signal, the difference between the maximum and minimum frequencies, is

given by:

B = fmax − fmin = (fc + kTc)− fc = kTc, (2.29)

and the time delay is proportional to the round trip distance, td = 2R
c

, where R and c are

the range of the object and speed of light respectively. Figure 2.4 indicates these values on

a FMCW chirp sequence.

Upon receiving a reflected chirp, the radar mixes the received chirp with the still trans-

mitting signal. The mixed signal is proportional to s(t) · u(t) and contains 2 components:

a beat signal component with a frequency equal to the frequency difference of s(t) and

r(t), ∆f = ktd, and a high frequency component situated near 4πfc. The higher frequency

component is filtered out by a low pass filter (LPF) to prevent aliasing, generating m(t).

Concretely, the radar samples in-phase and quadrature (IQ) components such that:

m(t) ∝ LPF[sI(t) · u(t)] + j LPF[sQ(t) · u(t)], (2.30)

where sI(t)·u(t) and sQ(t)·u(t) denote the in-phase and quadrature components respectively.

The in-phase component is comprised of the transmitted signal s(t) = sI(t) multiplied with
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the received signal u(t). The quadrature component is derived by multiplying the received

signal u(t) with a copy of the transmitted signal shifted by a phase of −90◦, sQ(t). However,

IQ details are excluded for brevity and the following equations are represented with just the

in-phase component. The IF signal, m(t), can then be written as:

m(t) ∝ Amcos(2πfctd + 2π(ktd)t+ πkt2d), td < t < Tc. (2.31)

The πkt2d term is several orders of magnitude smaller than the other terms and is thus

negligible. Equation 2.31 can be rewritten into a more succinct form:

m(t) ∝ Amcos (ωt+ ϕ) , td < t < Tc. (2.32)

ω = 4π
kR

c
, ϕ = 4π

R

λ
. (2.33)

The phase and frequency of the resulting signal depend on the range R and can be extracted

through a discrete Fourier transform (DFT) of the signal after passing it through the analog

to digital converter (ADC). The frequency term, ω = 2π∆f , provides the range through

the following relation R = c∆f
2k

. Therefore, the maximum unambiguous range an object can

td
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Figure 2.4: A FMCW Chirp Sequence. The blue and red signal are the transmitted

and received chirps plotted with their frequency content as a function of time. The green

signal denotes the mixed signal whose phase changes while the frequency remains relatively

constant.
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Figure 2.5: The proposed approach uses a novel adversarial discriminative

training-based approach for skin tone debiasing in the modality fusion mod-

ule. We follow a two-step training process for our pipeline - we first train the unimodal

networks to estimate the plethysmograph waveform. The fusion network operates in the

frequency domain using an alternating waveform reconstruction and adversarial losses.

be placed from the radar follows from the Nyquist sampling theorem and ADC sampling

rate fs, to give Rmax = c fs
4k

. The range resolution is c fs
4kN

, where N is the number of ADC

samples. The phase term ϕ is inversely proportional to the wavelength of the radar, λ = c
fc

.

The range of an object can be parameterized as R(t) = Ro + r(t), where r(t) models

changes due to vibrations (for example, heart beat) around the average range Ro. To extract

a heart rate, r(t) needs to be sampled with multiple chirps. Note that the frequency term

cannot be used to extract the sub millimeter displacement of a heart beat; the frequency

resolution is on the order of centimeters. Instead, we use the highly sensitive phase to

determine the oscillations of r(t). The reader may note that in reality the phase extracted

from the digital signal would be wrapped between [−π, π]. This can be solved using a

standard phase unwrapping algorithm.

Practically, for the transmission and processing of the nth chirp, the ADC samples, mn[i],
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are converted into the frequency domain or a single range profile, Mn[f ]. To observe the

periodic movements of the body due to a heart beat, we sample the range profile in time to

construct a range matrix, M = [M1[f ],M2[f ], ...Mn[f ]]
T , such that a range bin is indexed

by a fast time or range axis and a given chirp is indexed by the slow time axis (fast time

refers to a chirp’s ADC samples, while slow time refers to chirp samples). Figure 2.3 shows

the processing pipeline as well as the range matrix and a range profile where the amplitude

strengths determine a person’s location.

To extract the heart rate, a frequency analysis can be performed on the phase of the

central range bin (the range bin with the maximum power occupancy)[33]. However, as [34,

76] note, the phase is very sensitive to movement and body background reflection which

can diminish the signal or cause interference due to the harmonics of the respiratory rate.

To mitigate this, we were inspired by [76] work in UWB radar on extracting fine-grained

respiratory signals by learning from raw IQ data. We employ a deep learning approach

to estimate g2(·), a mapping from v2 to ŷRadar. Specifically, v2 consists of a window of

range profiles around the central bin that are then processed by a series of 1D CNNs. The

output is an estimate of the ground truth PPG signal even though the radar is only measuring

vibrations. During training, we apply a data augmentation technique of rotating the complex

components of the data [76] and a loss consisting of a Negative Pearson Loss LP and a Signal

to Noise Ratio (SNR) loss. The SNR loss is defined as follows:

LSNR(y, ŷ) =

f0+w∫
f0−w

|Ŷ(f)|2 df

f0−w∫
−∞
|Ŷ(f)|2 df +

∞∫
f0+w

|Ŷ(f)|2 df
,

f0 = argmax
f

Y(f),

(2.34)

where Y(f) and Ŷ(f) are the respective Fourier transforms of y and ŷ and w is the chosen

window size.
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The overall loss function used is given by,

LRadar(y, ŷRadar) = LP (y, ŷRadar) + λRadarLSNR(y, ŷRadar). (2.35)

2.5.3 Fusion

Our fusion pipeline uniquely tries to incorporate performance properties from both the RGB

and radar modality, while retaining the desirable fairness properties of the radar modality

in our fused output. To achieve this, we use a novel discriminative training-based approach.

The fusion model gf (·, ·) learns a mapping from the unimodal plethysmograph estimates

(ŷRGB, ŷRadar) to the fused multi-modal plethysmograph estimate ŷ. A discriminator df (·)

aims to classify plethysmograph signals as belonging to light or dark skin tone groups.

Figure 2.5 shows this fusion network.

The discriminative training aims to minimize the mutual information between the esti-

mated waveform ŷ and and skin tone attribute a ∈ A. That is, we wish to minimize I(a, ŷ),

given by,

I(a, ŷ) = H(a)−H(a|ŷ). (2.36)

As shown in [77], this can be approximated as a 2 agent minimax problem between the fusion

network and the discriminator.

We establish modality fusion in the frequency domain, as opposed to the time domain.

This allows for effective periodic structure capture and alleviates inaccuracies due to synchro-

nization non-idealities between modalities. Specifically, the fusion model learns the following

mapping:

|Ŷ(f)|= gf (|ŶRGB(f)|, |ŶRadar(f)|). (2.37)

where upper-case characters indicate the Fourier transform of the corresponding lower-case

The fusion model gf (·, ·) consists of a two branch encoder comprised of three sets of 1D

convolutional layers, followed by batch normalization [78] and ReLU activation. The final

activations from the two branches are added to obtain the input to the decoder, consisting
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of three branches, similar to the encoder, followed by a final convolutional block.

The discriminator model df (·) is a fully connected network with ReLU activations. The

final layer has a sigmoid activation to classify between light and dark skin tone samples.

Mathematically,

Pr
[
Ŷ(f) ∈ Dark

]
= df (|Ŷ(f)|) (2.38)

The training step consists of three weight updates. First, the fusion model is updated

using the squared negative Pearson loss Lppg between the estimate waveform Ŷ and the

ground truth waveform Y to enforce waveform reconstruction. The exponent factor in the

loss function is an addition to previous work [31] enabling better reconstruction for difficult

samples. The loss function is given as follows:

Lppg(|Y|, |Ŷ|) = LP (|Y|, |Ŷ|)2. (2.39)

Even though the input to the loss function is the magnitude spectrum, the Pearson loss is

found to help spectrum reconstruction. Second, the discriminator model is updated using

a binary cross entropy loss between the ground truth skin tone labels and the discrimina-

tor output Pr
[
Ŷ(f) ∈ Dark

]
. Third, the generator model is also updated using a binary

cross entropy loss. For this update, all training samples are assigned light skin tone la-

bels. The loss is again evaluated against the discriminator output, Pr
[
Ŷ(f) ∈ Dark

]
=

Pr
[
gf (|ŶRGB(f)|, |ŶRadar(f)|) ∈ Dark

]
.

To recover the time domain fused plethysmograph estimate ŷ, we require phase informa-

tion in addition to the magnitude information. We note that since the camera and radar

modalities measure the plethysmograph signal at different locations on the body, a phase

difference may exist between the two. Therefore, we choose to directly use phase information

from the camera modality as an approximation of the phase of the fusion output. This has no

effect on the heart-rate estimates, which are purely a property of the magnitude spectrum.

That is,

ŷ = F−1(|Ŷ|∠ŶRGB), (2.40)
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where F−1(·) is the inverse Fourier transform operator, and ∠· in the argument operator for

a complex-valued variable.

2.6 Results

We perform experiments evaluating heart-rate performance and skin tone inequity on a self-

collected multi-modal dataset consisting of RGB videos and Radar IQ data. Our results are

compared to several approaches in RGB and a FFT-based method in radar.

Table 2.3: Across baselines spanning the radar and camera modalities, the pro-

posed fusion model shows performance and fairness improvements over the uni-

modal iPPG modality. The performance metrics measure the average performance across

the entire dataset. The pairwise difference between light and dark groups being bracketed

and the sign shows direction of inequity - ideally the absolute value of this inequity should

be low. The fairness threshold test measures the percent of the light and dark populations

failing the AAMI standard. The best performing numbers are bolded between the fusion,

RF, and PhysNet backbone.

Performance (Fairness) Fairness

Method MAE ↓ (↓) MAPE ↓ (↓) RMSE ↓ (↓) r ↑ (↓) T-Test (APE %)

Green [25] 11.61 (0.23) 15.57% (1.09%) 16.56 (-0.97) 0.23 (-0.12) 42.9,52.9

ICA [29] 8.38 (4.42) 11.65% (6.19%) 14.03 (3.15) 0.41 (-0.36) 19.9,46.9

CHROM [26] 7.45 (4.97) 10.57% (6.81%) 13.38 (4.17) 0.46 (-0.38) 14.5,42.6

BCG [41] 13.01 (-0.99) 15.03% (-1.05%) 20.66 (-1.25) 0.132 (0.05) 30.5,29.1

FFT-based RF [33] 13.51 (2.25) 1.66% (2.56%) 21.07 (2.47) 0.240 (-0.25) 39.1,44.5

PhysNet [31] 1.78 (2.22) 2.35% (2.63%) 5.26 (4.05) 0.91 (-0.25) 2.1,12.2

Our RF 2.18 (0.51) 3.05% (0.69%) 6.12 (0.85) 0.89 (-0.13) 5.1,8.4

Our Fusion 1.12 (0.67) 1.52% (0.79%) 3.42 (1.44) 0.95 (-0.10) 1.1,4.2
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2.6.1 Experiment Setup

2.6.1.1 Dataset

To conduct evaluations, we recruited 91 volunteers to participate in this study. The dataset

contains 28 light, 49 medium, and 14 dark skin tone volunteers. The skin tones were labeled

according to the Fitzpatrick scale [79]. The volunteers are primarily from a college back-

ground, with representation between genders. 6 recordings were taken for each volunteer. A

recording lasts 30 seconds and consists of a RGB video and radar IQ data. Environmental

factors such as lighting variations are left in the dataset to enable more robust skin tone in-

equity trend analysis. Figure 2.6 describes our data collection setup in detail. The data was

taken using one camera from a ZED stereo camera and a Texas Instruments AWR1443 RF

development board at a distance of 0.5-1m. The entire dataset consists of over 550 record-

ings and 18,000 unique beats of the hearts. The ground-truth plethysmograph signal was

acquired using an IntelliVue MX800 clinical grade patient monitor. An external computer

is used to synchronize the capture and storage of the two modalities and the ground truth.

The entire data collection setup is mobile, enabling large scale data capture irrespective of

location.

The RGB camera was used with default factory settings at 30 fps. Videos were processed

to 128x128 crops using a MTCNN [80] to locate facial regions. The FMCW radar was set

to emit 120 chirps per second with a frequency slope of 60 MHz/µs, starting frequency of 77

Ghz, bandwidth of 3.720 Ghz, and sampling rate of 5 Mhz using a single transmitter-receiver

pair. The sampled IQ data was processed into a range matrix and data related to regions of

interest extracted within a 25 cm window.

We note that several previous works [30, 1, 31] evaluate metrics over 30 second windows

of the estimated waveform. In this work, we choose to evaluate metrics over 10 second

widows with a stride of 128 samples (4.27 s) instead. This provides a more realistic setting

for analysis (with lower latency), in addition to better highlighting the effects related to
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inequity and fairness. All evaluations and metrics are evaluated over six independent data

splits. For each split, we include 40 participants in the traning set, 12 participants in the

validation set and all remaining participants in the test set. Note that to enable control over

the participant skin tone representation in each split, we ensure that the train and validation

set have equal number of participants from Fitzpatrick groups I, II, III and groups IV, V,

VI.

2.6.1.2 Training Configuration

All data processing and training was implemented using Python and the Pytorch machine

learning library on a Nvidia Tesla P100 GPU. All neural network architectures architectures

were trained with an Adam Optimizer [81] with a learning rate of 10−4 for 30 epochs. The

fusion model is trained for 100 epochs. The ground truth was downsampled to 30 Hz and

training clips set to 64 frames.

2.6.2 Evaluation

We perform a quantitative analysis of general performance and fairness and a qualitative

analysis of the resulting waveforms. We compare our fusion method to seven other unimodal

approaches [29, 26, 25, 41, 33, 31] including our unimodal radar model. The 30-second

recordings were divided into 10-second windows with a stride of 128 frames. We then evaluate

the performance and fairness metrics described in section 2.3 to the windows. Ground truth

and estimated heart rate were calculated as in prior work [30].

2.6.2.1 Qualitative Analysis

Analyzing the generated photoplethysmograph waveforms allows for visual inspection of the

estimated waveforms. The heart-rate estimates are frequency estimates obtained out of these

waveforms. Figure 2.7 shows estimated plethysmograph waveforms for randomly chosen
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samples from the light and dark groups respectively. We compare the estimated waveforms

from the best RGB and radar unimodal models with our fusion-based model. For the RGB

only modality, a degradation in signal quality is observed from the light to the dark skin

tones. This highlights the performance inequity in the modality. For the radar only modality,

we note across the board noisy waveforms. However, there is minimal inequity across skin

tones. Our fusion model infers the best qualitative waveforms across all three groups, while

also reducing the skin tone inequity that is evident in the RGB only modality.

Our second set of qualitative resources for analysis are Bland-Altman plots [82] (Fig-

ure 2.8). These plots visualize the distribution of the heart-rate estimation error versus the

ground truth heart rates. The plots highlight that ground truth heart rates are distributed

over a large range. In terms of heart rate estimation accuracy, we note good performance for

the RGB only modality. However, visibly significant inequity is present across skin tones,

as visible from the error distributions. For the RF only modality, we note a larger spread in

the distributions and a larger 1σ value. However, the skin tone inequity is minimal. Again,

our fusion method show significant performance and inequity improvements, with lower and

largely similar 1σ thresholds across skin tones.

2.6.2.2 Quantitative Performance

Table 2.3 highlights the performance measures for the various compared methods. The

signal processing-based iPPG and radar-based methods reflect relatively poor performance

on our dataset. We note that in general, the iPPG methods show better performance but

the radar-based method is fairer.

The deep learning-based iPPG method [31] shows significant gains in performance over

the signal processing methods. This highlights the benefit of data-driven nonlinear modeling.

However, the performance inequity between groups becomes much clearer. This reinforces the

existence of fundamental inequity in the iPPG modality. We also note that implementations

for DeepPhys [30] and LSTM PhysNet [31] were tried on our dataset, however they did not
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converge during training. We believe this may be due to small misalignments between the

ground-truth and video, that only the 3D-CNN PhysNet can handle.

Our deep learning-based RF method follows a similar trend. A significant improvement

in performance is observed when compared to the signal processing-based RF method. How-

ever, the overall performance is lower that that of the deep learning-based iPPG method.

Additionally, we note the significantly lower performance inequity between the groups.

Our fusion method outperforms all previously listed methods. We see clear improvements

in overall performance across all metrics. In addition, we also notice significant improvement

in inequity measures when compared to the RGB unimodal methods.

Notably, despite the lower performance of the radar-based method compared to the iPPG

and fusion methods, the performance still remains high (with an average MAE of 2.18 beats

per minute). Therefore, from the perspective of our evaluations on average performance, all

three methods (iPPG, radar and fusion) show acceptably high average performance. Readers

may note that real-world factors such as motion, distance from sensor and so on may have

relevant effects on the relative performance of the three methods, that are beyond the scope

of evaluation of this work. Such a detailed study, which will determine a more general

conclusion on the viability of the three methods, is deferred to future work.

2.6.2.3 Fairness

Table 2.3 highlights performance inequity measures for the various compared methods. We

note modality specific trends for these measures. For the RGB-only modality, we note that

the T-Test values for the light and dark groups, as well as the performance inequity measures,

show significant inequity. This is consistent with our theoretical analysis and expectations.

On the other hand, for the radar modality, the T-Test values show low inequity. This is

also noted in the performance inequity measures. Finally, we note that our fusion method

achieves significantly better performance inequity and T-Test scores compared to the RGB-
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Table 2.4: An adversarial network for skin tone estimation is a novel contribu-

tion that helps obtain a more equitable plethysmograph estimator across skin

tone. When compared with a fusion network trained without the adversarial network, sig-

nificant improvements are noted across all performance fairness measures, at a small cost in

performance measures.

MAE ↓ (↓) MAPE ↓ (↓) RMSE ↓ (↓) r ↑ (↓)

Fusion w/o AN 1.09 (0.98) 1.47% (1.28%) 3.31 (2.56) 0.964 (-0.146)

Fusion w/ AN 1.12 (0.67) 1.52% (0.79%) 3.42 (1.44) 0.953 (-0.102)

only modality. Compared to the radar modality, we note slightly worse performance inequity

- the fusion method shows better performance inequity in terms of some metrics, while the

radar-only method shows better performance inequity in terms of other metrics.

The observations from the previous subsections set up a tradeoff between performance and

fairness. The proposed fusion method improves on both fronts over the iPPG method, but

not compared to the radar-based method. Therefore, both these methods (fusion and radar-

based) are potentially deployable candidates. We discuss this in some detail in Section 2.7.

2.6.3 Benefit of the Skin Tone Discriminative Loss

To establish the importance of our proposed skin tone-based adversarial discriminator, we

compare against a naive fusion regime, trained only with our squared Pearson loss. Table

2.4 highlights the benefit of the skin tone discriminative loss. We note that the addition

of the discriminative loss significantly reduced the skin tone inequity of the fusion model,

at a small performance cost. The model is encouraged to minimize the distributional gap

between the estimated plethysmograph waveforms for light and dark skin tone groups.
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Table 2.5: Our proposed fusion plethysmography has a similar runtime as the

unimodal camera-based method. This is because 77 GHz radar does not have much

processing time in comparison to an image. The values tabulated above have been averaged

across multiple runs for a 30 sec recording. The runtime values were clocked on the same

hardware configurations as used for the training.

Time (s)

Method Pre-processing Inference Total

RGB Only (PhysNet [31]) 3.856 0.846 4.702

Radar Only (Ours) 0.172 0.623 0.795

Modality Fusion (Ours) 4.0282 1.4754 5.5036

2.6.4 Runtime Analysis

Table 2.5 highlights details pertaining to runtime complexity of the proposed multi-modal

fusion method in comparison with the best unimodal iPPG and radar methods. The numbers

in the pre-processing section are representative of the time taken by the dataloader for a single

sample (30 seconds). Due to the variations in the nature of data-capture from one researcher

to another, we have not included the dataset preparation time. Overall, we note that the

processing of the RF signals is faster, due it its 1D nature, when compared to the images,

which employ 2D algorithms. We note that the multi-modal fusion framework has a runtime

similar to that of the RGB and radar network combined. This is due to the fusion model

receiving its inputs from the RGB and radar models.

2.7 Discussion and Limitations

In summary, we fuse data from camera streams and 77 GHz radar to create a higher perform-

ing and more equitable plethysmography technique. To encourage reproducible research, we

make the dataset and reference designs available. While we have only fused camera and
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radar data, these two modalities were chosen for a reason. Camera-based plethysmography

is generally known to be high performing but exhibits high skin tone inequity. In contrast,

from our experiments, we note that radar-based methods have relatively poorer performance

but are more resistant to skin tone inequity. This work demonstrates that in both theory and

practice, sensor fusion of RGB and radar modalities can improve performance and fairness.

Comparing Fusion Results with Radar The goal of this work is to improve the fair-

ness of camera-based plethysmography through fusion with radar measurements. Through

such fusion, we show performance and fairness gains over the camera-based modality. An

alternative analysis is comparison of the fusion method with the radar modality. This sets up

a tradeoff-based selection: the fused modality shows sizeable performance gains over radar,

albeit with a small reduction in fairness. Notably, this means that the dark skin tone per-

formance of the fusion method is superior to both unimodal methods. This choice between

performance and fairness depends on the end-user. We present the fusion-based method to

the community as a viable alternative, for potential adoption. Follow-up works can attempt

to improve the fusion-model fairness.

Limitations Constrained by relatively smaller data sizes, and imperfect skin tone balance

in the dataset, we use a late fusion parameterization for our model, to enable better con-

ditioned model training. End-to-end learning for multi-modal fusion may be explored in

future works for improved performance gains. In addition, while our dataset is the largest

dataset for camera-radar fusion plethysmography with a focus on demographic diversity, we

note the need for continued effort towards dataset collection. Our definition of inequity is

also specific in nature. We deal with inequity in terms of the signal to noise ratio (SNR).

This is one potential interpretation of inequity, and future work can extend our tools and

analysis to other definitions.

35



Future Work and Conclusion In follow-up work, it is possible to add further sensing

modalities such as thermal, acoustic, near infrared, and polarization images to this dataset.

These additional modalities have their own uses and can aid in the sensing of additional

physiological information beyond the plethysmograph. We conclude by noting that this work

is a small step in what might be a much bigger trend for the next-generation of internet

of things (IoT) devices. Such next-generation IoT devices will move to incorporate both

performance and equity as quality metrics.

2.8 Ethical Considerations

Although there is much algorithmic research on fairness, it is imperative for devices to also be

equitable and not disadvantage segments of the population. This is particularly important

for devices that may one day be used clinically.
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RGB Sensor
RGB Camera

RF Sensor

Receiver Array
Transmitter Array

DC Power Input

Data Transfer
FPGA Data Capture
FPGA Power Switch

Pulse Oximeter

LED & Photodetector

Item Description Model Qty. Manufacturer

RGB Sensor Zed2 1 Stereolabs

Radar AWR1443BOOST 1 Texas Instruments

Optical breadboard SAB1012 1 Base Lab Tools

Mounting legs PTB060 4 Base Lab Tools

Mobility handles BHD010 2 Base Lab Tools

Vital sign monitor MX800 1 Philips

FMS Rack M8048 1 Phlips

Finger oxygenation probe OEM 1863 1 Masimo

Figure 2.6: A mobile multi-modal sensing platform was deployed to collect our

remote plethysmography dataset. The parts list and reference designs may be

found at https://github.com/UCLA-VMG/EquiPleth. Key parts include a Zed2

RGB camera and Texas Instruments TI AWR1443 FMCW radar chip for signal measure-

ment, in conjuction with a Philips MX800 clinical patient monitor and clinical peripheral

hardware for ground-truthing.
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Unimodal RF Multimodal FusionUnimodal RGB

Figure 2.7: Qualitative analysis of estimated waveforms indicates superior overall

performance for the fusion model, with reduced group-wise inequity. We high-

light a randomly chosen snippet of the plethysmograph waveform to highlight qualitative

differences. The RGB modality shows accurate reconstruction for the light skin tone group;

however the waveform reconstruction for the dark participants is visually noisy. The radar

modality shows poorer performance across the board compared to the RGB modality, but

with reduced bias/inequity. Our proposed fusion model shows superior reconstruction as

compared to both unimodal models. Additionally, the reconstruction for the dark skin tone

participant is significantly better.
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Figure 2.8: Plotting the heart-rate estimation error versus the ground truth heart

rate (Bland-Altman plots) emphasizes performance benefits of the proposed

multi-modal fusion model. Each plot highlights the distribution of the ground truth

heart rates (top), distribution of the heart-rate estimation errors (right) and the plot of the

estimation errors versus the ground truth heart rates. The ground truth heart rates cover

a broad range for the two skin tones. In terms of error distribution, the RGB only model

shows a visually distinguishable inequity (difference between the spread of the error distribu-

tions) between the light and dark skin tones. The radar only modality has a poorer overall

performance but much lower inequity between groups. The proposed fusion model shows

the best performance across skin tones, in addition to having inequity that is better than

the iPPG modality.
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CHAPTER 3

Building a Sensor for Contactless Touch Sensing in the

Wild

3.1 Introduction

Force is a ubiquitous signal that occurs when objects are in contact. As a side product of

human activities in environments, force reveals unique information and force sensing has

a wide range of use cases in ubiquitous computing and human-computer interaction. For

instance, touch interactions such as discrete button touches, swipes, and scrolling induce

force between user fingers and interaction mediums such as buttons, glass panels, and skin.

Robots rely on force as critical feedback for object manipulation. Moreover, the sensed force

can be used to derive a rich set of second-order signals. For example, force applied to host

surfaces by objects reveals their weights. Sensing the force between user fingers and contact

surfaces adds an additional dimension to touch interactions. All these signals constitute rich

information that intelligent vision-based sensing systems could leverage in addition to RGB

and depth to become more robust, accurate, and even privacy-preserving.

In this chapter, we consider only normal force, applied to objects in contact perpendicular

to the contacting surfaces. To sense this force, conventional approaches instrument sensors

(e.g., Force Sensitive Resistor) on surfaces, or in between objects. This contact-based sensing

approach either requires wiring which can be inflexible to deploy, or runs on battery-powered

wireless sensor systems, which is costly to scale and maintain. Additionally, contact-based

sensors could be sensitive to exposure of elements, and thus can be prone to error without
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periodical calibrations. These inborn challenges of the contact-based approach eliminate

sensing opportunities for a wide range of low-cost and passive objects such as 3D prints

and room utilities (e.g., walls, tables, faucets). There are also scenarios where contact-

based sensors might not be preferable such as on-body interactions, from a user experience

perspective.

To address these challenges, we create a non-contact force sensing approach based on laser

speckle imaging, a well-known imaging technique commonly used for medical applications

(e.g., blood flow assessment) but now adapted to enable non-contact sensing for ubiquitous

force signals that a wide array of interactive systems could leverage. Specifically, we detect

minute deformations of surfaces when force is present. Our key observation is that laser

speckles change significantly at surface deformations, even with very small magnitude. Be-

cause laser speckles are caused by scattered signals added constructively and destructively

depending on their relative phases, surface deformations of the same order of magnitude

as the laser wavelength (several hundred nanometers) can alter laser speckles significantly.

During the course of surface deformations, the changes of laser speckles have structured

spatial and temporal patterns that correlate with the amount of force applied. Our system,

which mainly consists of a defocused camera, a laser source, and signal-processing algorithms,

detects these structured patterns to infer the amount of force.

In this research, we first conducted a series of benchmark tests with common everyday

materials and a high-precision force-sensing linear actuator to verify our sensing principle.

Then we established a calibration process for later evaluation. Our core signal-processing

algorithm features optic flow displacement tracking and denoised aggregation. We investi-

gated two sensing configurations – one is the diverged laser setting, with a diverged laser

beam covering a wide surface area in which force could happen anywhere inside; the other is

the focused laser setting, which uses a focused laser beam to sense force at known locations.

Finally, we conducted an evaluation that systematically investigated ForceSight with three

common materials – wood, plastic, and metal of various sizes and thicknesses, and at various
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distances with two calibration methods. We also investigated a wide spectrum of factors in

supplemental studies to fully tease out the performance of our system. The results indicated

a robust and accurate performance of our system, with all average errors across all materials

and distances being less than 0.31 N. Finally, we demonstrate the applicability of our system

with example applications. Overall, our contributions include:

• A theoretical model of laser speckle motion due to force-induced surface deformations.

• An end-to-end system including hardware and signal processing algorithms for non-

contact force sensing based on laser speckle imaging.

• A systematic evaluation including two sensing configurations, two calibration proce-

dures, and multiple series of tests to investigate the feasibility of the sensing approach.

• A representative set of example applications that demonstrate the expressivity of our

proposed sensing approach.

3.2 Related Work

3.2.1 Laser Sensing for Interactive Systems

Laser is widely used in sensing systems for being collimated and coherent âĂŞ two unique

properties that contribute to signal-to-noise ratio and high sensitivity respectively of laser-

based sensing systems. Previous systems have leveraged collimated lasers (with low diver-

gence) in creating interactive systems, e.g. Digits [83] uses angled line lasers to intersect

fingers for finger position estimation and hand pose reconstruction. When modulated with

RF frequencies as carrier waves, range-finding laser beams (i.e. LiDAR). have long been

used to build interactive surfaces (e.g., The LaserWall [84, 85] and SurfaceSight [86]). A

different object tracking principle using feedback loops featuring a movable mirror platform

and a camera has been shown [87]. Lumitrack [88] used films in concert with lasers to have
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structured light patterns on ambient optical sensors for 3D tracking. Due to the high coher-

ence, constructive and destructive interferences between reflected laser wavefront result in

light patterns of bright and dark dots respectively. This light pattern is called laser speckle,

which has been thoroughly explained by Zizka et al. [89]. Next, we review prior work using

this phenomenon, which ForceSight also leverages.

3.2.2 Laser Speckle Imaging

First, it is possible to have laser travel inside the transmission medium, which alters the

laser path resulting in distinctive interference that encodes information into laser speckle

patterns. For example, Li et al. [90] used laser speckles to detect perturbations of optic

fibers. Kim et al. [91] used a similar principle to detect deformations of a scotch tape,

through which pressure inside the cavity can be detected remotely. Note that it is possible

to use non-laser optical approaches to detect surface deformations (e.g., [92, 93]), the use

of laser by its nature of active sensing significantly improves the SNR and thus lowers the

complexity of hardware and software.

Closer to our setup is prior work that detected laser speckles induced by the reflections of

object surfaces. Prior work has demonstrated laser as carrier signals to reveal material type

information [94, 95]. Jo et al. [96] and Smith et al. [97] leveraged the sensitivity of laser

speckle to surface displacements to track objects in 3D space. With high-speed cameras,

spatial correlations between speckle patterns in frames when objects are in motion can be

preserved. Even fingertips can be tracked for micro-gesture input [98]. This sensing principle

is akin to how a laser-based optical mouse tracks its position on 2D surfaces. SpeckleSense

[89] and SpeckleEye [99] demonstrated low-cost and high-speed sensors in multiple config-

urations that enable rich interactive applications. It is also possible to detect second-order

signals derived from this laser speckle shift caused by surface displacements. Shih et al. [100]

demonstrated laser speckle imaging in surface tampering detection. Surface waves caused

by in-air acoustic signals or vibrations from built-in motors can also be detected remotely
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with laser speckle shifts [101, 102, 103, 104].

Closest to our work are Laser Speckle Imaging systems in the medical domain, with their

capability to sense surface deformations over time at microscales. Researchers have used

defused laser on body tissues to image blood flow. The slight deformations of microvascula-

ture due to blood flow cause minute laser speckles movements. These movements generate

blurred local regions on images [105, 106]. This sensing principle is easy to set up, low-cost

to implement, and has shown a wide array of use cases in clinical settings (e.g., Dermatology

[107], Ophthalmology [108], and Neurology [109]). For a complete review of laser speckle’s

clinical applications, we recommend Heeman et al. [110].

3.3 Modeling Laser Speckle

3.3.1 Laser Speckle Pattern on Rough Surfaces

When rough surfaces are illuminated by laser beams, a random interference pattern will be

observed on the image plane, called laser speckle [111]. To elaborate, a whole diffuse surface

can be regarded as being composed of massive independent scattering surface elements, which

result in statistically independent phases of the reflected laser beams. These non-coherent

beams add up constructively and destructively as they traverse in space, forming granular

patterns of random distribution on the image plane.

To efficiently verify laser speckle forming, we built the model in simulation. We use a

Gaussian beam to simulate an incident laser over a uniform random rough surface Φ(x, y).

Beam distribution g(x, y) on the rough surface can be described as Eq. 3.1 [112].

g(x, y) =
ω0

ω
e[−(x2+y2)( 1

ω2+
ik
2ρ

)−ikd] (3.1)

where ω0 and ω are the waist radius, and illuminated beam spot radius, respectively.

(x, y) refers to the location on the rough surface. k = 2π
λ

in which λ is the wavelength of

Gaussian beam. ρ means the wave-front curvature radius. d is the shortest distance between
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Figure 3.1: Left: Real speckles. Right: Simulated speckles.

the laser source and the rough surface. The back-scattered light can be modeled by the

Fresnel diffraction [113].

