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The chemical industry is a vital sector of the US economy. Maintaining optimal chemical pro-

cess operation is critical to the future success of the US chemical industry on a global market.

Traditionally, economic optimization of chemical processes has been addressed in a two-layer hi-

erarchical architecture. In the upper layer, real-time optimization carries out economic process op-

timization by computing optimal process operation set-points using detailed nonlinear steady-state

process models. These set-points are used by the lower layer feedback control systems to force the

process to operate on these set-points. While this paradigm has been successful, we are witnessing

an increasing need for dynamic market and demand-driven operations for more efficient process

operation, increasing response capability to changing customer demand, and achieving real-time

energy management. To enable next-generation market-driven operation, economic model predic-

tive control (EMPC), which is an model predictive control scheme formulated with a stage cost that

represents the process economics, has been proposed to integrate dynamic economic optimization

of processes with feedback control.

Motivated by these considerations, novel theory and methods needed for the design of computa-

tionally tractable economic model predictive control systems for nonlinear processes are developed

ii



in this dissertation. Specifically, the following considerations are addressed: a) EMPC structures

for nonlinear systems which address: infinite-time and finite-time closed-loop economic perfor-

mance and time-varying economic considerations such as changing energy pricing; b) two-layer

(hierarchical) dynamic economic process optimization and feedback control frameworks that in-

corporate EMPC with other control strategies allowing for computational efficiency; and c) EMPC

schemes that account for real-time computation requirements. The EMPC schemes and method-

ologies are applied to chemical process applications. The application studies demonstrate the

effectiveness of the EMPC schemes to maintain process stability and improve economic perfor-

mance under dynamic operation as well as to increase efficiency, reliability and profitability of

processes, thereby contributing to the vision of Smart Manufacturing.
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Chapter 1

Introduction

1.1 Motivation

Optimal operation and control of dynamic systems and processes has been a subject of significant

research for many years. Important early results on optimal control of dynamic systems include

optimal control based on the Hamilton-Jacobi-Bellman equation and dynamic programming [18],

Pontryagin’s maximum principle [150], and the linear quadratic regulator [95]. Within the context

of the chemical process industries, room for performance improvement in process operations will

always exist because operating a process at the theoretical, globally optimal operating conditions

for any substantial length of time is almost certainly impossible. One methodology for improving

process performance is to employ the solution of optimal control problems (OCPs) on-line. In

other words, control actions for the manipulated inputs of a process are computed by formulating

and solving a dynamic optimization problem on-line that takes advantage of a dynamic process

model while accounting for process constraints. With the available computing power of modern

computers, solving complex dynamic optimization problems (e.g., large-scale, nonlinear, and non-

convex optimization problems) on-line is becoming an increasingly viable option to use as a control

scheme to improve the steady-state and dynamic performance of process operations.

The process performance of a chemical process refers to the process operating economics
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Figure 1.1: The traditional hierarchical paradigm employed in the chemical process industries for

planning/scheduling, optimization, and control of chemical plants (adapted from [165]).
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and encapsulates many objectives: profitability, efficiency, variability, capacity, sustainability, etc.

As a result of continuously changing process economics, e.g., variable feedstock, changing en-

ergy prices, variable customer demand, process operation objectives and strategies need to be

frequently updated to account for these changes. Traditionally, a hierarchical strategy for plan-

ning/scheduling, optimization, and control has been employed in the chemical process industries.

A block diagram of the hierarchical strategy is shown in Fig. 1.1 (adapted from [165]). Although

the block diagram provides an overview of the main components, it is a simplified view of modern

planning/scheduling, optimization, and control systems employed in the chemical process indus-

try in the sense that each layer may be comprised of many distributed and hierarchical computing

units. The underlying design principle of the hierarchical strategy invokes time-scale separation

arguments between the execution/evolution of each layer (Fig. 1.1). In the highest level of the

hierarchy, enterprise-wide and/or plant-wide planning and scheduling decisions are made on the

order of days-months. These decisions are made on the basis of multiple operating processes even

multiple operating plants, and are out-of-scope of the current monograph.

In the next layers of the hierarchy, economic optimization and control of chemical processes is

addressed in the multi-layer hierarchical architecture, e.g., [121, 36] (Fig. 1.1). The upper-layer,

called real-time optimization (RTO), is responsible for process optimization. Within the RTO

layer, a metric, usually defining the operating profit or operating cost, is optimized with respect

to an up-to-date and rigorous steady-state process model to compute optimal process steady-state.

The computed steady-state is sent to the lower-layer feedback process control systems, which

consists of the supervisory control and regulatory control layers. The process control system steers

the process to operate at the steady-state using the manipulated inputs to the process. Also, the

process control system also must work to reject disturbances and ideally guide the trajectory of the

process dynamics along an optimal path to the steady-state.

The advanced or supervisory process control layer of Fig. 1.1 consists of control algorithms

that are used to account for process constraints, coupling of process variables, and processing

units. In the advanced process control layer, model predictive control (MPC), a control strategy
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based on optimal control concepts, has been widely implemented in the chemical process indus-

try, e.g., [125, 81, 132, 124, 155, 152]; see, also, the books [3, 27, 118, 159, 34, 69]. MPC uses

a dynamic model of the process in an optimization problem to predict the future evolution of

the process over a finite-time horizon and to determine the optimal input trajectory with respect

to a specified performance index. Furthermore, MPC can account for the process constraints and

multi-variable interactions in the optimization problem. Thus, it has the ability to optimally control

constrained multiple-input multiple-output nonlinear systems. The conventional or tracking formu-

lations of MPC use a quadratic performance index, which is a measure of the predicted squared

weighted error of the states and inputs from their corresponding steady-state values, to force the

process to the (economically) optimal steady-state. The regulatory control layer is composed of

mostly single-input single-output control loops like proportional-integral-derivative (PID) control

loops that work to implement the computed control actions by the supervisory control layer, i.e., it

ensures that the control actuators achieve the control action requested by the MPC layer.

As previously mentioned, the overall control architecture of Fig. 1.1 invokes intuitive time-

scale separation arguments between the various layers. For instance, RTO is executed at a rate of

hours-days, while the feedback control layers compute control actions for the process at a rate of

seconds-minutes-hours [165]. Though this paradigm has been successful, we are witnessing the

growing need for dynamic market-driven operations which include more efficient and nimble pro-

cess operation [9, 92, 167, 38]. To enable next-generation or “Smart” operations/manufacturing,

novel control methodologies capable of handling dynamic optimization of process operations

should be designed and investigated. More specifically, there is a need to develop theory, algo-

rithms, and implementation strategies to tightly integrate the layers of Fig. 1.1. The benefits of

such work may be to transform process operations and usher in a new era of dynamic (off steady-

state and demand and market-driven) process operations.

In an attempt to integrate economic process optimization and process control as well as real-

ize the possible process performance improvement achieved by consistently dynamic, transient,

or time-varying operation, i.e., not forcing the process to operate at a pre-specified steady-state,
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economic MPC (EMPC) has been proposed which incorporates a general cost function or perfor-

mance index in its formulation [80, 61, 156, 86, 6, 76]. The cost function may be a direct or indirect

reflection of the process economics. However, a by-product of this modification is that EMPC may

operate a system in a possibly time-varying fashion to optimize the process economics and may not

operate the system at a specified steady-state or target. The rigorous design of EMPC systems that

operate large-scale processes in a dynamically optimal fashion while maintaining safe and stable

operation of the closed-loop process system is challenging as traditional notions of stability, e.g.,

asymptotic stability of a steady-state, may not apply to the closed-loop system under EMPC. It is

important to point out that the use of OCPs with an economic cost function is not a new concept. In

fact, MPC with an economic cost is not new either (e.g., one such EMPC framework was presented

in [80]). However, closed-loop stability, performance, and computational efficiency under EMPC

has only recently been considered and proved for various EMPC formulations.

1.2 Objectives and Organization of the Dissertation

This dissertation considers issues related to computational efficiency of EMPC, theoretical anal-

ysis of closed-loop stability and performance under EMPC, and chemical process applications

controlled by EMPC. Specifically, the objectives of this dissertation are summarized as follows:

1. To develop economic model predictive control methods that address infinite-time and finite-

time closed-loop economic performance and time-varying economic considerations.

2. To develop two-layer (hierarchical) dynamic economic process optimization and feedback

control frameworks that incorporate EMPC with other control strategies allowing for com-

putational efficiency.

3. To address real-time computation of EMPC requirements.

4. To develop EMPC schemes for nonlinear time-delay systems that address closed-loop sta-

bility and performance.
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5. To develop control configuration techniques for EMPC.

The dissertation is organized as follows. In the subsequent section of this chapter, a few chem-

ical process examples that will be used to study the closed-loop properties of EMPC are presented

to motivate the need for unsteady-state process operation to improve economic performance.

In Chapter 2, a brief overview of EMPC methods is provided. In particular, the role of con-

straints imposed in the optimization problem of EMPC for feasibility, closed-loop stability, and

closed-loop performance is explained. Three main types of constraints are considered including

terminal equality constraints, terminal region constraints, and constraints designed via Lyapunov-

based techniques. EMPC is applied to a benchmark chemical process example to illustrate the

effectiveness of time-varying operation to improve closed-loop economic performance compared

to steady-state operation and to an open-loop periodic operating policy. A few preliminary results

on stabilization of sampled-data systems and on Lyapunov-based MPC is presented.

In Chapter 3, a review of Lyapunov-based EMPC (LEMPC), presented in [76], is given includ-

ing closed-loop stability and robustness properties. The LEMPC designs that address closed-loop

performance and time-varying economic stage cost function are also addressed in this chapter. The

methods are applied to two chemical process examples.

In Chapter 4, several two-layer approaches to dynamic economic optimization and control are

developed and discussed. The upper layer, utilizing an EMPC, is used to compute economically

optimal policies and potentially, also, control actions that are applied to the closed-loop system.

The economically optimal policies are sent down to a lower layer MPC scheme which may be a

tracking MPC or an EMPC. The lower layer MPC scheme forces the closed-loop state to closely

follow the economically optimal policy computed in the upper layer EMPC. The methodologies

are applied to several chemical process examples to demonstrate their effectiveness.

In Chapter 5, closed-loop stability of nonlinear systems under real-time Lyapunov-based eco-

nomic model predictive control (LEMPC) with potentially unknown and time-varying computa-

tional delay is considered. To address guaranteed closed-loop stability (in the sense of bounded-

ness of the closed-loop state in a compact state-space set), an implementation strategy is devel-
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oped which features a triggered evaluation of the LEMPC optimization problem to compute an

input trajectory over a finite-time prediction horizon in advance. At each sampling period, sta-

bility conditions must be satisfied for the precomputed LEMPC control action to be applied to

the closed-loop system. If the stability conditions are not satisfied, a backup explicit stabilizing

controller is applied over the sampling period. Closed-loop stability under the real-time LEMPC

strategy is analyzed and specific stability conditions are derived. The real-time LEMPC scheme

is applied to a chemical process network example to demonstrate closed-loop stability and closed-

loop economic performance improvement over that achieved for operation at the economically

optimal steady-state.

In Chapter 6, closed-loop stability of nonlinear time-delay systems under LEMPC is consid-

ered. LEMPC is initially formulated with an ordinary differential equation model and is designed

on the basis of an explicit stabilizing control law. To address closed-loop stability under LEMPC,

first, we consider the stability properties of the sampled-data system resulting from the nonlinear

continuous-time delay system with state and input delay under a sample-and-hold implementation

of the explicit controller. The steady-state of the resulting closed-loop system is shown to be prac-

tically stable. Second, conditions such that closed-loop stability, in the sense of boundedness of the

closed-loop state, under LEMPC are derived. A chemical process example is used to demonstrate

that indeed closed-loop stability is maintained under LEMPC for sufficiently small time-delays.

To cope with performance degradation owing to the effect of input delay, a predictor feedback

LEMPC methodology is also discussed. The predictor feedback LEMPC design employs a pre-

dictor to compute a prediction of the state after the input delay period and an LEMPC scheme that

is formulated with a differential difference model (DDE) model, which describes the time-delay

system, initialized with the predicted state. The predictor feedback LEMPC is also applied to the

chemical process example and yields improved closed-loop stability and economic performance

properties.

In Chapter 7, an input selection methodology for EMPC is developed. The methodology uti-

lizes the relative degree and the sensitivity of the economic cost with respect to an input to identify
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and select stabilizing manipulated inputs with the most dynamic and steady-state influence on

the economic cost function to be assigned to EMPC. Other considerations for input selection for

EMPC are also discussed and integrated into an input selection methodology for EMPC. The con-

trol configuration selection method for EMPC is demonstrated using a chemical process example.

Chapter 8 summarizes the main results of the dissertation.

1.3 Chemical Process Examples

As discussed in the introduction, steady-state operation is typically adopted in chemical process

industries, i.e., the control system is used to force a chemical process to a pre-specified steady-

state and maintain operation at this steady-state thereafter. However, steady-state operation may

not necessarily be the best operation strategy with respect to the process economics. In fact, the

chemical process control literature is rich with chemical process examples that demonstrate perfor-

mance improvement with respect to specific cost metrics with dynamic process operation, e.g., [42,

110, 171, 189, 188, 14, 168, 166, 179, 180, 144, 146, 145, 170, 24, 114, 139, 25, 120, 169], and the

numerous references therein. To help identify systems that achieve a performance benefit from pe-

riodic operation, several techniques have been proposed including frequency response techniques

and the application of the maximum principle [42, 11, 22, 10, 72, 179]. Periodic control strategies

have also been developed for several applications, for instance, [114, 139, 24, 166, 146].

While the periodic operating strategies listed above do demonstrate economic performance im-

provement, in the case of forced periodic operation, i.e., periodic operation induced by periodic

switching of manipulated inputs, the periodic operating policy is identified through a low-order

control parameterization, e.g., a bang-bang input profile. Owing to recent advances in dynamic

optimization (numerical solution strategies or direct methods), it is possible that these chemical

process examples previously considered in the context of periodic operation may achieve further

economic performance improvement under EMPC (two such example are given below). More-

over, the main advantage of EMPC is that it systematically determines, in real-time, the optimal
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Table 1.1: Dimensionless process model parameters of the ethylene oxidation reactor model. The

parameters are from [144].

Parameter Value Parameter Value

A1 92.80 B3 2170.57
A2 12.66 B4 7.02
A3 2412.71 γ1 -8.13
B1 7.32 γ2 -7.12
B2 10.39 γ3 -11.07

operating strategy based on the economic measure while accounting for operating constraints. Two

chemical process examples that benefit from time-varying operation are provided below.

1.3.1 Catalytic Oxidation of Ethylene

Consider a benchmark chemical reactor example previously studied in the context of forced pe-

riodic operation [144, 146]. Within the reactor, ethylene oxide (C2H4O) is produced from the

catalytic oxidation of ethylene with air. Ethylene oxide is an important raw material within the

chemical industry because it is used for the synthesis of ethylene glycol which is subsequently

used to produce many materials. The reactor is modeled as a non-isothermal continuous stirred-

tank reactor (CSTR) with a coolant jacket to remove heat from the reactor. Two combustion re-

actions occur that consume both the reactant and the product, i.e., ethylene and ethylene oxide,

respectively. The reactions are given by

C2H4 +
1
2

O2
r1→ C2H4O

C2H4 +3O2
r2→ 2CO2 +2H2O

C2H4O+
5
2

O2
r3→ 2CO2 +2H2O
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where ri, i = 1,2,3 is the reaction rate of the ith reaction, and the reaction rate expressions are

r1 = k1 exp
(−E1

RT

)
P0.5

E (1.1)

r2 = k2 exp
(−E2

RT

)
P0.25

E (1.2)

r3 = k3 exp
(−E3

RT

)
P0.5

EO (1.3)

where ki and Ei, i = 1,2,3 are the reaction rate constant and activation energy for the ith reaction,

respectively, T is the temperature, R is the ideal gas constant, and Pj is the partial pressure of the

jth component in the reactor ( j = E,EO denotes ethylene and ethylene oxide, respectively). The

reaction rate expressions are from [2] where catalytic oxidation of ethylene using an unmodified,

commercial catalyst was studied over the temperature range 523-573 K. To model the gaseous

mixture within the reactor, ideal gas is assumed and the concentration of the jth component within

the reactor, denoted by C j, is

C j =
Pj

RT
. (1.4)

A model describing the dynamic behavior of the reactor is derived through first principles under

standard modeling assumptions, e.g., ideal gas and constant heat capacity. The dimensionless states

are

x1 = ρ/ρref, x2 =CE/Cref, x3 =CEO/Cref, x4 = T/Tref

where ρ/ρref is the dimensionless vapor density in the reactor, CE/Cref is the dimensionless ethy-

lene concentration in the reactor, CEO/Cref is the dimensionless ethylene oxide concentration in

the reactor, and T/Tref is the dimensionless reactor temperature. The manipulated inputs are

u1 = Q f /Qref, u2 =CE, f /Cref, u3 = Tc/Tref

where Q f /Qref is the dimensionless volumetric flow rate of the reactor feed, CE, f /Cref is the di-

mensionless ethylene concentration of the reactor feed, and Tc/Tref is the dimensionless coolant
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temperature. The model of the reactor is given by the following set of nonlinear ordinary differen-

tial equations:

dx1

dt
= u1(1− x1x4) (1.5)

dx2

dt
= u1(u2− x2x4)−A1r̄1(x2,x4)−A2r̄2(x2,x4) (1.6)

dx3

dt
=−u1x3x4 +A1r̄1(x2,x4)−A3r̄3(x3,x4) (1.7)

dx4

dt
=

u1

x1
(1− x4)+

B1

x1
r̄1(x2,x4)+

B2

x1
r̄2(x2,x4)

+
B3

x1
r̄3(x3,x4)−

B4

x1
(x4−u3) (1.8)

where

r̄1(x2,x4) = exp(γ1/x4)(x2x4)
1/2 (1.9)

r̄2(x2,x4) = exp(γ2/x4)(x2x4)
1/4 (1.10)

r̄3(x3,x4) = exp(γ3/x4)(x3x4)
1/2 (1.11)

and the parameters are given in Table 1.1 from [144, 146]. The maximum available control energy

is considered to be bounded in the following set:

u1 ∈ [0.0704,0.7042],

u2 ∈ [0.2465,2.4648],

u3 ∈ [0.6,1.1] .

The profitability of the reactor scales with the yield of ethylene oxide. Therefore, to optimize

the profitability or economics of the reactor, one seeks to maximize the time-averaged yield of

11



Table 1.2: Process parameters of the CSTR.

k0 8.46×106 A1 1.69×106

x20 0.050 A2 1.41×104

ethylene oxide. The time-averaged yield of ethylene oxide over an operating time t f is given by

Y =

1
t f

∫ t f

0
x3(τ)x4(τ)u1(τ) dτ

1
t f

∫ t f

0
u1(τ)u2(τ) dτ

(1.12)

which is a measure of the amount of ethylene oxide leaving the reactor relative to the amount

of ethylene fed into the reactor. For practical reasons, one may want to optimize the yield while

also ensuring that the time-averaged amount of ethylene that is fed to the reactor be fixed, i.e.,

determine the method to distribute ethylene to the reactor that maximizes the yield. Limiting the

time-averaged amount of ethylene that may be fed to the reactor is described by the following

constraint:
1
t f

∫ t f

0
u1(τ)u2(τ) dτ = ṀE (1.13)

where ṀE is the time-averaged dimensionless molar flow rate of ethylene that may be fed to the

reactor. If u1,minu2,min < ṀE < u1,maxu2,max, the constraint of Eq. 1.13 prevents one from sim-

ply considering feeding in the minimum or maximum flow rate of ethylene to the reactor over

time. Within the context of EMPC, the constraint of Eq. 1.13 gives rise to a class of economically

motivated constraints which take the form of integral or average constraints. In stark contrast to

traditional or conventional control methodologies (e.g., proportional-integral-derivative control or

tracking MPC), economically motivated constraints may be directly incorporated into EMPC.

1.3.2 Continuously-Stirred Tank Reactor with Second-order Reaction

A well-known chemical engineering example that demonstrates performance improvement through

time-varying operation is a CSTR where a second-order reaction occurs. Specifically, consider the

12



system described by the following dynamic equations given in dimensionless form:

ẋ1 =−x1−A1e−1/x2x2
1 +u (1.14a)

ẋ2 =−x2 +A2e−1/x2x2
1 + x20 (1.14b)

where x1 is the dimensionless reactant concentration, x2 is the dimensionless temperature, and A1,

A2 and x20 are constant parameters. The values of the parameters are given in Table 1.2. The input

is bounded: u ∈ [umin,umax] = [0.5,7.5]. The system of Eq. 1.14 describes a non-isothermal CSTR

where a second-order reaction occurs and the inlet concentration of the reactant material is the

manipulated input. The economic stage cost is

le(x,u) = k0e−1/x2x2
1 (1.15)

which is the production rate of the desired product (k0 is a parameter). The system has an input

average constraint (dynamic constraint) given by:

1
t f

∫ t f

0
u(t) dt = uavg = 4.0 (1.16)

where t f is the length of operation. The practical motivation of the average constraint of Eq. 1.16 is

that the average amount of material that may be distributed to the reactor over time is fixed, i.e., the

constraint is economically motivated. The CSTR has an optimal steady-state xT
s = [1.182 0.073]

which corresponds to the steady-state input that satisfies the average input constraint (us = uavg)

with a production rate of 14.03.

An analysis is completed to determine if the economic performance, i.e., the average produc-

tion rate of the product, can be improved by using a time-varying operating strategy compared to

operating at the optimal steady-state. An auxiliary state is defined for the average constraint:

x3(t) :=
1
t f

∫ t

0
(u(t)−uavg) dt (1.17)
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which has dynamics:

ẋ3(t) =
1
t f
(u(t)−uavg) . (1.18)

The non-isothermal CSTR with the objective function of Eq. 1.15 is a member of a special class of

nonlinear systems:

ẋ = f̄ (x)+Bu (1.19)

where B ∈Rn×Rm is a constant matrix and f̄ : Rn→Rn is a differentiable vector function. Addi-

tionally, the stage cost only depends on the states:

le(x,u) = l̄e(x) (1.20)

where l̄e : Rn→R is a differentiable function. The Hamiltonian function of the system of Eq. 1.19

and cost of Eq. 1.20 is

H(x,u,λ ) = l̄e(x)+λ
T f̄ (x)+λ

T Bu (1.21)

where λ is the adjoint variable vector that satisfies

λ̇ (t) =−Hx(x(t),u(t),λ (t)) (1.22)

where Hx denotes the partial derivative of H with respect to x. From Pontryagin’s maximum

principle [150], a necessary condition can be derived for the optimal control, i.e., the control that

maximizes the Hamiltonian:

u∗i (t) =


ui,max, if bT

i λ (t)> 0

ui,min, if bT
i λ (t)< 0

(1.23)

where bi is the i-th column of B. For this class of systems and stage costs, if some time-varying

operating policy is the optimal operating strategy, then the operating policy is a bang-bang input

policy of Eq. 1.23.
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Figure 1.2: Average economic performance J̄e as a function of the period length τ .

Although the analysis above significantly reduces the space of possible optimal input trajec-

tories, it still yields an infinite space of input trajectories. Thus, consider the following periodic

bang-bang input trajectory over one period:

u(t) =


umax if t < τ/2

umin else
(1.24)

where τ is the period and t ∈ [0,τ). The input trajectory of Eq. 1.24 satisfies the average constraint

of Eq. 1.16 over each period. For the system of Eq. 1.14 with the input trajectory of Eq. 1.24, there

exists a periodic state trajectory for some τ > 0, i.e., it has the property x(t) = x(t + τ) for all t.

Indeed, the periodic solution of the system of Eq. 1.14 with the input of Eq. 1.24 achieves better

economic performance compared to the economic performance at steady-state for some τ . More-

over, the economic performance depends on the period which is shown in Fig. 1.2. Over the range

of periods considered (0.5 to 2.4), the period τ = 1.20 yields the best performance (Fig. 1.2). The

periodic solution with the input period of τ = 1.20 has an average cost of J̄e = 15.20 which is 8.30

percent better than the performance at the optimal steady-state. Periods greater than 1.96 achieve

worse performance compared to that at steady-state. The state, input, and BT λ = bT
1 λ = λ1+λ3/τ
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Figure 1.3: State, input, and λ1 +λ3/τ trajectories of the CSTR under the bang-bang input policy

with period τ = 1.20.

trajectories are given in Fig. 1.3 over one period. From Fig. 1.3, the input trajectory satisfies the

necessary condition of Eq. 1.23. From these results, time-varying operation is better than steady-

state operation from an economical point of view for this example. If the average constraint of

Eq. 1.16 was not imposed, the optimal operating strategy would be steady-state operation at the

steady-state corresponding to the input umax. The average constraint plays a crucial role for this

particular example.

As pointed out, the above analysis only considers economic performance. If the periodic so-

lution depicted in Fig. 1.3 is indeed optimal or some other bang-bang policy is the best operating

strategy, feedback control is needed to force the system state from an initial state to the optimal

time-varying solution. Moreover, the control problem becomes more complex when one con-

siders disturbances, plant-model mismatch and other forms of uncertainty, implementability of

the computed input trajectory, i.e., bang-bang control may not be implementable in practice, and

time-varying economic objectives and constraints. The example further motivates the inquiry and

theoretical developments in the context of EMPC systems that dictate time-varying operating poli-

cies.
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Chapter 2

Brief Overview of EMPC Methods and

Some Preliminary Results

This chapter contains a brief background on EMPC methods and some preliminary results on

sampled-data systems and Lyapunov-based MPC (LMPC). The background on EMPC methods is

meant to provide context to the EMPC design methodologies of the subsequent chapters. How-

ever, it is not meant to be comprehensive and rigorous. For a more comprehensive and rigorous

treatment, please refer to the reviews [157, 57] as well as the relevant literature. The preliminary

results are used in subsequent chapters.

2.1 Background on EMPC Methods

A brief overview of EMPC methods is provided in this section. The review of EMPC methods is a

version of [55]. First, the notation used throughout this dissertation is presented.

2.1.1 Notation

The set of real numbers is denoted by R, while the set of integers is denoted by I. The symbol

R≥0 (I≥0) is used to denote positive reals (integers), and Rn is an n-dimensional real (Euclidean)
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space. The notation x(t) ∈ Rn represents a time-dependent vector. The symbol | · | denotes the

Euclidean norm of a vector, i.e., |x| =
√

xT x where x ∈ Rn and xT denotes the transpose of x, and

| · |2Q denotes the square of a weighted Euclidean norm of a vector, i.e., |x|2Q = xT Qx where Q is a

positive definite matrix. A square diagonal matrix with diagonal elements equal to the elements of

a vector v is written as diag(v). An infinite sequence is denoted by {tk}k≥0, while a finite sequence

is written as {ti}N
i=0 which describes the sequence: t0, t1, . . . , tN−1, tN .

With regard to functions, a function, V : Rn → R, is said to be positive definite with respect

to x̄ if V (x) > 0 for all x ∈ Rn except for x̄ when V (x̄) = 0. When a function is positive definite

with respect to the origin (x̄ = 0), the function is simply called positive definite and the distinction

that it is positive definite with respect to the origin is omitted. A function, V : Rn→ R, is negative

definite if −V is positive definite. A continuous function α : [0,a)→R≥0 is said to be of class K

if it is strictly increasing and α(0) = 0, and it is of class K∞ if it is of class K , a = ∞, and α(r) as

r→∞, i.e., it is radially unbounded. A function β : [0,a)×R≥0→R≥0 is said to be of class-K L

if β (·, t) is of class-K for each t ≥ 0 and β (s, ·) is monotonically decreasing to zero for each

s ≥ 0. The family of piecewise constant, right-continuous functions with period ∆ is denoted as

S(∆), and with a slight abuse of notation, we will say u(·) ∈ S(∆) (or simply, u ∈ S(∆)) when the

vector-valued function u : [0,N∆)→ Rm, u : t 7→ u(t), may be described by

u(t) = ūi, for t ∈ [i∆,(i+1)∆)

for i = 0,1, . . . ,N−1 where ∆ > 0 is the period and ūi ∈ Rm (note that the appropriate domain of

the function u will be implied by the context). The floor and ceiling functions, denoted as bac and

dae (a ∈ R), respectively, are the largest integer not greater than a and the smallest integer not less

than a, respectively.

The set Ωr is a level set, also referred to as a level surface or sublevel set, of a scalar-valued

positive definite function: Ωr := {x ∈ Rn : V (x)≤ r} where r > 0. A ball of radius ν > 0 is given

by Bν := {x ∈ Rn : |x| ≤ ν}. The notation B\A denotes the relative complement of the set A in B,
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i.e., B\A = {x ∈ B : x /∈ A}. Finally, for algorithms, the notation j← j+1 is used to denote that

at the next time step or the next iteration of the loop, the index j is incremented by one.

2.1.2 Class of Nonlinear Systems

The class of systems considered is described by the system of nonlinear ordinary differential equa-

tions (ODEs):

ẋ = f (x,u,w) (2.1)

where x ∈X⊂Rn denotes the state vector, u(t) ∈U⊂Rm denotes the manipulated (control) input

vector, and w ∈W ⊂ Rl denotes the disturbance vector. The set of admissible input values U is

assumed to be compact, and the disturbance vector is bounded in the set W := {w ∈ Rl : |w| ≤ θ}

where θ > 0 bounds the norm of the disturbance vector. The vector function f : X×U×W→ X

is locally Lipschitz on X×U×W. A state measurement is synchronously sampled at sampling

instances denoted by the sequence {tk}k≥0 where tk := k∆, k ∈ I≥0, and ∆ > 0 is the sampling

period (the initial time is taken to be zero). The assumption of state feedback is standard owing to

the fact that the separation principle does not generally hold for nonlinear systems. Nevertheless,

some rigorous output feedback implementations of EMPC exist, e.g., [77, 60, 201].

The system of Eq. 2.1 is assumed to be equipped with a continuous function le : X×U→ R,

which reflects the instantaneous process/system economics. The function le(·, ·) will be used as a

stage cost in a model predictive control (MPC) framework and will be referred to as the economic

stage cost. The system of Eq. 2.1 may have additional constraints other than the input and state

constraints. Collecting all the constraints including the input, state, and additional constraints, the

constraints may be written generally as static constraints:

gs(x,u)≤ 0 (2.2)

where gs : X×U→ Rns and as dynamic constraints, e.g., average constraints like that of Eq. 1.13
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and Eq. 1.16 of the two examples of Chapter 1:

∫ td

0
gd(x(t),u(t)) dt ≤ 0 (2.3)

where gd : X×U→ Rnd and td is the time horizon that the constraint is imposed. The dynamic

constraints are often motivated by economic considerations. The economically optimal steady-

state and steady-state input pair is:

(x∗s ,u
∗
s ) = argmin

(xs,us)

{le(xs,us) : f (xs,us,0) = 0, gs(xs,us)≤ 0, gd(xs,us)≤ 0} . (2.4)

With the notation above, the optimal (minimizing) steady-state pair (x∗s ,u
∗
s ) is assumed to exist

and to be unique. If the minimizing pair is not unique, let (x∗s ,u
∗
s ) denote one of the minimizing

steady-state pairs. Without loss of generality, the optimal steady-state is taken to be the origin of

the unforced system ( f (0,0,0) = 0) in what follows.

2.1.3 EMPC Methods

Economic model predictive control is an MPC method that uses the economic stage cost in its for-

mulation. The EMPC problem, with a finite-time prediction horizon, may be broadly characterized

by the following optimal control problem (OCP):

min
u∈S(∆)

∫ tk+N

tk
le(x̃(t),u(t)) dt +Vf (x̃(tk+N)) (2.5a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.5b)

x̃(tk) = x(tk) (2.5c)

gs(x̃(t),u(t))≤ 0, ∀ t ∈ [tk, tk+N) (2.5d)∫ tk+N

tk
g̃d(x̃(t),u(t), tk) dt ≤ 0 (2.5e)
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where the decision variable of the optimization problem is the piecewise constant input trajectory

over the prediction horizon, i.e., the time interval [tk, tk+N), and x̃ denotes the predicted state trajec-

tory over the prediction horizon. Higher-order control parameterizations may also be considered.

Nevertheless, sample-and-hold, i.e., zeroth-order hold, implementation of controls is one of the

most commonly employed control parameterizations. Since the input trajectory of Eq. 2.5 may be

parameterized by N, m-dimensional vectors, the optimization problem is finite dimensional.

The cost functional of Eq. 2.5a consists of the economic stage cost with a terminal cost/penalty

Vf : X → R. The nominal dynamic model of Eq. 2.5b is used to predict the future evolution

of the system and is initialized with a state measurement of Eq. 2.5c. When available, distur-

bance estimates or predictions may be incorporated in the model of Eq. 2.5b. The constraints of

Eqs. 2.5d-2.5e represent the system constraints which may include, input, state, mixed state and

input, economic, and stability constraints. The constraint of Eq. 2.5e may be time-varying, i.e.,

formulated for the sampling time tk, so that the constraint of Eq. 2.3 is satisfied over the desired

operating interval, and hence, the notation of Eq. 2.5e is used to denote that the constraint is for-

mulated for the sampling time tk. For the remainder of this section, the dynamic constraints are

dropped and only EMPC schemes of the form of Eqs. 2.5a-2.5d are considered. Thus, the con-

straint set is Z := {(x,u) : x ∈ X, u ∈ U, gs(x,u)≤ 0} ⊆ X×U and Z is assumed to be compact.

EMPC is typically implemented with a receding horizon implementation to better approximate

the infinite-horizon solution and to ensure robustness of the control solution to disturbances and

open-loop instabilities. At a sampling time tk, the EMPC receives a state measurement, which is

used to initialize the model of Eq. 2.5b. The OCP of Eq. 2.5 is solved on-line for a (local) optimal

piecewise input trajectory, denoted by u∗(t|tk) for t ∈ [tk, tk+N). The control action computed for the

first sampling period of the prediction horizon, denoted as u∗(tk|tk), is sent to the control actuators

to be implemented over the sampling period from tk to tk+1, i.e., sample-and-hold implementation.

At the next sampling time, the OCP of Eq. 2.5 is re-solved after receiving a new state measurement

and by shifting the prediction horizon into the future by one sampling period.

EMPC, which consists of the on-line solution of the OCP of Eq. 2.5 along with a receding
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horizon implementation, results in an implicit state feedback law u(t) = κ(x(tk)) for t ∈ [tk, tk+1).

From a theoretical perspective, three fundamental issues are considered and addressed with respect

to EMPC. The first consideration is the feasibility of the optimization problem (both initial and

recursive feasibility are considered). Second, if Eq. 2.5 is recursively feasible, it is important to

consider the stability properties of the closed-loop system under EMPC. In general, one may not

expect that EMPC will force the state to a desired steady-state. The last theoretical consideration

is closed-loop economic performance under EMPC. Within the context of EMPC, closed-loop

performance typically means the average closed-loop economic performance. Over a finite-time

operating interval of length t f , the average performance is defined by the following index:

J̄e :=
1
t f

∫ t f

0
le(x(t),u(t)) dt (2.6)

where x and u are the closed-loop state and input trajectories, respectively, and over an infinite-time

operating interval, the infinite-time (asymptotic) average economic performance is given by:

J̄e,∞ := limsup
t f→∞

1
t f

∫ t f

0
le(x(t),u(t)) dt . (2.7)

Within the context of EMPC, the average economic performance is of interest because EMPC

may dictate a time-varying operating strategy to optimize the process/system economics. Thus, it

may not enforce convergence to the economically optimal steady-state. While the instantaneous

stage cost under EMPC at any time may be better or worse than the stage cost at the economically

optimal steady-state and steady-state input pair, the average economic performance under the time-

varying operating policy dictated by EMPC over the length of operation may be better than that

achieved by operation at the economically optimal steady-state.

Without additional assumptions and conditions, one may easily construct examples of systems

and stage costs of the form described above where the closed-loop under EMPC (without addi-

tional stability constraints) is unstable. Clearly, additional conditions and/or constraints enforced

in the EMPC problem may be needed to guarantee closed-loop stability. Some theoretical in-
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vestigations on EMPC that do not incorporate additional stability constraints exist including the

work of [68, 70] which require that the resulting EMPC has a sufficiently long horizon as well as

certain controllability assumptions and turnpike conditions be satisfied to guarantee closed-loop

stability and performance properties. Moreover, even though EMPC optimizes the process/system

economics, it does so over a finite-time prediction horizon. Over long periods of operation, no

conclusion, in general, may be made on closed-loop performance under EMPC (without additional

constraints). For provable results on feasibility, closed-loop stability, and closed-loop performance

under EMPC, typically, additional stability and/or performance constraints are added to the formu-

lation of EMPC. These formulations are discussed in the subsequent sections.

To address closed-loop stability, one may consider employing an infinite-horizon in the EMPC.

This may be a more appropriate prediction horizon because many chemical processes are con-

tinuously operated over long periods of time (practically infinite time). At least intuitively, the

resulting control law will provide some form of closed-loop stability assuming the existence of

a solution to the infinite-horizon EMPC as well as the ability to solve for a solution on-line.

However, it is practically impossible to solve an OCP with an infinite-horizon. To overcome

this problem, two approaches include: (1) approximating the infinite-horizon with a sufficiently

long finite-time horizon and (2) dividing the infinite-horizon into a finite-time horizon and estimat-

ing the infinite-horizon tail through an auxiliary control law or with modeling-based techniques,

e.g., [195, 86, 39, 85, 126, 127, 143, 196, 194]. Although some of these EMPC schemes may

be computationally tractable, the use of constraints typically enables shorter prediction horizons,

which may reduce the on-line computation relative to those that require sufficiently long horizons.

Thus, infinite-horizon EMPC and EMPC without stability constraints are not discussed, but rather,

EMPC systems formulated with constraints to provide guaranteed closed-loop properties are con-

sidered.
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EMPC with an Equality Terminal Constraint

Much of the recent theoretical work on EMPC investigates the extension of stabilizing elements

used in tracking MPC to EMPC such as adding a terminal constraint and/or terminal cost (see, for

instance, [124] for more details on the use of terminal constraints and/or a terminal cost within

the context of tracking MPC). Numerous EMPC formulations and theoretical developments which

include a terminal constraint and/or terminal cost have been proposed and studied, e.g., [158, 156,

63, 4, 39, 86, 111, 6, 134, 44, 112, 157, 5, 62, 67, 83, 135, 136, 13, 137, 191, 199]. There are two

main types of EMPC with terminal constraints: (1) EMPC with an equality terminal constraint,

and (2) EMPC with a terminal region constraint. In this subsection, the former type of EMPC is

considered which is an EMPC that is described by the optimization problem:

min
u∈S(∆)

∫ tk+N

tk
le(x̃(t),u(t)) dt (2.8a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.8b)

x̃(tk) = x(tk) (2.8c)

x̃(tN) = x∗s (2.8d)

gs(x̃(t),u(t))≤ 0, ∀ t ∈ [tk, tk+N) (2.8e)

where the constraint of Eq. 2.8d forces that the predicted state trajectory to converge to the optimal

steady-state at the end of the finite-time horizon. For EMPC with an equality terminal constraint,

the terminal cost is often omitted as it is not required for stability and performance guarantees.

Feasibility. EMPC with a terminal equality constraint is (initially) feasible for any initial state

in XN ∈ Rn which denotes the feasibility region of EMPC of Eq. 2.8. The feasible region depends

on the prediction horizon, and an explicit characterization of XN is difficult in general. Recursive

feasibility, i.e., feasibility at each subsequent sampling time, of EMPC with an equality terminal

constraint is guaranteed for the nominally operated system for any initial state x(0) ∈ XN . This

follows from the fact that a feasible solution to the EMPC may be constructed from the solution
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from the previous sampling time. Namely, u(t) = u∗(t|tk−1) for t ∈ [tk, tk+N−1) and u(t) = u∗s for

t ∈ [tk+N−1, tk+N) is a feasible solution for the EMPC at tk because it satisfies the constraints and

the terminal constraint of Eq. 2.8d. However, recursive feasibility is harder to show, in general,

when w(·) 6≡ 0.

Closed-loop Stability. With respect to closed-loop stability, a weak notion of stability follows

from the EMPC with terminal constraint formulation. If the initial state is in the feasible set,

the closed-loop state trajectory remains contained in the feasible set for nominal operation. For

stronger stability properties, e.g., asymptotic stability of x∗s , additional assumptions on the closed-

loop system must be satisfied. To discuss this issue, nonlinear discrete-time systems are considered

that have the form:

x(k+1) = fd(x(k),u(k)) (2.9)

where fd : X×U→ X is the discrete-time state transition map and k ∈ I≥0 is the time index. As

before, the system of Eq. 2.9 is subject to mixed state and input constraints (x,u) ∈ Z ⊆ X×U

where Z is a compact set and the origin is assumed to be the optimal steady-state ( fd(0,0) = 0).

Discrete-time systems are considered here to maintain consistency with the literature on the topic.

Nonetheless, some of these conditions and results have been extended to continuous-time systems,

e.g., [1]. One condition that leads to stronger stability properties is the notion of dissipativity which

has been extended to EMPC. Dissipativity was originally presented in [190] for continuous-time

systems and then, extended to discrete-time systems [26].

Definition 2.1 ([6]). The system of Eq. 2.9 is strictly dissipative with respect to a supply rate

s : X×U→ R if there exist a function λ : X→ R and a positive definite function β : X→ R≥0

such that

λ ( fd(x,u))−λ (x)≤−β (x)+ s(x,u) (2.10)

for all (x,u) ∈ Z.
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If the system of Eq. 2.9 is strictly dissipative with a supply rate:

s(x,u) = le(x,u)− le(x∗s ,u
∗
s ) (2.11)

then, the optimal steady-state is asymptotically stable for the closed-loop system under EMPC with

an equality terminal constraint [6]. Moreover, a Lyapunov function for the closed-loop system was

derived using the cost functional of the so-called rotated cost function [6]:

L(x,u) := le(x,u)+λ (x)−λ ( fd(x,u)) . (2.12)

The idea of using the rotated cost function to construct a Lyapunov function for the closed-loop

system was originally proposed in [39]. However, it relied on strong duality of the steady-state

optimization problem, which is a stronger assumption than strict dissipativity.

Closed-loop Performance. Utilizing the optimal input trajectory at tk (or time step k in discrete-

time) as a feasible solution to the EMPC at the next sampling period, one may upper bound the

difference between the cost functional value at the next sampling time and at the current sampling

time under nominal operation. The optimal input trajectory in discrete-time is denoted u∗( j|k) for

j = k, k+1, . . . , k+N−1, and the optimal cost functional value at time step k is denoted:

L∗e(x(k)) =
k+N−1

∑
j=k

le(x∗( j|k),u∗( j|k)) , (2.13)

where u∗(·|k) is the optimal input sequence (trajectory), x∗(·|k) is the corresponding state sequence

starting at x(k), and x(k) denotes the closed-loop state at time step k. Using the bound on the

difference between the two consecutive cost functional values, the closed-loop average economic

performance may be bounded:

1
T +1

T

∑
k=0

le(x(k),u∗(k|k))≤ le(x∗s ,u
∗
s )+

L∗e(x(0))−L∗e(x(T +1))
T +1

(2.14)
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where x(k) is the closed-loop state at time step k, and T < ∞ is the length of operation. From

Eq. 2.14, the effect of the second term of the right-hand side dissipates with longer (but finite)

operation. For infinite-time, the average economic performance is bounded by:

limsup
T→∞

1
T +1

T

∑
k=0

le(x(k),u∗(k|k))≤ le(x∗s ,u
∗
s ) , (2.15)

that is, the asymptotic average performance is no worse than that at the steady-state pair (x∗s ,u
∗
s ) [6].

Remark 2.1. If the dynamic constraints of Eq. 2.3 take the form of average constraints, methodolo-

gies for EMPC with an equality terminal constraint have been proposed that ensure that the average

constraint is satisfied asymptotically and over a finite-time time horizon, e.g., [6] and [137], respec-

tively.

EMPC with a Terminal Region Constraint

EMPC of Eq. 2.8 requires that the initial state be sufficiently close to the steady-state such that

it is possible to reach the steady-state in N sampling times. This type of constraint may limit the

feasible region [4]. Numerically computing a solution that satisfies such a constraint exactly may

also be challenging. Therefore, terminal region constraints may be employed in EMPC.

One such method is a terminal region constraint designed via an auxiliary local control law. The

terminal region is designed to be a forward invariant set for the nonlinear system under the local

control law. The local control law can, for instance, be designed on the basis of the linearization of

the system around the optimal steady-state. The terminal region is denoted as X f and the resulting
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EMPC is given by the following problem:

min
u∈S(∆)

∫ tk+N

tk
le(x̃(t),u(t)) dt +Vf (x̃(tk+N)) (2.16a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.16b)

x̃(tk) = x(tk) (2.16c)

x̃(tN)X f (2.16d)

gs(x̃(t),u(t))≤ 0, ∀ t ∈ [tk, tk+N) (2.16e)

where Eq. 2.16d is the terminal region constraint. In general, for closed-loop stability and perfor-

mance, the terminal cost is such that Vf (·) 6≡ 0.

In [4], a procedure to design a local control law, a terminal region constraint, and a terminal

cost for EMPC satisfying the assumption below was proposed:

Assumption 2.1. There exist a compact terminal region X f ⊂ Rn, containing the point x∗s in its

interior, and control law hL : X f → U, such that (for the discrete-time system of Eq. 2.9):

Vf ( fd(x,hL(x)))≤Vf (x)− le(x,hL(x))+ le(x∗s ,u
∗
s ) (2.17)

for all x ∈ X f .

Feasibility. For nominal operation, if the EMPC with a terminal region is initially feasible,

the EMPC will be recursively feasible. This may be shown by using similar recursive arguments

as those used in showing the feasibility of the EMPC with the equality terminal constraint. If

u∗(t|tk−1) for t ∈ [tk−1, tk+N−1) is the optimal input trajectory at tk−1, then at tk, a feasible solu-

tion is u(t) = u∗(t|tk−1) for t ∈ [tk, tk+N−1) and u(t) = hL(x̃(tk+N−1)) for t ∈ [tk+N−1, tk+N) where

x̃(tk+N−1) is the predicted state at tk+N−1. For recursive feasibility when w(·) 6≡ 0, one EMPC

methodology designed with a terminal region constraint was presented in [15].

Closed-loop Stability. The closed-loop stability properties of EMPC with a terminal constraint

designed to satisfy Assumption 2.1 is similar to those of EMPC with an equality terminal con-
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straint. For nominal operation, the closed-loop state trajectory will stay in the feasible region. If

the system of Eq. 2.9 is strictly dissipative with supply rate of Eq. 2.11, the steady-state is asymp-

totically stable under EMPC with a terminal region constraint [4]; see, also, [1] which extends

these results to continuous-time systems.

Closed-loop Performance. If the local control law, terminal cost, and terminal region are de-

signed such that Assumption 2.1 is satisfied, the bound on asymptotic average performance of

Eq. 2.15 holds [4]. For finite-time, a similar bound to the bound of Eq. 2.14 may be derived for the

closed-loop system under EMPC with a terminal cost and a terminal region constraint.

EMPC designed with Lyapunov-based Techniques

The feasible region of EMPC with a terminal region constraint, while larger than the feasible region

of EMPC with an equality terminal constraint, depends on the prediction horizon length. Moreover,

the feasible region of both EMPC formulations is difficult to characterize. As an alternative to

overcome these challenges, one may consider designing an explicit nonlinear control law for the

nonlinear system of Eq. 2.1 and constructing a Lyapunov function for the resulting closed-loop

system consisting of the system of Eq. 2.1 under the explicit control law. With the control law and

Lyapunov function, a region constraint may be designed to be imposed within EMPC. Because

the control law and Lyapunov function are derived for the nonlinear system of Eq. 2.1, they can

be used to provide an estimate of the region of attraction of the nonlinear system. The resulting

EMPC is the so-called Lyapunov-based EMPC (LEMPC) [76, 32, 77, 78, 79, 58, 48]. LEMPC

is discussed in-depth in Chapter 3. However, it is important to point out that LEMPC is a dual-

mode control strategy. Under the first mode of operation, the LEMPC may dictate a time-varying

operating policy to optimize the economics within the region derived using the nonlinear control

law. If steady-state operation is desired, the second mode of operation, defined by a contractive

constraint, is used to ensure that the closed-loop state trajectory converges to a small neighborhood

of the steady-state. In contrast to the aforementioned EMPC methods, no dissipativity requirement

is needed to accomplish steady-state operation.
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Ωρe

Xf

xs

x(t0)

Figure 2.1: An illustration of possible open-loop predicted trajectories under EMPC formulated

with a terminal constraint (dotted), under EMPC formulated with a terminal region constraint

(dashed), and under LEMPC (solid).

Comparison of the Open-loop Predicted State Trajectory

The EMPC formulations of Eq. 2.8, Eq. 2.16, and the LEMPC (described in detail in the next chap-

ter) may result in different open-loop predicted state trajectories which are illustrated in Fig. 2.1

(Ωρe denotes the region constraint in LEMPC). Nonetheless, if the prediction horizon is sufficiently

long, the closed-loop behavior of the system under the various EMPC formulations would (intu-

itively) be expected to be similar because for a long prediction horizon, the EMPC solution starts to

closely approximate the infinite horizon solution and the effect on the closed-loop behavior of the

terminal conditions of the open-loop predicted trajectory is less significant than the corresponding

effect for shorter prediction horizons.
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2.2 Application of EMPC to a Chemical Process Example

To motivate the use of EMPC over conventional control methods that enforce steady-state operation

as well as periodic operation, EMPC is applied to the benchmark example of Section 1.3.1 (these

results first appeared in [51]). The reactor has an asymptotically stable steady-state:

xT
s = [0.998 0.424 0.032 1.002] (2.18)

which corresponds to the steady-state input:

us,1 = 0.35, us,2 = 0.5 (2.19)

where throughout this study the coolant temperature is fixed to its nominal value of us,3 = 1.0.

The control objective considered here is to optimize the time-averaged yield of ethylene oxide by

operating the reactor in a time-varying fashion around the stable steady-state. Owing to practical

considerations, the average amount of ethylene that may be fed into the reactor over the length of

operation is constrained to be equal to that when uniformly distributing the reactant material to the

reactor which is given by the following integral constraint:

1
t f

∫ t f

0
u1(t)u2(t)dt = us,1us,2 = 0.175 (2.20)

where us,1 and us,2 are the steady-state inlet volumetric flow rate and ethylene concentration, re-

spectively. Since the average ethylene fed to the reactor is fixed, which fixes the denominator of

the yield, the economic stage cost used in the formulation of the upper layer LEMPC is given by:

le(x,u) =−x3x4u1 . (2.21)

For the periodic operating policy, a similar periodic control strategy as that proposed in [144]

which varies the inlet feed flow rate and feed concentration in an open-loop periodic fashion as
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Feed Flow Rate
Feed Ethylene Concentration

Figure 2.2: Design of the open-loop periodic operation strategy over one period τ .

shown in Fig. 2.2. The parameters used for the periodic control strategy are τ = 46.8, a1 = 0.073,

a2 = 0.500, a3 = 0.514, and a4 = 0.941, which are similar parameters to the ones used in [144]. It is

important to note that the periodic control strategy of Fig. 2.2 with the aforementioned parameters

satisfies the integral constraint of Eq. 2.20.

To compare steady-state operation and periodic operating strategy with the operating policy

achieved under EMPC, an EMPC is designed for the reactor system with a sampling period of

∆ = 0.1. To enforce that the integral constraint of Eq. 2.20 be satisfied over each operating window

of length τ = 46.8, the EMPC is formulated with a shrinking horizon, i.e., at t = 0, the horizon is

set to N0 = 468. At the next sampling time (t = 0.1), the horizon is decreased by one (N1 = 467). At

subsequent sampling times, the prediction horizon is similarly decreased by one sampling period.

