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Do carbon abatement opportunities become less
profitable over time? A global firm-level
perspective using CDP data

Christian Blanco, Felipe Caro and Charles J. Corbett
December 20, 2019

Abstract

Firms around the world need to find ways to continuously reduce their car-
bon footprint, preferably in ways that are profitable or cost-effective. The
opportunities available to them will change over time, as they implement the
most profitable ones first and as technology changes. When designing and ad-
justing their carbon policies, policy-makers need to understand the abatement
opportunities firms are facing. We explore this using data collected by CDP
(formerly the Carbon Disclosure Project) on 20,920 carbon abatement projects
implemented by more than 1,400 firms worldwide over 7 years. Using fixed
effects regression with energy price controls by country, our results show that
the average payback period of implemented carbon emissions reduction projects
remained relatively constant from 2010—2016, although there is tentative ev-
idence that the projects are becoming smaller over time. We provide a novel
firm-level perspective on carbon emissions reduction activities using data on
projects implemented and reported by large, global firms, and discuss how the
insights from such firm-level analysis can help inform design and revision of
carbon emissions policies over time.

1 Introduction

Evidence continues to mount about the importance of reducing global green-
house gas (GHG) emissions. A range of different policy approaches aims at
reducing GHG emissions from industry, often involving setting a price on emis-
sions, whether in the form of a “carbon tax” or a cap-and-trade system. In
theory, firms will continue to invest in reducing emissions as long as they find
it profitable. Some opportunities to reduce emissions are already profitable on
their own; for many others, the price associated with emissions should increase
to encourage firms to exploit opportunities they would otherwise not pursue.



In the past, there was extensive debate about whether the most suitable
policy to reduce GHG emissions would focus on price or on quantity controls.
Weitzman (1974) already pointed out that which approach is preferred depends
on the marginal costs and benefits associated with reducing emissions. More
recently, Stavins (2019) argues that it is not so much the choice of policy
type that matters, as the specific design of whichever policy is chosen. In a
comprehensive comparison of carbon taxes and cap-and-trade mechanisms,
Stavins (2019) concludes that in terms of key objectives such as incentives
for emissions reductions, aggregate abatement costs, and effects on com-
petitiveness, a carbon tax and a cap-and-trade mechanism can be perfectly
equivalent. This means that setting the correct price for carbon emissions,
whether directly in the form of a carbon tax or indirectly in the form of the
design of a cap-and-trade mechanism, is the key challenge for policy-makers.
In theory, policy-makers need to determine the social cost of carbon emissions,
and then design the carbon tax or cap-and-trade mechanism in such a way
that the carbon price faced by firms reflects that social cost of carbon emissions.

In practice, however, this is complicated by a number of factors. First,
firms generally do not follow the theoretical prescription of equating marginal
costs and benefits, but instead use simpler investment criteria, such as the
payback period (defined as the total investment cost divided by the annual
monetary savings). Firms often require a payback of less than two years, as
documented by among others Cooremans (2011), Harris et al. (2000), Jackson
(2010), and Fleiter et al. (2012b). Second, the profitability of carbon abatement
projects is not static over time. As firms implement opportunities, presumably
starting with the most economically attractive ones, the costs of the remaining
opportunities are likely to be higher. Simultaneously, as new technologies
emerge (partly spurred endogenously by the price on carbon), costs may decline.
Third, as Stavins (2019) points out, there is a wide range of other factors
that policy-makers need to consider, including aggregate abatement costs,
effects on competitiveness, costs to regulated firms, distributional impacts,
transaction costs, performance in the presence of uncertainty, interaction with
complementary policies, and more.

This means that policy-makers are not only faced with the challenge of
determining an optimal carbon price, but with determining a globally efficient
time path for carbon prices (Aldy et al. 2010). To assess whether policy-makers
are achieving their objectives, it is therefore imperative to observe how firms
respond, as Brannlund et al. (2014) and Bumpus (2015) also argue. By using
firm-level data on what opportunities firms choose to implement, policy-makers
can get additional insight on whether they are achieving their carbon reduction
goals, and whether their policies are having unintended consequences for
aggregate costs, competitiveness, or other dimensions that Stavins (2019)
considers. The fact that costs are likely to change over time, for the reasons



noted above, means that policy-makers also need to track how firms’ behavior
changes over time.

Payback period is not the optimal criterion for making capital allocation
decisions. However, examining firm-level behavior through the perspective of
payback periods is worthwhile, for several reasons. First, it is widely used by
firms (see references above). Second, policy-makers do not observe the net
marginal carbon abatement costs faced by firms. Third, firms will primarily
choose to implement opportunities that are “profitable” (including a possible
carbon price), and for profitable opportunities, the traditional marginal
abatement cost (MAC) curve is problematic for reasons outlined by Taylor
(2012) and Ward (2014). For these reasons, we study the evolution of payback
periods and what this may mean for policy. Let us examine several possible
patterns for the evolution of payback periods and project size over time and
discuss potential policy implications of each.