To validate our simulation, we collected real-world laser speckles on a white wall using a

USB camera with a resolution of 2592ÃŮ1944. The laser speckles were induced by a 10 mW

532 nm green laser (12-degree divergence), positioned 10 cm away from the wall. The real-

world speckles and simulated speckles are shown in Fig. 3.1. The simulated speckles resemble

real speckles in terms of their size and shape, though the overall distribution is sparser for

the difference between the wall surface and the random rough surface.

With the subtle deformation of the object surface, speckle patterns of adjacent timeframes

have high similarity, which allows speckle motion tracking. However, the speckle patterns

can also “boi”, meaning the speckles can tumble randomly fading in and out and the original

spatial structure of patterns alters. In general, speckle motion appears as a combination of

speckle translation and boiling, since the speckle deformation would occur inevitably [114].

To compensate for the boiling effect, as we will show later in the chapter, we designed our

algorithm so that spatial continuity is not a prerequisite, i.e., we do not track the same set

of speckles over long distances on the image plane.
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3.3.2 Laser Speckle Motion Due to Surface Deformation

In this section, we derive a theoretical speckle flow model to explain how the laser speckle

patterns change due to surface deformations in the presence of force.

3.3.2.1 Deformation Model

For simplicity of exposition without loss of generality, we frame the physical model as ap-

plying a concentrated load to the center of a rectangular plate with edges simply supported.

Assuming the plate is isotropic and homogeneous, we can simplify the problem by looking

at its transverse cross-section. As shown in Fig. 3.2 B, f is the point load actuated at the

center of the beam, and x is the distance from the center to a point of interest. δ(x, f) and

θ(x, f) are the plate deformation distance (i.e., deflection) and the angle in radians at the

point of interest, respectively. δmax is the maximum deflection which locates at the plate

center. The θ is defined as 0 when the plate is not deformed. The equations of the deflection

and angle are as follows [115, p. 330–331],

δ(x, f) =
f

48EIs
(L3 − 6Lx2 + 4x3) 0 ≤ x ≤ L/2 (3.2)

δ(x, f)|x=0 = δmax(f) =
fL3

48EIs
(3.3)

θ(x, f) =
f

4EIs
(Lx− x2) 0 ≤ x ≤ L/2 (3.4)

θ(x, f)|x=L
2
= θmax =

fL2

16EIs
(3.5)

where E is the Young’s Modulus, Is is the moment of inertia of the material plate, and

L is the side length of the plate. The formulas indicate that the deflection, scales linearly

with the magnitude of applied force, as verified in Section 3.3.3 (Fig. 3.3 Right).
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Figure 3.2: ForceSight Modeling. A: Configuration of laser speckle imaging. A defocused

camera captures speckles formed by laser beams reflected from the material surface. B:

Deformation model. C: Due to surface deformation at force, a laser beam reflected by the

micro-surface Ωs changes its imaging position from I to I ′ on the image plane. Left: no force

applied. Center: force applied at O. Right: zoomed-in micro-surface.
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3.3.2.2 Micro-Surface Hypothesis

We use the following hypothesis to approximate our surface for the sensing principle. A

surface can be divided into multiple small sub-surfaces, as Fig. 3.2 C shows. When a sub-

surface is small enough, its area becomes insignificant for our interest. We define such a

sub-surface, as a micro-surface. If we look from the side, the surface plate is idealized as a

polygonal line combining line segments of all micro-surfaces.

3.3.2.3 Speckle Motion due to Surface Deformation

As shown in Fig. 3.2 C, in 2D space, the location, deflection, and angle of a micro-surface

are respectively represented by x (distance from plate center to the micro-surface), δ, and

θ. Proof in 3D space is a symmetry-based extension of our discussion in 2D space, with

3D coordinates and normal vectors. Given that the deformation model is isotropic on the

homogeneous plate, we will move on to prove it in 2D space which is more concise and clear.

Statement: The speckle motion goes towards the contact point in the presence of force.

The motion displacement on the image plate can be described by

∆I = aD
f0

4EIs
(Lx− x2) 0 ≤ x ≤ L/2 (3.6)

where a is a scaling factor of focus-image projection model, D is the focus-surface distance,

f0 is actual force, L is the length, x is the Ωs − O distance (from the micro-surface to the

plate center).

Configuration: As shown in Fig. 3.2 A and C, our model consists of a laser, a material

surface (i.e., the plate in the previous discussion), and a camera with a focus lens, a focus

plane, and an image plane. The focus plane denotes the plane where objects are in focus,

whose position can be deduced from the Thin Lens Equation. The camera is defocused, thus

speckle motion is obvious while the imaging of surface is blurry, preserving the SNR of our

setup by not letting surface textures register on the image plane. The coordinate system

origin is O, which is set to the intersection of the material surface and optical axis of the
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lens. The surface center is also configured at O. The original surface is D m away from the

focus plane.

Proof: Suppose we have a micro-surface Ωs which is x away from the origin O. A laser

beam is reflected by Ωs onto the focus plane at F . We call F a focus point (a point in focus,

not a "focal point"). With no force, its deflection δ(x, f)|f=0 = 0 and deformation angle

θ(x, f)|f=0 = 0. F registers a conjugate point I on the image plane.

Now, a small force is applied at the surface center. It pushes the micro-surface Ωs all

the way to Ω′
s with deflection δ and deformation angle θ. As a result, the focus point F

shifts to F ′, and the conjugate point I moves to I ′ accordingly, toward the touch center.

The deflection, angle, and speckle motion can be modeled as below,

δ(x, f)|f=f0 =
f0

48EIs
(L3 − 6Lx2 + 4x3) (3.7)

θ(x, f)|f=f0 =
f0

4EIs
(Lx− x2) (3.8)

∆I = a∆F = a|F ′ − F | = a(D + δ(x, f0)) tan θ(x, f0) (3.9)

Given our configuration where the D (m) is much larger than the surface deformation

(from nm to mm), the model can be approximated as

∆I ≈ aD tan θ(x, f) = aD
f0

4EIs
(Lx− x2) (3.10)

From this speckle motion model, we can draw several observations, which we also drew

from validation in Section 3.3.3:

1. The speckle motion ∆I is linearly correlated with force f .

2. The speckle motion ∆I grows as the distance D increases.
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Figure 3.3: Sensing principle validated with a linear actuator setup. Left: raw laser speckle.

Center: highlighted speckle shift due to the surface deformation caused by an applied force

of 2 N. Right: Integrated Laser Speckle Velocity correlates with the applied force.

3. Given Is = wh3

12
, where w and h are the width and thickness of the material surface

plate, the speckle motion δI is proportional to the inverse of the cube of thickness h.

4. When the stiffness increases (i.e., the Young’s Modulus E is larger), the speckle motion

∆I decreases.

3.3.3 Sensing Principle Validation

We collected data to verify our sensing principle and modeling. A motor-based linear ac-

tuator was used (see Fig. 3.5 Right) to actuate a 60.96 cm square metal surface which

measured 1.59 mm ( 1
16
”) thick. Surface deformation was measured by counting motor steps

(at 0.78 Âţm resolution) while the applied force was measured with the force meter affixed

to the linear actuator’s indenter. We bundled a camera with a diverged laser as shown in

Fig. 3.5 Left (Details of this sensor bundle can be found in Section 3.4.1) and placed them

above the surface. The linear actuator pushed the surface until the force reached 5 N. Data

was streamed to a PC through USB.

Fig. 3.3 Left shows the raw laser speckles, while Fig. 3.3 Center highlights distinctive

laser shifts (observed at 10 cm from the point of the applied force of 0 N vs. 2 N). The laser

was focused during the data collection for better visualization of the laser speckle shifts,

avoiding quantization in images (due to relatively small speckle sizes induced by diverged

lasers). These shifts were due to small surface deformations caused by the applied force.
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Figure 3.4: Fields of Integrated Laser Speckle Velocity in presence of different amounts of

force, forming a centripetal pattern towards the force centers.

We use optical flow to calculate the distance of laser speckle shift between adjacent frames,

called laser speckle velocity (LSV). Note that LSV was referred to as the speckle motion in

our modeling section. Fig. 3.3 Right plots the integral of LSV (ILSV) and the applied force

over linear actuation distance across the entire image frame excluding regions occluded by

the sensor bundle. The ILSV correlates with the amount of force. We also plot out the ILSV

across a larger region (900ÃŮ900 pixels) in the presence of 0 N, 1 N, 2 N, 3 N, 4 N, and 5 N

forces respectively, as shown in Fig. 3.4. The length and direction of each quiver indicate

the normalized magnitude and the direction of ILSV. It shows a centripetal pattern towards

the force centers, with growing magnitudes as the force increases.

Overall, these results verify the sensing principle that the rest of this work builds upon.
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Therefore, we can average ILSV magnitudes to get a robust indicator signal of ForceSight

for force estimation. For higher accuracy, our force-sensing algorithm uses the magnitude

projected onto the direction toward the force center for a weighted aggregation, which will

be further described in Section 3.4.2.2.

3.3.4 Calibration Exploration

The test surfaces are simplifications of real-world objects which are often complex (e.g.,

uneven surfaces, irregular shapes, varying thicknesses, and heterogeneous material composi-

tions). Modeling this level of complexity requires precise sensory systems (e.g., 3D scanners)

and intense calculations. In comparison, calibration is a more viable path for its simple setup

process so long as the signal has high repeatability or the algorithm can cope with shifts

in signals over time and configuration changes. In fact, calibration is a common technique

in Laser Speckle Imaging – for example, Laser Speckle Contrast Imaging requires captured

data as a baseline [100]. Calibration is also common in force-sensing applications. For ex-

ample, once FSR is inserted, it needs calibration to map its resistance to the amount of

force. Therefore, we set out to design ForceSight with this empirical approach, to develop

algorithms with minimal calibration needed in practical force-sensing applications.

3.4 Implementation

3.4.1 Sensor Bundle

Our sensor (Fig. 3.5 Left) consists of a camera (FLIR GS3-U3-32S4M-C 1/1.8" Grasshop-

perÂő3 1536ÃŮ2048) and a 532 nm (green) 100 mW point laser projector (from Civil Laser).

We use the camera at its highest frame rate 121 fps with a fixed 4 mm/F1.8 lens (Edmund

Optics) throughout the evaluation, with the camera out-of-focus such that its working dis-

tance from front housing is adjusted to 0 mm. A 532 nm camera filter is attached to the
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Figure 3.5: Left: ForceSight sensor bundle. Right: evaluation setup with the force gauge

mounted on a linear actuator.

camera for better SNR. The camera and the laser projector are bundled, pointing in the

same direction. The camera can capture speckles from the diffuse reflection of the laser on

an object’s surface.

We explore two configurations for the laser in our sensor bundle, the diverged mode,

and the focused mode. In diverged mode, the laser is diverged and expanded with three

concave lenses (two LD2568-A with -9.0 mm focal length and one LD2060-A with -15.0 mm

focal length from Thorlabs) and one optical diffuser (HOLO 80 Deg 12.5mm from Edmund

Optics), so the green laser can spread over a whole surface. In focused mode, the laser

beam remains as a dot when it is landed on the object’s surface, concentrating energy for

long-distance sensing applications.
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3.4.2 Algorithm

The output of our sensor setup is an ordered stack of video frames
{
vk
}N−1

k=0
, where N is the

total number of frames. We assume that the video is captured at a frame rate f . Our goals

from this frame-stack are twofold: first, we want to reliably estimate speckle velocity fields;

and second, to estimate the applied force in real-time. These aspects are discussed below

sequentially.

3.4.2.1 Speckle Velocity Fields

The speckle frames have distinctive structures. Qualitatively, as a result of applied force,

the speckle patterns show distinctive centripetal displacement. On smaller time scales, these

can be approximated as local pattern translations. However, across larger timeframes, scale

differences may also be observed in local patterns. Given these observations, we set up the

velocity field estimation problem as a flow estimation problem across small timeframes. That

is, we estimate flow displacement across every two adjacent timeframes, thereby obtaining

a correlated metric to the flow velocity. The flow displacement is used as a proportional

estimate for laser speckle velocity. Algorithm 1 includes pseudocode for this simple algorithm.

3.4.2.2 Real-time Force Estimation

Qualitatively, the applied force on the surface and temporal integral of the speckle velocity are

directly correlated. Therefore, given the material and its physical configuration, a mapping

may be learned to infer applied force from the integral of the estimated speckle velocity. The

estimate speckle velocity is calculated by averaging projected lengths of all vectors within the

image frame, towards the estimated force center. Note that this gives us a signed measure

for the estimated speckle velocity. A cumulative sum of (i.e., integral) the estimated speckle

velocity over time is then directly used by regression models to estimate the instantaneous
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Algorithm 1: Speckle velocity field estimation
Input:

Frame stack
{
vk
}N−1

k=0
, number of frames N , video frame rate f , Optical flow operator

OpticalFlow {·, ·}

Output:

speckle velocity stack
{
rk
}N−2

k=0

1: Initialize
{
rk
}
← 0 ∀ k ∈ {0, 1 . . . N − 2}

2: for i = [0, N − 2] do

3: ri ← OpticalFlow
{
vi,vi+1

}
4: end for

5: return
{
rk
}N−2

k=0

applied force.

3.5 Evaluation

3.5.1 Apparatus

As shown in Fig. 3.5 Right, a force curve gauge (resolution 0.1 N) is mounted on a linear

actuator (resolution 7.8125x10−7 m/step), pointing towards the object surface. The sensor

bundle was placed above the surface. The surface was supported on its edges by an aluminum

frame base. The ground truth force reading from the force curve gauge and the raw data

from the camera were streamed to a computer. The linear actuator was also connected to

the computer for control.

3.5.2 Test Materials

Our test apparatus involved sheets of three types of materials (wood, acrylic, and metal)

which are common to find in daily settings. These square sheets measured 60.96 cm long
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Figure 3.6: Photos and microscopic images of materials. The actual side lengths of global

photos and zoom-in images are 60.96 cm and 1 mm respectively.

and of a variety of thicknesses, which are common building materials purchased from home

improvement retailers [116, 117, 118]. To measure the roughness of these materials, we

conducted a friction test using a 3D printed PLA instrument with a force gauge to measure

the coefficients of friction. For the three type of materials we tested, their coefficients of

friction measured 0.334, 0.417, and 0.301 for wood, acrylic, and metal. Fig. 3.6 shows a

closer view of them.

• wood: 5 mm, 5.56 mm (7/32"), 6.35 mm (1/4")

• acrylic: 1.59 mm (1/16"), 3.18 mm (1/8"), 6.35 mm (1/4")

• metal: 0.79 mm (1/32"), 1.59 mm (1/16"), 3.18 mm (1/8")

3.5.3 Data Collection Procedures

We describe the procedures for one complete trial of data collection in this section. The first

step was pre-collection preparation. Placed on top of the aluminum frame base, the sheet

was simply supported by its four edges. The sensor bundle was then adjusted carefully for

the correct working distance and laser coverage (i.e., diverged vs. focused modes). We also
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Figure 3.7: Evaluation results on sheets of three materials (wood, acrylic, metal) of various

thicknesses.

adjusted the camera’s exposure time and gain in software to ensure a clear view of laser

speckles. Besides, we set the indenter of the force curve gauge to hover above the centroid

of the sheet. The reading of the force curve gauge was 0.0 N at the beginning of each data

collection trial.

We started data collection once the setup was ready. As the linear actuator went down-

wards at a speed of 6.720810−2 mm/s, the indenter of the force curve gauge approached

the sheet surface with a force reading of 0.0 N. Once the indenter got in contact with the

surface, the force reading started to increase as the actuated force incremented. Once the

force reached 5.0 N, the force curve gauge started to retract until the reading returned to

0.0 N. The speckle images (with a resolution of 1536ÃŮ2048 at 121 fps), force readings

(with a resolution of 0.1 N at 10 fps), and indenter displacement (counted in steps) were

saved during this push-release process with synchronized timestamps. After the process, we

recorded the location of the indenter (xc, yc).

The next step was post-processing. We applied a mask to remove regions where speckles

were induced on the linear actuator as opposed to the tested sheet. In real-world applications,
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Figure 3.8: Evaluation results on four sensing distances (2 m, 4 m, 6 m, 8 m) tested on the

metal sheet with a thickness of 1.59 mm (1/16").

this mask could be easily generated using depth cameras. We also set a threshold to get rid

of regions that were too dark.

Following the procedure above, the collected data is called one "trial" for the given object

sheet. Each trial took from 40 to 85 seconds to complete, depending on the elasticity of the

material of the tested sheet. Five trials were collected per sheet. In total, we collected 2625

seconds of data with 317625 images, 2625 force readings, and 225830 linear actuator steps.

3.5.4 Train-Test/Calibration Procedures

We evaluated ForceSight in two procedures, each following a unique calibration process that

could be used in real-world scenarios. Note that we use "train" and "test" to explain the

data split in building and evaluating our regression models, though we did not use machine

learning in ForceSight .

Procedure#1: Train-Test split by trials. In this procedure, we split the five trials into

train trials and test trials with different split percentages. For example, the train-test split

percentage is 1/(1 + 4) = 20% when we build the regression model on one trial and test it

58



on the other four trials. Different combinations under the same percentages are grouped in

an N-fold manner. This is to reflect a common real-world calibration process where sensors

are calibrated with a full dynamic range of future signals to expect.

Procedure#2: Train-Test split by force. In this procedure, we first bucketed one trial

of data (0-5 N) into five equal 1 N-range bins, and split the bins into train bin(s) and test

bin(s) with different split percentages. For instance, the split percentage 40% indicates the

regression model is built on forces in the first two bins and tested on the three remaining

bins. Additionally, the train portion always starts from 0 N, and the test portion always

follows the end of the train portion. It reflects another real-world scenario where sensors are

calibrated with partial dynamic ranges of the future signals to expect. This is inherently

challenging but could yield useful insights into the generalizability of the model.

In both procedures, we varied the amount of data in building the regression model, from

20 % to 80 % (i.e., 1-4 trials in Procedure#1, and 1-4 Newton range in Procedure#2). We

evaluated our regression models with all train-test split combinations.

3.5.5 Results

We collected data in two settings, including one short sensing range with three materials

(i.e., wood, acrylic, metal) using the diverged mode, and four long sensing ranges with one

material (i.e., metal) using the focused mode. Additionally, we evaluated ForceSight with two

train-test procedures. This evaluation process yielded four combinations, which we discuss

in this section.

3.5.5.1 Short Range Sensing (Diverged Mode)

As Fig. 3.7 shows, ForceSight achieves an averaged error of 0.18 N (SD=0.11) and 0.31 N

(SD=0.12) for the two train-test procedures, respectively.

Train-Test split by trials. Comparatively, the train-test split by trials (i.e., calibrating
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the sensor with signals of full dynamic range) yielded better results. Among the three

tested materials, Wood performs the best with the lowest averaged error of 0.11 N (SD=003)

followed by Acrylic (error=0.13 N SD=0.06) and Metal (error=0.30 N SD=0.28). We found

a significant source of error in the thickest metal sheet we tested (error=0.61 N, SD=0.31)

for the small surface deformation resulting from the test force. Even with 5 N force, the

surface deformation is almost invisible to naked eyes, though it can be detected by our

sensor. We suspect that real-world applications with thick metal sheets would most likely

involve stronger force, which could result in larger deformations and thus lower the errors

(or percentage errors). When comparing between percentages of the training data, we did

not find any major differences. This result indicates that ForceSight can be calibrated very

efficiently with a small amount of data.

Train-Test split by force. Train-Test split by force (i.e., calibrating the sensor with partial

dynamic ranges) yielded an average error of 0.31 N (SD=0.12) across all materials. Inter-

estingly, Wood performs the worst, with an average error of 0.44 N (SD=0.49) among all

materials. Based on our observations, this was due to the heterogeneous internal microstruc-

ture distribution inside the wood sheets, resulting in non-linearity, which makes it harder for

the regression model to generalize for unseen signals. When comparing between percentages

of the training data, we did not find any major differences, pointing us again to the insight

that ForceSight can be calibrated very efficiently with a small amount of data.

3.5.5.2 Long Range Sensing (Focused Mode)

Fig. 3.8 shows that ForceSight achieved an averaged 0.18 N (SD=0.05) and 0.18 N (SD=0.03)

error for the two train-test procedures, respectively.

Train-Test split by trials. Again, the train-test split by trials yielded better results among

the two procedures, which suggest calibration with signals of full sensing dynamic range for

real-world applications. Among the four tested distances (2 m, 4 m, 6 m, 8 m), ForceSight

yielded average errors of 0.12 N (SD=0.06), 0.20 N (SD=0.13), 0.16 N (SD=0.08), and 0.08 N
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(SD=0.04) respectively. We did not observe a clear correlation between distance and sensing

performance, indicating the feasibility of ForceSight in long-range sensing. However, during

the data collection, we observed more oscillations (i.e., noise) of laser speckles at longer

sensing distances due to ambient vibration (e.g., airflow from HVAC, appliances running)

and our algorithm is robust to these noises. We are cautious that severe vibrations from a

longer sensing distance might require a superior denoise algorithm to process. Additionally,

we did not find having more data in building regression models improves our sensing accuracy.

This result is consistent with the outcome of the previous tests.

Train-Test split by force. Among the four tested distances (2 m, 4 m, 6 m, 8 m),

results indicate average errors of 0.16 N (SD=0.13), 0.16 N (SD=0.14), 0.19 N (SD=0.15),

and 0.21 N (SD=0.18) respectively. We did not find any linkage between distance and

sensing performance. However, we found having more data in building the regression models

improves our sensing accuracy.

3.5.6 Supplemental Studies

In supplemental studies, we investigated additional factors that could affect our sensing

performance. Results from these additional factors further our understanding of this sensing

technique and enrich its sensing vocabulary.

Angle of incidence. The angle of incidence has been a major factor in laser sensing per-

formances due to the fact that reflected light energy increases as the laser gets perpendicular

to the sensed surface. In this test, we collected data from various angles of incidence (from

0 to 40 degrees with a 10-degree internal), with a diverged laser positioned 30 cm away from

the intersection point of its principal axis and the surface (i.e., 1.59 mm thick metal sheet),

following the data collection and evaluation procedure as in our main evaluation. Results

are shown in Fig. 3.9.

Overall, we noted an average error of 0.15 N (SD=0.06) and 0.13 N (SD=0.14) from
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Figure 3.10: Detecting force location on different materials using ForceSight . The ground

truth force location is shown in red. Speckle velocity is shown in a log scale.

calibration procedures #1 and #2 respectively. We did notice slight differences between

performances when the sensor bundle is oriented with different angles of incidence, however,

we did not see a trend that indicates a higher angle of incidence lowering the sensing per-

formance. Though promising, we are cautious that more material types including ones that

are more specular should be included in the test set.

Force location estimation. As a result of the centripetal displacement of the speckle

patterns in response to force (e.g., a touch), the contact location is the common center for

the estimated velocity vectors. We propose a center-estimation algorithm, which is essentially
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solving a distance-minimization problem. For a given center estimate, the error value is the

sum of perpendicular distances of the point from all the estimated laser speckle velocity

vectors for a given velocity field. The point with a minimum error value is the best center

estimate. We initialized a random center and then used gradient descent optimization. The

algorithm is applied to a single frame with a learning rate of µ = 0.01 and steps T = 10, 000

in PyTorch. The final force location estimates are obtained by averaging over 10 random

initialization and runs.

Figure 3.10 shows qualitative results on force location detection on the three materials

(with the medium thicknesses). We note that we were able to approximately detect the

force location for the metal and acrylic materials with mean Euclidean errors of 4.86 cm

(STD of 1.66 cm) and 8.38 cm (STD of 6.00 cm) respectively. These results serve as proof

of concept for ForceSight being a viable tool for not just force sensing but force location

estimation as well. Notably, force location performs poorly on wood, as a result of its

heterogeneous internal structure with a mean Euclidean error of 19.38 cm (STD of 1.09 cm).

This establishes that the force location is limited in accuracy by the nature of material

structures and resulting speckle motion features.

A wide array of materials. In this test, we included a wider set of materials and objects,

including a book, pillow, package box, foam board, acrylic, wood, metal, and silicone. We

collected one trial (0-5 N) of data for each material with a focused laser (i.e., focused mode)

30 cm away from surfaces and using the same procedure as previous tests. Force was applied

10 cm away from the laser dot on the tested surface. We built regression models that

minimize errors (maximizing R2) but included both linear and quadratic regression models

in our search. Fig. 3.13 shows our results which indicate that simple models well fit data

collected from these materials. We found Book to be the only object that requires a second-

degree term among the test objects/material sheets. The distinctive coefficients across these

materials can be used to identify material types. In this use case, ForceSight becomes a

sensing instrument that yields elasticity of surfaces if the applied force is known.
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3.6 Example Applications

3.6.1 On-world Touch Sensing

Projected touch interfaces create ubiquitous interaction experience, which much prior work

has investigated [119, 120, 121]. With depth cameras, touch sensing on everyday surfaces

has never been easier. And yet, commodity depth cameras cannot sense fine-grained touch

with small finger movements (sub-centimeter), as shown and discussed in prior work [122,

119]. However, being able to segment touch from minute motions without having users

exaggerate their movements to accommodate for sensor inaccuracy is critical to fully utilize

the expressive and natural interactions provided by touch. In this regard, ForceSight creates

a potential solution using force as an additional signal to aid touch segmentation (touch vs.

no touch). Fig. 3.11 shows the integrated laser speckle velocity field on office partitions when

a user touches them at forces similar to ones on touchscreens. Note that we used Google

MediaPipe [123] pose tracking to exclude regions of user bodies so that the detection pipeline

is robust against interference from users’ motion. ForceSight also works with a broader array

of everyday surfaces including a fabric couch arm, a wood table, walls, and a fridge door.

3.6.2 3D Printing Interactivity

ForceSight also provides a viable path to 3D printing interactivity as many previous systems

aim to achieve [124, 125, 126]. To achieve this, we embedded a lite version of ForceSight

consisting of a 3 mW laser and a low-end webcam as in Fig. 3.12 C. The lite sensor bundle

costs less than $20 to make. Fig. 3.12 D and E show example interactions enabled by

the 3D printed controller with embedded ForceSight . ForceSight senses and recognizes the

discernible surface deformations due to the applied force when users press the buttons and

tilt the joystick in different directions. Since ForceSight sensor bundles are installed at the

controller base, a user can easily switch controller top plates for applications that demand

different interactions.
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Figure 3.11: On-world true-force touch sensing. A: Integrated Laser Speckle Velocity Field

overlaid on raw laser speckles. B: An RGB image captured by a webcam. C: Detected force

from ForceSight . Of note that, to avoid optical flows induced by user motions, sensing is

turned off at regions that are recognized as user body by MediaPipe pose tracking.
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Figure 3.12: Interactive 3D prints using embedded ForceSight systems. A: Two designs of

thin top plates that can transform user interactions into discernable plate deformations. B:

3D models of a controller. C: Two low-cost lite ForceSight bundles are embedded inside the

controller. The rest of the figure shows live detection results of user interactions featuring

discrete buttons and the joystick.
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3.6.3 Force-based Material/Object Identification

Material identification has shown practical uses in HCI, as prior works demonstrated ID-

enabled interactions [94] and material-aware laser cutting [95]. We notice that different

materials exhibit distinguishable deformations in response to force due to variance in density

and internal microstructures. For example, hard materials (e.g., wood) have a wider and

shallow "footprint" whereas soft materials (e.g., silicone) deform locally around the force

point resulting in a narrow and deep "footprint". The footprint geometry reveals much

information about materials.

Another approach is to use regression model parameters as classifier features, which

essentially convey Young’s Modulus and the moment of inertia. Fig. 3.13 shows differences

in parameters learned from our supplemental study A Wide Array of Materials, which can

be leveraged for identification. We believe this force-based material identification can have

broader applications in digital fabrications (e.g., water jetting) as well as object handling

(i.e., robot arms can apply less amount of force when handling delicate materials).

3.6.4 Force-Aware Object Manipulation

Handling delicate objects requires force-sensitive mechanisms. Conventional methods rely

on contact-based force sensors on robot arms. ForceSight creates a different approach to

Silicone
𝑅𝑅2 = 0.989

Foam Board
𝑅𝑅2 = 0.997

Acrylic
𝑅𝑅2 = 0.997

10−2 10−1 100 101

Slope of a Linear 
Regression Model

Metal
𝑅𝑅2 = 0.996

Wood
𝑅𝑅2 = 0.991

Pillow
𝑅𝑅2 = 0.990

Package Box
𝑅𝑅2 = 0.990

Figure 3.13: ForceSight builds a distinctive set of linear regression models for different ma-

terials/objects with high R2. Coefficients of these models can in turn reveal the material

type if the applied force is known, enabling material identification for richer applications.
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Figure 3.14: Remote force sensing for delicate object handling. A: Robotic arm grasps a

soda can sequentially with three different forces – light, strong, and medium. B: Integrated

Laser Speckle Velocity. C: Force detected by ForceSight .

facilitate remote sensing which can potentially turn into centralized sensing in which one

sensor can serve multiple robot arms under its field of view (akin to the sensing scheme of

security cameras). Fig. 3.14 shows ForceSight working with a focused 10 mW laser and a

low-cost robot arm (Arduino Braccio) to sense the grasping force on a soda can as a test

primitive. ILSV is shown in Fig. 3.14 B. Once the force reaches the desirable amount, the

robot arm starts lifting up the object (Fig. 3.14 C).

3.7 Discussion

Laser safety The strongest laser used in ForceSight is 100 mW (Class III B) which is by

itself hazardous for eye exposure. However, it is only used in diverged settings with wide

divergence achieved by using three concave lenses concatenating with a diffusing glass. The

divergence significantly shortens the Nominal Ocular Hazard Distance (NOHD) [127]. At

our divergence (79.6 degrees), the NOHD is 5.09 cm. To further improve the safety of users,

ForceSight could work with other sensing modalities such as RGB cameras and depth sensing

– the laser can be turned off once users are too close. ForceSight could also use low-power

guarding lasers [128] or deploy it at high installation/vantage locations, e.g., ceilings, to
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improve safety.

Laser power and color During experiments and application developments, we used and

tested the feasibility of a wide array of laser power levels (10, 20, 30, 50 mW) and colors

(green, red). In this work, we predominantly demonstrated visible green lasers for ease of

development and troubleshooting. In real-world applications, invisible infrared lasers can be

used to minimize intrusiveness.

Different types of cameras Additionally, we tested a wide variety of cameras including

the IDS Imaging U3-3060CP, ELP 5.0 megapixel, and 2.0 megapixel USB Camera. We found

the high camera frame rate to be an important factor in capturing clearer speckles that are

easier to track. Low-frame-rate cameras can be used for slower applications of force. To track

sudden applications of force with low-frame-rate cameras, we can also use blur detection,

which is commonly adopted for laser speckle contrast imaging in clinical applications. Even

though blur detection focuses more on the presence of force, it still can enable use cases such

as on-world touch segmentation.

Open source We open source our algorithms and dataset to facilitate others’ use of Force-

Sight . We hope the joint force behind this technique could further advance it and enable

an even more diverse set of applications with practical uses. The source code and data are

available at https://github.com/forcesight/ForceSight.

3.8 Limitation

ForceSight has two main limitations which we plan to work on in future work. These limi-

tations are around the compatibility of materials, and sensing range & resolution.

First, ForceSight works with many everyday surfaces with a few exceptions – plasti-

cally deformable materials, discontinuous materials, very stiff materials, and transparent

materials. To begin with, ForceSight requires deformation delivery. Plastically deformable

materials, e.g., Play-Doh, cannot transfer the deformation from the contact point to its sur-
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roundings. Second, discontinuous materials like fur and polar fleece could not work with

ForceSight , because the force applied at one point will not be passed on to its surrounding

regions. Third, ForceSight cannot work with stiff surfaces that are too hard to deform, e.g.,

a thick wood table, or concrete floor. Finally, ForceSight does not work with transparent

surfaces. Laser beams pass through them, generating extremely dim speckles beyond the

sensitivity of our system.

We also plan to optimize ForceSight for 1) extreme large forces (e.g., car parking on the

driveway) and 2) high sensing resolution (e.g., coin on the table). Achieving these requires

us to have cameras with better performance (e.g., faster speed, denser pixels on the CCD

sensor) and force meters that can provide more fine-grained data in future work.

3.9 Conclusion

We present ForceSight , a non-contact force sensing technique using laser speckle imaging.