At t = 46.8, the horizon is reset to N468 = 468. For simplicity of notation, let j be the number of

operating windows of length τ = 46.8 that have elapsed and the EMPC considered in this example
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Figure 2.3: The open-loop CSTR (a) state trajectories and (b) input trajectories with the periodic

operating strategy shown in Fig. 2.2.

is given by the following formulation:

min
u∈S(∆)

−
∫ ( j+1)τ

tk
x̃3(t)x̃4(t)u1(t) dt (2.22a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.22b)

x̃(tk) = x(tk) (2.22c)

u1(t) ∈ [0.0704,0.7042], ∀ [tk,( j+1)τ) (2.22d)

u2(t) ∈ [0.2465,2.4648], ∀ [tk,( j+1)τ) (2.22e)

1
τ

∫ ( j+1)τ

tk
u1(t)u2(t) dt+= 0.175− 1

τ

∫ tk

jτ
u∗1(t)u

∗
2(t) dt (2.22f)

where u∗1(t) and u∗2(t) denotes the inputs applied to the system over the time jτ to tk and ( j+1)τ

denotes the end of the operating window.

The catalytic reactor system is initialized at

xT
0 = [0.997 1.264 0.209 1.004] (2.23)
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Figure 2.4: The closed-loop CSTR (a) state trajectories and (b) input trajectories with EMPC of

Eq. 2.22.
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Figure 2.5: State-space evolution in the x2− x3 phase plane of the reactor system given with the

EMPC of Eq. 2.22 and with the periodic control strategy shown in Fig. 2.2.
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which corresponds to an initial state on the stable limit cycle that the process with the periodic

strategy follows. Simulations are carried out with the periodic control strategy and the EMPC

of Eq. 2.22 over 10 operating windows. The evolution of the CSTR for both cases is given in

Fig. 2.3 with the open-loop periodic operation and Fig. 2.4 under EMPC. The state-space evolution

of the two strategies are shown in the x2− x3 phase plane in Fig. 2.5. From these figures, the

system with the two operating strategies approaches different limit cycles. Under EMPC, the time-

averaged yield over the entire time-interval of the simulation is 9.97% compared to 7.93% with

the periodic operation. If the reactor is initialized with the same initial point and the material is

instead distributed uniformly over the length of operation, the average yield is 6.63%. On the other

hand, initializing the system at the steady-state and maintain the system at steady-state thereafter

achieves a yield of 6.41%. Therefore, operation under EMPC has a clear performance benefit

compared to steady-state operation and the open-loop periodic operating strategy.

2.3 A Few Preliminary Results on Sampled-data Systems and

Lyapunov-based MPC

In this section, some preliminary results on nonlinear sampled-data systems and Lyapunov-based

MPC is provided. This material will be used in the subsequent chapters. Some of these results

were originally presented in [59].

2.3.1 Stabilization of Nonlinear Sampled-data Systems

In the subsequent chapters, LEMPC methods are considered. LEMPC is designed with an explicit

controller that satisfies the following assumption.

Assumption 2.2. There exists a feedback controller h(x) ∈U with h(0) = 0 that renders the origin

of the closed-loop system of Eq. 2.1 with u = h(x) and w ≡ 0 asymptotically stable for all x ∈ D0

where D0 is an open neighborhood of the origin.

35



Applying converse theorems [123, 100], Assumption 2.2 implies that there exists a continu-

ously differentiable Lyapunov function, V : D→ Rn, for the closed-loop system of Eq. 2.1 with

u = h(x) ∈ U and w≡ 0 such that the following inequalities hold:

α1(|x|)≤V (x)≤ α2(|x|), (2.24a)

∂V (x)
∂x

f (x,h(x),0)≤−α3(|x|), (2.24b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (2.24c)

for all x ∈ D where D is an open neighborhood of the origin and αi, i = 1, 2, 3, 4 are functions

of class K . A level set of the Lyapunov function Ωρ , which defines a subset of D (ideally the

largest subset contained in D), is taken to be the stability region of the closed-loop system under

the controller h(x). Standard techniques exist for designing a stabilizing control law for various

classes of continuous-time nonlinear systems (see, for instance, [87, 105, 88, 101, 100, 33] as well

as the references contained therein).

Currently, there are no general methods for constructing Lyapunov functions for broad classes

of nonlinear systems with constraints. However, for certain classes of systems, there exists some

general methods for constructing Lyapunov functions, e.g., Zubov’s method [45] and the sum of

squares decomposition [147]. Within the context of chemical process control, quadratic Lyapunov

functions have been widely used and have been demonstrated to be effective for estimating the

region of attraction of a given equilibrium point of a system (see, for example, the numerous

examples in [33] as well as the examples of the subsequent chapters).

The explicit controller poses a degree of robustness to disturbances/uncertainty in the sense that

when w 6≡ 0, the controller will force the closed-loop state to a small neighborhood of the origin if

the bound on the disturbance, θ , is sufficiently small. Moreover, since EMPC implements control

actions in a sample-and-hold fashion, we must also consider the closed-loop stability properties

of the controller h(x) applied in a sample-and-hold fashion. When the feedback controller h(x) is
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applied in a sample-and-hold fashion, the resulting closed-loop system is a nonlinear sampled-data

system given by:

ẋ(t) = f (x(t),h(x(tk)),w(t)) (2.25)

for t ∈ [tk, tk+1), tk = k∆, k = 0,1, . . ., and ∆ > 0 is the sampling period. Applying standard results

on sampled-data systems, e.g., [183, 133, 108, 140, 141], it can be shown that when the bound

on the disturbances and the sampling period are sufficient small the origin is practically stable for

all initial conditions in Ωρ . More specifically, the state trajectory of Eq. 2.25 starting in Ωρ will

remain bounded in Ωρ and converge to a small compact set containing the origin where it will be

maintained thereafter when the bound on the disturbance and the sampling period are sufficiently

small. It is important to emphasize that asymptotic stability of the origin of Eq. 2.25 is not achieved.

To achieve asymptotic stability of the origin of sampled-data system of Eq. 2.25, a stronger

assumption is required. In the following assumption and result, no restrictions are placed on the

state and input.

Assumption 2.3. There exists a locally Lipschitz feedback controller u = h(x) with h(0) = 0 such

that the vector field of the closed-loop system f (x,h(x),0) is continuously differentiable on Rn.

Furthermore, the origin of the nominal closed-loop system of Eq. 2.1 (w≡ 0) under the controller

h(x) implemented continuously is locally exponentially stable and globally asymptotically stable.

The following theorem characterizes the type of stability achieved when the controller h(x) is

applied in a sample-and-hold fashion with a sufficiently small hold period.

Theorem 2.1. If Assumption 2.3 holds, then given R > 0, there exist ∆∗ > 0 and M,σ > 0 such

that for ∆ ∈ (0,∆∗) the nominal closed-loop sampled-data system of Eq. 2.25 with arbitrary initial

condition x(0) = x0 ∈ BR satisfies the estimate:

|x(t)| ≤M exp(−σt)|x0| (2.26)

for all t ≥ 0.
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Proof. By virtue of Proposition 4.4 of [97], there exists a C1 positive definite and radially un-

bounded function V : Rn → R≥0, constants µ, ε > 0 and a symmetric, positive definite matrix

P ∈ Rn×n for the nominal closed-loop system of Eq. 2.1 under the controller h(x) implemented

continuously such that

∂V (x)
∂x

f (x,h(x),0)≤−µ|x|2, for all x ∈ Rn, (2.27)

V (x) = xT Px, for all x ∈ Rn with |x| ≤ ε . (2.28)

Let R > 0 and define ρ̂ := max{V (x) : x ∈ BR}. By virtue of Eq. 2.28 and the compactness of Ωρ̂ ,

there exist constants c1, c2 > 0 and c4 > 0 such that:

c1|x|2 ≤V (x)≤ c2|x|2, (2.29)

∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4|x| (2.30)

for all x ∈Ωρ̂ . Since f and h are locally Lipschitz mappings with f (0,0,0) = 0 and h(0) = 0, there

exist constants L, M > 0 such that:

| f (x,h(z),0)− f (x,h(x),0)| ≤ L|x− z|, (2.31)

| f (x,h(z),0)| ≤M|x|+M|z| (2.32)

for all x, z ∈Ωρ̂ . Let ∆∗ > 0 be sufficiently small so that the following inequality holds:

c4L
2M∆∗ exp(M∆∗)

1−2M∆∗ exp(M∆∗)
< µ (2.33)

In order to prove of estimate of Eq. 2.26, it suffices to show that for every initial condition
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x(0) ∈Ωρ̂ and for every integer k ≥ 0 it holds that:

∂V (x(t))
∂x

f (x(t),h(x(tk)),0)≤−
q
2
|x(t)|2, (2.34)

for all t ∈ [tk, tk+1) where

q := µ− c4L
2M∆∗ exp(M∆∗)

1−2M∆∗ exp(M∆∗)
> 0 . (2.35)

Using Eq. 2.29 and Eq. 2.34, local exponential stability can be established. The proof of Eq. 2.34

is given below for k = 0 and t ∈ [0, t1). For every other interval, the proof is similar.

If x(0) = 0, then Eq. 2.34 trivially holds (since x(t) = 0 for t ∈ [0, t1)). Therefore, consider the

case when x(0) 6= 0. The proof is made by contradiction. Suppose that there exists t ∈ [0, t1) with

∂V (x(t))
∂x

f (x(t),h(x(0)),0)>−q
2
|x(t)|2 .

The case that x(t) is not defined for some t ∈ [0, t1) is also covered by this assumption. Define

a := inf
{

t ∈ [0, t1) :
∂V (x(t))

∂x
f (x(t),h(x(0)),0)>−q

2
|x(t)|2

}
.

A standard continuity argument in conjunction with the fact that

∂V (x(0))
∂x

f (x(0),h(x(0)),0)≤−µ|x(0)|2 <−q
2
|x(0)|2

shows that a ∈ (0, t1) and that

∂V (x(t))
∂x

f (x(t),h(x(0)),0)≤−q
2
|x(t)|2

for all t ∈ [0,a] with (∂V (x(a))/∂x) f (x(a),h(x(0)),0) =−q
2 |x(a)|2. Moreover, for all t ∈ [0,a] the

inequality of Eq. 2.34 implies that V (x(t)) ≤ V (x(0)) ≤ ρ̂ . Therefore, x(t) ∈ Ωρ̂ for all t ∈ [0,a].
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Using inequalities Eqs. 2.27, 2.30, 2.31, we obtain:

∂V (x(t))
∂x

f (x(t),h(x(0)),0)≤−µ|x(t)|2 + c4L|x(t)||x(t)− x(0)| (2.36)

for all t ∈ [0,a]. Using Eq. 2.32 and since a≤ t1 ≤ ∆∗, a bound on the difference between x(t) and

x(0) is obtained:

|x(t)− x(0)| ≤ 2M∆
∗|x(0)|+M

∫ t

0
|x(τ)− x(0)| dτ (2.37)

for all t ∈ [0,a]. Applying the Gronwall-Bellman lemma to Eq. 2.37, we obtain:

|x(t)− x(0)| ≤ 2M∆
∗ exp(M∆

∗)|x(0)| (2.38)

for all t ∈ [0,a]. Using Eq. 2.38, the triangle inequality and the fact that 2M∆∗ exp(M∆∗) < 1

(implied by Eq. 2.33), we get for all t ∈ [0,a]:

|x(t)− x(0)| ≤ 2M∆∗ exp(M∆∗)
1−2M∆∗ exp(M∆∗)

|x(t)| . (2.39)

Thus, using Eq. 2.36, Eq. 2.39 and the fact that q := µ − c4L
2M∆∗ exp(M∆∗)

1−2M∆∗ exp(M∆∗)
> 0 we get for

all t ∈ [0,a]:
∂V (x(t))

∂x
f (x(t),h(x(0)),0)≤−q|x(t)|2 . (2.40)

Consequently, we must have:

∂V (x(a))
∂x

f (x(a),h(x(0)),0)≤−q|x(a)|2 ≤−q
2
|x(a)|2 . (2.41)

Since (∂V (x(a))/∂x) f (x(a),h(x(0)),0) = −q
2 |x(a)|2, we get x(a) = 0. However, this contradicts

Eq. 2.38 (since Eq. 2.38 in conjunction with the fact that 2M∆∗ exp(M∆∗)< 1 implies that |x(a)−

x(0)|< |x(0)|), which completes the proof.

Explicit feedback controllers that may be designed to satisfy Assumption 2.3 include, for ex-
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ample, feedback linearizing controller and some Lyapunov-based controllers [100, 101]. Owing to

the input constraints, it may not be possible to design a controller h(x) that achieves global asymp-

totic stability of the origin. In which case, we must modify the assumption which is considered in

the following corollary.

Corollary 2.1. Suppose there exists a locally Lipschitz feedback controller u = h(x) with h(0) = 0

for the system of Eq. 2.1 that renders the origin of the nominal closed-loop system under continuous

implementation of the controller h(x) locally exponentially stable. More specifically, there exist

constants ρ > 0, ci > 0, i = 1,2,3,4 and a continuously differentiable Lyapunov function V : Rn→

R+ such that the following inequalities hold:

c1 |x|2 ≤V (x)≤ c2 |x|2 , (2.42a)

∂V (x)
∂x

f (x,h(x),0)≤−c3 |x|2 , (2.42b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4 |x| , (2.42c)

for all x ∈ Ωρ . There exists ∆∗ > 0 and M,σ > 0 such that for all ∆ ∈ (0,∆∗) the estimate of

Eq. 2.26 holds for the nominal closed-loop sampled-data system of Eq. 2.25 with arbitrary initial

condition x(0) ∈Ωρ .

Proof. The proof follows along the same lines of Theorem 2.1 and shows that V is a Lyapunov

function for the closed-loop sampled-data system and takes advantage of the compactness of the

set Ωρ to establish an exponentially decaying estimate for the state trajectory of the closed-loop

sample-data system for any initial condition x(0) ∈Ωρ .

Remark 2.2. Sufficient conditions such that there exists a function V satisfying the inequalities of

Eq. 2.42 are when x = 0 is a locally exponentially stable (LES) equilibrium point for the closed-

loop system ẋ = f (x,h(x),0) and the mapping f (x,h(x),0) is continuously differentiable on Rn.

Indeed, by Lemma 8.1 in [100] the region of attraction A of x = 0 is an open, connected, invariant

set. Let r > 0 be such that the set S = {x ∈ Rn : |x| ≤ r} is contained in the region of attraction
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A. Then LES and compactness of S imply that an exponential bound holds for the solutions of the

closed-loop system ẋ = f (x,h(x),0) with initial conditions x(0)∈ S. It follows from Theorem 4.14

in [100] that there exists a Lyapunov function V for the closed-loop system ẋ = f (x,h(x),0) that

satisfies inequalities of Eq. 2.42 for certain constants c1, c2, c3, c4 > 0 and for all x ∈ int(S) (int(S)

denotes the interior of S). Let R < r be an arbitrary positive number and define V (x) =V (Proj(x))

for all x∈Rn, where Proj(x) denotes the projection on the closed ball of radius R centered at x = 0.

Then all inequalities of Eq. 2.42 hold with arbitrary ρ < c1R2.

2.3.2 Tracking Lyapunov-based MPC

To address stability of the closed-loop system with model predictive control (MPC) and recur-

sive feasibility, one tracking MPC technique unites the stability and robustness properties of the

Lyapunov-based controller with the optimal control properties of model predictive control (MPC)

[128, 129, 133, 34]. The resulting tracking MPC is called Lyapunov-based MPC (LMPC) and is

characterized by the following optimization problem:

min
u∈S(∆)

∫ tk+N

tk
lT (x̃(τ),u(τ)) dτ (2.43a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (2.43b)

x̃(tk) = x(tk) (2.43c)

u1(t) ∈ U, ∀ t ∈ [tk, tk+N) (2.43d)

∂V (x(tk))
∂x

f (x(tk),u(tk),0)≤
∂V (x(tk))

∂x
f (x(tk),h(x(tk)),0) (2.43e)

with

lT (x,u) = |x|2Q + |u|2R (2.44)

where Q and R are positive definite weighting matrix, x̃ is the predicted state trajectory over the

prediction horizon with the computed input trajectory by the LMPC, and N > 0 is the number of

sampling periods in the finite prediction horizon. Given that the cost function is positive definite
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with respect to the origin, which is the steady-state of the system of Eq. 2.1, the global minimum

of the cost function occurs at the optimal steady-state.

In the optimization problem of Eq. 2.43, Eq. 2.43b is the nominal system of Eq. 2.1 used to

predict the future evolution of the system, which is initialized with a measurement of the state at the

current sampling time (Eq. 2.43c). To ensure that the computed input trajectory takes values within

the admissible set, the input constraints are included in the optimization problem (Eq. 2.43d).

The constraint of Eq. 2.43e ensures that the LMPC computes a control action for the first sam-

pling period that decreases the Lyapunov function by at least the rate achieved by the Lyapunov-

based controller at tk. The Lyapunov-based constraint of Eq. 2.43e is a contractive constraint

and ensures that Lyapunov function decays until the closed-loop state converges to a small neigh-

borhood of steady-state. Moreover, from the Lyapunov-based constraint, the LMPC inherits the

closed-loop stability and robustness properties and the stability region Ωρ of the Lyapunov-based

controller in the sense that for any initial condition x(0)∈Ωρ , the closed-loop system state is guar-

anteed to converge to a small neighborhood of the origin and the optimization problem of Eq. 2.43

is guaranteed to be feasible.
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Chapter 3

Lyapunov-based EMPC: Closed-loop

Stability, Robustness, and Performance

3.1 Introduction

Within chemical process industries, many chemical processes are safety critical, and maintaining

safe and stable operation is the highest priority of a control system. Given that EMPC may operate

a process/system in a consistently dynamic fashion to optimize the economics, maintaining the

closed-loop state trajectory in a well-defined state-space region, where a degree of robustness to

uncertainty is achieved, is one method to achieve safe and stable operation under EMPC. This

objective is the main motivating factor in designing Lyapunov-based EMPC (LEMPC). LEMPC is

a dual-mode control strategy that allows for time-varying operation while maintaining the closed-

loop state in a compact state-space set. If it is desirable to force the closed-loop state to a steady-

state at any point over the length of operation, the second mode of operation of the LEMPC may

be used and will steer the closed-loop state to a small neighborhood of the steady-state.

In this chapter, several LEMPC designs are developed. The LEMPC designs, which are ca-

pable of optimizing closed-loop performance with respect to general economic considerations for

nonlinear systems, address recursive feasibility of the optimization problem at each sampling time,
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closed-loop stability, and closed-loop performance. The fundamental design concept employed in

the LEMPC designs is based on uniting receding horizon control with explicit Lyapunov-based

nonlinear controller design techniques. These techniques allow for an explicit characterization of

the stability region of the closed-loop system. Time-varying economic stage cost functions are also

addressed in this chapter. The results on LEMPC with time-varying economic stage cost functions

were originally presented in [48].

In all cases considered, sufficient conditions are derived such that the closed-loop nonlinear

system under the LEMPC designs possess a specific form of closed-loop stability and robustness to

be made precise in what follows. A critical property of the sufficient conditions derived for closed-

loop stability is that they do not rely on solving the LEMPC problem to optimality at each sampling

time, i.e., suboptimal solutions also stabilize the closed-loop system. In other words, feasibility

of the solution returned by the LEMPC and not optimality implies closed-loop stability under

LEMPC (this is a property initially investigated within the context of tracking MPC [164]). Owing

to the LEMPC design methodology, a feasible solution to the LEMPC may always be readily

computed. Terminal constraint design for LEMPC is also addressed. The terminal constraint

imposed in the LEMPC problem allows for guaranteed finite-time and infinite-time closed-loop

economic performance improvement over a stabilizing controller. The LEMPC methodologies

are applied to chemical process examples to demonstrate, evaluate, and analyze the closed-loop

properties of the systems controlled by LEMPC. Also, the closed-loop properties are compared to

traditional/conventional approaches to optimization and control, i.e., steady-state optimization and

tracking MPC.
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3.2 Lyapunov-based EMPC Design and Implementation

3.2.1 Class of Nonlinear Systems

The class of nonlinear systems, described by the following state-space model, considered is given

by:

ẋ = f (x,u,w) (3.1)

where x ∈ X ⊂ Rn denotes the state vector, u ∈ U ⊂ Rm denotes the control (manipulated) input

vector, and w ∈W ⊂ Rl denotes the disturbance vector. The control inputs are restricted to a

nonempty compact set U. The disturbance is bounded, i.e., W := {w ∈ Rl : |w| ≤ θ} where θ > 0

bounds the norm of the disturbance vector. The vector field f is assumed to be a locally Lipschitz

vector function on X×U×W. Without loss of generality, the origin is an equilibrium point of

the unforced nominal system ( f (0,0,0) = 0). State measurements of the system are assumed to be

available synchronously at sampling times denoted by the time sequence {tk}k≥0 where tk = k∆,

k = 0,1, . . . and ∆ > 0 is the sampling period. To describe the system economics, e.g., operating

profit or operating cost, the system of Eq. 3.1 is equipped with a time-invariant cost function

le : X×U→ R which is a measure of the instantaneous system economics. The function le is

referred to as the economic cost function and is continuous over X×U.

3.2.2 Stabilizability Assumption

The existence of an explicit controller h : X→ U, which renders the origin of the nominal closed-

loop system asymptotically, is assumed. This assumption is a stabilizability assumption for the

nonlinear system of Eq. 3.1 and is similar to the assumption that the pair (A,B) is stabilizable in

the case of linear systems. Throughout the dissertation, the explicit controller may be referred

to as the stabilizing controller or the Lyapunov-based controller. When convenient, the notation

h(x) may be used when referring to the explicit controller. However, this notation refers to the

controller itself, which is a function, and not the value of the function h at x. Even though the
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explicit controller is referred to as the Lyapunov-based controller, it may be designed using any

controller design techniques and not just Lyapunov-based techniques.

Applying converse Lyapunov theorems, e.g., [123, 103, 73, 100, 115, 184], the stabilizability

assumption implies that there exists a continuously differentiable Lyapunov function V : D→ R

for the nominal closed-loop system (ẋ = f (x,h(x),0)) that satisfies the inequalities:

α1(|x|)≤V (x)≤ α2(|x|) (3.2a)

∂V (x)
∂x

f (x,h(x),0)≤−α3(|x|) (3.2b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (3.2c)

for all x ∈ D ⊂ Rn where αi ∈K for i = 1,2,3,4 and D is an open neighborhood of the origin.

The region Ωρ ⊂ D such that also Ωρ ⊆ X is called the stability region of the closed-loop system

under the Lyapunov-based controller, and is an estimate of the region of attraction of the nonlinear

system of Eq. 3.1. Since the stability region depends on the explicit controller, the choice and

design of the controller plays a significant role in the estimated region of attraction. The case that

the set X represents explicit hard state constraints is discussed further in Section 3.2.5.

3.2.3 LEMPC Formulation

In the LEMPC design, the LEMPC optimizes the economic cost function, which is used as the

stage cost in the EMPC. Lyapunov-based MPC techniques, e.g., [129, 133, 34], are employed in

the EMPC design to take advantage of the stability properties of the Lyapunov-based controller.

The LEMPC is equipped with two operation modes. Under the first operation mode, the LEMPC

optimizes the economic cost function while maintaining the system state within the stability region

Ωρ . The LEMPC may dictate a general time-varying operating policy under the first operation

mode. Under the second operation mode, the LEMPC optimizes the economic cost function while

ensuring that the computed control action for the closed-loop system forces the state along a path
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that causes the Lyapunov function value to decay. The first and second operation mode of the

LEMPC will be referred to as mode 1 and mode 2 operation of the LEMPC, respectively, and are

defined by specific Lyapunov-based constraints imposed in the LEMPC optimization problem.

To enforce convergence of the closed-loop state to the steady-state (if desirable), the LEMPC is

formulated with a switching time ts. From the initial time (t0 = 0) to time ts, the LEMPC may dic-

tate a time-varying operating policy to optimize the economics while maintaining the closed-loop

state in Ωρ . After the time ts, the LEMPC operates exclusively in the second operation mode and

calculates the inputs in a way that the state of the closed-loop system is steered to a neighborhood

of the steady-state. For the sake of simplicity, the switching time ts is an integer multiple of the

sampling period (∆) of the LEMPC. This assumption poses little practical restrictions.

LEMPC is an EMPC scheme that uses the Lyapunov-based controller to design two regions

of operation where closed-loop stability of the system of Eq. 3.1 under the LEMPC and recursive

feasibility of the optimization problem are guaranteed for operation in the presence of bounded

disturbances. The formulation of the LEMPC optimization is:

min
u∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ)) dτ (3.3a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (3.3b)

x̃(tk) = x(tk) (3.3c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (3.3d)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if V (x(tk))≤ ρe and tk < ts (3.3e)

∂V (x(tk))
∂x

f (x(tk),u(tk),0)≤
∂V (x(tk))

∂x
f (x(tk),h(x(tk)),0)

if V (x(tk))> ρe or tk ≥ ts (3.3f)

where the decision variable of the optimization problem is the piecewise constant input trajectory

over the prediction horizon and N < ∞ denotes the number of sampling periods in the prediction
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horizon. The notation x̃ is used to denote the predicted (open-loop) state trajectory. Owing to

the control vector parameterization, i.e., zeroth-order hold control parameterization is used, the

optimization problem of Eq. 3.3 is finite-dimensional, i.e., the input trajectory is parameterized

by a finite number of variables. While zeroth-order hold is assumed, higher-order control vector

parameterization may also be employed. Moreover, the theoretical analysis may also apply to the

case that a higher-order parameterization is used because zeroth-order hold may, for some methods,

be considered to be a special case of the higher-order control vector parameterization method.

The LEMPC dynamic optimization problem of Eq. 3.3 minimizes a cost functional (Eq. 3.3a)

consisting of the economic cost function, i.e., le is used as the stage cost in the LEMPC. The

nominal system model is the constraint of Eq. 3.3b and is used to predict the evolution of the system

under the computed input trajectory over the prediction horizon. The dynamic model is initialized

with a state measurement obtained at the current sampling period (Eq. 3.3c). The constraint of

Eq. 3.3d limits the computed control actions to be in the set of the available control actions.

Mode 1 operation of the LEMPC is defined by the constraint of Eq. 3.3e and is active when the

current state is inside a predefined subset of the stability region Ωρe ⊂Ωρ and tk < ts. Since an eco-

nomic performance benefit may be realized when operating the system of Eq. 3.1 in a consistently

dynamic fashion compared to operating the system at the economically optimal steady-state, i.e.,

a steady-state that minimizes the economic stage cost amongst all of the admissible steady-states,

mode 1 is used to allow the LEMPC to enforce a potentially dynamic or transient operating policy.

The set Ωρe is designed such that if the current state x(tk) ∈Ωρe and the predicted state at the next

sampling time x̃(tk+1) ∈ Ωρe , then the actual (closed-loop) state at the next sampling time, which

may be forced away from Ωρe by a bounded disturbance/uncertainty, will be in Ωρ . The maximum

size of Ωρe depends on the bound on the disturbance and sampling period size; please refer to

Eq. 3.21 of Section 3.3.1.

To maintain boundedness of the closed-loop state within a well-defined state-space set (in this

case, boundedness of the state trajectory in Ωρ ), the second mode is used, which is defined by

the constraint of Eq. 3.3f. This constraint forces the computed control action by the LEMPC
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to decrease the Lyapunov function by at least the decay rate achieved by the Lyapunov-based

controller. Owing to the properties of the Lyapunov-based controller implemented in a sample-

and-hold fashion with a sufficiently small sampling period, the Lyapunov function value under

the LEMPC operating in mode 2 will decrease over the sampling period when the constraint of

Eq. 3.3f is active and when the state at tk is outside a small compact set containing the steady-state

(this set is defined as Ωρs in Theorem 3.1). If steady-state operation is desired, i.e., enforcing the

closed-loop state to a neighborhood of the steady-state, selecting the switching time to be finite

will guarantee that LEMPC forces the state to converge to a small forward invariant set containing

the steady-state.

The two tuning parameters of LEMPC, besides the user-defined economic cost function, are

the switching time ts and the set Ωρe . If ts = 0, the LEMPC will always operate in mode 2. This

may be desirable if steady-state operation is expected and/or if it is the best operating strategy. If

ts→∞, the LEMPC may dictate a time-varying operating policy over the entire length of operation.

An intermediate choice for the switching time (ts ∈ (0,∞)) may be used to balance the trade-off

between achieving better economic performance through time-varying operation and excessive

control actuator wear required to enforce the time-varying operating policy. The other tuning

parameter of LEMPC is ρe which does not need to be chosen so that Ωρe is the largest subset of

Ωρ such that the state at the next sampling time is guaranteed to be in Ωρ under mode 1 operation

of the LEMPC. A larger set Ωρe may allow for better closed-loop economic performance. On the

other hand, a smaller set Ωρe may allow for more robustness to uncertainty.

3.2.4 Implementation Strategy

The LEMPC is implemented in a receding horizon fashion. At each sampling time, the LEMPC

receives a state measurement x(tk), solves the optimization problem of Eq. 3.3, and sends the con-

trol action for the first sampling period of the prediction horizon to be implemented by the control

actuators from tk to tk+1. At the next sampling time, the LEMPC receives a state measurement

x(tk+1) and solves the optimization problem again by rolling the horizon one sampling period into
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the future. The optimal input trajectory computed by the LEMPC at a given sampling time tk is

denoted as u∗(t|tk) and is defined for t ∈ [tk, tk+N). The control action that is sent at time tk to

the control actuators to be applied over the sampling period from tk to tk+1 is denoted as u∗(tk|tk).

The receding horizon fashion implementation of the dual-mode LEMPC is stated formally in the

following algorithm:

1. At a sampling time tk, the controller receives the state measurement x(tk). Go to Step 2.

2. If tk < ts, go to Step 3. Else, go to Step 3.2.

3. If x(tk) ∈Ωρe , go to Step 3.1. Else, go to Step 3.2.

3.1. Mode 1 operation of the LEMPC is active, i.e., Eq. 3.3e is imposed in the optimization

problem and Eq. 3.3f is inactive. Go to Step 4.

3.2. Mode 2 operation of the LEMPC is active, i.e., Eq. 3.3f is imposed in the optimization

problem and Eq. 3.3e is inactive. Go to Step 4.

4. The LEMPC of Eq. 3.3 is solved to compute an optimal input trajectory u∗(t|tk) for t ∈

[tk, tk+N) and sends the control action u∗(tk|tk) computed for the first sampling period of the

prediction horizon to be applied to the closed-loop system over the sampling period (from tk

to tk+1). Go to Step 5.

5. Go to Step 1 (k← k+1).

The notation k← k+1 used in Step 5 of the algorithm means that k is set to k+1 for the next

time through the algorithm loop. In other words, k is set to k+1 before going to Step 1.

An illustration of the possible evolution of a system under LEMPC is shown in Fig. 3.1. At the

initial time, t0, the state is outside Ωρe . The contractive constraint of Eq. 3.3f is active to steer the

state to Ωρe . Once the state is in Ωρe , the LEMPC computes control actions using mode 1 operation,

i.e., the constraint of Eq. 3.3e is active. Under this mode of operation, the LEMPC dictates a time-

varying operating policy. After some point, a disturbance forces the state trajectory outside of Ωρe .
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Figure 3.1: An illustration of the state-space evolution of a system under LEMPC. The red trajec-

tory represents the state trajectory under mode 1 operation of the LEMPC, and the blue trajectory

represents the state trajectory under mode 2 operation.

Owing to the properties of the set Ωρe , the state remains in Ωρ . The mode 2 constraint is active to

force the state back into Ωρe where the LEMPC operates under mode 1 operation. Finally, at t ′,

the contractive constraint (Eq. 3.3f) is imposed at all subsequent sampling times to ensure that the

closed-loop state trajectory converges to a small neighborhood of the steady-state.

3.2.5 Satisfying State Constraints

While it may not appear that hard state constraints are included in the LEMPC problem of Eq. 3.3,

hard constraints may be accounted for through the design of Ωρ , which extends the ideas of im-

posing state constraints from Lyapunov-based MPC [129]. Specifically, define the set Φu as the set

in state-space that includes all the states where V̇ < 0 under the Lyapunov-based controller h(x).

Since the Lyapunov-based controller accounts for the input constraints, the set Φu also accounts for

the inputs constraints. Consider the case where Φu ⊆ X. This means that any initial state starting
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Ωx,u

Figure 3.2: An illustration of the various state-space sets described for enforcing state constraints

with LEMPC. The case when X⊂Φu is depicted in this illustration.

in the region X\Φu will satisfy the state constraint. However, the time-derivative of the Lyapunov

function may be positive and thus, it may not be possible to stabilize the closed-loop system under

the Lyapunov-based controller starting from such initial conditions. Therefore, the stability region

used in the formulation of the LEMPC for this case is Ωρ = Ωx,u = {x ∈ Rn : V (x)≤ ρx,u} where

ρx,u is chosen such that Ωx,u ⊆Φu because there exists a feasible input trajectory that maintains the

state in Ωx,u for all initial conditions in Ωx,u while satisfying both the state and input constraints.

The notation ρx,u denotes that both state and input constraints are accounted for in the design of

the region Ωx,u.

Now, consider the case where X ⊂ Φu. This case is depicted in Fig. 3.2. For any initial state

starting outside X, the state constraint will be violated from the onset. Also, for any initial state in

the set X, it is not possible, in general, to guarantee that the set X is forward invariant because there

may exist a stabilizing state trajectory, i.e., a trajectory where V̇ < 0 along this trajectory, that goes

outside of the set X before it enters back into the set X to converge to the origin. For the case with

hard constraints, define the set Ωρ as Ωρ = Ωx,u = {x ∈ Rn : V (x) ≤ ρx,u} where ρx,u is such that

Ωx,u ⊆ X. Since Φu cannot be computed in practice, the set Ωu := {x ∈ Rn : V (x)≤ ρu} where ρu

is such that V̇ < 0 for all states in Ωu under the Lyapunov-based controller h(x) which accounts for
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the input constraint only may be used. An illustration of the set definitions is provided in Fig. 3.2.

On the other hand, consider the case that it is desirable to impose the state constraints as

soft constraints. This may potentially allow for a larger region (Ωρ ) at the expense that the state

constraints may not be satisfied for all time. If X ⊂ Φu, Ωρ is constructed such that Ωρ ⊂ X,

and the state constraint is always satisfied for any initial conditions in Ωρ . From a closed-loop

stability stand-point, it is not desirable to increase the size of the set Ωρ because there may be

states outside of Ωρ where V̇ > 0. Therefore, consider the more interesting case that X ⊂ Φu. If

the state constraints are imposed as soft constraints, then one could take Ωρ = Ωu ⊆ Φu. For any

initial state in Ωρ , the amount of time that the state constraint (imposed as a soft constraint) will

be violated is finite. This statement holds because for any state in Ωρ /∈ X, V̇ < 0 and therefore,

the state trajectory evolves along a path where the Lyapunov function value decays over time.

Eventually, the state trajectory will converge to a level set Ωρ ′ in finite-time that is contained in X.

The following example illustrates the above methodology to satisfy (hard) state constraints.

Example 3.1. Consider the scalar system:

ẋ = x+u (3.4)

which has an open-loop unstable steady-state at the origin. If the system was subject to the follow-

ing constraints on the state and input: x ∈ X = [−2,2] and u ∈ U = [−1,1]. For any initial state

x0 6∈ [−1,1], the state will diverge to positive/negative infinity, i.e., some initial states that initially

satisfy the state constraint will not continue satisfying the state constraints over the length of oper-

ation. Following the approach detailed above, the nonlinear control law u =−sat(Kx) where sat(·)

is the saturation function and K > 1 is a tuning parameter renders the origin of Eq. 3.4 locally

exponentially stable while satisfying the input constraints. The quadratic function:

V (x) = x2 (3.5)

is a Lyapunov function for the closed-loop system. Moreover, the stability region, i.e., region
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where V̇ < 0, is Ωu = {x ∈ R : V (x) ≤ ρu} where ρu is chosen such that ρu < 1. Since Ωu ⊂ X,

Ωρ may be taken to be Ωu. If, instead, X = [−0.9,0.9], then X ⊂ Ωu and Ωρ may be taken to be

{x ∈ R : V (x)≤ 0.81}, i.e., Ωρ = X. In either situation, one may verify that for any initial state in

Ωρ , the closed-loop state trajectory will remain bounded in Ωρ and converge exponentially to the

origin without violating the state constraints. If one were to apply the LEMPC of Eq. 3.3 to the

system of Eq. 3.4 designed based on the nonlinear control law, the Lyapunov function of Eq. 3.5,

and the region Ωρ , the closed-loop state trajectory for all initial conditions in Ωρ is guaranteed to

satisfy the state constraint for all times.

3.2.6 Extensions and Variants of LEMPC

A few extensions and variants of the LEMPC formulation of Eq. 3.3 and implementations are

discussed below.

• For closed-loop economic performance reasons, terminal conditions, e.g., a terminal con-

straint or a terminal cost, may be added to the problem of Eq. 3.3 which is discussed in

Section 3.4.

• For all t < ts, the LEMPC may dictate a time-varying operating policy. If the LEMPC

enforces that the closed-loop state trajectory evolves along a path close to the boundary

of Ωρe , it is possible that the LEMPC continuously switches between mode 1 and mode 2

operation. The successive switching between mode 1 and mode 2 could lead to closed-loop

performance deterioration. For these cases, various modifications could be made to LEMPC

to avoid this behavior. First, owing to the fact that the economic cost is user-defined, one

could add penalization terms to the stage cost of the LEMPC that penalize the closeness

of the predicted state to the boundary of Ωρe . Then, the LEMPC will ideally maintain the

closed-loop state in the interior of Ωρe preventing the state from coming out of Ωρe .

• For closed-loop stability, the constraint x̃(t) ∈ Ωρe (Eq. 3.3e) only needs to hold for all

t ∈ [tk, tk+1) under mode 1 operation, i.e., the predicted state at the next sampling time must

55



be contained in Ωρe . However, the constraint of Eq. 3.3e is written for all t ∈ [tk, tk+N) owing

to two reasons. First, it ensures that the predicted state trajectory remains in a compact set.

Second, it allows the LEMPC to optimize the input trajectory with respect to (ideally) a bet-

ter prediction of the closed-loop behavior (recall that the closed-loop state must remain in Ωρ

and under mode 1 operation, it is desirable to maintain the closed-loop state in the interior

of Ωρe to avoid continuous switching between mode 1 and mode 2 operation). Nonetheless,

for practical implementation, one may consider imposing the constraint at a few time in-

stances along the prediction horizon, which will decrease the number of constraints relative

to imposing the constraint at every sampling time instance, for example.

• For mode 2 operation, one may need to enforce a similar constraint as the mode 1 constraint

to maintain the predicted state in Ωρ , i.e., enforce x̃(t) ∈ Ωρ for t ∈ [tk, tk+N). This ensures

that the predicted state trajectory is maintained in a compact set, which guarantees existence

and uniqueness of the solution as well as prevents numerical problems when large (in a norm

sense) state trajectories are computed. This issue is particularly relevant when the prediction

horizon is long.

• The LEMPC may be modified to handle potentially asynchronous and delayed measure-

ments; see [76].

• For certain applications, one may consider driving some of the states of the system to cer-

tain set-points and allowing the other states to evolve in a time-varying manner to optimize

the economics. For the LEMPC design of Eq. 3.3, this means that part of the system is

operated in the first operation mode and part of the system in the second operation mode

simultaneously. This is considered in the example of Section 3.3.2.

• With the formulated constraints of the LEMPC of Eq. 3.3, the optimization problem is al-

ways feasible in the sense that there exists an input trajectory that satisfies the constraints

for all x(tk) ∈ Rn. To force the closed-loop state to converge to Ωρ when x(tk) /∈ Ωρ , one

could employ the contractive constraint of Eq. 3.3f in an attempt to enforce that the Lya-
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punov function value decays (for states outside of Ωρ , it is not guaranteed that the Lyapunov

function value will decay even with such a constraint) or use a constraint, e.g., a terminal

constraint, to enforce that the predicted state converges to Ωρ (feasibility of the resulting

problem is not guaranteed). However, no guarantee may be made that the predicted state

exists or remains bounded as well as no guarantee may be made that the state will converge

to Ωρ starting from outside Ωρ in general.

3.3 Closed-loop Stability and Robustness under LEMPC

Closed-loop stability robustness of the closed-loop system of Eq. 3.1 under the LEMPC of Eq. 3.3.

LEMPC is applied to a chemical process example to demonstrate the closed-loop stability and

robustness properties.

To complete the closed-loop stability analysis, a few properties of the system of Eq. 3.1 are

needed in the analysis. Owing to the fact that f is locally Lipschitz on X×U×W and the sets Ωρ ,

U, and W are compact, there exists a positive constant M such that

| f (x,u,w)| ≤M (3.6)

for all x ∈ Ωρ , u ∈ U and w ∈W. By the continuous differentiable property of the Lyapunov

function V and the Lipschitz property assumed for the vector field f , there exist positive constants

Lx, Lw, L′x and L′w such that

| f (x,u,w)− f (x′,u,0)| ≤ Lx|x− x′|+Lw|w|, (3.7)

∣∣∣∣∂V (x)
∂x

f (x,u,w)− ∂V (x′)
∂x

f (x′,u,0)
∣∣∣∣≤ L′x|x− x′|+L′w|w| (3.8)

for all x, x′ ∈Ωρ , u ∈ U, and w ∈W.
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3.3.1 Synchronous Measurement Sampling

The stability properties of the LEMPC of Eq. 3.3 for the system of Eq. 3.1 is analyzed under ideal

sampling. In order to proceed, preliminary results are presented. First, for a bounded disturbance,

the difference between the state of Eq. 3.1 and the nominal state of Eq. 3.1 (the system of Eq. 3.1

with w≡ 0) may be bounded, which is stated in the following proposition.

Proposition 3.1. Consider the systems

ẋ(t) = f (x(t),u(t),w(t)) , (3.9)

˙̂x(t) = f (x̂(t),u(t),0) . (3.10)

Let x(t) and x̂(t) be the solutions of Eqs. 3.9-3.10, respectively, for t ∈ [t0, t f ] (t f > t0) with initial

states x(t0) = x̂(t0) ∈ Ωρ and input trajectory u(t) ∈ U for all t ∈ [t0, t f ] where u(·) is piecewise

constant in t. The system of Eq. 3.9 is also forced by some disturbance w(t) ∈W for all t ∈ [t0, t f ].

If x(t) ∈Ωρ and x̂(t) ∈Ωρ for all t ∈ [t0, t f ], then there exists a function fw ∈K such that

|x(t)− x̂(t)| ≤ fw(t− t0) (3.11)

for all t ∈ [t0, t f ].

Proof. Consider the difference between the solutions of Eqs. 3.9-3.10, which are denoted as x(t)

and x̂(t), respectively, and let e := x− x̂. From Eq. 3.7 and the fact that w(t) ∈W for all t ∈ [t0, t f ],

the time-derivative of e may be bounded as follows:

|ė(t)|= | f (x(t),u(t),w(t))− f (x̂(t),u(t),0)| (3.12)

≤ Lx|x(t)− x̂(t)|+Lw|w(t)| (3.13)

≤ Lx|e(t)|+Lwθ (3.14)

for t ∈ [t0, t f ]. Integrating the above bound with respect to time and noting that e(0) = x(0)− x̂(0) =
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0, the following bound on the error is obtained:

|e(t)| ≤ fw(t− t0) :=
Lwθ

Lx
(eLx(t−t0)−1). (3.15)

for all t ∈ [t0, t f ] when x(t), x̂(t)∈Ωρ , u(t)∈U, and w(t)∈W for all t ∈ [t0, t f ]. It is straightforward

to show that fw ∈K which completes the proof.

Proposition 3.2 bounds the difference between the Lyapunov function values evaluated at two

points in Ωρ .

Proposition 3.2. Consider the Lyapunov function V (·), i.e., a function that satisfies Eq. 3.2. There

exists a quadratic function fV (·) such that

V (x2)−V (x1)≤ fV (|x2− x1|) (3.16)

for all x1, x2 ∈Ωρ .

Proof. Since the Lyapunov function is continuously differentiable and bounded on compact sets,

there exists a positive constant MV > 0 such that:

V (x2)≤V (x1)+

∣∣∣∣∂V (x1)

∂x

∣∣∣∣ |x2− x1|+MV |x2− x1|2 (3.17)

for all x1, x2 ∈Ωρ . From Eq. 3.2, the partial derivative of V may be bounded as follows:

∣∣∣∣∂V (x1)

∂x

∣∣∣∣≤ α4(α
−1
1 (ρ)) (3.18)

for all x1 ∈ Ωρ . From Eqs. 3.17-3.18, the existence of a quadratic function fV (·) that bounds the

Lyapunov function values for any two points in Ωρ follows:

V (x2)≤V (x1)+ fV (|x2− x1|) (3.19)
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where

fV (s) := α4(α
−1
1 (ρ))s+MV s2 . (3.20)

Theorem 3.1 below provides sufficient conditions that guarantee that the state of the closed-

loop system of Eq. 3.1 under the LEMPC of Eq. 3.3 is always bounded in Ωρ and is ultimately

bounded in a small region containing the origin.

Theorem 3.1. Consider the system of Eq. 3.1 in closed-loop under the LEMPC design of Eq. 3.3

based on the Lyapunov-based controller that satisfies the conditions of Eq. 3.2. Let ∆ > 0, N ≥ 1,

εw > 0, and ρ > ρe ≥ ρmin > ρs > 0 satisfy

ρe < ρ− fV ( fw(∆)), (3.21)

−α3(α
−1
2 (ρs))+L′xM∆+L′wθ ≤−εw/∆, (3.22)

and

ρmin = max
s∈[0,∆]

{V (x(s)) : V (x(0))≤ ρs}, (3.23)

If x(0) ∈ Ωρ , then the state x(t) of the closed-loop system of Eq. 3.1 is always bounded in Ωρ for

all t ≥ 0 and is ultimately bounded in Ωρmin if ts is finite.

Proof. The proof is organized into three parts. In Part 1, feasibility of the LEMPC optimization

problem of Eq. 3.3 is proved when the state measurement at a specific sampling time is in Ωρ . In

Part 2, boundedness of the closed-loop state in Ωρ is established. In Part 3, ultimate boundedness

of the closed-loop state in a small state-space set containing the origin is proved when the switching

time is finite.

Part 1: The sample-and-hold input trajectory obtained from the Lyapunov-based controller is a

feasible solution to the LEMPC optimization problem of Eq. 3.3 when x(tk) ∈Ωρ . Let x̂(t) denote
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the solution at time t to the nominal sampled-data system:

˙̂x(t) = f (x̂(t),h(x̂(τi)),0) (3.24)

for t ∈ [τi,τi+1) (τi := tk+ i∆), i = 0,1, . . . ,N−1 with initial condition x̂(tk) = x(tk)∈Ωρ . Define û

as the resulting input trajectory of Eq. 3.24 defined over the interval [tk, tk+N). The input trajectory

û is a feasible solution to the LEMPC problem. The input trajectory meets the input constraints by

the formulation of the Lyapunov-based controller. For mode 2 operation, the mode 2 contractive

constraint of Eq. 3.3f is trivially satisfied with this feasible input trajectory. For mode 1 operation,

the region Ωρe is forward invariant under the Lyapunov-based controller applied in a sample-and-

hold fashion when Ωρmin ⊆Ωρe ⊂Ωρ where Ωρmin will be explained further in Part 3.

Part 2: To show that the state is maintained in Ωρ when x(0) ∈ Ωρ , mode 1 and mode 2

operation of the LEMPC must be each considered. To show the desired result, it is sufficient to

show that if the state at any arbitrary sampling time is such that x(tk) ∈ Ωρ , then the state at the

next sampling time is in Ωρ , i.e., x(tk+1) ∈Ωρ and the closed-loop state does not come out of Ωρ

over the sampling period. Recursive application of this result, proves that the closed-loop state is

always bounded in Ωρ for all t ≥ 0 when x(0) ∈Ωρ .

Case 1: If x(tk) ∈ Ωρe and tk < ts, the LEMPC operates under mode 1 operation. From Part 1,

the LEMPC is feasible. Moreover, from the formulation of the LEMPC, the LEMPC computes a

control action such that x̃(t) ∈ Ωρe for all t ∈ [tk, tk+1). Owing to the effect of the bounded distur-

bances, the closed-loop state does not evolve according to the model of Eq. 3.3b. Nevertheless, if

Eq. 3.21 is satisfied, the state at the next sampling time will be contained in Ωρ .

To show this result, let ρe satisfy Eq. 3.21. The proof proceeds by contradiction. Assume there

exists a time τ∗ ∈ [tk, tk+1) such that V (x(τ∗)) > ρ . The case that x(t) is not defined for some

t ∈ [tk, tk+1) is also covered by this assumption. Define τ1 := inf{τ ∈ [tk, tk+1) : V (x(τ)) > ρ}. A

standard continuity argument in conjunction with the fact that V (x(tk)) ≤ ρe < ρ shows that τ1 ∈

(tk, tk+1), V (x(t))≤ ρ for all t ∈ [tk,τ1] with V (x(τ1)) = ρ , and V (x(t))> ρ for some t ∈ (τ1, tk+1).
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If ρe satisfies Eq. 3.21, then

ρ =V (x(τ1))≤V (x̃(τ1))+ fV ( fw(τ1))

≤ ρe + fV ( fw(∆))< ρ (3.25)

where the first inequality follows from Propositions 3.1-3.2 and the second inequality follows from

the fact that fV ◦ fw ∈K and τ1≤∆. Eq. 3.25 is a contradiction. Thus, x(t)∈Ωρ for all t ∈ [tk, tk+1)

if Eq. 3.21 is satisfied.

Case 2: Now, consider that the LEMPC under mode 2 operation at an arbitrary sampling time

tk. If x(tk) ∈ Ωρ , the LEMPC is feasible (Part 1). The LEMPC computes a control action that

satisfies

∂V (x(tk))
∂x

f (x(tk),u∗(tk|tk),0)≤
∂V (x(tk))

∂x
f (x(tk),h(x(tk)),0)

≤−α3(|x(tk)|) (3.26)

for all x(tk) ∈ Ωρ where the inequality follows from Eq. 3.2b. Consider the time-derivate of the

Lyapunov function for τ ∈ [tk, tk+1)

V̇ (x(τ)) =
∂V (x(τ))

∂x
f (x(τ),u∗(tk|tk),w(τ))

≤−α3(|x(tk)|)+
∂V (x(τ))

∂x
f (x(τ),u∗(tk|tk),w(τ))

− ∂V (x(tk))
∂x

f (x(tk),u∗(tk|tk),0) (3.27)

for τ ∈ [tk, tk+1) where the inequality follows by adding and subtracting the left-hand side of

Eq. 3.26 and accounting for the bound of Eq. 3.26. Owing to the Lipschitz bound of Eq. 3.8,
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Eq. 3.27 may be upper bounded by:

V̇ (x(τ))≤−α3(|x(tk)|)+L′x|x(τ)− x(tk)|+L′w|w(τ)|

≤ −α3(|x(tk)|)+L′x|x(τ)− x(tk)|+L′wθ (3.28)

for τ ∈ [tk, tk+1) where the second inequality follows from the fact that w(t)∈W= {w̄∈Rl : |w̄| ≤

θ} for all t ≥ 0. Taking into account Eq. 3.6, the continuity of x and the fact that u∗(tk|tk) ∈ U and

w(τ) ∈W, the norm of the difference between the state at τ ∈ [tk, tk+1) and the state at tk scales

with ∆. More specifically, the bound of:

|x(τ)− x(tk)| ≤M∆ (3.29)

for τ ∈ [tk, tk+1) follows from Eq. 3.6. From Eqs. 3.28-3.29, the inequality follows:

V̇ (x(τ))≤−α3(|x(tk)|)+L′xM∆+L′wθ (3.30)

for τ ∈ [tk, tk+1).