If payback periods of implemented projects become shorter over time, what
does that mean for policy-makers? Several phenomena could be occurring. If
this is accompanied by a reduction in the overall size of emissions reductions,
it is possible that firms are applying even stricter payback period thresholds,
for instance in response to a perceived increase in risk associated with carbon
abatement. Fankhauser and Hepburn (2010) review several ways in which
intertemporal dynamics in carbon markets could lead to increased variance in
carbon price, and hence an increase in risk. This perception also could occur if
firms do not believe regulators’ stated intentions regarding future carbon prices
or allowances.

Alternatively, if the overall magnitude of the projects firms implement is
constant over time or even increasing, then a shortening payback period could
reflect that the price of carbon is higher than needed to spur investment in
carbon abatement, and that firms simply do not have the internal capacity
to implement all projects that meet their payback period threshold. They
would still prioritize the most profitable ones, but the shorter observed payback
period would not mean that they are not willing to invest in projects with
longer paybacks. If that is the case, policy-makers should focus on finding ways
to increase the rate at which firms can implement projects. This could mean
decreasing transaction costs, setting up support mechanisms, or providing
training and education. Programs focusing on information dissemination such
as the Industrial Assessment Centers program in the US (Anderson and Newell
2004) or the Commonwealth Government’s Enterprise Energy Audit Program
in Australia (Harris et al. 2000) are examples of such approaches.

If payback periods become longer over time, what does that mean for
policy-makers? As before, lengthening payback periods can signify several



underlying phenomena. Firms would be accepting looser payback period
thresholds, which could be an indication that they perceive the risk associated
with carbon abatement to be lower than before. This could be a sign that firms
expect future carbon prices to increase, or that regulators have gained more
credibility when announcing increasing carbon prices (Helm et al. 2003). If the
overall magnitude of emissions reductions is constant or even increasing, then
the lengthening of payback periods would signal generally greater willingness by
firms to make such investments. Policy-makers could infer that their approach
is working reasonably well overall; an area of focus for policy-makers would
then be to verify whether unintended consequences are occurring, for instance
competitive imbalance or distributional inequity.

Conversely, if lengthening payback periods are accompanied by a reduction
in the emissions reductions achieved, this would likely reflect that the remaining
abatement opportunities are becoming less profitable over time. In other words,
the low-hanging fruit would be diminishing. Firms would then apparently
still be willing to make some investments in carbon abatement, even with less
attractive payback periods than before, but the shrinking size of emissions
reductions would indicate that firms do so reluctantly and are not willing to
make large investments. In this situation, policy-makers would need to consider
whether to increase the price of carbon, by increasing the carbon tax and/or
reducing the number of allowances, in order to make the remaining abatement
opportunities more profitable for firms.

We summarize the policy responses based on different outcomes of the evo-
lution of payback periods and the size of carbon abatement opportunities in
Table 1.

Table 1: Policy responses depending on the evolution of payback periods and the size of carbon
emissions reduction.

Observation

Shortening payback period

Lengthening payback period

Increasing or con-
stant carbon emis-
sions reduction size

Decreasing carbon
emissions reduction
size

Policies should aim at in-
creasing rate of adoption; in-
formation dissemination are
good examples

Focus on decreasing per-
ceived risks of carbon emis-
sions reduction policies

Policies in place are success-
ful; focus on competitive im-
balance or distributional in-
equity

Increase carbon tax or
tighten emissions allowance

How do we identify which of these scenarios is actually occurring? In this
paper, we examine the payback period of 20,920 carbon reduction projects im-
plemented and reported by over 1,400 firms worldwide over a 7-year period.



Using a fixed-effects panel regression analysis, we find that the average payback
period exhibits no significant deterioration over our horizon, suggesting that
firms are not running out of profitable opportunities in the short term and not
making substantial adjustments in their capital allocation criteria for carbon
abatement projects. We find that the average payback period of carbon abate-
ment activities implemented from 2010—2016 is 2.20 years. If payback periods
are short (i.e., an average of two years), that indicates that many profitable op-
portunities are not being exploited (Jackson 2010). Jackson (2010) claims that
firms typically have a strict payback period requirement for carbon abatement
projects because they perceive them to be more risky. For policy-makers, this
highlights that they need to reduce the risk and uncertainty associated with
carbon abatement opportunities, in order to encourage firms to adopt looser
payback period thresholds. In an attempt to provide further nuance, we also
examine how the number of projects and size of emissions reduction per project
evolve, but we find mixed evidence on this front.

The contribution of this paper is to provide an initial firm-level perspective
on firms’ decisions related to investing in carbon abatement over time. As firm-
level carbon disclosure continues to become more widespread and more compre-
hensive, whether to CDP or through other mechanisms, it will be increasingly
important for policy-makers to take such firm-level data into account when con-
sidering which carbon policies are appropriate for given sectors or geographic
regions.