We derived models for both the formation and motion of laser speckles induced by the defor-

mation of rough surfaces at force. We developed and evaluated our system with a series of

tests featuring different materials, sensing distances, as well as calibration methods. Results

indicate the high accuracy of ForceSight across test settings. We conclude the chapter with

four applications showcasing the strength of ForceSight in different use cases. Overall, we

believe ForceSight opens up new force sensing opportunities and novel interaction modalities,

which could be readily integrated into many real-world applications and future computing

systems.
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CHAPTER 4

When Collecting Data at Scale is Infeasible: Generating

Physiologically Realistic Synthetic Humans

4.1 Introduction

Traditional remote photoplethysmography (rPPG) methods either use Blind Source Separa-

tion (BSS) [29, 135, 28] or models based on skin reflectance [27, 26, 136] to separate out the

pulse signal from the color changes on the face. These methods usually require pre-processing

such as face tracking, registration and skin segmentation. More recently, deep learning and

convolutional neural networks (CNN) have been more popular due to its expressiveness and

flexibility [30, 31, 137, 47, 138, 139]. CNNs learn the mapping between the pulse signal and

the color variations with end-to-end supervised training on the labeled dataset, thus achiev-

ing state-of-the-art performance on the vital sign detection. However, the performance of

data-driven rPPG networks hinges on the quality of the dataset [32].

There are some efforts (as shown in Tab. 4.1) on collecting a large rPPG dataset for better

physiological measurement. Nonetheless, there exists several practical constraints towards

collecting real patient data for medical purposes. These include: (1) demographic biases

(such as race biases) in society that translate to data. As pointed out in [1], a diverse rPPG

dataset may not be accessible for some countries/regions due to geographical distribution

of skin colors as reflected in their skin tone world map for indigenous people. (2) necessity

of intrusive/semi-intrusive traditional methods for collection of data, (3) patient privacy

concerns, and (4) requirement of medical-grade sensors to generate the data. Hence, there is
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Dataset # Subjects # Videos Demo. diversity Orig. Videos Free Avail.

AFRL [129] 25 300 ✗ ✓

MMSE-HR [130] 40 102 ✗ ✗

UBFC-rPPG [131] 42 42 ✗ ✓

UBFC-Phys [132] 56 168 ✗ ✓

VIPL-HR [133] 107 3130 ✗ ✓

Dasari et al. [134] 140 140 ✗ ✗

Our synthetic method 480 480 High ✓

Table 4.1: Comparison of rPPG real datasets and our proposed synthetic dataset.

Real datasets are limited by the number of subjects and videos and demographic diversity,

while synthetic datasets have easy control of these attributes.

a pressing need for the concept of ‘digital patients’: physiologically accurate graphical renders

that may assist development of algorithms and techniques for improvement of diagnostics

and healthcare. We provide such a neural rendering instantiation in the rPPG field.

For decades, computer graphics has been a driving force for the visuals we see in movies

and games. Imagine if we could harness computer graphics techniques to create not just

photorealistic humans, but physio-realistic humans. We combine modalities of image and

waveform to learn to generate a realistic video that can reflect underlying BVP variations as

specified by the input waveform. We achieve this by an interpretable manipulation of UV

albedo map obtained from the 3D Morphable Face Model (3DMM) [140]. Our model can

generate rPPG videos with large variation of various attributes such as facial appearance

and expression, head motions and environmental lighting as shown in Fig. 4.1.

4.1.1 Contributions

We summarize our contributions as follows:
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Figure 4.1: Our proposed scalable model can generate synthetic rPPG videos with

diverse attributes such as poses, skin tones and lighting conditions. In contrast,

existing real datasets (e.g. UBFC) only contain limited races.

• We propose a scalable physics-based learning model that can render realistic rPPG

videos with high fidelity with respect to underlying blood volume variations.

• The synthetically generated videos can be directly utilized to improve the performance

of the state-of-the-art deep rPPG methods. Notably, the corresponding rendering

model can also be deployed to generate data for underrepresented groups, which pro-

vides an effective method to further mitigate the demographic bias in rPPG frame-

works.

• To facilitate the rPPG research, we release a real rPPG dataset called UCLA-rPPG

that contains diverse skin tones. This dataset can be used to benchmark performance

across different demographic groups in this area.
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4.2 Related Work
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Figure 4.2: Pipeline of our cross-modal synthetic generation model that can gen-

erate rPPG face videos given any face image and target rPPG signal as input.

The input image is encoded into UV albedo map, 3D mesh, illumination model LSH and

camera model c. We then decompose the UV albedo map into blood map, vary the UV

blood map according to the target rPPG signal and generate the modified PPG UV maps.

The modified PPG UV map that contains the target pulse signal variation is combined with

LSH , c to render the final frames with randomized motion.

rPPG methods: rPPG techniques aim to recover the blood volume change in the skin

that is synchronous with the heart rate from the subtle color variations captured by a cam-

era. Signal decomposition methods include [28] that utilizes Principal Component Analysis

(PCA) on the raw traces and chooses the decomposed signal with the largest variance as the

pulse signals and Independent Component Analysis (ICA) [29, 141] that demixes the raw

signals and determines the separated signals with largest periodicity as the pulse. PCA and

ICA are purely statistical approaches that do not use any prior information unique to rPPG

problems. A chrominance-based method (CHROM) [26] is proposed to extract the blood

volume pulse by assuming a standardized skin-color to white-balance the image and then lin-
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early combine the chrominance signals. Plane Orthogonal to Skin-tone (POS) [27] projects

the temporally normalized raw traces onto a plane that is orthogonal to the light intensity

change, thus canceling out the effect of that. CNNs have achieved state-of-the-art results on

vital sign detection due to their flexibility [30, 31, 137, 47, 138, 139, 1]. The representation

for rPPG estimation can be efficiently learned in an end-to-end manner with the annotated

datasets instead of handcrafted features for traditional methods. We use two representative

work PhysNet [31] and PRN [1] in our experiments to demonstrate the performance of the

rPPG models on both real and synthetic datasets.

Real rPPG datasets: There are many efforts on collecting real datasets for more accu-

rate physiological sensing [129, 130, 131, 132, 133, 134]. However, these datasets are usually

very limited in the number of subject participants and also inequitable towards certain de-

mographic group. Some work includes subject with darker skin types, but the number is

still very limited [130]. Making machine learning methods equitable is of increasing interest

in medical domain [142, 143]. There is a lack of a benchmark dataset to measure the perfor-

mance of various rPPG methods on diverse skin tones, especially dark skin tones in rPPG

area. Dasari et al. [134] proposed a dataset that only contains dark skin tones. However,

the actual videos are not shared but the color space values of skin region of interest. The

current best-performing deep learning algorithms require sizeable input data. The rPPG

model trained on such an inequitable dataset may easily disadvantage certain underrepre-

sented groups in the dataset. The lack of such a benchmark dataset to systematically and

rigorously evaluate various methods on diverse skin tones makes it hard to ensure that the

rPPG methods deployed into the society would not cause inequities against certain groups

that are underrepresented. Our real dataset represents a first step towards filling this gap.

Synthetic generation of rPPG videos: The real rPPG dataset construction is a labo-

rious process and generally takes a large amount of time for collection and administrative

work for Institutional Review Board (IRB) approval. Therefore, it is tempting to have a
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scalable method that can generate large-scale synthetic rPPG datasets for data augmenta-

tion. Realizing the difficulty of this, there are a few groups working on generating synthetic

rPPG facial videos to augment real data [144, 145, 1, 146]. Mcduff et al. [144] propose to

render rPPG face videos using facial avatars and simulate the blood volume change with

Blender. However, as discussed in the limitation of their method, the rendering of a frame

is extremely slow (20 seconds per frame), thus preventing synthetic generation of large-scale

videos. The initial overhead for creating the pipeline is also expensive and labor-intensive.

A skin tone augmentation method is proposed in [1] where they use a generative neural

network to transfer light skin tones to dark skin tones while retaining the pulsatile signals so

that the performance on dark skin tones can be improved with the augmented dataset more

balanced. Like the other augmentation method on rPPG signals [145], they are both limited

as they can only be utilized on current datasets and have to be retrained with new datasets.

In contrast, our synthetic generation method can generate diverse appearance with any in-

the-wild image and target rPPG signal as input and the generation is merely a forward pass

of the neural network.

4.3 Methods

In this section, we propose a scalable method that can generate synthetic dataset with any

given reference image and target rPPG signal in Sec. 4.3.1. The generated videos can be

used to train the state-of-the-art rPPG networks, which we introduce in Sec. 4.3.2.

4.3.1 Synthesizing Biorealistic Face Videos

We first describe the 3DMM model used to obtain the facial albedo maps and then demon-

strate how to further obtain facial blood maps from the extracted albedo by analyzing light

transport in the skin. Details about how to generate synthetic facial videos with the de-

composed blood maps and the source of the input facial images and PPG waveforms are
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also provided in this section. Please see Fig. 4.2 for an illustration of the entire synthetic

generation pipeline.

Non-linear 3DMM: To generate faces with different poses, illuminations and desirable

rPPG signal variations, we have to infer the 3D shape and albedo parameters of the face.

We use DECA [140] to predict subject-specific albedo, shape, pose, and lighting parameters

from an image. In details, it uses a statistical 3D head model FLAME [147] to output a mesh

M with n = 5023 vertices. The camera model c is learned to map the mesh M to image

space. Since there is no appearance model in FLAME, the linear albedo subspace of Basel

Face Model (BFM) [148] is used and the UV layout of BFM is converted to be compatible

with FLAME. It outputs a UV albedo map A with a learnable coefficient α. By expressing

illumination model as the Spherical Harmonics (SH) [149], the shaded face image can be

represented as the following equation:

B (α, l, Nuv)i,j = A(α)i,j ⊙
9∑

k=1

lkHk (Ni,j) , (4.1)

where Hk is the SH basis, lk are the corresponding coefficients and ⊙ denotes the Hadamard

product. Ni,j is the normal map expressed in the UV form. The final texture image is

obtained by rendering the image using the mesh M , shaded image B, and the camera model

c through a rendering function R(·):

Ir = R(M,B, c). (4.2)

As rPPG is essentially the change of blood volume in the face, our idea is to first obtain

the spatial concentration of blood fblood of the UV albedo A and then temporally modulate

the UV blood albedo map in a way that is consistent with the rPPG signals. We will next

show how this biophysically interpretable manipulation is achieved.

Light transport in the skin: In order to obtain blood map fblood on the face, we first

study light transport in the skin to build the connection between face albedo and fblood. Fol-
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lowing a spectral image formation model, the original UV face albedo Ac with c ∈ {R,G,B}

is reconstructed by integrating the product of the camera spectral sensitivities Sc, the spec-

tral reflectance R, and the spectral power distribution of the illuminant E over wavelength

λ [150]:

Ac =

∫
λ

E(λ)R(fmel , fblood , λ)Sc(λ)dλ. (4.3)

An optical skin reflectance model [151] with hemoglobin fblood and melanin map fmel as

parameters is utilized to define the wavelength-dependent skin reflectance R(fmel , fblood , λ).

Specifically, we assume a two-layer skin model that characterizes the transmission through

the epidermis Tepidermis and reflection from the dermis Rdermis :

R (fmel, fblood, λ) = Tepidermis (fmel, λ)
2Rdermis (fblood, λ) . (4.4)

The transmittance in epidermis is modeled by Lambert-Beer law [152] as light not absorbed

by the melanin in this layer is propagated to the dermis [72]:

Tepidermis(fmel, λ) = e−µa.epidermis(fmel,λ), (4.5)

where µa.epidermis(fmel, λ) is the absorption coefficient of the epidermis. More specifically,

µa.epidermis(fmel, λ) = fmelµa.mel(λ) + (1− fmel)µskinbaseline(λ), (4.6)

where µa.mel is the absorption coefficient of melanin and µskinbaseline is baseline skin absorption

coefficient.

The reflectance in dermis can be modeled using the Kubelka-Munk theory [153], and the

proportion of light remitted from a layer is given by [72]:

Rdermis (fblood, λ) =
(1− β2)

(
eKdpd − e−Kdpd

)
(1 + β2) eKdpd − (1− β)2e−Kdpd

, (4.7)

where dpd is the thickness of the dermis, and K and β are related to the absorption of the

medium contained within the dermis (i.e. blood). For simplicity of notation, we drop the

dependence of K and β on fblood and λ in Eq. (4.7).
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Biophysical decomposition and variation of UV albedo map: With the light trans-

port theory of the skin, we follow a physics-based learning framework (BioFaceNet [150])

to obtain fblood from albedo A. The wavelengths are discretized into 33 parts from 400nm

to 720nm with 10nm equal spacing. We utilize an autoencoder architecture and use a

fully-convolutional network as encoder to predict the hemoglobin and melanin maps and

fully-connected networks to encode the parameters for lighting E and camera spectral sen-

sitivities Sc. The model-based decoder is then to reconstruct the albedo with all the learned

parameters according to Eq. (4.3).

Different from the previous work [150], we obtain biophysical parameters directly from

the UV albedo maps instead of the facial images. This arrangement allows us to model the

underlying blood volume changes more precisely regardless of the environmental illumination

variations. Our model is trained to minimize the following loss function:

L = w1Lappearance + w2LCameraPrior, (4.8)

where the appearance loss Lappearance is the L2 distance between the reconstructed UV map

AlinRecon and the original one in the linear RGB space AlinRGB. We convert A to linear

space by inverting the Gamma transformation with γ = 2.2. To make the problem more

constrained, we also introduce the additional camera prior loss: LCameraPrior = ∥b∥22, where

b is the prior for the camera spectral sensitivities. w1 and w2 are the weights for the

reconstructed loss and camera prior loss, respectively.

To reflect the change of the target rPPG signal on the face, we temporally vary the UV

blood map fblood linearly with the target rPPG signal in the test phase. Given the blood map

of a reference UV map (e.g. the UV blood map of first frame), we generate the UV blood

map of the consequent frames as the multiplication of the UV blood map of the reference

frame and a ratio scalar that is calculated as the ratio of pt (rPPG signal at time t) and pref

(rPPG signal at the reference time). Then the modified UV blood map of each frame that

contains the desired rPPG signal is reconstructed using the BioFaceNet decoder to get UV
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map. The final image is rendered using the UV map combined with illumination and camera

model according to Eq. (4.2).

For the purpose of simulating real-world scenarios where the subject might move in the

collection process, we randomize the poses in the generation of the sequence of the frames

by adding a small random value to the pose and expression parameter of the previous frame.

Face image dataset: To generate synthetic rPPG videos with diverse face appearances,

we use the public in-the-wild face datasets BUPT-Balancedface [154]. It is categorized

according to ethnicity (i.e. Caucasian, Indian, Asian and African). We use these images as

the reference images for generating the synthetic videos as shown in Fig. 4.2.

PPG recordings: To synthesize videos of a given input PPG signal, we use PPG wave-

forms recordings from BIDMC PPG and Respiration Dataset [155]. It contains 53 8-minute

contact PPG recordings with sampling frequency 125Hz. We sample it correspondingly with

the video frame rate (30Hz) and the first sequences of time length L are used where L is the

duration of the generated video.

4.3.2 Physiological Measurement Networks

We use two state-of-the-art deep rPPG networks PhysNet [31] and PRN [1] to benchmark

the performance on both real and synthetic datasets. PhysNet and PRN both utilize 3D

convolutional neural networks (3D-CNN) architecture to learn spatio-temporal representa-

tion of the rPPG videos and predict the rPPG signal in the facial videos. PRN differs in

that it uses residual connection for convolutional layers. They take consecutive frames of

length T as the input, and its output is the corresponding BVP value for each input frame.

The Negative Pearson loss is used to measure the difference between the ground-truth PPG

signal p and the estimated rPPG signal p̂:
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Lppg(p, p̂) = 1−
T
∑

i pip̂i −
∑

i pi
∑

i p̂i√(
T
∑

i p
2
i − (

∑
i pi)

2) (T∑i p̂
2
i − (

∑
i p̂i)

2) , (4.9)

where all the summation is over the length of frames T .

Implementation details: For the training of BioFaceNet, we use 3000 face albedo images

with 750 images in each race. We use 80% images for training and 20% for validation. The

weight w1 and w2 for the loss is 1e−3 and 1e−4 respectively. The learning rate is set as 1e−4

and the number of epochs is 200. For the generation of synthetic videos, we set the length

of generated frames L as 2100.

The bounding boxes of the videos are generated using a pretrained Haar cascade face

detection model. For each video, one bounding box is detected and increased 60% in each

direction before the frames are cropped. To be consistent with the original works, each frame

is resized to 128× 128 pixels using bilinear interpolation for PhysNet and 80× 80 for PRN.

The length of training clips T is 128 for PhysNet and 256 for PRN. The Adam optimizer is

used and the learning rate is set as 1e−4. All the code is implemented in PyTorch [156] and

trained on Nvidia V100 GPU.

4.4 Experiments

In this section, we introduce the datasets we use for the experiments and evaluation protocol

in Sec. 4.4.1. We report and analyze the experimental results for our real dataset in Sec. 4.4.2

and UBFC-rPPG dataset in Sec. 4.4.3.
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Figure 4.3: Experimental setup of data collection. The subject wears an oximeter

on their finger and sits looking directly into the camera. The camera and the oximeter are

connected to a laptop to get synchronous video and ground-truth pulse reading. Face blurred

to preserve anonymity.

4.4.1 Datasets and Evaluation Protocol

Our real dataset UCLA-rPPG: In order to benchmark the performance of current

rPPG estimation methods, we collect a real dataset of 104 subjects. The setting is faulty

for two of them so we dropped their samples. Finally, the dataset consists of 102 subjects of

various skin tone, age, gender, ethnicity and race. The Fitzpatrick (FP) skin type scale [157]

of the subjects varies from 1-6. For each subject, we record 5 videos of about 1 minute each

(1790 frames at 30fps). After removing erroneous videos we have total 503 videos. All the

videos in our dataset are uncompressed and synchronized with the ground truth heart rate.

Fig. 4.3 illustrates the data collection process of our real dataset UCLA-rPPG. The left

part of the figure is a cartoon illustration of the data collection process. The right part of

the figure is a photo depicting the actual data collection process. The human subjects wear
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an oximeter on finger and looks into the camera. Both the camera and the oximeter are

connected to a laptop to get synchronous data.

UBFC-rPPG [131]: UBFC-rPPG database contains 42 front facing videos of 42 subjects

and corresponding ground truth PPG data recorded from a pulse oximeter. The videos are

recorded at 30 frames per second with a resolution of 640× 480. Each video is roughly one

minute long.

Metrics: To evaluate how the heart rate estimates compare with gold-standard heart rates

obtained from gold-standard pulse waves, we use the following four metrics Mean absolute er-

ror (MAE), Root Mean Squared Error (RMSE), PearsonâĂŹs Correlation Coefficient (PCC)

and Signal-to-Noise Ratio (SNR). PearsonâĂŹs Correlation Coefficient (PCC) and Signal-

to-Noise Ratio (SNR) is defined as in [158].

For traditional baseline methods POS, CHROM and ICA we compare, we use iPhys

toolbox [159] to get the estimated rPPG waveforms. The output rPPG signals are normalized

by subtracting the mean and dividing by the standard deviation. We filter all the model

outputs using a 6th-order Butterworth filter with cut-off frequencies 0.7 and 2.5 Hz. The

filtered signals are divided into 30-second windows with 1-second stride and the above four

evaluation metrics are calculated on these windows and averaged.

4.4.2 Performance on UCLA-rPPG

For the study of this work, we split the subjects into three skin tone groups based on the

Fitzpatrick skin type [157]. They are light skin tones, consisting of skin tones in the FP 1

and 2 scales, medium skin tones, consisting of skin tones in the FP 3 and 4 scales, and dark

skin tones, consisting of skin tones in the FP 5 and 6 scales. This aggregation helps compare

experimental results on skin tones more objectively. Since our ultimate goal is to improve

the performance on our dataset, we first train on all the synthetic data and then finetune

82



Train light 
 Test light

Train dark 
 Test light

Train light 
 Test dark

Train dark 
 Test dark

Train all 
 Test light

Train all 
 Test dark

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
AE

/R
M

SE
 (

BP
M

)

MAE
RMSE

PhysNet 
 Real&Syn.

PhysNet 
 Real

PRN 
 Real&Syn.

PRN
 Real

POS CHROM ICA
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

St
an

da
rd

 d
ev

ia
ti

on
 (

BP
M

) MAE
RMSE

Figure 4.4: Left: Ablation study. The model pre-trained with all synthetic dataset

outperforms these pre-trained on either light or dark skin tones alone. Right: Inequity

mitigation. The standard deviation of MAE and RMSE of the deep rPPG models trained

with real and synthetic dataset are smaller than real data alone and the traditional models.

on the real data for the models trained with both real and synthetic data. For training and

testing deep rPPG networks PhysNet and PRN on real dataset, we randomly split all the

subjects into training, validation and test set with 50%, 10% and 40% and all the test results

are averaged on three random splits. The validation set is used to select the best epoch for

testing the model.

We report results on the three groups and overall performance using evaluation metrics

of MAE, RMSE, PCC and SNR in Tab. 4.2. In general, models trained with both real and

synthetic data perform consistently better than using real data alone on all the skin tones for

all evaluation metrics. PhysNet trained with both real and synthetic data achieved the best

overall MAE result 0.71 BPM, with 33% reduction in error compared with PhysNet trained

with only real data (1.06 BPM). Notably, the performance improvement is most significant

on dark skin stones F5-6 group with 41% and 35% reduction in MAE and RMSE respectively

for PhysNet. The same phenomenon is also observed for PRN, where the improvement is

most noticeable for darker skin tones. We attribute this to the introduction of synthetic
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videos we generate in Sec. 4.3.1. The other two metrics PCC and SNR also validate the

superiority of the model trained with both real and synthetic datasets. The results for

traditional methods POS, CHROM and ICA are far worse than the deep learning methods,

as these methods usually takes the average of all the pixels and ignore the inhomogeneous

spatial contribution of the pixels to pulsatile signals.

Inequity mitigation: To evaluate the inequity of various rPPG methods on subjects with

diverse skin tones, we use the standard deviation of the MAE and RMSE results on three

skin tone groups. From the right of Fig. 4.4, we can see the standard deviation of PhysNet

with both real and synthetic dataset is the smallest and the MAE disparity among all the

three groups are reduced by 45% (from 0.95 BPM to 0.52 BPM) compared with the model

trained with only real dataset. Similarly, the standard deviations of both metrics MAE and

RMSE for PRN are also reduced for the model trained with both real and synthetic datasets.

Ablation study: We first pre-train the PhysNet with either light skin tones (subjects with

race Caucasian in the synthetic dataset) or dark skin tones (subjects with race African), then

finetune the model on real dataset and test the model on real subjects with either light skin

tones or dark skin tones. From the left of Fig. 4.4, we can see the model with the pre-trained

rPPG network on diverse races are consistently better than these on a single race. The

improvement is more obvious on dark skin tones test set. This demonstrates the benefits of

a diverse synthetic dataset.

4.4.3 Performance on UBFC-rPPG

We use the model with best performance on our real dataset to test them on UBFC-rPPG

dataset [131] along with the traditional methods. Since this is a cross-dataset evaluation for

the model trained on UCLA-rPPG, we test the deep learning models on all the subjects in
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Figure 4.5: The example shows that PRN [1] trained with synthetic data (above)

generalizes better than PRN trained with real data (bottom) on UBFC-rPPG

dataset. The waves are more aligned with the ground-truth PPG wave (dashed black line)

and the power spectrum plot is also more consistent with the ground-truth for the PRN

trained with synthetic data.

UBFC-rPPG. All the results with four evaluation metrics are reported in Tab. 4.3. While

the synthetic dataset performs worse than the models trained in our real dataset, the per-

formance gain is more obvious in UBFC dataset. The MAE of PhysNet trained on synthetic

dataset achieved the lowest MAE and RMSE (0.84 BPM and 1.76 BPM respectively). The

explanation for this observation is that when the distribution of the dataset is similar to the

distribution of the test data as in the intra-dataset setting in our real dataset, the benefits

of synthetic datasets are not straightforward. The models trained on real dataset perform

worse on generalizing to another dataset due to different environmental setting such as light-

ing. We also give a qualitative study in Fig. 4.5 that shows that the rPPG wave extracted

using our synthetic dataset resemble more closely to the ground-truth than that using real
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Example frames of synthetic videos rPPG signals

Figure 4.6: Illustration of example frames of our generated synthetic videos. Our

proposed framework has successfully incorporated PPG signals into the reference image. The

estimated pulse waves from PRN for generated synthetic videos are highly correlated to the

ground-truth waves, and the heart rates are preserved as shown in the power spectrum plot.

dataset. As a result, it gives more accurate heart rate estimation.

4.4.4 Visualization

As shown in Fig. 4.6, our model can successfully produce synthetic avatar videos that reflect

the associated underlying blood volume changes. Estimated pulse waves from the synthetic

videos are closely aligned with the ground truth. The power spectrum of the PPG waves

with a clear peak near the gold-standard HR value also validates the effectiveness of the

incorporation of pulsatile signals.

4.5 Discussion

Limitations: Though our synthetic dataset could be used to achieve state-of-the-art re-

sults (on UBFC-rPPG datasets, it alone can generalize even better than the model trained
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on real dataset) for heart rate estimation, the facial appearance is not photo-realistic, which

may still degrade the performance due to sim2real gap. We are not focused on modeling

the background in the generated videos in this work. However, it is found in [158] that the

background can be utilized for better pulsatile signals extraction. Also we vary the UV blood

map linearly according to the target rPPG signals in the synthetic generation method. While

this yields reasonable empirical results, we believe biophysical model based manipulation of

the UV blood map could further improve the performance of the synthetic generation.

Ethics Statement: This work’s novelty is to generate synthetic face videos that are phys-

iologically consistent with heartbeat, and we hope it can be a tool to address some social

issues, such as inequities around race and gender in medicine. It should also be noted that

even though the research here was solely used to improve remote health technologies, it

might be used to fool rPPG-based deepfake detectors. We strongly advise against using this

technology for such applications.

Conclusion: We propose a method to generate large-scale synthetic rPPG videos with

high-fidelity to the underlying rPPG signals. The synthetic generation pipeline enables

the scalable generation of rPPG facial videos with any given image and rPPG signal. We

validate the effectiveness of the synthetic videos on UCLA-rPPG dataset we collect that

contains diverse skin tones and UBFC-rPPG dataset. The experimental results show that

the synthetic dataset can improve the performance on both datasets and help reduce the

inequities among different demographic groups.
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Method
F1-2 F3-4 F5-6 Overall

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

PhysNet [31] w/ Real&Synth 0.54 0.84 0.38 0.70 1.55 2.17 0.71 1.10

PhysNet [31] w/ Real 0.81 1.21 0.43 0.77 2.61 3.34 1.06 1.51

PhysNet [31] w/ Synth 1.06 1.52 1.16 1.66 4.96 6.20 2.06 2.73

PRN [1] w/ Real&Synth 0.54 0.79 0.36 0.65 3.41 4.09 1.15 1.53

PRN [1] w/ Real 0.65 1.02 0.40 0.71 4.35 5.26 1.43 1.90

PRN [1] w/ Synth 1.47 2.00 0.63 1.07 8.89 9.88 2.87 3.47

POS [27] 3.40 4.34 3.03 3.98 8.07 10.23 4.27 5.49

CHROM [26] 4.06 5.11 3.99 5.25 7.45 9.74 4.79 6.22

ICA [29] 3.75 4.73 3.26 4.19 7.51 9.34 4.35 5.50

F1-2 F3-4 F5-6 Overall

PCC ↑ SNR ↑ PCC ↑ SNR ↑ PCC ↑ SNR ↑ PCC ↑ SNR ↑

PhysNet [31] w/ Real&Synth 0.84 14.40 0.80 17.11 0.60 9.19 0.76 14.45

PhysNet [31] w/ Real 0.81 13.13 0.77 15.83 0.59 6.54 0.74 12.84

PhysNet [31] w/ Synth 0.74 7.19 0.64 6.11 0.23 -3.33 0.57 4.10

PRN [1] w/ Real&Synth 0.81 12.24 0.79 14.61 0.57 4.84 0.74 11.59

PRN [1] w/ Real 0.77 10.73 0.77 13.22 0.48 2.38 0.70 9.91

PRN [1] w/ Synth 0.69 5.14 0.67 5.27 0.21 -5.81 0.56 2.53

POS [27] 0.50 -0.30 0.42 -0.09 0.27 -5.38 0.41 -1.34

CHROM [26] 0.41 -1.81 0.31 -1.60 0.26 -5.31 0.33 -2.49

ICA [29] 0.45 -0.60 0.38 -0.19 0.27 -5.24 0.37 -1.44

Table 4.2: Heart rate estimation results on our real dataset UCLA-rPPG show

that both PhysNet and PRN trained with real and synthetic datasets performs

consistently better than the models trained with only real data. The improved

performance shows the benefit of the synthetic video dataset we generate.
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Method MAE ↓ RMSE ↓ PCC ↑ SNR ↑

PhysNet [31] w/ Real&Synth 0.90 1.80 0.84 6.28

PhysNet [31] w/ Real 1.42 2.74 0.78 5.64

PhysNet [31] w/ Synth 0.84 1.76 0.83 6.70

PRN [1] w/ Real&Synth 1.15 2.38 0.82 5.36

PRN [1] w/ Real 2.36 4.21 0.66 -1.24

PRN [1] w/ Synth 1.09 1.99 0.83 3.00

POS [27] 3.69 5.31 0.75 3.07

CHROM [26] 1.84 3.40 0.77 4.84

ICA [29] 8.28 9.82 0.55 1.45

Table 4.3: Performance of HR estimation on UBFC-rPPG shows the superiority

of the synthetic datasets. Boldface font represents the preferred results.
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CHAPTER 5

Minority Inclusion for Majority Group Enhancement of

AI Performance

5.1 Introduction

Inclusion of minorities in a dataset impacts the performance of artificial intelligence (AI).

Recent research has presented the value of inclusive datasets to improve AI performance

on minorities and also for society-at-large [160, 58, 161, 162, 163, 164, 165, 166, 143]. A

society-at-large consists of both majority and minority stakeholders. However, an objection

(often silently posed) to minority inclusion efforts, is that the inclusion of minorities can

diminish performance for the majority. This is based on a “rule of thumb” that AI perfor-

mance is maximized when one trains and tests on the same distribution. A devil’s advocate

position against minority inclusion might be presented as: “In a fictitious society where we

are absolutely certain that only blue-skinned humans will exist in the test set, why include

out of distribution orange-skinned humans in the training set?".

In this work, we make the surprising finding that inclusion of minority samples improves

AI performance not just for minorities, not just for society-at-large, but even for majorities.

We refer to this effect as Minority Inclusion, Majority Enhancement (MIME), illustrated

in Figure 5.2. Specifically, we note that including some minority samples in the train set

improves majority group test performance. However, continued addition of minority samples

leads to performance drop. The effect holds under statistical conditions that are represented

in traditional computer vision datasets including FairFace [167], UTKFace [5], pets [168],
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Machine Learning

Classification

Binary Classification

Fixed Backbone ML

This paper’s 
theory guarantees 
are certifiable in 
this subset of AI

Figure 5.1: This work proves* that including minorities improves majority perfor-

mance. *When do the provable guarantees hold? The guarantees are certifiable for fixed

backbone binary classification (e.g. one uses a head network with pretrained weights and

fine-tunes a downstream layer for classification). The fixed backbone ML is far from a toy

scenario (it is considered SoTA by some authors [2]) and also enables provable certification

- ordinarily it is hard to prove things for neural network settings.

medical imaging datasets [169] and even non-vision data [3]. Although deep learning is

used for these problems, the flattening layer of a network can be empirically approximated

to elementary distributions like Gaussian Mixture Models (GMMs). A GMM facilitates

closed-form analysis to prove the existence of the MIME effect. Additionally, we show

existence of MIME on general distributions. Classification experiments on neural networks

validate using Gaussian mixtures: complex neural networks exhibit feature embeddings in

flat layers, distributed with approximately Gaussian density, across six datasets, in and

beyond computer vision, and across many realizations and configurations.

Fairness in machine learning is an exceedingly popular area, and our results benefit from

several key papers published in recent years. Sample reweighting approaches recognize the

need to preferentially weight difficult examples [15, 170, 171]. Active and online learning

benefit from insights into sample “informativeness” (i.e. given a budget on the number of

training samples, which would be the best sample to include [172, 173]). Domain random-
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Test Set Images Train Set A Train Set B

Majority

Accuracy


Performance

Add Minority

 Sample

Add Majority

 Sample

Majority 

Sample

Minority 

Sample

Push on Stack

Figure 5.2: Inclusion of minorities can improve performance for majorities. We

theoretically describe an effect called Minority Inclusion, Majority Enhancement (MIME).

The figure depicts test classification of blue mimes, and an initial training stack, also of blue

mimes. If allowed to add one more training sample, it can be better to push an orange mime

onto the training stack rather than a blue mime. Test accuracy can increase by pushing

orange, even though the test set consists of blue mimes alone.

ization literature indicates that surprising perturbations to the training set can improve

generalization performance [174, 175, 176]. We extend some of these theoretical insights to

the sphere of analyzing benefits of minority inclusion on majority performance.

5.1.1 Contributions

While some works [177, 161] have observed related phenomena for isolated tasks, to the best

of our knowledge, characterizing benefits to majority groups by including minority data is

largely unexplored theoretically. Our contributions are as follows:

• We introduce the Minority Inclusion Majority Enhancement (MIME) effect in a theo-

retical and empirical setting.