If ∆ > 0 and θ > 0 are sufficiently small such that there exists a ρs > 0 and εw > 0 satisfying

Eq. 3.22, then, for any x(tk) ∈Ωρ \Ωρs , the bound of

V̇ (x(τ))≤−α3(α
−1
2 (ρs))+L′xM∆+L′wθ . (3.31)

for τ ∈ [tk, tk+1) follows from Eq. 3.30 and Eq. 3.2a. If the condition of Eq. 3.22 is satisfied, then

there exists εw > 0 such that the following inequality holds for any x(tk) ∈Ωρ \Ωρs:

V̇ (x(τ))≤−εw/∆ (3.32)

for τ ∈ [tk, tk+1). Integrating the bound of Eq. 3.33 for τ ∈ [tk, tk+1), one obtains that the following
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is satisfied:
V (x(tk+1))≤V (x(tk))− εw

V (x(t))≤V (x(tk)) ∀ t ∈ [tk, tk+1)

(3.33)

for all x(tk) ∈Ωρ \Ωρs .

If x(tk) ∈Ωρ \Ωρe where Ωρe ⊇Ωρmin (where ρmin is defined in Eq. 3.23), then using Eq. 3.33

recursively, it follows that the state converges to Ωρe in a finite number of sampling times without

coming out of Ωρ . If x(tk) ∈Ωρ \Ωρs and tk ≥ ts, then again, by recursive application of Eq. 3.33,

x(t) ∈ Ωρ for all t ∈ [tk, tk+1). If x(tk) ∈ Ωρs , the state at the next sampling time will be bounded

in Ωρmin if ρmin is defined according to Eq. 3.23. Thus, if x(tk) ∈ Ωρ , then x(τ) ∈ Ωρ for all

τ ∈ [tk, tk+1) under the LEMPC when the conditions of Eq. 3.21-3.23 are satisfied. Using this

result recursively, x(t) ∈Ωρ for all t ≥ 0 when x(0) ∈Ωρ .

Part 3: If ts is finite and Eq. 3.23 is satisfied with ρ > ρmin > ρs > 0, the closed-loop state

is ultimately bounded in Ωρmin owing to the definition of ρmin. In detail, from Part 2, if x(tk) ∈

Ωρ \Ωρs and tk ≥ ts, then V (x(tk+1))<V (x(tk)) and the state converges to Ωρs in finite time. Once

the closed-loop state converges to Ωρs ⊂ Ωρmin , it remains inside Ωρmin ⊂ Ωρ for all times, which

follows from the definition of ρmin. This proves that the closed-loop system under the LEMPC of

Eq. 3.3 is ultimately bounded in Ωρmin when ts is finite.

A few notes and remarks on the results on closed-loop stability and robustness under LEMPC

are in order:

• The set Ωρ is an invariant set for the nominal closed-loop system and is also an invariant set

for the closed-loop system subject to bounded disturbances w, i.e., |w| ≤ θ , under piecewise

constant control action implementation when the conditions stated in Theorem 3.1 are sat-

isfied. This may be interpreted as follows: V̇ is negative everywhere in Ωρ but the origin

when there are no disturbances and the control actions are updated continuously. For suffi-

ciently small disturbances and sampling period, i.e., θ and ∆ are sufficiently small, V̇ of the

closed-loop system will continue to be negative for all x ∈Ωρ \Ωρs where Ωρs is a small set

containing the origin.
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Table 3.1: CSTR parameter values.

T0 300 K F 5.0 m3 h−1

VR 1.0 m3 E 5.0×104 kJ kmol−1

k0 8.46×106 m3 kmol−1 h−1 ∆H −1.15×104 kJ kmol−1

Cp 0.231 kJ kg−1 K−1 R 8.314 kJ kmol−1 K−1

ρL 1000 kg m−3

• Solving the dynamic model of Eq. 3.3b requires a numerical integration method. Therefore,

numerical and discretization error will result. Owing to the fact that the error of many nu-

merical integration methods may be bounded by a bound that depends on the integration

step size, one may consider the numerical error as a source of bounded disturbance. The

integration step size may be selected to be small. i.e., much smaller than the sampling pe-

riod, to decrease the discretization error. Thus, the stability results remain valid when the

discretization error is sufficiently small.

• For any state x(tk) ∈ Ωρ , the LEMPC is feasible where a feasible solution may be readily

computed from the Lyapunov-based controller. Moreover, feasibility of the LEMPC, and

not optimality of the LEMPC solution, implies closed-loop stability. Both of these issues

are important owing to practical computational considerations. When solving the LEMPC

to optimality results in significant computational time, one could force early termination of

the optimization problem solver and closed-loop stability is still guaranteed (assuming the

returned solution is feasible). If the returned solution is infeasible or at sampling times where

the computation time required to solve the LEMPC is significant relative to the sampling

period, the control action computed from the Lyapunov-based controller may be applied to

the system.

3.3.2 Application to a Chemical Process Example

Consider a well-mixed, non-isothermal continuous stirred-tank reactor (CSTR) where an irre-

versible second-order exothermic reaction A→ B takes place (A is the reactant and B is the desired
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product). The feed to the reactor consists of A in an inert solvent at flow rate F , temperature T0

and molar concentration CA0. A jacket is used to provide/remove heat to the reactor. The dynamic

equations describing the behavior of the system, obtained through material and energy balances

under standard modeling assumptions, are given below:

dCA

dt
=

F
VR

(CA0−CA)− k0e−E/RTC2
A (3.34a)

dT
dt

=
F
VR

(T0−T )− ∆H
ρLCp

k0e−E/RTC2
A +

Q
ρLCpVR

(3.34b)

where CA denotes the concentration of the reactant A, T denotes the temperature of the reactor,

Q denotes the rate of heat input/removal, VR represents the volume of the reactor, ∆H, k0, and E

denote the enthalpy, pre-exponential constant and activation energy of the reaction, respectively

and Cp and ρL denote the heat capacity and the density of the fluid in the reactor, respectively. The

values of the process parameters used in the simulations are given in Table 3.1. The process model

of Eq. 3.34 is numerically simulated using an explicit Euler integration method with integration

step hc = 1.0×10−3 h.

The CSTR has two manipulated inputs. One of the inputs is the concentration of A in the inlet

to the reactor, CA0, and the other manipulated input is the external heat input/removal, Q. The

input vector is given by uT = [CA0 Q], and the admissible input values are as follows: u1 =CA0 ∈

[0.5,7.5] kmol m−3 and u2 = Q ∈ [−50.0,50.0] MJ h−1. The CSTR, described by the equations of

Eq. 3.34, has an open-loop asymptotically stable steady-state within the operating range of interest

given by CAs = 1.18kmol m−3 and T ∗s = 440.9K with corresponding steady-state input values of

CA0 = 4.0kmol m−3 and Qs = 0MJ h−1. The steady-state and the steady-state input are denoted by

xT
s = [CAs Ts] and uT

s = [CA0s Qs], respectively. The control objective is to regulate the process in

a region around the steady-state to maximize the production rate of B. To accomplish the desired

objective, the economic cost function considered in this example is:

le(x,u) =−k0e−E/RTC2
A (3.35)
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which is equal to the negative of the instantaneous production rate of B, i.e., the production rate

should be maximized. Also, there is limitation on the amount of reactant material which may

be used over the length of operation t f . Specifically, the input trajectory of u1 should satisfy the

following time-averaged constraint:

1
t f

∫ t f

0
u1(t) dt =CA0,avg =CA0s (3.36)

where t f denotes the length of operation.

One method to ensure that the average constraint of Eq. 3.36 is satisfied over the entire length

of operation is to divide the length of operation into equal-sized operating periods and to construct

constraints that are imposed in the EMPC problem to ensure that the average constraint is satisfied

over each consecutive operating period. This may be accomplished by using an inventory balance

that accounts for the total amount of input energy available over each operating period compared

to the total amount of input energy already used in the operating period. The main advantages of

enforcing the average constraint in this fashion are that (1) only a limited number of constraints are

required to be added to the EMPC, and (2) it ensures that the average constraint is satisfied over

the length of operation.

To explain this type of input average constraint implementation, consider a general input aver-

age constraint given by:
1

τM

∫
τM

0
u(t) dt = uavg (3.37)

where τM is the operating period length that the average input constraint is imposed, i.e., M = τM/∆

is the number of sampling periods in the operating period, and uavg is the average input constraint

value. Let τ j denote the jth sampling time of the current operating period where τ0 and τM denote

the beginning and ending (time) of the current operating period, respectively. The constraint of

Eq. 3.37 is enforced as follows: if the prediction horizon covers the entire operating period, then

the average constraint may be enforced directly by imposing the following constraint in the EMPC
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problem:
M−1

∑
i= j

u(τi) = Muavg−
j−1

∑
i=0

u∗(τi|τi) . (3.38)

where u∗(τi|τi) denotes the input computed and applied at sampling time τi ∈ [τ0,τ j). The integral

of Eq. 3.37 may be converted to a sum in Eq. 3.38 because the input trajectory is piecewise constant.

If the prediction horizon does not cover the entire operating period, then the remaining part of

the operating period not covered in the prediction horizon from τ j+N to τM should be accounted

for in the constraints to ensure feasibility at subsequent sampling times. Namely, at a sampling

period τ j ∈ [τ0,τM), the following must be satisfied:

Muavg−
j+N

∑
i= j

u(τi)−
j−1

∑
i=0

u∗(τi|τi)≤max{M−N− j,0}umax , (3.39a)

Muavg−
j+N

∑
i= j

u(τi)−
j−1

∑
i=0

u∗(τi|τi)≥max{M−N− j,0}umin (3.39b)

where umin and umax denote the minimum and maximum admissible input value. Eq. 3.39 means

that the difference between the total available input energy (Muavg) and the total input energy

used from the beginning of the operating period through the end of the prediction horizon must be

less/greater than or equal to the total input energy if the maximum/minimum allowable input was

applied over the remaining part of the operating period from τk+N to τM, which is the part of the

operating period not covered in the prediction horizon.

If the prediction horizon extends over multiple consecutive operating periods, a combination

of the constraints of Eq. 3.38 and Eq. 3.39 may be employed. Let Nop = d( j+N)/Me denote the

number of operating periods covered in the prediction horizon. For the first operating period in the

horizon, the constraint is given by:

M−1

∑
i= j

u(τi)+
j−1

∑
i=0

u∗(τi|τi) = Muavg . (3.40)
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If Nop > 2, then, the following set of constraints is imposed:

(l+1)M−1

∑
i=lM

u(τi) = Muavg, ∀ l ∈ {1,2, . . . ,Nop−2} . (3.41)

For the last operating period covered in the horizon, the following constraint is used:

Muavg−
( j+N)−(Nop−1)M

∑
j=(Nop−1)M

u(τ j)≤max{NopM−N− j,0}umax , (3.42a)

Muavg−
( j+N)−(Nop−1)M

∑
j=(Nop−1)M

u(τ j)≥max{NopM−N− j,0}umin . (3.42b)

The index j is reset to zero at the beginning of each operating period. In the implementation

of input average constraints, it may be sufficient, in terms of acceptable closed-loop behavior, to

impose the input average constraint over one or two operating periods if the horizon covers multiple

operating periods.

An LEMPC is designed and applied to the CSTR model of Eq. 3.34. Since the economic

cost does not penalize the use of control energy, the optimal operating strategy with respect to

the economic cost of Eq. 3.35 is to operate with the maximum allowable heat rate supplied to the

reactor for all time. However, this may lead to a large temperature operating range which may be

impractical or undesirable. Therefore, a modified control objective is considered for more practical

closed-loop operation of the CSTR under EMPC. The modified control objective is to maximize

the reaction rate while feeding a fixed time-averaged amount of the reactant A to the process and

while forcing and maintaining operation to/at a set-point temperature of Ts. Additionally, the

temperature of the reactor contents must be maintained below the maximum allowable temperature

T ≤ Tmax = 470.0K, which is treated as a hard constraint and thus, X= {x ∈ R2 : x2 ≤ 470.0}.

A stabilizing state feedback controller, i.e., Lyapunov-based controller, is designed for the

CSTR. The first input CA0 in the stabilizing controller is fixed to the average inlet concentration

to satisfy the average input constraint of Eq. 3.36. The second input Q is designed via feedback
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linearization techniques while accounting for the input constraint. The gain of the feedback lin-

earizing controller is γ = 1.4 (see [76] for more details regarding the controller design). A quadratic

Lyapunov function is considered of the form V (x) = x̄T Px̄ where x̄ is the deviation of the states

from their corresponding steady-state values and P is the following positive definite matrix:

P =

 250 5

5 0.2

 . (3.43)

The stability region of the CSTR under the Lyapunov-based controller is characterized by taking it

to be a level set of the Lyapunov function where the time-derivative of the Lyapunov function along

the closed-loop state trajectories is negative and is denoted as Ωu = {x ∈ R2 : V (x) ≤ ρu} where

ρu = 138. However, X ⊂ Ωu which is shown in Fig. 3.3. Thus, the set Ωρ where ρ = 84.76 is

defined to account for the state constraint. Bounded Gaussian process noise is added to the CSTR

with a standard deviation of σ = [0.35.0]T and bound θ = [1.020.0]T . A random noise vector is

generated and applied additively to the right-hand side of the ODEs of Eq. 3.34 over the sampling

period (∆ = 0.01h) and the bounds are given for each element of the noise vector (|wi| ≤ θi for

i = 1, 2). Through extensive closed-loop simulations of the CSTR under the Lyapunov-based

controller and under the LEMPC (described below) and with many realizations of the process

noise, the set Ωρe was determined to be ρe = 59.325.

The first differential equation of Eq. 3.34 (CA) is input-to-state-stable (ISS) with respect to

T . Therefore, a contractive Lyapunov-based constraint may be applied to the LEMPC to en-

sure that the temperature converges to a neighborhood of the optimal steady-state temperature

value. Namely, a Lyapunov function for the temperature ordinary differential equation (ODE) of
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Eq. 3.34b is defined and is given by: VT (T ) := (T −Ts)
2. The LEMPC formulation is given by:

min
u∈S(∆)

−
∫ tk+N

tk
k0e−E/RT̃ (τ)C̃2

A(τ) dτ (3.44a)

s.t. ˙̃CA(t) =
F
V
(u1(t)−C̃A(t))− k0e−E/RT̃ (t)C̃2

A(t) (3.44b)

˙̃T (t) =
F
V
(T0− T̃ (t))− ∆Hk0

ρLCp
e−E/RT̃ (t)C̃2

A(t)+
u2(t)

ρLCpVR
(3.44c)

C̃A(tk) =CA(tk), T̃ (tk) = T (tk) (3.44d)

u1(t) ∈ [0.5,7.5] kmol m−3, ∀ t ∈ [tk, tk+N) (3.44e)

u2(t) ∈ [−50.0,50.0] MJ h−1, ∀ t ∈ [tk, tk+N) (3.44f)

M−1

∑
i= j

u1(τi)+
j−1

∑
i=0

u∗1(τi|τi) = MCA0s (3.44g)

MCA0s−
j+N−M

∑
j=M

u1(τ j)≤max{2M−N− j,0}u1,max , (3.44h)

MCA0s−
j+N−M

∑
j=M

u1(τ j)≥max{2M−N− j,0}u1,min . (3.44i)

T̃ (t)≤ Tmax (3.44j)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N) (3.44k)

∂VT (T (tk))
∂T

f2(x̃(tk),u(tk),0)≤
∂VT (T (tk))

∂T
f2(x̃(tk),h(x̃(tk)),0) (3.44l)

where f2(·) is the right-hand side of the ODE of Eq. 3.34b. The CSTR was initialized at many

states distributed throughout state-space including some cases where the initial state is outside Ωu.

The LEMPC described above was applied to the CSTR with an operating period over which to

enforce the average input constraint of M = 20 (τM = 0.2h) and a prediction horizon of N = 20.

Several simulations of 50.0h length of operation were completed. In all cases, the LEMPC

was able to force the system to Ωρ and maintain operation inside Ωρ without violating the state

constraint. The closed-loop state trajectories over the first 1.0h are shown in Fig. 3.3 for one initial

condition starting inside Ωρ and one starting outside Ωu. From Fig. 3.3, the LEMPC forces the

temperature to a neighborhood of the temperature set-point where it maintains the temperature
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Figure 3.3: Two closed-loop state trajectories under the LEMPC in state-space.
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Table 3.2: Average economic cost over several simulations under the LEMPC, the Lyapunov-based

controller applied in a sample-and-hold fashion, and the constant input equal to us. For the case

denoted with a “*”, the system under the constant input us settled at a different steady-state, i.e.,

not xs.

J̄E under LEMPC J̄E under k(x) J̄E under us

14.17 14.10 14.09
14.18 14.11 14.09
14.17 14.10 14.08
14.17 14.09 14.06
14.18 14.10 14.10
14.17 14.09 14.08
14.18 14.09 14.10
14.18 14.08 14.08
14.19 14.08 14.10
14.18 14.07 14.07
14.18 14.11 14.11
14.18 14.08 14.07
14.17 14.06 0.36*
14.19 14.06 14.10

thereafter. The reactant concentration trajectory varies with time and never settles at a steady-state

owing to a periodic-like forcing of the inlet concentration.

The CSTR was simulated with the same realization of the process noise and same initial con-

dition under the Lyapunov-based controller applied in a sample-and-hold fashion and under a con-

stant input equal to the steady-state input. To evaluate the average economic cost under LEMPC

and under the other two control strategies, the following index is defined:

J̄e :=
1
t f

∫ t f

0
le(x(t),u(t)) dt (3.45)

where x and u denote the closed-loop state and input trajectories. The average economic cost over

each of these simulations is reported in Table 3.2. Owing to the fact that the simulations were

performed over many operating periods, the average closed-loop performance index is essentially

a measure of the asymptotic average performance. The transient performance is also discussed
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Figure 3.4: The closed-loop state and input trajectories of the CSTR under the LEMPC of Eq. 3.44

for two initial conditions (solid and dashed trajectories) and the steady-state is the dashed-dotted

line.

below. From these results, an average of 0.6 percent closed-loop performance benefit was observed

with the LEMPC over the Lyapunov-based controller and the constant input u∗s . It is important to

note that for one of the simulations that was initialized outside Ωu the CSTR under the constant

input u∗s settled on an offsetting steady-state which is denoted with an asterisk in Table 3.2.

Fig. 3.4 gives the state and input trajectories of the CSTR under the LEMPC of Eq. 3.44 for

two initial conditions: (0.6 kmol m−3, 430.0 K), referred to as the low temperature initial condition,

and (0.8 kmol m−3, 460.0 K), referred to as the high temperature initial condition. One of the most

interesting results of these simulations is the asymmetric responses about the temperature set-point

dictated by the LEMPC. For the low temperature initial condition, the heat rate input computed

by the LEMPC is initially at the maximum admissible value to force the temperature to the set-

point as fast as possible. This behavior is desirable with respect to the economic cost because

the production rate is monotonically increasing with temperature. On the other hand, for the high

temperature initial condition, the rate at which the computed input trajectory of the LEMPC forces

74



the temperature to the set-point is much slower rate than that of the case with the lower initial

temperature. Again, this type of behavior is desirable owing to the fact that the production rate of

B is greater at higher temperature.

To quantify the difference in the transient closed-loop performance under LEMPC relative to

the transient closed-loop performance achieved under the Lyapunov-based controller and under

the constant input equal to us, the closed-loop economic performance over the first operating pe-

riod is used, i.e., the index J̄e with t f = 0.2h. The performance benefit under the LEMPC relative

to that achieved under the Lyapunov-based controller and under the constant input is 12.15 per-

cent and 20.79 percent, respectively, and a clear advantage on transient performance is realized

under LEMPC. Moreover, the asymmetric response dictated by the LEMPC is a unique property

of EMPC that addresses a potential drawback of tracking MPC methodologies. In particular, the

stage cost of tracking MPC typically penalize positive and negative deviation from the set-point

equally even though from an economic stand-point this may not be appropriate.

3.4 Closed-loop Performance under LEMPC

Owing to the availability of the explicit stabilizing (Lyapunov-based) controller, the corresponding

Lyapunov function, and the stability region used to design LEMPC, a terminal equality constraint

may be readily designed for the LEMPC problem. The terminal equality constraint allows for

guaranteed closed-loop performance properties, while maintaining the unique recursive feasibility

property of LEMPC. Nominally operated systems are considered, i.e., the system of Eq. 3.1 with

w≡ 0 and with slight abuse of notation, the nominally operated system will be written as

ẋ = f (x,u) (3.46)

where x ∈ X and u ∈ U. The system of Eq. 3.46 satisfies all of the relevant assumptions as the

system of Eq. 3.1.

An economic cost le : X×U→ R is assumed for the system of Eq. 3.46 which is continuous
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on X×U. The existence of a steady-state and steady-state input pair, denoted as (x∗s ,u
∗
s ), that

minimizes the economic cost in the sense that the minimum of le is attained at the pair (x∗s ,u
∗
s ) is

assumed. For simplicity, the minimizing pair is assumed to be unique. With these assumptions,

the minimizing steady-state pair is given by:

(x∗s ,u
∗
s ) = argmin

xs∈X,us∈U
{le(xs,us) : f (xs,us) = 0} .

Without loss of generality, the minimizing pair will be taken to be the origin of Eq. 3.46, i.e.,

f (0,0) = 0.

3.4.1 Stabilizability Assumption

A terminal equality constraint imposed in the LEMPC optimization problem will be computed at

each sampling time based on the solution of the sampled-data system consisting of the continuous-

time system of Eq. 3.46 with an explicit controller applied in a sample-and-hold fashion. To

consider infinite-time closed-loop economic performance (to be made precise below), a stronger

assumption is considered on the explicit controller (Lyapunov-based controller). A relaxation of

the assumption is discussed in a remark below.

Assumption 3.1. There exists a locally Lipschitz feedback controller h : X→ U with h(0) = 0 for

the system of Eq. 3.1 that renders the origin of the closed-loop system under continuous implemen-

tation of the controller locally exponentially stable. More specifically, there exist constants ρ > 0,

ci > 0, i = 1,2,3,4 and a continuously differentiable Lyapunov function V : X→ R+ such that the

following inequalities hold:

c1 |x|2 ≤V (x)≤ c2 |x|2 , (3.47a)

∂V (x)
∂x

f (x,h(x))≤−c3 |x|2 , (3.47b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4 |x| , (3.47c)

for all x ∈Ωρ ⊆ X.
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When the controller of Assumption 3.1 is applied in a sample-and-hold (zeroth-order hold)

fashion, i.e., the controller is an emulation controller, the resulting closed-loop system is a sampled-

data system. To distinguish from the state and input trajectories of the system under the emulation

controller and the state and input trajectories of the closed-loop system under LEMPC, z and v

will be used for the former, and x and u∗ will be used for the latter, respectively. The sampled-

data system consisting of the system of Eq. 3.46 under the sample-and-hold implementation of the

explicit controller is given by:

ż(t) = f (z(t),v(t))

v(t) = h(z(tk))
(3.48)

for t ∈ [tk, tk+1) where tk = k∆ and k = 0,1, . . . with initial condition z(0) = z0 ∈Ωρ . From Corol-

lary 2.1, the origin of the closed-loop system of Eq. 3.48 is exponentially stable under sufficiently

fast sampling, i.e., the sampling period, ∆, is sufficiently small. Moreover, from the proof of Corol-

lary 2.1, V is a Lyapunov function for the closed-loop sampled-data system in the sense that there

exists a constant ĉ3 > 0 such that

∂V (z(t))
∂ z

f (z(t),h(z(tk)))≤−ĉ3 |z(t)|2 (3.49)

for all t ∈ [tk, tk+1) and integers k ≥ 0 where z(t) is the solution of Eq. 3.48 at time t with initial

condition z(0) = x(0) ∈ Ωρ where x(0) denotes a state measurement of the system of Eq. 3.46 at

the initial time.

3.4.2 Formulation and Implementation of LEMPC with a Terminal Con-

straint

The solution of Eq. 3.48 may be leveraged in the design of a terminal equality constraint. Specif-

ically, the system of Eq. 3.48 is initialized with a state measurement of the system of Eq. 3.46 at

t = 0. Using forward simulation of the system of Eq. 3.48, the state may be computed at tk+N . The

computed state is then used as a terminal constraint in LEMPC in the sense that the predicted state
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of the LEMPC must converge to the state of Eq. 3.48, i.e., x̃(tk+N) = z(tk+N). Using this design

principle, the formulation of the LEMPC with a terminal equality constraint formulated based on

z is given by the problem:

min
u∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ)) dτ (3.50a)

s.t. ˙̃x(t) = f (x̃(t),u(t)) (3.50b)

x̃(tk) = x(tk) (3.50c)

x̃(tk+N) = z(tk+N) (3.50d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (3.50e)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if V (x(tk))≤ ρe and tk < ts (3.50f)

∂V (x(tk))
∂x

f (x(tk),u(tk))≤
∂V (x(tk))

∂x
f (x(tk),h(x(tk)))

if V (x(tk))> ρe or tk ≥ ts (3.50g)

where all the components of the LEMPC optimization problem of Eq. 3.50 are similar to that of

the problem of Eq. 3.3 except for the additional constraint of Eq. 3.50d. The terminal constraint

of Eq. 3.50d enforces that the computed input trajectory steers the predicted state trajectory to the

state z(tk+N) at the end of the prediction horizon. The terminal constraint of Eq. 3.50d differs from

traditional terminal equality constraints in the sense that it is not necessarily a steady-state. How-

ever, it is important to note that the terminal constraint in the LEMPC of Eq. 3.50 exponentially

converges to the steady-state owing to the stability properties of the explicit controller.

The implementation of the LEMPC of Eq. 3.50 is similar to that of the LEMPC of Eq. 3.3.

Before the optimization problem of Eq. 3.50 is solved, the terminal constraint, z(tk+N), is computed

by recursively solving the system of Eq. 3.48 over tk+N−1 to tk+N and is initialized with z(tk+N−1),

which corresponds to the terminal constraint at the previous sampling time. At the initial time

(t = 0), z(tN) is computed by first initializing the system of Eq. 3.48 with x(0) and recursively
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solving this system from the initial time to tN = N∆. For added robustness, especially to numerical

and discretization error, one may reinitialize the system of Eq. 3.48 with a state measurement at

each sampling time, i.e., initialize the system of Eq. 3.48 with x(tk) and use forward simulation

to compute z(tk+N). However, in the nominal scenario considered here, numerical error is not

considered.

3.4.3 Closed-loop Performance and Stability Analysis

The closed-loop stability properties of the LEMPC follows from the results of the previous section

and are stated in the following corollary.

Corollary 3.1. Let the conditions of Theorem 3.1 be satisfied. If x(0) ∈ Ωρ , then the closed-loop

state trajectory of the system of Eq. 3.46 under the LEMPC of Eq. 3.50 based on the Lyapunov-

based controller that satisfies Eq. 3.2 is always bounded in Ωρ for all t ≥ 0. Moreover, the LEMPC

problem of Eq. 3.50 is recursively feasible.

Proof. If similar conditions are satisfied as that of Theorem 3.1 and the LEMPC problem of

Eq. 3.50 is feasible, it follows from Theorem 3.1 that the closed-loop state is bounded in Ωρ .

Initial feasibility at t = 0 follows from the fact that the sample-and-hold input trajectory used to

compute the terminal constraint, z(tN), is a feasible solution to the optimization problem because

(1) it forces the predicted state to the terminal constraint, (2) satisfies the input constraint, (3) main-

tains the state in Ωρe if x(0) ∈Ωρe or trivially satisfies the contractive constraint of Eq. 3.50g. For

the subsequent sampling time (t = ∆), the piecewise defined input trajectory consisting of u∗(t|0)

for t ∈ [∆,N∆) and u(t) = h(z(tN)) for t ∈ [N∆,(N + 1)∆) is a feasible solution to the optimiza-

tion problem at t = ∆. Applying this result recursively for all future sampling times, recursive

feasibility follows.

Finite-time and infinite-time economic performance is considered. The analysis follows closely

that of [6], which analyzes closed-loop performance of EMPC formulated with an equality terminal

constraint equal to x∗s . Let J∗e (x(tk)) denote the optimal value of Eq. 3.50a at time tk given the state
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measurement x(tk). The first result gives the finite-time average performance under the LEMPC of

Eq. 3.50. Without loss of generality, take le(x,u)≥ 0 for all x ∈Ωρ and u ∈ U.

Theorem 3.2. Consider the system of Eq. 3.48 under the LEMPC of Eq. 3.50 based on the

Lyapunov-based controller that satisfies Eq. 3.2. For any T strictly positive finite integer, the

closed-loop average economic performance is bounded by:

∫ T ∆

0
le(x(t),u∗(t)) dt ≤

∫ (T+N)∆

0
le(z(t),v(t)) dt (3.51)

where x and u∗ denote the closed-loop state and input trajectories and z and v denote the resulting

state and input trajectories of the system of Eq. 3.48.

Proof. Let u∗(t|tk) for t ∈ [tk, tk+N) be the optimal input trajectory of Eq. 3.50 at tk. The piecewise

defined input trajectory consisting of u∗(t|tk) for t ∈ [tk+1, tk+N) and u(t) = h(z(tk+N)) for t ∈

[tk+N , tk+N+1) is a feasible solution to the optimization problem at the next sampling time (tk+1).

Utilizing the feasible solution to the problem of Eq. 3.50 at tk+1, the difference between the optimal

value of Eq. 3.50a at any two successive sampling times may be bounded as follows:

J∗e (x(tk+1))− J∗e (x(tk))

≤
∫ tk+N+1

tk+N

le(z(t),h(z(tk+N))) dt−
∫ tk+1

tk
le(x(t),u∗(tk|tk)) dt . (3.52)

Let T be any strictly positive integer. Summing the difference of the optimal value of Eq. 3.50a at

two subsequent sampling times, the sum may be lower bounded by:

T−1

∑
k=0

[J∗e (x(tk+1))− J∗e (x(tk))] = J∗e (x(T ∆))− J∗e (x(0))

≥−J∗e (x(0)) (3.53)

where the inequality follows from the fact that le(x,u)≥ 0 for all x ∈Ωρ and u ∈ U. At the initial

time, the optimal value of Eq. 3.50a may be bounded by the cost under the explicit controller over
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the prediction horizon:

J∗e (x(0))≤
∫ tN

0
le(z(t),v(t)) dt . (3.54)

Moreover, the left-hand side of Eq. 3.53 may be upper bounded as follows:

T−1

∑
k=0

[J∗e (x(tk+1))− J∗e (x(tk))]

≤
T−1

∑
k=0

(∫ tk+N+1

tk+N

le(z(t),h(z(tk+N))) dt−
∫ tk+1

tk
le(x(t),u∗(tk|tk)) dt

)
=
∫ (T+N)∆

tN
le(z(t),v(t)) dt−

∫ T ∆

0
le(x(t),u∗(t)) dt (3.55)

From Eq. 3.53 and Eq. 3.55, the closed-loop economic performance over the initial time to T ∆ is

no worse than the closed-loop performance under the explicit control from initial time to (T +N)∆:

∫ T ∆

0
le(x(t),u∗(t)) dt ≤ J∗e (x(0))+

∫ T ∆+N∆

tN
le(z(t),v(t)) dt

≤
∫ (T+N)∆

0
le(z(t),v(t)) dt (3.56)

where the second inequality follows from Eq. 3.54. This proves the bound of Eq. 3.51.

The upper limit of integration of the right-hand side of Eq. 3.51, i.e., (T +N)∆, arises from the

fact that a fixed prediction horizon is used in the LEMPC of Eq. 3.50. If, instead, T ∆ represents the

final operating time of a given system, one could employ a shrinking horizon from (T −N)∆ to T ∆

in the LEMPC and the upper limit of integration of the right-hand side of Eq. 3.51 would be T ∆.

Also, as a consequence of the performance bound of Eq. 3.51, the average finite-time economic

performance may be bounded as follows:

1
T ∆

∫ T ∆

0
le(x(t),u∗(t)) dt

≤ 1
T ∆

∫ T ∆

0
le(z(t),v(t)) dt +

1
T ∆

∫ (T+N)∆

T ∆

le(z(t),v(t)) dt (3.57)

for any integer T > 0. From the right-hand side of Eq. 3.57, the second term of the right-hand side
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is less significant as T gets large.

To consider asymptotic average closed-loop economic performance of the system under the

LEMPC of Eq. 3.50, the asymptotic average closed-loop performance under the explicit controller

needs to be considered. Because the state and input trajectory asymptotically converge to (x∗s ,u
∗
s ),

it is straightforward to show that the asymptotic average economic performance under the explicit

controller is no worse than the economic cost at the optimal steady-state pair, which is stated in the

lemma below.

Lemma 3.1. The asymptotic average economic cost of the system of Eq. 3.48 under the Lyapunov-

based controller that satisfies Assumption 3.1 for any initial condition z(0) ∈Ωρ is

lim
T→∞

1
T ∆

∫ T ∆

0
le(z(t),v(t)) dt = le(x∗s ,u

∗
s ) (3.58)

where ∆ ∈ (0,∆∗) (∆∗ > 0 is defined according to Corollary 2.1) and z and v denote the state and

input trajectories of the system of Eq. 3.48.

Proof. Recall, the economic stage cost function le is continuous on the compact set Ωρ ×U and

z(t) ∈Ωρ and v(t) ∈ U for all t ≥ 0. Thus, the integral:

1
T ∆

∫ T ∆

0
le(z(t),v(t)) dt < ∞ (3.59)

for any integer T > 0. Since z(t) and v(t) exponentially converge to the optimal steady-state pair

(x∗s , u∗s ) as t → ∞, the limit of the integral of Eq. 3.59 as T tends to infinity exists and is equal to

le(x∗s ,u
∗
s ). To prove the limit, it is sufficient to show that for any ε > 0, there exists a T ∗ such that

for T > T ∗, the following holds:

∣∣∣∣ 1
T ∆

∫ T ∆

0
le(z(t),v(t)) dt− le(x∗s ,u

∗
s )

∣∣∣∣< ε (3.60)
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To simplify the presentation, define I(T1,T2) as the following integral:

I(T1,T2) :=
∫ T2∆

T1∆

le(z(t),v(t)) dt (3.61)

where the arguments of I are integers representing the integers of the lower and upper limits of

integration, respectively. Since z(t) and v(t) converge to x∗s and u∗s as t tends to infinity, respectively,

le(x(t),v(t))→ le(x∗s ,u
∗
s ) as t tends to infinity. Furthermore, z(t) ∈ Ωρ and v(t) ∈ U for all t ≥ 0,

so for every ε > 0, there exists an integer T̃ > 0 such that

|le(z(t),v(t))− le(x∗s ,u
∗
s )|< ε/2 (3.62)

for t ≥ T̃ ∆. For any T > T̃ ,

|I(0,T )−T ∆le(x∗s ,u
∗
s )|= |I(0, T̃ )+ I(T̃ ,T )−T ∆le(x∗s ,u

∗
s )|

≤
∫ T̃ ∆

0
|le(z(t),v(t))− le(x∗s ,u

∗
s )| dt

+
∫ T ∆

T̃ ∆

|le(z(t),v(t))− le(x∗s ,u
∗
s )| dt

≤ T̃ M̃+(T − T̃ )ε/2 (3.63)

where

M̃ := sup
t∈[0,T̃ ∆]

{|le(z(t),v(t))− le(x∗s ,u
∗
s )|} .

For any T > T ∗ = 2T̃ (M̃−ε/2)/ε (which implies (M̃−ε/2)T̃/T < ε/2), the following inequality

is satisfied:

|I(0,T )/T − le(x∗s ,u
∗
s )| ≤ T̃ M̃/T +(1− T̃/T )ε/2

= (M̃− ε/2)T̃/T + ε/2 < ε (3.64)

which proves the limit of Eq. 3.58.
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Utilizing Lemma 3.1, one may proof that the asymptotic average closed-loop economic per-

formance under the LEMPC of Eq. 3.50 is no worse than the closed-loop performance at the

economically optimal steady-state, which is stated in the following theorem.

Theorem 3.3. Consider the system of Eq. 3.48 under the LEMPC of Eq. 3.50 based on the

Lyapunov-based controller that satisfies Assumption 3.1. Let ∆ ∈ (0,∆∗) (∆∗ > 0 is defined ac-

cording to Corollary 2.1). The closed-loop asymptotic average economic performance is no worse

than the economic cost at steady-state, i.e., the following bound holds:

limsup
T→∞

1
T ∆

∫ T ∆

0
le(x(t),u∗(t)) dt ≤ le(x∗s ,u

∗
s ) (3.65)

Proof. From Theorem 3.2, for any T > 0:

1
T ∆

∫ T ∆

0
le(x(t),u∗(t)) dt ≤ 1

T ∆

∫ (T+N)∆

0
le(z(t),v(t)) dt . (3.66)

As T increases, both sides of the inequality of Eq. 3.66 remain finite owing to the fact that le

is continuous and the state and input trajectories are bounded in compact sets. The limit of the

right-hand side as T → ∞ is equal to le(x∗s ,u
∗
s ) (Lemma 3.1). Therefore, one may readily obtain

that:

limsup
T→∞

1
T ∆

∫ T ∆

0
le(x(t),u∗(t)) dt ≤ le(x∗s ,u

∗
s ) (3.67)

which proves the desired result.

While the finite-time performance results of Theorem 3.2 require that the Lyapunov-based

controller be designed such that Eq. 3.2 is satisfied, the infinite-time average performance results

of Theorem 3.3 require that the Lyapunov-based controller satisfies the stronger assumption (As-

sumption 3.1), which is required to obtain the performance bound of Eq. 3.65. A Lyapunov-based

controller that satisfies Eq. 3.2 when implemented in a sample-and-hold fashion with a sufficiently

small sampling period will force the state to a small compact set containing the steady-state. When

the LEMPC of Eq. 3.50 is designed with a Lyapunov-based controller that only satisfies Eq. 3.2, a
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weaker result on the asymptotic average economic closed-loop performance is obtained. Namely,

the closed-loop asymptotic average performance may be bounded as follows:

limsup
T→∞

1
T ∆

∫ T ∆

0
le(x(t),u∗(t)) dt ≤ max

x,z∈Ωρmin

le(x,h(z)) (3.68)

where Ωρmin is defined as in Theorem 3.1. Note that the size of set Ωρmin may be made arbitrarily

small by making the sampling period arbitrarily small.

Remark 3.1. For systems with average constraints e.g., like that imposed in the example of Sec-

tion 3.3.2, the average constraint design methodologies for asymptotic average constraints [6] and

for transient average constraints [137], which were presented for EMPC with a terminal equality

constraint equal to x∗s , may be extended to the LEMPC of Eq. 3.50 when the average constraint is

satisfied under the explicit controller. The methods of [6, 137] go beyond imposing the average

constraint over successive operating periods, which is the method employed in Section 3.3.2.

Remark 3.2. The performance results of this section hold for any prediction horizon size even when

N = 1. The use of a short horizon may be computationally advantageous for real-time application.

Also, owing to the fact that the terminal equality constraint of Eq. 3.50d may be a point in the

state-space away from the steady-state, it is expected that the feasible region of the LEMPC of

Eq. 3.50 would be larger than the feasible region of EMPC with a terminal equality constraint

equal to the steady-state for most cases especially when a short prediction horizon is used in the

EMPC formulation.

3.5 LEMPC with a Time-varying Stage Cost

One of the unique advantages of EMPC relative to other control methodologies is the integration of

economic objectives directly within a control framework. For stability purposes, most of the EMPC

schemes use a steady-state to impose constraints in the EMPC optimization problem to ensure

closed-loop stability in their formulations, e.g., the EMPC formulated with a terminal constraint

described in Chapter 2 and the Lyapunov-based constraints of Eq. 3.3e-3.3f used in the LEMPC of
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Eq. 3.3. Also, these EMPC schemes have been formulated with time-invariant economic cost func-

tions. However, when the time-scale or update frequency of time-varying economic considerations

arising from, for example, variable energy pricing or product demand changes is comparable to

the time-scale of the process/system dynamics, it may be desirable to formulate the EMPC scheme

with a time-dependent cost function.

In this section, an LEMPC scheme is developed that may accommodate an explicitly time-

varying economic cost function. First, the formulation of the LEMPC scheme is presented. Sec-

ond, closed-loop stability, in the sense of boundedness of the closed-loop state, is proven through a

theoretical treatment of the LEMPC scheme. The LEMPC scheme is applied to a chemical process

example to demonstrate that the LEMPC with time-varying economic cost achieves closed-loop

stability and results in improved closed-loop economic performance over a conventional approach

to optimization and control.

3.5.1 Class of Economic Costs and Stabilizability Assumption

Consider the class of systems described by the system of Eq. 3.1 with all of the relevant assump-

tions. Instead of the time-invariant economic cost, the system of Eq. 3.1 is assumed to be equipped

with a time-dependent economic cost function, which has the following form le(t,x,u) (the func-

tion le maps time and the state and input vectors to a scalar that is a measure of the economics,

i.e., le : [0,∞)×X×U). No restriction on the form of the cost function is required for stability.

However, some limitations to the cost function that may be considered must be made to solve the

optimization problem. From a practical point-of-view, many of the cost functions that would be

used to describe the economics of a system may be piecewise continuous functions of time and

continuous with respect to the state and input vectors.

In a traditional or conventional approach, if the economics change results in a change in the

optimal operating steady-state, the optimal steady-state is updated and the updated optimal steady-

state is sent down to a feedback controller, e.g., tracking MPC, to force the system to operate at

this new steady-state. To account for the various potentially operating steady-states, the existence
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of a set of steady-states for the system of Eq. 3.1, which is denoted as Γ = {xs ∈ Rn : ∃ us ∈

U s.t. f (xs,us,0) = 0} ⊂ X, is assumed for the system of Eq. 3.1. An additional assumption is

made on the set Γ to ensure that the acceptable operating region is non-empty which is stated

below. For a given system, the equilibrium manifold Γ may be taken as the set of admissible

operating steady-states, i.e., the set of possible operating points under the conventional approach

to optimization and control.

As in the case for the LEMPC formulated with a time-invariant economic stage cost, a sta-

bilizability assumption is needed. For each xs ∈ Γ, the existence of a Lyapunov-based controller

that renders xs of the nominal system of Eq. 3.1 asymptotically stable under continuous imple-

mentation is assumed. More specifically, the set of Lyapunov-based controllers are mappings that

map the state to the set U. For simplicity of notation, the notation h(x;xs) where xs is a parameter

which is used to denote the Lyapunov-based controller with respect to xs ∈ Γ, i.e., the control law

h(x;xs) renders the steady-state xs asymptotically stable for the nominally operated closed-loop

system. Also, for two points in Γ, e.g., xs,1, xs,2 ∈ Γ, no relationship is assumed between the two

controllers h(x;xs,1) and h(x;xs,2) other than the former renders the steady-state xs,1 asymptotically

stable and the latter renders the steady-state xs,2 asymptotically stable. Thus, the two controllers

may be designed utilizing different techniques.

Using converse theorems, the existence of Lyapunov functions V (·;xs) for all xs ∈ Γ follows

from the stabilizability assumption. The Lyapunov functions satisfy the following conditions:

α1(|x− xs|;xs)≤V (x;xs)≤ α2(|x− xs|;xs) (3.69a)

∂V (x;xs)

∂x
f (x,h(x;xs),0)≤−α3(|x− xs|;xs) (3.69b)∣∣∣∣∂V (x;xs)

∂x

∣∣∣∣≤ α4(|x− xs|;xs) (3.69c)

for (x− xs) ∈ D(xs) and each xs ∈ Γ where αi(·;xs), i = 1,2,3,4 are class K function and D(xs)

is an open neighborhood of the origin that depends on xs. Owing to the fact that there exists a
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Ωρ(xs,1)

Ωρ(xs,2)

Ωρ(xs,3)

Ωρ(xs,4)

X Γ

Figure 3.5: An illustration of the construction of the stability region X . The shaded region corre-

sponds to the set X .

Lyapunov function for each xs, different class K function exist for each Lyapunov function. This

is captured by the parameterization of the functions αi, i = 1,2,3,4, and αi(·;xs) denotes the ith

class K function for the Lyapunov function with respect to the steady-state xs.

For each xs ∈ Γ, the stability region Ωρ(xs) may be characterized for the closed-loop system of

Eq. 3.1 with the Lyapunov-based controller h(x;xs). The symbol Ωρ(xs) where xs ∈ Γ ⊂ Rn is a

fixed parameter denotes a level set of the Lyapunov function with respect to xs, i.e., Ωρ(xs) = {x ∈

Rn : V (x;xs)≤ ρ(xs)} where ρ(xs) depends on xs. The union of the stability regions is denoted as

X =
⋃

xs∈Γ Ωρ(xs) and it is assumed to be a non-empty compact set.

3.5.2 The Union of the Stability Regions

A simple demonstration of the construction of the set X is provided to embellish the concept of

the union set X . The stability region of a closed-loop system under an explicit stabilizing control

law may be estimated for a steady-state in Γ through the off-line computation described below.

After the stability regions of sufficiently many steady-states in Γ are computed, the union of these
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sets may be described algebraically through various mathematical techniques, e.g., curve fitting

and convex optimization techniques. The basic algorithm is

1. For j = 1 to J (if Γ consists of an infinite number of points, J is a sufficiently large positive

integer).

1.1 Select a steady-state, xs, j, in the set Γ.

1.2 Partition the state-space near xs, j into I discrete points (I is a sufficiently large positive

integer).

1.3 Initialize ρ(xs, j) := ∞.

1.4 For i = 1 to I:

1.4.1 Compute V̇ (xi;xs, j) where xi denotes the i discrete point from the partitioning of

the state-space. If V̇ (xi;xs, j)≥ 0, go to Step 1.4.2. Else, go to Step 1.4.3.

1.4.2 If V (xi;xs, j)< ρ(xs, j), set ρ(xs, j) :=V (xi;xs, j). Go to Step 1.4.3.

1.4.3 If i+1≤ I, go to Step 1.4.1 and i← i+1. Else, go to Step 2.

2. Save ρ(xs, j) (if necessary, reduce ρ(xs, j) such that the set Ωρ(xs, j) only includes points where

the time-derivative of the Lyapunov function is negative).

3. If j+1≤ J, go to Step 1 and j← j+1. Else, go to Step 4.

4. Approximate the union set with analytic algebraic expressions (constraints) using appropri-

ate techniques.

If Γ consists of a finite number of points, then J could be taken as the number of points in Γ. If the

number of points in Γ is large or infinite, J could be a sufficiently large integer. From a practical

stand-point, these numbers need to be small enough such that this type of calculation may be

implemented. Fig. 3.5 gives an illustration of the construction of X using this procedure. The

following example provides a tractable illustration of the construction of X for a scalar system.
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Example 3.2. Consider the nonlinear scalar system described by

ẋ = x−2x2 + xu (3.70)

with admissible inputs in the set U= [−100,100] and with the set of admissible operating steady-

states defined as Γ = {xs ∈ [−25, 25]}. The steady-states in Γ are open-loop unstable. For any

xs ∈ Γ, the system of Eq. 3.70 may be written in the following input-affine form:

˙̄x = f (x̄)+g(x̄)ū (3.71)

where x̄ = x− xs and ū = u−us. Consider a quadratic Lyapunov function of the form:

V (x;xs) =
1
2
(x− xs)

2 (3.72)

for the closed system of Eq. 3.70 under the following Lyapunov-based feedback control law [175]:

ĥ(x;xs) =


−L fV +

√
L fV 2 +LgV 4

LgV
if LgV 6= 0

0 if LgV = 0

(3.73)

for a xs ∈ Γ where L fV and LgV are the Lie derivatives of the function V with respect to f and

g, respectively (these functions depend on xs). To account for the bound on the available control

energy, the controller is formulated as

h(x;xs) = 100 sat

(
ĥ(x;xs)

100

)
(3.74)

where sat(·) denotes the standard saturation function.

For this particular case, the stability region of the system of Eq. 3.70 with the stabilizing con-

troller of Eq. 3.74 for the minimum and maximum steady-state in the set Γ are used to approximate

the set X . For the steady-state xs,1 = −25 with corresponding steady-state input us,1 = −51, the
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largest level set of the Lyapunov function where the Lyapunov function is decreasing along the

state trajectory with respect to the steady-state xs,1 is Ωρ(xs,1) = {x ∈ R : V (x;−25) ≤ 300.25},

i.e., ρ(xs,1) = 300.25. For the steady-state xs,2 = 25 and us,2 = 49, the level set is Ωρ(xs,2) = {x ∈

R : V (x,25) ≤ 2775.49}, i.e., ρ(xs,2) = 2775.49. Therefore, the union of the stability region is

described as X = {x ∈ [−49.5,99.5]}.

3.5.3 Formulation of LEMPC with Time-Varying Economic Cost

The formulation of the LEMPC with the time-varying economic stage cost is given in this sub-

section. First, the overall methodology of employing the set X in the design of the LEMPC is

described. As a consequence of the construction method used for X , any state in X is in a stabil-

ity region of at least one steady-state. This means that there exists an input trajectory that satisfies

the input constraint and that maintains operation in X is guaranteed because the input trajectory

obtained from the Lyapunov-based controller with respect to the steady-state xs such that the cur-

rent state x(tk) ∈ Ωρ(xs) is a feasible input trajectory. The stability properties of X make it an

attractive choice to use in the formulation of a LEMPC. Namely, use X to formulate a region

constraint that is imposed in the optimization problem of EMPC to ensure that X is an invariant

set.

In any practical setting, the closed-loop system is subjected to disturbances and uncertainties

causing the closed-loop state trajectory to deviate from the predicted (open-loop) nominal trajec-

tory. Enforcing that the predicted state to be in X is not sufficient for maintaining the closed-loop

state trajectory in X because disturbances may force the state out of X . To make X an invariant

set, a subset of X is defined and is denoted as X̂ . The set X̂ is designed such that any state start-

ing in X̂ , which may be forced outside of X̂ by the disturbances, will be maintained in X over

the sampling period when the computed control action is such that the predicted state is maintained

in X̂ .

Any state x(tk) ∈X \ X̂ where x(tk) denotes a measurement of the state at sampling time

tk may be forced back into the set X̂ . This statement holds as a result of the method used to
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construct X̂ and X . Specifically, a steady-state x̂s ∈ Γ may be found such that x(tk) ∈ Ωρ(x̂s).

Then, a contractive Lyapunov-based constraint like that of Eq. 3.3f is imposed in the formulation

of the LEMPC to ensure that the computed control action decreases the Lyapunov function by at

least the rate given by the Lyapunov-based controller. This guarantees that the closed-loop state

will converge to X̂ in finite-time. Here, X̂ and X are analogous to Ωρe and Ωρ in the LEMPC

design of Eq. 3.3 with a time-invariant economic cost.

Given the overview and purposes of the sets X and X̂ , a slight clarification must be made on

the sets Γ, X , and X̂ . First, the set Γ is the set of points in state-space that satisfies the steady-

state model equation for some us ∈ U , i.e., f (xs,us,0) = 0. Second, X , which is the union of

the stability regions Ωρ(xs) constructed for each steady-state in Γ, is assumed to be a non-empty,

compact set. Third, the set X̂ is assumed to be a non-empty compact set with X̂ ⊂X , and it is

further clarified in Section 3.5.5.