In what follows, we first discuss the CDP data and energy data that we
used. We then describe the regression methods and results, and the various
tests we performed to assess the robustness of our findings. We highlight some
limitations of our work. We then conclude with the policy implications of our
findings.

2 Data

We first describe our main source of data, from CDP, and then the data we used
to correct for the cost of energy.

2.1 Data from CDP

CDP was founded as the Carbon Disclosure Project in 2000, aimed at encourag-
ing firms to disclose more information about their climate-change-related risks
and opportunities. CDP conducted its first survey in 2002, and by 2015 more
than 5,500 firms worldwide responded to their survey requests (CDP 2018).
This includes many of the world’s largest firms, such as Walmart, Boeing,
Cisco, Pfizer, Hewlett-Packard, J. Sainsbury, SABMiller, Unilever, Nissan, Sony,



Hyundai, Samsung, and many others. A sample of 1,089 global companies that
CDP identified as having the highest impact (by market capitalization and GHG
emissions) disclosed total (Scope 1 and 2) emissions of 6,361 million metric tons
of CO2-equivalent in 2016. For comparison, the total US energy-related CO2e
emissions in 2016 were 5,172 million metric tons (EIA 2019).

Although the CDP data are far from perfect, Kolk et al. (2008) already ob-
served that they are becoming increasingly reliable. Turner and Kent (2017)
report that investors consider CDP data when making investment choices, fur-
ther illustrating their relevance. The data are also frequently used in scholarly
studies. Okereke (2007) uses the CDP responses to examine the motivation,
drivers, and barriers to carbon management. Using the CDP data with the
KLD Research & Analytics SOCRATES database, Reid and Toffel (2009) pro-
vide regression-based evidence of the drivers of why firms disclose their climate
change strategies. Blanco et al. (2016) find that the total carbon emissions
disclosed to CDP expanded over time. Matsumura et al. (2013) use CDP car-
bon emissions data to test how the market responds to climate change disclo-
sures. Gasbarro et al. (2017) use CDP data to identify physical, regulatory
and market-based risks associated with climate change. Using CDP responses
on firm incentives related to climate change, Dahlmann et al. (2017) find that
offering incentives to a large, broad set of recipients can be effective in reduc-
ing carbon emissions. Gallego-Alvarez et al. (2014) find evidence that financial
performance has a stronger relationship with environmental performance, mea-
sured using CDP data, in times of an economic crisis. These studies suggest
that CDP data are considered useful for scholarly research.

The main fields in the data that we use are those related to payback period
of implemented projects, the number of projects for which firms provide details,
and the emissions reductions achieved with those projects. The CDP surveys
include these items since 2010. Our sample covers all global firms that reported
at least twice during the period 2010-2016. This includes 1,417 firms in the 33
countries for which we have energy price data (see below), who jointly report
details on 20,920 projects. This panel is not balanced over time, as not all firms
report in each year. Therefore, we also conduct our analysis with a balanced
subsample, consisting of the 102 firms that report complete data for at least one
implemented project in every year between 2010-2016; this yields 3,051 projects.
The unbalanced panel has the benefit of being substantially larger, while the
balanced panel allows us to rule out potential effects of year-to-year variations
in the composition of the sample.

2.2 Data on energy cost

Energy prices may influence the adoption and profitability of carbon abatement
opportunities, so it is important to control for them. Sato et al. (2019) is one of
the most comprehensive and rigorous compilations of energy prices weighted by
fuel source across 48 countries from 1995 to 2015. Although our study covers



2010—2016, this data is still applicable because the projects reported to CDP
are from the previous year. For example, the 2016 CDP reports typically cover
financial and environmental performance for 2015.

Sato et al. (2019) calculate energy prices based on weighted averages of fuel
prices by fuel consumption. The energy prices include electricity, gas, coal and
oil. They compute energy prices for various sectors, such as chemicals, food,
paper, textile and transport equipment and take the average prices across these
sectors to create a single energy price by country. They compute energy prices
in real terms with the purpose of using them in cross-country comparisons and
regression analysis. We take the natural log of the energy prices in our analysis
as they recommend.

2.3 Descriptive statistics

Table 2 shows the descriptive statistics for the unbalanced and balanced panel.
The average payback period varied from 1.97 years in 2010 to 2.24 years in 2016
in the unbalanced sample. Examining the smaller set of 102 firms that reported
in every year, we see that the average payback period shows a similar pattern,
ranging from 1.72 years in 2010 to 2.11 years in 2016 (though reaching higher
values in between). Overall, this suggests that the average payback period for
implemented projects is slightly above two years, and does not deteriorate sub-
stantially during our horizon. We will test this more formally using regression
analysis in the next section.

Table 2: Summary statistics of the unbalanced and balanced panel.