• Theoretically: we derive in closed form, the existence of the MIME effect both with

and without domain gap (Key Results 1 and 2) and for general sample distributions

(Key Result 3).
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• Empirically: we test the MIME effect on six datasets, as varied as animals to medical

images, and observe the existence of MIME consistent with theory.

5.1.2 Outline of Theoretical Scope

Figure 5.1 describes the theoretical scope. Through three key results (Theorem 1, Theorem

2 and Theorem 3), this chapter offers an existence proof of the MIME effect. An existence

proof can leverage a tractable setting. As in Figure 5.2, training data is a stack of K − 1

majority samples. Test data is all majority samples. We can push one additional training

sample to increase the stack size to K. We are allowed the choice of having the K-th sample

drawn from the minority or majority group. Theorem 1 proves that, under the assumptions

in Section 5.3, pushing a minority sample is superior for majority group performance im-

provements. Theorem 2 generalizes this result to a more realistic scenario, with domain gap.

Theorem 3 extends the existence proof to general sample distributions. Empirical results on

real-world AI tasks offer validation for theoretical assumptions.

5.2 Related Work

Debiasing and fairness: It has been widely reported that biases in training data lead

to inequitable algorithmic performance [56, 178, 58]. Work has been carried out in iden-

tifying and quantifying inequities [179, 180, 181] and a range of methods exist to address

them [166, 164]. Early approaches suggest oversampling strategies [182, 183]. Other meth-

ods propose resampling based on individual performance [163]. Some works utilize infor-

mation bottlenecks to disentangle inequitable attributes [184]. Still other methods propose

inequity mitigation solutions based on adversarial learning [185] or include considerations

like protected class-specific classifiers [57]. Generative models have also found use in creating

synthetic datasets with debiased attributes [186]. Xu et al. [187] identify inherent inequity

amplification as a result of adversarial training and propose a framework to mitigate these in-
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equities. Our goals are different – while these aim to reduce test time performance inequities

across groups, we analyze influence of minority samples on majority group performance.

Learning from multiple domains: Domain adaptation literature explores learning from

multiple sources [188]. It could therefore be one potential way to analyze our problem of

training on combinations of majority and minority data. In our setting, data arising from

distinct domains is seen as being drawn from different distributions with a domain gap [189].

Between these domains, [190] establishes error bounds for learning from combinations of

domains. However, these error estimates and bounds do not take into account the notion of

majority and minority groups; therefore, describing the MIME effect is outside their scope.

Dataset diversity: An important push towards fairness is through analysis of dataset

composition. Several works indicate the importance of diverse datasets [160, 165]. Ryu

et al. [162] note that class imbalance in the training set leads to performance reduction.

Wang et al. [181] highlight that perfectly balanced datasets may still not lead to balanced

performance. For designing medical devices, [143] emphasizes the importance of diverse

datasets. Through experiments on X-ray datasets, [161] observe that imbalanced training

sets adversely affect performance on the disadvantaged group. They also observe that an

unbiased training set shows the best overall accuracy. However, their inferences are related

empirical observations on a few medical tasks and datasets. From an application perspective,

the task of remote photoplethysmography enables analysis of the inequity problem. Prior

work notes that camera-based heart rate estimation exhibits skin tone inequities [32], and [1,

191] propose synthetic augmentations to mitigate this. Additionally, [192, 8] establish that

camera based heart rate estimation is fundamentally inequitable against dark skin tone

subjects, establishing a notion of task complexity. While all these works recognize that data

composition affects inequity, none to our knowledge describe the effect of varying minority

group proportions on majority group accuracy.
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5.3 Statistical Origins of the MIME Effect

For more concise exposition, we make assumptions in the derivation in the chapter and defer

extended generality to the appendix. Assumptions include:

• Assumption 1: one-dimensional data samples and binary labels, x ∈ R, y ∈ {1, 2}.

This is relevant to modern classification problems since the final classification decision

is based on a one dimensional projection of the feature representation of the sample with

respect to the learnt hyperplane (discussed in Figure 5.1, Section 5.4). Additionally,

existence proof of MIME holds for more general vectorized notation, as discussed in

the appendix.

• Assumption 2: the binary classifier used is a perceptron: this assumption relates to

real neural networks since the last layer is perceptron-like [193].

We now introduce some key definitions that follow from these assumptions.

Definition 1: (Task complexity): For binary classification we define task complexity for a

group of data θ as a continuous variable in [0, 1], such that,

θ = argmin
h∈H

ϵ(h), (5.1)

where ϵ(h) is the classification error for hypothesis h (the classifier), H is the space of feasible

hypotheses. It is noted later that this is empirically equivalent to distributional overlap. This

definition is not new. Hard-sample mining [15] establishes the of use performance measures

as an indicator of difficulty.

Definition 2: (Majority Group): Group class (i.e. group label g = major) on which the

task performs better. Quantified by training a network only with majority group data and

evaluating test performance: θmajor = argmin
h∈H

ϵmajor(h).

Definition 3: (Minority Group): Group class (i.e. group label g = minor) on which the

task performs worse. Quantified by training a network only with minority class data and
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evaluating test performance: θminor = argmin
h∈H

ϵminor(h).

Definition 4: (Minority Training Ratio (β)): Ratio of minority to majority samples in the

data under consideration (training set, in the context of this work).

Definition 5: (MIME Domain Gap): Measure of how classification differs for minorities

and majorities. Quantified as a difference between ideal hyperplanes. Note that this definition

for domain gap could be different from other definitions. In this work, domain gap should be

taken to mean MIME domain gap.

Empirical observations on cutting-edge machine learning tasks demonstrate the real-world

applicability of the assumptions above. We now discuss three key results. For ease of

understanding, we make two simplifying assumptions for Key Results 1 and 2: (i) simplified

distributions that follow a symmetric Gaussian Mixture Model, and (ii) equally likely class

labels, i.e. Pr(y = 1) = Pr(y = 2). These assumptions are relaxed in Key Result 3.

Key Result 1: A minority sample can be more valuable for majority classifiers

than another majority sample

Our first key result shows that it can benefit performance on the majority group more if one

adds minority data (instead of majority data). Consider a binary classification setting with

data samples x ∈ R and labels y ∈ {1, 2}. Samples from the two classes are drawn from

distributions with distinct means:

x|y = 1 ∼ p1(x|µ1, σ1)

x|y = 2 ∼ p2(x|µ2, σ2).
(5.2)

Maximum likelihood (ML) can be used to estimate the label as

ŷ = argmax
y

L(x|y). (5.3)

An ideal hyperplane for ML Hideal is a set of data samples such that:

Hideal =
{
x
∣∣ L(x|y = 1) = L(x|y = 2)

}
. (5.4)
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Figure 5.3: Visualizating of Gaussian Mixture Model parameters. We plot GMMs

with different task complexities. The domain gap δ is visualized as the difference in the ideal

threshold locations. The overlap/task complexity metric can be visually seen.

We consider the hyperplane’s geometry to be linear in this one dimensional setting. Therefore

the hyperplane can be represented as a normal vector: hideal. The normalized hyperplane is

represented by a two dimensional vector, h = [1 b]T . Here, b is the offset/bias. In general,

a hyperplane h may not be ideal. The accuracy of a hyperplane is based on a performance

measure P
{
h
}
, where the operator P takes as input the hyperplane and outputs the closeness

to the ideal hyperplane hideal. A goal of a learning based classifier is to obtain:

ĥ = argmin
h

P
{
h
}
= argmin

h
∥h− hideal∥, (5.5)

where ĥ is the best learnt estimate of the ideal hyperplane. The ideal hyperplane is the

global minimizer of this objective. Now, assume we are provided a finite training set of

labelled data DK−1 = {(xi, yi)}K−1
i=1 . Let the estimated hyperplane be hK−1, denoting that

K−1 samples have been used to learn the hyperplane. If one additional data sample is made

available, then the learnt hyperplane would be hK . From Equation 5.2, the k-th sample is
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drawn from one of two distributions:

xk|y = 1 ∼ p1(x|µ1, σ1)

xk|y = 2 ∼ p2(x|µ2, σ2).
(5.6)

We now introduce the notion of majority and minority sampling.

Introducing Majority/Minority Distributions: Suppose that the k-th data sample

could be drawn for the same classification task from a minority or majority group. Let

g ∈ {major,minor} denote the group label (for the group class). Equation 5.2 can now be

conditioned on the group label, such that there are four possible distributions from which

the k-th sample can be drawn:

xk|g = major, y = 1 ∼ pmajor
1 (x|µmajor

1 , σmajor
1 )

xk|g = major, y = 2 ∼ pmajor
2 (x|µmajor

2 , σmajor
2 )

Majority

group

xk|g = minor, y = 1 ∼ pminor
1 (x|µminor

1 , σminor
1 )

xk|g = minor, y = 2 ∼ pminor
2 (x|µminor

2 , σminor
2 )

Minority

group

(5.7)

Overlap: Let the ideal decision hyperplane be located at x = dideal. Then, given equal like-

lihood of the two labels for y, the overlap for the majority group is defined as the probability

of erroneous sample classification:

Omajor = 0.5

∫ dideal

x=−∞
pmajor
2 (x)dx+ 0.5

∫ ∞

x=dideal

pmajor
1 (x)dx. (5.8)

The same definition holds true for the minority class as well. Therefore, by definition,

Omajor < Ominor. The task complexities θmajor and θminor are empirical estimates of the

respective overlaps. Hereafter, we assume that all four marginal distributions are Gaussian

and symmetric (this is relaxed later for Key Result 3). Figure 5.3 visually highlights relevant

parameters. Ominor > Omajor occurs through the interplay of component means and variances.

The expectation over the class label yields majority and minority sampling:

xmajor
k ≜ xk|g = major ∼ Ey

[
xk|g = major, y

]
xminor
k ≜ xk|g = minor ∼ Ey

[
xk|g = minor, y

]
,

(5.9)
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where we have defined xmajor
k or xminor

k as having the k-th sample come from the majority or

minority distributions.

Armed with an expression for the k-th sample, we can consider a scope similar to ac-

tive/online learning [194, 195, 196, 197, 198, 199, 173, 200]. Suppose a dataset of K − 1

samples has been collected on majority samples, such that there exists a dataset stack

Dmajor
K−1 =

{
(xmajor

i , ymajor
i )

}K−1

i=1
. A hyperplane hK−1 is learnt on this dataset and can be

improved by expanding the dataset size. Consider pushing sample index K, denoted as

xK onto the stack. Now we have a choice of pushing xmajor
K or xminor

K , to create one of two

datasets:

D+
K = {Dmajor

K−1 , x
major
K }

D−
K = {Dmajor

K−1 , x
minor
K },

(5.10)

where D−
K represents the interesting case where we choose to push a minority sample onto

a dataset with all majority samples (e.g. adding a dark skinned sample to a light skinned

dataset). Denote h+
K and h−

K as hyperplanes learnt on D+
K and D−

K . We now arrive at the

following result.

Theorem 1: Let Pmajor
{
·
}

be the performance of a hyperplane on the majority group.

Let ∆ = Pmajor
{
hK−1}. Assume that the minority group distribution has an overlap Ominor

while the majority group has an overlap Omajor < Ominor. Both have the same ideal hyperplane

hideal. Under the definitions of h−
K and h+

K as above, assuming ∆ is sufficiently small and

the group class distribution variances are not very large,

E
xminor
K

Pmajor{h−
K

}
< E

xmajor
K

Pmajor{h+
K

}
, (5.11)

stating that, perhaps surprisingly, expected performance for majorities improves more by

pushing a minority sample on the stack, rather than a majority sample.

Proof (Sketch): A sketch is provided, please see the appendix for the full proof. The general

idea is to show that samples closer to hideal are more beneficial, and minority distributions

99



may sample these with higher likelihood. Without loss of generality, we assume that hK−1 is

located, non-ideally, closer to the task class y = 2 (arbitrarily called the positive class) than

hideal. For our perceptron update rule, the improvement in the estimated hyperplane due

to xK is proportional to the difference between the false negative rate (FNR) and the false

positive rate (FPR) for hK−1, with respect to the distribution of xK. For sufficiently small

∆, FNR − FPR can be approximated in terms of the likelihood l that xK is on the ideal

hyperplane. The likelihood l is directly proportional to FPR−FNR. Under the assumptions

of the theorem, a direct relation is established between the overlap and l for each of the group

classes. Then, it is shown that an additional minority sample, with overlap Ominor > Omajor

leads to greater expected gains as compared to an additional majority sample, concluding the

proof. ■

Key Result 2: MIME holds under domain gap

In the previous key result we described the MIME effect in a restrictive setting where a

minority and majority group have the same target hyperplane. However, it is rarely the

case that minorities and majorities have the same decision boundary. We now consider

the case with non-zero domain gap, to show that MIME holds on a more realistic setting.

Domain gap can be quantified in terms of ideal decision hyperplanes. If hmajor
ideal and hminor

ideal

denote ideal hyperplanes for the majority and minority groups respectively, then domain gap

δ = ∥hmajor
ideal − hminor

ideal ∥.

A visual illustration of domain gap is provided in Figure 5.3. Next, we define relative hyper-

plane locations in terms of halfspaces (since all hyperplanes in the one dimensional setting

are parallel). We say two hyperplanes h1 and h2 lie in the same halfspace of a reference

hyperplane h0 if their respective offsets/biases satisfy the condition (b1 − b0)(b2 − b0) > 0.

For occupancy in different halfspaces, the condition is (b1 − b0)(b2 − b0) < 0. We now enter

into the second key result.
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Theorem 2: Let δ ̸= 0 be the domain gap between the majority and minority groups. Assume

that the minority group distribution has an ideal hyperplane hminor
ideal ; while the majority group

has an ideal hyperplane hmajor
ideal . Then, if δ < ∆, δ +∆ is small enough, and the group class

distribution variances are not very large, it can be shown that if either of the following two

cases:

1. hK−1 and hminor
ideal lie in different halfspaces of hmajor

ideal ,

or

2. hK−1 and hminor
ideal lie in the same halfspace of hmajor

ideal , and if

Omajor

Ominor
< (1− δ

∆
)f, (5.12)

are true, then:

E
xminor
K

Pmajor{h−
K

}
< E

xmajor
K

Pmajor{h+
K

}
, (5.13)

where f is a non-negative constant that depends on the majority and minority means and

standard deviations for all the individual GMM components.

Proof (Sketch): A sketch is provided, please see the appendix for the full proof. We prove

independently for both cases.

1. When hK−1 and hminor
ideal lie in different halfspaces of hmajor

ideal , it can be shown that the

expected improvement in the hyperplane is higher for the minority group as compared

to the majority group, using a similar argument as in Theorem 1. This proves the

theorem for Case 1.

2. When hK−1 and hminor
ideal lie in the same halfspace of hmajor

ideal , and assuming that hK−1 is

located closer to the positive class, we approximate the FNR−FPR value as function

of δ, ∆ and the likelihood l as defined for Theorem 1. Then, through algebraic manip-

ulation, constraints can be established in terms of the two likelihoods lminor and lmajor.

Under the assumptions of the theorem, a relation can be established between the ratios
lminor
lmajor

and Ominor
Omajor

. This proves the theorem for Case 2, and concludes the proof. ■
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Key Result 3: MIME holds for general distributions

We now relax the symmetric Gaussian and equally likely labels requirements to arrive at

a general condition for MIME existence. Let pmajor
1 and pmajor

2 be general distributions de-

scribing the majority group y = 1 and y = 2 classes. Additionally, Pr(y = 1) ̸= Pr(y = 2).

Minority group distributions are described similarly. We define the signed tail weight for the

majority group as follows:

Tmajor(xd) = πmajor
∫ xd

x=−∞
pmajor
2 (x)dx− (1− πmajor)

∫ ∞

x=xd

pmajor
1 (x)dx, (5.14)

where πmajor = Pr(x = 2) for the majority group. Tminor(·) is similarly defined. This leads

us to our third key result.

Theorem 3: Consider majority and minority groups, with general sample distributions and

unequal prior label distributions. If,

min
{
Tminor(dideal +∆),−Tminor(dideal −∆)

}
>

max
{
Tmajor(dideal +∆),−Tmajor(dideal −∆)

}
, (5.15)

then E
xminor
K

Pmajor
{
h−
K

}
< E

xmajor
K

Pmajor
{
h+
K

}
.

Proof (Sketch): A sketch is provided, please see the appendix for the full proof. The

perceptron algorithm update rule is proportional to FNR − FPR (if hK−1 is located closer

to the positive class) or the FPR − FNR (if hK−1 is located closer to the negative class).

The MIME effect exists in the scenario where the worst case update for the minority group

is better than the best case update for the majority group (described in Equation 5.15). This

proves the theorem. ■

Generalizations of Theorem 3 to include domain gap are discussed in the appendix, for

brevity. Theorems 1 and 2 are special cases of the general Theorem 3, describing MIME

existence for specific group distributions.
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Table 5.1: Experimental measures of overlap and domain gap are consistent with

the theory in Section 5.3. Note that the majority group consistently has lower overlap.

Domain gaps are found to be small. DS-1 is FairFace, DS-2 is Pet Images, DS-4 is Chest-

Xray14 and DS-5 is Adult. DS-6 is the high domain gap gender classification experiment.

DS-3 is excluded here since it deals with a 9 class classification problem.

Dataset

(Task)

DS-1 [167]

(Gender)

DS-2 [168]

(Species)

DS-4 [169]

(Diagnosis)

DS-5 [3]

(Income)

DS-6 [5, 4]

(Gender)

Major. overlap 0.186 0.163 0.294 0.132 0.09

Minor. overlap 0.224 0.198 0.369 0.208 0.19

Domain gap 0.276 0.518 0.494 0.170 1.62

5.4 Verifying MIME Theory on Real Tasks

In the previous section, we provide existence conditions for the MIME phenomenon for

general sample distributions. However, experimental validation of the phenomenon requires

quantification in terms of measurable quantities such as overlap. Theorem 2 provides us these

resources. Here, we verify that the assumptions in Theorem 2 are validated by experiments

on real tasks.

5.4.1 Verifying Assumptions

Verifying Gaussianity: Theorem 2 assumes that data x is drawn from a Gaussian Mixture

Model. At first glance, this quantification may appear to be unrelated to complex neural

networks. However, as illustrated at the top of Figure 5.4, a ConvNet is essentially a feature

extractor that feeds a flattened layer into a simple perceptron or linear classifier. The

flattened layer can be orthogonally projected onto the decision boundary to generate, in

analogy, an x used for linear classification (Figure 5.1, fixed-backbone configuration). We
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use this as a first approximation to the end-to-end configuration used in our experiments.

Plotting empirical histograms of these flattened layers (Figure 5.4) shows Gaussian-like dis-

tribution. This is consistent with the Law of Large Numbers – linear combination of several

random variables follows an approximate Gaussian distribution. Hence, Theorem 2 is approx-

imately related in this setting. Details about implementation and comparison to Gaussians

are deferred to the appendix.

Verifying minority/majority definitions: The MIME proof linked minority and major-

ity definitions to distributional overlap and domain gap. Given the histogram embeddings

from above, it is seen that minority groups on all four vision tasks have greater overlap.

There also exists a domain gap between majority and minority but this is small compared

to distribution spread (except for the high domain gap experiment). This establishes appli-

cability of small domain gap requirements. Quantification is provided in Table 5.1. Code is

in the appendix.

5.4.2 MIME Effect Across Six, Real Datasets

Implementation: Six multi-attribute datasets are used to assess the MIME effect (five are

in computer vision). For a particular experiment, we identify a task category to evaluate

accuracy over (e.g. gender), and a group category (e.g. race). The best test accuracy on the

majority group across all epochs is recorded as our accuracy measure. Each experiment is

run for a fixed number of minority training ratios (β). For each minority training ratio, the

total number of training samples remains constant. That is, the minority samples replace

the majority samples, instead of being appended to the training set. Each experiment is

also run for a finite number of trials. Different trials have different random train and test

sets (except for the FairFace dataset [167] where we use the provided test split). Averaging

is done across trials. Note that minority samples to be added are randomly chosen – the

MIME effect is not specific to particular samples. For the vision datasets, we use a ResNet-34

architecture [201], with the output layer appropriately modified. For the non-visual dataset,
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a fully connected network is used. Average accuracy and trend error, across trials are used

to evaluate performance. Specific implementation details are in the appendix.

MIME effect on gender classification: The FairFace dataset [167] is used to perform

gender classification (y = 1 is male, y = 2 is female). The majority and minority groups

g = {major,minor} are light and dark skin, respectively. Results are averaged over five

trials. Figure 5.5 describes qualitative accuracy. The accuracy trends indicate that adding

10% of minority samples to the training set leads to approximately a 1.5% gain in majority

group (light skin) test accuracy.

MIME effect on animal species identification: We manually annotate light and dark

cats and dogs from the Pets dataset [168]. We classify between cats (y = 1) and dogs (y = 2).

The majority and minority groups are light and dark fur color respectively. Figure 5.5 shows

qualitative results. Over five trials, we see a majority group accuracy gain of about 2%, with

a peak at β =10%.

MIME effect on age classification: We use a second human faces dataset, the UTKFace

dataset [5], for the age classification task (9 classes of age-intervals). We pre-process the

UTKFace age labels into class bins to match the FairFace dataset format. The majority and

minority groups are male and female respectively. The proportion of task class labels is kept

the same across group classes. Results are averaged over five trials. Figure 5.5 shows trends.

We observe a smaller average improvement for the 10% minority training ratio. However,

since these are average trends, this indicates consistent gain. Results on this dataset also

empirically highlight the existence of the MIME effect beyond two class settings.

MIME effect on X-ray diagnosis Classification: We use the NIH Chest-Xray14 dataset [169]

to analyze trends on a medical imaging task. We perform binary classification of scans be-

longing to ‘Atelectasis’ (y = 1) and ‘Pneumothorax’ (y = 2) categories. The male and female

genders are the majority and minority groups respectively. Results are averaged over seven

trials (due to noisier trends). From Figure 5.5, we observe noisy trends - specifically we see

a performance drop for β = 0.2, prior to an overall gain for β = 0.3. The error bounds also
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have considerably more noise. However, confidence in the peak and the MIME effect, as seen

from the average trends and the error bounds, remains high.

MIME effect on income classification: For validation in a non-vision setting, we use

the Adult (Census Income) dataset [3]. The data consists of census information with annual

income labels (income less than or equal to $50,000 is y = 1, income greater than $50,000 is

y = 2). The majority and minority groups are female and male genders respectively. Results

are averaged over five trials. Figure 5.6(a) highlights a prominent accuracy gain for β = 0.6.

MIME effect and domain gap: Theorem 2 (Section 5.3) suggests that large domain

gap settings will not show the MIME effect. We set up an experiment to verify this (Fig-

ure 5.6(b)). Gender classification among chickens (majority group) and humans (minority

group) has a high domain gap due to minimal common context (validated by the domain

gap estimates, Table 5.1). With increasing β, the majority accuracy decreases. This (and

Figure 5.4, Table 5.1 that show low domain gap for other datasets) validates Theorem 2.

Note that while this result may not be unexpected, it further validates our proposed theory.

5.5 Discussion

Secondary validation and analysis: Table 5.2 supplies additional metrics to analyze

MIME. Across datasets, almost all trials show existence, with every dataset showing average

MIME performance gain. Some readers may view the error bars in Figures 5.5 and 5.6

as large, however they are comparable to other empirical ML works [202, 203]; they may

appear larger due to scaling. Reasons for error bars include variations in train-test data and

train set size (Table B and C, appendix). Further analysis, including interplay with debiasing

methods (e.g. hard-sample mining [15]) and reconciliation with work on equal representation

datasets [160, 58, 161, 162, 163, 164, 165, 166, 143] is deferred to the appendix.

Optimality of inclusion ratios: Our experiments show that there can exist an optimal

amount of minority inclusion to benefit the majority group the most. This appears true across
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Table 5.2: Additional evaluation metrics provide further evidence of MIME ex-

istence across all datasets. The table highlights: (i) number of trials with MIME per-

formance gain (i.e. majority accuracy at some β > 0 is greater than majority accuracy at

β = 0), and (ii) the mean MIME performance gain across trials (in % points).

Dataset DS-1 [167] DS-2 [168] DS-3 [5] DS-4 [169] DS-5 [3]

#MIME trials/Total trials 4/5 4/5 5/5 6/7 4/5

Avg. MIME perf. gain 0.72% 1.84% 0.70% 1.89% 0.98%

all experiments in Figures 5.5, 5.6. However, beyond a certain amount, accuracy decreases

consistently, with lowest accuracy on majority samples observed when no majorities are

used in training. This optimal β depends on individual task complexities, among other

factors. Since identifying it is outside our scope (Section 5.1.1, 5.1.2), our experiments use

10% sampling resolution for β. Peaks at β = 10% for some datasets are due to this lower

resolution; optimal peak need not lie there for all datasets (e.g. X-ray [169] & Adult [3]).

Future work can identify optimal ratios through finer analysis over β.

Limitations: The theoretical scope is certifiable within fixed-backbone binary classification,

which is narrower than all of machine learning (Figure 5.1). Should this theory be accepted

by the community, follow-up work can generalize theoretical claims. Another limitation is

the definition-compatibility of majority and minority groups. Our theory is applicable to

task-advantage definitions; some scholars in the community instead define majorities and

minorities by proportion. Our theory is applicable to these authors as well, albeit with a

slight redefinition of terminology. Additional considerations are included in the appendix.

Conclusion: In conclusion, majority performance benefits from a non-zero fraction of in-

clusion of minority data given a sufficiently small domain gap.

107



SoftMax

Flatten

Input Images

1

0

Decision Hyperplane Final layer weight vector W Dense layer feature vectors 

Neural Network Backbone

Cats
Dogs

Cats
Dogs.

Pet Images Dataset

Minority Class (Dark Fur)

Majority Class (Light Fur)

Atel.
Pneum.

Atel.
Pneum.

Chest-Xray Dataset

Minority Class (Cis-Female)

Majority Class (Cis-Male)

FairFace Dataset

Minority Class (Dark Skin Tone)

Majority Class (Light Skin Tone)

Cis-Male
Cis-Female

Cis-Male
Cis-Female

Adult Dataset

Minority Class (Cis-Male)

Majority Class (Cis-Female)

>$50k
<$50k

>$50k
<$50k

The final layer of the Neural 
Network acts as a Perceptron

Feature Projection DistributionPenultimate Layer Features

Figure 5.4: The use of Gaussian mixtures to represent minority and majority

distributions is consistent with behaviors in modern neural networks, on real-

world datasets. (top row) The last layer of common neural architectures is a linear classifier

on features. Histograms of the penultimate layer projections are generated for models with

β = 0.5. (middle row) Minority histograms: note the greater difficulty due to less separation

of data. (bottom row) Majority histograms: note smaller overlap and easier classification.

Figure can be parsed on a per-dataset basis. Within each column, the reader can compare

the domain gap and overlap in the two histograms.
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ments are run for several trials and realizations (described in Section 5.4.2).
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CHAPTER 6

Using Neural Implicit Video Representations to Enable

Low-SNR rPPG
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Figure 6.1: Prior implicit neural models represent scenes for diverse applications.

We propose an implicit neural representation (INR) to decompose face videos

and isolate blood flow information. Our INR decomposes input videos into visual

appearance and blood flow (“A-B decomposition”). The decomposed data aids in estimating

the remote photoplethysmography (rPPG) signal and heart rate.

6.1 Introduction

Neural scene representations have gained significant prominence over recent years. The

ability to use neural networks as function fitters and encode scene information within their

weights has found considerable applications for tasks such as image representations [6, 204,

205, 206], scene representations [207, 208, 209, 210], radiance fields [211, 212, 213] and video
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representations [214, 215, 7]. Consistent among these applications is the need to fit all

possible scene variations without selectivity.

However, for the task of remote plethysmography, the contactless monitoring of heart

rate information from face videos via subtle skin color variations, selecting for the blood flow

is required. Therefore, this indiscriminate fitting behavior of current implicit neural repre-

sentations (INRs) is a significant drawback: both the signal and interfering factors will get

fitted. Prior work [192, 143, 32, 8] has established the low Signal-to-Noise Ratio (SNR) of the

measurement (in this case, the facial image) as the source of remote photoplethysmography

(rPPG) performance degradation. Previous methods generally fall into two categories: sig-

nal processing-based or deep learning-based. These two classes have established a trade-off

between domain generalizability and in-distribution performance.

Signal processing techniques improve signal strength by using model-based assumptions

(such as band-pass filters or simple coloration models [26, 27]). These usually lead to rela-

tively larger heart rate estimation errors. Recently, learning-based methods [30, 31, 9] for

plethysmography have achieved state-of-the-art (SOTA) performance through end-to-end

data-driven approaches. However, these methods suffer from generalization issues, where

samples that are “out-of-distribution” (OOD) may show unspecified and often undesirable

behavior due to overfitting.

We propose an INR-based framework to improve the plethysmograph signal strength in

facial videos before estimating the blood volume pulse signal. Specifically, we introduce a

new Appearance-Blood (or A-B) decomposition for facial video data. The decomposition is

designed to improve the plethysmograph signal quality across the face. We show that the

representation capacity of carefully designed INRs, with architectures motivated by light

transport principles of the problem (namely the nature of subtle skin color variations due

to the plethysmograph signal), can enable such a decomposition, allowing isolation of the

relevant blood component. Conventional INRs, however, are slow to train, thereby making

them intractable for dataset-scale analyses. We use multiresolution hash encodings inspired

111



Figure 6.2: Our implicit representation for rPPG achieves Pareto-optimality

across out-of-distribution (OOD) performance and inter-distribution parity com-

pared to prior algorithmic and learning-based methods. It performs better on OOD

samples while maximizing parity between in-distribution and OOD performance. Table 6.1

shows metrics used for this plot. Higher is better along both axes.
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by [216] to facilitate fast A-B decomposition. To the best of our knowledge, we propose

the first camera-based rPPG method that uses implicit neural representations as a critical

component of the estimation pipeline. Different from prior methods, we focus on both in

and out-of-distribution performance (specifically, optically challenging OOD).

On a self-collected dataset of optically challenging OOD scenes, our method surpasses

existing algorithmic and learning-based methods (Figure 6.2) with reliable plethysmograph

and heart rate estimates. Notably, we achieve this OOD performance gain without com-

promising on in-distribution performance on rPPG datasets (Figure 6.1). As an additional

outcome, we can obtain high-fidelity estimates of the plethysmograph signal strength (re-

ferred to as neural signal strength mask) across the face that generalize with high fidelity

to OOD scenes and settings such as face paint, masks, glasses, and even reflection from

windows. In summary, our contributions are as follows:

1. We formulate Appearance-Blood (A-B) decomposition as a means of enhancing plethys-

mograph signal strength. We show that carefully designed implicit neural represen-

tations can serve as efficient A-B decomposers and propose a fast method to achieve

this.

2. This decomposition is the foundation for our proposed rPPG estimation method. On

our optically challenging OOD dataset, our method shows significant improvements in

performance over prior algorithmic and learning-based methods (Figure 6.2) without

losing out on in-distribution performance.

3. An optically challenging test dataset, consisting of 104 videos (≈ 1 hour of recorded

data) across various optically challenging and OOD configurations, is collected and will

be released upon acceptance of this work.
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6.1.1 Scope

This work establishes the effectiveness of fast INRs to learn desired components of video data

selectively - in this case, plethysmograph information. Other applications, such as video-

based blood oxygenation and blood pressure estimation, require accurate plethysmography as

a necessary first step. However, these applications are open research problems and is outside

this work’s scope. Furthermore, motion-robust rPPG is an open challenge and requires

extensive research on its own. While this is not our primary goal, and our proposed method

is not designed to combat motion artifacts, we test performance on motion videos and find

our method competitive (appendix). Finally, we acknowledge that OOD is multi-faceted.

This work primarily focused on optically challenging scenes and achieved SOTA results while

secondarily validating performance on real-world obfuscations such as talking (and associated

motions).

6.2 Related Work

Implicit Neural Representations. Implicit neural representations (INRs) are an in-

creasingly prevalent method to represent scenes. Examples settings include image repre-

sentations [6, 204, 205, 206], video representations [214, 215, 7], and 3-D scene representa-

tions [207, 208, 209, 210]. Specifically, this work is interested in the class of video-based

representations. These include methods that use convolutional networks [214], phase-based

motion-adjustable representation [7], space-time super-resolution [215] and flow fields for

space-time viewpoint synthesis [217, 218]. We take inspiration from these prior methods but

have different goals. We aim to use the video representation capacity of implicit networks

to isolate imperceptible physiological phenomena, such as plethysmograph signals.

Fast Implicit Neural Representations. A critical drawback of INRs is the time taken

to train the networks for dataset scale experimentation and inference. Recent work, how-
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ever, has taken a step toward alleviating this concern. [219] have proposed using a latent

feature-based modulation network to generalize implicit representation models to model a

broader range of images for faster convergence. Further, specialized toolboxes have been

released to accelerate the training time of NeRFs [213, 216]. In this work, we are interested

in employing [216]’s parametric multiresolution spatial-hash encodings as inputs to a shal-

low MLP. Using this foundation, we extend the framework to video INRs, specifically for

generalizable, robust camera-based plethysmography. This technique can achieve orders of

magnitude improvements in training time for INRs.