Using the sets Γ, X , and X̂ , the LEMPC formulation with an explicitly time-varying cost is

given by the following optimization problem:

min
u∈S(∆)

∫ tk+N

tk
le(τ, x̃(τ),u(τ)) dτ (3.75a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (3.75b)

x̃(tk) = x(tk) (3.75c)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (3.75d)

x̃(t) ∈ X̂ , ∀ t ∈ [tk, tk+N) if x(tk) ∈ X̂ (3.75e)

x̃(t) ∈X , ∀ t ∈ [tk, tk+N) if x(tk) ∈X \X̂ (3.75f)

∂V (x(tk); x̂s)

∂x
f (x(tk),u(tk),0)≤

∂V (x(tk); x̂s)

∂x
f (x(tk),h(x(tk); x̂s),0)

if x(tk) /∈ X̂ , x(tk) ∈Ωρ(x̂s) with x̂s ∈ Γ (3.75g)

where all of the notation used is similar to that used in the LEMPC formulation of Eq. 3.3. The op-

timal solution of this optimization problem is denoted as u∗(t|tk) and it is defined for t ∈ [tk, tk+N).
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X

X̂

Γ

x(tk)

x̃(tk+1)

x(tk+1)x(tk+2)

x̂s

Ωρ(x̂s)

Ωρe(x̂s)

Figure 3.6: This illustration gives the state evolution over two sampling periods.
Over the first sampling period, the LEMPC, operating in mode 1, computes a control action that
maintains the predicted state x̃(tk+1) inside X̂ . However, the closed-loop state at the next sampling
time x(tk+1) is driven outside of X̂ by disturbances. The LEMPC, operating in mode 2, ensures
that the computed control action decreases the Lyapunov function based on the steady-state x̂s over
the next sampling period to force the state back into X̂ .

The control action computed for the first sampling period of the prediction horizon is denoted as

u∗(tk|tk). In the optimization problem of Eq. 3.75, Eq. 3.75a defines the time-dependent economic

cost functional to be minimized over the prediction horizon. The constraint of Eq. 3.75b is the

nominal model of the system of Eq. 3.1 which is used to predict the evolution of the system with

input trajectory u(t) computed by the LEMPC. The dynamic model is initialized with a measure-

ment of the current state (Eq. 3.75c). The constraint of Eq. 3.75d restricts the input trajectory take

values within the admissible input set.

Similar to the LEMPC design of Eq. 3.3, the LEMPC of Eq. 3.75 is a dual-mode controller. The

constraint of Eq. 3.75e defines mode 1 operation of the LEMPC and is active when the state at the

current sampling time x(tk)∈ X̂ . It enforces that the predicted state trajectory be maintained in X̂ .

The constraint of Eq. 3.75g defines mode 2 operation of the LEMPC and is active when the state
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is outside X̂ . It is used to force the state back into the X̂ which is guaranteed for any x(tk) ∈X .

The constraint of Eq. 3.75f is active when x(tk) ∈ X \ X̂ and ensures the predicted state be

contained in the set X . Although Eq. 3.75f is not needed for stability, it is used to ensure that

the LEMPC optimizes the input trajectory with knowledge that the state must be contained in X ,

and potentially improves the closed-loop economic performance when the LEMPC is operating

under mode 2 operation compared to not imposing such a constraint. Fig. 3.6 illustrates the sets

and different operation modes of the closed-loop system under the LEMPC of Eq. 3.75.

3.5.4 Implementation Strategy

The LEMPC of Eq. 3.75 is implemented in a receding horizon fashion. The optimization problem

is repeatedly solved every sampling time after receiving state feedback from the system. The

implementation strategy may be summarized as follows:

1. At sampling time tk, the LEMPC receives a state measurement x(tk) from the sensors.

2. If x(tk) ∈ X̂ , go to Step 2.1. Else, go to Step 2.2.

2.1 LEMPC operates in mode 1: the constraint of Eq. 3.75e is active and the constraints of

Eqs. 3.75f-3.75g are inactive, go to Step 3.

2.2 Find x̂s ∈ Γ such that x(tk) ∈Ωρ(x̂s), go to Step 2.3.

2.3 LEMPC operates in mode 2: the constraint of Eq. 3.75e is inactive and the constraints

of Eqs. 3.75f-3.75g are active, go to Step 3.

3. The LEMPC computes the optimal input trajectory u∗(t|tk) for t ∈ [tk, tk+N), go to Step 4.

4. The LEMPC sends the control action, u∗(tk|tk), computed for the first sampling period of

the prediction horizon to the control actuators to apply to the system in a sample-and-hold

fashion from tk to tk+1. Go to Step 5.

5. Set k← k+1. Go to Step 1.
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3.5.5 Stability Analysis

In this subsection, Theorem 3.4 provides sufficient conditions for closed-loop stability, in the sense

of boundedness of the closed-loop system state inside the set X , under the LEMPC of Eq. 3.75 for

any initial condition x(0) ∈X . It follows the ideas of the analysis of Theorem 3.1 of Section 3.3.

The assumption on the set X̂ that is needed to ensure closed-loop stability is given below.

Assumption 3.2. Let X̂ ⊂X be a compact set such that if x(0) ∈ X̂ and the constant control

û ∈ U is such that x̃(t) ∈ X̂ for all t ∈ [0,∆] where x̃(t) is the solution to

˙̃x(t) = f (x̃(t), û,0) (3.76)

for t ∈ [0,∆] and x̃(0) = x(0), then x(∆) ∈X where x(∆) denotes the closed-loop state of Eq. 3.3

under the constant control û.

Assumption 3.2 is satisfied for the case that instead of using the mode 1 constraint of Eq. 3.75e,

the constraint x̃(t)∈Ωρe(xs) for t ∈ [tk, tk+N) where Ωρe(xs) is designed according to a similar condi-

tion as in Eq. 3.21 for some xs ∈Γ such that x(tk)∈Ωρe(xs). For this case, X̂ may be constructed by

taking the union of sets Ωρe(xs) for all xs ∈ Γ where Ωρe(xs) is similar to the set Ωρe (for each xs ∈ Γ)

in the LEMPC of Eq. 3.3. Nevertheless, Assumption 3.2 is needed to cover the more general case

with the mode 1 constraint of Eq. 3.75e.

To avoid introducing convoluted notation, the sufficient conditions of the Theorem are stated

as similar conditions as Eqs. 3.22-3.23 must hold for each xs ∈ Γ. This means that there exists

positive constants: ρ , ρmin, ρs, L′x, L′w, M, and εw that satisfy similar conditions for each xs ∈ Γ.

Moreover, all of these parameters depend on xs.

Theorem 3.4. Consider the system of Eq. 3.1 in closed-loop under the LEMPC design of Eq. 5

based on the set of controllers that satisfy the conditions of Eq. 3.69 for each xs ∈ Γ. Let εw(xs)>

0, ∆ > 0, ρ(xs) > ρe(xs) ≥ ρmin(xs) > ρs(xs) > 0 for all xs ∈ Γ satisfy a similar condition as

Eqs. 3.22 for each xs ∈ Γ and let X = ∪xs∈ΓΩρ(xs) be a non-empty compact set and X̂ satisfy
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Assumption 3.2. If x(0) ∈X and N ≥ 1, then the state x(t) of the closed-loop system is always

bounded in X for all t ≥ 0.

Proof. The proof of Theorem 3.4 consists of the following parts: first, the feasibility of the op-

timization problem of Eq. 3.75 is proven for any state x(tk) ∈X . Second, boundedness of the

closed-loop state trajectory x(t) ∈X for all t ≥ 0 is proven for any initial state starting in X .

Part 1: Owing to the construction of X , any state x(tk) ∈X is in the stability region Ωρ(xs)

of the Lyapunov-based controller designed for some steady-state xs ∈ Γ. This implies that there

exists an input trajectory that is a feasible solution because the input trajectory obtained from the

Lyapunov-based controller is a feasible solution to the optimization of Eq. 3.75 as it satisfies the

constraints (refer to Theorem 3.1, Part 1 on how this input trajectory is obtained). The latter claim

is guaranteed by the closed-loop stability properties of the Lyapunov-based controller (h(·;xs)).

Part 2: If x(tk) ∈X \X̂ , then the LEMPC of Eq. 3.75 operates in mode 2. Since x(tk) ∈X , a

steady-state x̂s ∈ Γ may be found such that the current state x(tk)∈Ωρ(x̂s). Utilizing the Lyapunov-

based controller h(·; x̂s), the LEMPC computes a control action that satisfies the constraint of

Eq. 3.75g:

∂V (x(tk); x̂s)

∂x
f (x(tk),u∗(tk|tk),0)≤

∂V (x(tk); x̂s)

∂x
f (x(tk),h(x(tk); x̂s),0) (3.77)

for some x̂s ∈ Γ where u∗(tk|tk) is the optimal control action computed by the LEMPC to be applied

in a sample-and-hold fashion to the system of Eq. 3.1 for t ∈ [tk, tk+1). From Eq. 3.69b, the term in

the right-hand side of the inequality of Eq. 3.77 may be upper bounded by a class K function as

follows:
∂V (x(tk), x̂s)

∂x
f (x(tk),u∗(tk),0)≤−α3(|x(tk)− x̂s|; x̂s) (3.78)

for all x(tk) ∈X and for some x̂s ∈ Γ. Following similar steps as that used in Theorem 3.4, Part

2, one may show that the Lyapunov function value, i.e., the Lyapunov function for the steady-state

x̂s, will decay over the sampling period when a similar condition to Eq. 3.22 is satisfied for each

xs ∈ Γ.
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If x(tk) ∈ X̂ , then x(tk+1) ∈X owing to the construction of X̂ , i.e., if Assumption 3.2 is

satisfied. If x(tk) ∈X \ X̂ , then x(tk+1) ∈X because the state is forced to a smaller level set of

the Lyapunov function with respect to the steady-state x̂s ∈ Γ over the sampling period. Both of

these results together imply that x(tk+1) ∈X for all x(tk) under the LEMPC of Eq. 3.75. Using

this result recursively, the closed-loop state is always bounded in X when the initial state is in

X .

Remark 3.3. The LEMPC of Eq. 3.75 does not have a switching time like the LEMPC of Eq. 3.3

whereby the mode 2 constraint is exclusively imposed after the switching time to enforce the

closed-loop state to a specific steady-state. To ensure there exists a feasible path from any state

in X to the desired operating steady-state more conditions are needed. The interested reader

may refer to [109] that provides some conditions that accomplish such a goal. Additionally, no

guarantees are made that the closed-loop state will converge to X̂ when the state is in X \ X̂

owing to the fact that the mode 2 constraint could be formulated with respect to a different steady-

state at each sampling time. However, enforcing convergence to X̂ may be readily accomplished

through implementation by enforcing a mode 2 constraint formulated with respect to the same

steady-state at each sampling time until the state converges to X̂ .

3.5.6 Application to a Chemical Process Example

Consider a non-isothermal continuous stirred-tank reactor (CSTR) where three parallel reactions

take place. The reactions are elementary irreversible exothermic reactions of the form: A→ B,

A→ C, and A→ D. The desired product is B; while, C and D are byproducts. The feed of the

reactor consists of the reactant A in an inert solvent and does not contain any of the products. Using

first principles and standard modeling assumptions, a nonlinear dynamic model of the process is
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Table 3.3: CSTR process parameters.

Feedstock volumetric flow rate F = 5.0m3 h−1

Feedstock temperature T0 = 300K
Reactor volume VR = 5.0m3

Pre-exponential factor for reaction 1 k01 = 6.0×105 h−1

Pre-exponential factor for reaction 2 k02 = 6.0×104 h−1

Pre-exponential factor for reaction 3 k03 = 6.0×104 h−1

Reaction enthalpy change for reaction 1 ∆H1 =−5.0×104 kJ kmol−1

Reaction enthalpy change for reaction 2 ∆H2 =−5.2×104 kJ kmol−1

Reaction enthalpy change for reaction 3 ∆H3 =−5.4×104 kJ kmol−1

Activation energy for reaction 1 E1 = 5.0×104 kJ kmol−1

Activation energy for reaction 2 E2 = 7.53×104 kJ kmol−1

Activation energy for reaction 3 E3 = 7.53×104 kJ kmol−1

Heat capacity Cp = 0.231kg m−3

Density ρL = 1000kJ kg−1 K−1

Gas constant R = 8.314kJ kmol−1 K−1

obtained:

dCA

dt
=

F
VR

(CA0−CA)−
3

∑
i=1

k0,ie−Ei/RTCA (3.79a)

dT
dt

=
F
VR

(T0−T )− 1
ρLCp

3

∑
i=1

∆Hik0,ie−Ei/RTCA +
Q

ρLCpVR
(3.79b)

where CA is the concentration of the reactant A, T is the temperature of the reactor, Q is the rate of

heat supplied or removed from the reactor, CA0 and T0 are the reactor feed reactant concentration

and temperature, respectively, F is a constant volumetric flow rate through the reactor, VR is the

constant liquid hold-up in the reactor, ∆Hi, k0,i, and Ei, i = 1,2,3 denote the enthalpy changes,

pre-exponential constants and activation energies of the three reactions, respectively, and Cp and

ρL denote the heat capacity and the density of the fluid in the reactor. The process parameters

are given in Table 3.3. The CSTR has two manipulated inputs: the inlet concentration CA0 with

available control energy 0.5kmol m−3 ≤CA0 ≤ 7.5kmol m−3 and the heat rate to/from the vessel

Q with available control energy −1.0×105 kJ h−1 ≤ Q ≤ 1.0×105 kJ h−1. The state vector is

xT = [CA T ] and the input vector is uT = [CA0 Q].
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Figure 3.7: The construction of the set X for the CSTR of Eq. 3.79.

Stability Region Construction

Supplying or removing significant amount of thermal energy to/from the reactor (nonzero Q)

is considered to be undesirable from an economic perspective. Therefore, the set X is con-

structed considering steady-states corresponding to steady-state inlet reactant concentration of

CA0s ∈ [2.0, 6.0]kmol m−3 and no heat rate supplied/removed from the reactor, i.e., Qs = 0.0kJ h−1.

The corresponding steady-states in the desired operating range form a set denoted as Γ of admis-

sible operating steady-states. Several of these steady-states have been verified to be open-loop

unstable, i.e., the eigenvalues of the linearization around the steady-states corresponding to the

minimum and maximum steady-state inlet concentrations are λ1,min = −1.00, λ2,min = 2.73 and

λ1,max = −1.00, λ2,max = 2.10, respectively. The set Γ covers approximately a temperature range

of 50K.

A set of two proportional controllers with saturation to account for the input constraints is used
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in the design of the Lyapunov-based controller:

h(x;xs) =


3.5 sat

(
K1(xs,1− x1)+u1,s−4.0

3.5

)
+4.0

105 sat
(

K2(xs,2− x2)+u2,s

105

)
 (3.80)

where K1 = 10 and K2 = 8000 are the gains of each proportional controller. The proportional

controller gains have been tuned to give the largest estimate of the stability region for a given

steady-state. A quadratic Lyapunov function of the form:

V (x;xs) = (x− xs)
T P(x− xs) (3.81)

where P is a positive definite matrix is used to estimate the stability regions of many steady-states

in the set Γ, i.e., the stability region for a given steady-state in Γ is taken to be a level set of

the Lyapunov function where the Lyapunov function is decreasing along the state trajectory. To

estimate X , the procedure outlined in Section 3.5.2 is employed. To obtain the largest estimate of

the region X , several P matrices were used. The results of this procedure are shown in Fig. 3.7.

The union of these regions X was approximated with two quadratic polynomial inequalities and

three linear state inequalities given by:

1.26x2
1−19.84x1 +467.66− x2 ≥ 0

2.36x2
1−26.72x1 +428.26− x2 ≤ 0

0.4≤ x1 ≤ 7.4

x2 ≤ 434.5

(3.82)

which will be used in the formulation of the LEMPC to ensure that the state trajectories are main-

tained inside X (note that x2 is lower bounded by the second inequality).
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Closed-loop Simulation Results

The control objective of this chemical process example is to operate the CSTR in an economi-

cally optimal manner while accounting for changing economic factors and maintaining the system

operation inside a bounded set. For this chemical process example, the economic measure being

considered is

le(t,x,u) = A1(t)u2
2 +A2(t)u1−A3r1(x)+A4(x2−395)2 (3.83)

where r1(x) is the reaction rate of the first reaction that produces the desired product:

r1(x) = k01e−E1/Rx2x1 . (3.84)

The economic measure of Eq. 3.83 penalizes energy usage/removal, penalizes reactant material

consumption, credits the production rate of the desired product, and penalizes the deviation of the

operating temperature from the median operating temperature. The fourth term of the economic

cost is used to prevent the LEMPC from operating the CSTR at the boundary of the allowable

operating range for long periods of time which is considered undesirable from a practical perspec-

tive. In this fashion, the economic cost consists of terms that are associated with the operating

cost/profit (economic terms) as well as terms that ensure that the LEMPC operates the CSTR in a

practical and safe fashion.

For this study, the weights A1 and A2 are considered to vary with time; while, A3 = 278 and

A4 = 0.4 are constants over the 5.0h simulated operation of the CSTR under the LEMPC. The

weight A1 is equal to 4.0× 10−6 for t = 0.0h to 4.0h and 5.0× 10−6 for 4.0h to 5.0h, and the

101



time-dependent weight A2 is given by the following piecewise constant relationship:

A2(t) =



333 0.0h≤ t < 1.0h

167 1.0h≤ t < 2.0h

83 2.0h≤ t < 3.0h

17 3.0h≤ t < 4.0h

167 4.0h≤ t < 5.0h

(3.85)

Since the economic cost is considered to account for more than just the operating cost/profit of the

CSTR, the weights may be considered to account for more than the price of a particular resource.

For instance, the variation of the weight A2 may be caused by supply and/or demand changes

of the reactant A. While these weights may come from a higher level information technology

system, careful tuning of these weights is critical to achieve both practical operation with LEMPC

and economically optimal (with respect to the actual operating cost) operation. For this particular

study, the economic cost has been chosen to vary on a time-scale comparable to the one of the

process dynamics.

In the first set of simulations, nominal operation (w≡ 0) is considered to understand the oper-

ation of the CSTR under the LEMPC operating in mode 1 only. The formulation of the LEMPC
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with explicitly time-varying cost function used to accomplish the desired control objective is

min
u∈S(∆)

∫ tk+N

tk
le(τ, x̃(τ),u(τ)) dτ

s.t. ˙̃x(t) = f (x̃(t),u(t),0)

x̃(tk) = x(tk)

u(t) ∈U, ∀ t ∈ [tk, tk+N)

1.26x̃2
1(t)−19.84x̃1(t)+467.66− x̃2(t)≥ 0, ∀ t ∈ [tk, tk+N)

2.36x̃2
1(t)−26.72x̃1(t)+428.26− x̃2(t)≤ 0, ∀ t ∈ [tk, tk+N)

0.4≤ x̃1(t)≤ 7.4, ∀ t ∈ [tk, tk+N)

x̃2(t)≤ 434.5, ∀ t ∈ [tk, tk+N)

(3.86)

where the economic measure le is given in Eq. 3.83. Since no disturbances or uncertainties are

present, the set X̂ is taken to be X (X̂ = X ). The sampling period and the prediction horizon

of the LEMPC is ∆ = 0.1h and N = 10, respectively. These parameters have been chosen through

extensive simulations such that the total prediction horizon is sufficiently long to yield good eco-

nomic performance of the closed-loop system. To solve the LEMPC optimization problem at

each sampling period, the open-source interior point solver Ipopt [187] was used. A fourth-order

Runge-Kutta method with integration step of 5.0×10−4 h was used to numerically solve the non-

linear ODEs of Eq. 3.79. To assess the total economic performance of each simulation, the total

economic measure over the simulated operation of the CSTR is defined as

M−1

∑
j=0

[
A1(t j)u2

2(t j)+A2(t j)u1(t j)−A3r1(x(t j))+A4(x2(t j)−395)2] (3.87)

where M is the number of integration steps over the entire simulated time t f and t j denotes an

integration time step.

Since the exact future values of the cost weights may not be known exactly in a practical

setting, two cases were simulated: (1) the LEMPC of Eq. 3.86 is formulated with a perfect forecast
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Figure 3.8: The states and inputs of the nominally operated CSTR under LEMPC-1 (mode 1

operation only) initialized at CA(0) = 2.0kmol m−3 and T (0) = 410.0K.

of time-varying economic weights and (2) the LEMPC of Eq. 3.86 is formulated with constant

A1 and A2 (no forecasting). The two cases are denoted as LEMPC-1 and LEMPC-2, respectively.

For LEMPC-2, the previously obtained weights A1 and A2 are used in the optimization problem

until the LEMPC receives new weight values which are obtained at the time instance in which the

weights change.

The CSTR is initialized at the initial condition of CA(0) = 2.0kmol m−3 and T (0) = 410.0K.

The results of two simulations are shown in Figs. 3.8-3.9 under LEMPC-1 and LEMPC-2, respec-

tively. Over the course of both of these simulations, the LEMPC schemes operate the CSTR in

a time-varying (transient) fashion. If the economic weights become fixed or if a significant time-

scale separation between economic cost change and the process dynamics existed, steady-state

operation would become optimal for this particular economic cost and nonlinear model. Also, the

LEMPC in this example is not formulated with any periodic, average, or integral input constraints,

and is not formulated with any stabilizing constraints to enforce convergence to the economically

optimal steady-state. Therefore, the reason for the time-varying operation is due to the economic
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Figure 3.9: The states and inputs of the nominally operated CSTR under LEMPC-2 (mode 1

operation only) initialized at CA(0) = 2.0kmol m−3 and T (0) = 410.0K.
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Figure 3.10: The states and inputs of the CSTR under the LEMPC of Eq. 3.86 (mode 1 operation

only) when the economic cost weights are constant with time (solid line) with the economically

optimal steady-state (dashed line).
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Table 3.4: The optimal steady-state variation with respect to the time-varying economic weights.

t C∗A,s T ∗s C∗A0,s Q∗s

0.0h≤ t < 1.0h 1.77 414.1 2.30 591.5
1.0h≤ t < 2.0h 2.12 407.5 2.61 300.9
2.0h≤ t < 3.0h 2.40 402.9 2.87 151.2
3.0h≤ t < 4.0h 2.75 398.1 3.20 -80.0
4.0h≤ t < 5.0h 2.12 407.5 2.61 240.6

cost changing with time on a time-scale comparable to the process dynamics. To demonstrate this

point, Fig. 3.10 shows the state and input trajectories under LEMPC of Eq. 3.86 (mode 1 oper-

ation of the controller only) where the economic cost weights are constant with time. Recalling

the LEMPC does not have any constraints that enforce convergence to the steady-state, the CSTR

under the LEMPC with a prediction horizon of N = 10 settles on an offsetting steady-state from

the economically optimal steady-state, i.e., the steady-state in Γ that optimizes the economic cost.

The total economic cost of the CSTR under LEMPC-1 is 2.37×104; while, the economic cost

of the CSTR under LEMPC-2 is 2.91× 104. The key factor that contributes to the performance

degradation of the second simulation (as depicted in Figs. 3.8-3.9) may be observed in the input

trajectories that the two LEMPC schemes compute. For the LEMPC-1 simulation, the LEMPC

knows that the cost of the reactant material decreases at the beginning of each of the first four

hours of operation so it waits to utilize this resource until the beginning of each of these hours

when the price is less than in the previous hour. For the LEMPC-2 simulation, the LEMPC uses

the minimum amount of reactant material at the beginning of each of these four hours. Also, the

cost of the thermal energy Q increases over the last hour of the simulated operation. In the first

case, the LEMPC utilizes the thermal energy before the price increases to increase the reactor

temperature, and then, uses less energy thereafter. In the second case, the LEMPC supplies heat to

the reactor when the cost of thermal energy has already increased. Comparing the evolution of the

states in both cases, the regions of operation in state-space between the two cases are similar.

To assess the economic performance of the CSTR under the LEMPC, a comparison between

the CSTR under the LEMPC and under a conventional approach to optimization and control, i.e.,
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steady-state optimization with tracking MPC, was carried out. The CSTR is simulated under a

Lyapunov-based MPC (LMPC), formulated with a quadratic cost, where the LMPC works to drive

the system to the economically optimal steady-state which is the minimizer of

min
(xs,us)

le(t,xs,us)

s.t. f (xs,us,0) = 0

us ∈U, xs ∈ Γ

(3.88)

for a fixed t. The optimal steady-state at a given time t is denoted as x∗s (t) and the optimal steady-

state with time for the economic weights is given in Table 3.4.

The formulation of LMPC is as follows:

min
u∈S(∆)

∫ tk+N

tk

(
|x̃(τ)− x∗s (τ)|Qc

+ |u(τ)−u∗s (τ)|Rc

)
dτ

s.t. ˙̃x(t) = f (x̃(t),u(t),0)

x̃(tk) = x(tk)

u(t) ∈U, ∀ t ∈ [tk, tk+N)

∂V (x(tk);x∗s (tk))
∂x

f (x(tk),u(tk),0)

≤ ∂V (x(tk);x∗s (tk))
∂x

f (x(tk),h(x(tk);x∗s (tk)),0)

(3.89)

where the cost function is a quadratic cost function that penalizes the deviation of states and in-

puts from the optimal (time-varying) steady-state. The sampling period and prediction horizon

of the LMPC are chosen to be the same as the ones of the LEMPC. The weighting matrices are

Qc = diag([2788.0,0.6]) and Rc = diag([27.8,5.0×10−7]). A quadratic Lyapunov function of the

form given in Eq. 3.81 with a positive definite matrix P = diag([280.0,9.0]) is considered. The

Lyapunov-based controller used in the formulation of the Lyapunov-based constraint is a set of

proportional controllers (P-controllers) like that of Eq. 3.80 with gains K1 = 1 and K2 = 6000. The

P-controllers have been tuned less aggressively compared to the P-controllers used in the construc-
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Table 3.5: The total economic cost of the closed-loop reactor over several simulations with dif-

ferent initial states. The performance improvement is relative to the economic performance under

LMPC.

Initial State Total Economic Cost (×105) and Performance Improvement

x1(0) x2(0) LMPC LEMPC-1 Improvement LEMPC-2 Improvement

2.0 410.0 0.908 0.237 73.9% 0.291 68.0%
2.0 425.0 2.325 0.456 80.4% 0.507 78.2%
4.0 370.0 4.274 1.234 71.1% 1.075 74.8%
4.0 395.0 2.744 0.152 94.4% 0.192 93.0%
5.0 370.0 4.164 0.634 84.8% 0.643 84.6%
6.0 360.0 5.370 1.375 74.4% 1.225 77.2%

tion of the set X to allow the LMPC more freedom in the optimization of the control action.

The CSTR was initialized at several states in state-space and was simulated with three con-

trol strategies: (1) LEMPC-1, (2) LEMPC-2, and (3) LMPC. The total economic cost of each

simulation is given in Table 3.5. The operating trajectories of a simulation under LMPC are also

given in Fig. 3.11 to demonstrate the differences in achievable trajectories with the conventional

MPC formulation working to track the economically optimal steady-state. Clearly, the operating

trajectories of the EMPC cannot be obtained by a tracking MPC, regardless of the tuning of the

weighting matrices. From the results of Table 3.5, the economic performance of the system under

both of the LEMPC schemes is better than the performance under the tracking LMPC.

For two of the initial conditions, the economic performance was better with LEMPC-2 com-

pared to LEMPC-1 (Table 3.5). The closed-loop evolution of the CSTR with the two LEMPC

schemes for one of these simulations is shown in Fig. 3.12-3.13. This is a result of not having a

sufficiently long prediction horizon for these two initial conditions. More specifically, this behav-

ior is caused by initializing the CSTR far away from the economically optimal region to operate

the process. For this prediction horizon (N = 10), the LEMPC cannot simulate enough of the fu-

ture evolution of the process to recognize that there is an economically better region to operate

the process. As a result, the state is maintained away from this optimal region at the beginning
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Figure 3.11: The states and inputs of the CSTR under the LMPC of Eq. 3.89 used to track the

economically optimal steady-state (dashed line).
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Figure 3.12: The states and inputs of the nominally operated CSTR under LEMPC-1 initialized at

CA(0) = 4.0kmol m−3 and T (0) = 370.0K.
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Figure 3.13: The states and inputs of the nominally operated CSTR under LEMPC-2 initialized at

CA(0) = 4.0kmol m−3 and T (0) = 370.0K.

of both simulations. For the LEMPC-2 simulation, the maximum allowable amount of reactant

concentration is fed to the process from 0.0h to 1.8h. This causes the rates of the three reactions

to increase. Since the heat rate supplied/removed from the reactor is penalized in the cost and the

LEMPC does not know that the price of the reactant material will decrease at 2.0h, Q and CA0

decrease up to about 2.0h to maintain stability. This decrease in Q and CA0 decreases the reac-

tant concentration in the reactor while increasing the temperature bringing the states closer to the

economically optimal region of operation. The LEMPC is then able to observe the economically

optimal region of operation along its prediction horizon. Thus, it forces the states to this region.

For LEMPC-1, the LEMPC knows that the reactant price will decrease at the beginning of each of

the first four hours. Therefore, it maintains feeding the maximum allowable reactant material to

maximize the reaction rate of the first reaction, and it supplies less heat to the reactor compared to

LEMPC-2. As a result of this behavior, process operation is maintained far enough away from the

optimal region of operation.

To assess the stability and robustness properties of the LEMPC of Eq. 3.75, the size where
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Figure 3.14: The states and inputs of the CSTR under the two-mode LEMPC with added process

noise; evolution with respect to time.
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Figure 3.15: The states and inputs of the CSTR under the two-mode LEMPC with added process

noise; state-space plot.
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the LEMPC is able to operate the system in a time-varying manner to optimize the process eco-

nomic cost is reduced and the two-mode control strategy is employed. Process noise is added to

the closed-loop system and is modeled as bounded Gaussian white noise on the inlet reactant con-

centration and inlet temperature which has zero mean and the following standard deviation and

bound: 0.5kmol m−3 and 1.0kmol m−3, respectively, for the inlet concentration noise and 3.0K

and 10.0K, respectively, for the inlet temperature noise. To simulate the noise, a new random

number is generated and used to add noise in the process model over each integration step. The

region X̂ is approximated through the following constraints:

1.20x2
1−19.17x1 +460.61− x2 ≥ 0

2.59x2
1−29.14x1 +438.36− x2 ≤ 0

0.7≤ x1 ≤ 7.1

x2 ≤ 431.5

(3.90)

which has been estimated through extensive simulations with the given process model, economic

cost, and process noise as the region whereby closed-loop stability may be maintained. The re-

sults of a closed-loop simulation of the CSTR are displayed in Figs. 3.14-3.15. The LEMPC

does maintain the process inside the region X for the duration of the simulation as observed in

Figs. 3.14-3.15.

3.6 Conclusions

In this chapter, various LEMPC designs were developed, which are capable of optimizing closed-

loop performance with respect to general economic considerations for nonlinear systems. Numer-

ous issues arising in the context of chemical process control were considered including closed-loop

stability, robustness, closed-loop performance, and explicitly time-varying economic cost func-

tions. The formulations of the LEMPC schemes were provided as well as rigorous theoretical

112



treatments of the schemes were carried out. Closed-loop stability, in the sense of boundedness

of the closed-loop state, under the LEMPC designs was proven. Additionally, when desirable,

the LEMPC designs may be used to enforce convergence of the closed-loop state to steady-state.

Under a specific terminal constraint design, the closed-loop system under the resulting LEMPC

scheme was shown to achieve at least as good closed-loop performance as that achieved under

an explicit stabilizing controller. Demonstrations of the effectiveness of the LEMPC schemes on

chemical process examples were also provided. Moreover, the closed-loop properties of these

examples under the LEMPC schemes were compared with respect to existing approaches to op-

timization and control. In all cases considered, the closed-loop economic performance under the

LEMPC designs was better relative to the conventional approaches.
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Chapter 4

Two-layer EMPC Implementation

4.1 Introduction

As discussed in Chapter 1, in the traditional paradigm to optimization and control, a hierarchical

strategy is employed using real-time optimization (RTO) to compute economically optimal steady-

states that are subsequently sent down to a tracking MPC layer. The tracking MPC computes

control actions that are applied to the closed-loop system to force the state to the optimal steady-

state. If there is a shift in the optimal operating conditions, RTO updates the optimal steady-state

and sends the updated steady-state to the MPC layer. On the other hand, the EMPC merges eco-

nomic optimization and control, i.e., the methods discussed in Chapters 1-3, employing a one-layer

approach to optimization and control. While EMPC merges optimization and control, the extent

that EMPC takes on all the responsibilities of RTO remains to be seen. For example, many EMPC

methods are formulated using a steady-state, which potentially could be the economically optimal

steady-state. RTO is also responsible for other tasks besides optimization. Therefore, one may

envision that future optimization and control structures will maintain some aspects of the hier-

archical approach within the context of industrial applications. Moreover, in some applications,

maintaining a division between economic optimization and control is suitable, especially for appli-

cations where there is an explicit time-scale separation between the process/system dynamics and
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the update frequency or time-scale of evolution of economic factors and/or other factors that shift

optimal operating conditions, e.g., disturbances.

In an industrial control architecture, which features a high degree of complexity, a hierarchical

approach to dynamic economic optimization and control may be more applicable. Motivated by the

aforementioned considerations, several two-layer approaches to dynamic economic optimization

and control are discussed in this chapter. The upper layer, utilizing an EMPC, is used to compute

economically optimal policies and potentially, also, control actions that are applied to the closed-

loop system. The economically optimal policies are sent down to a lower layer MPC scheme which

may be a tracking MPC or an EMPC. The lower layer MPC scheme forces the closed-loop state to

closely follow the economically optimal policy computed in the upper layer EMPC.

The unifying themes of the two-layer EMPC implementations described in this chapter are

as follows. First, the upper layer EMPC may employ a long prediction horizon. The long pre-

diction horizon ideally prevents the EMPC from dictating an operating policy based on myopic

decision-making, which may lead to poor closed-loop economic performance. Considering a

one-layer EMPC approach with a long horizon, the computational time and complexity of the

resulting optimization problem (thousands of decisions variables for large-scale systems) may

make it unsuitable for real-time application. Second, the upper layer dynamic economic op-

timization problem, i.e., the EMPC problem, is formulated with explicit control-oriented con-

straints which allow for guaranteed closed-loop stability properties. This is a departure from other

two-layer approaches to dynamic optimization and control such as those featuring dynamic-RTO,

e.g. [80, 94, 122, 93, 185, 202, 92, 192, 195, 193], which may not be formulated with such con-

straints. Third, the upper layer is solved infrequently in the sense that it is not solved every sam-

pling time like a standard one-layer EMPC method with a receding horizon implementation. The

rate that the upper layer EMPC is solved may be considered a tuning parameter of the optimization

and control architectures. However, the upper layer does not need to wait until the system has

reached steady-state owing to the fact that a dynamic model of the process is used in the optimiza-

tion layer.
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The lower layer MPC, which may be either a tracking MPC or an EMPC, may be formulated

with a shorter prediction horizon and potentially smaller sampling period if state measurement

feedback is available. It is used to force the closed-loop state to track the operating policy com-

puted by the upper layer EMPC and to ensure closed-loop stability and robustness. Owing to the

fact that the upper layer EMPC is solved infrequently and the lower layer MPC utilizes a shorter

prediction horizon, the major benefit of a two-layer EMPC implementation is improved computa-

tional efficiency compared to a one-layer EMPC method.

The results of this chapter originally appeared in [51, 49, 50, 46].

4.1.1 Notation

Given that this chapter deals with control elements arranged in a multi-layer configuration, an

extended amount of notation is needed to describe the control system. To aid the reader, Table 4.1

summarizes the notation used in this chapter. Some of the notation will be made more precise in

what follows. To clarify the difference between open-loop and closed-loop trajectories, consider a

time sequence: {t̄i}k+N̄
i=k where t̄i = i∆̄, ∆̄ > 0 is a constant and N̄ ≥ 1 is a positive integer. Given a

function ū : [t̄k, t̄k+N̄)→U, which is right-continuous piecewise constant with constant hold period

∆̄, the open-loop predicted state trajectory under the open-loop input trajectory ū is the solution to

the differential equation:

˙̄x(t) = f (x̄(t), ū(t),0) (4.1)

for t ∈ [t̄k, t̄k+N̄) with initial condition x̄(t̄k) = x(t̄k) where x(t̄k) is a state measurement of the closed-

loop system at time t̄k. In this context, existence of a solution for a given open-loop input trajectory

is assumed. In the subsequent sections, existence and uniqueness of a solution to Eq. 4.1 is guar-

anteed under mild smoothness requirements on f and the fact that ū(·) is piecewise continuous

and is computed such that the solution is maintained in a compact state-space set. The open-loop

predicted state and input trajectories are denoted as x̄(·|t̄k) and ū(·|t̄k) to make clear that both of

these trajectories, which are functions of time, have been computed at t̄k with a state measurement
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Table 4.1: A summary of the notation used to describe the two-layer EMPC structure.

Notation Description

∆E Zeroth-order hold period used for the upper layer control
parameterization

NE Number of zeroth-order hold periods in the upper layer
EMPC prediction horizon

KE Number of hold periods, ∆E , that the upper layer EMPC
is solved

t ′ Operating period length with t ′ = KE∆E
{t̂k}k≥0 Computation time sequence of upper layer with t̂k = kt ′

(k ∈ I+)
z(·|t̂k) Open-loop predicted state trajectory under an auxiliary

controller computed at t̂k
v(·|t̂k) Open-loop input trajectory computed by an auxiliary con-

troller computed at t̂k
xE(·|t̂k) Open-loop predicted state trajectory under the upper layer

MPC at t̂k
uE(·|t̂k) Open-loop input trajectory computed by the upper layer

MPC at t̂k
∆ Sampling period size of the lower layer
N Number of sampling periods in the lower layer MPC pre-

diction horizon
{t j} j≥0 Sampling time sequence of lower layer with t j = j∆ ( j ∈

I+)
x̃(·|t j) Open-loop predicted state trajectory under the lower layer

MPC at t j
u(·|t j) Open-loop input trajectory computed by the upper layer

MPC at t j
x(·) Closed-loop state trajectory under the two-layer control

structure
u∗(t j|t j) Control action applied to the closed-loop system com-

puted at t j and applied from t j to t j+1
(xs,us) Steady-state and steady-state input pair
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at t̄k.

The term closed-loop system refers to the resulting sampled-data system of Eq. 3.1 under an

MPC scheme. The closed-loop state trajectory is the solution to:

ẋ(t) = f (x(t),k(x(t j)),w(t)) (4.2)

for t ∈ [t j, t j+1) with t j = j∆ for some ∆ > 0 and j = 0,1, . . .. The mapping k(·) is a state feedback

control law. In the context of MPC, the state feedback control law is implicitly defined from the

solution of an optimization problem and the receding horizon implement ion Specifically, the MPC

receives a state measurement at a sampling time t j, computes a control action, and applies it in a

sample-and-hold fashion over the sample period, i.e., from t j to t j+1. The notation u∗(t j|t j) is used

to denote the computed control action by the MPC scheme at sampling time t j with a state mea-

surement x(t j). Under an MPC scheme, the closed-loop system is written similarly to Eq. 4.2 by

replacing k(x(t j)) with u∗(t j|t j). Finally, the notation ·∗, e.g., y∗, is used to denote that the quantity,

which may be a vector with real elements or a function defined over an appropriate domain and

range, is optimal with respect to a cost function (or cost functional) and some constraints.

4.2 Two-Layer Control and Optimization Framework

A two-layer dynamic economic optimization and control framework featuring EMPC in the up-

per layer and tracking MPC in the lower layer is discussed in this section. The same nonlinear

dynamic model is used in each layer to avoid modeling inconsistencies. Control-oriented con-

straints are employed in the dynamic optimization layer to ensure closed-loop stability. A rigorous

theoretical treatment of the stability properties of the closed-loop system with the control archi-

tecture is provided. Variants and extensions of the two-layer optimization and control framework

are discussed. The two-layer optimization and control framework is applied to a chemical process

example.
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4.2.1 Class of Systems

While a similar class of nonlinear systems is considered as that described by Eq. 3.1, the manipu-

lated inputs are split into two groups, i.e., the input vector is given by u := [u1 u2]
T where u1 ∈Rm1 ,

u2 ∈ Rm2 , and m1 +m2 = m. Loosely speaking, the inputs are partitioned into two groups based

on their main responsibility. The input u1 is directly responsible for economic optimization and/or

has the most significant impact on the closed-loop economic performance, while the input u2 is re-

sponsible for maintaining closed-loop stability. In the chemical process example of Section 4.2.3,

the inputs are partitioned using this rationale as a basis. Additional methods may be employed to

help identify the inputs that have the most significant impact on the economic performance such

as the methods presented in Chapter 7.

With the two sets of inputs, the following state-space model is written to emphasize the depen-

dence of the vector field on each group of inputs:

ẋ = f (x,u1,u2,w) (4.3)

where x ∈ X ⊆ Rn denotes the state vector, u1 ∈ U1 ⊂ Rm1 and u2 ∈ U2 ⊂ Rm2 denote the two

manipulated input vectors or the two sets of manipulated inputs, w ∈ Rl denotes the disturbance

vector and f is assumed to be a locally Lipschitz vector function on X×U1×U2×W. The

sets U1 and U2 are assumed to be nonempty compact sets. The disturbance is assumed to be

bounded, i.e., W := {w ∈ Rl : |w| ≤ θ} where θ > 0. The origin of the nominal unforced system

of Eq. 4.3 is assumed to be an equilibrium point ( f (0,0,0,0) = 0). The state of the system is

sampled synchronously at the time instants indicated by the time sequence {t j} j≥0 where t j = j∆,

j = 0,1, . . . and ∆ > 0 is the sampling period.

As before, a stabilizability assumption is imposed on the system of Eq. 4.3 in the sense that

the existence of a stabilizing feedback control law that renders the origin of the system of Eq. 4.3
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asymptotically stable is assumed. The stabilizing feedback control law is given by the pair:

(h1(x),h2(x)) ∈ U1×U2 (4.4)

for all x ∈ X. While the domain of the stabilizing controller is taken to be X, it renders the origin

asymptotically stable with some region of attraction that may be a subset of X. Applying converse

Lyapunov theorems [100, 123], there exists a continuous differentiable Lyapunov function V : D→

R+ that satisfies the following inequalities:

α1(|x|)≤V (x)≤ α2(|x|) (4.5a)

∂V (x)
∂x

f (x,h1(x),h2(x),0)≤−α3(|x|) (4.5b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (4.5c)

for all x ∈ D where αi ∈K for i = 1,2,3,4 and D is an open neighborhood of the origin. The

region Ωρ ⊆ D such that Ωρ ⊆ X is the (estimated) stability region of the closed-loop system

under the stabilizing controller.

4.2.2 Formulation and Implementation

The dynamic economic optimization and control framework consists of EMPC in the upper layer

and tracking MPC in the lower layer. A block diagram of the framework is given in Fig. 4.1. The

prediction horizons of the EMPC and the MPC may be different. This allows for the EMPC to

be formulated with a long prediction horizon. The number of sampling periods in the prediction

horizon of the EMPC is denoted as NE ∈ I≥1, and that of the MPC is denoted as N ∈ I≥1. For

simplicity, the sampling periods of the upper layer EMPC and lower layer MPC are assumed to be

the same (∆E = ∆) and ∆ will be used to denote the sampling period. The two-layer framework

may be extended to the case where the sampling periods are not equal.

The upper layer EMPC problem is solved infrequently, i.e., not every sampling time. Let
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x(t̂k)

x(tj)

Figure 4.1: A block diagram of the two-layer integrated framework for dynamic economic opti-

mization and control with EMPC in the upper layer and tracking MPC in the lower layer. Both the

upper and lower layers compute control actions that are applied to the system.

KE ≥ I+ be the number of sampling times that the upper layer is resolved. The time sequence

{t̂k}k≥0 denotes the time steps that the upper layer EMPC is solved. Owing to the implementation

strategy, the time sequence is not necessarily a synchronous partitioning of time. For sake of

simplicity, let N ≤ NE −KE to ensure that the upper layer EMPC problem is computed at a rate

needed to ensure that the economically optimal trajectory is defined over the prediction horizon

of the lower layer tracking MPC. If this is not satisfied, one could employ a shrinking horizon

in the lower layer LMPC. While the upper layer EMPC computes optimal input trajectories for

both sets of manipulated inputs, it sends control actions for the manipulated input u1 to the control

actuators to be applied in an open-loop fashion. The implementation strategy is described below.

The optimal operating trajectory over the prediction horizon of the EMPC is computed by the

upper layer EMPC and sent to the lower layer tracking MPC to force the closed-loop state to track

the optimal operating trajectory. The optimal operating trajectory is defined below.

Definition 4.1. Let (u∗1,E(t|t̂k),u∗2,E(t|t̂k)), which is defined for t ∈ [t̂k, t̂k +NE∆), be the optimal in-

put pair computed by the upper layer EMPC and let x(t̂k) be the state measurement at the sampling
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time t̂k. The economically optimal state trajectory x∗E(t|t̂k) for t ∈ [t̂k, t̂k +NE∆) of the system of

Eq. 4.3 is the solution of

ẋ∗E(t) = f (x∗E(t),u
∗
1,E(τi|t̂k),u∗2,E(τi|t̂k),0), t ∈ [τi,τi+1) (4.6)

for i = 0,1, . . . ,NE −1 with xE(t̂k) = x(t̂k) where τi := t̂k + i∆.

The lower layer MPC is implemented with a receding horizon implementation and thus, is

solved at every sampling time. The notation t j will be reserved to denote a sampling time that

the MPC problem is solved. To provide closed-loop stability guarantees on the resulting control

framework, the upper layer EMPC is formulated as an LEMPC (Eq. 3.3) and the lower layer

MPC is formulated as a LMPC (Eq. 2.43). The advantage of this formulation is that the LEMPC

computes a reference trajectory that the tracking LMPC layer may force the system to track and

unreachable set-points are avoided.

An assumption is needed to ensure feasibility and stability with the resulting two-layer frame-

work. Owing to the fact that the upper layer EMPC is solved infrequently and applies its computed

trajectory for u1 in an open-loop fashion, an assumption is needed to ensure that it is possible to

maintain stability with the input u2 in the sense that for any u1 ∈ U1 it possible to find a u2 ∈ U2

that ensures that the time-derivative of the Lyapunov function is negative. This is stated in the fol-

lowing assumption. Also, the assumption further clarifies how the manipulated inputs are divided

into the two input groups.

Assumption 4.1. For any fixed u1,E ∈U1, there exists u2 ∈U2 such that:

∂V (x)
∂x

f (x,u1,E ,u2,0)≤
∂V (x)

∂x
f (x,h1(x),h2(x),0) (4.7)

for all x ∈Ωρ .

Variations of the assumption are discussed in Section 4.2.2.

The upper layer LEMPC has a similar formulation as that of Eq. 3.3 with one modification
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discussed below. The upper layer LEMPC problem is given by the following optimization problem:

min
u1,E ,u2,E∈S(∆)

∫ t̂k+NE ∆

t̂k
le(xE(τ),u1,E(τ),u2,E(τ)) dτ (4.8a)

s.t. ẋE(t) = f (xE(t),u1,E(t),u2,E(t),0) (4.8b)

xE(t̂k) = x(t̂k) (4.8c)

u1,E(t) ∈ U1, u2,E(t) ∈ U2, ∀ t ∈ [t̂k, t̂k +NE∆) (4.8d)

V (xE(t))≤ ρe, ∀ t ∈ [t̂k, t̂k +NE∆),

if V (x(t̂k))≤ ρe and t̂k < ts (4.8e)

∂V (xE(τi))

∂x
f (xE(τi),u1,E(τi),u2,E(τi),0)

≤ ∂V (xE(τi))

∂x
f (xE(τi),h1(xE(τi)),h2(xE(τi)),0),

i = 0,1, . . . ,NE −1, if V (x(t̂k))> ρe or t̂k ≥ ts (4.8f)

where τi := t̂k + i∆. The main difference between the upper layer LEMPC formulation and the

LEMPC formulation of Eq. 3.3 is the mode 2 contractive constraint (Eq. 4.8f). In the upper layer

LEMPC formulation, the mode 2 contractive constraint is imposed at each time instance of the

prediction horizon. This ensures that the Lyapunov function value decays over the prediction

horizon and thus, the lower layer LMPC attempts to force the closed-loop state along a reference

trajectory that either converges to Ωρe if t̂k < ts or converges to a neighborhood of the origin if

t̂k ≥ ts. The optimal trajectories computed by the upper layer LEMPC are denoted by x∗E(t|t̂k),

u∗E,1(t|t̂k), and u∗E,2(t|t̂k) defined for t ∈ [t̂k, t̂k +NE∆).

The stage cost function used in the LMPC is formulated to penalize deviations of the state and

inputs from the economically optimal trajectories. Additionally, the LMPC is equipped with dual-

mode constraints similar to that imposed in LEMPC. The dual-mode LMPC problem is given by
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the following optimization problem:

min
u2∈S(∆)

∫ t j+N

t j

lT (x̃(τ),x∗E(τ|t̂k),u2(τ),u∗2,E(τ|t̂k)) dτ (4.9a)

s.t. ˙̃x(t) = f (x̃(t),u∗1,E(t|t̂k),u2(t),0) (4.9b)

x̃(t j) = x(t j) (4.9c)

u2(t) ∈ U2, ∀ t ∈ [t j, t j+N) (4.9d)

V (x̃(t))≤ ρe, ∀ t ∈ [t j, t j+N),

if V (x(t j))≤ ρe and t j < ts (4.9e)

∂V (x(t j))

∂x
f (x(t j),u∗1,E(t j|t̂k),u2(t j),0)

≤ ∂V (x(t j))

∂x
f (x(t j),h1(x(t j)),h2(x(t j)),0),

if V (x(t j))> ρe and t j ≥ ts (4.9f)

where the stage cost of LMPC is given by:

lT (x̃,x∗E ,u2,u∗2,E) = |x̃− x∗E |2Qc
+
∣∣u2−u∗2,E

∣∣2
Rc,2

(4.10)

and Qc and Rc are positive definite tuning matrices. The constraint of Eq. 4.9e defines mode 1

operation of the LMPC and serves a similar purpose as the mode 1 constraint of LEMPC (Eq. 3.3e).

Under mode 2 operation of the LMPC, which is defined when the constraint of Eq. 4.9f is active,

the LMPC computes control actions to ensure that the contractive Lyapunov-based constraint is

satisfied. The optimal solution of Eq. 4.9 is denoted as u∗2(t|t j) for t ∈ [t j, t j+N).

The two-layer optimization and control framework has a number of tunable parameters. Specif-

ically, the tuning parameters include the weighting matrices Qc and Rc, the prediction horizons N

and NE , the number of sampling times that the upper layer recomputes a solution KE , the subset

of the stability region that the control framework may operate the system in a time-varying fash-

ion (Ωρe), the sampling period ∆ and the triple (h1,h2,V ), i.e., stabilizing controller design and
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Lyapunov function which are used in the Lyapunov-based constraints.