Unbalanced sample Balanced sample
. Total Mean . Total Mean
Year Firms o payback Firms . payback
projects period* projects period*
2010 298 879 1.97 102 318 1.72
2011 457 1,503 2.09 102 385 2.18
2012 733 2,580 2.20 102 397 2.27
2013 941 3,333 2.20 102 452 2.35
2014 1,066 3,917 2.25 102 472 2.23
2015 1,150 4,474 2.21 102 525 2.01
2016 1,069 4,234 2.24 102 502 2.11
Overall 1,417** 20,920 2.20 102** 3,051 2.12

*Payback period is measured in years as the ratio of total cost divided by the annual
monetary savings. **This number represents the total number of unique firms, not the
total number of firm-year observations.

These average payback periods hide a substantial variation. Figure 1 shows
the histogram of payback period for the entire unbalanced panel (left top chart),
and then for each year separately. Figure 2 shows the same for the balanced
panel. The charts are consistent with the view that there are many (highly)
profitable projects, but they also show that firms implement some projects with
much longer payback periods. In the unbalanced panel in 2010, 63% of projects



had a payback period of 2 years or less (the area under the two leftmost vertical
bars); in 2016, that percentage was 57%. Each year also includes a few projects
with payback periods of 8 years or more. Although there is some variation
between years, the overall shape of the histogram looks fairly similar; there is
no clear shift towards longer-payback projects over time. The balanced panel in
Figure 2 shows similar trends, though with higher variation due to the smaller
sample size.

Figure 1: The distribution of payback period for the entire sample (unbalanced panel) and
for each year from 2010-2016.
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Figure 2: The distribution of payback period for the entire sample (balanced panel) and for

each year from 2010-2016.
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Table 3 shows energy prices in USD per tonne of oil equivalent for six illus-
trative countries as calculated by Sato et al. (2019). The average energy prices
vary from country to country and from year to year. For example, the energy
price in the USA is the lowest across the six countries shown and is highest in
Brazil. We see that the average energy price is slightly increasing for Japan
from $906 per tonne of oil equivalent in 2009 to $1,196 in 2015. In contrast,
the energy price in the United Kingdom has been relatively stable at $840 per
tonne of oil equivalent in 2009 to $869 in 2015. We include energy prices in our
analysis of the trends of average payback periods.

Table 3: The average annual energy prices in USD per tonne of oil equivalent from 2009 to

2015 for 6 countries.

Year Australia Brazil Denmark Japan Umted USA
Kingdom
2009 666.51 1,131.15 904.01 906.62 840.69 421.31
2010 713.72 982.57 945.02 946.44 801.42 425.87
2011 788.46 937.96 966.65 1,042.39 848.61 440.82
2012 866.64 1,007.29 1,040.89 1,116.39 871.01 397.17
2013 904.82 972.78 1,053.57 1,220.85 899.07 410.71
2014 719.04 965.29 936.43 1,296.15 891.42 417.41
2015 651.44 1,286.14 871.26 1,195.97 868.72 346.80

The data is described in Sato et al. (2019, pp. 16-17).



3 Methods

The descriptive statistics presented above already suggest that the average pay-
back period of implemented carbon abatement projects does not change much
over the time horizon in our sample. Given that firms’ decisions related to in-
vestment in carbon abatement over time is an important input for policy-makers
when designing and adjusting their carbon policies, it is worthwhile estimating
the trend more carefully, recognizing that the period 2010-2016 is too short for
definitive conclusions. We will draw a brief comparison to a different firm-level
energy efficiency dataset with well over 30 years of data, but we also encourage
regulators to redo our analysis below as more data over longer horizons become
available.

Our objective is to determine whether the average payback period of carbon
abatement projects changes over time. We test this by conducting a regression
analysis, with the average payback period across all projects for each firm as the
dependent variable and a time trend as the main independent variable. We need
to control for firm-level factors and other effects, as the nature of abatement
opportunities will vary widely from one firm to the next. We also need to
account for the possible effect of changes in the cost of energy over time. To do
so, we use a fixed effects panel regression analysis:

Payback periodit = v; + B1 x Years + P2 X log(Energy price;;_1)) + €it, (1)

where index i refers to firms and ¢ to year (between 2010-2016). Payback
period;; is the average payback period of all projects reported in year ¢ by firm
1; Year; increases from Yearsgig = 1 to Yearsgig = 7; and €;; is a random error
term. The firm fixed effects 7; in Equation 1 control for firm-specific variation.
Greene (2012) and Cameron and Trivedi (2005) provide a thorough discussion
of the fixed-effects panel model.

4 Results and Discussion

We present our results on the trends of average payback period in this section,
followed by several robustness tests.

4.1 Main results

Table 4 summarizes the regression results where the dependent variable is the
average payback period. We begin with the results from the unbalanced sample.
The average payback period is increasing by 0.03 years (or 2 weeks) per year
at a significance level of p = 0.17. The economic impact of this increase is al-
most negligible compared to the average payback period across all implemented
projects of 2.2 years. This increase is about 1.4% of the overall average payback
period across all years. The 95% confidence interval is from —0.01 to 0.06 year.
The sample size is large enough that it can detect changes of 0.001 year with
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at least 80% power at a 0.10 significance level. Overall, the point estimates and
the range of the interval of the regression models suggest that payback periods
remain relatively stable over time.