Remote Plethysmography. Heart rate estimation using rPPG has been actively studied.

Early methods were based on algorithmic principles of color variations [27, 26] or motion

based on Newtonian reaction to blood flow [41]. Such methods are not limited to use with

RGB cameras. Near Infrared (NIR) Imaging with active illumination has been employed to

combat the effects of unreliable illumination in the visible (VIS) spectrum [42]. Augmented

reality [46] is another avenue for this research. Deep learning approaches have also been

utilized to attain SOTA results. [30] used an attention-based Convolutional Neural Network

(CNN) while [31] introduced spatio-temporal CNNs. Other work has extended these architec-

tures [47], including using transformers [9], incorporated meta-learning [48], improved PPG

waveform characteristics [49], and augmented rPPG datasets with synthetic examples [1, 16].

Another class of methods focuses on improving equity between groups, such as participants

of different skin tones [32, 143]. These include algorithmic methods [192] or multimodal

fusion methods [8]. Methods for assessing and improving equity are not restricted to rPPG

and extend to a range of computer vision problems [220, 143, 57, 186, 221, 222].
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6.3 A-B Decomposition and Optimality

We begin with describing the mathematical underpinnings of rPPG and propose the notion

of appearance-blood (A− B) decomposition and its benefits.

Fundamentally, the rPPG signal is subtle, making its estimation difficult. While con-

temporary methods [30, 31, 9] circumvent this through deep networks, they fare poorly on

OOD samples. This necessitates a generalizable method capable of extracting the rPPG

signal without relying on domain-specific features that tend to overfit. This motivates our

functional decomposition.

Given spatial coordinates x ∈ [−0.5, 0.5]2, and temporal coordinate t ∈ [−0.5, 0.5], the

face videos are interpreted as RGB color fields C (x, t). This color field consists of specular

reflections that act as interference and diffuse components arising from subsurface scattering

containing plethysmograph information. We wish to decompose the color signal into a signal

amplitude component, pm(x, t), and a temporal plethysmograph signal pi(t), our desired

signal. However, the relation between pm(·, ·) and pi(·) is non-linear in nature.

Under reasonable assumptions, we show color signals can be decomposed as:

C (x, t) = A(x, t) + B(x, t) + vn (x, t) , (6.1)

where A(x, t) represents the facial appearance (or A-function) - including specular highlights

- which is interference. B(x, t), the blood component (or B-function), contains the spatiotem-

porally varying color changes arising out of blood flow (plethysmography) that incorporates

pm(·, ·) and pi(·). vn(·, ·) represents the measurement noise in the process. We will refer to

this decomposition as the A− B decomposition. Then, the following Theorem holds.

Theorem 1: The A−B decomposition results in a B-function with a Signal to Interference

& Noise Ratio SINRB(x, t), such that SINRB(x, t) ≥ SINRC(x, t). That is, the A − B

decomposition leads to an SINR gain.

Note that Theorem 1 is an existence proof. It describes the existence of SINR benefits as
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a result of ideal decomposition, motivating its necessity in our real applications. Addition-

ally, while SINR is computed across time, we also wish to model temporal variations due to

lighting, pose changes, etc. This is what t-dependence for SINR denotes.

Corollary 1: Given an A−B decomposed video field C (x, t), the Maximal Ratio Combining

(MRC)-optimal estimate for the plethysmograph pi(t) is given by,

p̂∗i (t) =

∫
x∈Ω

SINRB(x, t)B(x, t)dx, (6.2)

where Ω = [−0.5, 0.5]2, the domain of x as previously defined.

This is the notion of near-optimal plethysmography we aim to achieve. Detailed deriva-

tions for this section can be found in the appendix.

6.3.1 Optimal Plethysmography and Uncertainty

Equation 6.2 can also be interpreted in the context of uncertainty minimization [223]. In a

discrete setting with N pixel locations {x}Ni=1, each pixel is viewed as a sensor and the signal

strength, SINRB(x, t) is a proxy for the uncertainty or unreliability. Then the problem

of estimating p̂∗i (t) can be interpreted as Bayesian inference. With assumptions on prior

and posterior distributions, it can be shown that the posterior p̂∗i (t) is Gaussian with mean∑N
i=1 SINRB(xi,t)·B(xi,t)∑N

i=1 SINRB(xi,t)
(best posterior estimate, a discretized and normalized version of Equa-

tion 6.2) and variance 1/(
∑N

i=1 SINRB(xi, t)). Since Equation 6.2 represents maximal ratio

combining,
∑N

i=1 SINRB(xi, t) ∝ SINRp̂∗i (t)
([224], Equation 31, 32), then, uncertainty (or

the variance in the posterior) is inversely proportional to SINR of p̂∗i (t). Optimal plethys-

mography therefore becomes akin maximization of SINR, or minimization of uncertainty of

p̂∗i (t). Please refer to the appendix for derivations.
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6.4 A-B Decomposition Using INRs

This section explores conditions for A-B decomposition function approximators. We first

establish necessary conditions that A-B decomposers must meet and then explore how INRs

can be designed to perform such decomposition.

6.4.1 Functional Decomposition

Consider two functions, Â(x, t;ΘA) and B̂(x, t;ΘB), parameterized by ΘA and ΘB, that

aim to represent A(x, t) and B(x, t) respectively. To perform an A-B decomposition, we

wish to find functions that satisfying:

dA(Â(x, t;Θ∗
A),A(x, t)) ≤ ϵA,

dB(B̂(x, t;Θ∗
B),B(x, t)) ≤ ϵB,

dB(Â(x, t;Θ∗
A),B(x, t)) ≥ ϵB.

(6.3)

where Θ∗
A and Θ∗

B are optimal parameters, and dA(·,A(x, t)) and dB(·,B(x, t)) are some

component-dependent metric distances. This quantifies the requirement that Â(x, t;ΘA) is

able to represent the A-function but not the B-function.

We choose distance measures, dA(F ,A(x, t)) = ||F − A(x, t)||2, ∀F , such that the ap-

pearance metric distance rewards pixel-wise closeness. Similarly,

dB(F ,B(x, t)) = |H(F)−H(B(x, t))|, ∀F , (6.4)

where H(·) is a heart rate estimator function. By finding functions that satisfy the constraints

in Equation 6.3, we can achieve A-B decomposition by sequentially learning Â(x, t;ΘA) and

B̂(x, t;ΘB). A detailed mathematical analysis of this formulation is deferred to the appendix.
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Figure 6.3: Sinusoidal Representation Networks (SRNs) can represent both A and

B-functions, while phase-based methods only represent the A-function. (a) SRNs,

such as [6], can capture PPG color variations almost perfectly, while (b) phase-based motion

representations, such as [7] are unable to capture it.

6.4.2 Identifying Implicit A-B Decomposers

Prior work on video magnification through Laplacian [23] and phase-based [225] pyramids

is instructive. While the Laplacian pyramid-based approach [23] can magnify blood flow

due to color changes, the phase-based method [225] cannot magnify blood flow. With this

intuition, we use the metrics defined in the previous section to identify approximations for

A & B. We first look at phase-modulated INRs for motion modeling [7]. The key inductive

bias here is parameterizing time as phase modulation in positional encodings [211, 226].

Empirical Claim 1 (based on observations): Phase-based implicit models (models with

phase-encoded input embeddings) cannot represent plethysmograph signals accurately, in terms

of the metric in Equation 6.4. (Figure 6.3(b))

While this can be viewed as a limitation of phase-based INRs, we use it to our advantage:

phase-based models can be A-function estimators (Equation 6.3).

We next look at sinusoid representation networks (SRNs), such as [6, 205, 206].

Empirical Claim 2: SRNs are good A, B-function approximators. (Figure 6.3(a))

However, being able to represent bothA and B makes SRNs incapable of A-B decomposition.

This pair exactly satisfy the constraints in Equation 6.3. Hence,

Empirical Claim 3: A phase-based model can serve as Â(x, t;Θ∗
A), while an SRN can
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serve as B̂(x, t;Θ∗
B), when trained sequentially.

Justifications for all claims may be found in the appendix. However, naive use of prior

work [6, 7] for A-B decomposition poses a training time problem. Using variants of [7]

and [6] as A and B-function estimators, respectively, we noted a training time of 20 minutes

for a 2-second long video with a resolution of 128× 128. Such compute times are infeasible

for dataset-scale experiments.

6.5 Hash Encodings for A-B Decomposition

In this section, we propose high-speed INR-basedA-B decomposition. Specifically, to address

the slower speeds of traditional INRs, we pivot to a faster framework and show design INRs

for A-B decomposition within this framework.

Inspired by recent work in instant neural graphics primitives [216], we propose using a

multiresolution hash input encoding (MRHE)-based framework for A-B decomposition. A

critical aspect is using the spatial hash function for video fields. Spatial hash functions [227,

228] are typically 2-D and 3-D extensions to the prevalent hash tables. We use this principle

to model the spatio-temporal coordinates (x, y, t) as a 3-D space. We posit that the 3-

D spatial hash function can effectively model this space without violating any temporal

constraints.

6.5.1 Cascaded Appearance Model Â(x, t;ΘA)

As discussed in Section 6.4.2, phase-based INRs [7], are efficient A-function representers.

However, a direct translation of this concept to MRHEs is intractable, i.e., replacing the

sinusoidal positional encodings with the faster MRHE makes phase incorporation infeasible.

For sinusoidal encodings, phase modulations are akin to offsets. Thus, we propose to incor-

porate the time-to-phase conversion through learned spatiotemporal offset. The appearance

model has two stages: the first maps spatio-temporal coordinates to positional offsets in the
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Figure 6.4: To enable fast A-B decomposition, we use implicit neural representa-

tions as decomposing function fitters. Training is done sequentially: first, the cascaded

appearance model learns the A-function. Then, the appearance model is frozen, and the

residual model learns the B-function, thereby completing the decomposition. The use of

multiresolution hash encodings makes dataset-scale decomposition viable.

MRHE. The second is queried using the offset positions to generate video frames.

Rather than considering a single offset vector in R2 for the entire frame (as [7] do for phase

estimation), we estimate the offset, ∆x ∈ R2, for each point in the spatio-temporal grid.

That is, ∆x = fA1(x, t). The estimated offsets are added to the original spatial coordinates,

which are then used to query a second model fA2(x +∆x). Translating Empirical Claim

1 from phase-based to offset-based models, we summarize our offset-adjustable cascaded

appearance model as Â(x, t;ΘA) = fA2(x + fA1(x, t)). The architecture and loss functions

are elaborated on in the appendix. Figure 6.4 details this pipeline.

6.5.2 Residual Plethysmograph Model B̂(x, t;ΘB)

We use a shallow sinusoidal model with MRHE, fB(·, ·), as our B-function estimator. In line

with Empirical Claim 3 , we train the residual plethysmograph network sequentially after

the cascaded appearance model. While training, we freeze the cascaded appearance model

and train the residual plethysmography network on the difference between the original video

input and the output of the estimated appearance field. That is, B̂(x, t;ΘB) = fB(x, t).

The resulting residual plethysmograph model is shown to compensate for the cascaded
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Figure 6.5: Using the estimated B-function with the original video, we learn high-

fidelity neural signal strength masks. The network takes the original RGB frames

and the B-function estimate as inputs and returns a spatial strength mask. Training is

supervised through an auxiliary 1-D CNN whose training target is the prediction of an

accurate plethysmograph. The 1-D CNN is discarded post-training, and the learned mask

model is used at inference time on the B-function to estimate rPPG.

appearance model’s inability to retain the plethysmograph signal. When queried, the model

yields a spatio-temporal estimate of the plethysmograph signal. The appendix contains

relevant implementation details.

6.6 rPPG Estimation

The previous section enables us to learn an estimator for B(x, t), which is one part of the

SINR optimality (and hence uncertainty minimization) from Equation 6.2. In this section,

we proceed towards rPPG estimation from the B-function using high-fidelity neural signal

masks.

Figure 6.5 highlights our proposed pipeline. Built on a 3-D CNN backbone, we indirectly

supervise the spatial-attention-based network architecture with PPG waveforms. The model

accepts the RGB input field concatenated with B̂(x, t) (a combined 6-channel input) to

estimate a mask. Here, I(x, t) =
[
C (x, t) , B̂(x, t)

]
, where I(x, t) is the input to our SINR

mask estimator. Limited by compute requirements, we relax the temporal component and

only consider the first 64 frames (of the 300 frames) to compute a single mask for 10 seconds.
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End-to-end the network can be summarized as SIN̂RB(x) = fSINR (I (x, t) ; ΘSINR) .

It must be noted that while we only estimate a single mask for a 10-second video, our

experiments show that our method is competitive even in the presence of natural motions like

talking and head swaying (appendix). The SINR mask SIN̂RB(x) is directly used compute

y1(t) =
∑

x SIN̂RB(x)·I(x,t)∑
x SIN̂RB(x)

, where y1(t) is a time-series obtained from the 6-channel weighted

spatial average of the input.

The 6-channel time-series signal is then passed through a 1-D CNN to yield a refined

temporal estimate of the plethysmograph signal, p̂(t). Note that this network is not used to

generate the final estimates but to supervise the neural signal strength mask model indirectly.

The whole pipeline is supervised end-to-end with the ground truth plethysmograph signals.

Implementation details and further mathematical formulation are provided in the appendix.

As a result of the architecture being based on the optimality constraint in Equation 6.2, the

inferred masks are expected to be near SINR-optimal. This also means near optimality in

terms of uncertainty minimization.

As in prior learning approaches, the neural regressor overfits the waveform, making it sub-

optimal for OOD. Hence, we only retain fSINR(·). The neural signal masks are combined with

B̂ to estimate the rPPG signal. We follow [25] and utilize only the green channel. Advanced

algorithms [27, 26] exist that utilize other channels, but they rely on the A-function [27, 26].

We perform detrending and Butterworth filtering for heart rate estimation as in [27].

6.7 Results

6.7.1 Experimental Setup

6.7.1.1 Datasets

All methods are trained on two prior datasets [16, 8]. We also test our method on a self-

collected Institutional Review Board (IRB) approved optically challenging OOD dataset.
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Table 6.1: Performance on our OOD dataset considerably favors our method

over prior work. We measure inter-distribution parity via the r-consistency metric. In-

distribution values for r are given in Table 6.2. For algorithmic methods (non-learning),

r-consistency on the datasets from [16] and [8] are shown in parenthesis. The best and

second-best-performing numbers are highlighted in green and yellow, respectively.

OOD Performance Metrics Inter-Distribution Parity Metric

Method T-Test (APE %) ↓ MAE ↓ MAPE ↓ RMSE ↓ r ↑ r-consistency ↑

POS [Wang et al. (2016)] 31.92 8.02 11.06% 14.87 0.47 0.62

PhysFormer [Verkruysse et al. (2008)] 39.81 9.58 12.59% 15.14 0.32 0.48

Ours 16.15 4.61 6.07% 11.65 0.65 0.78

While we mainly focus on our dataset for OOD analysis, we also present results of cross-

dataset inference. In our OOD dataset, we share full participant videos (without identifying

information such as names), but only after recording contact details of dataset users. The

dataset is released after potential users fill out a request form. Further details are in the

appendix.

6.7.1.2 Evaluation Metrics

We adopt the heart rate (HR) performance metrics from [8]. These include Mean Abso-

lute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Error

(RMSE), Pearson correlation coefficient (r) and the Threshold test (T-Test) [65, 67, 66].

Since our goal is OOD generalization, we propose “r-consistency” as the similarity metric

between the Pearson coefficients of the in-distribution (ID) and OOD samples, calculated as

a harmonic mean. A detailed discussion of this metric is present in the appendix.
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Table 6.2: In-distribution and Cross-dataset OOD performance across two

datasets - [8] and [16] shows comparable or superior performance compared to

prior methods. Across in-distribution and cross-dataset validation, our method is the most

consistent compared to SOTA methods. The best-performing and second-best-performing

numbers are shown in green and yellow, respectively. There are 4 quadrants: 1st - top left,

2nd - top right, 3rd - bottom right and 4th - bottom left.

Test on Vilesov et al. (2022)

Method T-Test (APE %) ↓ MAE ↓ MAPE ↓ RMSE ↓ r ↑

POS [Wang et al. (2016)] 6.00 2.13 2.78% 6.54 0.89

PhysFormer [Verkruysse et al. (2008)] 2.96 1.06 1.37% 3.35 0.96

Ours 3.34 1.22 1.61% 4.01 0.96

6.7.1.3 Evaluation Configuration

We gauge performance of all methods via HR estimations from the power-spectral density.

These estimations are carried over 300-sample windows (10 seconds), with a stride of 128

samples. Following [8], we validate1 the learning-based methods by performing six-fold cross-

validation while averaging across the entire dataset for algorithmic methods. Similarly, we

construct three folds for [16] to evaluate the learning methods. Please refer to the appendix

for details, including visualization of signal strength masks.

Figures 6.6 and 6.7 show the results of our algorithm against the baseline methods. For

ease of interpretability, we correct for random phase lag between the face (site of signal

measurement) and finger (site of ground truth measurement).

1Baselines are configured, where possible, using the toolbox from [229].
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6.7.2 Out of Distribution Plethysmography

We use our self-collected optically challenging dataset to benchmark OOD performance.

While we primarily employ this dataset, we acknowledge that this is not the only notion of

OOD. Hence, we also perform cross-dataset inference as part of the evaluation protocol to

measure generalization capacity.

6.7.2.1 Optically Challenging OOD Evaluation

Table 6.1 presents a quantitative analysis of OOD performance. Learning-based methods

are trained on the datasets from [16] and [8], and the best fold is chosen for OOD inference.

Given their capacity to memorize distinguishable patterns, learning methods [31, 9] han-

dle input noise better than algorithmic methods for in-distribution inference. However, this

also leads to poorer generalizability on our OOD dataset, as emphasized by both the Pear-

son coefficient (r) and the “r-consistency” metrics. In contrast, algorithmic methods rely on

deterministic heuristics. While this promotes good generalizability, it makes them extremely

sensitive to factors such as lighting, occlusion, etc., leading to generally poorer performance.

Our proposed method maximizes signal strength while avoiding overfitting to the train-

ing distribution. We are, therefore, Pareto-optimal in both OOD performance and inter-

distribution parity (Figure 6.2) regarding the T-Test value and “r-consistency” score. Our

method is both the best and second-best performing method, outperforming Green (the best

baseline) with 48.8% and 40.9% reduction in T-Test and MAE values. Clinically, this implies

an almost 2x reduction in the number of participants on whom the method fails following

the AAMI standard. Further granular analysis can be found in the appendix.

6.7.2.2 Cross-Dataset OOD and In-Distribution Evaluation

Another notion of OOD is a cross-dataset generalization. Domain shifts between datasets

result from differences in hardware and acquisition conditions. Learning-based methods tend
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2.3 bpm error 6.6 bpm error 1.0 bpm error

64.9 bpm error 32.1 bpm error 1.9 bpm error

3.1 bpm error 17.6 bpm error 1.6 bpm errorWindow reflection

(a) Vid. (b) [25] (c) [9] (d) Ours (e) GT

Figure 6.6: Across challenging OOD optical settings, the proposed method can

capture details of the plethysmograph waveform compared to prior methods.

Results shown use models trained on the dataset proposed in [8], where applicable. Addi-

tional results are presented in the appendix.

to overfit the training data. Our experiments use datasets from [16] and [8] for their size and

diversity. Table 6.2 indicates that while deep learning methods perform well in-distribution

(1st and 3rd quadrant), they cannot maintain the same level of performance for cross-dataset

inference (2nd and 4th quadrant). Algorithmic methods have no notion of cross-dataset

evaluation. When trained on [8] and tested on [16] (4th quadrant), we outperform all prior

work. In the reverse scenario (2nd quadrant), we are the second-best, marginally behind [31].

Despite OOD being our central focus, our model offers results comparable to SOTA

algorithms even for in-distribution evaluation. Our method is within 0.3 bpm MAE compared

to all top baselines (a difference that is not clinically significant). Additionally, our method

shows a sub 0.5 bpm standard deviation of MAE across various folds used for evaluation

127



0.1 bpm error 0.2 bpm error 0.0 bpm error

59.2 bpm error 1.1 bpm error 0.3 bpm error

(a) Vid. (b) [27] (c) [9] (d) Ours (e) GT

Figure 6.7: In distribution inference on a diverse dataset. Our method better captures

rPPG waveform details across skin tones for in-distribution evaluation on [8] dataset. While

our method and [9] both perform reasonably well across skin tones, [9] does so with poorer

OOD performance (Figure 6.6). More results in the appendix.

in all configurations. Overall, our method is the most consistent across all quadrants while

yielding errors within 2 bpm MAE, which most likely would be clinically accurate.

6.7.3 Qualitative Comparison

In Figure 6.6, we assess the qualitative waveforms generated on our optically challenging

OOD dataset. We compare our method against the best-performing algorithmic and deep

learning methods from Table 6.1, i.e., Green [25] and PhysFormer [9] respectively. For the

representative samples, our method is superior in performance and can retain the shape

of the plethysmography signal. The second scene, with the mask and glasses, especially

highlights these gains. We also show superior rPPG estimation for extreme scenes (window

reflections).

In Figure 6.7, we assess qualitative waveforms from in-distribution inference samples

from [8]. We compare our method with PhysFormer [9] and POS [27] as the best-performing
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in-distribution deep learning and algorithmic methods. Our method retains both the fre-

quency information and salient features of the waveform across diverse skin tones in the

dataset.

6.8 Discussion

We propose an INR for camera-based rPPG. We introduce the concept of A-B decomposition

and propose an INR architecture to achieve this at scale. The proposed model is evaluated

on a dataset of optically challenging OOD participants in addition to existing datasets. Our

model performs best on the OOD dataset while comparable to SOTA for in-distribution

validation.

6.8.1 Limitations

Being the first method using INRs for rPPG, limitations exist. First, while we reduce

runtime over traditional INRs (as discussed in the appendix), and some rPPG methods report

comparable runtimes [230], this is an avenue for future improvement. Second, while the

proposed method is competitive for challenging scenes like talking and motion (appendix),

these problems remain open.

6.8.2 Societal Impacts and Ethical Considerations

We focus on rPPG in optically challenging scenes (Section 6.1.1) due to factors like light-

ing, facial occlusions (masks, glasses, medical equipment), etc. Robustness to such settings

enables applicability in settings like hospital rooms, classrooms, driving, etc. Addition-

ally, prior work [231, 232] has shown promise in using rPPG for tasks like biometrics and

forensics, and OOD-robustness will bring these applications one step closer to real-world

deployment. Finally, these methods can also potentially be applied to other modalities and
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vital signs [233, 76, 234].

Technological solutions enabling healthcare for all, like this work, are relevant for social

good. However, technology with clinical impact should only be deployed once the method is

provably robust. Our method takes a step in that direction, but a pipeline of similar papers

is needed to enable real-world rPPG deployment.
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CHAPTER 7

Enabling 3D Perception from 2D Foundation Models

3D Gaussian Splatting 

Feature Field

Radiance Field

2D Foundation Models

Semantic Segmentation Language-guided Editing

Promptless Segment EverythingPromptable Segment Anything

"Delete the car"

Figure 7.1: Feature 3DGS. We present a general method that significantly enhances 3D

Gaussian Splatting through the integration of large 2D foundation models via feature field

distillation. This advancement extends the capabilities of 3D Gaussian Splatting beyond

mere novel view synthesis. It now encompasses a range of functionalities, including seman-

tic segmentation, language-guided editing, and promptable segmentations such as “segment

anything" or automatic segmentation of everything from any novel view. Scene from [10].
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7.1 Introduction

3D scene representation techniques have been at the forefront of computer vision and graphics

advances in recent years. Methods such as Neural Radiance Fields (NeRFs) [211], and works

that have followed up on it, have enabled learning implicitly represented 3D fields that are

supervised on 2D images using the rendering equation. These methods have shown great

promise for tasks such as novel view synthesis. However, since the implicit function is only

designed to store local radiance information at every 3D location, the information contained

in the field is limited from the perspective of downstream applications.

More recently, NeRF-based methods have attempted to use the 3D field to store addi-

tional descriptive features for the scene, in addition to the radiance [13, 235, 14, 236]. These

features, when rendered into feature images, can then provide additional semantic infor-

mation for the scene, enabling donwstream tasks such as editing, segmentation and so on.

However, feature field distillation through such a method is subject to a major disadvantage:

NeRF-based methods can be natively slow to train as well as to infer. This is further com-

plicated by model capacity issues: if the implicit representation network is kept fixed, while

requiring it to learn an additional feature field (to not make the rendering and inference

speeds even slower), the quality of the radiance field, as well as the feature field is likely to

be affected unless the weight hyperparameter is meticulously tuned [13].

A recent alternative for implicit radiance field representations is the 3D Gaussian splatting-

based radiance field proposed by Kerbl et al. [237]. This explicitly-represented field using 3D

Gaussians is found to have superior training speeds and rendering speeds when compared

with NeRF-based methods, while retaining comparable or better quality of rendered images.

This speed of rendering while retaining high quality has paved the way for real-time render-

ing applications, such as in VR and AR, that were previously found to be difficult. However,

the 3D Gaussian splatting framework suffers the same representation limitation as NeRFs:

natively, the framework does not support joint learning of semantic features and radiance
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field information at each Gaussian.

In this work, we present Feature 3DGS: the first feature field distillation technique based

on the 3D Gaussian Splatting framework. Specifically, we propose learning a semantic feature

at each 3D Gaussian, in addition to color information. Then, by splatting and rasterizing the

feature vectors differentiably, the distillation of the feature field is possible using guidance

from 2D foundation models. While the structure is natural and simple, enabling fast yet

high-quality feature field distillation is not trivial: as the dimension of the learnt feature at

each Gaussian increases, both training and rendering speeds drop drastically. We therefore

propose learning a structured lower-dimensional feature field, which is later upsampled using

a lightweight convolutional decoder at the end of the rasterization process. Therefore, this

pipeline enables us to achieve improved feature field distillation at faster training and render-

ing speeds than NeRF-based methods, enabling a range of applications, including semantic

segmentation, language-guided editing, promptable/promptless instance segmentation and

so on.

In summary, our contributions are as follows:

• A novel 3D Gaussian splatting inspired framework for feature field distillation using

guidance from 2D foundation models.

• A general distillation framework capable of working with a variety of feature fields such

as CLIP-LSeg, Segment Anything (SAM) and so on.

• Up to 2.7× faster feature field distillation and feature rendering over NeRF-based

method by leveraging low-dimensional distillation followed by learnt convolutional up-

sampling.

• Up to 23% improvement on mIoU for tasks such as semantic segmentation.
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Figure 7.2: An overview of our method. We adopt the same 3D Gaussian initializa-

tion from sparse SfM point clouds as utilized in 3DGS, with the addition of an essential

attribute: the semantic feature. Our primary innovation lies in the development of a Paral-

lel N-dimensional Gaussian Rasterizer, complemented by a convolutional speed-up module

as an optional branch. This configuration is adept at rapidly rendering arbitrarily high-

dimensional features without sacrificing downstream performance.

7.2 Related Work

7.2.1 Implicit Radiance Field Representations

Implicit neural representations have achieved remarkable success in recent years across a

variety of areas within the field of computer vision [210, 238, 239, 240, 211, 241]. NeRF [211]

demonstrates outstanding performance in novel view synthesis by representing 3D scenes

with a coordinate-based neural network. In mip-NeRF [241], point-based ray tracing is

replaced using cone tracing to combat aliasing. Zip-NeRF [242] utilized an anti-aliased

grid-based technique to boost the radiance field performance. Instant-NGP [216] reduces

the cost for neural primitives with a versatile new input encoding that permits the use of a

smaller network without sacrificing quality, thus significantly reducing the number of floating

point and memory access operations. IBRNet [243], MVSNeRF [244], and PixelNeRF [245]

construct a generalizable 3D representation by leveraging features gathered from various

observed viewpoints. However, NeRF-based methods are hindered by slow rendering speeds
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and substantial memory usage during training, a consequence of their implicit design.

7.2.2 Explicit Radiance Field Representations

Pure implicit radiance fields are slow to operate and usually require millions of times query-

ing a neural network for rendering a large-scale scene. Marrying explicit representations

into implicit radiance fields enjoys the best of both worlds. Triplane [246], TensoRF [247],

K-Plane [248], TILED [249] adopt tensor factorization to obtain efficient explicit repre-

sentation. InstantNGP [216] utilizes multi-scale hash grids to work with large-scale scenes.

Block-NeRF [250] further extends NeRF to render city-scale scenes spanning multiple blocks.

Point NeRF [251] uses neural 3D points for representing and rendering a continuous radiance

volume. NU-MCC [252] similarly utilizes latent point features but focuses on shape com-

pletion tasks. Unlike NeRF-style volumetric rendering, 3D Gaussian Splatting introduces

point-based α-blending and an efficient point-based rasterizer. Our work follows 3D Gaus-

sians Splatting, where we represent the scene using explicit point-based 3D representation,

i.e. anisotropic 3D Gaussians.

7.2.3 Feature Field Distillation

Enabling simultaneously novel view synthesis and representing feature fields is well explored

under NeRF [211] literature. Pioneering works such as Semantic NeRF [253] and Panoptic

Lifting [254] have successfully embedded semantic data from segmentation networks into

3D spaces. Their research has shown that merging noisy or inconsistent 2D labels in a 3D

environment can yield sharp and precise 3D segmentation. Further extending this idea,

techniques like those presented in [255] have demonstrated the effectiveness of segmenting

objects in 3D with minimal user input, like rudimentary foreground-background masks. Be-

yond optimizing NeRF with estimated labels, Distilled Feature Fields [13], NeRF-SOS [235],

LERF [14], and Neural Feature Fusion Fields [236] have delved into embedding pixel-aligned
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feature vectors from technologies such as LSeg or DINO [256] into NeRF frameworks. Ad-

ditionally, [257, 258, 259, 260, 261, 262, 263] also explore feature fusion and manipulation

in 3D. Feature 3DGS shares a similar idea for distilling 2D well-trained models, but also

demonstrates an effective way of distilling into explicit point-based 3D representations, for

simultaneous photo-realistic view synthesis and label map rendering.

7.3 Method

NeRF-based feature field distillation, as explored in [13], utilizes two distinct branches

of MLPs to output the color c and feature f . Subsequently, the RGB image and high-

dimensional feature map are rendered individually through volumetric rendering. The tran-

sition from NeRF to 3DGS is not as straightforward as simply rasterizing RGB images and

feature maps independently. Typically, feature maps have fixed dimensions that often dif-

fer from those of RGB images. Due to the tile-based rasterization procedure and shared

attributes between images and feature maps, rendering them independently can be prob-

lematic. A naive approach is to adopt a two-stage training method that rasterizes them

separately. However, this approach could result in suboptimal quality for both RGB im-

ages and feature maps, given the high-dimensional correlations of semantic features with the

shared attributes of RGB.

In this section, we introduce a novel pipeline for high-dimensional feature rendering

and feature field distillation, which enables 3D Gaussians to explicitly represent both ra-

diance fields and feature fields. Our proposed parallel N-dimensional Gaussian rasterizer

and speed-up module can effectively solve the aforementioned problems and is capable of

rendering arbitrary dimensional semantic feature map. An overview of our method is shown

in Fig. 7.2. Our proposed method is general and compatible with any 2D foundation model,

by distilling the semantic features into a 3D feature field using 3D Gaussian splatting. In

our experiments, we employ SAM [264] and LSeg [265], facilitating promptable, promptless
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(zero-shot [266] [267]) and language-driven computer vision tasks in a 3D context.

7.3.1 High-dimensional Semantic Feature Rendering

To develop a general feature field distillation pipeline, our method should be able to render

2D feature maps of arbitrary size and feature dimension, in order to cope with different

kinds of 2D foundation models. To achieve this, we use the rendering pipeline based on the

differentiable Gaussian splatting framework proposed by [237] as our foundation. We follow

the same 3D Gaussians initialization technique using Structure from Motion [268]. Given

this initial point cloud, each point x ∈ R3 within it can be described as the center of a

Gaussian. In world coordinates, the 3D Gaussians are defined by a full 3D covariance matrix

Σ, which is transformed to Σ′ in camera coordinates when 3D Gaussians are projected to

2D image / feature map space [269]:

Σ′ = JWΣW TJT , (7.1)

where W is the world-to-camera transformation matrix and J is the Jacobian of the affine

approximation of the projective transformation. Σ is physically meaningful only when it is

positive semi-definite — a condition that cannot always be guaranteed during optimization.

This issue can be addressed by decomposing Σ into rotation matrix R and scaling matrix S:

Σ = RSSTRT , (7.2)

Practically, the rotation matrix R and the scaling matrix S are stored as a rotation

quaternion q ∈ R4 and a scaling factor s ∈ R3 respectively. Besides the aforementioned

optimizable parameters, an opacity value α ∈ R and spherical harmonics (SH) up to the

3rd order are also stored in the 3D Gaussians. In practice, we optimize the zeroth-order SH

for the first 1000 iterations, which equates to a simple diffuse color representation c ∈ R3,

and we introduce 1 band every 1000 iterations until all 4 bands of SH are represented.