If the optimal state trajectory has been computed using mode 2 operation of the LEMPC and the

current time is less than the switching time ts, it is advantageous from a performance perspective,

to recompute a new LEMPC solution using mode 1 once the state converges to the set Ωρe . This is

captured in the implementation strategy of the two-layer optimization and control framework that

is described by the following algorithm. Let the index l ∈ I+ be the number of sampling times

since the last time that the upper layer LEMPC problem has been solved and mk be the mode of

operation of the LEMPC used to solve the LEMPC problem at t̂k. To initialize the algorithm, let

t̂0 = 0, k = 0, and j = 0.

1. At t̂k, the upper layer LEMPC receives a state measurement x(t̂k) and set l = 0. If x(t̂k)∈Ωρe

and t̂k < ts, go to Step 1.1. Else, go to Step 1.2.

1.1 The mode 1 constraint (Eq. 4.8e) is active and the mode 2 constraint (Eq. 4.8f) is

inactive. Set mk = 1 and go to Step 1.3.

1.2 The mode 2 constraint (Eq. 4.8f) is active and the mode 1 constraint (Eq. 4.8e) is

inactive. Set mk = 2 and go to Step 1.3.

1.3 Solve the optimization problem of Eq. 4.8 to compute the optimal trajectories x∗E(t|t̂k),

u∗E,1(t|t̂k), and u∗E,2(t|t̂k) defined for t ∈ [t̂k, t̂k +NE∆). Send these trajectories to the

lower layer LMPC and go to Step 2.

2. At t j, the lower layer LMPC receives a state measurement x(t j). If x(t j) ∈ Ωρe , t j < ts, and

mk = 2, set t̂k+1 = t j and k← k+ 1, and go to Step 1. Else if x(t j) ∈ Ωρe and t j < ts, go to

Step 2.1. Else, go to Step 2.2.

2.1 The mode 1 constraint (Eq. 4.9e) is active and the mode 2 constraint (Eq. 4.9f) is

inactive. Go to Step 2.3.

2.2 The mode 2 constraint (Eq. 4.9f) is active and the mode 1 constraint (Eq. 4.9e) is

inactive. Go to Step 2.3.
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2.3 Solve the optimization problem of Eq. 4.9 to compute the optimal input trajectory

u∗(t|t j) defined for t ∈ [t j, t j+N). Apply the input pair (u∗1,E(t j|t̂k),u∗2(t j|t j)) to the sys-

tem of Eq. 4.3 from t j to t j+1. Go to Step 3.

3. If l +1 = KE , set t̂k+1 = t j+1, k← j+1, and j← j+1, and go to Step 1. Else, go to Step 2

and set l← l +1 and j← j+1.

The two-layer implementation strategy allows for computational advantages over one-layer

EMPC structures. When the LEMPC is operating in mode 1, the LEMPC problem is only com-

puted once every KE sampling times. The LMPC is less computationally expensive to solve than

the LEMPC because the LMPC does not compute control actions for all of the manipulated inputs.

Additionally, the LMPC may use a smaller prediction horizon than the LEMPC. Owing to these

considerations, the two-layer framework is more computationally efficient compared to one-layer

EMPC structures.

It is important to point out the two limiting cases of the optimization and control framework.

If all the inputs are in the group u2, then the control framework is reminiscent of current two-layer

frameworks where economic optimization, which in this case is a dynamic optimization problem,

and control are divided into separate layers. If, on the other hand, all inputs are placed in the group

u1 or the upper layer LEMPC is solved every sampling time (KE = 1), then this would correspond

to a one-layer implementation of LEMPC. For the case that all inputs are in the u1 group, the

LEMPC would need to be computed every sampling time to ensure stability and robustness of the

closed-loop system.

Variants of the Two-Layer Optimization and Control Framework

While the stability results presented in Section 4.2.2 apply to the two-layer framework described

above, one may consider many variations to the two-layer framework design. A few such variants

are listed here.

1. The upper layer EMPC does not compute input trajectories for all inputs. For instance, some
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inputs in the u2 set may have little impact on the economic performance. For these inputs, a

constant input profile, for instance, could be assumed in the upper layer EMPC. This could

further improve the computational efficiency of the two-layer framework. The inputs that

are held constant in the EMPC problem could be used as additional degrees of freedom in

the lower layer MPC to help force the closed-loop state to track the economically optimal

state trajectory.

2. The lower layer MPC computes control actions for all the inputs, i.e., the upper layer EMPC

does not apply any control actions directly to the system, but rather, is used to compute ref-

erence trajectories for the lower layer MPC. This approach is similar to current optimization

and control structures but employs dynamic economic optimization with explicit control-

oriented constraints imposed in the optimization layer.

3. Other assumptions to ensure feasibility and stability of the two-layer framework than As-

sumption 4.1 may be considered. For example, it may be possible to consider the input u1

as a perturbation to the system and derive the explicit stabilizing controller on the basis of

the inputs u2. Specifically, if there exists an explicit controller h2 : X→ U2 and Lyapunov

function that satisfies:
∂V (x)

∂x
f (x,u1,h2(x),0)≤−ᾱ3(|x|) (4.11)

for all u1 ∈ U1 and x ∈Ωρ \B where B⊂Ωρ is some set containing the origin and ᾱ(·) is a

class K function, then this assumption could be used to guarantee closed-loop stability and

feasibility of the control problems. This assumption is essentially an input-to-state stability

assumption of the closed-loop system of Eq. 4.3 under the controller h2 with respect to the

input u1.

4. The two-layers could use a different sampling period size. In particular, the upper layer

could use a larger sampling period than the lower layer.

5. One could use an EMPC scheme in the lower layer instead of tracking MPC. One such
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variant employing this concept is presented later in this chapter (Section 4.4).

Stability Analysis

In this section, sufficient conditions are presented that guarantee that the closed-loop system with

the two-layer dynamic economic optimization and control framework is stable in the sense that

the system state remains bounded in a compact set for all times. Two propositions are needed,

which are straightforward extensions of Proposition 3.1 and Proposition 3.2, respectively. The

propositions are restated here for convenience. The first proposition provides an upper bound on

the deviation of the open-loop state trajectory, obtained using the nominal model (Eq. 4.3 with

w≡ 0), from the closed-loop state trajectory.

Proposition 4.1 (Proposition 3.1). Consider the systems

ẋa(t) = f (xa(t), u1(t), u2(t), w(t))

ẋb(t) = f (xb(t), u1(t), u2(t), 0)
(4.12)

with initial states xa(t0) = xb(t0) ∈Ωρ and inputs u1(t) ∈U1 and u2(t) ∈U2 for t ≥ t0. If the states

of the two systems are maintained in Ωρ for all t ∈ [t0, t1] (t1 > t0), there exists a class K function

αw(·) such that

|xa(t)− xb(t)| ≤ αw(t− t0), (4.13)

for all w(t) ∈W and t ∈ [t0, t1].

The following proposition bounds the difference between the Lyapunov function of two differ-

ent states in Ωρ .

Proposition 4.2 (Proposition 3.2). Consider the Lyapunov function V (·) of the system of Eq. 4.3.

There exists a quadratic function αV (·) such that:

V (x)≤V (x̂)+αV (|x− x̂|) (4.14)
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for all x, x̂ ∈Ωρ .

Theorem 1 provides sufficient conditions such that the two-layer dynamic economic optimiza-

tion and control framework guarantees that the state of the closed-loop system is always bounded

in Ωρ . The result is similar to that of the closed-loop stability properties under LEMPC.

Theorem 4.1. Consider the system of Eq. 4.3 in closed-loop under the two-layer framework with

the LEMPC of Eq. 4.8 in the upper layer and the LMPC of Eq. 4.9 in the lower layer both based

on the explicit stabilizing controller that satisfies Eqs. 4.5a-4.5c. Let εw > 0, ∆ > 0, NE ≥ 1, N ≥ 1

(N ≤ NE−KE), ρ > ρe > ρmin > ρs > 0, and L′x, L′w and M are positive constants (the existence of

these constants follows from the assumptions on the system of Eq. 4.3) satisfy:

ρe < ρ−αV (αw(∆)), (4.15)

−α3(α
−1
2 (ρs))+L′xM∆+L′wθ ≤−εw/∆ , (4.16)

and

ρmin = max
s∈[0,∆]

{V (x(s)) : V (x(0))≤ ρs} . (4.17)

If x(0) ∈Ωρ and Assumption 4.1 is satisfied, then the state x(t) of the closed-loop system is always

bounded in Ωρ for all t ≥ 0. Moreover, if ts is finite, the closed-loop state is ultimately bounded in

Ωρmin .

Proof. The proof is organized into three parts. In part 1, feasibility of the optimization problems

of Eq. 4.8 and Eq. 4.9 is proved when the state measurement given to each problem is in Ωρ . In

part 2, boundedness of the closed-loop state in Ωρ is established. Finally, ultimate boundedness of

the closed-loop state in a small state-space set containing the origin is proved when the switching

time is finite.

Part 1: When the closed-loop state is maintained in Ωρ , which will be proved in Part 2, the

sample-and-hold input trajectory obtained from the stabilizing feedback controller is a feasible

solution to the upper layer LEMPC optimization problem of Eq. 4.8. Specifically, let x̂(t) denote
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the solution at time t to the system:

˙̂x(t) = f (x̂(t),h1(x̂(τi)),h2(x̂(τi)),0) (4.18)

for t ∈ [τi,τi+1) (τi := t̂k + i∆), i = 0,1, . . . ,NE−1 with initial condition x̂(t̂k) = x(t̂k) ∈Ωρ . Defin-

ing the pair (û1(t), û2(t)) := (h1(x̂(τi)),h2(x̂(τi))) for t ∈ [τi,τi+1), i = 0,1, . . . ,NE − 1, the input

trajectory pair (û1, û2) is a feasible solution to the LEMPC problem. Specifically, for mode 2 op-

eration of the LEMPC, the pair (û1, û2) meets the input constraints since it is computed from the

stabilizing controller, which satisfies the input constraints (Eq. 4.4). Also, the mode 2 contractive

constraint of Eq. 4.8f is trivially satisfied with the input pair (û1, û2). For mode 1 operation, the re-

gion Ωρe is forward invariant under the stabilizing controller applied in a sample-and-hold fashion

when Ωρmin ⊆Ωρe ⊂Ωρ where Ωρmin will be explained further in Parts 2 and 3.

If Assumption 4.1 is satisfied, the feasibility of the lower layer LMPC problem of Eq. 4.9

follows because there exists an input trajectory u1(t) for t ∈ [t j, t j+N) that decreases the Lyapunov

function by at least the rate given by the Lyapunov-based controller at each sampling time instance

along the prediction horizon. Using similar arguments as that used for feasibility of the LEMPC,

mode 2 operation of the LMPC is feasible. Assumption 4.1 further implies that there exists a

sample-and-hold input trajectory such that Ωρe is forward invariant when Ωρmin ⊆Ωρe ⊂Ωρ which

guarantees that mode 1 operation of the LMPC is feasible.

Part 2: To show that the state is maintained in Ωρ when x(0) ∈ Ωρ , two cases must be con-

sidered. The first case occurs when the state x(t j) ∈ Ωρe and t j < ts and the second case occurs

when x(t j) ∈Ωρ \Ωρe or t j ≥ ts. It is sufficient to show that x(t) ∈Ωρ for all t ∈ [t j, t j+1]. Through

recursive application of this result, boundedness of the closed-loop state in Ωρ for all t ≥ 0 follows

if the initial state is in Ωρ .

Case 1: If x(t j)∈Ωρe and t j < ts, the lower layer LMPC operates in mode 1 operation. Regard-

less if the upper layer LEMPC has been computed under mode 1 or mode 2, there exists a control

action û2(t j) such that when applied to the model of Eq. 4.9b in a sample-and-hold fashion over
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one sampling period the state at the next sampling time will be predicted to be in Ωρe (this follows

from Part 1). However, the closed-loop system of Eq. 4.3 does not evolve according to the model

of Eq. 4.9b owing to the forcing of the disturbance w.

Let ρe satisfy Eq. 4.15. The proof proceeds by contradiction. Assume there exists a time

τ∗ ∈ [t j, t j+1] such that V (x(τ∗)) > ρ . Define τ1 := inf{τ ∈ [t j, t j+1] : V (x(τ)) > ρ}. A standard

continuity argument in conjunction with the fact that V (x(t j))≤ ρe < ρ shows that τ1 ∈ (t j, t j+1],

V (x(t)) ≤ ρ for all t ∈ [t j,τ1] with V (x(τ1)) = ρ , and V (x(t)) > ρ for some t ∈ (τ1, t j+1]. If ρe

satisfies Eq. 4.15, then

ρ =V (x(τ1))≤V (x̃(τ1))+αV (αw(τ1))

≤ ρe +αV (αw(∆))< ρ (4.19)

where the first inequality follows from Propositions 4.1-4.2 and the second inequality follows from

the fact that αV ◦αw ∈K and τ1 ≤ ∆. Eq. 4.19 leads to a contradiction. Thus, x(t j+1) ∈ Ωρ if

Eq. 4.15 is satisfied.

Case 2: When x(t j) ∈Ωρ \Ωρe or t j ≥ ts, the lower layer LMPC operates in mode 2. To cover

both possibilities, consider any x(t j) ∈ Ωρ and that mode 2 operation of the LEMPC is active.

From the constraint of Eq. 4.9f and the condition of Eq. 4.5b, the computed control action at t j

satisfies:

∂V (x(t j))

∂x
f (x(t j),u∗1,E(t j|t̂k),u∗2(t j|t j),0)

≤ ∂V (x(t j))

∂x
f (x(t j),h1(x(t j)),h2(x(t j)),0)≤−α3(|x(t j)|) (4.20)

where x(t j) denotes the closed-loop state at sampling time t j. Over the sampling period (τ ∈

[t j, t j+1)), the time derivative of the Lyapunov function of the closed-loop system is given by:

V̇ (x(τ)) =
∂V (x(τ))

∂x
f (x(τ),u∗1,E(t j|t̂k),u∗2(t j|t j),w(τ)) (4.21)
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for τ ∈ [t j, t j+1). Adding and subtracting the first term of Eq. 4.20 to/from Eq. 4.21 and accounting

for the bound of Eq. 4.20, the time-derivative of the Lyapunov function over the sampling period

is bounded by:

V̇ (x(τ))≤−α3(|x(t j)|)+
∂V (x(τ))

∂x
f (x(τ),u∗1,E(t j|t̂k),u∗2(t j|t j),w(τ))

− ∂V (x(t j))

∂x
f (x(t j),u∗1,E(t j|t̂k),u∗2(t j|t j),0) (4.22)

for all τ ∈ [t j, t j+1).

Since the sets Ωρ , U1, U2, and W are compact, the vector field f is locally Lipschitz, and the

Lyapunov function is continuously differentiable, there exist L′x > 0 and L′w > 0 such that:

∣∣∣∣∂V (x)
∂x

f (x,u1,u2,w)−
∂V (x′)

∂x
f (x′,u1,u2,0)

∣∣∣∣≤ L′x|x− x′|+L′w|w| (4.23)

for all x, x′ ∈Ωρ , u1 ∈ U1, u2 ∈ U2, and w ∈W. From Eq. 4.22 and Eq. 4.23 and the fact that the

disturbance is bounded in W = {w ∈ Rl : |w| ≤ θ}, the time-derivative of the Lyapunov function

over the sampling period may be bounded as follows:

V̇ (x(τ))≤−α3(|x(t j)|)+L′x
∣∣x(τ)− x(t j)

∣∣+L′wθ (4.24)

for all τ ∈ [t j, t j+1). Again, by the fact that the sets Ωρ , U1, U2, and W are compact and the vector

field f is locally Lipschitz, there exists M > 0 such that

| f (x,u1,u2,w)| ≤M (4.25)

for all x∈Ωρ , u1 ∈U1, u2 ∈U2, and w∈W. From Eq. 4.25 and continuity of x(τ) for τ ∈ [t j, t j+1),

the difference between the state at τ and t j is bounded by:

∣∣x(τ)− x(t j)
∣∣≤M∆ (4.26)
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for all τ ∈ [t j, t j+1). From Eq. 4.24 and Eq. 4.26 and for any x(t j) ∈Ωρ \Ωρs , the inequality below

follows:

V̇ (x(τ))≤−α3(α
−1
2 (ρs))+L′xM∆+L′wθ (4.27)

for all τ ∈ [t j, t j+1) where the fact that |x| ≥ α
−1
2 (ρs) for all x ∈Ωρ \Ωρs follows from Eq. 4.5a.

If the condition of Eq. 4.16 is satisfied, there exists εw > 0 such that the following inequality

holds for x(t j) ∈Ωρ \Ωρs

V̇ (x(τ))≤−εw/∆

for all τ ∈ [t j, t j+1). Integrating the bound for τ ∈ [t j, t j+1), the following two bounds on the

Lyapunov function value are obtained:

V (x(t j+1))≤V (x(t j))− εw (4.28)

V (x(τ))≤V (x(t j)), ∀ τ ∈ [t j, t j+1) (4.29)

for all x(t j) ∈Ωρ \Ωρs and when mode 2 operation of the lower layer LMPC is active.

If x(t j) ∈Ωρ \Ωρe , the closed-loop state converges to Ωρe in a finite number of sampling times

without leaving the stability region Ωρ which follows by applying Eq. 4.28 recursively. If t j ≥ ts

and x(t j) ∈ Ωρ \Ωρs , the closed-lop state converges to Ωρs in a finite number of sampling times

without leaving the stability region Ωρ (again, by recursive application of Eq. 4.28). Moreover,

once the state converges to Ωρs , it remains inside Ωρmin for all times. This statement holds by the

definition of ρmin. Therefore, from Case 1 and Case 2, the fact that the closed-loop state is bounded

in Ωρ for all t ≥ 0 when x(0) ∈Ωρ follows.

Part 3: If ts is finite, the lower layer LMPC will switch to mode 2 operation only and the

closed-loop state will be ultimately bounded in Ωρmin , which follows from Part 2.
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4.2.3 Application to a Chemical Process

The two-layer framework for dynamic economic optimization and process control is implemented

on the benchmark chemical reactor example presented in Section 1.3.1. Recall, the nonlinear dy-

namic model that describes the evolution of the reactor (Eqs. 1.5-1.8) has four states: the vapor

density in the reactor (x1), the ethylene concentration in the reactor (x2), the ethylene oxide con-

centration in the reactor (x3), and the reactor temperature (x4) and three inputs: the volumetric flow

rate of the reactor feed, the ethylene concentration in the reactor feed, and the reactant coolant

temperature. With abuse of notation with the notation used to denote the two sets of inputs in

Eq. 4.3, the notation u1, u2, and u3 is used to denote the three inputs, respectively. The reactor has

an asymptotically stable steady-state:

xT
s = [0.998 0.424 0.032 1.002] (4.30)

which corresponds to the steady-state input:

u1,s = 0.35, u2,s = 0.5, u3,s = 1.0 . (4.31)

The control objective considered here is to optimize the time-averaged yield of ethylene oxide by

operating the reactor in a time-varying fashion around the stable steady-state. Owing to the fact that

closed-loop stability is not an issue for this application, the optimization and control framework

operates with mode 1 operation only. The time-averaged yield of ethylene oxide over an operating

length of t f is given by

Y =

∫ t f

0
x3(t)x4(t)u1(t) dt∫ t f

0
u1(t)u2(t) dt

. (4.32)

Owing to practical considerations, the average amount of ethylene that may be fed into the process

over the length of operation is constrained to be equal to that when uniformly distributing the
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reactant material to the reactor which is given by the following integral constraint:

1
t f

∫ t f

0
u1(t)u2(t)dt = u1,su2,s = 0.175 (4.33)

where u1,s and u2,s are the steady-state inlet volumetric flow rate and ethylene concentration, re-

spectively. Since the average ethylene fed to the reactor is fixed, which fixes the denominator of

the yield (Eq. 4.32), the economic stage cost used in the formulation of the upper layer LEMPC is

le(x,u) =−x3x4u1 . (4.34)

In the implementation of the two-layer dynamic optimization and control framework, the ma-

nipulated inputs are partitioned into two sets. The first set of manipulated inputs consists of the

inlet flow rate and ethylene feed concentration inputs. As pointed out in Section 2.2, periodic

switching of these two inputs may improve economic performance. Additionally, these two inputs

are constrained by the integral constraint of Eq. 4.33. Therefore, the first set of inputs is controlled

by the upper layer LEMPC, i.e., the upper layer LEMPC computes control actions for these ma-

nipulated inputs that are applied to the reactor. The second set of manipulated inputs consists of

the coolant temperature input that the lower layer LMPC (Eq. 4.9) controls.

To characterize the region Ωρe , which is used in the two-layer framework design, an explicit

stabilizing controller is designed and a Lyapunov function is constructed. Specifically, the explicit

controller is designed as a proportional controller for the input u3: h2(x) = K(x3−xs,3)+us,3 with

K = 0.1. A quadratic Lyapunov function is found for the closed-loop reactor under the proportional

controller, which is given by:

V (x) = (x− xs)
T P(x− xs)

where P = diag([10 0.01 10 10]). The closed-loop stability region of the reactor under the explicit

controller with the inputs u1 and u2 fixed at their steady-state values is taken to be a level set of

the Lyapunov function where the time-derivative of the Lyapunov function is negative definite for
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all points contained in the level set. The constructed level set is subsequently taken to be Ωρe with

ρe = 0.53 and in this case, Ωρ = Ωρe . The prediction horizon of the upper layer LEMPC and lower

layer LMPC are NE = 47 and N = 3, respectively, the sampling period is ∆ = 1.0, the number of

sampling times that the upper layer LEMPC is recomputed is KE = 47, which is the same as the

prediction horizon in this case, and a shrinking horizon employed in the lower layer LMPC when

the prediction horizon extends past the time that the upper layer optimal trajectory is defined. To

ensure that the integral constraint of Eq. 4.33 is satisfied over the length of operation, the computed

input trajectory of the upper layer LEMPC must satisfy the integral constraint, i.e., it is enforced

over each operating windows of length 47 (dimensionless time). The weighting matrices of the

lower layer LMPC are Qc = P, and Rc = 0.01 which have been tuned to achieve close tracking of

the optimal trajectory. The optimization problems of upper layer LEMPC and lower layer LMPC

are solved using Ipopt [187].

In the first set of simulations, the two-layer framework is applied to the reactor without dis-

turbances or plant-model mismatch. The reactor is initialized at a transient initial condition given

by:

xT
0 = [0.997 1.264 0.209 1.004] .

The closed-loop state and input trajectories of the reactor under the two-layer optimization and

control framework are shown in Figs. 4.2-4.3, respectively. From the state trajectories (Fig. 4.2),

the lower layer LMPC is able to force the system to track the optimal state trajectory. Recall, the

sampling periods of the upper and lower layer are the same, and the closed-loop system is not

subjected to any uncertainties or disturbances. Therefore, perfect tracking of the optimal trajectory

is expected.

As described above, the main motivation for the design of a two-layer optimization and con-

trol architecture is to achieve a computation benefit relative to a one-layer EMPC approach. To

compare the computational time of the two-layer framework with a one-layer EMPC approach, a

one-layer LEMPC implementation is considered. The LEMPC is implemented with mode 1 op-

eration only and with a shrinking prediction horizon. The shrinking horizon implementation is
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Two Layer Framework EMPC Trajectory

Figure 4.2: The closed-loop state trajectories of the reactor under the two-layer dynamic economic

optimization and control framework (the two trajectories are overlapping).
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Figure 4.3: The closed-loop input trajectories computed by two-layer dynamic economic optimiza-

tion and control framework (the two trajectories are overlapping).
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Figure 4.4: The computational time reduction of the two-layer optimization and control framework

relative to the one-layer implementation of LEMPC.

138



0 40 80 120 160 200 240 280 320 360 400 440
0.90

0.95

1.00

x
1

0 40 80 120 160 200 240 280 320 360 400 440
0.00

1.00

2.00

x
2

0 40 80 120 160 200 240 280 320 360 400 440
0.00

0.20

0.40

x
3

0 40 80 120 160 200 240 280 320 360 400 440
1.00

1.05

1.10

x
4

Time

 

 
Two Layer Framework EMPC Trajectory

Figure 4.5: The closed-loop state trajectories of the catalytic reactor under the two-layer dynamic

economic optimization and control framework and with process noise added to the states.

described as follows: the LEMPC is initialized with a prediction horizon of 47 (dimensionless

time) and at every subsequent sampling time, the prediction horizon is decreased by one sampling

period. Every 47 sampling times, the prediction horizon is reset to 47. It is important to point out

that the closed-loop performance achieved under the two-layer LEMPC and that under the one-

layer LEMPC are equal owing to the fact there is no plant-model mismatch. Also, a fixed-horizon

one-layer LEMPC implementation strategy requires more computation time on average relative to

the shrinking horizon implementation.

Fig. 4.4 gives the computational time reduction achieved with the two-layer optimization and

control framework relative to the one-layer LEMPC implementation. For this example, the lower

layer LMPC computation time is insignificant compared to the computation time of the upper layer

LEMPC. The two-layer framework only solves the LEMPC optimization problem once every 47
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Figure 4.6: The closed-loop input trajectories computed by two-layer dynamic economic opti-

mization and control framework and with process noise added to the states (the two trajectories are

nearly overlapping).

sampling times. Every 47 sampling times when the upper layer LEMPC is solved and at the end

of each operating interval of length 47 when the one-layer LEMPC horizon has decreased to a

comparable length as the horizon of the lower layer LEMPC, the computational burden of the two-

layer framework compared to that of the one-layer LEMPC is comparable, i.e., approximately a

zero percent computational time improvement is achieved (Fig. 4.4). For the other sampling times,

the computation of the LMPC which computes control actions for the set of manipulated inputs

u2 is much better than that compared to the one-layer LEMPC. For this case, an average of 89.4

percent reduction of the computational time with the two-layer framework was achieved relative

to that of the one-layer LEMPC implementation.

In the second set of simulations, significant process noise was added to the system states. The

noise is assumed to be bounded Gaussian white noise with zero mean and standard deviation of

0.005, 0.03, 0.01, and 0.02 and bounds given by 0.02, 0.1, 0.03, and 0.08 for the four states,

respectively. To simulate the process noise, a new random number is generated and applied to

the process over each sampling period. The results of a closed-loop simulation are shown in
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Figs. 4.5-4.6. Because of the added process noise, the lower layer LMPC is not able to force the

closed-loop state to perfectly track the economically optimal state trajectory. The added process

noise has an effect on the closed-loop economic performance. However, this effect was minimal

in the sense that the time-averaged yield of the closed-loop system under the two-layer framework

is 10.3 percent with the added process disturbance and 10.4 percent without the added process

disturbance. Even with the process noise, the closed-loop reactor performance is better than that

at the steady-state (the yield at steady-state is 6.4 percent).

4.3 Unifying Optimization with Time-Varying Economics and

Control

In the previous section, a two-layer framework for dynamic optimization and control is presented.

However, the framework treats the economic considerations, e.g., demand, energy pricing, variable

feedstock quality, and product grade changes as time-invariant. This paradigm may be effective,

especially for the applications where there is a sufficient time-scale separation between the time

constants of the process/system dynamics and the update frequency of the economic parameters.

However, including the time-variation of the economic considerations in the formulation of the

economic stage cost may be needed to achieve good closed-loop performance when the time-

scales are comparable. One class of examples where there may not be such a time-scale separation

is energy systems where the energy price may change frequently.

In this section, a two-layer framework for optimization and control of systems of the form of

Eq. 3.1 is considered where the economic stage cost may be time-dependent in the sense that the

system of Eq. 3.1 is equipped with a time-dependent economic cost le : [0,∞)×X×U→ R that

is continuous over its domain. The framework design is similar to that in the previous section.

Specifically, the upper layer dynamic economic optimization problem (EMPC) is used to generate

an economically optimal state trajectory defined over a finite-time horizon. In the lower layer, a

tracking MPC is used to force the states to track the economically optimal trajectory. However,
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the main differences of the two-layer approach presented in this section compared to that of the

previous section are the EMPC is formulated with an economic stage cost that may be explicitly

time-dependent, the formulations of the layers are different, and the underlying theory and analysis

are different.

Explicit constraints are used in the upper layer dynamic optimization problem to ensure that

the lower layer tracking MPC may force the closed-loop state to track the trajectory computed in

the optimization layer. In particular, the optimization layer is constrained to compute an optimal

trajectory that is slowly time-varying. The resulting slowly time-varying trajectory vector is de-

noted as xE(t) ∈ Γ⊂ Rn for t ≥ 0 where Γ is a compact set and the rate of change of the reference

trajectory is bounded by

|ẋE(t)| ≤ γE (4.35)

for all t ≥ 0. The deviation between the actual state trajectory and the slowly-varying reference

trajectory is defined as e := x− xE with its dynamics described by

ė = f (x,u,w)− ẋE

= f (e+ xE ,u,w)− ẋE

=: g(e,xE , ẋE ,u,w) . (4.36)

The state e of the system of Eq. 4.36 will be referred to as the deviation state in the remainder of

this section.

Assumption 4.2. The system of Eq. 4.36 has a continuously differentiable, isolated equilibrium

for each fixed xE ∈ Γ, i.e., there exists a û ∈ U for a fixed xE ∈ Γ to make e = 0 the equilibrium of

Eq. 4.36 (g(0,xE ,0, û,0) = 0).

In what follows, the upper layer EMPC computes a reference trajectory that evolves according

to the nominal system dynamics ẋE = f (xE ,uE ,0) while maintaining the state trajectory to be in the

set Γ where Γ is an equilibrium manifold in the sense that Γ= {xE ∈X : ∃ uE ∈U s.t. f (xE ,uE ,0) =
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0}. Nevertheless, the theory applies to a more general case where the following hold: |ẋE | ≤ γE ,

Γ is compact and Assumption 4.2 is satisfied. One conceptually straightforward extension of the

two-layer framework is to consider steady-state optimization in the upper layer instead of dynamic

optimization. Specifically, xE could be taken as a steady-state and varied slowly to account for the

time-varying economic considerations.

4.3.1 Stabilizability Assumption

For each fixed xE ∈ Γ, there exists a Lyapunov-based controller that makes the origin of the nonlin-

ear system given by Eq. 4.36 without uncertainty (w ≡ 0) asymptotically stable under continuous

implementation. This assumption is essentially equivalent to the assumption that the nominal sys-

tem of Eq. 3.1 is stabilizable at each xE ∈ Γ. More specifically, for each fixed xE ∈ Γ, the existence

of a mapping h : Ds×Γ→ U and a continuously differentiable function V : Ds×Γ→ R+ is as-

sumed that satisfies:

α1(|e|)≤V (e,xE)≤ α2(|e|), (4.37a)

∂V (e,xE)

∂e
g(e,xE ,0,h(e,xE),0)≤−α3(|e|), (4.37b)∣∣∣∣∂V (e,xE)

∂e

∣∣∣∣≤ α4(|e|), (4.37c)

∣∣∣∣∂V (e,xE)

∂xE

∣∣∣∣≤ α5(|e|), (4.37d)

for all e ∈Ds where αi ∈K , i = 1,2,3,4,5, Ds is an open neighborhood of the origin, and h is the

Lyapunov-based controller. In this sense, the function V is a Lyapunov function for each xE ∈ Γ.

While the inequalities of Eqs. 4.37a-4.37c are similar to the inequalities of standard Lyapunov

functions, Eq. 4.37d is needed to account for the time-varying nature of xE . More precisely, the

special requirement that the inequalities hold uniformly in xE is required to handle the perturbation,

which results from the fact that xE is not constant, but rather, a time-varying function.

For a fixed xE ∈ Γ ⊂ Rn, the symbol Ωρ(xE) is a level set of the Lyapunov function, i.e.,

Ωρ(xE) := {e ∈ Rn : V (e,xE)≤ ρ(xE)} where ρ(xE) > 0 depends on xE . The region Ωρ∗ is the
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intersection of stability regions Ωρ(xE) of the closed-loop system under the Lyapunov-based con-

troller for all xE ∈ Γ.

For broad classes of nonlinear systems arising in the context of chemical process control appli-

cations, quadratic Lyapunov functions using state deviation variables, i.e., V (x) = (x− xs)
T P(x−

xs), where xs is a steady-state, have been widely used and have been demonstrated to yield accept-

able estimates of closed-loop stability regions (see [33] and the references therein). In the example

of Section 4.3.3, a quadratic Lyapunov function is used where instead of a fixed equilibrium xs

a time-varying reference trajectory xE is used, i.e., at time t, the Lyapunov function is given by:

V (e(t),xE(t)) = e(t)Pe(t) where e(t) = x(t)− xE(t).

Remark 4.1. If the equilibrium point e = 0 of the frozen system forced by an explicit controller

(ė = g(e,xE ,0,h(e,xE),0)) is exponentially stable uniformly in xE and under some additional mild

smoothness requirements, then there exists a Lyapunov function satisfying Eqs. 4.37a-4.37d [100,

Lemma 9.8].

Remark 4.2. The set Ωρ∗ is such that for any e ∈ Ωρ∗, the ability to drive the state with the

Lyapunov-based controller asymptotically to any fixed xE ∈ Γ is guaranteed. This set may be

estimated in the following way: first, the set Γ is chosen. Second, the regions Ωρ(xE) for a suffi-

ciently large number of xE in the set Γ are estimated. The regions Ωρ(xE) may be estimated as the

level set (ideally the largest) of V for a fixed xE ∈ Γ where V̇ < 0 with the Lyapunov-based con-

troller. Lastly, the stability region Ωρ∗ may be constructed from the intersection of these computed

regions. It is important to point out that the design of the upper layer EMPC does not employ Ωρ∗.

Therefore, for practical design purposes, an explicit construction of Ωρ∗ is not needed.

4.3.2 Two-layer EMPC Scheme Addressing Time-Varying Economics

In this section, the two-layer framework for dynamic economic optimization and control for han-

dling time-varying economics is described and the stability and robustness properties of the closed-

loop system are given.
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Figure 4.7: A block diagram of the dynamic economic optimization and control framework for

handling time-varying economics.

Formulation and Implementation

To address time-dependent economics, a two-layer framework is presented. The two-layer frame-

work for optimization and control may be considered an intermediate approach between existing

steady-state operation and one-layer EMPC schemes. A block diagram of the two-layer control

framework is given in Fig. 4.7. In this framework, optimization and control are effectively divided

into separate tasks. However, the upper optimization layer is formulated with specific control-

oriented constraints to ensure stability. In the upper layer, an EMPC, formulated with a time-

varying economic stage cost, computes economically optimal state and input trajectories over a

finite-time horizon. The optimal trajectories are sent down to a lower layer tracking MPC to force

the system to track the economically optimal state trajectory. For computational efficiency, the

EMPC optimization problem is solved infrequently, i.e., it does not employ a standard receding

horizon implementation strategy. Instead, the operating time is partitioned into finite-time inter-

vals of length t ′ called operating periods. The operating period is chosen based on the time-scale of

the process dynamics and update frequency of the economic parameters in the economic cost func-

tion, e.g., the update frequency of the energy price, product demand, or product transitions. The
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length of the operating period may be considered a tuning parameter of the control architecture.

At the beginning of each operating period, the EMPC problem is initialized with a state measure-

ment and is solved. The lower layer tracking MPC is solved every sampling time to maintain

closed-loop stability and robustness and is formulated with a stage cost that penalizes deviations

from the optimal trajectory. While in the lower layer any MPC tracking controller could be used,

Lyapunov-based MPC (LMPC) is used here owing to its unique stability and robustness properties.

An overview of the implementation strategy is as follows (a detailed algorithm is given below

after the formulations of the control problems are given). The operating time is divided into finite-

time operating periods of length t ′ = KE∆E where KE is some integer greater than or equal to one.

At the beginning of the operating period denoted by t̂k = kt ′ where k = 0,1, . . ., the upper layer

EMPC, with hold period ∆E > 0 (zeroth-order control parameterization is employed in the upper

layer EMPC) and prediction horizon of TE = NE∆E where NE ∈ I+, receives a state measurement

and computes the economically optimal state and input trajectories. The prediction horizon of the

EMPC is chosen to be sufficiently large to cover the operating period plus the transition to the

next operating period, i.e., TE ≥ t ′+T where T = N∆ is the prediction horizon of the lower layer

LMPC, ∆ > 0 denotes the sampling period of the lower layer LMPC that is less than or equal to

∆E , and N ∈ I+ is the number of sampling periods in the prediction horizon of the LMPC. Between

t̂k and t̂k + t ′, the lower layer LMPC computes control actions that work to force the closed-loop

state to track the optimal trajectories.
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The upper layer EMPC optimization problem is as follows:

min
uE∈S(∆E)

∫ t̂k+TE

t̂k
le(τ,xE(τ),uE(τ)) dτ (4.38a)

s.t. ẋE(t) = f (xE(t),uE(t),0) (4.38b)

xE(t̂k) = proj
Γ

(x(t̂k)) (4.38c)

uE(t) ∈ U, ∀ t ∈ [t̂k, t̂k +TE) (4.38d)

|ẋE(t)| ≤ γE , ∀ t ∈ [t̂k, t̂k +TE) (4.38e)

xE(t) ∈ Γ, ∀ t ∈ [t̂k, t̂k +TE) (4.38f)

where S(∆E) is the family of piecewise constant functions with period ∆E , le is the time-dependent

economic measure which defines the cost function, the state xE is the predicted trajectory of the

system with the input trajectory uE computed by the EMPC and x(t̂k) is the state measurement

obtained at time t̂k. The optimal state and input trajectory computed by the EMPC are denoted as

x∗E(t|t̂k) and u∗E(t|t̂k) defined for t ∈ [t̂k, t̂k +TE), respectively.

In the optimization problem of Eq. 4.38, the constraint of Eq. 4.38b is the nominal dynamic

model of the system (w≡ 0) used to predict the future evolution under the sample-and-hold input

trajectory. The constraint of Eq. 4.38c defines the initial condition of the optimization problem

which is a projection of the state measurement at t̂k onto the set Γ where the symbol projΓ(x)

denotes the projection of x onto the set Γ. The constraint of Eq. 4.38d ensures that the computed

input trajectory take values in the set of admissible inputs. The constraint of Eq. 4.38f limits the

rate of change of the economically optimal state trajectory. Finally, the constraint of Eq. 4.38f

ensures that the state evolution is maintained in the region Γ.

The constraint of Eq. 4.38c is used to ensure that the optimization problem is feasible. The

projection operator may be any projection operator that projects the current state x(t̂k) onto a near

(ideally the nearest) point in the set Γ. In some cases, when the sampling periods of the upper and

lower layers and the bounded disturbance are sufficiently small, it may also be sufficient to use
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the predicted state x∗E(t̂k|t̂k−1) derived from the solution of the optimization problem of Eq. 4.38

that was solved at the beginning of the preceding operating period. Another potential option is

to allow for the initial condition xE(t̂k) be a decision variable in the optimization problem by

including another term in the objective function penalizing the deviation of the computed initial

condition from the current state x(t̂k). In this sense, the framework offers a degree of flexibility in

the selection of the projection operator.

The last two constraints of the optimization problem of Eq. 4.38 are used to guarantee closed-

loop stability under the integrated framework and to ensure that the lower layer may force the

system to track the optimal state trajectory, i.e., they are control-oriented constraints. This is a

departure from other types of two-layer dynamic economic optimization and control architectures

featuring, for example, dynamic real-time optimization in the upper optimization layer. Also,

the constraint imposed in the upper layer EMPC on the rate of change of the optimal trajectory

(Eq. 4.38e) does pose a restriction on the feasible set of the optimization problem of Eq. 4.38 and

could affect closed-loop economic performance achieved under the resulting two-layer framework.

However, allowing the optimal state trajectory to have a large rate of change may be undesirable

for many applications based on practical considerations like excessive strain on control actuators

as well as the difficulty of forcing the system to track a rapidly changing reference trajectory in the

presence of disturbances.

At the lower feedback control level, LMPC is employed to force the state to track the econom-

ically optimal state trajectory. The LMPC is implemented with a standard receding horizon imple-

mentation, i.e., LMPC recomputes an updated input trajectory synchronously every sampling time.

Let {t j} j≥0 where t j = j∆, j = 0,1, . . . denote the sampling time sequence of the LMPC. Also, the

dynamic model used in the LMPC is that of Eq. 4.36, which is the deviation system. The LMPC
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optimization problem is given by:

min
u∈S(∆)

∫ t j+T

t j

(
|ẽ(τ)|2Qc

+ |u(τ)−u∗E(τ|t̂k)|2Rc

)
dτ (4.39a)

s.t ˙̃e(t) = g(ẽ(t),x∗E(t|t̂k), ẋ∗E(t|t̂k),u(t),0) (4.39b)

ẽ(t j) = x(t j)− x∗E(t j|t̂k) (4.39c)

u(t) ∈ U, ∀ t ∈ [t j, t j +T ) (4.39d)

∂V (ẽ(t j),x∗E(t j|t̂k))
∂e

g(ẽ(t j),x∗E(t j|t̂k),0,u(t j),0)

≤ ∂V (ẽ(t j),x∗E(t j|t̂k))
∂e

g(ẽ(t j),x∗E(t j|t̂k),0,h(ẽ(t j),xE(t j|t̂k)),0) (4.39e)

where S(∆) is the family of piecewise constant functions with sampling period ∆, N is the predic-

tion horizon of the LMPC, ẽ is the predicted deviation between the state trajectory predicted by the

nominal model under the input trajectory computed by the LMPC and the economically optimal

state trajectory x∗E(·|t̂k). The optimal solution of the optimization problem of Eq. 4.39 is denoted

by u∗(t|t j) defined for t ∈ [t j, t j+N).

In the optimization problem of Eq. 4.39, the constraint of Eq. 4.39b is the nominal model of

the deviation system. The constraint of Eq. 4.39c is the initial condition to the dynamic optimiza-

tion problem. The constraint of Eq. 4.39d defines the control energy available to all manipulated

inputs. The constraint of Eq. 4.39e ensures that the Lyapunov function of the closed-loop system

with LMPC decreases by at least the rate achieved by the Lyapunov-based controller. The last

constraint ensures that the closed-loop state trajectory converges to a neighborhood of the optimal

state trajectory computed by the upper layer EMPC.

The implementation strategy of the dynamic economic optimization and control framework is

summarized by the following algorithm.

1. At t̂k, the EMPC receives a state measurement x(t̂k) and projects the current state x(t̂k) onto

the set Γ. Go to Step 2.

2. The EMPC computes the economically optimal state and input trajectories: x∗E(t|t̂k) and
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u∗E(t|t̂k) defined for t ∈ [t̂k, t̂k +TE). Go to Step 3.

3. For t̂k to t̂k + t ′ (one operating period), repeat:

3.1 The LMPC receives a state measurement x(t j) and computes the deviation of the current

state from the optimal state trajectory. The error e(t j) is used to initialize the dynamic

model of the LMPC. Go to Step 3.2.

3.2 The LMPC optimization problem is solved to compute an optimal input trajectory

u∗(t|t j) defined for t ∈ [t j, t j +T ). Go to Step 3.3.

3.3 The control action computed for the first sampling period of the prediction horizon is

sent to the control actuators to be applied from t j to t j+1. If t j+1 > t̂k + t ′, go to Step 4

and let j← j+1. Else, go to 3.1 and let j← j+1.

4. Go to Step 1, k← k+1.

Stability Analysis

In this subsection, the stability properties of the two-layer control framework with the EMPC of

Eq. 4.38 in the upper layer and the LMPC of Eq. 4.39 in the lower layer when applied the system

of Eq. 3.1. Before these properties may be presented, several properties are presented that are

needed in the analysis. Owing to the fact that Ωρ∗, Γ, U, and W are compact sets and f is locally

Lipschitz, there exists Mx > 0 such that

| f (e+ xE ,u,w)| ≤Mx (4.40)

for all e ∈ Ωρ∗, xE ∈ Γ, u ∈ U, and w ∈W. From similar conditions and since the rate of change

of xE is bounded, there exists M > 0 such that

|g(e,xE , ẋE ,u,w)| ≤M (4.41)
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for all e ∈Ωρ∗, xE ∈ Γ, u ∈U, w ∈W and |ẋE | ≤ γE . In addition, since the Lyapunov function V is

continuously differentiable (in both arguments) and the fact that f is locally Lipschitz, there exist

positive constants Le, Lw, L′e, L′E , L′′E , L′w such that

∣∣g(e,xE , ẋE ,u,w)−g(e′,xE , ẋE ,u,0)
∣∣≤ Le|e− e′|+Lw|w|, (4.42)

∣∣∣∣∂V (e,xE)

∂e
g(e,xE , ẋE ,u,w)−

∂V (e′,x′E)
∂e

g(e′,x′E , ẋ
′
E ,u,0)

∣∣∣∣
≤ L′e|e− e′|+L′E |xE − x′E |+L′′E |ẋE − ẋ′E |+L′w|w|

(4.43)

for all e, e′ ∈Ωρ∗, xE , x′E ∈ Γ, u ∈ U, w ∈W, |ẋE | ≤ γE , and |ẋ′E | ≤ γE .

The following Lemma gives the feasibility properties of the EMPC and therefore, by the con-

straint of Eq. 4.38f, the optimal state trajectory x∗E(t|t̂k) is embedded in the set Γ for t ∈ [t̂k, t̂k+1].

Lemma 4.1. Consider the system of Eq. 4.38b over the prediction horizon. If Assumption 4.2 is

satisfied, the optimization problem of Eq. 4.38 is feasible and therefore, the optimal state trajectory

x∗E(t|t̂k) for t ∈ [t̂k, t̂k +TE ] computed by applying the optimal input trajectory u∗E(t|t̂k) defined for

t ∈ [t̂k, t̂k +TE) is always embedded in the set Γ.

Proof. When the EMPC optimization problem of Eq. 4.38 is solved with an initial condition sat-

isfying xE(t̂k) ∈ Γ (this is guaranteed through the projection procedure), the feasibility of the opti-

mization problem follows if Assumption 4.2 is satisfied because maintaining the state at the initial

condition along the predicted horizon is a feasible solution to the optimization problem as it satis-

fies all the constraints, i.e., there exists a constant input trajectory uE(t) = ūE ∈U for t ∈ [t̂k, t̂k+TE)

that maintains the state trajectory at its initial condition: xE(t) = projΓ(x(t̂k)) for t ∈ [t̂k, t̂k +TE).

Owing to the fact that the problem is feasible and imposing the constraint of Eq. 4.38f, the optimal

state trajectory x∗E(t|t̂k) is bounded in the set Γ for t ∈ [t̂k, t̂k +TE ].

Theorem 4.2 provides sufficient conditions such that the LMPC may track the economically

optimal trajectory x∗E . More specifically, the deviation state gets small over time until it is bounded

in a small ball containing the origin.
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Theorem 4.2. Consider the system of Eq. 3.1 in closed-loop under the tracking LMPC of Eq. 4.39

based on the Lyapunov-based controller that satisfies the conditions of Eqs. 4.37a-4.37d with the

reference trajectory x∗E computed by the upper layer EMPC of Eq. 4.38. Let εerror > 0, µ > 0,

εw > 0, ∆ > 0, ∆E > 0, N ≥ 1, NE ≥ 1, NE∆E ≥ t ′+N∆, and γE > 0 satisfy

µ > α
−1
3

(
(L′xM+L′EγE)∆+α5(α

−1
1 (ρ∗))γE +L′wθ

θ̂

)
(4.44)

for some θ̂ ∈ (0,1),

εerror = max
s∈[0,∆]

{|e(s)| : e(0) ∈ Bµ for all xE ∈ Γ} , (4.45)

and Bµ ⊂ Bεerror ⊂Ωρ∗. If (x(0)− x∗E(0)) ∈Ωρ∗, then the deviation state of the system of Eq. 4.36

is always bounded in Ωρ∗ and therefore, also, the closed-loop state trajectory x is always bounded.

Furthermore, the deviation between the state trajectory of Eq. 3.1 and the economically optimal

trajectory is ultimately bounded in Bεerror .

Proof. The proof consists of two parts. First, the LMPC optimization problem of Eq. 4.39 is

shown to be feasible for all deviation states in Ωρ∗. Subsequently, the deviation state is proved to

be bounded in Ωρ∗ and to be ultimately bounded in Bεerror .

Part 1: When the deviation state is maintained in Ωρ∗ (which will be proved in Part 2), the fea-

sibility of the LMPC of Eq. 4.39 follows because the input trajectory obtained from the Lyapunov-

based controller is a feasible solution. Specifically, define the trajectory v such that:

ż(t) = g(z(t),x∗E(t|t̂k), ẋ∗E(t|t̂k),v(t),0)

v(t) = h(z(ti),x∗E(ti|t̂k))

for t ∈ [ti, ti+1), i = j, j+ 1, . . . ,N− 1 where z(t j) = e(t j). The trajectory v is a feasible solution

to the optimization problem of Eq. 4.39 since the trajectory satisfies the input and the Lyapunov

function constraints of Eq. 4.39. This is guaranteed by the closed-loop stability property of the
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Lyapunov-based controller.

Part 2: At t̂k, the EMPC computes an optimal trajectory x∗E(·|t̂k) for the LMPC to track for

one operating period. The computed trajectory is such that x∗E(t|t̂k) and |ẋ∗E(t|t̂k)| ≤ γE for all

t ∈ [t̂k, t̂k+1] (Lemma 4.1). For simplicity of notation, let xE(τ) = x∗E(τ|t̂k), ẋE(τ) = ẋ∗E(τ|t̂k),

∂V (τ)

∂e
:=

∂V (e(τ),xE(τ))

∂e
, and

∂V (τ)

∂xE
:=

∂V (e(τ),xE(τ))

∂xE
(4.46)

for any τ ∈ [t j, t j+1). At any sampling time t j ∈ [t̂k, t̂k + t ′) of the LMPC, consider e(t j) ∈ Ωρ∗

(recursive arguments will be applied to show this is always the case when e(0) ∈ Ωρ∗). The

computed control action at t j satisfies:

∂V (t j)

∂e
g(e(t j),xE(t j),0,u∗(t j|t j),0)≤

∂V (t j)

∂e
g(e(t j),xE(t j),0,h(e(t j),xE(t j)),0)

≤−α3(|e(t j)|) (4.47)

for all e(t j) ∈Ωρ∗. For all τ ∈ [t j, t j+1), the time derivative of the Lyapunov function is given by:

V̇ (e(τ),xE(τ)) =
∂V (τ)

∂e
ė(τ)+

∂V (τ)

∂xE
ẋE(τ) . (4.48)

Adding and subtracting the left-hand term of Eq. 4.47 and from the bound of Eq. 4.47, the time-

derivative of the Lyapunov function may be upper bounded as follows:

V̇ (e(τ),xE(τ))≤−α3(|e(t j)|)+
∂V (τ)

∂e
g(e(τ),xE(τ), ẋE(τ),u∗(t j|t j),w(τ))

− ∂V (t j)

∂e
g(e(t j),xE(t j),0,u∗(t j|t j),0)+

∂V (τ)

∂xE
ẋE(τ) (4.49)

for all τ ∈ [t j, t j+1). From Eq. 4.43, the time derivative of the Lyapunov function (Eq. 4.49) may
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be further upper bounded:

V̇ (e(τ),xE(τ))≤−α3(|e(t j)|)+L′x|e(τ)− e(t j)|+L′E |xE(τ)− xE(t j)|

+L′′E |ẋE(τ)|+L′w|w(τ)|+α5(|e(τ)|)|ẋE(τ)|

≤ −α3(|e(t j)|)+L′x|e(τ)− e(t j)|+L′E |xE(τ)− xE(t j)|

+(L′′E +α5(|e(τ)|))γE +L′wθ (4.50)

for all e(t j)∈Ωρ∗ and τ ∈ [t j, t j+1) where the second inequality follows from the fact that |ẋE(τ)| ≤

γE and w(τ) ∈W.