The results for model (1) in Table 4 show that a 10% increase in the average
energy price is associated with a 0.043 years (or 2 weeks) shorter average pay-
back period with a p—value of 0.01. The average change in the dependent vari-
able as the independent variable changes (holding all else constant) is given by
Payback(energy prices) — Payback(energy price;) = P2 X (log(energy prices) —
log(energy pricer)) = P2 x (log(energy prices/energypricer)). A 10% increase
in the energy prices is roughly equivalent to log(1.1) = 0.10 (for base e). There-
fore, a 10% increase in the average prices is equal to 83 x 0.10 = —0.43 x 0.10 =
—0.043 years decrease in the average payback period. This result suggests that
higher energy prices lead to slightly shorter payback period, but this effect
largely disappears in the balanced sample.

Table 4: Fixed-effects regression results of payback period for the unbalanced panel from
2010-2016.

Dependent variable: Payback period

(1) (2)

Unbalanced sample Balanced sample
95% 95%
Coefficient confidence Coefficient confidence
interval interval
(S.E.) (p—value) (S.E.) (p—value)
Year 0.03 [-0.01,0.06] 0.03 [-0.04,0.09]
(0.02) (0.17) (0.03) (0.38)
Log(Energy price)? —0.43 [-0.77,-0.09] —0.06 [-0.95,0.84]
(0.17) (0.01) (0.45) (0.90)
Other controls
Firm fixed effects Included —— Included ——
Total firm-year observations 5,714 714
Total unique firms 1,417 102

S.E. stands for standard error. TThese are weighted average energy prices by fuel con-
sumption across 12 sectors computed by Sato et al. (2019). “Included” means that those
set of control variables are included in the regression model.

The results for the balanced sample, model (2) in Table 4, are similar. The
average payback period is increasing by 0.03 years (or 2 weeks) per year at a
significance level of p = 0.38. In other words, we find no evidence to suggest
that the payback period is increasing. The results for the balanced sample
show that energy prices are not significantly associated with shorter payback
periods (p = 0.90). Although this lack of a clear effect may seem surprising, it is
consistent with other work. Some of the reasons for this weak association is that
energy costs are a small share of the total cost of energy efficiency opportunities,
that longer-term energy prices are unpredictable, and that there is often a delay
in realized savings from implementing these projects (Abeelen et al. 2013, p.
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415). Antonietti and Fontini (2019) find support that long term oil prices do
affect energy intensity, but the effects are less clear in the shorter term and
mixed across countries.

4.2 Robustness tests

We present three robustness tests in this subsection. First, we present an ex-
tension of the regression model of Equation (1) that includes firm-level financial
controls. Second, we perform a test where we interact the country-level en-
ergy prices by sector to allow more flexibility in the model. Third, we conduct
additional tests with 31 years of data from the Industrial Assessment Center’s
dataset on energy efficiency projects.

4.2.1 Controlling for firm-level financial performance

So far, we have included firm fixed effects, but we have not controlled for firm-
level financial performance. DeCanio and Watkins (1998) show that firm-level
characteristics may matter in the adoption of energy efficiency, so the same may
be true for carbon abatement activities. We perform the tests again but include
the total assets, cost of goods sold (COGS), liabilities and property, plant and
equipment values (PPEG), and annual sales. We include these because they
capture the size of the firms, their costs and how efficient they are in managing
their physical assets. For example, for a fixed amount of assets, an increase
in COGS may force firms to find more profitable ways to reduce their energy
use and carbon emissions. The regression equation for this robustness test is as
follows:

Payback period;y = v; + 1 X Year: + B2 x log(Energy pricei<t_1)) +
B3 X log(Assets;t) + Ba X log(COGS;t) + Bs X log(Liabilities;t) +
Be X log(PPEG;t) + B7 X log(Sales;t) + €it. (2)

The results from the unbalanced and balanced panel are again consistent
with each other and with our earlier results. The results for the unbalanced
panel in Table 5 model (1) confirm that the average payback period remains
roughly constant over time with an average increase of 0.01 per year and with
p = 0.44. The estimates for the balanced sample in model (2) lead to the same
conclusion.

12



Table 5: Fixed-effects regression results of payback period with additional firm-level financial
controls.

Dependent variable: Payback period

(1) (2)

Unbalanced Balanced
95% 95%
Coefficient confidence Coefficient confidence
interval interval
(S.E.) (p—value) (S.E.) (p—value)
Year 0.01 [-0.04,0.06] —0.02 [-0.12,0.08]
(0.02) (0.44) (0.05) (0.66)
Log(Energy price)f —0.58 [-1.03,-0.13] —0.19 [-1.26,0.88]
(0.23) (0.01) (0.54) (0.72)
Other controls
Log(Assets) Included —— Included ——
Log(COGS) Included —— Included ——
Log(Liability) Included —— Included ——
Log(PPEG) Included —— Included ——
Log(Sales) Included —— Included ——
Firm fixed effects Included —— Included ——
Total firm-year observations 4,169 596
Total unique firms 1,098 89

S.E. stands for standard error. TThese are weighted average energy prices by fuel con-
sumption across 12 sectors computed by Sato et al. (2019). “Included” means that those
set of control variables are included in the regression model.