Additionally, we incorporate the semantic feature f ∈ RN , where N can be any arbitrary
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number representing the latent dimension of the feature. In summary, for the i−th 3D

Gaussian, the optimizable attributes are given by Θi = {xi, qi, si, αi, ci, fi}.

Upon projecting the 3D Gaussians into a 2D space, the color C of a pixel and the feature

value Fs of a feature map pixel are computed by volumetric rendering which is performed

using front-to-back depth order [270]:

C =
∑
i∈N

ciαiTi, Fs =
∑
i∈N

fiαiTi, (7.3)

where Ti =
∏i−1

j=1(1 − αj), N is the set of sorted Gaussians overlapping with the given

pixel, Ti is the transmittance, defined as the product of opacity values of previous Gaussians

overlapping the same pixel. The subscript s in Fs denotes “student", indicating that this

rendered feature is per-pixel supervised by the “teacher" feature Ft. The latter represents

the latent embedding obtained by encoding the ground truth image using the encoder of

2D foundation models. This supervisory relationship underscores the instructional dynamic

between Fs and Ft in our model. In essence, our approach involves distilling [271] the large

2D teacher model into our small 3D student explicit scene representation model through

differentiable volumetric rendering.

In the rasterization stage, we adopted a joint optimization method, as opposed to raster-

izing the RGB image and feature map independently. Both image and feature map utilize

the same tile-based rasterization procedure, where the screen is divided into 16 × 16 tiles,

and each thread processes one pixel. Subsequently, 3D Gaussians are culled against both

the view frustum and each tile. Owing to their shared attributes, both the feature map and

RGB image are rasterized to the same resolution but in different dimensions, corresponding

to the dimensions of ci and fi initialized in the 3D Gaussians. This approach ensures that the

fidelity of the feature map is rendered as high as that of the RGB image, thereby preserving

per-pixel accuracy.
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7.3.2 Optimization and Speed-up

The loss function is the photometric loss combined with the feature loss:

L = Lrgb + γLf , (7.4)

with

Lrgb = (1− λ)L1(I, Î) + λLD−SSIM(I, Î),

Lf = ∥Ft(I)− Fs(Î)∥1.

where I is the ground truth image and Î is our rendered image. The latent embedding Ft(I)

is derived from the 2D foundation model by encoding the image I, while Fs(Î) represents

our rendered feature map. To ensure identical resolution H ×W for the per-pixel L1 loss

calculation, we apply bilinear interpolation to resize Fs(Î) accordingly. In practice, we set

the weight hyperparameters γ = 1.0 and λ = 0.2.

It is important to note that in NeRF-based feature field distillation, the scene is implic-

itly represented as a neural network. In this configuration, as discussed in [13], the branch

dedicated to the feature field shares some layers with the radiance field. This overlap could

potentially lead to interference, where learning the feature fields might adversely affect the

radiance fields. To address this issue, a compromise approach is to set γ to a low value,

meaning the weight of the feature field is much smaller than that of the radiance field during

the optimization. [13] also mentions that NeRF is highly sensitive to γ. Conversely, our

explicit scene representation avoids this issue. Our equal-weighted joint optimization ap-

proach has demonstrated that the resulting high-dimensional semantic features significantly

contribute to scene understanding and enhance the depiction of physical scene attributes,

such as opacity and relative positioning. See the comparison between Ours and Base 3DGS

in Tab. 7.1.

To optimize the semantic feature f ∈ RN , we minimize the difference between the ren-

dered feature map Fs(Î) ∈ RH×W×N and the teacher feature map Ft(I) ∈ RH×W×M , ideally

139



with N = M . However, in practice, M tends to be a very large number due to the high

latent dimensions in 2D foundation models (e.g. M = 512 for LSeg and M = 256 for SAM),

making direct rendering of such high-dimensional feature maps time-consuming. To address

this issue, we introduce a speed-up module at the end of the rasterization process. This

module consists of a lightweight convolutional decoder that upsamples the feature channels

with kernel size 1×1. Consequently, it is feasible to initialize f ∈ RN on 3D Gaussians with

any arbitrary N ≪M and to use this learnable decoder to match the feature channels. This

allows us to not only effectively achieve Fs(Î) ∈ RH×W×M , but also significantly speed up

the optimization process without compromising the performance on downstream tasks.

The advantages of implementing this convolutional speed-up module are threefold: Firstly,

the input to the convolution layer, with a kernel size of 1× 1, is the resized rendered feature

map, which is significantly smaller in size compared to the original image. This makes the

1 × 1 convolution operation computationally efficient. Secondly, this convolution layer is a

learnable component, facilitating channel-wise communication within the high-dimensional

rendered feature, enhancing the feature representation. Lastly, the module’s design is op-

tional. Whether included or not, it does not impact the performance of downstream tasks,

thereby maintaining the flexibility and adaptability of the entire pipeline.

7.3.3 Promptable Explicit Scene Representation

Foundation models provide a base layer of knowledge and skills that can be adapted for a

variety of specific tasks and applications. We wish to use our feature field distillation ap-

proach to enable practical 3D representations of these features. Specifically, we consider two

foundation models, namely Segment Anything [264], and LSeg [265]. The Segment Anything

Model (SAM) [264] allows for both promptable and promptless zero-shot segmentation in

2D, without the need for specific task training. LSeg [265] introduces a language-driven

approach to zero-shot semantic segmentation. Utilizing the image feature encoder with the

DPT architecture [272] and text encoders from CLIP [273], LSeg extends text-image associa-
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tions to a 2D pixel-level granularity. Through the teacher-student distillation, our distilled

feature fields facilitate the extension of all 2D functionalities — prompted by

point, box, or text — into the 3D realm.

Our promptable explicit scene representation works as follows: for a 3D Gaussian x among

the N ordered Gaussians overlapping the target pixel, i.e. xi ∈ X where X = {x1, . . . , xN},

the activation score of a prompt τ on the 3D Gaussian x is calculated by cosine similarity

between the query q(τ) in the feature space and the semantic feature f(x) of the 3D Gaussian

followed by a softmax:

s =
f(x) · q(τ)
∥f(x)∥∥q(τ)∥

, (7.5)

If we have a set T of possible labels, such as a text label set for semantic segmentation

or a point set of all the possible pixels for point-prompt, the probability of a prompt τ of a

3D Gaussian can be obtained by softmax:

p(τ |x) = softmax(s) =
exp (s)∑

sj∈T exp (sj)
. (7.6)

We utilize the computed probabilities to filter out Gaussians with low probability scores.

This selective approach enables various operations, such as extraction, deletion, or appear-

ance modification, by updating the color c(x) and opacity α(x) values as needed. With the

newly updated color set {ci}ni=1 and opacity set {αi}ni=1, where n is smaller than N , we can

implement point-based α-blending to render the edited radiance field from any novel view.

7.4 Experiments

7.4.1 Novel view semantic segmentation

The number of classes of a dataset is usually limited from tens [274] to hundreds [275],

which is insignificant to English words [276]. In light of the limitation, semantic features
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Metrics PSNR(±s.d.)↑ SSIM(±s.d.)↑ LPIPS(±s.d.)↓

Ours (w/ speed-up) 37.012 (±0.07) 0.971 (±5.3e-4) 0.023 (±2.9e-4)

Ours 36.915 (±0.05) 0.970 (±5.7e-4) 0.024 (±1.1e-3)

Base 3DGS 36.133 (±0.06) 0.965 (±1.5e-4) 0.033 (±1.2e-3)

Table 7.1: Performance on Replica Dataset. (average performance for 5K training

iterations, speed-up module rendered feature dim = 128). Boldface font represents the

preferred results.

Metrics mIoU↑ accuracy↑ FPS↑

Ours (w/ speed-up) 0.782 0.943 14.55

Ours 0.787 0.943 6.84

NeRF-DFF 0.636 0.864 5.38

Table 7.2: Performance of semantic segmentation on Replica dataset compared to

NeRF-DFF. (speed-up module rendered feature dim = 128). Boldface font represents the

preferred results.

empower models to comprehend unseen labels by mapping semantically close labels to similar

regions in the embedding space, as articulated by Li et al [265]. This advancement notably

promotes the scalability in information acquisition and scene understanding, facilitating

a profound comprehension of intricate scenes. We distill LSeg feature for this novel view

semantic segmentation task. Our experiments demonstrate the improvement of incorporating

semantic feature over the naive 3D Gaussian rasterization method [237]. In Tab. 7.1, we show

that our model surpasses the baseline 3D Gaussian model in performance metrics on Replica

dataset [11] with 5000 training iterations for all three models. Noticeably, the integration of
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Figure 7.3: Novel view semantic segmentation (LSeg) results on scenes from

Replica dataset [11] and LLFF dataset [12]. (a) We show examples of original images

in training views together with the ground-truth feature visualizations. (b) We compare

the qualitative segmentation results using our Feature 3DGS with the NeRF-DFF [13]. Our

inference is 1.66× faster when rendered feature dim = 128. Our method demonstrates more

fine-grained segmentation results with higher-quality feature maps.

the speed-up module to our model does not compromise the performance.

In our further comparison with NeRF-DFF [13] using the Replica dataset, we address

the potential trade-off between the quality of the semantic feature map and RGB images.

In Tab. 7.2, our model demonstrates higher accuracy and mean intersection-over-union

(mIoU). Additionally, by incorporating our speed-up module, we achieved more than double

the frame rate per second (FPS) of our full model while maintaining comparable perfor-

mance. In Fig. 7.3 (b) the last column, our approach yields better visual quality on novel

views and semantic segmentation masks for both synthetic and real scenes compared to
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novel view feature

novel view image point (1.962 sec / frame) box (1.943 sec / frame)

box (1.175 sec /frame)point (1.156 sec / frame)

(a)

(b)

Figure 7.4: Comparison of SAM segmentation results obtained by (a) naively ap-

plying the SAM encoder-decoder module to a novel-view rendered image with (b) directly

decoding a rendered feature. Our method is up to 1.7× faster in total inference speed includ-

ing rendering and segmentation while preserving the quality of segmentation masks. Scene

from [10].

NeRF-DFF.

7.4.2 Segment Anything from Any View

SAM excels in performing precise instance segmentation, utilizing interactive points and

boxes as prompts to automatically segment objects in any 2D image. In our experiments,

we extend this capability to 3D, aiming to achieve fast and accurate segmentation from any

viewpoint. Our distilled feature field enables the model to render the SAM feature map

directly for any given camera pose. As such, the SAM decoder is the only component needed

to interact with the input prompt and produce the segmentation mask, thereby bypassing
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Figure 7.5: Novel view segmentation (SAM) results compared with NeRF-DFF.

(Upper) NeRF-DFF method presents lower-quality segmentation masks - note the failure

on segmenting the cup from the bear and the coarse-grained mask boundary on the bear’s

leg in box-prompted results. (Lower) Our method provides higher-quality masks with more

fine-grained segmentation details. Scene from [14].

the need to synthesize a novel view image first and then process it through the entire SAM

encoder-decoder pipeline. Furthermore, to enhance training and inference speed, we use the

speed-up module in this experiment. In practice, we set the rendered feature dimension to

128, which is half of SAM’s latent dimension of 256, maintaining the comparable quality of

segmentation.

In Fig. 7.4, we compare the results of both point and box prompted segmentation on

novel views using the naive approach (SAM encoder + decoder) and our proposed feature

field approach (SAM decoder only). We achieve nearly equivalent segmentation quality, but

our method is up to 1.7× faster. In Fig. 7.5, we contrast our method with NeRF-DFF [13].

Our rendered features not only yield higher quality mask boundaries, as evidenced by the

bear’s leg, but also deliver more accurate and comprehensive instance segmentation, capable

of segmenting finer-grained instances (as illustrated by the more ’detailed’ mask on the far

right). Additionally, we use PCA-based feature visualization [277] to demonstrate that our

high-quality segmentation masks result from superior feature rendering.
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Figure 7.6: Demonstration of results with various language-guided edit operations

by querying the 3D feature field and comparison with NeRF-DFF (a) We compare

our edit results with NeRF-DFF method on the sample dataset provided by NeRF-DFF [13].

Note that our method outperforms NeRF-DFF method by extracting the entire banana

hidden by an apple in the original image and with less floaters in the background. (b) We

demonstrate results with deletion and appearance modification on different targets. Note

that the car is deleted with background preserved, and the appearance of the leaves changes

with the appearance of the stop sign remained the same.

7.4.3 Language-guided Editing

In this section, we showcase the capability of our Feature 3DGS, distilled from LSeg, to

perform editable novel view synthesis. The process begins by querying the feature field with

a text prompt, typically comprising an edit operation followed by a target object, such as

“extract the car". For text encoding, we employ a ViT-B/32 CLIP encoder. Our editing

pipeline capitalizes on the semantic features queried from the 3D feature field, rather than

relying on a 2D rendered feature map. We compute semantic scores for each 3D Gaussian,
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represented by a K-dimensional vector (where K is the number of object categories), using

a softmax function. Subsequently, we engage in either soft selection (by setting a threshold

value) or hard selection (by filtering based on the highest score across K categories). To

identify the region for editing, we generate a “Gaussian mask" through thresholding on

the score matrix, which is then utilized for modifications to color c and opacity α on 3D

Gaussians.

In Fig. 7.6, we showcase our novel view editing results, achieved through various opera-

tions prompted by language inputs. Specifically, we conduct editing tasks such as extraction,

deletion, and appearance modification on text-specified targets within diverse scenes. As il-

lustrated in Fig. 7.6 (a), we successfully extract an entire banana from the scene. Notably,

by leveraging 3D Gaussians to update the rendering parameters, our Feature 3DGS model

gains an understanding of the 3D scene environment from any viewpoint. This enables the

model to reconstruct occluded or invisible parts of the scene, as evidenced by the complete

extraction of a banana initially hidden by an apple in view 1. Furthermore, compared with

our edit results with NeRF-DFF, our method stands out by providing a cleaner extraction

with little floaters in the background. Additionally, in Fig. 7.6 (b), our model is able to

delete objects like cars while retaining the background elements, such as plants, due to the

opacity updates in 3DGS, showcasing its 3D scene awareness. Moreover, we also demonstrate

the model’s capability in modifying the appearance of specific objects, like ‘sidewalk’ and

‘leaves’, without affecting adjacent objects’ appearance (e.g., the ‘stop sign’ remains red).

7.5 Discussion and Conclusion

In this work, we present a notable advancement in explicit 3D scene representation by inte-

grating 3D Gaussian Splatting with feature field distillation from 2D foundation models, a

development that not only broadens the scope of radiance fields beyond traditional uses but

also addresses key limitations of previous NeRF-based methods in implicitly represented fea-
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ture fields. Our work, as showcased in various experiments including complex semantic tasks

like editing, segmentation, and language-prompted interactions with models like CLIP-LSeg

and SAM, opening the door to a brand new semantic, editable, and promptable explicit 3D

scene representation.

However, our Feature 3DGS framework does have its inherent limitations. The student

feature’s limited access to the ground truth feature restricts the overall performance, and

the imperfections of the teacher network further constrain our framework’s effectiveness. In

addition, our adaptation of the original 3DGS pipeline, which inherently generates noise-

inducing floaters, poses another challenge, affecting our model’s optimal performance.
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CHAPTER 8

Conclusion

In this dissertation, we explore the paradigm of “neural sensing”: computatational imaging

in the era of AI and large scale models. We explore each of the three pillars of neural sensing

(the sensor, the data and the algorithm) in the context of specific challenges afforded in

contactless patient vital signs monitoring and beyond.

We first show that aspects of equity (such as skin tone equity) are dictated by the

sensing principle of the selected sensor. Inequities that originate at the sensor level cannot

be eradicated regardless of the amount of data, or the inference algorithm in use. Therefore,

design of equitable approaches requires rethinking sensor design itself. This philosophy of

sensor-first design extends beyond equity, to new applications such as touch sensing as well.

We next explore the importance of data at scale for neural sensing pipelines. In the

context of medical imaging, where data at scale is challenging to obtain, we find that carefully

synthesised “physiorealistic” synthetic humans can pave the path for leveraging the benefits

of data scale. We also explore solutions for when data size is difficult to scale.

Finally, we explore the inference algorithm. Specifically, we explore extreme sensing

scenarios with very low signal to noise ratio and show that prudently designed algorithms are

capable of elevating the performance of neural sensing pipelines. We also show contributions

towards more general computer vision tasks such as 3D sensing.

Through all this, we show that understanding and exploring each of these three pillars

is critical to enable deployment of a neural sensing pipeline. Future explorations as part of

this thesis will aim to expand all three pillars to broader visual applications.
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APPENDIX A

Supplemental Content: Minority Inclusion for Majority

Enhancement of AI Performance

Supplementary Contents

This supplement is organized as follows:

• Section A.1 contains the proof for Theorem 1.

• Section A.2 contains the proof for Theorem 2.

• Section A.3 contains the proof for Theorem 3.

• Section A.4 discusses MIME existence beyond 1D.

• Section A.5 describes further details for the feature space analysis.

• Section A.6 contains implementation details across the six datasets.

• Section A.7 describes additional secondary analysis.

• Section A.8 describes our implementation of the hard mining comparison.

• Section A.9 describes our code.

• Section A.10 discusses potential negative ethical impacts of this work.
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A.1 Proof for Theorem 1

We consider the one-dimensional linear classifier setting, trained using the Perceptron algo-

rithm. Given any x ∈ R, the classifier evaluates an output y given by,

y = wx+ b, (A.1)

where w, b ∈ R. The decision threshold in this case is at y = 0. For simplification, we reduce

the redundant parameter, as follows:

y′ = x+ b′. (A.2)

Note that the decision threshold is unaffected by this conversion. For notational simplicity,

we use y = y′ and b = b′ here onward. We consider the perceptron decision and update rule,

modified for our case. That is, for any training sample (xi, yi), the predicted output is given

by,

ŷi =
sign(xi + b) + 3

2
, (A.3)

where sign(·) is the sign function. Readers will notice the unconventional form of this

decision rule. The additional terms map the conventional perceptron labels in {−1, 1} to

our chosen labels {1, 2} respectively.

For an appropriately chosen learning rate γ, the parameter update rule for this setting is

given by:

b←


b+ γ, if ŷi ̸= yi and yi = 2

b− γ, if ŷi ̸= yi and yi = 1

. (A.4)

Let hideal ≜ [1, bideal]
T denote the ideal decision hyperplane. Under the current assumption

of no domain gap, it can be shown that this ideal hyperplane is located at x = dideal such

that,

pminor
1 (dideal) = pminor

2 (dideal)

pmajor
1 (dideal) = pmajor

2 (dideal).
(A.5)
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This also implies that bideal = −dideal. Now, consider an initial training set of K − 1 samples

from the majority group, Dmajor
K−1 . A decision hyperplane hK−1 is learnt from these samples.

Then, without loss of generality, we can assume that,

dK−1 = dideal +∆. (A.6)

That is, the real hyperplane hK−1 is non-ideally located closer to the positve class (y =

2) than hideal. ∆ is a small positive value representing the error in the learnt decision

hyperplane. Consider that the K-th sample is drawn from the majority group xmajor
K . Recall

that parameter updates for the Perceptron algorithm take place only in the event of incorrect

label estimation ŷK ̸= yK . If we denote the change in the parameter b due to this sample as

∆b, then three cases exist:

1. Sample from class 2 is classified as belonging to class 1 such that

xmajor
K ∼ pminor

2 (x), xmajor
K < dideal −∆. Associated ∆b = +γ.

2. Sample from class 2 is classified as belonging to class 1 such that

xmajor
K ∼ pminor

2 (x), dideal −∆ ≤ xmajor
K < dideal +∆. Associated ∆b = +γ.

3. Sample from class 1 classified as belonging to class 2 such that

xmajor
K ∼ pminor

1 (x), xmajor
K ≥ dideal +∆. Associated ∆b = −γ.

Let the expected change in b due to one majority group sample be denoted as ∆bmajor.

∆dmajor is similarly defined for the expected change in d. Then, the following holds true:

∆bmajor = E
xmajor
K

[∆b] . (A.7)

Writing out the expectation over all three cases,

∆bmajor = γ

∫ dideal−∆

x=−∞
pmajor
2 (x)dx+ γ

∫ dideal+∆

x=dideal−∆

pmajor
2 (x)dx

− γ

∫ +∞

x=dideal+∆

pmajor
1 (x)dx. (A.8)
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Similar expressions can be identified if the K-th sample is drawn from the minority group.

Under the assumption that the mixture models under consideration are symmetric Gaussian

mixture models,

∫ dideal−∆

x=−∞
pmajor
2 (x)dx =

∫ +∞

x=dideal+∆

pmajor
1 (x)dx. (A.9)

Then, using Equation A.8 and Equation A.9,

∆bmajor = γ

∫ dideal+∆

x=dideal−∆

pmajor
2 (x)dx. (A.10)

The region between x = dideal − ∆ and dideal + ∆ determines the expected change in the

classification parameter. If ∆ is small enough, ∆bmajor ≈ 2γpmajor
2 (dideal)∆. Similarly,

∆bminor ≈ 2γpminor
2 (dideal)∆.

We now identify a sufficient condition where pminor
2 (x) > pmajor

2 (x) for −∆ ≤ x ≤ ∆, given

that the overlaps satisfy the condition Ominor > Omajor, as defined in the main text. Under

the GMM assumption,

pmajor
2 (x) =

1√
2π(σmajor

2 )2
exp

(
−(x− µmajor

2 )2

2(σmajor
2 )2

)
. (A.11)

A similar expression exists for the minority group distribution as well. We wish to find the

intersection point for the majority and minority distributions, that is pmajor
2 (x) = pmajor

1 (x)

for some x. This expression reduces to,(
x− µmajor

2

)2
σmajor2

−
(
x− µminor

2

)2
σminor2

= 2ln

∣∣∣∣σminor

σmajor

∣∣∣∣. (A.12)

We want to ensure that this intersection point occurs for an x > dideal. This sets up a

hyperbolic equation for the condition. For our purposes of proving existence, we qualitatively

note that if the majority group variance is not very large (meaning the likelihood of sampling

at the ideal hyperplane is low for the majority group), and the minority group variance is not
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very large (such that it does not tend close to a uniform distribution), pminor
2 (x) > pmajor

2 (x).

Then,

∆bminor > ∆bmajor. (A.13)

∆dminor < ∆dmajor < 0. (A.14)

Our final task is to relate the expected change in the decision hyperplane over a choice of

training sets D+
K and D−

K , with associated learnt hyperplanes h+
K and h−

K . As a reminder,

D+
K = {Dmajor

K−1 , x
major
K }

D−
K = {Dmajor

K−1 , x
minor
K },

(A.15)

Consider a general training setting, where we use minibatches of size M > 1, over multiple

epochs. Then, any minibatch containing the K-th sample can be split into the K-th sample

and a random subset of M−1 samples from Dmajor
K−1 . Therefore, on average, the only difference

to the sample updates would be due to the contributions of the K-th sample. This brings

us to our final observations,

E
xminor
K

[d+K ] = dmajor
K−1 +∆dmajor

E
xminor
K

[d−K ] = dmajor
K−1 +∆dminor.

(A.16)

From Equations A.14 and A.16,

E
xminor
K

[d−K ] < E
xminor
K

[d+K ], and (A.17)

E
xminor
K

[|dideal − d−K |] < E
xminor
K

[|dideal − d+K |]. (A.18)

The above holds for small enough γ. Since we know the relationship between the decision

hyperplane h and the associated d in our setting, the following equations hold true:

E
xminor
K

∥hideal − h−
K∥< E

xminor
K

∥hideal − h+
K∥, (A.19)
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E
xminor
K

Pmajor{h−
K

}
< E

xmajor
K

Pmajor{h+
K

}
. ■ (A.20)

A.2 Proof for Theorem 2

We follow a similar approach as in Theorem 1. Let hmajor
ideal ≜ [1, bmajor

ideal ]
T denote the ideal

decision hyperplane for the majority group. Let hminor
ideal ≜ [1, bminor

ideal ]
T denote the ideal decision

hyperplane for the minority group. Then, the ideal hyperplanes are located at x = dmajor
ideal

and x = dminor
ideal respectively such that,

pminor
1 (dminor

ideal ) = pminor
2 (dminor

ideal )

pmajor
1 (dmajor

ideal ) = pmajor
2 (dmajor

ideal ).
(A.21)

This implies that bmajor
ideal = −dmajor

ideal and bminor
ideal = −dminor

ideal . Consider an initial training set of

K − 1 samples from the majority group, Dmajor
K−1 . Then, without loss of generality, we can

assume that dK−1 = dmajor
ideal + ∆, where ∆ > 0. Additionally, we consider the existence of

domain gap in this case, that is, dminor
ideal = dmajor

ideal + δ.

Let δ < ∆. Similar to the setting in Theorem 1 (Equation A.8), we can set up the equation

for expected parameter change in the case of the majority and minority groups as follows:

∆bmajor = γ

∫ dmajor
ideal −∆

x=−∞
pmajor
2 (x)dx+ γ

∫ dmajor
ideal +∆

x=dmajor
ideal −∆

pmajor
2 (x)dx

− γ

∫ +∞

x=dmajor
ideal +∆

pmajor
1 (x)dx. (A.22)

∆bminor = γ

∫ dminor
ideal −(∆−δ)

x=−∞
pminor
2 (x)dx+ γ

∫ dminor
ideal +(∆−δ)

x=dminor
ideal −(∆−δ)

pminor
2 (x)dx

− γ

∫ +∞

x=dminor
ideal +(∆−δ)

pminor
1 (x)dx. (A.23)
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Under the assumption that the mixture models under consideration are symmetric Gaussian

mixture models,

∆bmajor = γ

∫ dmajor
ideal +∆

x=dmajor
ideal −∆

pmajor
2 (x)dx, (A.24)

∆bminor = γ

∫ dminor
ideal +(∆−δ)

x=dminor
ideal −(∆−δ)

pminor
2 (x)dx. (A.25)

If ∆+ |δ| is small enough,

∆bmajor ≈ 2γpmajor
2 (dmajor

ideal )∆, (A.26)

∆bminor ≈ 2γpminor
2 (dminor

ideal )(∆− δ). (A.27)

By establishing the same conditions on group class variances as Theorem 1, we know that

pminor
2 (dminor

ideal ) > pmajor
2 (dmajor

ideal ). We now identify conditions under which ∆bminor > ∆bmajor.

Case 1 - δ < 0: Under the same conditions as Theorem 1, (∆−δ) > ∆, and pminor
2 (dminor

ideal ) >

pmajor
2 (dmajor

ideal ). Therefore,

∆bminor > ∆bmajor. (A.28)

Case 2 - δ > 0:

∆bmajor ≈ 2γpmajor
2 (dmajor

ideal )∆, (A.29)

∆bminor ≈ 2γpminor
2 (dminor

ideal )(∆− δ). (A.30)

For ∆bminor > ∆bmajor,

pminor
2 (dminor

ideal )(∆− δ) > pmajor
2 (dmajor

ideal )∆. (A.31)
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Rearranging Equation A.31,

pmajor
2 (dmajor

ideal )

pminor
2 (dminor

ideal )
<

(
1− δ

∆

)
. (A.32)

Given the definitions of the majority and minority groups,

pmajor
2 (dmajor

ideal ) < pminor
2 (dminor

ideal ), (A.33)

Omajor < Ominor. (A.34)

Since all four of these terms depend only on the means and variances of the Gaussian

components, we can write,
Omajor

Ominor
=

pmajor
2 (dmajor

ideal )

pminor
2 (dminor

ideal )
f, (A.35)

where f is a positive scalar constant that depends only on the component means and vari-

ances. From Equations A.32 and A.35,

Omajor

Ominor
<

(
1− δ

∆

)
f. (A.36)

This proves the conditions in the theorem. Theorem 1 can now be used to show the existence

of the MIME effect in the presence of domain gap, for these conditions. ■

A Note on the Theorems: Theorems 1 and 2 are existence theorems. That is, they

show that there exist certain conditions under which the MIME effect can be observed.

The theorems make these arguments based on the ‘usefulness’ of points close to the ideal

hyperplane. The direct metric of correlation is the likelihood for a particular distribution to

sample at the ideal hyperplane. However, since this cannot be easily measured in practice,

we set up our proofs in terms of a correlated metric: the overlap.
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A.3 Proof for Theorem 3

This Theorem considers distributions with general prior distributions. Therefore, for the

majority group, let

pmajor′
2 (x) = πmajorpmajor

2 (x),

pmajor′
q (x) = (1− πmajor)pmajor

1 (x).
(A.37)

Similar definitions are made for the minority group as well. Then, assuming dK−1 = dmajor
ideal +

∆, ∆ > 0 (similar to Theorem 2), and δ = 0 (for now), and drawing from Equation A.8), we

can set up the equation for expected parameter change in the case of the majority group as

follows:

∆bmajor = γ

∫ dideal+∆

x=−∞
pmajor′
2 (x)dx− γ

∫ +∞

x=dideal+∆

pmajor′
1 (x)dx

= Tmajor(dideal +∆).

(A.38)

A similar expression holds true for the minority group. Then, if Tmajor(dideal + ∆) <

Tminor(dideal +∆), the MIME effect will hold true.

Similarly, if dK−1 = dmajor
ideal −∆, ∆ > 0,

∆bmajor = −γ
∫ dideal−∆

x=−∞
pmajor′
2 (x)dx+ γ

∫ +∞

x=dideal−∆

pmajor′
1 (x)dx

= −Tmajor(dideal −∆).

(A.39)

Then, if −Tmajor(dideal −∆) < −Tminor(dideal −∆), the MIME effect will hold true.

Combining the two expressions, for a sufficient existence condition, we get,

min
{
Tminor(dideal +∆),−Tminor(dideal −∆)

}
>

max
{
Tmajor(dideal +∆),−Tmajor(dideal −∆)

}
. (A.40)

This completes the proof. ■
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Note that the existence proof for Theorem 3 ignores the effect of domain gap δ, in the interest

of readability and brevity. A very similar existence proof can be established with domain

gap. We omit the derivation and provide the final condition below (under the constraints on

δ and ∆ as in Theorem 2, and using the same notation):

min
{
Tminor(dmajor

ideal +∆),−Tminor(dmajor
ideal −∆)

}
>

max
{
Tmajor(dmajor

ideal +∆),−Tmajor(dmajor
ideal −∆)

}
. (A.41)

A.4 MIME Existence Beyond 1D Settings

Consider x ∈ Rn. The perceptron decisions are based on the metric y = wTx + b, where

w ∈ Rn, and y, b ∈ R. Similar to Theorem 1, we consider the perceptron decision and update

rule. That is, for any training sample (xi, yi), the predicted label is given by,

ŷi =
sign(wTxi + b) + 3

2
. (A.42)

We can rewrite this in terms of a single decision hyperplane by defining w̃ = [wT b]T and

x̃ = [xT 1]T . For a small learning rate γ, the updated decision rule becomes,

ˆ̃yi =
sign(w̃T x̃i) + 3

2
. (A.43)

w̃←


w̃ + γx̃i, if ŷi ̸= yi and yi = 2

w̃ − γx̃i, if ŷi ̸= yi and yi = 1

. (A.44)

We now refer to the hyperplane w̃ as the decision hyperplane. Let hideal be the ideal decision

hyperplane. In this setting, any domain gap δ or error in real hyperplane estimation ∆

manifests as a direction/angle error in the hyperplane normal vector (since the bias term b

is subsumed in the hyperplane). The updates change the normal vector of the hyperplane

through a linear combination with the sample x̃i, scaled by the learning rate γ.
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Figure A.1: The MIME effect holds in a multidimensional setting as well. We

show the support for the two finite distributions. Weight vector updates arising out of

samples from regions R3, R4, R5 and R6 lead to an update with a large vertical (corrective)

component (favorable update). Updates arising out of regions R1 and R2 result in an overall

update in the horizontal direction (unfavorable update).

We now provide a qualitative description for the existence of the MIME effect, in terms of

the likelihood of a favorable update to w̃. We consider a simplified 2D case with symmetric

distributions and δ = 0. A finite support is assumed for the majority and minority groups,

for ease of understanding. Consider that the bias term b is known, and only the hyperplane

direction is to be refined. Again, we denote the hyperplane from our finite training set Dmajor
K−1

as hK−1. The error ∆ in this case is now the angular error between the normals for hideal

and hK−1. Figure A.1 indicates this setting. The learnt hyperplane w̃K−1 is shown as a

black solid line. The black dashed line represents the mirror image of the learnt hyperplane,

defined for aid in simplification. Recall that updates to the weight vector take place on

misclassification. On average, the updates due to samples in regions R1 for (y = 2) and R2

(for y = 1) lead to a net horizontal (leftward) weight update. This is an unfavorable update

that increases ∆. Therefore, the favorable updates on average are from regions R3 and R4

for y = 2, and R5 and R6 for y = 1. This is a net update with large vertical (upward) update.