Taking into account Eq. 4.41 and the fact that |ẋE(τ)| ≤ γE and the continuity of e and xE , the

following bounds may be derived for all τ ∈ [t j, t j+1):

∣∣e(τ)− e(t j)
∣∣≤M∆ , (4.51)∣∣xE(τ)− xE(t j)
∣∣≤ γE∆ . (4.52)

From Eqs. 4.50-4.52, the following inequality is obtained:

V̇ (e(τ),xE(τ))≤−α3(|e(t j)|)+(L′xM+L′EγE)∆

+(L′′E +α5(|e(τ)|))γE +L′wθ (4.53)

for all τ ∈ [t j, t j+1).

If ∆, γE and θ are sufficiently small such that there exist θ̂ ∈ (0,1) and (µ,εerror) satisfying

Eqs. 4.44-4.45 with Bµ ⊂Bεerror ⊂Ωρ∗, the following bound on the time-derivative of the Lyapunov

function follows:

V̇ (e(τ),xE(τ))≤−(1− θ̂)α3(|e(t j)|) (4.54)

154



for all τ ∈ [t j, t j+1) and e(t j) ∈Ωρ∗ \Bµ . Integrating this bound on t ∈ [t j, t j+1), one obtains that:

V (e(t j+1),xE(t j+1))≤V (e(t j),xE(t j))− (1− θ̂)∆α3(|e(t j)|) (4.55)

V (e(t),xE(t))≤V (e(t j),xE(t j)) ∀ t ∈ [t j, t j+1) (4.56)

for all e(t j) ∈ Ωρ∗ \Bµ . Using the above inequalities recursively, it may be proved that if e(t j) ∈

Ωρ∗ \Bµ , the deviation between the actual state trajectory and the economic optimal trajectory

converges to Bµ in a finite number of sampling times without going outside the set Ωρ∗. Since the

deviation state is always embedded in the set Ωρ∗ and from Lemma 4.1, the economically optimal

state trajectory is always embedded in the set Γ, the boundedness of the closed-loop state trajectory

of Eq. 3.1 under the lower layer LMPC follows because Ωρ∗ and Γ are compact sets.

To summarize, if e(t j) ∈Ωρ∗ \Bµ , then

V (e(t j+1),xE(t j+1))<V (e(t j),xE(t j)) . (4.57)

Furthermore, the deviation between the state trajectory and the economic optimal trajectory is

ultimately bounded in Bεerror where satisfies Eq. 4.45 and Bµ ⊂ Bεerror ⊂Ωρ∗. This statement holds

because if the deviation state comes out of the ball Bµ , the deviation state is maintained within the

ball Bεerror owing to Eq. 4.45. Once the deviation comes out of the ball Bµ , the Lyapunov function

becomes decreasing.

Notes and remarks on results:

• Three factors influences the time-derivative of the Lyapunov function when e(t j) ∈Ωρ∗ \Bµ

as observed in Eq. 4.53: the sampling period of the lower layer LMPC, the bound on the

disturbance, and the bound on the rate of change of the economically optimal trajectory.

While the bound on the disturbance is a property of the system, two of the other properties

may be used to achieve a desired level of tracking: the sampling period of the lower level

control loop and the rate of change of the economically optimal tracking trajectory.
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Table 4.2: Process parameters of the CSTR of Eq. 4.58.

F 5.0 m3 h−1 ∆H −1.2×104 kJ kmol−1

VR 1.0 m3 k0 3.0×107 h−1

T0 300 K E 5.0×104 kJ kmol−1

R 8.314 kJ kmol−1 K−1 ρL 1000 kg m−3

Cp 0.231 kJ kg−1 K−1

• Theorem 4.2 clarifies how the parameter γE arises and why it is needed in the formulation of

the EMPC of Eq. 4.38.

• No guarantee is made that the closed-loop economic performance with the two-layer frame-

work is better compared to the performance using a steady-state model in the upper layer. In

some cases, it may be the case that closed-loop performance is the same or possibly better

using a steady-state model in the upper layer EMPC. In this case, the stability result pre-

sented here may be extended to the case where the optimal steady-state varies sufficiently

slow.

4.3.3 Application to a Chemical Process Example

Consider a well-mixed, non-isothermal continuous stirred tank reactor (CSTR) where an elemen-

tary (first-order) reaction takes place of the form A→ B. The feed to the reactor consists of pure

A at volumetric flow rate F , temperature T0 +∆T0 and molar concentration CA0 +∆CA0 where ∆T0

and ∆CA0 are disturbances. A jacket around the reactor is used to provide/remove heat to the reac-

tor. The dynamic equations describing the behavior of the system, obtained through material and

energy balances under standard modeling assumptions, are given below:

dT
dt

=
F
VR

(T0 +∆T0−T )− ∆Hk0

ρLCp
e
−E
RT CA +

Q
ρLCpVR

(4.58a)

dCA

dt
=

F
VR

(CA0 +∆CA0−CA)− k0e
−E
RT CA (4.58b)
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where CA is the concentration of the reactant A in the reactor, T is the reactor temperature, Q is the

rate of heat input/removal, VR is the reactor volume, ∆H is the heat of the reaction, k0 and E are

the pre-exponential constant and activation energy of the reaction, respectively, Cp and ρL denote

the heat capacity and the density of the fluid in the reactor, respectively. The values of the process

parameters are given in Table 4.2. The state vector is x = [T CA]
T and the manipulated inputs are

the heat rate u1 = Q where u1 ∈ [−2,2]×105 kJ h−1 and the inlet reactant concentration u2 =CA0

where u2 ∈ [0.5,8.0] kmol m−3. The feed disturbances are modeled as bounded Gaussian white

noise with zero mean, variances 20K2 and 0.1kmol2 m−6, and bounds given by |∆T0| ≤ 15K and

|∆CA0| ≤ 1.0kmol m−3.

The control objective is to force the system to track the economically optimal time-varying

operating trajectories computed by the upper layer EMPC. The set Γ is defined as

Γ := {x ∈ R2 : 340≤ x1 ≤ 390K, 0.5≤ x2 ≤ 3.0kmol m−3} . (4.59)

In this example, the time-varying economic stage cost penalizes energy consumption, credits con-

version of the reactant to the product, and penalizes the deviation of temperature from 365.0K and

is given by:

le(t,x,u) = A1(t)u2
1−A2(t)

(u2− x2)

u2
+A3(t)(x1−365.0K)2 (4.60)

where A1, A2, and A3 are the potentially time-varying weighting factors. The last term in the

economic stage cost is used to prevent the system from operating on the boundary of Γ for long

periods of time. The magnitudes of the economic weighting factors have been chosen so that all

terms in the economic cost have the same order of magnitude. For this example, A1 and A3 are

chosen to be time-varying and A2 = 10 is constant. The time-varying weight A1(t), over four hours
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of operation, is given by

A1(t) =



1.0×10−7, t < 1.0h

5.0×10−8, 1.0h≤ t < 2.0h

1.0×10−8, 2.0h≤ t < 3.0h

5.0×10−8, 3.0h≤ t ≤ 4.0h

and is used to model the time-varying energy cost. The time-varying weight A3(t) is given by

A3(t) =



1.0×10−2, t < 1.0h

7.5×10−3, 1.0h≤ t < 2.0h

5.0×10−3, 2.0h≤ t < 3.0h

7.5×10−3, 3.0h≤ t ≤ 4.0h

The rationale for varying A3 is to allow the CSTR be operated over a larger temperature range

when the energy cost decreases and thus, take advantage of the decreased energy cost. The up-

per layer EMPC is implemented with a sampling period of ∆E = 36s and prediction horizon of

NE = 60 sampling periods. It is solved every 0.50h, i.e., the operating period is chosen to be

t ′ = 0.50h. The prediction horizon and operating period were chosen to account for the update

frequency of the economic weighting parameters. It was found that defining and imposing a rate

of change constraint in the upper layer EMPC, i.e., defining the parameter γE , was not needed

for this particular example because the closed-loop system under the lower layer LMPC was able

to achieve acceptable tracking performance without imposing a rate of change constraint in the

upper layer EMPC. The projection operator is such that it projects the current state to the closest

boundary of Γ if the current state is outside the set Γ, e.g., if x = [400K 2.0kmol m−3]T , then

projΓ(x) = [390K 2.0kmol m−3]T .

To design the lower layer LMPC, a Lyapunov-based controller is designed for the CSTR, which
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is essentially two proportional controllers that account for the input constraints. Specifically, the

two proportional controllers are given by:

−K1(x1− x∗E,1)+us,1,

−K2(x2− x∗E,2)+us,2

(4.61)

where K1 = 8000, K2 = 0.01, and us is the steady-state input corresponding to the steady-state x∗E ,

i.e., the input vector that makes the right-hand side of Eqs. 4.58a-4.58b equal to zero with the state

vector x∗E . The resulting Lyapunov-based controller design for the CSTR is derived by accounting

for the input constraints in the controller design of Eq. 4.61 as well as for the fact that us may be

written as a function of xE , i.e., the resulting Lyapunov-based controller is a mapping h that maps

the pair (e,xE) to h(e,xE) ∈ U. A quadratic Lyapunov function of the form V (e,xE) = eT Pe is

constructed for the closed-loop system under the Lyapunov-based controller with

P =

10 1

1 100

 . (4.62)

The LMPC is implemented with a sampling time ∆= 36s, prediction horizon N = 5, and weighting

matrices of Qc = P and Rc = diag
[

10−7 10

]
. The prediction horizon and weighting matrices

of the lower layer LMPC were tuned to achieve a close tracking of the optimal state trajectory.

With the nonlinear system of Eqs. 4.58a-4.58b, the Lyapunov-based controller, and the Lya-

punov function, the stability regions of the closed-system under the Lyapunov-based controller

may be estimated for a sufficiently large number of points in Γ. This procedure was carried out as

follows: fix xE ∈ Γ and compute a level set of the Lyapunov function where V̇ < 0 for all points

contained in the level set. The intersection of all these level sets is taken to be an estimate of the

closed-loop stability region Ωρ∗ of the CSTR under the Lyapunov-based controller. In this exam-

ple, Ωρ∗ is estimated to be ρ∗ = 110. Through the Lyapunov-based constraint on the LMPC of

(Eq. 4.39e), the closed-loop system with the two-layer framework inherits the stability region Ωρ∗ .

To simulate the closed-loop system, explicit Euler method with integration step 0.36s was used
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Figure 4.8: The closed-loop state and input trajectories of Eq. 4.58a-4.58b under the two-layer

optimization and control framework with the feed disturbances and starting from 400K and

0.1kmol m−3.

to integrate the ODEs and the open source interior point solver Ipopt [187] was used to solve the

optimization problems. Three sets of closed-loop simulations were completed. In the first set

of closed-loop simulations, the stability properties of the closed-loop system under the two-layer

dynamic economic optimization and control framework are demonstrated. Second, time-varying

operation with the two-layer dynamic economic optimization and control framework is analyzed.

Third, the closed-loop economic performance of the CSTR under the two-layer framework is com-

pared to the CSTR under a conventional approach to optimization and control.

To demonstrate the closed-loop stability properties of the proposed two-layer framework, the

CSTR is initialized at x0 = [400K, 0.1kmol m−3] which is outside of Γ, but inside the stability

region Ωρ∗. The projection operator of the upper layer EMPC projects the initial state onto the

state xE,0 = [390K, 0.5kmol m−3] ∈ Γ to use as an initial condition to the upper layer EMPC

problem of Eq. 4.38. The evolution of the closed-loop system under the two-layer framework and

with the inlet temperature and reactant concentration disturbance is shown in Figs. 4.8-4.9. From
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Figure 4.9: The closed-loop state trajectory of Eq. 4.58a-4.58b under the two-layer optimization

and control framework with the feed disturbances and starting from 400K and 0.1kmol m−3 shown

in deviation state-space.

Fig. 4.9, the deviation of the actual closed-loop state and the economically optimal state is always

maintained inside Ωρ∗. Moreover, the deviation becomes small over time until it is ultimately

bounded in a small ball.

Two simulations of the closed-loop system without the feed disturbances added are shown in

Figs. 4.10-4.11 with two different initial conditions to analyze the time-varying operation with

the two-layer dynamic economic optimization and process control framework. The initial state in

Fig. 4.10 is

xT
0 = [400K, 3.0kmol m−3] ,

while the initial state in Fig. 4.11 is

xT
0 = [320K, 3.0kmol m−3] .

The closed-loop evolution of the two cases is initially different. For the CSTR starting at the
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Figure 4.10: The closed-loop system states and inputs of Eq. 4.58a-4.58b without the feed distur-

bances and starting from 400K and 3.0kmol m−3.
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Figure 4.11: The closed-loop system states and inputs of Eq. 4.58a-4.58b without the feed distur-

bances and starting from 320K and 3.0kmol m−3.
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Table 4.3: Comparison of the total economic cost, given by Eq. 4.63, of the closed-loop system

with and without the feed disturbances for four hours of operation.

Initial Conditions Total Economic Cost

T (0) K CA(0)
kmol m−3

Steady-State
Optimization

without
Disturbance

Two-layer
Framework

without
Disturbance

Cost
Decrease

Steady-State
Optimization

with
Disturbance

Two-layer
Framework

with
Disturbance

Cost
Decrease

400.0 3.0 21970.5 14531.1 51.2 % 21642.4 14130.7 53.2 %
380.0 3.0 5235.4 3409.5 53.6 % 5060.1 3037.9 66.6 %
360.0 3.0 4261.8 3308.6 28.8 % 4083.2 2997.1 36.2 %
340.0 3.0 13732.2 10997.3 24.9 % 13554.9 10882.3 24.6 %
320.0 3.0 23719.4 19315.9 22.8 % 23729.1 19210.3 23.5 %
400.0 2.5 18546.8 10062.1 84.3 % 18283.4 9691.4 88.7 %
380.0 2.5 4558.7 3163.3 44.1 % 4387.2 2811.9 56.0 %
360.0 2.5 4496.4 3335.6 34.8 % 4322.7 3030.3 42.6 %
340.0 2.5 14078.3 11034.4 27.6 % 13910.2 10928.8 27.3 %
320.0 2.5 24052.2 19293.4 24.7 % 24002.2 19193.8 25.1 %
400.0 2.0 14831.5 6774.0 118.9 % 14682.4 6412.6 129.0 %
380.0 2.0 4073.2 3085.1 32.0 % 3905.0 2739.8 42.5 %
360.0 2.0 4765.4 3431.2 38.9 % 4596.4 3139.3 46.4 %
340.0 2.0 14395.5 11162.3 29.0 % 14236.8 11068.2 28.6 %
320.0 2.0 24202.7 19241.2 25.8 % 24223.5 19146.7 26.5 %
400.0 0.1 8146.1 4360.5 86.8 % 7999.4 4025.7 98.7 %

larger temperature, heat should be removed from the reactor and the minimum amount of reactant

material should be supplied to the reactor to decrease the temperature of the reactor. In contrast,

when the CSTR is initialized at the smaller temperature, heat should be supplied to the reactor

and reactant material should be fed to the reactor to increase the reactor temperature. After a

sufficiently long length of operation, the effect of the initial condition diminishes and the closed-

loop evolution of the two cases becomes similar. For both of these cases, the reactor is operated in

a time-varying fashion, i.e., never converges to a steady-state.

To compare the closed-loop economic performance under the dynamic economic optimization

and control framework and under a conventional approach to optimization and control, the total

economic cost over the length of operation is defined as

JE =
M

∑
j=0

(
A1(t j)Q2(t j)+A2

CA(t j)

CA0(t j)
+A3(T (t j)−365)2

)
(4.63)

where t0 is the initial time of the simulation and tM = 4.0h is the end of the simulation. The con-

ventional approach to optimization and control uses a steady-state economic optimization problem
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to compute the optimal steady-states with respect to the time-varying economic cost weights. The

optimal steady-states are used in a tracking MPC, which in this case is an LMPC, to force the

CSTR states to the optimal steady-states. The optimal (time-varying) steady-state from steady-

state economic optimization is

x∗s (t) =



[370.0K, 2.576kmol m−3]T , t < 1.0h

[371.7K, 2.447kmol m−3]T , 1.0h≤ t < 2.0h

[375.2K, 2.205kmol m−3]T , 2.0h≤ t < 3.0h

[371.7K, 2.447kmol m−3]T , 3.0h≤ t ≤ 4.0h

with the corresponding steady-state input of

u∗s (t) =



[0.0kJ h−1, 3.923kmol m−3]T , t < 1.0h

[−0.5kJ h−1, 3.827kmol m−3]T , 1.0h≤ t < 2.0h

[0.0kJ h−1, 3.653kmol m−3]T , 2.0h≤ t < 3.0h

[−0.5kJ h−1, 3.827kmol m−3]T , 3.0h≤ t ≤ 4.0h

An LMPC is implemented to drive the system to the time-varying optimal steady-state, which is
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formulated as follows:

min
u∈S(∆)

∫ t j+N

t j

(
|x̃(τ)− x∗s (τ)|Qc

+ |u(τ)−u∗s (τ)|Rc

)
dτ

s.t. ˙̃x(t) = f (x̃(t),u(t),0),

x̃(t j) = x(t j),

−2×105 ≤ u1(t)≤ 2×105, ∀ t ∈ [t j, t j+N),

0.5≤ u2(t)≤ 8, ∀ t ∈ [t j, t j+N),

∂V (x(t j))

∂x
f (x(t j),u(t j),0)

≤ ∂V (x(t j))

∂x
f (x(t j),h(x(t j),x∗s (t j)),0)

(4.64)

where the Lyapunov function, the Lyapunov-based controller, the weighting matrices Rc and Qc,

the sampling period ∆, and the prediction horizon N are all the same as the ones used in the

tracking LMPC scheme. To make a fair comparison, the same realization of the feed disturbances

was applied to each closed-loop system simulation. The total economic cost values of several

closed-loop simulations starting from different initial conditions and with and without the feed

disturbances are given in Table 4.3. From the results of Table 4.3, the largest economic cost

decrease occurs when the CSTR is initialized at higher temperature. When the CSTR starts from a

lower temperature, the amount of heat that needs to be supplied to the reactor initially is less than

the amount of heat that needs to be initially removed when the CSTR starts at a higher temperature

as explained above and demonstrated in Figs. 4.10-4.11. Thus, when the CSTR starts from a

higher temperature, better closed-loop performance is achieved because less energy is required to

be supplied/removed from the reactor.
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4.4 Addressing Closed-loop Performance and Computational

Efficiency

An important theoretical consideration is the closed-loop performance of systems under EMPC

because EMPC is formulated with a finite prediction horizon. The achievable closed-loop eco-

nomic performance may strongly depend on the prediction horizon length. To address guaranteed

closed-loop economic performance while formulating a computationally efficient control structure,

a two-layer EMPC structure is presented in this section. In contrast to the two-layer EMPC method-

ologies presented in the previous sections, EMPC schemes are used in both layers of the two-layer

EMPC structure to ensure economic performance improvement over a tracking controller, e.g.,

tracking MPC.

Each layer is formulated as an LEMPC scheme. The core idea of the two-layer LEMPC im-

plementation is to solve the upper layer LEMPC infrequently (not every sampling period) while

employing a long prediction horizon. Then, the solution generated by the upper layer LEMPC is

subsequently used in the formulation of a lower layer LEMPC. The lower layer LEMPC is for-

mulated with a shorter prediction horizon and smaller sampling time than the upper layer LEMPC

and computes control actions that are applied to the closed-loop system. The control actions of

the lower layer LEMPC are constrained to maintain the state near the economically optimal trajec-

tories computed in the upper layer. For guaranteed performance improvement with the two-layer

LEMPC implementation scheme, both layers are formulated with explicit performance-based con-

straints computed by taking advantage of the availability of an auxiliary stabilizing controller.

The performance-based constraints, i.e., terminal constraints, are similar to that presented in Sec-

tion 3.4, and guarantee that both the finite-time and infinite-time closed-loop economic perfor-

mance under the two-layer LEMPC scheme are at least as good as that under the stabilizing con-

troller. The use of the two-layer control implementation allows for the control architecture to

be computationally efficient. The two-layer LEMPC structure is applied to a chemical process

example to demonstrate the closed-loop performance, stability, and robustness properties of the
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two-layer LEMPC structure.

4.4.1 Class of Systems

In this section, nominally operated systems are considered, i.e., the system of Eq. 3.1 with w ≡

0. Specifically, the class of continuous-time nonlinear systems considered is described by the

following state-space form:

ẋ = f (x,u) (4.65)

where the state vector is x ∈ X ⊆ Rn and the input vector is u ∈ U ⊂ Rm. The vector function

f : X×U→ X is a locally Lipschitz vector function on X×U. The set of admissible inputs U

is assumed to be a compact set, and the state is synchronously sampled at time instances j∆ with

j = 0,1,2, . . . where ∆ > 0 is the sampling period. As before, the initial time is taken to be zero,

and the notation t will be used for the continuous-time, while the time sequence {t j} j≥0 is the

discrete sampling time sequence which is a synchronous partitioning of R+ with t j = j∆.

A time-invariant economic measure le : X×U→ R is assumed for the system of Eq. 4.3 that

describes the real-time system economics. The economic measure is assumed to be continuous on

X×U. The optimal steady-state x∗s and steady-state input u∗s pair with respect to the economic cost

function is computed as follows:

(x∗s ,u
∗
s ) = argmin

xs∈X,us∈U
{le(xs,us) : f (xs,us) = 0} .

The existence of a minimizing pair where the minimum is attained and such that the minimizing

pair lies in the interior of X×U is assumed. For the sake of simplicity, the optimal steady-state

pair is assumed to be unique and to be (x∗s ,u
∗
s ) = (0,0).
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4.4.2 Existence of a Stabilizing Controller

A stronger stabilizability-like assumption than the assumption imposed in previous sections and

chapters is needed here (stated in Assumption 4.3). In this section, the existence of a stabilizing

controller that renders the origin of the closed-loop system exponentially stable under continuous

implementation is assumed whereas, previously, the existence of a stabilizing controller is assumed

that renders the closed-loop system only asymptotically stable under continuous implementation.

The stronger assumption is needed to ensure that the stabilizing controller renders the origin of

the closed-loop system exponentially (and therefore, asymptotically) stable under sample-and-hold

implementation. This will be required to consider infinite-time closed-loop economic performance.

Specifically, asymptotic convergence to the origin and not just convergence to a neighborhood of

the steady-state (practical stability of the origin) will be required.

Assumption 4.3. There exists a locally Lipschitz feedback controller h : X→ U with h(0) = 0 for

the system of Eq. 4.65 that renders the origin of the closed-loop system under continuous imple-

mentation of the controller locally exponentially stable. More specifically, there exist constants

ρ > 0, ci > 0, i = 1,2,3,4 and a continuously differentiable Lyapunov function V : X→ R+ such

that the following inequalities hold:

c1 |x|2 ≤V (x)≤ c2 |x|2 , (4.66a)

∂V (x)
∂x

f (x,h(x))≤−c3 |x|2 , (4.66b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ c4 |x| , (4.66c)

for all x ∈Ωρ ⊆ X.

Explicit feedback controllers that may be designed to satisfy Assumption 4.3 are, for example,

feedback linearizing controller and some Lyapunov-based controllers, e.g., [100, 101]. The origin

of the closed-loop system of Eq. 4.65 under the feedback controller, h(x), implemented in a zeroth-

order sample-and-hold fashion with a sufficiently small sampling period ∆ > 0, i.e., the controller
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is applied as an emulation controller may be shown to be exponentially stable (Corollary 2.1).

Moreover, the proof of Corollary 2.1 shows that V is a Lyapunov function for the closed-loop

sampled-data system in the sense that there exists a constant ĉ3 > 0 such that

∂V (x(t))
∂x

f (x(t),h(x(t j)))≤−ĉ3 |x(t)|2 (4.67)

for all t ∈ [t j, t j+1) and integers j ≥ 0 where x(t) is the solution of Eq. 4.65 at time t starting

from x(t j) ∈ Ωρ and with the input u(t) = h(x(t j)) for t ∈ [t j, t j+1). The stability region of the

closed-loop system under the controller is defined as Ωρ ⊆ X .

4.4.3 Two-layer EMPC Structure

A detailed description of the two-layer LEMPC structure is provided which includes descriptions

of the implementation strategy, the formulations of the upper and lower layer LEMPC schemes,

and the provable stability and performance properties.

Implementation Strategy

The objective of the two-layer LEMPC design is to ensure that both the finite-time and infinite-time

closed-loop economic performance of the resulting closed-loop system will be at least as good the

closed-loop performance under a stabilizing controller. To address this objective, performance-

based constraints are employed in the formulation of the upper and lower layer LEMPC that have

been computed from the stabilizing controller. The stabilizing controller may be any controller

that satisfies Assumption 4.3. For example, the stabilizing controller may be an explicit controller

that satisfies Assumption 4.3 or an LMPC scheme, which is equipped with a contractive Lyapunov

constraint designed using an explicit controller that satisfies Assumption 4.3. The formulation of

such a LMPC scheme is provided below. However, it is important to point out that the amount

of computation required to solve the LMPC is generally greater than that required for an explicit

controller. The stabilizing controller will be referred as the auxiliary controller for the remainder.
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Upper Layer
LEMPC

Lower Layer
LEMPC

System
ẋ = f(x, u)

Auxiliary
Controller

z(t̂k+1|t̂k)

x∗E(tj+Nj |t̂k)

u∗(tj |tj)x(tj)

x(t̂k)x(t̂k)

Figure 4.12: Block diagram of the two-layer EMPC structure addressing closed-loop performance

and computational efficiency.

A block diagram of the two-layer LEMPC is given in Fig. 4.12. In the upper layer, an LEMPC

is used to optimize dynamic operation over a long horizon while accounting for the performance-

based constraints generated from the auxiliary controller. Both the auxiliary controller and the

upper layer LEMPC compute their input trajectories at the beginning of some operating window,

and thus, the auxiliary controller and upper layer LEMPC are computed once each operating win-

dow for computational efficiency. In the lower layer, an LEMPC, using a shorter prediction horizon

and a smaller sampling period than the upper layer LEMPC, computes control inputs that are ap-

plied to the process. Terminal constraints that have been generated from the upper layer LEMPC

optimal solution are used to ensure that the lower layer LEMPC guides the system along the opti-

mal solution computed in the upper layer since it uses a shorter prediction horizon and a smaller

sampling period. In this manner, the lower layer LEMPC is used to improve robustness of the

closed-loop system (recomputes its optimal trajectory every sampling period to incorporate feed-

back) as well as for possibly providing additional economic cost improvement over the upper layer

LEMPC solution owing to the use of a smaller sampling time.

To maintain consistency of the notation, the operating window is denoted as t ′ and is equal to
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NE∆E where NE ∈ I+ is the number of hold periods in the prediction horizon of the upper layer

LEMPC and ∆E > 0 is the hold period of the piecewise constant input trajectory computed in the

upper layer (here, KE = NE). The time sequence {t̂k}k≥0 denotes the discrete time steps that the

upper layer computes a solution to its control problem where t̂k = kt ′ and k = 0,1, . . ..

At the beginning of each operating window, the upper layer control problems are solved in

a sequential manner: first, the auxiliary controller is solved to obtain its corresponding open-

loop predicted state and input trajectories over the operating window and second, the upper layer

LEMPC is solved to obtain its corresponding open-loop predicted state and input trajectories over

the operation window. Specifically, the auxiliary controller computes the open-loop (predicted)

input trajectory that it would apply to the system over the time t̂k to t̂k+1 = (k+ 1)t ′ along with

the open-loop state trajectory under the computed input trajectory. If the auxiliary controller is an

explicit controller, then the open-loop state trajectory is computed by recursively solving:

ż(t) = f (z(t),h(z(τi))) (4.68)

for t ∈ [τi,τi+1), i = 0,1, . . . ,NE −1 where τi := t̂k + i∆E , z(t̂k) = x(t̂k) is the initial condition, and

x(t̂k) is a state measurement obtained at t̂k. If, instead, the auxiliary controller is an LMPC, then the

open-loop state trajectory may be obtained directly from the solution of the optimization problem.

The open-loop state and input trajectories under the auxiliary controller are denoted as z(t|t̂k) and

v(t|t̂k) for t ∈ [t̂k, t̂k+1) = [kt ′,kt ′+NE∆E), respectively. The terminal state of the open-loop state

trajectory, z(t̂k+1|t̂k), is then sent to the upper level LEMPC.

The upper layer LEMPC subsequently uses z(t̂k+1|t̂k) as a terminal equality constraint in the op-

timization problem. In this framework, no restrictions are placed on the type of operation achieved

under the two-layer framework, i.e., it could be steady-state type operation or some more gen-

eral time-varying operating behavior. Therefore, the upper level LEMPC is a LEMPC (Eq. 3.3)

equipped with mode 1 operation only. If steady-state operation is desirable, one could formulate

the upper level LEMPC with a mode 2 constraint similar to that of Eq. 4.8f to ensure that the
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optimal steady-state is asymptotically stable under the two-layer LEMPC. However, the mode 2

constraint of LEMPC is not discussed further. After receiving z(t̂k+1|t̂k) from the auxiliary con-

troller and a state measurement at t̂k, the upper layer LEMPC is solved to compute its optimal state

and input trajectories over the operating window, which are denoted as x∗E(t|t̂k) and u∗E(t|t̂k) for

t ∈ [t̂k, t̂k+1), respectively.

The upper layer hold period is divided into N̄ subintervals of length ∆ (∆ = ∆E/N̄ where N̄

is a positive integer). The subintervals define the sampling period of the lower layer LEMPC

and correspond to the sampling time sequence {t j} j≥0. The lower layer LEMPC recomputes its

optimal input trajectory employing a shrinking horizon. Namely, at the beginning of each hold

period of the upper layer, the lower layer is initialized with a prediction horizon N j = N̄. The

lower layer LEMPC receives a state measurement, denoted as x(t j), as well as x∗E(t j+N j |t̂k) from

the upper layer LEMPC. Using x∗E(t j+N j |t̂k) as a terminal equality constraint in the lower layer

LEMPC, the lower layer LEMPC is solved. The optimal input trajectory computed by the lower

layer LEMPC is denoted as u∗(t|t j), t ∈ [t j, t j+N j). At the subsequent sampling period of the lower

layer LEMPC, the prediction horizon decreases by one (N j+1 = N j−1). If decreasing the horizon

results in the horizon being set to zero, the prediction horizon is reset to N̄ = ∆E/∆. This happens

at the beginning of the next hold period of the upper layer LEMPC.

The implementation strategy is summarized below and an illustration of the closed-loop system

is given in Figure 4.13. The lower layer LMPC is initialized with a prediction horizon of N0 = N̄ =

∆E/∆. To initialize the algorithm, let k = 0 and j = 0.

1. Upper layer: At t̂k, the auxiliary controller and the upper layer LEMPC are initialized with

the state measurement x(t̂k). Go to Step 1.1.

1.1 The auxiliary controller computes its optimal input trajectory denoted as v(t|t̂k) defined

for t ∈ [t̂k, t̂k+1) and corresponding state trajectory denoted as z(t|t̂k) defined for t ∈

[t̂k, t̂k+1). The terminal state z(t̂k+1|t̂k) is sent to the upper layer LEMPC. Go to Step

1.2.
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x∗s
Ωρ

x(0)

z(t′|0)

z(2t′|t′)

Figure 4.13: A state-space illustration of the evolution of the closed-loop system (solid line) in the

stability region Ωρ over two operating periods. The open-loop predicted state trajectory under the

auxiliary controller is also given (dashed line). At the beginning of each operating window, the

closed-loop state converges to the open-loop state under the auxiliary controller.

1.2 The upper layer LEMPC receives z(t̂k+1|t̂k) from the auxiliary controller and computes

its optimal input trajectory u∗E(t|t̂k) defined for t ∈ [t̂k, t̂k+1) and state trajectory x∗E(t|t̂k)

defined for t ∈ [t̂k, t̂k+1). Go to Step 2.

2. Lower layer: At t j, the lower layer LEMPC receives a state measurement x(t j) and the

terminal state x∗E(t j+N j |t̂k) from the upper layer LEMPC. Go to Step 2.1.

2.1 The lower layer LEMPC computes its optimal input trajectory u∗(t|t j) defined for t ∈

[t j, t j+N j). Go to Step 2.2.

2.2 The control action u∗(t j|t j), which is the computed input for the first sampling period

of the lower layer LEMPC prediction horizon, is applied to the system from t j to t j+1.

If N j−1 = 0, reset N j+1 = N̄; else, let N j+1 = N j−1. If t j+1 = t̂k+1, set j← j+1 and

k← k+1 and go to Step 1. Else, set j← j+1 and go to Step 2.

Remark 4.3. Even though the lower layer LEMPC uses a shrinking horizon and nominal operation

is considered, recomputing the lower layer LEMPC input at every subsequent sampling time is

necessary regardless if the solution to the lower level LEMPC is the same or not. The incorporation
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of feedback allows for stabilization of open-loop unstable systems that cannot be accomplished

with an open-loop implementation and ensures the robustness of the control solution with respect

to infinitesimally small disturbances/uncertainty. For further explanation on this point, see, for

example, [176].

Formulation

The formulations of the two LEMPC schemes are given. For convenience, the specific formulation

of the LMPC needed if the auxiliary controller is chosen to be an LMPC scheme is given first.

Specifically, the LMPC is given by the following optimization problem:

min
v∈S(∆E)

∫ t̂k+1

t̂k
(|z(t)|Qc + |v(t)|Rc) dt (4.69a)

s.t. ż(t) = f (z(t),v(t)) (4.69b)

z(t̂k) = x(t̂k) (4.69c)

v(t) ∈ U, ∀ t ∈ [t̂k, t̂k+1) (4.69d)

∂V (z(τi))

∂ z
f (z(τi),v(τi))≤

∂V (z(τi))

∂ z
f (z(τi),h(x(τi)))

for i = 0,1, . . . ,NE −1 (4.69e)

where τi := t̂k + i∆E and z is the state trajectory of the system with input trajectory v calculated

by the LMPC. The Lyapunov-based constraint of Eq. 4.69e differs from the Lyapunov-based con-

straint of Eq. 4.69e as it is imposed at each sampling period along the prediction horizon of the

LMPC to ensure that the state trajectory with input computed by the LMPC converges to the

steady-state. Through enforcement of the Lyapunov-based constraint, the LMPC inherits the same

stability properties as that of the explicit controller. The optimal solution of the optimization prob-

lem of Eq. 4.69 is denoted as v∗(t|t̂k) and is defined for t ∈ [t̂k, t̂k+1). From the optimal input

trajectory, the optimal state trajectory z∗(t|t̂k), t ∈ [t̂k, t̂k+1) may be computed for the operating

window. When the LMPC is used as the auxiliary controller, the terminal state z∗(t̂k+1|t̂k) is sent
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to the upper layer LEMPC.

The formulation of the upper layer LEMPC is similar to the mode 1 LEMPC formulation with

a terminal equality constraint computed from the auxiliary controller:

min
uE∈S(∆E)

∫ t̂k+1

t̂k
le(xE(t),uE(t)) dt (4.70a)

s.t. ẋE(t) = f (xE(t),uE(t)) (4.70b)

xE(t̂k) = x(t̂k) (4.70c)

uE(t) ∈ U, ∀ t ∈ [t̂k, t̂k+1) (4.70d)

xE(t) ∈Ωρ , ∀ t ∈ [t̂k, t̂k+1) (4.70e)

xE(t̂k+1) = z(t̂k+1|t̂k) (4.70f)

where xE is the predicted state trajectory with the input trajectory uE computed by the upper layer

LEMPC. To ensure the existence of an input trajectory that has at least as good economic per-

formance as the auxiliary LMPC input trajectory over the entire length of operation, the terminal

constraint of Eq. 4.70f based on the auxiliary controller is used. The terminal constraint differs

from traditional terminal equality constraints because z(t̂k+1|t̂k) is not necessarily the steady-state.

It does, however, asymptotically converge to the economically optimal steady-state. The optimal

solution to the optimization problem of the upper layer LEMPC is denoted as u∗E(t|t̂k) and is de-

fined for t ∈ [t̂k, t̂k+1). With the optimal solution, the optimal (open-loop) state trajectory may be

computed and is denoted as x∗E(t|t̂k), for t ∈ [t̂k, t̂k+1).

The lower layer LEMPC formulation, which uses a terminal constraint computed from x∗E(·|t̂k),
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is given by:

min
u∈S(∆)

∫ t j+Nj

t j

le(x̃(t),u(t)) dt (4.71a)

s.t. ˙̃x(t) = f (x̃(t),u(t)) (4.71b)

x̃(t j) = x(t j) (4.71c)

u(t) ∈ U, ∀ t ∈ [t j, t j+N j) (4.71d)

x̃(t) ∈Ωρ , ∀ t ∈ [t j, t j+N j ] (4.71e)

x̃(t j+N j) = x∗E(t j+N j |t̂k) (4.71f)

where x̃ is the predicted state trajectory under the input trajectory u. The terminal constraint of

Eq. 4.71f is computed from the upper layer LEMPC solution, and serves the same purpose as

the terminal constraint of Eq. 4.70f. The optimal solution to the lower layer LEMPC is denoted as

u∗(t|t j) which is defined for t ∈ [t j, t j+N j). The control input u∗(t j|t j) is sent to the control actuators

to be applied to the system of Eq. 4.65 in a sample-and-hold fashion until the next sampling period.

Remark 4.4. When the economic stage cost does not penalize the use of control energy, one may

consider formulating constraints in the LEMPC problems to prevent the LEMPC from computing

an input trajectory that uses excessive control energy. In particular, one straightforward extension

of the two-layer LEMPC structure is to compute the total control energy used by the auxiliary

controller over the operating window, i.e, integral of the input trajectory v over t̂k to t̂k+1. Then,

enforce that the upper and lower layer LEMPCs compute an input trajectory that uses no more

control energy than the auxiliary controller input profile over the operating window. This approach

was employed in [78].

Closed-loop Stability and Performance

The following proposition proves that the closed-loop system state under the two-layer EMPC

structure is always bounded in the invariant set Ωρ and the economic performance is at least as
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good as the closed-loop state with the auxiliary LMPC over each operating period.

Proposition 4.3. Consider the system of Eq. 4.65 in closed-loop under the lower layer LEMPC

of Eq. 4.71. Let the terminal constraint of Eq. 4.71f computed from the upper layer LEMPC of

Eq. 4.70, which has a terminal constraint formulated from the auxiliary controller that satisfies

Assumption 4.3. Let ∆E ∈ (0, ∆∗] where ∆∗ is defined according to Corollary 2.1, NE ≥ 1, N̄ ≥ 1,

and ∆ = ∆E/N̄. If x(t̂k) ∈ Ωρ , then the state remains bounded in Ωρ over the operating window

with x(t̂k+1) = z(t̂k+1|t̂k) ∈Ωρ , the upper and lower LEMPCs remain feasible for all t ∈ [t̂k, t̂k+1),

and the following inequality holds:

∫ t̂k+1

t̂k
le(x(t),u∗(t)) dt ≤

∫ t̂k+1

t̂k
le(z(t|t̂k),v(t|t̂k)) dt (4.72)

where x and u∗ are the closed-loop state and input trajectories and z(·|t̂k) and v(·|t̂k) denote the

open-loop predicted state and input trajectories under the auxiliary computed at t̂k.

Proof. Stability: If ∆E ∈ (0, ∆∗] and the auxiliary controller satisfies Assumption 4.3, Eq. 4.67

implies forward invariance of the set Ωρ under the auxiliary controller. The terminal constraint

z(t̂k+1|t̂k) computed by the auxiliary controller is therefore in Ωρ . If the optimization problems

are feasible, boundedness of the closed-loop state in Ωρ over the operating window follows when

x(t̂k) ∈Ωρ owing to the fact that the constraint of Eq. 4.71e is imposed in the lower layer LEMPC,

which is responsible for computing control action for the closed-loop system. Also, the terminal

constraint of Eq. 4.71f imposed in the lower layer LEMPC is always in Ωρ as a result of the

constraint of Eq. 4.70e imposed in the upper layer LEMPC.

Feasibility: Regarding feasibility of the upper layer LEMPC problem, the input trajectory

v(·|t̂k) obtained from the auxiliary controller is a feasible solution to the upper layer LEMPC for

any x(t̂k) ∈ Ωρ because it maintains the predicted state inside Ωρ and forces the predicted state

to the terminal constraint of Eq. 4.70f. More specifically, if the auxiliary controller is an explicit

controller that satisfies Assumption 4.3, then the input trajectory v is obtained from recursively

solving Eq. 4.68. On the other hand, if the LMPC of Eq. 4.69 is used as the auxiliary controller,
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then v is the solution to the optimization problem of Eq. 4.69.

Consider any sampling time t j ∈ [t̂k, t̂k+1) such that t j = t̂k + i∆E for some i ∈ {0, . . . ,NE −1},

i.e., consider a sampling time of the lower layer LEMPC that corresponds to the beginning of

a hold time of the upper layer. Let {t̄i}NE−1
i=0 denote the sequence of such times. The constant

input trajectory u(t) = u∗E(t j|t̂k) for all t ∈ [t j, t j+N̄) where t j+N̄ = t̄i+1 = t̂k +(i+1)∆E is a feasible

solution to the optimization problem of Eq. 4.71 because it maintains the state in Ωρ and it forces

the state to the terminal constraint of Eq. 4.71f. Owing to the shrinking horizon implementation

of the lower layer LEMPC, the computed input trajectory by the lower layer LEMPC at t j = t̄i is

a feasible solution to the optimization problem at the next sampling time (t j+1) in the sense that if

u∗(t|t j) defined for t ∈ [t j, t j + N̄∆) is the optimal solution at t j, then u∗(t|t j) for t ∈ [t j+1, t j+1 +

(N̄− 1)∆) is a feasible solution at t j+1. Using this argument recursively until the sampling time

t̄i+1 = t̂k +(i+ 1)∆E when the horizon is reinitialized to N̄ and then, repeating the arguments for

t̄i+1, it follows that the lower layer LEMPC is feasible.

Performance: At t̄i, the lower layer LEMPC computes an optimal input trajectory that satisfies

(by optimality):

∫ t̄i+1

t̄i
le(x∗(t|t̄i),u∗(t|t̄i)) dt ≤

∫ t̄i+1

t̄i
le(x∗E(t|t̂k),u∗E(t̄i|t̂k)) dt (4.73)

for all i ∈ {0, . . . ,NE−1} (recall, t̄i+1 = t̄i+ N̄∆). Owing to the shrinking horizon and the principle

of optimality, the closed-loop state and input trajectories are equal to the computed open-loop state

and input trajectories computed at t̄i and thus,

∫ t̄i+1

t̄i
le(x∗(t|t̄i),u∗(t|t̄i)) dt =

∫ t̄i+1

t̄i
le(x(t),u∗(t)) dt (4.74)

where x∗(·|t̄i) and u∗(·|t̄i) denote the optimal open-loop state and input trajectories computed at t̄i

and x and u∗ are the closed-loop state and input trajectories. Therefore, from Eqs. 4.73-4.74, the
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closed-loop performance over one operating period is bounded by:

∫ t̂k+1

t̂k
le(x(t),u∗(t)) dt =

NE−1

∑
i=0

∫ t̄i+1

t̄i
le(x(t),u∗(t|t̄i)) dt

≤
NE−1

∑
i=0

∫ t̄i+1

t̄i
le(x∗E(t|t̂k),u∗E(t|t̂k)) dt

=
∫ t̂k+1

t̂k
le(x∗E(t|t̂k),u∗E(t|t̂k)) dt . (4.75)

At t̂k, the upper layer LEMPC computes an optimal input trajectory. Owing to optimality, the

computed (open-loop) state and input trajectories of the upper layer LEMPC satisfies:

∫ t̂k+1

t̂k
le(x∗E(t|t̂k),u∗E(t|t̂k)) dt ≤

∫ t̂k+1

t̂k
le(z(t|t̂k),v(t|t̂k)) dt . (4.76)

From Eq. 4.75 and Eq. 4.76, the result of Eq. 4.72 follows.

The following theorem provides sufficient conditions such that the two-layer EMPC structure

maintains the closed-loop state inside the region Ωρ and the closed-loop economic performance

is at least as good as if the auxiliary LMPC was applied to the system of Eq. 4.65 over the entire

length of operation which may be finite or infinite.

Theorem 4.3. Consider the closed-loop system of Eq. 4.65 under the lower layer LEMPC of

Eq. 4.71. Let the terminal constraint of Eq. 4.71f computed from the upper layer LEMPC of

Eq. 4.70, which has a terminal constraint formulated from the auxiliary controller that satisfies

Assumption 4.3, and let the assumptions of Proposition 4.3 hold. If x(0) ∈Ωρ , then x(t) ∈Ωρ for

all t ≥ 0 and the following inequality holds for finite-time operation:

∫ T

0
le(x(t),u∗(t)) dt ≤

∫ T

0
le(z(t),v(t)) dt (4.77)

where T = KNE∆E and K is any strictly positive integer and x and u∗ are the closed-loop state and

input trajectory and z and v are the resulting state and input trajectory from the auxiliary controller

defined over the interval [0,T ] with initial condition z(0) = x(0) ∈ Ωρ . The following inequality
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holds for infinite-time operation:

limsup
K→∞

1
KNE∆E

∫ KNE ∆E

0
le(x(t),u∗(t)) dt ≤ le(x∗s ,u

∗
s ) . (4.78)

Proof. Applying the results of Proposition 4.3 recursively over K operating periods, recursive

feasibility of the optimization problems follows, and the closed-loop state is always bounded in

Ωρ if x(0) ∈Ωρ , and x(t̂k) = z(t̂k) for k = 1,2, . . . ,K. To show the result of Eq. 4.77, the length of

operation is divided into K operating periods and let T = KNE∆E :

∫ T

0
le(x(t),u∗(t)) dt =

∫ t̂1

0
le(x(t),u∗(t)) dt + · · ·+

∫ t̂K

t̂K−1

le(x(t),u∗(t)) dt (4.79)

where t̂K = T . By Proposition 4.3, the inequality of Eq. 4.72 holds over each operating window

when x(t̂k) = z(t̂k) for k = 1,2, . . . ,K and thus, the inequality of Eq. 4.77 follows.

Owing to the result of Eq. 4.77, the average finite-time economic cost is given by:

1
T

∫ T

0
le(x(t),u∗(t))dt ≥ 1

T

∫ T

0
le(z(t),v(t))dt (4.80)

for T = KNE∆E where K is any strictly positive integer. Recall, the economic cost function le is

continuous on the compact set Ωρ ×U and x(t),z(t) ∈ Ωρ and u∗(t),v(t) ∈ U for all t ≥ 0. Thus,

both integrals of Eq. 4.80 are bounded for any T > 0. Owing to the fact that the auxiliary controller

satisfies Assumption 4.3 and ∆∈ (0,∆∗], z and v asymptotically converge to the steady-state (x∗s ,u
∗
s )

(this follows from the inequality of Eq. 4.67).

Considering the limit of the right-hand side of Eq. 4.80 as T tends to infinity (or similarly,

as K tends to infinity), the limit exists and is equal to le(x∗s ,u
∗
s ) owing to the fact that z and v

asymptotically converge to optimal steady-state (x∗s ,u
∗
s ) while remaining bounded for all t ≥ 0. To

prove this limit, the definition of the limit is invoked in the sense that given any ε > 0, the existence
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of a T ∗ > 0 such that for all T > T ∗, the following holds:

∣∣∣∣ 1
T

∫ T

0
le(z(t),v(t)) dt− le(x∗s ,u

∗
s )

∣∣∣∣< ε (4.81)

needs to be established.

Define I(0,T ) as the following integral:

I(0,T ) :=
∫ T

0
le(z(t),v(t)) dt (4.82)

where the arguments of I represent the lower and upper limits of integration, respectively. Since

z(t) and v(t) converge to x∗s and u∗s , respectively, as t tends to infinity, i.e., le(z(t),v(t))→ le(x∗s ,u
∗
s )

as t tends to infinity. Furthermore, z(t) ∈ Ωρ and v(t) ∈ U for all t ≥ 0, so for every ε > 0, there

exists a T̃ > 0 such that

|le(z∗(t),v∗(t))− le(x∗s ,u
∗
s )|< ε/2 (4.83)

for t ≥ T̃ . For any T > T̃ :

|I(0,T )−T le(x∗s ,u
∗
s )|=

∣∣I(0, T̃ )+ I(T̃ ,T )−T le(x∗s ,u
∗
s )
∣∣

≤
∫ T̃

0
|le(z(t),v(t))− le(x∗s ,u

∗
s )| dt

+
∫ T

T̃
|le(z(t),v(t))− le(x∗s ,u

∗
s )| dt

≤ T̃ M̃+(T − T̃ )ε/2 (4.84)

where M̃ := supt∈[0,T̃ ] {|le(z(t),v(t))− le(x∗s ,u
∗
s )|}. For any T > T ∗ where T ∗ = 2T̃ (M̃− ε/2)/ε ,

the following inequality is satisfied:

|I(0,T )/T − le(x∗s ,u
∗
s )| ≤ (1− T̃/T )ε/2+ T̃ M̃/T < ε (4.85)

which proves that the asymptotic average economic cost under the auxiliary controller is le(x∗s ,u
∗
s ).
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Figure 4.14: Process flow diagram of the reactor and separator process network.

Considering the left hand side of Eq. 4.80, the limit as K → ∞ may not exist owing to the

possible time-varying system operation under the proposed two-layer LEMPC scheme. Therefore,

an upper bound on the asymptotic average performance under the LEMPC scheme is considered.

Since the limit superior is equal to the limit when the limit exists, the following is obtained:

limsup
K→∞

1
KNE∆E

∫ KNE ∆E

0
le(x(t),u∗(t)) dt

≤ limsup
K→∞

1
KNE∆E

∫ KNE ∆E

0
le(z(t),v(t)) dt = le(x∗s ,u

∗
s ) (4.86)

which is the desired result of Eq. 4.78.

Remark 4.5. The finite-time result of Theorem 4.3 may be extended to any T > 0 by, for instance,

adjusting NE and/or ∆E in the last operating window.

4.4.4 Application to Chemical Process Example

Consider a three vessel chemical process network consisting of two non-isothermal continuously

stirred tank reactors (CSTRs) in series followed by a flash tank separator. The process flow diagram

of the process network is shown in Fig. 4.14. In each of the reactors, an irreversible second-order

reaction of the form A→ B takes place in an inert solvent D (A is the reactant and B is the desired
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Table 4.4: Process parameters of the reactor and separator process network.