4.2.2 Controlling for energy prices and their effect by industry

We conduct tests with a similar but more flexible regression model by interacting
energy prices with the controls for industry sector. The regression equation for
this model is

Payback periodit = i + B1 x Yeary + P2 X log(Energy price;;—1)) +
B3 X Sector; x log(Energy priceit) + €it. (3)

The interaction of the firm’s sector with the energy prices allows the model
to vary the impact of average energy prices by sector, but at the expense of
losing observations for which we cannot determine the right match. The results
for the unbalanced and balanced samples in Table 6 again show that the average
payback periods remain largely constant over time.
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Table 6: Fixed-effects regression results of payback period with energy prices interacted with
industry sector controls.

Dependent variable: Payback period

(1) (2)

Unbalanced Balanced
95% 95%
Coefficient confidence Coefficient confidence
interval interval
(S.E.) (p—value) (S.E.) (p—value)
Year 0.02 [-0.02,0.07] 0.00 [—0.09, 0.09]
(0.02) (0.35) (0.05) (0.99)
Log(Energy price)f 0.08 [-0.34,0.50] 0.49 [—1.26,2.24]
(0.21) (0.72) (0.88) (0.56)
Other controls
Firm fixed effects Included —— Included ——
Interaction of industry Included —— Included ——
and energy prices
Total firm-year observations 4,166 596
Total unique firms 1,097 89

S.E. stands for standard error. TThese are weighted average energy prices by fuel con-
sumption across 12 sectors computed by Sato et al. (2019). “Included” means that those
set of control variables are included in the regression model.

4.2.3 Contrasting results from CDP with 31 years of the Industrial
Assessments Center dataset

We repeat our tests on the trends of the payback period with 31 years of
data using the US Department of Energy Industrial Assessments Center (TAC)
database. This dataset provides information on energy efficiency projects im-
plemented by small- and medium-sized US enterprises from 1981—-2018, but we
limit our analysis to 1986—2017, which are the years with available energy data
from the US Energy International Administration (EIA). One drawback of the
TAC dataset is that it does not allow us to track the same firm over time, thus
this test is only on the variation across opportunities rather than longitudinal
changes within a firm. The trends in the IAC data nonetheless provide insights
on the average payback period over three decades.

Table 7 shows the results using the IAC dataset, with the following regression
equation:

Payback period; = a + B1 X Year; + B2 x log(Energy pricet) + ;. (4)

Model (1) in Table 7 includes years from 1986-2017. Here we see that the
trend for the average payback period is largely flat, increasing by 0.001 year
per year, or 0.35 days per year (p = 0.001). Even over a 30-year period this
only corresponds to a l1-month lengthening of average payback period. (The
higher significance level relative to our CDP-based analyses is a result of the
much larger sample size.) For a direct comparison with our results based on
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CDP, model (2) shows the trend of the average payback period from 2010—2016.
We see that the average payback period is improving by about 0.04 years per
year (with p = 0.01). Overall, this suggests that the average payback period
of carbon abatement opportunities, in the form of energy efficiency, remained
largely consistent in the US.

Table 7: The trend of the average payback period of energy efficiency opportunities reported
to the Industrial Assessments Center in the US from 1986—2017 and 2010—2016.

Dependent variable: Payback period
1986-2017 2010-2016

) (2)

Year 0.001 —0.044***
(0.001) (0.010)
Log(Energy price) 0.114*** —0.063
(0.017) (0.058)
Constant 1.008*** 2.059***
(0.043) (0.280)
Observations 113,218 23,813
R? 0.002 0.001

Notes: *p<0.1; **p<0.05; ***p<0.01.

The robustness tests we present here all point in the same direction: payback
periods remain reasonably stable over time, within and between firms.

4.3 Number of projects and emissions reductions achieved

We have seen that profitability of carbon abatement projects, measured using
payback period, remained relatively stable during 2010-2016. In order to draw
policy implications from this (or any other observed trend in payback periods
over time), we also need to consider the number of projects implemented and
the emissions reductions achieved.

Although it is possible to estimate marginal abatement costs of the projects
implemented by the firms in our CDP sample, we conducted our analysis so far
in terms of payback period rather than marginal abatement costs, for several
reasons. The payback period data are more reliable as they require less assump-
tions than MACs. Due to these assumptions (about project life and discount
rate), our estimates of the marginal abatement costs experienced by a firm could
differ substantially from any estimates the firm used internally, rendering any
analysis based on such estimates potentially misleading. Payback periods are
also more suited to dealing with profitable projects than MACs are. More-
over, payback period is closer to how most firms actually make decisions than
marginal abatement costs are, as documented by Harris et al. (2000), Fleiter
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et al. (2012b), and Jackson (2010), among others.