This is a favorable update that decreases ∆. These regions are described based on the small

angular deviation ∆. Since the distributions have finite support along the direction parallel

to the ideal hyperplane (vertical direction in Figure A.1), the requirement again reduces
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to greater likelihood of sampling close to the ideal hyperplane (similar to Theorems 1 and

2), since ∆ is small. That is, distributions that sample close to the ideal hyperplane with

greater probability have a greater expected likelihood of a favorable update. Under similar

conditions as Theorem 1, MIME effect holds in this case.

The extension to include the bias term b is straightforward. We follow the setting in Equa-

tion A.43 and subsume the bias as part of the weights. In this case, ∆ includes the error

in both the hyperplane normal direction as well as the bias. Extensions to greater number

of dimensions can be done using the same arguments. Additionally, domain gap can also be

introduced. We omit explicit mathematical expressions in the interest of brevity, and since

our goal here is to establish existence.

A.5 Feature Space Analysis

Constructing the Projected Feature Histograms: Let f denote a feature vector, in

the penultimate layer of a classification neural network. For example, in the case of ResNet-

34 [201], f ∈ R512. Similarly, let w be the final layer weights. In the case of multiple final

layer hyperplanes, we choose any one of the hyperplanes (since for the two class classification

task, the two projected variables are correlated when trained against the cross entropy loss

for 2 classes). Then, we define x ∈ R as,

x = wT f . (A.45)

Classification decisions are made solely on the basis of the projected variable x. Therefore,

we analyze the histogram distributions for x. Practically, for each dataset, we use the best

performing (in terms of majority group performance) model trained using a minority training

fraction (β) of 0.5. This is chosen in order to obtain histograms of x for all four distributions

– the two task classes for both the majority and minority groups. The histograms are created

using the test set samples.
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Estimating the Overlap: The overlap is estimated from the histograms, using the fol-

lowing Python code snippet:

def histogram_intersection(h1, h2, bins):

#INPUTS:

#h1 , h2: normalized histograms

#bins: number of bins in the histograms (should be equal for the

two histograms)

#OUTPUTS:

#sm: overlap fraction

sm = 0

for i in range(bins):

sm += min(h1[i], h2[i])

return sm

Estimating the Domain Gap: We follow a two step process to estimate the domain gap

δ. First, the ideal decision hyperplanes for the majority and minority groups are estimated,

using Equation A.21. We fit a fifth order polynomial to the two histograms. The central

intersection point of the histograms (i.e the intersection point that lies between the means

of the two classes) is then the location of the ideal decision threshold. The following Python

code snippet describes this:

import numpy as np

def ideal_hyperplane(h1 , h2, z, ref=5):

#INPUTS:

#h1 , h2: the two histograms , of equal length and identical bins

#z: a list of the histogram bin centers

#ref: Search space for the intersection of the two histograms -

default is from -5 to 5

#OUTPUT:

#z_dec: Ideal decision threshold between the two histogram
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distributions

z_dash = np.polyfit(z, h1, 5)

f1 = np.poly1d(z_dash)

# calculate polynomial

z_dash = np.polyfit(z, f2, 5)

f2 = np.poly1d(z_dash)

new_z = np.linspace(-ref ,ref ,5000)

new_f1 = f1(new_z)

new_f2 = f2(new_z)

id_dec = np.argmin(np.abs(new_f1-new_f2))

z_dec = new_z[id_dec]

return z_dec

The domain gap is the absolute difference between two ideal decision thresholds, for each

of the two group classes. Figure 3 of the main paper may be referred to for a graphical

visualization.

Notes on the Estimated Measures: The latent feature space analysis is not perfect.

This is because the feature extraction part of the network is jointly learnt along with decision

hyperplane. Histograms are plotted on the 50% minority training ratio so as to enable a fair

domain gap and overlap comparison between the two group classes. Specifically, note that

we define task complexity in the main paper in terms of the minority only and majority only

train sets which deviates from the setting here. The estimates for overlap and domain gap

are therefore approximate correlated estimates and not exact measures.

Analysis of Feature Space Gaussian-like Behavior: We set up the Chi-Squared good-

ness of fit test on all 20 distributions under consideration (i.e. across 5 datasets and 4 dis-

tributions each per dataset). These statistics correspond to the distributions in Table 1 and

Figure 4 of the main paper. Python code for testing the hypotheses is given below. The

number of bins are chosen so as to ensure ≥ 5 samples per bin on average.
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from scipy.stats import chisquare

from scipy.stats import norm

from scipy import stats

import pandas as pd

def chi_square_stats(vals ,no_bins)

#INPUTS:

#vals: a list of samples whose Gaussianity is to be tested

#no_bins: number of bins (thumb rule: no_bins <len(vals)/5)

tot_vals = len(vals)

# mean and standard deviation of given data

mean = np.mean(vals)

std = np.std(vals)

interval = []

for i in range(1,no_bins+1):

val = stats.norm.ppf(i/no_bins , mean , std)

interval.append(val)

interval.insert(0, -np.inf)

lower = interval[:-1]

upper = interval[1:]

df = pd.DataFrame({'lower_limit ':lower , 'upper_limit ':upper})

sorted_vals = list(sorted(vals))

df['obs_freq '] = df.apply(lambda x:sum([i>x['lower_limit '] and i<=

x['upper_limit '] for i in

sorted_vals]), axis=1)

df['exp_freq '] = tot_vals/no_bins
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statistic = stats.chisquare(df['obs_freq '], df['exp_freq '])

p = 2 # number of parameters for 1D Gaussian

DOF = len(df['obs_freq ']) - p -1

thresh = stats.chi2.ppf(0.95, DOF)

return statistic , thresh

Table A.1 highlights the evaluated chi-square statistics, as well as related parameters. Note

that a lower value of the statistic is better, and the null hypothesis is not rejected when the

value of the statistic is lower than the critical value. We establish the null hypothesis at a 5%

level of significance for each distribution to be that the samples are drawn from a Gaussian

distribution. Distributions that are unable to reject the null hypothesis are indicated in bold.

It can be seen that a large majority of the distributions indicate that the projected latent

features follow a Gaussian-like distribution.

Table A.1: Chi-Squared goodness of fit measures for all distributions. Distribu-

tions with bolded values show the estimated statistics that are lower than the critical value,

indicating that the null hypothesis (Gaussian distribution) cannot be rejected.

Dataset No. of samples

per group per class

No. of Bins Critical Value Majority Group Minority Group

y = 1 y = 2 y = 1 y = 2

DS-1 [167] 379 15 21.03 13.65 28.69 10.25 15.39

DS-2 [168] 126 15 21.03 7.81 12.10 11.62 9.24

DS-4 [169] 126 15 21.03 10.43 17.57 17.10 4.48

DS-5 [3] 159 15 21.03 11.09 24.05 5.74 14.40

DS-6 [4, 5] 43 5 5.99 25.48 5.02 5.72 4.79
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A.6 Implementation Details

Analysis measures: For each task, we estimate the test accuracy aip(β) as a function of

minority group fraction in the train set β ∈ [0, 1], for a trial i ∈ {1, ..., N}, for a group class g

(e.g. dark skin tones). N is the total number of trials. Practically, we evaluate performance

for a finite set of β values, represented by the set B = {0, 0.1, 0.2, . . . , 1.0}. We now define

the following measures.

Average accuracy : For a given minority training ratio β0, and for a given group class g, we

define the average accuracy,

āg(β0) =
1

N

N∑
i=1

aig(β0). (A.46)

Error bounds : We also evaluate the trend variation among aig(β) for various i. That is, we

want to evaluate if across all the trials (for a particular task-dataset combination), the relative

trend (of majority group performance gain) holds true. One candidate measure for this is

stdi(a
i
g(β)) for each β, where stdi(·) is the standard deviation operator, over i. However, this

measure will include average changes in accuracy for all splits, for a particular trial (arising

out of unrelated effects such as different train or test set samples). This is unnecessary in

our case. Therefore, we define our error measure ζ̂(β) as the β-mean subtracted standard

deviation. That is,

ζ̂(β) = stdi(a
i
g(β)− āig),

āig =
1

|B|
∑
β∈B

aig(β),
(A.47)

where | · | is the cardinality operator representing the size of a set. In our graphs, we plot

the average accuracy āg(β) as well as the error bounds, from āg(β) − ζ̂(β) to āg(β) + ζ̂(β),

∀β ∈ B.
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Network Architectures Used: For all the vision-related experiments, we use the ResNet-

34 architecture [201]. We only modify the output layer of the network so as to match the

number of task classes (9 for Dataset 3, and 2 for all other tasks). For the Adult (Census)

Dataset [3], we use a fully connected network with sigmoid outputs. The PyTorch [156]

implementation for the model is included below.

#Model

def act(x):

return F.relu(x)

class Network(nn.Module):

def __init__(self ,):

super().__init__ ()

self.fc1 = nn.Linear(101 , 50)

self.fc2 = nn.Linear(50, 50)

self.fc3 = nn.Linear(50, 50)

self.fcLast = nn.Linear(50,2)

def forward(self ,x):

x = act(self.fc1(x))

# x = self.b1(x)

x = act(self.fc2(x))

x = act(self.fc3(x))

x = torch.sigmoid(self.fcLast(x))

return x

General Experiment Details: All experiments were carried out using PyTorch [156].

Table A.2 highlights the training parameters used for each dataset. We use different pa-

rameters for each of the datasets. These are experimentally chosen to maximize accuracy.

All the models are trained using the AdamW optimizer [278] and the cross entropy loss.
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Table A.2: Training configuration and parameters for all datasets and experi-

ments. Parameters for each dataset are chosen so as to maximize performance.

Dataset DS-1 [167] DS-2 [168] DS-3 [5] DS-4 [169] DS-5 [3] DS-6 [4, 5]

(Task) (Gender) (Species) (Age) (Diagnosis) (Income) (Gender)

Group class Race Skin tone Gender Gender Gender Species

Train set size 10900 1500 7700 1500 2600 750

Test set size (per group) 760 250 970 250 300 90

No. of trials 5 5 5 7 5 5

No. of epochs 35 60 65 40 250 20

Learning rate 0.0005 0.0006 0.0006 0.0006 0.0005 0.0005

Weight Decay 0.08 0.05 0.05 0.05 0.08 0.08

Input Shape/Config. 3x100x100 3x256x256 3x100x100 3x256x256 101x1 3x100x100

The train and test set sizes vary slightly across trials, due to different data splits. However,

the train set size remains the same for all minority training ratios of a particular trial. A

validation set is held out but given the small sample size of several datasets, we measure

trends based on best test performance. This is to minimize the effect of sample specific per-

formance gap in small datasets. Averaging of trends over multiple trials, and hence multiple

train-test splits ensures that the trends do not overfit to a particular configuration. Each

trial is run using a unique random seed. Table A.3 highlights the random seeds used for our

experiments, which were randomly chosen. Input images are resized to the chosen input size

for each dataset. For the Adult dataset [3], we use a one-hot encoding scheme for the input.

The group class information is dropped from the input before passing to the network. For

all the datasets, across all minority training ratios for a particular trial, we use a fixed model

initialization to ensure that the changes in accuracy are completely attributable to the train

data configuration.

Dataset Specific Information: To perform experiments on the Pet Images Dataset,

we manually annotate light and dark fur cats and dogs from the larger dataset used in [168].

For the age classification task on the UTKFace Dataset [5], we pre-process the age labels
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Table A.3: Random seeds used for the trials. Seeds were chosen at random for trials to

generate average trends and error bounds.

Dataset DS-1 [167] DS-2 [168] DS-3 [5] DS-4 [169] DS-5 [3] DS-6 [4, 5]

(Task) (Gender) (Species) (Age) (Diagnosis) (Income) (Gender)

Random

Seeds

0, 1, 3,

5, 7

21, 42, 35,

28, 31

0, 55, 2,

15, 6

33, 42, 24, 36

54, 21, 28

13, 15, 17,

19, 21

0, 1, 3,

5, 9

Pet Images Dataset Adult (Census Income) Dataset

A
cc

ur
ac

y

A
cc

ur
ac

y

Minority class fraction in train set Minority class fraction in train set

Majority class accuracy curveMajority - only threshold Error bounds

FairFace Dataset Adult (Census Income) Dataset

A
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y

A
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Minority class fraction in train set Minority class fraction in train set

Best minority class accuracy curve Best average accuracy
Minority class error boundsAverage error bounds

(a) (b)

Figure A.2: The MIME effect is complementary to data debiasing methods and

consistent with research aimed at equal representation (ER) datasets. (a) Training

configurations using data debiasing methods [15] show the MIME effect. (b) While ER

datasets are not optimal for the MIME effect (Figure 5 and 6, main paper), optimal overall

performance is observed close to ER.

to match the annotation format for the FairFace dataset [167]. For the large domain gap

gender classification task using the UTKFace and Chicken Images Datasets [5, 4], we

perform gender classification over human and chicken groups. Therefore, this experiment is

over a new, composite dataset.
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A.7 Additional Secondary Analysis of MIME

MIME effect with debiasing methods: We now analyze the interaction of the MIME

effect with existing debiasing methods. Specifically, while applying hard-sample mining [15]

(as an exemplary case) across the task classes (y = 1, 2), we sweep across various minority

training ratios. Figure A.2(a) shows results on two datasets (implementation details may

be found in the following section). The MIME effect continues to be observed. Debiasing

methods act on the task classes (y = 1, 2) in an effort to improve performance while MIME

acts on majority and minority groups, regardless of the task class. Therefore, MIME is

complementary to debiasing methods, rather than a competitor. In our experiments, hard-

sample mining does not lead to significant performance gains since the task classes are

balanced by experimental design. In other scenarios where this might not be the case,

MIME and hard sample mining might together improve performance.

Reconciling MIME with existing equal representation (ER) datasets: In this paper,

we focus only on majority group performance, for which ER training datasets are not optimal

in general. In contrast, existing efforts [160, 58, 161, 162, 163, 164, 165, 166, 143] focus on ER

datasets to maximize overall (majority+minority) performance. This need not be optimal

but is a good thumb rule. This is because while majority group performance eventually

reduces with minority training ratio, minority group performance increases (Figure A.2(b)

highlights this).

A.8 Hard Mining Baseline Implementation

We implement a version of the method proposed in [15]. From a batch of 30 samples, 12

samples (6 of each task class) are retained and used in the training step. These are the

samples with least confidence, with respect to ground truth targets. Code is shown below.

Trial random seeds are the same as shown in Table A.3.
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class compute_crossentropyloss_hardMine:

"""

y0 is the vector with shape (batch_size ,C)

x shape is the same (batch_size), whose entries are integers from 0 to

C-1

In our case , C=2.

"""

def __init__(self , ignore_index=-100) -> None:

self.ignore_index=ignore_index

def __call__(self , y0 , x):

loss = 0.

eps = 1e-5

K = 6

n_batch , n_class = y0.shape

pos_score = torch.ones(n_batch).to(device)

neg_score = torch.ones(n_batch).to(device)

ix_pos = 0

ix_neg = 0

for y1, x1 in zip(y0, x):

class_index = int(x1.item())

score = torch.exp(y1[class_index])/(torch.exp(y1).sum()+eps)

if class_index == 0:

neg_score[ix_neg] = score

ix_neg+=1

else:

pos_score[ix_neg] = score

ix_pos+=1

pos_score ,_ = torch.sort(pos_score ,dim=0)

neg_score ,_ = torch.sort(neg_score ,dim=0)

pos_els = np.minimum(K,ix_pos)

neg_els = np.minimum(K,ix_neg)
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for ix in np.arange(pos_els):

loss = loss -torch.log(pos_score[ix])

for ix in np.arange(neg_els):

loss = loss -torch.log(neg_score[ix])

loss = loss/(pos_els+neg_els)

torch.cuda.empty_cache ()

return loss

A.9 Our Code

Our code may be accessed through the project webpage at https://visual.ee.ucla.edu/

mime.htm/. We provide code and guidance to perform experiments on all six datasets. Due

to specific requirements for each dataset, we provide six Jupyter notebooks. We also include

details on setting up file structures and link to datasets wherever necessary. Please refer to

the README file for further details.

A.10 Negative Impacts and Mitigation

This paper focuses on highlighting the existence of the MIME effect, and not optimal con-

figurations for performance gain. Nevertheless, potential negative outcomes may occur if

the results are misinterpreted as guidance on dataset construction with respect to certain

stakeholder groups. The rigor of our theoretical results emphasizes this nuance to computer

scientists, and future work in diverse venues can extend the notion of minority inclusion for

majority group performance gains to broader audiences.
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APPENDIX B

Supplemental Content: Using Neural Implicit Video

Representations to Enable Low-SNR rPPG

This supplement is organized as follows:

1. Section 1 contains mathematical derivations for our implicit decomposition formula-

tion.

2. Section 2 contains the architectural details and training configurations.

3. Section 3 verifies the effectiveness of the A− B decomposition.

4. Section 4 contains runtime details.

5. Section 5 elaborates on the choice of our parity metric for qualifying the performance

gaps due to out-of-distribution (OOD) evaluation.

6. Section 6 discusses the ablation experiments for the implicit representation architec-

ture.

7. Section 7 discusses the out of distribution dataset and detailed scene-wise performance

analysis.

8. Section 8 shows additional qualitative results.

9. Section 9 shows additional baselines.

10. Section 10 discusses potential future directions.
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Figure B.1: Light transport analysis provides insights on plethysmograph signal

quality. The reflected light arriving at the camera sensor consists of two components: (i) the

specular component, shown in white, does not contain PPG information since it arises out

of surface reflections, and (ii) diffuse reflection, shown in red, arising out of subsurface

scattering, contains PPG information.

B.1 Mathematical Formulation

B.1.1 Light transport of Plethysmography

We begin with a mathematical description of light transport for rPPG estimation. This will

set up our theoretical exposition in subsequent sections. For a more detailed treatment of

modeling light transport for plethysmography and under the skin imaging, we direct readers

to [27] and [279]. For a description of the theoretical foundations of optical bias, we direct

readers to [8]. Fundamentally the rPPG signal is subtle, making its estimation difficult.

While contemporary methods [30, 31, 9] circumvent this through the use of deep networks,

they fare poorly on OOD samples. Hence, this necessitates a generalizable method capable

of extracting the rPPG without relying on domain-specific features that tend to overfit. This

motivates our functional decomposition.
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Figure B.1 highlights the light transport of remote plethysmography. Given spatial coor-

dinates x ∈ [−0.5, 0.5]2, and temporal coordinate t ∈ [−0.5, 0.5], the RGB color field C (x, t)

is given by,

C (x, t) = I (x, t) · (vs (x, t) + vd (x, t)) + vn (x, t) , (B.1)

where I (x, t) encompasses the illuminatory signal modulated by 2 reflective components,

vs (·, ·) and vd (·, ·), representing the specular and diffuse components, and vn (·, ·) is the

measurement noise.

These specular reflections are not constant throughout space and time and are governed

by the geometry of the human body. Since this component is a scaled reflection of the light

source from the skin surface and does not contain major plethysmograph information, it acts

as an interference signal.

The diffuse component arising from subsurface scattering contains plethysmograph infor-

mation. For our purposes, it can be resolved into a steady-state skin color vector d0 (x, t) ·ud

(where ud is the unit vector along the skin color direction), and a time-varying pulsatile com-

ponent p(x, t) · up (where up is the unit colorspace ‘direction’ for the plethysmograph color

changes and p(t) is a unit-power signal). That is,

vd (x, t) = d0 (x, t) · ud + p(x, t) · up. (B.2)

B.1.2 A-B Decomposition and Optimality

We propose decomposing the color signal into a signal amplitude component, pm(x, t), and a

temporal plethysmograph signal pi(t), which forms our desired signal. However, the relation

between p(·), pm(·, ·), pi(·) is non-linear in nature. Spatial variations manifest in the temporal

component pi(·) as a result of the pulse wave taking finite time to propagate, while motions

may induce pixel shifts in the spatial component pm(·, ·). These individual effects can be

expressed through a non-linear function,

p(x, t) = Z(pm, pi,x, t). (B.3)
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However, this function is intractable, making closed form analysis difficult. We therefore

simplify the model to exclude motion effects (that is, pm(·) is only a function of x). That

being said, empirically, we find our method to be capable of handling natural motion (as

discussed later). We can now rewrite the pulsatile signal as

p(x, t) ≈ pm(x) · pi(t). (B.4)

Furthermore, the scope of our work is constrained to assume constant phase across the

entire face, similar to prior work [27, 25, 29, 26], thereby ignoring the effect of pulse transit

time. This is a minor assumption, since transit time across the scale of a face is small.

The RGB color field for the video can be written as follows:

C (x, t) = I · (x, t)(vs(x, t) + d0 (x, t) · ud + pm(x) · pi(t) · up) + vn (x, t) . (B.5)

This can be succinctly decomposed into two parts, such that,

C (x, t) = A(x, t) + B(x, t) + vn (x, t) , (B.6)

where,

A(x, t) = I(x, t) · vs (x, t) + d0 (x, t) · ud,

B(x, t) = I(x, t) · pm(x) · pi(t) · up.
(B.7)

A(x, t), the appearance component (or A-function), encompasses the base appearance of

the face, as well as texture and other details. B(x, t), the blood component (or B-function),

contains the spatio-temporally varying color changes arising out of blood flow (plethysmog-

raphy). We will refer to this decomposition as the A− B decomposition.

From Equation B.5, a Signal to Interference & Noise Ratio (SINR) for C (x, t) can be

given by,

SINRC (x, t) =
pm(x)

2

|vs (x, t) |2+d0(x, t)2 + |vn (x, t) |2/I(x, t)2
. (B.8)

176



This leads us to the following Theorem.

Theorem 1: The A−B decomposition results in a B-function with a Signal to Interference

& Noise Ratio SINRB(x, t), such that,

SINRB(x, t) ≥ SINRC(x, t). (B.9)

That is, the A− B decomposition leads to an effective SINR gain.

Proof: Assuming that ideal A−B decomposition adds no additional noise to the estimate,

SINRB (x, t) ≥
pm(x)

2

|vn (x, t) |2/I(x, t)2
,

≥ pm(x)
2

|vs (x, t) |2+d0(x, t)2 + |vn (x, t) |2/I(x, t)2
,

= SINRC (x, t) .

(B.10)

Therefore,

SINRB(x, t) ≥ SINRC(x, t). (B.11)

This completes the proof. ■

Note that Theorem 1 is an existence proof. That is, it describes the existence of SINR

benefits as a result of ideal decomposition, thereby motivating its necessity in our real ap-

plications. Additionally, Theorem 1 has practical significance: to the best of our knowledge,

prior state-of-the art methods for rPPG, such as [30, 31, 137, 9, 280], operate on undecom-

posed, raw RGB video frames. Through an A − B decomposition, the ceiling for potential

SINR gains is raised, making it an attractive avenue for exploration.

Corollary 1: Given an A − B decomposed video field C (x, t), the Maximal Ratio Com-

bining (MRC)-optimal estimate for the plethysmograph signal pi(t) is given by,

p̂∗(t) =

∫
x∈Ω

SINRB(x, t)B(x, t)dx, (B.12)
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where Ω = [−0.5, 0.5]2, the domain of x as previously defined.

This is the notion of near-optimal plethysmography that we will aim to achieve in this

work. Note that the two necessary components to achieve this, namely SINRB(x, t) and

B (x, t), are extremely difficult to evaluate analytically, due to dependence on multiple fac-

tors, and the extremely small signal amplitudes making it susceptible to noise.

B.1.3 Functional Decomposition

Consider two functions, Â(x, t;ΘA) and B̂(x, t;ΘB), parameterized by ΘA and ΘB, that

aim to represent A(x, t) and B(x, t) respectively. R [·] is a range-space operator that returns

the set of all possible functions that may be represented by a parameterized function. To

perform an A-B decomposition, we wish to find parameterized functions that satisfy the

following requirements under ideal conditions:

A(x, t) ∈ R
[
Â(x, t;ΘA)

]
,

B(x, t) ∈ R
[
B̂(x, t;ΘB)

]
,

B(x, t) /∈ R
[
Â(x, t;ΘA)

]
.

(B.13)

That is, Â(x, t;ΘA) is able to represent the A-function but not the B-function. If we

are able to find functions that satisfy the constraints in Equation B.13, we can achieve A-B

decomposition by sequentially learning Â(x, t;ΘA) and B̂(x, t;ΘB).

For a real-world application, both the A and the B-functions cannot be learnt exactly as a

result of noise. In such a case, these parametric functions learn representations that minimize

some component-dependent metric distances, represented as dA(·,A(x, t)) and dB(·,B(x, t)).

That is,

dA(Â(x, t;Θ∗
A),A(x, t)) ≤ dA(Â(x, t;ΘA),A(x, t)), ∀ΘA, (B.14)
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dB(B̂(x, t;Θ∗
B),B(x, t)) ≤ dB(B̂(x, t;ΘB),B(x, t)), ∀ΘB, (B.15)

where Θ∗
A and Θ∗

B are optimal parameters for the functional representations. These distances

can be used to rewrite the constraints in Equation B.13, as follows:

dA(Â(x, t;Θ∗
A),A(x, t)) ≤ ϵA,

dB(B̂(x, t;Θ∗
B),B(x, t)) ≤ ϵB,

dB(Â(x, t;Θ∗
A),B(x, t)) ≥ ϵB.

(B.16)

In our case, we can choose distance measures based on the requirements for the A and

B-functions. One choice is,

dA(F ,A(x, t)) = ||F − A(x, t)||2, ∀F , (B.17)

such that the appearance metric distance rewards pixel wise closeness. Similarly,

dB(F ,B(x, t)) = |H(F)−H(B(x, t))|, ∀ fF , (B.18)

where H(·) is a heart rate estimator function, enforcing similarity in estimated heart rates.

This choice of functions allows us to evaluate and identify potential function representations

for the purpose of A-B decomposition.

Empirical Claim 1 (based on observations): Phase-based motion models (models with phase

encoded input embeddings) cannot represent plethysmograph signals accurately, in terms of

the error metric defined in Equation B.18.

Justification: Figure 3, main paper highlights the performance of a phase-based INR on

the task of fitting to a face video. While it is able reconstruct the video frame with high

fidelity, the heart rate estimation error (using a pretrained PhysNet [31]) is high (that is,

dA(·,A(x, t)) is low while dB(·,B(x, t)) is high). The model inductive biases prevent it from

representing plethysmograph signals efficiently.
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This could be viewed as a limitation of phase-based INRs. However, we use it to our ad-

vantage: phase-based models can be an effective estimator for the A-function, in accordance

with Equations B.13 and B.16.

We next look at sinusoidal representation networks (SRNs), such as [6, 205, 206].

Empirical Claim 2: Sinusoidal Representation Networks are effective A and B-function

approximators.

Justification: Figure 3, main paper again highlights the performance of an SRN for our

task. In this case, while the appearance and semantic information remain accurately retained,

the heart rate error is also very low. That is, both dA(·,A(x, t)) and dB(·,B(x, t)) are low.

SRNs are therefore, effective A and B-function estimators. However, being able to rep-

resent both A and B makes SRNs incapable of A-B decomposition. Fortunately, this pair

exactly satisfy the constraints in Equation B.16. Therefore,

Empirical Claim 3: A phase-based model can serve as Â(x, t;Θ∗
A), while an SRN can

serve as B̂(x, t;Θ∗
B), when trained sequentially.

Justification: When sequentially trained, the phase-based model will represent A(x, t) while

ignoring B(x, t). When trained on the residual of C(x, t) and A(x, t), the SRN will represent

only B(x, t).

180



B.2 Architecture Details and Training Configuration

B.2.1 Cascaded Appearance

Our codebase builds on top of the resources from [281]. The overall cascaded appearance

model includes 2 encoding layers and 2 network layers. We use one of each to map spatio-

temporal coordinates to the spatial offsets and the other to map the spatial coordinates with

the spatial offsets to the color field. Both the MRHE encoding layers are kept identical with

the hyperparameters specified in Table B.1.

Table B.1: Hyperparameters for the multi-resolution hash-grid encodings.

Hyperparameter Symbol Value

Number of levels L 8

Hash table size T 24

Number of features per entry F 2

Base resolution Nmin 16

Growth factor between 2 levels b 1.5

For the network, we used a simple multilayer perceptron with 2 hidden layers, where each

hidden layer consists of 64 neurons accompanied by a ReLU activation function [282]. The

final layer’s activation function for the first stage (coordinate to offset module) is chosen to

be a tanh(·) function scaled by a factor of 0.5, while the final layer of the offset to color field

module is paired with no activation function. For a given video, the cascaded appearance

model Â is trained using a simple Mean Squared Error loss function on the original video.

B.2.2 Residual Plethysmograph

Echoing the architectural nuances of the Cascaded Appearance’s encoding layer, we deploy

an identical MRHE encoding layer for the Residual Plethysmograph model. These encodings

are fed through a multilayer perceptron with 2 hidden layers, each consisting of 64 neurons
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with sinusoidal activations. The output layer for the plethysmograph model was implemented

with no activation functions. Again, B̂ is also trained using a Mean Squared Error loss only.

B.2.3 Training Configurations for the Implicit Representation

We run our experiments with a batch size of 213. A lower batch size increases the number

of descent steps per epoch, resulting in faster convergence, albeit at the expense of a noisier

descent. Our chosen batch size is sufficient to ensure faster convergence without hampering

the smoothness of the descent.

The cascaded appearance model is trained with the Adam optimizer[81] with a learning

rate of 10−2. Adhering to the optimizer settings from [216], we choose ϵ = 10−15, β1 =

0.9, β2 = 0.99. Similarly, we use the Adam optimizer with a learning rate of 10−2 to train

the residual plethysmograph model. Additionally, we include a l2 regularization factor of 10−6

to the network in the residual plethysmograph model (and not the MRHE). The optimizer

configurations are otherwise kept identical. We use the mean squared error as our metric for

training the cascaded appearance and the residual plethysmograph models.

We train the Cascaded Appearance for a total of 10 epochs with the above-stated con-

figuration. Once trained, we freeze this model and instantiate the Residual Plethysmo-

graph model with the previously stated configurations. The Residual Plethysmograph is

now trained for 5 epochs such that the sum of the outputs of the Cascaded Appearance

model and the Residual Plethysmograph model together reconstruct the video. We use the

mean squared error to supervise all training procedures.

B.2.4 Refinement Network

Our refinement network is deployed on top of the concatenated (channel-wise) raw RGB and

queried residual frames. This network consists of two blocks, namely the 2-D SINR estimator

and the 1-D plethysmograph regressor. The spatial attention module is not trained directly,
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but rather indirectly through the plethysmograph regressor to maximize the signal strength.

Hence the generated masks are known as neural signal strength masks. The hyperparameters

for the refinement network have elaborated the architecture in Table B.2.

Table B.2: Hyperparameters for the refinement network.

Conv Layer

Module Kernel Padding Out Channels Batch Norm Activation Max Pooling

Spatial Signal Attention

[1,5,5] [0,2,2] 16 ✓ ReLU -

[3,3,3] [1,1,1] 32 ✓ ReLU -

[3,3,3] [1,1,1] 64 ✓ ReLU Temporal (factor = 2)

[3,3,3] [1,1,1] 64 ✓ ReLU Temporal (global adaptive)

[1,1,1] [0,0,0] 1 - Sigmoid -

We multiply the output of the Spatial Signal Attention module with the input 6-channel video tensor and average it spatially

The resultant time-series tensor is normalized with respect to mean and standard deviation

1-D Pleth Regressor

9 4 64 ✓ ReLU -

9 4 128 ✓ ReLU -

9 4 128 ✓ ReLU -

9 4 128 ✓ ReLU -

9 4 128 ✓ ReLU -

9 4 128 ✓ ReLU -

9 4 64 ✓ ReLU -

9 4 16 ✓ ReLU -

1 0 1 ✓ - -

In terms of training parameters, the model is trained for 2 epochs, using an Adam opti-

mizer with lr = 10−4 and weight-decay of 10−6. The refinement network is supervised with a

squared negative Pearson loss similar to [31, 8]. Additionally, we use an SNR Loss between

the estimated plethysmograph waveform ŷ and the ground truth waveform y. These losses

are carefully chosen to motivate better signal reconstruction by maximizing the signal-to-

label correlation and SNR. To improve the consistency and fidelity of the learned neural

signal strength masks, we also apply a total variation regularization on these masks. The

three loss functions are weighted such that the Pearson correlation loss is weighted by a

factor of 3, the SNR Loss by a factor of 1 and the TV loss by a factor of 5. Note that the
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SNR loss term is in the decibels scale. These loss functions are mathematically delineated

as follows:

LP (y, ŷ) =

[
1− 1√

a1 × a2

(
N

N∑
i=1

yiŷi −
N∑
i=1

yi

N∑
i=1

ŷi

)]2
, (B.19)

a1 =

N

N∑
i=1

y2
i −

(
N∑
i=1

yi

)2
 (B.20)

a2 =

N

N∑
i=1

(ŷi)
2 −

(
N∑
i=1

ŷi

)2
 , (B.21)

LSNR(y, ŷ) =

f0+w∫
f0−w

|Ŷ(f)|2 df

f0−w∫
−∞
|Ŷ(f)|2 df +

∞∫
f0+w

|Ŷ(f)|2 df
, (B.22)

f0 = argmax
f

Y(f), (B.23)

LTV

(
Γ̂(x)

)
=
∣∣∣∣∣∣∇Γ̂(x)∣∣∣∣∣∣2

2
, (B.24)

Ltotal(y, ŷ) =LP (y, ŷ) + λSNRLSNR(y, ŷ) + λTVLTV (Γ̂(x)). (B.25)

where N is the length of y and ŷ. Furthermore, Y(f) and Ŷ(f) are the respective Fourier

transforms of y and ŷ and w is the chosen window size.