Symbol / Value Description

T10 = 300K Temp.: CSTR-1 inlet
T20 = 300K Temp.: CSTR-2 inlet
F10 = 5.0m3 h−1 Flow rate: CSTR-1 inlet
F20 = 5.0m3 h−1 Flow rate: CSTR-2 inlet
Fr = 3.0m3 h−1 Flow rate: SEP-1 vapor
Fp = 0.5m3 h−1 Flow rate: purge stream
V1 = 1.5m3 Volume: CSTR-1
V2 = 1.0m3 Volume: CSTR-2
V3 = 1.0m3 Volume: SEP-1
k0 = 3.0×106 m3 kmol−1 h−1 Pre-exponential factor
E = 3.0×104 kJ kmol−1 Activation energy
∆H =−5.0×103 kJ kmol−1 Heat of reaction
∆Hvap = 5.0kJ kmol−1 Heat of vaporization
Cp = 0.231kJ kg−1 K−1 Heat capacity
R = 8.314kJ kmol−1 K−1 Gas constant
ρL = 1000kg m−3 Density
αA = 5.0 Relative volatility: A
αB = 0.5 Relative volatility: B
αD = 1.0 Relative volatility: D
MWA = 18.0kg kmol−1 Molecular weight: A
MWB = 18.0kg kmol−1 Molecular weight: B
MWD = 40.0kg kmol−1 Molecular weight: D
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product). The bottom stream of the flash tank is the product stream of the process network. Part of

the overhead vapor stream from the flash tank is purged from the process, while, the remainder is

fully condensed and recycled back to the first reactor. Each of the vessels have a heating/cooling

jacket to supply/remove heat from the liquid contents of the vessel. The following indices are

used to refer to each vessel: i = 1 denotes CSTR-1, i = 2 denotes CSTR-2, and i = 3 denotes

SEP-1. The heat rate supplied/removed from the ith vessel is Qi, i = 1,2,3. Furthermore, each

reactor is fed with fresh feedstock containing A in the solvent D with concentration CAi0, volumetric

flow rate Fi0, and constant temperature Ti0 where i = 1,2. Applying first principles and standard

modeling assumptions, a dynamic model of the reactor-separator process network may be obtained

(neglecting the dynamics of the condenser) and is given by the following ODEs (see Table 4.4 for

variable definitions and values):

dT1

dt
=

F10

V1
(T10−T1)+

Fr−Fp

V1
(T3−T1)

− ∆Hk0

ρLCp
e−E/RT1C2

A1 +
Q1

ρLCpV1
(4.87a)

dCA1

dt
=

F10

V1
(CA10−CA1)+

Fr−Fp

V1
(CAr−CA1)− k0e−E/RT1C2

A1 (4.87b)

dCB1

dt
=−F10

V1
CB1 +

Fr−Fp

V1
(CBr−CB1)+ k0e−E/RT1C2

A1 (4.87c)

dT2

dt
=

F20

V2
(T20−T2)+

F1

V2
(T1−T2)

− ∆Hk0

ρLCp
e−E/RT2C2

A2 +
Q2

ρLCpV2
(4.87d)

dCA2

dt
=

F20

V2
(CA20−CA2)+

F1

V2
(CA1−CA2)− k0e−E/RT2C2

A2 (4.87e)

dCB2

dt
=−F20

V2
CB2 +

F1

V2
(CB1−CB2)+ k0e−E/RT2C2

A2 (4.87f)

dT3

dt
=

F2

V3
(T2−T3)−

∆HvapFr

ρLCpV3
+

Q3

ρLCpV3
(4.87g)

dCA3

dt
=

F2

V3
CA2−

Fr

V3
CAr−

F3

V3
CA3 (4.87h)

dCB3

dt
=

F2

V3
CB2−

Fr

V3
CBr−

F3

V3
CB3 (4.87i)
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and the following algebraic equations:

K =
1

ρL
∑

i∈{A,B,D}
αiCi3MWi, (4.88a)

Cir = αiCi3/K, i = A, B, D, (4.88b)

F1 = Fr−Fp +F10, F2 = F1 +F20, (4.88c)

F3 = F2−Fr . (4.88d)

where Cir is the concentration of the ith component (i = A,B,D) in the flash separator overhead,

purge, and recycle streams. The state variables of the process network include the temperatures

and concentrations of A and B in each of the vessels:

xT =

[
T1 CA1 CB1 T2 CA2 CB2 T3 CA3 CB3

]
.

The manipulated inputs are the heat inputs to the three vessels, Q1, Q2, and Q3, and the concentra-

tion of A in the inlet streams, CA10 and CA20:

uT =

[
Q1 Q2 Q3 CA10 CA20

]
.

The control objective is to regulate the process in an economically optimal time-varying fashion

to maximize the average amount of product B in the product stream F3. Continuously feeding in

the maximum concentration of A into each reactor maximizes the production of B owing to the

second-order reaction. However, this may not be practical from an economic stand-point. Instead,

the average amount of reactant material that may be fed to each reactor is fixed motivating the use

of EMPC to control the process network. In addition, supplying/removing heat to/from the vessels

is considered undesirable. To accomplish these economic considerations, the two-layer LEMPC

structure is applied and the upper and lower layer LEMPCs are formulated with the following
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economic stage cost function and constraint, respectively:

le(x,u) =−F3CB3 +A1Q2
1 +A2Q2

2 +A3Q2
3 (4.89)

1
t ′

∫ t̂k+1

t̂k
(CA10 +CA20) dt = 8.0kmol m3 (4.90)

where t ′ = 1.0h is the operating period length and Ai = 10−6, i = 1,2,3 are the penalty weights

for using energy. The value for the heat rate penalty has been chosen to account for the different

numerical range of the heat rate and the first term in the economic cost (molar flow rate of B in

the product stream). The economically optimal steady-state with respect to the economic cost

function of Eq. 4.89 is open-loop asymptotically stable and is the only steady-state in the operating

region of interest. Therefore, an explicit characterization of Ωρ is not needed for the LEMPC

implementation.

The two-layer LEMPC structure, formulated with the cost function and reactant material con-

straint of Eqs. 4.89-4.90, respectively, is applied to the reactor-separator chemical process net-

work. To numerically integrate the dynamic model of Eq. 4.87, explicit Euler method is used with

an integration step of 1.0×10−3 h. The auxiliary controller is formulated as an auxiliary LMPC.

The prediction horizon and sampling period of the auxiliary LMPC and upper layer LEMPC are

NE = 10 and ∆E = 0.1h, respectively, while, the lower layer LEMPC is formulated with a predic-

tion horizon of N̄ = 2 and sampling period ∆ = 0.05h. Since the upper layer prediction horizon

length is one hour, the reactant material constraint is enforced over each one hour operating pe-

riod. However, the lower layer LEMPC prediction horizon does not cover the entire one hour

operating window. Instead of using the material constraint of Eq. 4.90 directly in the lower layer

LEMPC, a constraint is formulated on the basis of the upper layer LEMPC solution. Namely, over

the prediction horizon of the lower layer LEMPC, the lower layer LEMPC solution must use the

same amount of reactant material as that of the upper layer LEMPC solution over the same time so

that the material constraint is satisfied over the operating window. To solve the optimization prob-

lems, Ipopt [187] was used and the simulations were completed on a desktop PC with an Intel R©
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Figure 4.15: The closed-loop economic performance (JE) with the length of prediction horizon

(NE) for the reactor-separator process under the upper layer LEMPC with a terminal constraint

computed from an auxiliary LMPC.

CoreTM 2 Quad 2.66 GHz processor and a Linux operating system.

Effect of Horizon Length

In the first set of simulations, the length of the prediction horizon on closed-loop performance is

considered. The closed-loop economic performance over 4.0 h is defined by the total economic

cost given by:

JE =
∫ 4.0

0

(
F3CB3−A1Q2

1−A2Q2
2−A3Q2

3
)

dt . (4.91)

In these simulations, only the upper layer LEMPC, formulated with a terminal constraint computed

from the auxiliary LMPC, is considered. Fig. 4.15 depicts the observed trend. As the prediction

horizon increases, the closed-loop economic performance increases, which motivates the use of a

long prediction horizon in EMPC.
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Figure 4.16: Closed-loop state trajectories of the reactor-separator process network with the upper

layer LEMPC formulated with a terminal constraint computed by the auxiliary LMPC.
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Figure 4.17: Input trajectories of the reactor-separator process network computed by the upper

layer LEMPC formulated with a terminal constraint computed by the auxiliary LMPC.
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Effect of the Terminal Constraint

Since for any optimization problem, the addition of constraints may restrict the feasible region

of the optimization problem, a reasonable consideration is the effect of the terminal constraint on

closed-loop performance. To address this issue, consider the closed-loop system under the upper

layer LEMPC formulated with a terminal equality constraint computed by the auxiliary LMPC and

under an LEMPC (mode 1 operation only) formulated with the economic cost of Eq. 4.89 and the

material constraint of Eq. 4.90, but without terminal constraints. Both use a prediction horizon of

NE = 10 and a sampling period of ∆ = 0.01h. Figs. 4.16-4.17 display the closed-loop state and

input trajectories of the reactor-separator process network with the upper layer LEMPC; while,

Figs. 4.18-4.19 display the closed-loop trajectories under LEMPC with no terminal constraints.

The reactor-separator process network under the LEMPC with the terminal constraint evolves

in a smaller operating range (370 K to 430 K) than the evolution under the LEMPC without the

terminal constraint (325 K to 440 K). The total economic cost with the upper layer LEMPC (based

on the auxiliary LMPC) is 151.2, while the total economic cost with LEMPC formulated without

terminal constraints is 159.3. Clearly, the terminal constraint imposed in the LEMPC problem

affects the achievable performance. However, the key advantage of the addition of this constraint

is that for any system and any prediction horizon the closed-loop economic performance under the

two-layer LEMPC structure is guaranteed to be at least as good as a stabilizing controller for both

finite-time and infinite-time operating intervals.

Two-layer LEMPC Structure

The two-layer LEMPC structure with a terminal constraint computed from an auxiliary LMPC

is applied to the reactor-separator process network. Several closed-loop simulations over a 4.0 h

length of operation were completed. The closed-loop state and input trajectories of one of the sim-

ulations are shown in Figs. 4.20-4.21, respectively and demonstrate time-varying operation of the

process network. The economic performance (Eq. 4.91) is compared to the economic performance

with the auxiliary LMPC (Table 4.5). From this comparison, an average of 10 percent benefit
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Figure 4.18: Closed-loop state trajectories of the reactor-separator process network with an

LEMPC formulated without terminal constraints.
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Figure 4.19: Input trajectories of the reactor-separator process network computed by an LEMPC

formulated without terminal constraints.

190



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

320.0

360.0

400.0

440.0

T [K
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.00

0.25

0.50

0.75

1.00

C
A

[k
m
ol
/m

3
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

2.0

4.0

6.0

8.0

t [h]

C
B

[k
m
ol
/m

3
]

 

 

CSTR-1 CSTR-2 SEP-1

Figure 4.20: Closed-loop state trajectories of the reactor-separator process network with the two-

layer LEMPC structure.
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Figure 4.21: Input trajectories of the reactor-separator process network computed by the two-layer

LEMPC structure.
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Table 4.5: Total economic cost and average computational time in seconds per sampling period

for several 4.0 h simulations with: (a) the auxiliary LMPC, (b) the one-layer LEMPC and (c) the

two-layer LEMPC structure.

LMPC One-layer EMPC Two-layer EMPC

Sim. Cost CPU Time Cost CPU Time Cost

1 140.1 5.68 151.5 1.10 151.1
2 150.3 4.24 153.9 1.05 153.4
3 142.0 4.65 152.4 0.98 152.0
4 130.7 6.45 152.3 1.24 151.9
5 126.0 4.67 151.9 1.11 151.5
6 140.2 4.63 151.6 1.33 151.2
7 144.6 4.60 150.6 1.08 150.2
8 138.1 5.01 152.5 1.06 152.1

with the two-layer LEMPC structure was realized over operation under the auxiliary LMPC, i.e.,

resulting in steady-state operation.

Additionally, a comparison between the computational time required to solve the two-layer

LEMPC system and that of a one-layer LEMPC system was completed. The one-layer LEMPC

system consists of the upper layer LEMPC with a terminal constraint computed from the auxiliary

LMPC. In the one-layer LEMPC system, the LEMPC applies its computed control actions directly

to the process network, and there is no lower layer LEMPC. To make the comparison consistent,

the one layer LEMPC is implemented with a prediction horizon of NE = 20 and a sampling period

of ∆E = 0.05h, which are the same sampling period and horizon used in the lower layer LEMPC

of the two-layer LEMPC system. Since the upper and lower layer controllers are sequentially

computed, the computational time at the beginning of each operating window is measured as the

sum of the computational time to solve the auxiliary LMPC, the upper layer LEMPC, and the

lower layer LEMPC for the two-layer LEMPC system and as the sum of the time to solve the

auxiliary LMPC and the LEMPC for the one-layer LEMPC system. From Table 4.5, the one-layer

LEMPC achieves slightly better closed-loop economic performance because the one-layer LEMPC

uses a smaller sampling period than the upper layer LEMPC in the two-layer LEMPC structure.
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However, the computational time required to solve the one-layer LEMPC structure is greater than

the computational time of the two-layer LEMPC structure. The two-layer LEMPC structure is able

to reduce the computational time by about 75 percent on average.

Handling Disturbances

While the two-layer EMPC has been designed for nominal operation to guarantee finite-time and

infinite-time closed-loop performance as is at least as good as that achieved under a stabilizing

controller, it may be applied to the process model in the presence of disturbances, plant/model

mismatch, and other uncertainties with some modifications to improve recursive feasibility of the

optimization problems and to ensure greater robustness of the controller to uncertainties. For in-

stance, if the disturbances are relatively small, it may be sufficient to relax the terminal constraints

or treat them as soft constraints. If one were to simply relax the terminal constraints, e.g., use

a terminal region instead of a point-wise terminal constraint, it is difficult to guarantee recursive

feasibility of the optimization problem. Another potential methodology is to use the terminal state

constraints in the cost function instead of imposing them as constraints. For example, use a cost

functional in the lower layer LEMPC of the form:

α

N

(∫ t j+N

t j

le(x̃(t),u(t)) dt
)
+β

∣∣x̃(t j+N)− x∗E(t j|tk)
∣∣
Q (4.92)

where α and β are tuning parameters and Q is a positive definite weighting matrix. The cost

functional works to optimize the economic performance while ensuring the predicted evolution

is near the terminal state through the quadratic terminal cost. The resulting lower layer LEMPC

has the same stability and robustness to bounded disturbances properties as the LEMPC (without

terminal constraints), i.e., recursive feasibility and boundedness of the closed-loop state for all

initial states starting in Ωρ . While no provable performance guarantees may be made on closed-

loop performance in the presence of disturbances, the closed-loop performance benefit may be

evaluated through simulations.
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Figure 4.22: Closed-loop state trajectories of the reactor-separator process network with additivie

process noise under the two-layer LEMPC structure.
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Figure 4.23: Input trajectories of the reactor-separator process network with additivie process noise

computed by the two-layer LEMPC structure.
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The two-layer LEMPC with the lower layer LEMPC designed with the cost described above

in Eq. 4.92 and without terminal constraints is applied to the example with significant process

noise added. The noise is modeled as bounded Gaussian white noise and is introduced additively

to each model state. The closed-loop state and input trajectories are shown in Figs. 4.22-4.23,

respectively. The closed-loop system performance under the two-layer LEMPC is compared to

the system under auxiliary LMPC with the same realization of the process noise. The LMPC is

formulated with a prediction horizon of N = 2 and sampling period ∆ = 0.05h which is the same

horizon and sampling period as the lower layer LEMPC. The closed-loop performance under the

two-layer LEMPC is 2.6 percent better than that under the LMPC for this particular realization of

the process noise.

4.5 Conclusions

In this chapter, several computationally-efficient two-layer frameworks for integrating dynamic

economic optimization and control of nonlinear systems were presented. In the upper layer, EMPC

is used to compute economically optimal time-varying operating trajectories. Explicit control-

oriented constraints were employed in the upper layer EMPC. In the lower layer, an MPC scheme

is used to force the system to track the optimal time-varying trajectory computed by the upper

layer EMPC. The properties, i.e., stability, performance, and robustness, of closed-loop systems

under the two-layer EMPC methods were rigorously analyzed. The two-layer EMPC methods

were applied to chemical process examples to demonstrate the closed-loop properties. In all the

examples considered, closed-loop stability was achieved, the closed-loop economic performance

under the two-layer EMPC framework was better than that achieved under conventional approaches

to optimization and control, and the total on-line computational time was better with the two-layer

EMPC methods compared to that under one-layer EMPC methods.
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Chapter 5

Real-Time Economic Model Predictive

Control of Nonlinear Process Systems

5.1 Introduction

While the two-layer EMPC structures of Chapter 4 were shown to successfully reduce the on-

line computation time relative to that required for a centralized, one-layer EMPC scheme, EMPC

optimization problems are nonlinear and non-convex because a nonlinear dynamic model is em-

bedded in the optimization problem, which manifests itself as nonlinear equality constraints in the

optimization problem. Although many advances have been made in solving such problems and

modern computers may perform complex calculations in an efficient manner, it is possible that

computation delay will occur that may approach or exceed the sampling time. If the computational

delay is significant relative to the sampling period, closed-loop performance degradation and/or

closed-loop instability may occur.

Some of the early work addressing computational delay within tracking MPC includes de-

veloping an implementation strategy of solving the MPC problem intermittently to account for

the computational delay [162] and predicting the future state after an assumed constant computa-

tional delay to compute an input trajectory to be implemented after the optimization problem is
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solved [31, 64]. Nominal feasibility and stability has been proved for tracking MPC subject to

computational delay formulated with a positive definite stage cost (with respect to the set-point or

steady-state), a terminal cost, and a terminal region constraint [31, 64]. Another option to handle

computational delay would be to force the optimization solver to terminate after a pre-specified

time to ensure that the solver returns a solution by the time needed to ensure closed-loop stabil-

ity. This concept is typically referred to as suboptimal MPC [164] because the returned solution

will likely be suboptimal. It was shown that when the returned solution of the MPC with a ter-

minal constraint is any feasible solution, the origin of the closed-loop system is asymptotically

stable [164].

More recently, more advanced strategies have been proposed. Particularly, nonlinear program-

ming (NLP) sensitivity analysis has demonstrated to be a useful tool to handle computational delay

by splitting the MPC optimization problem into two parts: (1) solving a computationally intensive

nonlinear optimization problem which is completed before state feedback is received and (2) per-

forming a fast on-line update of the precomputed input trajectories using NLP sensitivities (when

the active-set does not change) after the current state measurement is obtained, e.g., [192, 200]; see,

also, the review [21]. If the active-set changes, various methods have been proposed to cope with

changing active-sets, e.g., solving a quadratic program like that proposed in [65]. In this direction,

the advanced-step MPC [200] has been proposed which computes the solution of the optimiza-

tion problem one sampling period in advance using a prediction of the state at the next sampling

period. At the next sampling period (when the precomputed control action will be applied), the

optimal solution is updated employing NLP sensitivities after state feedback is received. The

advanced-step (tracking) MPC has been extended to handle computation spanning multiple sam-

pling periods [198] and to EMPC [91]. Another related approach involves a hierarchical control

structure [193, 191]. The upper layer is the full optimization problem which is solved infrequently.

In the lower layer, NLP sensitivities are used to update the control actions at each sampling pe-

riod that are applied to the system. The aforementioned schemes solve an optimization problem

to (local) optimality using a prediction of the state at the sampling time the control action is to be

197



applied to the system.

As another way, the so-called real-time nonlinear MPC (NMPC) scheme [40] only takes one

Newton-step of the NLP solver instead of solving the optimization problem to optimality at each

sampling period. To accomplish this, the structure of the resulting dynamic optimization program,

which is solved using a direct multiple shooting method, is exploited to divide the program into a

preparation phase and a feedback phase. In the preparation phase, the computationally expensive

calculations are completed before the state feedback is received. In the feedback phase, a state

measurement is received and the remaining fast computations of the Newton-step are completed

on-line to compute the control action to apply to the system. The advantage of such a strategy is

that the on-line computation after a feedback measurement is obtained is insignificant compared to

solving the optimization problem to optimality. The disadvantage is one would expect to sacrifice

at least some closed-loop performance as a result of not solving the problem to optimality.

Clearly, the available computing power has significantly increased since the early work on

computational delay of MPC and if this trend continues, one may expect a significant increase

in computing power over the next decade. Moreover, more efficient solution strategies for non-

linear dynamic optimization problems continue to be developed (see, for example, the overview

paper [41] and the book [20] for results in this direction). However, the ability to guarantee that

a solver will converge within the time needed for closed-loop stability remains an open problem

especially for nonlinear, non-convex dynamic optimization problems and systems with fast dy-

namics. Additionally, EMPC is generally more computationally intensive compared to tracking

MPC given the additional possible nonlinearities in the stage cost of EMPC.

In this chapter, a real-time implementation strategy for LEMPC, called real-time LEMPC, is

developed to account for possibly unknown and time-varying computational delay. The underlying

implementation strategy is inspired by event-triggered control concepts [181] since the LEMPC is

only recomputed when stability conditions dictate that it must recompute a new input trajectory.

If the precomputed control action satisfies the stability conditions, the control action is applied to

the closed-loop system. If not, a back-up explicit controller, which has negligible computation
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time, is used to compute the control action for the system at the current sampling instance. This

type of implementation strategy has the advantage of being easy to implement and the strategy

avoids potential complications of active-set changes because the re-computation condition is only

formulated to account for closed-loop stability considerations. Closed-loop stability under the

real-time LEMPC scheme is analyzed and specific stability conditions are derived. The real-time

LEMPC scheme is applied to an illustrative chemical process network to demonstrate closed-loop

stability under the control scheme. The example also demonstrates that real-time LEMPC improves

closed-loop economic performance compared to operation at the economically optimal steady-

state. The results of this chapter were first presented in [54, 53].

5.2 Real-time Economic Model Predictive Control

In this section, the formulation and implementation strategy of the real-time LEMPC is presented

along with sufficient conditions such that the closed-loop system under the real-time LEMPC ren-

ders the closed-loop state trajectory bounded in Ωρ . For the reader’s convenience, the class of

systems considered and the relevant assumptions are stated in the next subsection.

5.2.1 Class of Systems

The class of nonlinear systems considered has the following state-space form:

ẋ(t) = f (x(t),u(t),w(t)) (5.1)

where x(t)∈Rn is the state vector, u(t)∈U⊂Rm is the manipulated input vector, w(t)∈W⊂Rl is

the disturbance vector, and f (·, ·, ·) is a locally Lipschitz vector function. The input and disturbance
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vectors are bounded in the following sets:

U := {u ∈ Rm : umin,i ≤ ui ≤ umax,i, i = 1, . . . , m}, (5.2)

W := {w ∈ Rl : |w| ≤ θ} , (5.3)

where θ > 0 bounds the norm of the disturbance vector. Without loss of generality, the origin of

the unforced system is assumed to be the equilibrium point of Eq. 5.1, i.e., f (0,0,0) = 0.

The following stabilizability assumption further qualifies the class of systems considered and

is similar to the assumption that the pair (A,B) is stabilizable in linear systems.

Assumption 5.1. There exists a feedback controller h(x) ∈U with h(0) = 0 that renders the origin

of the closed-loop system of Eq. 5.1 with u(t) = h(x(t)) and w ≡ 0 asymptotically stable for all

x ∈ D0 where D0 is an open neighborhood of the origin.

Applying converse theorems [123, 100], Assumption 5.1 implies that there exists a continu-

ously differentiable Lyapunov function, V : D→ Rn, for the closed-loop system of Eq. 5.1 with

u = h(x) ∈ U and w≡ 0 such that the following inequalities hold:

α1(|x|)≤V (x)≤ α2(|x|), (5.4a)

∂V (x)
∂x

f (x,h(x),0)≤−α3(|x|), (5.4b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (5.4c)

for all x ∈ D where D is an open neighborhood of the origin and αi, i = 1, 2, 3, 4 are functions

of class K . A level set of the Lyapunov function Ωρ , which defines a subset of D (ideally the

largest subset contained in D), is taken to be the stability region of the closed-loop system under

the controller h(x).

Measurements of the state vector of Eq. 5.1 are assumed to be available synchronously at

sampling instances denoted as tk := k∆ where ∆ > 0 is the sampling period and k = 0, 1, . . ..
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As described below, the EMPC computes sample-and-hold control actions and thus, the resulting

closed-loop system, which consists of the continuous-time system of Eq. 5.1 under a sample-and-

hold controller, is a sampled-data system. If the controller h(x) is implemented in a sample-and-

hold fashion, it possesses a certain degree of robustness to uncertainty in the sense that the origin

of the closed-loop system is rendered practically stable when a sufficiently small sampling period

is used and the bound θ on the disturbance vector is sufficiently small; see, for example, [133] for

more discussion on this point.

5.2.2 Real-time LEMPC Formulation

The overall objective of the real-time LEMPC is to account for the real-time computation time

required to solve the optimization problem for a (local) solution. Particularly, the case when the

average computation time, which is denoted as t̄s, is greater than one sampling period is consid-

ered, i.e., Ns = dt̄s/∆e ≥ 1 where Ns is the average number of sampling periods required to solve

the optimization problem. During the time the solver is solving the optimization problem, the

control actions computed at a previous sampling period are applied to the system if there are pre-

computed control actions available and if the stability conditions described below are satisfied. If

no precomputed control actions are available or the stability conditions are violated, the explicit

controller h(x) is used to compute and apply control actions during the time that the real-time

LEMPC is computing. In this fashion, the LEMPC is used to compute control actions to improve

the economic performance when possible.

Specifically, when the closed-loop state is in the subset of the stability region Ωρe ⊂ Ωρ , the

control actions of the precomputed LEMPC problem may be applied to the system. When the state

is outside the subset, the explicit controller is used because maintaining the closed-loop state in Ωρ

is required for guaranteeing the existence of a feasible input trajectory that maintains closed-loop

stability (in the sense that the closed-loop state trajectory is always bounded in Ωρ ). To force the

state back to the subset of the stability region Ωρe , the Lyapunov function must decrease over each

sampling period in the presence of uncertainty. This requires the incorporation of feedback, i.e.,
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recomputing the control action at each sampling period using a measurement of the current state.

Owing to the computational burden of solving the LEMPC optimization problem, it may not be

possible to achieve convergence of the optimization solver within one sampling period. Hence, the

controller h(x) is used when the state is outside of Ωρe .

For real-time implementation, only mode 1 of the LEMPC of Eq. 3.3 is used and the LEMPC is

solved infrequently (not every sampling period) which will be made clear when the implementation

strategy is discussed. The real-time LEMPC is formulated as follows:

min
u∈S(∆)

∫ t j+N

t j+1

le(x̃(t),u(t)) dt (5.5a)

s.t. ˙̃x(t) = f (x̃(t),u(t),0) (5.5b)

x̃(t j) = x(t j) (5.5c)

u(t) = ũ(t j), ∀ t ∈ [t j, t j+1) (5.5d)

u(t) ∈ U, ∀ t ∈ [t j+1, t j+N) (5.5e)

V (x̃(t))≤ ρe, ∀ t ∈ [t j+1, t j+N) (5.5f)

where the notation and constraints are similar to that used in LEMPC of Eq. 3.3 except for an ad-

ditional constraint of Eq. 5.5d. This additional constraint is used because a predetermined control

action is applied to the system over the first sampling period of the prediction horizon. The prede-

termined control action is either the control action computed by the LEMPC at a previous sampling

period or the control action from the explicit controller h(x), i.e., the input trajectory over the first

sampling period of the prediction horizon is not a degree of freedom in the optimization problem.

The LEMPC of Eq. 5.5 may dictate a time-varying operating policy to optimize the economic cost

as long as the predicted evolution is maintained in the level set Ωρe ⊂Ωρ . The notation t j denotes

the sampling time at which the LEMPC problem is initialized with a state measurement and the

solver begins solving the resulting optimization problem. The optimal solution of the LEMPC

is denoted as u∗(t|t j) and is defined for t ∈ [t j+1, t j+N). Feasibility of the optimization problem

is considered in Section 5.2.4 below. However, it is important to point out that x(t j) ∈ Ωρe and
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Receive x(tk)

x(tk) ∈ Ωρe ,
s2(k) = 1,

x̂(tk+1) ∈ Ωρe

Apply u(t) =
u∗(tk|tj) for
t ∈ [tk, tk+1)

Apply u(t) =
h(x(tk)) for
t ∈ [tk, tk+1)

Yes No

Figure 5.1: Implementation strategy for determining the control action at each sampling period.
The notation u∗(tk|t j) is used to denote the control action to be applied over the sampling period tk to tk+1

from the precomputed input solution of the real-time LEMPC of Eq. 5.5 solved at time step t j.

x̃(t j+1) ∈Ωρe owing to the real-time implementation strategy, and thus, the real-time LEMPC has

a feasible solution (refer to the proof of Theorem 5.1).

5.2.3 Implementation Strategy

Before the implementation strategy is presented, the following discrete-time signals are defined to

simplify the presentation of the implementation strategy. The first signal is used to keep track of

whether the solver is currently solving an LEMPC optimization problem:

s1(k) =


1, solving the LEMPC

0, not solving the LEMPC
(5.6)

where k denotes the k-th sampling period, i.e., tk. The second signal keeps track if there is a

previously computed input trajectory currently stored in memory:

s2(k) =


1, previous input solution stored

0, no previous input solution stored
(5.7)

At each sampling period, a state measurement x(tk) is received from the sensors and three
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conditions are used to determine if a precomputed control action from LEMPC or if the control

action from the explicit controller h(x) is applied to the system. If the following three conditions are

satisfied the control action applied to the system in a sample-and-hold fashion is the precomputed

control action from the LEMPC: (1) the current state must be in Ωρe (x(tk) ∈ Ωρe), (2) there must

be a precomputed control action available for the sampling instance tk, i.e., s2(k) = 1, and (3) the

predicted state under the precomputed control action must satisfy: x̂(tk+1) ∈ Ωρe where x̂(tk+1)

denotes the predicted state. To obtain a prediction of the state at the next sampling period, the

nominal model of Eq. 5.1 with w ≡ 0 is recursively solved with the input u(t) = u∗(tk|t j) for

t ∈ [tk, tk+1) (the on-line computation time to accomplish this step is assumed to be negligible).

The control action decision at a given sampling instance tk is summarized by the flow chart of

Fig. 5.1.

A series of decisions are made at each sampling period to determine if the LEMPC should

begin resolving, continue solving, or terminate solving the optimization problem and is illustrated

in the flow chart of Fig. 5.2. The computation strategy is summarized in the following algorithm.

To initialize the algorithm at t0 = 0, get the state measurement x(0) ∈ Ωρ . If x(0) ∈ Ωρe , begin

solving the LEMPC problem with j = 0 and x(0). Set s1(0) = 1, s2(0) = 0, and ũ(t j) = h(x(0)).

Go to Step 8. Else, set s1(0) = s1(1) = s2(0) = s2(1) = 0 and go to Step 9.

1. Receive a measurement of the current state x(tk) from the sensors; go to Step 2.

2. If x(tk) ∈Ωρe , then go to Step 2.1. Else, go to Step 2.2.

2.1 If s2(k) = 1, go to Step 3. Else, go to Step 6.

2.2 Terminate solver if s1(k) = 1, set s1(k+1) = 0 and s2(k+1) = 0, and go to Step 9.

3. If x̂(tk+1) ∈Ωρe , go to Step 4. Else, set s2(k) = 0 and ũ(t j) = h(x(tk)); go to Step 7.

4. If s1(k) = 1, go to Step 8. Else, go to Step 5.

5. If tk+Ns < t j+N , set s1(k + 1) = 0 and s2(k + 1) = 1, and go to Step 9. Else, set ũ(t j) =

u∗(tk|t j); go to Step 7.
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x(tk), s1(k), s2(k)

x(tk) ∈ Ωρe

s2(k) = 1

s1(k) = 1

x̂(tk+1) ∈ Ωρe

s1(k) = 1

tk+Ns < tj+N

ũ(tj) := h(x(tk)) ũ(tj) := u∗(tk|tj)

Begin solving EMPC
with x(tk) and j = k

Converge
before tk+1

s2(k) = 1,
tk+1 < tj+N

s1(k + 1) = 0,
s2(k + 1) = 1

s1(k + 1) = 1,
s2(k + 1) = 1

s1(k + 1) = 1,
s2(k + 1) = 0

Terminate Solver
s1(k + 1) = 0,
s2(k + 1) = 0

Yes

No

YesNo

Yes

No

No

ũ(tj)

No

ũ(tj)

No; set s2(k) = 0

Yes

Yes

Yes; save u∗(t|tj)No

YesNo

Yes

Figure 5.2: Computation strategy for the real-time LEMPC scheme.
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6. If s1(k) = 1, go to Step 8. Else, set ũ(t j) = h(x(tk)); go to Step 7.

7. If the solver is currently solving a problem (s1(k) = 1), terminate the solver. Begin solving

the LEMPC problem with j = k and x(t j) = x(tk). Go to Step 8.

8. If the solver converges before tk+1, then go to Step 8.1. Else, go to Step 8.2.

8.1 Save u∗(t|t j) for t ∈ [tk, t j+N). Set s1(k+1) = 0 and s2(k+1) = 1. Go to Step 9.

8.2 Set s1(k+ 1) = 1. If s2(k) = 1 and tk+1 < t j+N , the go to Step 8.2.1. Else, go to Step

8.2.2.

8.2.1 Set s2(k+1) = 1. Go to Step 9.

8.2.2 Set s2(k+1) = 0. Go to Step 9.

9. Go to Step 1 (k← k+1).

In practice, Ns may be unknown or possibly time varying. If Ns is unknown, then one may

specify the number of sampling periods that the real-time LEMPC may apply a precomputed input

trajectory before it must start re-computing a new input trajectory as a design parameter. This

condition may be used instead of Step 5 of the algorithm above. Additionally, it may be beneficial

from a closed-loop performance perspective to force the LEMPC to recompute its solution more

often than prescribed by the implementation strategy described above.

A possible input trajectory resulting under the real-time LEMPC scheme is given in Fig. 5.3.

In the illustration, the solver begins to solve an LEMPC optimization problem at t0 and returns a

solution at t5. It is assumed that the closed-loop state is maintained in Ωρe from t0 to t5 so that the

solver is not terminated. Over the time the solver is solving, the explicit controller is applied to the

system since a precomputed LEMPC input trajectory is not available. The precomputed LEMPC

solution is applied from t5 to t13. At t10, the solver begins to solve a new LEMPC problem. The

solver returns a solution at t13. At t16, the stability conditions are not satisfied for the precomputed

LEMPC input trajectory, so the explicit controller computes a control action and applies it to the

system.
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Figure 5.3: An illustration of an example input trajectory resulting under the real-time LEMPC

scheme.
The triangles are used to denote the time instances when the LEMPC begins to solve the optimization
problem, while the circles are used to denote when the solver converges to a solution. The solid black
trajectory represents the control actions computed by the LEMPC which are applied to the system, the
dotted trajectory represents the computed input trajectory by the LEMPC (not applied to the system), and
the solid gray trajectory is the input trajectory of the explicit controller which is applied to the system.

5.2.4 Stability Analysis

In this section, sufficient conditions such that the closed-loop state under the real-time LEMPC

is bounded in Ωρ are presented which make use of the following properties. Since f (·, ·, ·) is a

locally Lipschitz vector function and the Lyapunov function V (·) is a continuously differentiable

function, there exist positive constants Lx, Lw, L′x, and L′w such that the following bounds hold:

| f (xa,u,w)− f (xb,u,0)| ≤ Lx |xa− xb|+Lw |w| (5.8)∣∣∣∣∂V (xa)

∂x
f (xa,u,w)−

∂V (xb)

∂x
f (xb,u,0)

∣∣∣∣≤ L′x |xa− xb|+L′w |w| (5.9)

for all xa, xb ∈Ωρ , u ∈ U and w ∈W. Furthermore, there exists M > 0 such that

| f (x,u,w)| ≤M (5.10)

for all x∈Ωρ , u∈U and w∈W owing to the compactness of the sets Ωρ , U, and W and the locally

Lipschitz property of the vector field.

The following proposition bounds the difference between the actual state trajectory of the sys-
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tem of Eq. 5.1 (w 6≡ 0) and the nominal state trajectory (w≡ 0).

Proposition 5.1 (c.f. Proposition 3.1). Consider the state trajectories x(t) and x̂(t) with dynamics:

ẋ(t) = f (x(t),u(t),w(t)), (5.11)

˙̂x(t) = f (x̂(t),u(t),0), (5.12)

input trajectory u(t) ∈ U, w(t) ∈W, and initial condition x(0) = x̂(0) ∈Ωρ . If x(t), x̂(t) ∈Ωρ for

all t ∈ [0,T ] where T ≥ 0, then the difference between x(T ) and x̂(T ) is bounded by the function

γe(·):

|x(T )− x̂(T )| ≤ γe(T ) :=
Lwθ

Lx

(
eLxT −1

)
. (5.13)

Owing to the compactness of the set Ωρ , the difference in Lyapunov function values for any two

points in Ωρ may be bounded by a quadratic function which is stated in the following proposition.

Proposition 5.2 (c.f. Proposition 3.2). Consider the Lyapunov function V (·) of the closed-loop

system of Eq. 5.1 under the controller h(x). There exists a scalar-valued quadratic function fV (·)

such that

V (xa)≤V (xb)+ fV (|xa− xb|) (5.14)

for all xa, xb ∈Ωρ where

fV (s) := α4(α
−1
1 (ρ))s+β s2 (5.15)

and β is a positive constant.

Theorem 5.1 below provides sufficient conditions such that the real-time LEMPC renders the

closed-loop state trajectory bounded in Ωρ for all times. The conditions such that the closed-loop

state trajectory is maintained in Ωρ are independent of the computation time required to solve the

LEMPC optimization problem. From the perspective of closed-loop stability, computational delay

of arbitrary size may be handled with the real-time LEMPC methodology. In the case where the

computational delay is always greater than the prediction horizon, the real-time LEMPC scheme
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would return the input trajectory under the explicit controller applied in a sample-and-hold fashion.

Theorem 5.1. Consider the system of Eq. 5.1 in closed-loop under the real-time LEMPC of Eq. 5.5

based on a controller h(x) that satisfies the conditions of Eq. 5.4 that is implemented according to

the implementation strategy of Fig. 5.1. Let εw > 0, ∆ > 0 and ρ > ρe ≥ ρmin > ρs > 0 satisfy

−α3(α
−1
2 (ρs))+L′xM∆+L′wθ ≤−εw/∆ , (5.16)

ρmin = max{V (x(t +∆) | V (x(t))≤ ρs} , (5.17)

and

ρe < ρ− fV (γe(∆)) . (5.18)

If x(t0) ∈Ωρ and N ≥ 1, then the state trajectory x(t) of the closed-loop system is always bounded

in Ωρ for t ≥ t0.

Proof. If the real-time LEMPC is implemented according to the strategy of Fig. 5.1, the control

action to be applied over the sampling period either comes from the precomputed LEMPC input

trajectory or the explicit controller h(x). To prove that the closed-loop state is bounded in Ωρ , we

will show that when the control action is computed from the explicit controller and x(tk) ∈ Ωρ ,

then the state at the next sampling period will be contained in Ωρ . If the control action comes from

a precomputed LEMPC solution, we will show that if x(tk) ∈Ωρe , then x(tk+1) ∈Ωρ owing to the

stability conditions imposed on applying the precomputed LEMPC solution. The proof consists

of two parts. In the first part, the closed-loop properties when the control action is computed by

the explicit controller h(x) are analyzed. This part of the proof is based on the proof of [133]

which considers the stability properties of an explicit controller of the form assumed for h(x)

implemented in a sample-and-hold fashion. In the second part, the closed-loop stability properties

of the precomputed control actions by the LEMPC are considered. In both cases, the closed-loop

state trajectory is shown to be maintained in Ωρ for t ≥ t0 when x(t0) ∈Ωρ .

Part 1: First, consider the properties of the control action computed by the explicit controller
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h(x) applied to the system of Eq. 5.1 in a sample-and-hold fashion. Let x(tk) ∈Ωρ \Ωρs for some

ρs > 0 such that the conditions of Theorem 5.1 are satisfied, i.e., Eq. 5.16. The explicit controller

h(x) computes a control action that has the following property (from condition of Eq. 5.4):

∂V (x(tk))
∂x

f (x(tk),h(x(tk)),0)≤−α3(|x(tk)|)≤−α3(α
−1
2 (ρs)) (5.19)

for any x(tk) ∈ Ωρ \Ωρs . Over the sampling period, the time-derivative of the Lyapunov function

is:

V̇ (x(t)) =
∂V (x(tk))

∂x
f (x(tk),h(x(tk)),0)+

∂V (x(t))
∂x

f (x(t),h(x(tk)),w(t))

− ∂V (x(tk))
∂x

f (x(tk),h(x(tk)),0) (5.20)

for all t ∈ [tk, tk+1). From the bound on the time-derivative of Lyapunov function of Eq. 5.19, the

Lipschitz bound of Eq. 5.9, and the bound on the norm of the disturbance vector, the time-derivative

of the Lyapunov function is bounded for t ∈ [tk, tk+1) as follows:

V̇ (x(t))≤−α3(α
−1
2 (ρs))

+

∣∣∣∣∂V (x(t))
∂x

f (x(t),h(x(tk)),w(t))−
∂V (x(tk))

∂x
f (x(tk),h(x(tk)),0)

∣∣∣∣
≤−α3(α

−1
2 (ρs))+L′x |x(t)− x(tk)|+L′w |w(t)|

≤ −α3(α
−1
2 (ρs))+L′x |x(t)− x(tk)|+L′wθ (5.21)

for all t ∈ [tk, tk+1). Taking into account of Eq. 5.10 and the continuity of x(t), the following bound

may be written for all t ∈ [tk, tk+1):

|x(t)− x(tk)| ≤M∆ . (5.22)
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From Eq. 5.21 and Eq. 5.22, the bound below follows:

V̇ (x(t))≤−α3(α
−1
2 (ρs))+L′xM∆+L′wθ (5.23)

for all t ∈ [tk, tk+1). If the condition of Eq. 5.16 is satisfied, i.e., ∆ and θ is sufficiently small, then

there exists εw > 0 such that:

V̇ (x(t))≤−εw/∆ (5.24)

for all t ∈ [tk, tk+1). Integrating the above bound, yields:

V (x(t))≤V (x(tk)), ∀ t ∈ [tk, tk+1), (5.25)

V (x(tk+1))≤V (x(tk))− εw . (5.26)

For any state x(tk) ∈ Ωρ \Ωρs , the state at the next sampling period will be in a smaller level set

when the control action u(t) = h(x(tk)) is applied for t ∈ [tk, tk+1). Also, the state will not come out

of Ωρ over the sampling period owing to Eq. 5.24. Once the closed-loop state under the explicit

controller h(x) implemented in a sample-and-hold fashion has converged to Ωρs , the closed-loop

state trajectory will be maintained in Ωρmin if ρmin ≤ ρ and ρmin is defined according to Eq. 5.17.

Thus, the sets Ωρ and Ωρmin are forward invariant sets under the controller h(x) and if x(tk) ∈Ωρ ,

then x(tk+1) ∈Ωρ under the explicit controller h(x).

Part 2: In this part, the closed-loop stability properties of the input precomputed by the LEMPC

for the sampling period tk to tk+1 are considered. For clarity of presentation, the notation x̂(t)

denotes the prediction of closed-loop state at time t, i.e., this prediction used in the implementation

strategy to determine which control action to apply to the system, while the notation x̃(t) will be

reserved to denote the predicted state in the LEMPC of Eq. 5.5. The predicted state in the LEMPC

of Eq. 5.5 at t j+1, which is denoted as x̃(t j+1), satisfies x̂(t j+1) = x̃(t j+1) because both predicted

states use the nominal model with the same initial condition and same piecewise constant input

applied from t j to t j+1.
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First, feasibility of the optimization problem is considered. Owing to the formulation of the

LEMPC of Eq. 5.5, the optimization problem is always feasible if ρe satisfies: ρ > ρe ≥ ρmin.

Recall, the input over the sampling period t j to t j+1 is not a degree of freedom in the optimization

problem. If this control action is precomputed from a previous LEMPC solution, it must have

the property that x̂(t j+1) = x̃(t j+1) ∈ Ωρe which is imposed as a condition of the implementation

strategy of Fig. 5.1. If the control action is computed by the explicit controller, the control action

over the sampling period t j to t j+1 will maintain x̃(t j+1)∈Ωρe . Thus, x̃(t j+1)∈Ωρe in the LEMPC

of Eq. 5.5. Feasibility of the optimization problem follows from the fact that the input trajectory

obtained from the explicit controller h(x) over the prediction horizon is a feasible solution, that is

u(t) = h(x̂(ti)) for t ∈ [ti, ti+1), i = j+1, j+2, . . . , j+N−1 where x̂(t) is obtained by recursively

solving the model:

˙̂x(t) = f (x̂(t),h(x̂(ti)),0) (5.27)

for t ∈ [ti, ti+1) and i = j + 1, j + 1 . . . , j +N − 1 with the initial condition x̂(t j+1) = x̃(t j+1).

Furthermore, the set Ωρe is forward invariant under the controller h(x) (the proof is analogous to

Part 1 where the set Ωρe is used instead of Ωρ ). Thus, the LEMPC of Eq. 5.5 is always feasible for

any x(t j) ∈Ωρe .

If the LEMPC is implemented according to the implementation strategy of Fig. 5.1, then the

precomputed input for tk by the LEMPC is only used when x(tk) ∈ Ωρe and the predicted state at

the next sampling period x̂(tk+1) ∈Ωρe . When x(t) ∈Ωρ for t ∈ [tk, tk+1), i.e., a sufficiently small

sampling period is used, the following bound on the Lyapunov function value at the next sampling

period tk+1 may be derived from Propositions 5.1-5.2:

V (x(tk+1))≤V (x̂(tk+1))+ fV (γe(∆)) . (5.28)

Since x̂(tk+1) ∈Ωρe and if the condition of Eq. 5.18 is satisfied, x(tk+1) ∈Ωρ .

To summarize, if the control action to be applied over the sampling period tk to tk+1 is u(tk) =

h(x(tk)), the state at the next sampling period will be in Ωρ (x(tk+1) ∈ Ωρ ). If the control action
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to be applied over the sampling period tk to tk+1 is from a precomputed LEMPC input, the state at

the next sampling period will also be contained in Ωρ which completes the proof of boundedness

of the closed-loop state trajectory x(t) ∈Ωρ under the real-time LEMPC for t ≥ t0.

Remark 5.1. No closed-loop performance guarantees may be made because performance con-

straints, e.g., terminal constraints, are not imposed on the LEMPC and the closed-loop performance

may be adversely affected with greater computation time. The latter point is associated with the

fact that the LEMPC problem allows for the input trajectory from t j+1 to t j+Ns , i.e., the time the

solver converges, to be degrees of freedom in the optimization problem. However, the actual

closed-loop input trajectory applied over this period may be different from that computed by the

LEMPC over the same time period. Potentially, one may also employ sensitivity-based corrections

to the precomputed control actions after receiving state feedback like that employed in [192, 200]

to improve closed-loop performance. However, active set changes must be handled appropriately

which may introduce additional on-line computation. It is important to point out that the com-

puted solution of the LEMPC may dictate a time-varying operating policy to optimize the process

economics. Even in the presence of uncertainty, the time-varying operating policy dictated by the

real-time LEMPC may be substantially better (with respect to the economic cost) than steady-state

operation which is the case for the chemical process network considered in Section 5.3.

Remark 5.2. In the current chapter, unknown and possibly time-varying computational delay is

considered for operation affected by unknown bounded disturbance. If, instead of the computation

algorithm described above, a hard cap was placed on the solver to terminate and return a (subopti-

mal) solution by a certain number of sampling times, one could account for the control actions that

are applied to the system over the computation time by setting the input trajectory in the LEMPC

problem over the specified number of sampling periods of the prediction horizon be equal to a

predetermined input trajectory. This potential strategy, however, does not account for the fact that

the solver may return a solution before the end of specified number of sampling periods.

Remark 5.3. From the proof of Theorem 5.1, recursive feasibility of the LEMPC in the presence of

bounded uncertainty is guaranteed if the initial state is in Ωρ . It is difficult in general to characterize
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Figure 5.4: Process flow diagram of the reactor and separator process network.

the feasible set under EMPC formulated with a terminal constraint, i.e., the set of points where

recursive feasibility is maintained in the presence of uncertainty. Thus, it may be difficult to

ensure that the closed-loop state is maintained in the feasible set under EMPC with a terminal

constraint in the presence of uncertainty and computational delay. In this respect, LEMPC has a

unique advantage for real-time implementation compared to EMPC with a terminal constraint in

that LEMPC maintains the closed-loop state inside Ωρ where recursive feasibility is guaranteed.

Remark 5.4. The number of times that the explicit controller is applied to the closed-loop system

may be a factor in the closed-loop economic performance. Whether the control action is from

a precomputed LEMPC problem or the explicit controller is mainly influenced by how close the

state measurement is to the boundary of Ωρe . To decrease the number of times that the explicit

controller is applied to the system, one could potentially add penalization terms to the stage cost

of the LEMPC to penalize the closeness of the state to the boundary of Ωρe .

5.3 Application to a Chemical Process Network

Consider a chemical process network consisting of two continuous stirred-tank reactors (CSTRs)

in series followed by a flash separator shown in Fig. 5.4. In each of the reactors, the reactant A

is converted to the desired product B through an exothermic and irreversible reaction of the form

A→ B. A fresh feedstock containing a dilute solution of the reactant A in an inert solvent D is
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fed to each reactor. The reaction rate is second-order in the reactant concentration. The CSTRs

are denoted as CSTR-1 and CSTR-2, respectively. A flash separator, which is denoted as SEP-

1, is used to recover some unreacted A. The overhead vapor from the flash tank is condensed

and recycled back to CSTR-1. The bottom stream is the product stream of the process network

which contains the desired product B. In the separator, a negligible amount of A is assumed to be

converted to B through the reaction. The two reactors have both heating and cooling capabilities

and the rate of heat supplied to or removed from the reactors is denoted as Q j, j = 1, 2. While the

heat supplied to or removed from the vessel contents is modeled with one variable, two different

actuators may be used in practice for supplying heat to and removing heat from each vessel. To

vaporize some contents of the separator, heat is supplied to the separator at a rate of Q3. The liquid

holdup of each vessel is assumed to be constant and the liquid density throughout the process

network is assumed to be constant.

Applying first principles, a dynamic model of the process network may be obtained (neglecting

the dynamics of the condenser and the solvent) and is given by the following ordinary differential
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equations (ODEs) (see Table 5.1 for parameter notation and values):

dT1

dt
=

F10

V1
T10 +

Fr

V1
T3−

F1

V1
T1−

∆Hk0

ρLCp
e−E/RT1C2

A1 +
Q1

ρLCpV1
(5.29a)

dCA1

dt
=

F10

V1
CA10 +

Fr

V1
CAr−

F1

V1
CA1− k0e−E/RT1C2

A1 (5.29b)

dCB1

dt
=

Fr

V1
CBr−

F1

V1
CB1 + k0e−E/RT1C2

A1 (5.29c)

dT2

dt
=

F20

V2
T20 +

F1

V2
T1−

F2

V2
T2−

∆Hk0

ρLCp
e−E/RT2C2

A2 +
Q2

ρLCpV2
(5.29d)

dCA2

dt
=

F20

V2
CA20 +

F1

V2
CA1−

F2

V2
CA2− k0e−E/RT2C2

A2 (5.29e)

dCB2

dt
=

F1

V2
CB1−

F2

V2
CB2 + k0e−E/RT2C2

A2 (5.29f)

dT3

dt
=

F2

V3
(T2−T3)−

∆HvapṀr

ρLCpV3
+

Q3

ρLCpV3
(5.29g)

dCA3

dt
=

F2

V3
CA2−

Fr

V3
CAr−

F3

V3
CA3 (5.29h)

dCB3

dt
=

F2

V3
CB2−

Fr

V3
CBr−

F3

V3
CB3 (5.29i)

where Tj denotes the temperature of the j-th vessel ( j = 1 denotes CSTR-1, j = 2 denotes CSTR-2,

and j = 3 denotes SEP-1), Ci j denotes the concentration of the i-th species (i = A, B) in the j-th

vessel, and Ṁr denotes the molar flow rate of the recycle stream.