However, payback period does not account for the magnitude of emissions
reductions achieved. For that reason, we also looked at the number and size of
projects with emissions reduction data. For each project that a firm discloses,
the CDP survey asks firms to estimate the annual emissions reduction achieved.
Table 8 shows the count of the number of projects disclosed with emissions data
and the average emissions reductions achieved per project, for the unbalanced
and the balanced panel. The average emissions reduction for the unbalanced
panel increased from 112,000 metric tons of CO2e in 2010 to 529,000 in 2012,
but declined to 186,000 in 2016. The pattern is similar but more pronounced
for the balanced sample. We have less confidence in this data than in our ear-
lier estimates of payback period: estimates of emissions reductions may be less
accurate, firms may be subject to pressures to under- or over-estimate the re-
ductions, and firms may not report these details on all projects they implement.

Nevertheless, subject to these caveats, we see that firms provide detail on
more projects over time, but that the average emissions reductions attributed
to each of those projects decreases over time. Due to the ambiguities mentioned
above, we are reluctant to try to quantify the net effect; however, this perspec-
tive does provide a counterpoint to the earlier focus on payback period, as we
explain further below.

Table 8: Summary statistics of total firms that report emissions reduction data of projects,
the total projects with available emissions reduction data, and the mean carbon emissions
reduction of those projects.

Unbalanced panel Balanced panel
Mean Mean
CO2e CO2e
Year  Total firms thal reduction Total firms thal reduction
projects projects
per per
project® project™
2010 278 830 111.97 99 303 167.27
2011 — - — — — —
2012 694 2,355 529.36 96 375 482.38
2013 928 3,281 164.70 102 448 201.39
2014 1,057 3,867 291.09 101 467 52.31
2015 1,141 4,431 164.47 102 521 53.80
2016 1,062 4,191 185.63 102 501 67.83

Notes: *This is measured in thousand metric tons. The number of firms is a subset of
the original sample. The number of firms in the balanced sample is less than 102 in some
years because some firms that reported cost and monetary savings data in early years did
not include emissions reduction information. CDP did not ask firms to disclose emissions
reduction information in 2011.
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4.4 Limitations

Our work shows that reports by firms on profitability of carbon emissions re-
ductions projects they have actually implemented, and the evolution of that
profitability over time, can help provide policy-makers with additional perspec-
tives to take into account when designing and adjusting carbon policy. Clearly,
though, our findings are preliminary; we hope that they will stimulate further
research to overcome some of the inevitable limitations of our work.

Our main analysis focused on the period 2010-2016, which is clearly too short
to be able to draw conclusions about long-term trends. The policy literature
we reviewed suggested that profitability of emissions reductions projects would
decline in the short term, but improve in the long term due to structural and
technological changes. We find no statistically significant evidence of a short-
term decline, but our horizon is too short to be able to draw conclusions about
the long-term trends. CDP adds one year of data every year, but one might also
look for other historical comparisons (such as with the data from IAC program)
to gain further insight into the longer-term evolution of firm-level abatement
costs.

Further, our analysis focused primarily on profitability, as measured by pay-
back period. While we did briefly comment on the number and size of projects
that firms report, more comprehensive analysis is needed of those factors and
those examined in Fleiter et al. (2012b) before being able to draw firmer con-
clusions about the evolution of profitability of emissions reductions projects.

Moreover, our analysis focused on projects that were actually implemented
by firms. While this is a strength of our work, adding a new perspective relative
to existing studies that tend to focus on estimating the opportunities available
to industry, it also means that we do not observe how the full set of opportu-
nities evolves over time. If firms were to experience tighter capital availability,
they might choose to implement fewer projects, which would presumably be the
most profitable ones; that could be misinterpreted as an indication that carbon
abatement is becoming more profitable. To inform policy, one needs the esti-
mates of available opportunities as developed using top-down and bottom-up
methods described earlier, in addition to the firm-level perspective that we pro-
vide here.

Given the preliminary nature of our analysis, we analyzed a global sample
rather than focusing on specific countries or sectors. Yu et al. (2016) study
environmental efficiency among US firms in 2012-13, using data from CDP and
other sources on carbon emissions, investments, and monetary savings. They
find substantial variation across sectors, and conclude that carbon policy rec-
ommendations should vary by sector.

Finally, the CDP data we use are self-reported by firms. There are reasons
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to believe the data are increasingly accurate (Kolk et al. 2008), and there is
continued expansion of disclosure regulation around the world related to climate
change. However, if CDP data is increasingly relied upon by regulators to
set policy, that would introduce mixed incentives for firms to select different
emissions reductions projects, or to potentially report inaccurate or incomplete
information.