B.3 Physical Significance of the A & B-functions

B.3.1 A-function

In the context of rPPG, A-component the interference that contains little to no informa-

tion of the plethysmograph. However, in a more general case, this component retains all

appearance-related information. We corroborate our claim with the help of the POS [27]

and CHROM [26] algorithm.

Given that the residual signal is theorized to have (almost) no appearance-based infor-
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mation, it can prove to be detrimental to these algorithmic methods. This is in-line with our

findings in Table B.3. Contrarily, the A-component is postulated to have the appearance-

related information. Specifically, for rPPG, the appearance information is encoded in the

instantaneous relative values between the color channels. Hence, we can “add” the appear-

ance information back by adding the spatial average of A-component to the rPPG signal (i.e.,

the spatial average of the B-component). Further, given that appearance-based information

for rPPG only required relative values, we can scale the spatial average of the appearance

information to suppress the interference that originally decomposed from the rPPG signal,

i.e., the B-component. In our experiments, we scale the spatial average of the appearance

branch by a factor of 0.1 while keeping the residual estimate at its normal strength. Table B.3

shows that the now altered POS and CHROM variants are able to capture plethysmographic

information, evidenced by the remarkable increase in performance. Hence, through this anal-

ysis, we verify that the Cascaded Appearance, i.e., the A-component, does indeed contain

appearance-based information.

While the decomposed residual signal is pivotal for rPPG estimation, it would not have

much of an impact on other downstream computer vision tasks due to its low signal strength.

Hence, while removing this information from decomposition can potentially enhance the

appearance information, we believe that the change in signal quality in the purview of these

popular downstream algorithms would not be significant.

B.3.2 B-function

We now analyze the benefit of the B-component. Figure B.2 shows two participants: with a

party mask and with a beard. We plot the average pixel value in the regions corresponding

to red and blue boxes. The blue boxes (skin region, with high sig. strength) show a strong

periodic rPPG signal, while the red boxes (occluded/beard region, low sig. strength) show

noise. Therefore, the B-signal has significant spatial signal strength information and improves

signal strength map estimation.
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Table B.3: Experiments to show the effectiveness of the implicit decomposition

to separate the appearance from the plethysmograph. We perform an algorithmic

correction to restore a small amount of the appearance features back to the residual output to

test its effectiveness on prior art. We use a scaling factor of 0.1 for the appearance network’s

output in analysis. We use our method with the neural signal strength masks trained

on [8] for this analysis.

Method Algorithm MAE ↓ MAPE ↓ RMSE ↓ r ↑

Ours with only the residual output
POS 9.14 11.36% 12.30 0.62

CHROM 11.67 15.65% 15.50 0.48

Ours with appearance correction
POS 1.4 1.70% 4.36 0.95

CHROM 1.80 2.25% 5.23 0.93

B.3.3 Optimal Plethysmography and Uncertainty Proofs

We now provide mathematical detail for the argument put forth in Section 3.1 of the main

paper. Assuming that the signal of interest is the plethysmography signal, y(t) (note that

we denote the signal as y for the purpose of this derivation and not p to avoid confusion)

and that we have a sequence of estimates of the plethysmography signal, {B(xi, t)}Ni=1, we

can formulate the posterior distribution as:

p(y(t)|B(x1, t),B(x2, t), ...,B(xN , t) ∝ p(y(t))
N∏
i=1

p(B(xi, t)|y(t)). (B.26)

Here, we assume that the prior and each likelihood term are Gaussian:

y(t) ∼ N (0, σ2
o) B(xi, t)|y(t) ∼ N (y(t), σ2

i ). (B.27)

The variance of likelihood is then inversely proportional to the signal and interference noise

ratio, σ2
i = 1

SINRB(xi,t)
. Due to the Gaussian assumptions, we can rewrite the posterior as:
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p(y(t)|B(x1, t), ...) ∝ exp

(
− 1

2σ2
o

y(t)2
) N∏

i=1

exp

(
− 1

2σ2
i

(B(xi, t)− y(t))2
)

∝ exp

(
− 1

2σ2
o

y(t)2 −
N∑
i=1

1

2σ2
i

(B(xi, t)
2 − 2B(xi, t)y(t) + y(t)2))

)

∝ exp

(
−1
2

[(
1

σ2
o

+
N∑
i=1

1

σ2
i

)
y(t)2 − 2

(
N∑
i=1

B(xi, t))

σ2
i

)
y(t) + constant

])

∝ exp

(
−(y(t)− AB)2

2B

)
A =

N∑
i=1

B(xi, t))

σ2
i

B =
1

1
σ2
o
+
∑N

i=1
1
σ2
i

. (B.28)

Therefore, the posterior is also Gaussian:

y(t)|B(x1, t),B(x2, t), ...,B(xN , t) ∼ N (AB,B) (B.29)

The posterior mean can be written as:

µy(t) =

∑N
i=1

B(xi,t)

σ2
i

1
σ2
o
+
∑N

i=1
1
σ2
i

=

∑N
i=1 SINRB(xi, t)B(xi, t)
1
σ2
o
+
∑N

i=1 SINRB(xi, t)
. (B.30)

Under the assumption that the prior’s variance is large compared to the sum of the SINRs

that are extracted, we can then directly relate the mean to Eq. (B.12):

µy(t) ≈
∑N

i=1 SINRB(xi, t)B(xi, t)∑N
i=1 SINRB(xi, t)

∝
N∑
i=1

SINRB(xi, t)B(xi, t). (B.31)

Additionally, the posterior variance is:

σ2
y(t) ≈

1∑N
i=1

1
σ2
i

=
1∑N

i=1 SINRB(xi, t)
. (B.32)

B.4 Robustness to Random Initializations

We conducted an experiment with 4 videos from the OOD dataset. The A−B decomposition

is run on these videos 10 times with random initializations, giving us 10 test datasets of 4
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PPG visible PPG visibleNo PPG visible No PPG visible

Frame index Frame index Frame index Frame index

Figure B.2: The B-function contains information relevant to the estimation of the

signal strength map. Skin regions show PPG signal (albeit noisy) while occluded regions

show only noise.

videos each. On average, across videos, the average heart rate (HR) error standard deviation

across the 10 videos is 2.92 beats per minute. We also look at a second metric: the standard

deviation of overall heart rate error across these 10 datasets, which is 1.29 beats per minute.

One can expect these numbers to be inflated due to the small dataset used. Even so, we find

that our decomposition is sufficiently robust.

B.5 Run-time and GPU Compute

From [8], we find that the typical time taken for deep learning architectures on their provided

dataset is≈ 800millisecs, not including the time spent on preprocessing (cropping) the video

frames. [280] have been able to decrease further the overall time taken, achieving a runtime

of ≈ 40 milli secs.

Our method, however, being an implicit representation network, would need to be re-

trained on each sample. Our framework, and hence our timing analysis, consists of two parts

- the cascaded appearance model and the residual plethysmograph model. The cascaded

appearance model takes an average time of 8.05 secs(±0.1 secs) per epoch. Having been
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trained on 10 epochs for our experiments, the total training time for the cascaded appearance

model is 80.45 secs. The training of the residual plethysmograph model, on the other hand,

takes 9.17 secs(±0.055 secs) per epoch. With the model having been trained for 5 epochs,

it takes a total of 45.83 secs to train the residual plethysmograph model. In summary, the

total training time of our entire framework is 126.28 secs, i.e., a little over 2 mins for a

10-second video sample of size 128× 3 sampled at 30 frames per second.

As part of our preliminary analysis, we found that Siren [6] takes ≈ 20 mins to train on a

2 sec video clip. Extrapolating these values, it would take a total of 100 mins to evaluate a

10 secs video clip. Therefore, despite our slow runtime compared to contemporary methods,

we still achieve an acceleration of ≈ 50× over other implicit methods.

By design, both models are run sequentially. For all our experiments, we use workstations

with RTX 3090 GPUs and an Intel i9 CPU. From our analysis, we found that data loading

is the most computationally expensive operation. Hence, we pre-load the whole video onto

the GPU memory and sample the indices within our code. On our systems, we found this to

provide a speed-up of 5× when compared to individually loading each batch onto memory.

On average, our net memory usage is 2.86 GB while training the appearance model and

2.73 GB while training the residual model. From our observations, these numbers are not

significantly high enough to limit the model’s deployment since most modern GPUs allow

for much higher memory usage.

B.6 Choice of the Parity Metric (r-consistency)

Unlike prior methods [8], we cannot use the difference in performance as a parity metric

for OOD evaluation. Difference-based metrics are incomplete. In that, we note that these

metrics only take into account the absolute values. However, these values can be easily

skewed. Consider an example with 2 underperforming values. Their difference would be

small, however, this result would be an inaccurate representation as the values themselves
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are sub-optimal. Hence, there is a need to identify a metric that can accurately represent

the network’s performance on the in distribution and OOD samples.

Taking inspiration from the F-1 score, we define a parity metric for OOD evaluation.

Since the F-1 score is generally defined for precision and recall, whose values are between 0

to 1.0 (0 to 100%), we repurpose the metric to work with the Pearson correlation coefficient

(r). Mathematically, this is given as:

r-consistency = Harmonic Mean(rID, rOOD) = 2
rID × rOOD

rID + rOOD

(B.33)

By taking the Harmonic Mean of the correlation values for the in-distribution dataset

and OOD dataset, we can concretely rank an algorithm’s ability to generalize to unseen

distributions

B.7 Ablation Analysis

B.7.1 Heart Rate Estimation with Different Appearance and Plethysmograph

Model Configurations

In this section, we demonstrate the effectiveness of the Cascaded Appearance and Residual

Plethysmograph networks for their respective tasks. In Table B.4, we present the results of

our method with various configurations for the Cascaded Appearance and Residual Plethys-

mograph models.

Here, we make an important note. Given our aim to test the effectiveness of our method

to best represent the plethysmographic information, we evaluate only the green channel of

the Residual Plethysmograph’s output. We do not use the neural signal strength masks to

improve the SNR, but rather use all pixels in the green channel of the residual output. The

values presented in Table B.4 are tested on the in-distribution samples from [8], using the

six fold cross validation as proposed in the work.

We observe that a vanilla implementation of the XYT network with sinusoidal activa-
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tion functions (that is, without the cascaded model) is able to retain the plethysmographic

information, evidenced by the values of the first row. However, since this model does not

possess a tractable structure we cannot isolate the plethysmograph signals from the recon-

structed outputs - therfore, the performance metrics are poor. From the second row, we

notice that adding another sinusoidal XYT model as the residual model adds no value to

the reconstruction. In fact, it is detrimental to the estimation as there is minimal residual

component to learn from, since the first model has already managed to learn all possible

relevant plethysmographic information.

On fixing the appearance model to be our proposed Cascaded Appearance model, we note

that the third row of Table B.4 corroborates our theory. That is, the Cascaded Appearance

model performs very poorly and is unable to retain the plethysmograph waveform. Hence, in

line with our theoretical formulations, our appearance model is able to efficiently perform as

an A function estimator. Following these lines, rows 4 and 5 ablate over the activation func-

tion in the plethysmograph model and show the necessity of using the sinusoidal activation,

leading the performance to increase by a factor 2.5 over using a ReLU activation.

B.7.2 Using the Difference of the Video and the Appearance in Place of the

Plethysmograph Model

A reasonable consideration is whether the plethysmograph implicit model (B-function ap-

proximator) is even necessary or if the plethysmograph component can be obtained through

a simple difference of the appearance model output from the original video (without fitting

a model for this). Table B.5 highlights this configuration (dubbed the difference model) and

compares with our proposed method on in-distribution testing for the dataset proposed in [8].

As can be seen, this model performs worse than our proposed method. This empirical ob-

servation likely arises as a result of the denoising effect of implicit representations [226, 214],

especially since the plethysmograph signal is a low dimensional signal encoded in the high

dimensional residual model. This observation emphasizes the necessity of all components of

191



Table B.4: Ablation analysis 1: design choice of the implicit decomposition

pipeline. We show the impact of each block on the overall performance of our pipeline.

The numbers generated do not use the neural signal strength masks. In the table

below, Our Appearance Model is the Cascaded Appearance model used by our method.

Sinusoidal XYT is the Residual Plethysmograph model used by our method. Finally,

ReLU XYT represents a simple architecture structurally identical to the Residual Plethys-

mograph, but with ReLU activations in place of the sinusoidal activation.

Appearance Model Plethysmograph Model MAE ↓ MAPE ↓ RMSE ↓ r ↑

Sinusoidal XYT None 4.94 6.93% 12.02 0.65

Sinusoidal XYT Sinusoidal XYT 17.62 27.53% 21.67 0.04

Our Appearance Model None 12.45 17.54% 18.25 0.21

Our Appearance Model ReLU XYT 4.28 5.42% 9.83 0.76

Our Appearance Model Sinusoidal XYT 1.57 2.03% 4.79 0.94

our pipeline.

B.8 Detailed Analysis of Out-of-distribution Performance

Section 6.2 of the main paper discusses overall qualitative and quantitative performance

of the proposed and prior baseline methods on our optically challenging out-of-distribution

dataset. In this section, we will analyze more granular stratified analysis of the proposed

and baseline methods.

B.8.1 Dataset Description

We propose a novel optically challenging dataset (inference-only) to test the performance of

remote plethysmography (rPPG) methods. Based on this philosophy, the dataset consists

of 104 videos of around 30 second duration across 13 participants, with aligned contact
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25.1 bpm error 25.2 bpm error 1.5 bpm error

18.1 bpm error 20.5 bpm error 1.2 bpm error

2.7 bpm error 22.9 bpm error 1.1 bpm error

(a) Frame (b) [25] (c) [9] (d) Ours (e) Gr. Truth

Figure B.3: The proposed method is a superior performer across low-light, opti-

cally challenging scenes. We compare the best-performing algorithmic baseline, the best

deep learning baseline and our proposed method (all trained on the dataset from [8] where

applicable).
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Table B.5: Ablation analysis 2: we show the importance of the proposed model

over a simple ‘difference model’, where the plethysmograph/blood component is ex-

tracted through a simple difference of the original video and the estimated appearance com-

ponent. The metrics shown are evaluated using neural signal strength masks trained

on the dataset from [8], with the numbers supplied being the in-distribution test results on

the same dataset (please correlate with Table 2 in main paper, quadrant 3).

Configuration MAE ↓ MAPE ↓ RMSE ↓ r ↑

Difference model 1.51 1.98% 4.28 0.95

Ours 1.22 1.61% 4.01 0.96

plethysmograph ground truth data.

We follow a similar camera setup to [8] while collecting our OOD dataset. We use a

monocular camera stream from a Zed2 camera from Stereolabs and a Contec CMS-60C

pulse oximeter for ground truth.

Data samples in this dataset consist of various attributes, such as face occlusions (face

mask, eye glasses, face paint etc.), low light, motion, talking and so on. A particular video

may have one of more of these attributes. Since the primary focus is optically challenging

data, most of the samples possess some kind of face occlusion (77 samples). Additionally,

we stratify the dataset according to well lit (49 samples) and low light settings (55

samples). We define low light as settings where the ambient room lighting is dimmed, or an

uncontrolled low light setting (such as the outdoor window reflection example from Figure

7, main paper).

Additionally, Figure 8 in the main paper highlights performance on natural motions,

which are included as part of our dataset. Since this is a secondary focus (primary being

optically challenging OOD), the dataset contains relatively fewer such samples: 12 in total,

with 6 samples having participants talking, and 6 samples having participants moving their
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heads side to side. The dataset, along with metadata tags for attributes, will be released

post acceptance.

In our OOD dataset, we are able to share full participant videos with users (without

identifying information such as names), but only after having recorded contact details of

dataset users. The dataset is released after potential users fill out a request form on the

project webpage. This will enable us to keep track of all users of the dataset and rescind

access if ever necessary. The videos are also audio-stripped, so apart from the video frames

and the plethysmograph waveform itself, no other participant information is ever available

to the dataset users.

B.8.2 Performance Across Lighting Configurations

Figure B.3 highlights selected qualitative results on low light samples from our OOD dataset.

Across three different samples, the proposed method shows superior performance both in

terms of waveform reconstruction and heart rate estimation. For dataset scale results, we

can then look at Table B.6 and Table B.7, where methods are trained on the data from [8]

and [16] respectively. The proposed method is the best performer, both for well lit and low-

light configurations, by a large margin (1.5-2x better than next best performing method).

Overall, our method, with the signal strength mask model trained on the dataset from [8]

is the best performer across both configurations. Additionally, the reader may note from

Table B.6 that the second best performing method for the two configurations ( [27] for well

lit, and [25] for low light) indicate that different baseline methods are better depending on

the lighting condition, wheras our method is considerably better for both settings. This is

an additional point of merit for our method.
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B.8.3 Performance on Face Occlusions

A majority of the videos in our OOD dataset consist of optically challenging face occlusion,

making the rPPG problem challenging. Table B.8 and Table B.9 show relevant dataset-wide

results. The proposed method is considerably better than all prior methods, by a margin of

close to 1.5-2 times. That is, the proposed method is better performing and more efficient

in these low light settings. Additionally, we note that the proposed method when trained on

the dataset from [8] is the best performing.

B.8.4 Performance on Motion Videos

As an empirical test of robustness, we extend our OOD analysis to Figure B.4. While

we previously dealt with specific optically challenging OOD examples, here we take a look

at motion-induced obfuscations that can occur in a real-world setting. This includes 2

scenarios: (a) the volunteer shaking their head from side to side and (b) talking. While

our method is not specifically designed to handle motion, we observe little degradation

in terms of performance for the displayed samples. This is evident from the penultimate

column of Figure B.4. Our method archives errors of under 2 bpm MAE for these samples

while capturing salient features of the plethysmograph signal. While not being a clear best

performer for this setting, our method is competitive, comparable, or better in performance

than baseline methods. We must note that the number of samples for motion in our dataset

is fewer than those for optically challenging scenes. However, this scale is sufficient for this

validation that our method is able to handle motion.

Table B.8, B.9 show detailed quantitative metrics. As can be seen, even though not de-

signed to handle motion specifically, our propsed method is very competetive when compared

with prior state of the art methods, for the motion and talking scenarios. For example, in

the talking setting, the proposed method is the best performer. While models trained on

both [8] and [16] data are best performing, the model from [16] data is found to work better,
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9.5 bpm error 2.9 bpm error 0.5 bpm error

Head Motion

6.1 bpm error 8.4 bpm error 0.8 bpm error

Talking

(a) Frame (b) [25] (c) [9] (d) Ours (e) Gr. Truth

Figure B.4: The proposed method shows comparable or better performance across

secondary OOD settings, such as talking and motion, when compared with prior

art. We compare the best-performing algorithmic baseline, the best deep learning baseline

and our proposed method (all trained on the dataset from [8] where applicable) on scenes

that are part of our OOD dataset.
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(a) [25] (b) [9] (c) Ours

Figure B.5: Bland-Altman plots are used to quantify heart rate performance in

clinical literature as they span a range of heart rates [8]. The x-axis represents ground

truth heart rate, while the y-axis represents heart rate estimation error. The horizontal lines

mark the mean error and 1.96 times the standard deviation. A smaller vertical spread

indicates a lower error and is desired behavior. A trend (as in (b)) indicates correlated

errors, which is non-ideal.

interestingly. The next best method is found to be [31], specifically when trained on [16]

data.

In the case of side to side head motion, the proposed method is not the best performer.

That being said, performance is not much worse than the best performing methods. Again,

the model from [16] data is found to work better. Therefore, while not the best performer,

when looking at all motion and talking videos in summary, the proposed method indeed

is either comparably performing or superior, and is certainly able to reliably work in these

challenging OOD conditions comparably to the best prior methods.

B.8.5 Comparing Bland-Altman Plots

We visualize sample-wise errors and group error trends through Bland-Altman (BA) plots.

We plot the ground truth heart rate on the x-axis and the heart rate estimation error on

the y-axis. Therefore, a smaller vertical spread in the BA plots indicates better perfor-
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mance. Figure B.5 shows the BA plots for Green [25] (best baseline algorithmic method),

PhysFormer [9] (best baseline learning method), and our proposed method on the dataset

provided by [8]. Our method shows the smallest veritical spread of errors, correlating with

the OOD performance metrics from Table 1, main paper.
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0

1

(a) In-Distribution (b) Out-of-Distribution

Figure B.6: Our predicted neural signal strength masks accurately generalize to

OOD configurations, in addition to performing well on in-distribution test sam-

ples. (a) On inference samples from the [8] dataset, our method is able to identify high-

fidelity details such as eyes, hair and specular highlights. (b) This high-fidelity nature of the

reconstruction continues in OOD inference, such as optically challenging samples. Unseen

phenomena such as face paint, face masks, sunglasses, and even reflections through semi-

transparent glass windows are appropriately handled.

B.8.6 Neural Signal Strength Masks

The neural signal strength masks, generated as an intermediate signal in the neural re-

finement model, are advantageous in improving the signal strength of the plethysmograph

estimates. Being the only supervised block of our entire framework, we test performance

when trained on the two different datasets (discussed earlier). From Tables 1 and 2, main

paper, we find that our framework is not significantly affected by the dataset used to train,

therefore showing that the masks are easy to generalize.

Qualitatively, Figure B.6 shows example masks. Our generated masks are consistent

with our understanding of light transport for plethysmography, as discussed in Section B.1.1.

Therefore, the neural signal strength masks assign a lower priority to pixels associated with

specular highlights (specular regions on the forehead in the fifth column). It also assigns lower
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weights to the regions underneath the eye and near the nostrils compared to the cheeks and

forehead. These masks are also able to ignore occlusions, such as face paint (third column)

face masks and beards (fourth column), and surgical masks and sunglasses (fifth column).

One particularly interesting sample is the Window Reflection case (final column).

The captured image has a dual reflection caused by the double-paned glass window. This

sample is especially optically challenging due to attenuation and interference from reflections

and multiple light sources. Our method can, however, distinguish between these reflections

and appropriately weigh the second reflection less than the first reflection, with the regions

around the cheeks being the strongest regions of interest.

5.1 bpm error 5.0 bpm error 0.2 bpm error

Face Paint

74.9 bpm error 14.1 bpm error 0.5 bpm error

Face Mask, Beard

(a) Frame (b) [25] (c) [9] (d) Ours (e) Gr. Truth

Figure B.7: Additional challenging OOD optical settings. Results shown use models

trained on the dataset proposed in [8], where applicable.
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0.8 bpm error 2.4 bpm error 0.5 bpm error

2.6 bpm error 2.9 bpm error 0.2 bpm error

(a) Frame (b) [27] (c) [9] (d) Ours (e) Gr. Truth

Figure B.8: Additional results for in distribution inference on a skin tone diverse

dataset.

B.9 Additional Qualitative Results

Figures B.7 and B.8 show additional qualitative results for the OOD and in-distribution

settings respectively. These add to the results in Figures 6 and 7 of the main paper.

B.10 Additional Baselines

We show quantitative performance metrics on additional baselines for both OOD and in-

distribution settings in Table B.10 and B.11. The proposed method outperforms these both

in-distribution and OOD.
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B.11 Future Work

In the domain of plethysmography, the use of implicit representations is new to the best of

our knowledge and, therefore, sets the stage for future work in architectural improvements,

runtime optimization, and performance enhancement. Additionally, the use of implicit rep-

resentation as functional decomposers can generally be applicable to a range of different

applications such as reflection removal, low-level imaging tasks such as deraining and de-

hazing, and so on. Finally, other kinds of medical devices and complex problems, such as

contactless pulse oximetry, may benefit from such an analysis-by-synthesis approach. Finally,

more research into other kinds of OOD phenomena from rPPG is desirable.
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Table B.6: (Trained on [8] dataset) Performance on our OOD dataset across light-

ing intensity indicates state of the art performance over both well lit and low

light conditions. OOD performance metrics include T-Test (APE %), Mean Absolute Er-

ror (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE),

and Pearson correlation coefficient (r). The best and second-best-performing numbers are

shown in green and yellow, respectively.

OOD Performance Metrics

Method T-Test (APE %) ↓ MAE ↓ MAPE ↓ RMSE ↓ r ↑

W
el

lL
it

Green [25] 32.24 8.62 10.65% 16.50 0.13

POS [27] 20.41 5.18 7.41% 11.69 0.63

CHROM [26] 25.71 6.81 9.62% 13.35 0.58

ICA [135] 23.67 6.66 8.61% 14.65 0.33

DeepPhys [30] 79.59 16.81 21.72% 20.88 0.03

TS-CAN [137] 72.24 15.59 20.07% 19.73 0.06

EfficientPhys [280] 42.86 12.39 16.26% 20.68 -0.03

PhysNet [31] 34.69 7.14 9.56% 12.91 0.53

PhysFormer [9] 39.18 9.44 12.64% 15.36 0.33

Ours 12.65 3.38 4.26% 9.99 0.68

Lo
w

Li
gh

t

Green [25] 30.91 7.07 9.11% 12.58 0.66

POS [27] 42.18 10.55 14.30% 17.22 0.33

CHROM [26] 46.55 11.55 15.29% 17.78 0.23

ICA [135] 37.82 9.51 12.19% 15.89 0.44

DeepPhys [30] 76.36 18.95 23.08% 23.84 0.09

TS-CAN [137] 78.55 19.49 23.77% 23.87 -0.02

EfficientPhys [280] 45.45 15.15 20.08% 24.60 0.26

PhysNet [31] 60.73 14.89 18.46% 20.70 0.19

PhysFormer [9] 40.36 9.70 12.55% 14.94 0.30

Ours 19.27 5.71 7.68% 12.95 0.61
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Table B.7: (Trained on [16] dataset) Performance on our OOD dataset across

lighting intensity indicates state of the art performance over both well lit and low

light conditions. OOD performance metrics include T-Test (APE %), Mean Absolute Error

(MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), and

Pearson correlation coefficient (r). The best-performing numbers are shown in green (second

best excluded since algorithmic methods from Table B.6 are second best). Algorithmic

methods excluded from this table since they are not trained on a particular dataset - numbers

same as Table B.6.

OOD Performance Metrics

Method T-Test (APE %) ↓ MAE ↓ MAPE ↓ RMSE ↓ r ↑

W
el

lL
it

DeepPhys [30] 76.73 17.83 23.05% 22.36 -0.13

TS-CAN [137] 73.06 16.04 20.79% 20.86 0.08

EfficientPhys [280] 30.61 10.29 14.40% 20.39 0.32

PhysNet [31] 27.35 7.48 10.44% 15.53 0.47

PhysFormer [9] 46.53 9.97 13.09% 15.31 0.13

Ours 14.29 3.17 4.07% 7.92 0.78

Lo
w

Li
gh

t

DeepPhys [30] 79.64 19.37 23.31% 23.98 -0.03

TS-CAN [137] 80.73 20.61 25.42% 25.29 -0.06

EfficientPhys [280] 33.45 13.95 18.90% 25.78 0.27

PhysNet [31] 39.27 9.68 11.67% 16.67 0.28

PhysFormer [9] 50.18 10.80 13.41% 15.73 0.32

Ours 21.45 6.83 9.24% 14.74 0.51
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Table B.8: (Trained on [8] dataset) Performance on our OOD dataset across face

occlusions, talking and motion. Our method is state of the art for occlusions,

while being close to optimal or better for talking and motion. OOD performance

metrics include T-Test (APE %), Mean Absolute Error (MAE), Mean Absolute Percentage

Error (MAPE), Root Mean Squared Error (RMSE), and Pearson correlation coefficient (r).

The best and second-best-performing numbers are shown in green and yellow, respectively.

OOD Performance Metrics

Method T-Test (APE %) ↓ MAE ↓ MAPE ↓ RMSE ↓ r ↑

Fa
ce

O
cc

lu
si

on
s

Green [25] 30.91 7.71 9.90% 14.81 0.17

POS [27] 25.97 7.16 10.44% 14.84 0.43

CHROM [26] 32.99 8.82 12.68% 15.82 0.41

ICA [135] 30.39 7.85 10.65% 15.38 0.25

DeepPhys [30] 76.10 16.14 21.17% 20.01 0.06

TS-CAN [137] 71.43 14.92 19.62% 18.80 0.07

EfficientPhys [280] 39.48 12.40 16.85% 21.76 0.00

PhysNet [31] 47.79 9.92 13.40% 15.31 0.36

PhysFormer [9] 38.18 9.09 12.56% 14.59 0.30

Ours 15.58 4.43 6.15% 12.03 0.51

T
al

ki
ng

Green [25] 73.33 13.95 17.46% 16.84 0.08

POS [27] 43.33 5.97 7.43% 8.40 0.37

CHROM [26] 43.33 6.87 8.50% 10.02 0.05

ICA [135] 56.67 11.81 14.78% 14.73 0.03

DeepPhys [30] 73.33 17.11 21.43% 20.83 0.28

TS-CAN [137] 80.00 20.10 25.09% 23.14 0.05

EfficientPhys [280] 50.00 13.42 16.90% 19.38 0.19

PhysNet [31] 23.33 5.74 7.27% 10.22 0.23

PhysFormer [9] 33.33 5.92 7.46% 10.20 0.08

Ours 23.33 5.40 6.71% 9.04 0.51

M
ot

io
n

Green [25] 50.00 10.09 13.88% 13.30 0.41

POS [27] 33.33 6.23 8.61% 10.05 0.39

CHROM [26] 16.67 3.77 5.23% 8.17 0.17

ICA [135] 16.67 3.98 5.52% 6.57 0.57

DeepPhys [30] 86.67 16.93 22.94% 19.25 -0.49

TS-CAN [137] 83.33 16.46 22.46% 18.26 -0.41

EfficientPhys [280] 63.33 14.36 19.45% 17.33 -0.05

PhysNet [31] 33.33 6.04 8.24% 9.67 0.29

PhysFormer [9] 23.33 5.27 7.10% 9.28 0.21

Ours 16.67 4.99 6.83% 11.35 0.22
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Table B.9: (Trained on [16] dataset) Performance on our OOD dataset across face

occlusions, talking and motion. Our method is state of the art for occlusions,

while being close to optimal or better for talking and motion. OOD performance

metrics include T-Test (APE %), Mean Absolute Error (MAE), Mean Absolute Percentage

Error (MAPE), Root Mean Squared Error (RMSE), and Pearson correlation coefficient (r).

The best-performing numbers are shown in green (second best excluded due to Table B.6).

Algorithmic methods excluded from this table since they are not trained on a particular

dataset - numbers same as Table B.6.

OOD Performance Metrics

Method T-Test (APE %) ↓ MAE ↓ MAPE ↓ RMSE ↓ r ↑

Fa
ce

O
cc

lu
si

on
s

DeepPhys [30] 74.29 16.28 21.38% 20.43 -0.07

TS-CAN [137] 75.06 16.29 21.63% 20.58 0.05

EfficientPhys [280] 32.47 12.97 18.56% 24.94 0.16

PhysNet [31] 30.91 7.24 10.18% 14.16 0.46

PhysFormer [9] 48.05 9.79 13.21% 14.59 0.17

Ours 17.40 5.01 7.06% 12.50 0.50

T
al

ki
ng

DeepPhys [30] 83.33 17.23 21.39% 19.90 -0.08

TS-CAN [137] 70.00 17.99 22.52% 21.67 -0.08

EfficientPhys [280] 43.33 11.48 14.14% 18.82 0.47

PhysNet [31] 26.67 5.21 6.50% 8.79 0.50

PhysFormer [9] 36.67 7.62 9.50% 11.02 0.22

Ours 23.33 5.06 6.32% 8.19 0.75

M
ot

io
n

DeepPhys [30] 83.33 17.70 24.21% 19.41 0.16

TS-CAN [137] 90.00 16.35 22.34% 18.47 -0.37

EfficientPhys [280] 26.67 7.79 10.74% 15.19 0.24

PhysNet [31] 33.33 6.45 8.89% 10.98 0.34

PhysFormer [9] 33.33 5.86 8.07% 8.64 0.37

Ours 16.67 4.41 6.02% 9.61 0.30
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Table B.10: Additional OOD baselines. Train on [8] and test on our OOD dataset.

Method MAE ↓ MAPE ↓ RMSE ↓

ContrastPhys+ (unsupervised) [283] 15.05 20.55% 17.34

ContrastPhys+ (semi-supervised) [283] 13.03 17.04% 15.29

ContrastPhys+ (fully-supervised) [283] 13.42 17.43% 15.63

Table B.11: In-distribution performance for additional baselines. Train and test

on [8].

Method MAE ↓ MAPE ↓ RMSE ↓

ContrastPhys+ (unsupervised) [283] 2.01 2.91% 2.54

ContrastPhys+ (semi-supervised) [283] 1.70 2.44% 2.16

ContrastPhys+ (fully-supervised) [283] 1.64 2.23% 2.21
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