5 Conclusions and Policy Implications

In the introduction, we noted that, in theory, firms will implement carbon
abatement projects as long as the marginal benefit of doing so exceeds the
marginal cost. In practice, however, the marginal costs and marginal benefits
are ambiguous, and unobserved, certainly to policy-makers. Firms are more
likely to make decisions using the simple payback period (Harris et al. 2000;
Jackson 2010, Fleiter et al. 2012b). Policy-makers can learn something
from observing the payback periods of projects that firms choose to imple-
ment that would not be apparent from existing marginal abatement cost curves.

In order to assess whether firms are responding to policy measures in the
manner intended, it is important to observe what firms actually do, as Bumpus
(2015) and Bréannlund et al. (2014) also argue. If firms’ responses are different
than expected, that could be an indication that the price of carbon is too
high or too low, which could point to the need to adjust the tax or number of
allowances. Alternatively, if firms’ response varies substantially across sectors,
that could indicate that the carbon policy is having unintended competitive
or distributional effects (Stavins 2019). In the introduction, we outlined what
policy-makers could learn from observing lengthening or shortening of payback
periods, as summarized in Table 1.

From our analysis of the CDP data, we find that payback periods are
relatively stable over time. Although the estimates of the time trend are
marginally negative, they are not significantly different from zero. We do
find that emissions reductions achieved are shrinking over time. Based on the
arguments outlined earlier, this would suggest that firms have not changed
their thresholds for investing in carbon abatement, but that a higher price of
carbon may be needed to spur them to return to investing in larger projects.

In our analysis, the average payback period of implemented projects is close
to two years, which would indeed suggest that many profitable opportunities are
not being implemented. Moya et al. (2011) provide an in-depth analysis of the
link between payback period and profitability for the European cement sector;
they show that opportunities that are profitable using the more appropriate net
present value (NPV) criterion have a payback period of 6 or even 9 years, which
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means they are typically not implemented as common thresholds for payback
period are generally shorter than 3 years (Cooremans 2011). Jackson (2010)
proposes that using risk-based decision tools, analogous to the Value-at-Risk
criterion used in the financial sector, would reduce this bias against carbon
abatement projects. For policy-makers, this highlights that they need to reduce
the risk and uncertainty associated with carbon abatement opportunities, in
order to encourage firms to adopt looser payback period thresholds.

From looking at the CDP data more closely than we can report here, it
appears that the projects that firms actually implement are more diverse than
what is often studied in the literature. Although many of the opportunities
described in Pacala and Socolow (2004) such as low-emissions vehicles, more
energy efficient buildings, improved plant efficiency, wind power, photovoltaic
electricity, and biofuels—appear as well in the CDP data, firms also pursue op-
erational, behavioral, and product-level innovations that are company-specific
and therefore less likely to be mentioned in such studies (although there are a
few exceptions such as the studies by Fleiter et al. (2012a) and Worrell et al.
(2009)). Examples include projects related to transportation logistics, product
materials, design, and packaging. There is a rich literature in Operations
Management on continuous improvement, and these management practices are
applicable to carbon abatement as well as illustrated by Finnerty et al. (2018).
Policy-makers should seek to ensure that the appropriate conditions exist to
foster such continuous improvement within firms, such as ensuring a stable and
predictable business environment.

A related observation is that there is significant variation between firms in
our data. As Figures 1 and 2 show, some saw substantial improvements in
average payback of their carbon abatement projects over time, while others
experienced deteriorations. Some of this will no doubt be due to random
variation, perhaps exacerbated by the discrete nature of many projects, but
a deeper analysis of this variation could have additional policy relevance.
Often, the effects of policies are not perfectly predictable, so when regulators
introduce carbon taxes, cap-and-trade measures, renewable portfolio standards,
energy-efficiency subsidies, or other instruments, they may have unexpected
effects that could also differ by sector. If a particular industrial sector appears
to show a noticeable decline in profitability of carbon abatement over our 7-year
horizon, regulators should explore whether that is an unintended consequence
of past policies or of complementary policies (Stavins 2019) and, if necessary,
remedy that.

On the other hand, even within a sector that continues to show constant or
even improving profitability of carbon abatement projects, regulators should
examine those trends more deeply as more data become available. It would be
valuable to understand the mechanisms by which low-hanging fruit continues
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to emerge in those cases. That can be for “good” reasons, such as continuous
emergence of new technologies, or firms uncovering new opportunities as they
map more of their own and their supply chain’s operations. It could also be for
“bad” reasons, if firms introduce carbon emissions reductions projects now but
do not continue to maintain those projects going forward. Processes in firms
tend to deteriorate over time if not closely monitored and proactively managed.
If regulators observe that that is the main reason why firms continue to find
profitable opportunities, they should explore policies that focus on maintaining
existing improvements rather than continually looking for and implementing
new ones. Implementing policies that require firms to document and report
their carbon abatement efforts may help increase the longevity of those projects
more than would be achieved from a focus on carbon price alone.

Our study departs from most earlier work in this field due to its focus on
the experience of specific firms over time. Clearly, several of the implications
outlined above require more detailed data over longer horizons, but we believe
that the breadth and depth of the CDP data is such that it will provide a
valuable additional tool for regulators.
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