The relative volatility of each species is assumed to be constant within the operating tempera-

ture range of the flash tank. The following algebraic equations are used to model the composition

of the recycle stream:

CD3 = (ρL−CA3MWA−CB3MWB)/MWD (5.30a)

Cir =
αiρLCi3

∑ j∈{A,B,D}α jC j3MWj
, i = A, B, D (5.30b)

Ṁr = Fr (CAr +CBr +CDr) (5.30c)

where Cir is the overhead vapor concentration of the separator. Given the assumption of constant
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liquid hold-up and constant liquid density, the volumetric flow rates are given by the following

equations:

F1 = Fr +F10 (5.31a)

F2 = F1 +F20 (5.31b)

F3 = F2−Fr (5.31c)

where Fj is the volumetric flow rate of the outlet stream of the j-th vessel.

The process network has five manipulated inputs: the three heat rates Q j, j = 1, 2, 3 and the

inlet concentration of the reactant A in the feedstock to each reactor (CA10 and CA20). The bounds

on the available control action are Q j ∈ [−1.0, 1.0]× 105 kJ h−1 for j = 1, 2, Q3 ∈ [2.2, 2.5] ×

106 kJ h−1, and CA j0 ∈ [0.5, 7.5] kmol m−3 j = 1, 2. In addition to the input constraints, the

reactions take place within the temperature range from 370.0 to 395.0 K and thus, the reactors are

to be operated within this temperature range. The separation occurs at 390.0 K.

The real-time economics of the process network are assumed to be described by the molar

flow rate of desired product B leaving the process network which is denoted as ṀB3. The time-

averaged amount of reactant that may be fed to each reactor is constrained to an average amount

of 20.0kmol h−1 which gives rise to the following two input average constraints:

1
t f

∫ t f

t0
Fj0CA j0(t) dt = 20.0kmol h−1 (5.32)

for j = 1, 2 where t0 and t f are the initial and final time of the operation of the process network.

Since the inlet flow rates F10 and F20 are constant, the average input constraint may be written in

terms of the inlet concentration of A only such that the time-averaged value of CA j0 must be equal

to 4.0kmol m−3.

The economically optimal steady-state (which is simply referred to as the optimal steady-state

for the remainder) will be used in the design of a real-time LEMPC, i.e., the stability region for the

optimal steady-state will be used in the LEMPC formulation. Since the reaction rate is maximized
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at high temperature, computing the optimal steady-state with the exact acceptable temperature

operating range will give an optimal steady-state with the greatest acceptable reactor operating

temperature. Much like current practice, the optimal steady-state is computed with a degree of

conservativeness or “back-off” introduced in the acceptable operating temperature range, so that

the reactor temperature is maintained within the acceptable operating range over the length of

operation in the presence of uncertainty and disturbances (see [102] and the references therein,

for instance, for more details on the back-off methodology). Thus, the optimal steady-state must

satisfy a restricted temperature range of Tjs ∈ [370.0,380.0] K for j = 1, 2. The steady-state

optimization problem is given by:

max
xs,us

F3CB3s

s.t. f (xs,us) = 0

370.0K≤ T1s ≤ 380.0K

370.0K≤ T2s ≤ 380.0K

T3s = 390.0K

−1.0×105 kJ h−1 ≤ Q1s ≤ 1.0×105 kJ h−1

−1.0×105 kJ h−1 ≤ Q2s ≤ 1.0×105 kJ h−1

2.2×106 kJ h−1 ≤ Q3s ≤ 2.5×106 kJ h−1

CA10s =CA20s = 4.0kmol m−3

(5.33)

where f (xs,us) = 0 represents the steady-state model. The optimal steady-state vector (omitting

units) is:

x∗s =
[

T ∗1s C∗A1s C∗B1s T ∗2s C∗A2s C∗B2s T ∗3s C∗A3s C∗B3s

]T

=

[
380.0 2.67 2.15 380.0 2.42 2.06 390.0 1.85 2.15

]T

, (5.34)
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and the optimal steady-state input vector is

u∗s =
[

Q∗1s Q∗2s Q∗3s C∗A10s C∗A20s

]T

=

[
−4.21×103 1.70×104 2.34×106 4.0 4.0

]T

. (5.35)

The optimal steady-state is open-loop unstable.

The control objective of the process network is to optimize the economics through real-time op-

eration while maintaining the closed-loop state trajectory inside a well-defined state-space set. To

accomplish this objective, the real-time LEMPC scheme is applied to the process network. In stark

contrast to traditional tracking control that forces the closed-loop state to converge to the (optimal)

steady-state, applying LEMPC to the process network is not expected to achieve convergence to

the optimal steady-state. Instead, LEMPC may force the process network to operate in a con-

sistently transient manner to achieve better closed-loop performance compared to the closed-loop

performance at the optimal steady-state.

For the implementation of the LEMPC, the acceptable temperature range is not treated as a

hard constraint. Instead, the acceptable temperature range is accounted for by imposing quadratic

penalty terms in the stage cost of the LEMPC. Thus, the stage cost used in the objective function

of the LEMPC is

le(x,u) =−F3CB3 +
3

∑
i=1

Qc,i(Ti−T ∗is )
2 (5.36)

where T ∗is , i = 1, 2, 3 are the optimal steady-state temperatures. The stage cost of Eq. 5.36 in-

cludes the economics and the quadratic penalty terms for the temperature. The weight coefficients

are Qc,1 = 0.018, Qc,2 = 0.022, and Qc,3 = 0.01 and have been tuned such that the closed-loop

temperatures are maintained near the optimal steady-state temperature. Since no hard or soft con-

straints are imposed on the temperature in the LEMPC, it is emphasized that there is no guaran-

tee that the temperatures are maintained within the acceptable temperature range described above

(Tj ∈ [370.0, 395.0] K for j = 1, 2 and T3 ≈ 390.0K). In this example, small violations over a

short period are considered acceptable. If maintaining the operation within the acceptable oper-
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ating temperature range is considered critical, one may add various modifications to the LEMPC

to achieve this objective such as decreasing the size of Ωρe , adding hard or soft constraints on the

temperature in the LEMPC, or adding a contractive constraint on the temperature ODEs.

An explicit stabilizing controller is designed using feedback linearization techniques to make

the dynamics of the temperature ODEs linear (in a state-space region where the input constraints

are satisfied) under the explicit controller. Specifically, the temperature ODEs are input-affine in

the heat rate input and have the form:

Ṫj = f j(x)+b jQ j (5.37)

where f j(x) is a nonlinear scalar-valued function, b j is constant and j = 1, 2, 3. The controller

that makes the closed-loop temperature dynamics linear is:

Q j =−
1
b j

(
f j(x)+K j(Tj−T ∗js)

)
(5.38)

where K j denotes the controller gain. In this case, the controller gains are K1 = 5, K2 = 5,

and K3 = 7, respectively. The inlet concentration input values are fixed to the average values

(4.0 kmol m−3). Through extensive closed-loop simulations under the state feedback controller, a

quadratic Lyapunov function for the process network under the feedback controller h(x) was deter-

mined. An estimate of the stability region of the process network under the feedback controller was

characterized by computing the state-space points where V̇ < 0 and taking the stability region to be

a level set of the Lyapunov function containing only state-space points where the time-derivative

of the Lyapunov function is negative. The quadratic Lyapunov function has the form:

V (x) = (x− x∗s )
T P(x− x∗s ) (5.39)
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where P is the following positive definite matrix:

P = diag
[

0.001 1.5 0.05 0.001 1.5 0.05 0.001 1.5 0.05

]
. (5.40)

The estimated stability region Ωρ is the level set of the Lyapunov function where V (x)≤ 11.0, i.e.,

ρ = 11.0. The subset of the stability region which defines the mode 1 constraint of the LEMPC is

ρe = 10.0 and has been determined through extensive closed-loop simulation under LEMPC as the

subset of the stability region Ωρ where the closed-loop state under LEMPC is maintained in Ωρ .

The input average constraint is imposed over successive, finite-length operating periods. The

average constraint must be satisfied over each operating period tM = M∆ where M is the number of

sampling periods in the operating period. This ensures that over the entire length of operation the

average constraint will be satisfied. For this example, the operating period was chosen to be tM =

2.4h which leads to better asymptotic average economic performance under LEMPC (assuming

no computational delay) than the asymptotic average performance at the economically optimal

steady-state. To solve the dynamic optimization problem of the LEMPC, orthogonal collocation

with three Radau collocation points per sampling period is employed for discretization of the ODEs

(see, for instance, [20] for details on solving a dynamic optimization problem using a simultaneous

approach). The open-source nonlinear optimization solver Ipopt [187] was employed owing to its

ability to exploit the high degree of sparsity of the resulting optimization problem. Analytical first

and second-order derivative information was provided to the solver. The closed-loop simulations

were coded in C++ and performed on an Intel R© CoreTM 2 Quad 2.66 GHz processor running an

Ubuntu Linux operating system. The sampling period of the LEMPC used in the simulations

below is ∆ = 0.01h. To simulate forward in time the closed-loop process network, the fourth-order

Runge-Kutta method was used with a time step of 0.0001 h.

In the first set of simulations, nominal operation of the process network under LEMPC imple-

mented in a typical receding horizon fashion is considered under ideal computation, i.e., assuming

no computational delay. The closed-loop economic performance under LEMPC is assessed using
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Figure 5.5: The total economic cost Je over one operating window length of operation (2.4 h) of

the process network under LEMPC with the prediction horizon length.

the economic performance index which is defined as:

Je =
∫ t f

0
F3CB3 dt . (5.41)

Since the LEMPC does not directly optimize the molar flow rate of product out of the process

network, the stage cost index will also be considered as a measure of the closed-loop performance

and is given by:

Le =−
∫ t f

0
le(x,u) dt . (5.42)

First, the effect of the prediction horizon on the closed-loop economic performance over one oper-

ating period (2.4 h) is considered. The closed-loop performance index of Eq. 5.41 plotted against

the prediction horizon length is given in Fig. 5.5. A significant increase in closed-loop performance

is observed initially with increasing prediction horizon length until the closed-loop performance

becomes approximately constant. Owing to this fact, a prediction horizon of N = 200 is used in

all subsequent simulations. A simulation over many operating periods such that the effect of the

initial condition on closed-loop performance becomes negligible is performed (with N = 200). The
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asymptotic average closed-loop economic performance, which is the time-averaged economic cost

after the effect of the initial condition becomes negligible, was determined from this simulation to

be 25.0 kmol h−1 (in this case, the time-averaged production rate over each operating window be-

comes constant after a sufficiently long length of operation). The optimal steady-state production

rate of B is 21.5 kmol h−1. Thus, the asymptotic production rate of the process network under the

LEMPC is 16.3% better than the production rate at the economically optimal steady-state.

The effect of computational delay is considered in the next set of simulations, and two scenarios

are considered: (1) the closed-loop process network under LEMPC implemented in a typical re-

ceding horizon fashion where the control action is subject to real-time computational delay (for the

sake of simplicity, this case will be referred to as the closed-loop process network under LEMPC

for the remainder) and (2) the closed-loop process network under the real-time LEMPC scheme

(also, subject to real-time computational delay). For the former scenario, the LEMPC begins to

compute a control action at each sampling instance after receiving a state measurement. Owing to

the computational delay, the control action applied to the process network is the most up-to-date

control action. For example, if it takes 0.002 h to compute the control action at the sampling in-

stance tk, then u(tk−1) is applied to the process network from tk to tk + 0.002 h (assuming u(tk−1) is

available at tk) and applies u(tk) to the process network from tk + 0.002 h to tk+1 = tk +∆. For each

scenario, a 12.0 h length of closed-loop operation was simulated. For the real-time LEMPC case,

the LEMPC is forced to recompute a new solution after three sampling periods have elapsed since

the last time an LEMPC solution was computed, i.e., the solver starts computing a new solution at

the beginning of the fourth sampling period.

The average computation time required to solve the LEMPC (of scenario (1)) at each sampling

time was 11.2 s (31.2% of the sampling period) with a standard deviation of 7.42 s. The maximum

computation time over the simulation was 61.9 s which is almost double the sampling period.

The computation time exceeded the sampling period ten out of the 1,200 sampling periods in the

simulation. Over the course of both simulations, the closed-loop state was maintained in Ωρ . The

closed-loop trajectories under the real-time LEMPC scheme are given in Fig. 5.6 (the closed-loop
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Figure 5.6: The closed-loop (a) state and (b) input trajectories of the nominally operated process

network under the real-time LEMPC scheme.
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t
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Figure 5.7: The number of times the LEMPC problem was solved (Comp.) as dictated by the real-

time implementation strategy compared to the sampling period (∆) over the first 0.5 h of operation.

behavior under the LEMPC subject to real-time computational delay was similar). The difference

between the performance index of the two cases was less than 0.5% (the performance indices for

case (1) and case (2) were 284.3 and 283.3, respectively).

While little difference between the two cases in terms of closed-loop performance was real-

ized, it is important to note that an a priori guarantee on closed-loop stability under the real-time

LEMPC may be made, while, under the LEMPC with computational delay, it is difficult to guar-

antee closed-loop stability a priori. Also, the total on-line computation time to solve the LEMPC

over the two simulations was 3.74 h and 0.94 h, respectively. The real-time LEMPC reduces the
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total on-line computation requirement by 75% compared to LEMPC implemented in a receding

horizon fashion because the real-time LEMPC does not recompute a control action at each sam-

pling instance, while LEMPC, implemented in a receding horizon fashion, recomputes a control

action at each sampling instance. To better illustrate this point, Fig. 5.7 shows the frequency the

LEMPC problem was solved under the real-time implementation strategy with respect to the sam-

pling period over the first 0.5 h of operation. Over this time, the LEMPC optimization problem was

solved at a rate of one out of every four sampling periods. This trend continues over the remainder

of the 12.0 h length of operation and hence, the 75% reduction in total computational time.

Since the computational delay depends on many factors, e.g., model dimension, prediction

horizon, solution strategy used to solve the dynamic optimization problem, the nonlinear optimiza-

tion solver used, computer hardware, it is also important to consider computational delay greater

than one sampling period to demonstrate that the real-time LEMPC scheme may handle compu-

tation delay of arbitrary length. Therefore, another set of simulations is considered where longer

computational delay is simulated. The computation delay is modeled as a bounded uniformly-

distributed random number and the maximum computational delay is assumed to be less than 10

sampling periods. Both the LEMPC (receding horizon implementation) and the real-time LEMPC

scheme are considered. To make the comparison as consistent as possible, the computational delay,

at the time steps the real-time LEMPC is solved, is simulated to be the same as the computation

delay to solve the LEMPC at the same time step (recall the real-time LEMPC is not solved at each

sampling period). Given the computational delay is much greater for this set of simulations than in

the previous set of simulations, the real-time LEMPC is forced to recompute a new solution after

15 sampling periods have elapsed since the last time it computed a solution.

Several simulations were performed, each starting at a different initial condition, and the perfor-

mance indices of these simulations are given in Table 5.2. Applying the back-up explicit controller

h(x) implemented in a sample-and-hold fashion to the chemical process network was also consid-

ered and the performance indices of these simulations are given in Table 5.2 as well. The average

improvement in economic performance compared to the process network under the back-up con-
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Table 5.2: The performance indices of the process network under the back-up explicit controller,

under the LEMPC subject to computational delay, and under the real-time LEMPC for several

simulations.

Sim. Back-up Controller LEMPC Real-time LEMPC
Je Le Je Le Je Le

1 225.5 225.4 277.0 245.0 295.1 216.5
2 254.2 254.1 318.7 278.6 307.3 279.6
3 260.5 260.4 319.9 286.3 318.1 294.7
4 232.7 230.6 290.7 255.7 299.2 266.4
5 250.0 250.0 308.7 276.9 322.8 282.9
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Figure 5.8: The closed-loop (a) state and (b) input trajectories of the process network under the

real-time LEMPC scheme where the computational delay is modeled as a bounded random number.
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Figure 5.9: The closed-loop (a) state and (b) input trajectories of the process network under

LEMPC subject to computational delay where the computational delay is modeled as a bounded

random number.

troller was 26.1% under the real-time LEMPC scheme and 23.9% under the LEMPC (implemented

in a receding horizon). Thus, a substantial economic benefit is achieved by applying LEMPC to

the process network. While the real-time LEMPC did not always achieve better performance (ei-

ther measured in terms of the economic performance index or stage cost index) compared to the

performance under LEMPC, the closed-loop trajectories between the two cases are significantly

different. Figures 5.8-5.9 give the closed-loop trajectories of simulation 2 (as labeled in Table 5.2).

The input trajectory computed by the real-time LEMPC has chattering initially over the first operat-

ing period because of the effect of the initial condition, but after the first operating period when the

effect of the initial condition dissipates, the computed input trajectory is significantly smoother. On

the other hand, chattering in the input profiles is observed throughout the entire simulation under

the LEMPC. If we compare the performance index of operation from t = 2.4h to t = 12.0h (after

the first operating period) for simulation 2, the indices are Je = 249.8 and Le = 227.9 for operation

under the real-time LEMPC and Je = 248.5 and Le = 217.4 for operation under the LEMPC; the

performance under the real-time LEMPC is better over this period than under LEMPC.
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Figure 5.10: A discrete trajectory depicting when the control action applied to the process net-

work over each sampling period was from a precomputed LEMPC solution or from the back-up

controller for the closed-loop simulation of Fig. 5.8.

Over the five simulations under the real-time LEMPC strategy, the explicit controller was ap-

plied on average 19 out of 1200 sampling periods. For the simulation of Fig. 5.8, a discrete trajec-

tory showing when the control action applied to the process network under the real-time LEMPC

strategy was from a precomputed LEMPC solution or from the back-up controller is given in

Fig. 5.10. For this case, the back-up controller is used 31 out of 1200 sampling periods (2.7% of

the sampling periods). From Fig. 5.10, the back-up controller is only applied over the first oper-

ating period and is not used in any subsequent sampling period. Thus, the source of performance

degradation for this case (Sim. 2 in Table 5.2) is due to applying the explicit back-up controller to

maintain the closed-loop state in Ωρ . Again, it is emphasized that there is no a priori guarantee

that the LEMPC implemented in a receding horizon fashion subject to computational delay could

maintain the closed-loop state inside Ωρ .

In the last set of simulations, significant bounded Gaussian process noise with zero mean was

added to the model states. The standard deviations of the noise added to the temperature and

concentration states were 5.0 and 0.5, respectively and the bounds on the noise were 2.0 and 15.0,

respectively. Two closed-loop simulations over 12.0 h length of operation were completed with the

same realization of the process noise. In the first simulation, the process network was controlled

by the real-time LEMPC and the closed-loop trajectories are given in Fig. 5.11 over the first two

operating periods. For this case, the back-up controller is applied 69 out of 1200 sampling periods

(5.8% of the sampling periods). In the second simulation, the process network was controlled by

LEMPC subject to computation delay (trajectories shown in Fig. 5.12).
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Figure 5.11: The closed-loop (a) state and (b) input trajectories of the process network under the

real-time LEMPC scheme with bounded process noise.
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Figure 5.12: The closed-loop (a) state and (b) input trajectories of the process network under

LEMPC subject to computational delay with bounded process noise.
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From Fig. 5.12, a significant degree of chattering and bang-bang type actuation in the input

trajectory is observed. This behavior tries to combat the effect of the added process noise and is

due to not penalizing control actions in the stage cost and not imposing rate of change constraints

on the control actions. In practice, one could add one or both of these elements to the LEMPC

if the computed input trajectory is not implementable. On the other hand, the real-time LEMPC

implements a much smoother input trajectory (Fig. 5.11) because the precomputed input trajectory

of the real-time LEMPC has a degree of smoothness like the closed-loop trajectory of the nominally

operated process network (Fig. 5.6). If the precomputed input trajectory satisfies the stability

conditions, it will be applied to the closed-loop process network with disturbances. The closed-

loop system under the real-time LEMPC has guaranteed stability properties, but is not recomputed

at each sampling period like the receding horizon implementation of LEMPC which will try to

combat the effect of the disturbance on performance. In both cases, the state is maintained in

Ωρ . The performance indices of the two cases are 301.6 under the real-time LEMPC and 295.5

under the LEMPC; the closed-loop performance under the real-time LEMPC scheme is 2.0% better

than applying LEMPC without accounting for the computational delay. Moreover, the back-up

controller was also applied to the process network subject to the same realization of the process

noise. The economic performance index for this case was 242.3. For operation with process noise,

the economic performance improvement over the process network under the back-up controller

was 24.4% under the real-time LEMPC strategy and 21.9% under the receding horizon LEMPC

for the same initial condition.

5.4 Conclusions

In this chapter, a strategy for implementing Lyapunov-based economic model predictive control

(LEMPC) in real-time with computation delay was developed. The implementation strategy uses

a triggering condition to precompute an input trajectory from LEMPC over a finite-time horizon.

At each sampling period, if a certain stability (triggering) condition is satisfied, then the precom-
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puted control action by LEMPC is applied to the closed-loop system. If the stability condition is

violated, then a backup explicit stabilizing controller is used to compute the control action for the

sampling period. In this fashion, the LEMPC is used when possible to optimize the economics

of the process. Conditions such that the closed-loop state under the real-time LEMPC is always

bounded in a compact set were derived. The real-time LEMPC scheme was applied to a chemical

process network and demonstrated that it may maintain closed-loop stability in the presence of

significant computation delay and process noise while also, improving the closed-loop economic

performance compared to the economic performance at the economically optimal steady-state.
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Chapter 6

EMPC of Time-Delay Systems: Closed-loop

Stability and Delay Compensation

6.1 Introduction

Within the context of control of chemical process systems, time-delays resulting from computa-

tion and communication delays are enviable albeit they may be small and insignificant depending

on the magnitude of the time-delay relative to the time-constants of the process dynamics. From

a modeling perspective, time-delays are often employed to describe and/or to approximate the

dynamics of transportation of material through the process system, control actuator dynamics,

measurement sensor dynamics, and high-order dynamic behavior. Thus, robustness with respect

to closed-loop stability and performance of control systems to time-delays is an important consid-

eration. Moreover, many chemical process systems have significant nonlinear behavior owing to

complex reaction mechanisms, Arrhenius reaction-rate dependence on temperature, and thermo-

dynamic relationships which adds additional complexity in considering the closed-loop behavior

of the system resulting from a nonlinear time-delay system under a control law.

Dynamic models of systems that involve nonlinearities and time-delays are systems of non-

linear differential difference equations (DDEs). Systems described by DDEs are fundamentally
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different from systems described by ordinary differential equations (ODEs) (see, for example, [74]

for more details on this point). One important difference is that a dynamic system with an arbi-

trarily small delay is an infinite-dimensional system even though the dimension of the state vector

may be finite. For nonlinear DDEs, there are typically two approaches employed to analyze sta-

bility that are analogous to Lyapunov stability theory employed to assess stability of equilibria and

solutions of ODEs. The first method uses Lyapunov-Krasovski functionals, which is the direct

analog to Lyapunov functions for ODEs, and the second method uses Lyapunov-Razumikhin func-

tions [74]. While Razumikhin theorems are typically more conservative than Krasovski theorems,

Razumikhin theorems require the construction of a function which is typically less challenging

than the construction of a functional. Various extensions of stability theory for DDE systems ex-

ist including input-to-state stability using Razumikhin-type arguments and extending the notion

of control Lyapunov functions to control Lyapunov-Krasovski functionals and control Lyapunov-

Razumikhin functions, e.g., [197, 182, 89, 90, 161].

One approach to design a controller for a time-delay system is to neglect the delays in the

model used for controller design and employ controller design methods used for systems described

by ODEs. This may lead to acceptable closed-loop properties especially when the time-delays

are small. However, employing these methods, in general, may pose unacceptable limitations

on the achievable control quality and performance, e.g., sluggish response, oscillations, and even

instability [178]. Perhaps, one of the most well-known results to cope with time-delay in the

control input or sensor measurement is the classical Smith predictor structure designed for linear

time-delay systems which eliminates the delay from the characteristic polynomial of the closed-

loop system and allows for larger controller gains to be used [174]. Many extensions of the Smith

predictor exist in the literature including extensions to nonlinear systems [106, 82]. With respect

to control design and/or input delay compensation for nonlinear systems, many results exist in the

literature including state and output feedback control designs for nonlinear DDE systems [7, 8,

33, 148], input delay compensation for nonlinear systems [107, 96], and nonlinear sampled-data

systems with time-delays [183, 84, 30, 98], see, also, the reviews [71, 161] for more references on
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control of time-delay systems.

In addition to nonlinearities and time-delays, other important considerations within the context

of chemical process control are process constraints and performance considerations. As described

in the previous chapters, EMPC may be used to control nonlinear systems in an economically

optimal manner while accounting for state and control constraints. While there has been some

work completed on tracking MPC of nonlinear time-delay systems, e.g., [142, 153, 119, 160, 37],

to the best of our knowledge, no work on EMPC for time-delay systems has been completed.

In this chapter, we first consider the robustness of LEMPC, formulated with an ODE model,

for nonlinear systems with state and input delays in the sense that closed-loop stability (to be

made precise below) will be maintained when the state and input delays are sufficiently small.

Since LEMPC is designed with an explicit stabilizing control law and LEMPC is applied in a

sample-and-hold fashion, we first consider the closed-loop stability of the nonlinear sampled-data

time-delay system resulting from the continuous-time delay system under the nonlinear control

law applied in a sample-and-hold fashion. Leveraging the aforementioned results, closed-loop

stability is shown for the closed-loop time-delay system under LEMPC when the time-delays are

sufficiently small. Using a chemical process example, we demonstrate that the LEMPC maintains

closed-loop stability when the time-delays in both inputs and states are sufficiently small. To

address economic performance deterioration due to time-delays, in the second part, we develop a

predictor feedback based LEMPC scheme, formulated with a DDE model, that compensates for

the effect of the input delay. The results of this chapter were first presented in [56].

6.2 Preliminaries

6.2.1 Notation and Preliminary Results

In this chapter, the following notation will be used. The notation x(t) ∈ Rn is a time dependent

vector and xd(t) : [−td,0]→ Rn is a time-dependent function where xd(t)(τ) := x(t + τ) for τ ∈

[−td,0]. The explicit dependence of t on x(t) and xd(t) may be omitted and we may simply write x
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and xd when convenient. The symbol | · | denotes the Euclidean norm of a real vector. The floor and

ceiling functions, denoted as bac and dae (a ∈ R), respectively, are the largest integer not greater

than a and the smallest integer not less than a, respectively. The symbol Bδ denotes a norm-ball

of radius δ , and the symbol Ωρ is a level set or level surface of a scalar positive definite function

V : Rn→R≥0, i.e., Ωρ := {x∈Rn : V (x)≤ ρ}. The family of piecewise constant, right-continuous

functions with period ∆ (defined over the appropriate interval) is denoted as S(∆).

A function γ : [0,a)→R≥0 is said to be of class-G if it is a nondecreasing continuous function

and γ(0) = 0. The symbol C([a,b],Rn) is the Banach space of continuous functions mapping the

interval [a,b] into Rn with topology of uniform convergence and equipped with the norm:

‖φ‖ := max
a≤s≤b

|φ(s)|,

where φ ∈C([a,b],Rn).

To present some preliminary definitions and results, consider the class of systems described by

functional differential equations:

ẋ(t) = f (xd(t),wd(t)), xd(t0) = ξ (6.1)

where f : C([−td,0],Rn)×C([−td,0],Rm) → Rn with f (0,0) = 0 and the initial data is ξ ∈

C([−td,0],Rn), and w is a bounded, piecewise continuous input. For each initial data and ini-

tial time t0 ≥ 0, we suppose there exists Tf ≥ 0 and a unique maximal solution x(·) defined on

[t0− td, t0 +Tf ]. We define the following norm:

‖xd‖t0 := sup
s≥t0
‖xd(s)‖ .

We will make use of the following definition and results on input-to-state stability of the zero

solution of the system of Eq. 6.1 from [182]. The definition and results are stated here for the

reader’s convenience.
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Definition 6.1 ([182]). Let γ ∈G , ν ∈R≥0 and ∆x,∆w ∈R≥0. The zero solution of Eq. 6.1 is said to

be uniform input-to-state stable (ISS) with gain γ , offset ν , and restriction (∆x, ∆w) if ‖xd(t0)‖< δx

imply Tf = ∞ and that the following properties hold uniformly in t0: 1) for each ε > 0 there exists

δ > 0 such that ‖xd(t0)‖ ≤ δ implies ‖xd‖t0 ≤ max{ε,γ(‖wd‖t0),ν} and 2) for each ε > 0 and

ηx ∈ (0,∆x) and ηw ∈ (0,∆w) there exists T > 0 such that ‖xd(t0)‖ ≤ ηx and ‖wd‖t0 ≤ ηw imply

‖xd‖t0+T ≤max{ε,γ(‖wd‖t0),ν}.

If V : [−td,∞)×Rn→R≥0 is a continuous function, then we use V̇ (t,x(t)) to denote the upper

right-hand derivative of V along the solution of Eq. 6.1 and is defined as

V̇ (t,x(t)) := limsup
h→0+

V (t +h,x(t +h)−V (t,x(t))
h

. (6.2)

The following two results are needed:

Lemma 6.1 ([100, 182]). Let µ ≥ 0 and α ∈K . If V (t)≥ µ implies V̇ (t)≤−α(V (t)), then there

exists β ∈K L (independent of µ) with β (s,0)≥ s such that

V (t)≤max{β (V (t0), t− t0),µ} .

The following result for the system of Eq. 6.1 is from [182] which is a Razumikhin-type theo-

rem for input-to-state stability of functional differential equations.

Theorem 6.1 ([182, Theorem 2]). Suppose there exist a continuous function V : [−td,∞)×Rn→

R≥0, α1, α2 ∈K∞, α3 ∈K , γx, γw ∈ G and nonnegative real numbers δ < ∆ such that

1. α1(|x|)≤V (t,x)≤ α2(|x|);

2. |x(t)| ≥max{γx(‖xd(t)‖),γw(‖wd(t)‖)}⇒ V̇ (t,x(t))≤−α3(|x(t)|);

3. α
−1
1 ◦α2 ◦ γx(s)< s for δ < s < ∆.

Let β ∈K L be as in the conclusion of Lemma 6.1 when α = α3 ◦α
−1
2 . Then, the origin of the

237



system of Eq. 6.1 is uniformly ISS with gain γ̃w := α
−1
1 ◦α2 ◦ γw, offset δ , and restriction (∆x, ∆w)

such that max{α−1
1 (β (α2(s1),0)), γ̃w(s2)}< ∆ when s1 < ∆x, s2 < ∆w.

6.2.2 Class of Nonlinear Time-Delay Systems

The class of nonlinear time-delay systems considered in this chapter are described by a system of

differential difference equations (DDEs), which are also commonly referred to as delay differential

equations, and have the following form:

ẋ(t) = f (x(t),x(t−d1),u(t−d2)) (6.3)

where x(t) ∈ Rn is the state, u(t) ∈ U ⊂ Rm is the bounded control input, d1 ≥ 0 and d2 ≥ 0

are the state and input delays, respectively, and f is a locally Lipschitz vector function of its

arguments with f (0,0,0) = 0. The set that bounds the available control action is given by U :=

{u ∈ Rm : |ui| ≤ umax,i, i = 1, . . . , m}. The initial time is taken to be zero (t0 = 0), the initial data

is given by the function φx where φx ∈ C([−d1,0],Rn), and the initial input function, which is

denoted as φu, is defined over the interval [−d2,0], takes values in U and is therefore, bounded.

Moreover, φu is assumed to be piecewise continuous over its domain. Full state feedback of the

system of Eq. 6.3 is assumed.

We will design a controller for the system of Eq. 6.3 on the basis of the ODE model, i.e.,

Eq. 6.3 with d1 = d2 = 0. We impose the following stabilizability assumption on the system of

Eq. 6.3. For the system of Eq. 6.3 with d1 = d2 = 0, we assume that there exists a locally Lipschitz

control law hc : Rn → U where hc(0) = 0 such that the origin of the system ẋ = f (x,x,hc(x))

is asymptotically stable. This assumption implies that there exists a continuously differentiable

function V : Rn→ R≥0 such that the following inequalities hold [100]:

α1(|x|)≤V (x)≤ α2(|x|) (6.4a)
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∂V
∂x

(x) f (x,x,hc(x))≤−α3(|x|) (6.4b)∣∣∣∣∂V
∂x

(x)
∣∣∣∣≤ α4(|x|) (6.4c)

for all x ∈ D ⊂ Rn where D is an open neighborhood of the origin and αi ∈K , i = 1, 2, 3, 4. In

the remainder, we will use the notation hc(x) when referring to the stabilizing control law.

Remark 6.1. While we restrict our focus to nonlinear systems described by differential difference

equations with constant delay, the extension of the results to systems described by more general

functional differential equations, bounded time-varying delays, and multiple state and input delays

is conceptually possible.

6.2.3 Controller Emulation Design

Given the stability properties of the control law hc(x), one may consider designing stability con-

straints based on the stabilizing control law hc(x) to be imposed within a model predictive control

(MPC) framework. However, MPC is typically implemented in a sample-and-hold fashion; that

is, after receiving a state feedback measurement, a control action is computed and applied over a

finite-time interval, called the sampling period. The control action for the next sampling period is

computed from a new state measurement at the next sampling time.

To design stabilizing constraints based on the control law hc(x) for MPC, one must first con-

sider the stabilizing properties of the control law hc(x) when applied to the system of Eq. 6.3 (with

time-delays) in a sample-and-hold fashion. When a controller is applied to the continuous-time

system of Eq. 6.3 in a sample-and-hold fashion, the resulting closed-loop system is a sampled-data

time-delay system and is given by:

ẋ(t) = f (x(t),x(t−d1),h∆(x, t−d2))

h∆(x, t) = hc(x(k∆)), t ∈ [k∆,(k+1)∆),

k = 0, 1, 2, . . .

(6.5)
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where the ∆ > 0 is the sampling period and φx is the initial data. The initial data is assumed to

be continuous and defined over the appropriate interval. We assume that the initial input function

is determined by h∆(x,s− d2) for s ∈ [0,d2] which implies that the initial data must be defined

over a prolonged interval when ∆ + d2 > d1. Provided the time-delays and sampling rate are

sufficiently small and the initial data is restricted to a ball of radius δ2, i.e., φx(s) ∈ Bδ2 for all

s ∈ [−max{d1,∆+d2},0], it may be shown that the origin of the closed-loop system is uniformly

ISS which is stated in the proposition below. The result follows the ideas of [183]. Specifically,

the system of Eq. 6.5 is treated as a perturbed form of the closed-loop system ẋ = f (x,x,hc(x)). By

employing Razumikhin-type arguments, we consider solutions to the sampled-data system where

the solution at time t may be bounded by the state at time t to show that the origin of the closed-loop

system is locally uniformly ISS.

Proposition 6.1. Consider the sampled-data system of Eq. 6.5. Let t̃d = max{d1,∆+ d2}, then

there exists a t∗d such that for all t̃d ∈ (0, t∗d), the origin is uniformly ISS with offset δ1 and restriction

δ2 where δ1 < δ2 and {x ∈ Rn : |x| ≤ δ2} ⊂ D.

Proof. The sampled-data system of Eq. 6.5 may be written as a time-delay system with time-

varying delay to account for sampling:

ẋ(t) = f (x(t),x(t−d1),hc(x(t− τ(t)))) (6.6)

where τ(t)= t−b(t−d2)/∆c∆ and τ(t)≤ (d2/∆+1)∆=: Nd∆ (Nd :=(d2/∆+1)). In the sampled-

data system with state and input delay setting that we consider, the quantity t − τ(t) represents

the sampling time instance that feedback is received to compute the control action applied to the

system at time t. The maximum amount of time in the past that the feedback measurement used to

compute the control action applied to the system at the current time (the maximum of τ(t)) is the

sampling time, ∆, plus the input delay, d2.

The system of Eq. 6.6 may be analyzed as a perturbed form of the system without delays and
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sampling, i.e., the system ẋ = f (x,x,hc(x)). In other words, consider the following system:

ẋ(t) = f (x(t),x(t)+ξ1(t),hc(x(t))+ξ2(t))

ξ1(t) = x(t−d1)− x(t)

ξ2(t) = hc(x(t− τ(t)))−hc(x(t))

(6.7)

We define the following: ξ T := [ξ T
1 ξ T

2 ] with ξ (t) ∈ D×U⊂ Rn+m, td := max{2d1,2Nd∆}, and

g(x,ξ ) := f (x,x+ξ1,hc(x)+ξ2) .

The perturbation term ξ (t) is bounded. From the triangle inequality, we have:

|ξ (t)|=
∣∣[ξ T

1 (t) 0T ]T +[0 ξ
T
2 (t)]T

∣∣≤ |ξ1(t)|+ |ξ2(t)| . (6.8)

Owing to the fact that f and hc are locally Lipschitz vector functions, there exists a γ∗1 ∈K such

that:

|ξ1(t)|=
∣∣∣∣∫ t

t−d1

f (x(s),x(s−d1),hc(x(s− τ(s)))) ds
∣∣∣∣≤ d1γ

∗
1 (‖xd(t)‖) (6.9)

where ‖xd(t)‖ = maxs∈[−td ,0] |x(t + s)|. Again, by the locally Lipschitz properties assumed for f

and hc, there exist functions Lh, γ∗2 ∈K such that:

|ξ2(t)| ≤ Lh(‖xd(t)‖)|x(t− τ(t))− x(t)| ≤ Nd∆Lh(‖xd(t)‖)γ∗2 (‖xd(t)‖) . (6.10)

From the inequalities of Eqs. 6.8-6.10, there exists a γ∗ ∈K such that

|ξ (t)| ≤ t̃dγ
∗(‖xd(t)‖) (6.11)

where t̃d = max{d1,Nd∆}.
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The time-derivative of V along the state trajectory of Eq. 6.5 is

V̇ =
∂V
∂x

(x(t))g(x(t),0)+
∂V
∂x

(x(t)) [g(x(t),ξ (t))−g(x(t),0)]

≤−α3(|x(t)|)+α4(|x(t)|) |g(x(t),ξ (t))−g(x(t),0)| (6.12)

for all x(t) ∈ D where the inequality follows from Eq. 6.4b and Eq. 6.4c. Since g is a locally

Lipschitz vector function (this follows from the fact that f and hc are locally Lipschitz), there

exists a function Lξ ∈K such that:

V̇ ≤−α3(|x(t)|)+α4(|x(t)|)Lξ (|ξ (t)|)

≤−α3(|x(t)|)+α4(|x(t)|)Lξ (t̃dγ
∗(‖xd(t)‖)) (6.13)

where the second inequality follows from Eq. 6.11. For some pair of strictly positive real numbers

δ1 and δ2 such that δ1 < δ2 and {x ∈ Rn : |x| ≤ δ2} ⊂ D, there exists t∗d > 0 such that t̃d ∈ (0, t∗d)

implies:

|x(t)| ≥ α
−1
3 (α4(δ2)Lξ (t̃dγ

∗(‖xd(t)‖))/q)⇒ V̇ ≤−(1−q)α3(|x(t)|) (6.14)

for some q ∈ (0,1) and

α
−1
1 ◦α2 ◦α

−1
3

(
α4(δ2)Lξ (t̃dγ∗(s))

q

)
< s (6.15)

for all s∈ (δ1,δ2). We note that the size of δ2, which governs the restriction on the initial condition,

and t̃d , which accounts for the magnitude of delays and the sampling period size, are restricted to

be sufficiently small so that the arguments of the inverted class K functions in Eqs. 6.14-6.15 are

within the domain of the functions. From Theorem 6.1 (taking γx(·) = α
−1
3 (α4(δ2)Lξ (t̃d γ̃∗(·)/q)),

the origin of the sampled-data time-delay system of Eq. 6.5 is uniformly ISS with offset δ1 and

restriction δ2 for all t̃d ∈ (0, t∗d).

For appropriately chosen offset δ1 and restriction δ2, one may find a level set of the Lyapunov
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(or Lyapunov-Razumikhin) function, Ωρ , such that Bδ1 ⊂Ωρ ⊆ Bδ2 and for all initial data satisfy-

ing φx(s) ∈ Ωρ for all s ∈ [−t̃d,0] the closed-loop state trajectory of the system of Eq. 6.5 under

the control law hc(x) applied in a sample-and-hold fashion will be (uniformly) ultimately bounded

in a ball of radius δ1. Moreover, the closed-loop state is always bounded in Ωρ as a consequence

of the construction of Ωρ and Proposition 6.1. This gives practical stability of the origin of the

system of Eq. 6.5. The set Ωρ is an estimate of the region of attraction, and is used to design a

region constraint in Lyapunov-based EMPC. Thus, Ωρ is referred to as the stability region for the

remainder.

Remark 6.2. While the system of Eq. 6.3 is autonomous and thus, explicitly referring to the sta-

bility properties as uniform may not appear to be needed, the sampled-data system of Eq. 6.5 is a

periodically time-varying system and hence, the fact that stability holds uniformly is needed.

6.3 Robustness of LEMPC to Small Time-Delays

In this section, the closed-loop stability of the time-delay system of Eq. 6.3 under LEMPC, for-

mulated with an ordinary differential equation model of the system of Eq. 6.3, is analyzed. The

sequence {tk}k≥0 denotes the sequence of sampling times where tk := k∆ and k ∈ N.

6.3.1 Formulation and Implementation

We assume that the system of Eq. 6.3 is equipped with a stage cost, le : Ωρ ×U→ R, that is a

measure of the instantaneous economic cost of Eq. 6.3. The economic stage cost is assumed to

be continuous over its domain of definition and to depend on the current state and input, i.e., at

time t, the economic stage cost is le(x(t),u(t)). We will show that applying LEMPC similar to that

of Chapter 3, formulated with an ODE model of the system of Eq. 6.3, to the system of Eq. 6.3

will guarantee closed-loop stability (in a sense to be made precise below) for sufficiently small

time-delays. Instead of applying the two-mode LEMPC scheme of Eq. 3.3 directly to the time-

delay system of Eq. 6.3, we consider only mode one operation of the LEMPC. Since we only use

243



mode one operation of LEMPC, we drop this distinction and simply refer to this as LEMPC for

the remainder of this chapter.

Given that plant-model mismatch affects the accuracy of the prediction of any MPC scheme, a

subset of Ωρ is used in the design of the LEMPC whereby the LEMPC may dictate a time-varying

operating policy. The subset of Ωρ , denoted as Ωρ̂ (Bδ1 ⊂ Ωρ̂ ⊂ Ωρ ), is designed such that if the

current state x(tk) ∈ Ωρ̂ and the predicted state at the next sampling time z(tk+1) ∈ Ωρ̂ (z(tk+1)

denotes the predicted state at the next sampling time), then the actual state at the next sampling

time plus the input delay time will be in Ωρ . In this case, plant-model mismatch arises from the

use of an ODE model to predict the behavior of the time-delay system of Eq. 6.3. For any state

in Ωρ \Ωρ̂ , we use the stabilizing control law hc(x) to force the state back to Ωρ̂ . However, in

most practical cases, the amount of time that the stabilizing control law is applied to the system

is insignificant relative to the amount of time that the LEMPC is applied for good closed-loop

performance. It is important to note that the LEMPC of Eq. 3.3 uses a second mode of operation

to force the state to Ωρ̂ , utilizing a contractive Lyapunov-based constraint. Potentially, one could

consider using such a contractive constraint within the context of LEMPC for time-delay systems.

Nonetheless, the closed-loop stability properties of LEMPC with a contractive constraint for time-

delay systems remains an open problem from a theoretical standpoint.

The optimal control problem that defines the LEMPC problem for time-delay systems is given

by the following optimization problem:

min
v∈S(∆)

∫ tk+T

tk
le(z(τ),v(τ)) dτ +Vf (z(tk +T )) (6.16a)

s.t. ż(t) = f̄ (z(t),v(t)) (6.16b)

z(tk) = x(tk) (6.16c)

v(t) ∈ U, ∀ t ∈ [tk, tk +T ) (6.16d)

z(t) ∈Ωρ̂ , ∀ t ∈ [tk, tk +T ) (6.16e)

where f̄ (z,v) := f (z,z,v), T = N∆ (N ∈ N) is the prediction horizon, z denotes the predicted state
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trajectory over the prediction horizon, and v is the piecewise constant input trajectory over the

prediction horizon which is the decision variable of the optimal control problem.

The objective function of Eq. 6.16a consists of the economic cost functional with a terminal

cost. The design of the terminal cost is beyond the scope of this chapter because it is not needed

to prove closed-loop stability (for terminal cost design techniques for EMPC, see, for example, [4,

116]). A model (Eq. 6.16b) of the system of Eq. 6.3 with d1 = d2 = 0 is used to predict the future

behavior of the system under the input trajectory computed by the LEMPC over the prediction

horizon. The model is initialized with a state measurement at the current sampling time (Eq. 6.16c).

Eq. 6.16d constrains the computed input trajectory to take values within the set of admissible

control action values. The constraint of Eq. 6.16e bounds the predicted state trajectory be in Ωρ̂ .

The optimal input trajectory of Eq. 6.16 at sampling time tk is denoted as v∗(t|tk) and defined

over t ∈ [tk, tk +T ). The control action computed at the kth sampling period is u(t) = v∗(tk|tk) for

t ∈ [tk, tk+1). At the next sampling time, tk+1, the LEMPC (assuming x(tk+1) ∈Ωρ̂ ) is reinitialized

with an updated state measurement and it computes an optimal input trajectory over a shifted

horizon, i.e., LEMPC is applied in a standard receding horizon fashion. The algorithm below

summarizes the implementation of LEMPC:

Algorithm 6.1. Implementation of the LEMPC of Eq. 6.16.

1. At sampling time tk, the LEMPC receives a state measurement x(tk).

2. If x(tk) ∈Ωρ̂ , go to Step 2.1. Else, go to Step 2.2.

2.1 Solve the optimal control problem of Eq. 6.16 to compute the optimal input trajectory

v∗(t|tk) defined for t ∈ [tk, tk +T ). Go to Step 3.

2.2 Compute the control action from the stabilizing control law v∗(tk|tk) = hc(x(tk)) Go to

Step 3.

3. Send the control action v∗(tk|tk) to the control actuators which will be applied to the system

from tk +d2 to tk+1 +d2, i.e., u(t) = v∗(tk|tk) for t ∈ [tk, tk+1). Go to Step 4.
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4. Set k← k+1 and go to Step 1.

The main tuning parameter of LEMPC is ρ̂ and does not need to be chosen so that Ωρ̂ is the

largest subset of Ωρ such that the state is guaranteed to be in Ωρ under LEMPC. The parameter

ρ̂ governs the set of points (in state-space) where the LEMPC may operate the system in a time-

varying fashion to optimize the process economics. It is chosen to manage a potential trade-off

between robustness and performance of the closed-loop system. In this case, closed-loop robust-

ness is defined as the ability to maintain the closed-loop state inside an invariant state-space set in

the presence of uncertainty. The uncertainty considered here is time-delay that is not included in

the process model of the LEMPC. On the other hand, operating over a larger region in state-space

may improve closed-loop performance. If there is little plant-model mismatch, i.e., the delay is

small, one may take it to be almost the size of ρ because the LEMPC may very accurately pre-

dicted the behavior of the process. If there is significant plant-model mismatch, ρ̂ will need to be

much smaller than ρ . This will be extensively investigated further in the chemical process example

of Section 6.3.3.

6.3.2 Closed-loop Stability Analysis

In this subsection, sufficient conditions such that closed-loop stability of the time-delay system of

Eq. 6.3 under the LEMPC of Eq. 6.16 in the sense that the state trajectory is bounded in Ωρ are

derived. We will show that the state will be maintained in Ωρ when the control action is computed

by LEMPC and if the state is in Ωρ \Ωρ̂ , the state will be converge to Ωρ̂ in finite-time when the

control action is computed by the explicit stabilizing control law.

The following proposition bounds the difference between the state trajectory of the DDE sys-

tem of Eq. 6.3 and of the ODE system of Eq. 6.3 with d1 = d2 = 0 over a finite-time interval.
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Proposition 6.2. Consider the following two systems:

ẋ(t) = f (x(t),x(t−d1),u(t−d2)) (6.17)

ż(t) = f (z(t),z(t),v(t)) (6.18)

where the initial time is t0, the initial data of Eq. 6.17 is given by ηx ∈ C([t0− d1, t0],Rn) where

ηx(θ) ∈ Ωρ for θ ∈ [t0− d1, t0], u(t) ∈ U for all t ≥ t0− d2, v(t) ∈ U for all t ≥ t0, and x(t0) =

z(t0) ∈ S where S is a compact subset of Ωρ . Let t1 > 0 be such that the state trajectories of the

systems of Eqs. 6.17-6.18 are bounded in Ωρ for all t ∈ [t0, t0 + t1]. There exists ᾱ ∈K such that

|x(t)− z(t)| ≤ ᾱ(t− t0) (6.19)

for all t ∈ [t0, t0 + t1].

Proof. Owing to the fact that f is locally Lipschitz, there exist positive constants Lx1 , Lx2 , and Lu

such that

| f (x,y,u)− f (z,z,v)| ≤ Lx1|x− z|+Lx2|y− z|+Lu|u− v| (6.20)

for all x, y, z ∈ Ωρ and u, v ∈ U. Consider the difference between the state, x(t), of Eq. 6.17 and

the state, z(t) of Eq. 6.18, for t ∈ [t0, t0 + t1] where t1 > 0 is such that x(t) and z(t) are bounded in

Ωρ for all t ∈ [t0, t0 + t1] (the existence of t1 > 0 follows from continuity arguments and the fact

that S ⊂ Ωρ is compact). Let e(t) := x(t)− z(t) which has dynamics ė(t) = ẋ(t)− ż(t). The error

dynamics may be bounded using Eq. 6.20:

|ė(t)|= | f (x(t),x(t−d1),u(t−d2))− f (z(t),z(t),v(t))|

≤ Lx1|x(t)− z(t)|+Lx2|x(t−d1)− z(t)|+Lu|u(t−d2)− v(t)|

≤ Lx1|e(t)|+Lx2 |x(t−d1)− x(t)+ x(t)− z(t)|+Lu|u(t−d2)− v(t)|

≤ (Lx1 +Lx2)|e(t)|+Lx2 |x(t−d1)− x(t)|+2Lu|umax| (6.21)
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for all t ∈ [t0, t0+ t1] where x(t), x(t−d1), z(t) ∈Ωρ and u(t−d2), v(t) ∈U. The last inequality of

Eq. 6.21 follows from the triangle inequality and the fact that u(t−d2) and v(t) are bounded in U.

For all x(s) ∈Ωρ for s ∈ [t−d1, t], we may bound the difference between x(t−d1) and x(t):

|x(t−d1)− x(t)| ≤ d1‖xd(t)‖ ≤ d1α
−1
1 (ρ) (6.22)

where ‖xd(t)‖ is a slight abuse of notation and it denotes the max-norm of an element in the space

C([−d1,0],Rn), i.e., ‖xd(t)‖ = maxθ∈[−d1,0] |x(t − θ)| where xd(t) ∈ C([−d1,0],Rn) and the last

inequality follows from Eq. 6.4a. From Eqs. 6.21-6.22, the error dynamics may be bounded by:

|ė(t)| ≤ (Lx1 +Lx2)|e(t)|+Lx2d1α
−1
1 (ρ)+2Lu|umax| . (6.23)

The error is bounded for all t ∈ [t0, t0+t1] which may be shown by integrating the bound of Eq. 6.23

and noting e(t0) = 0 to derive the following bound:

|e(t)| ≤ Lx2d1α
−1
1 (ρ)+2Lu|umax|
(Lx1 +Lx2)

[exp((Lx1 +Lx2)(t− t0))−1] (6.24)

for all t ∈ [t0, t0 + t1]. Taking

ā(s) :=
Lx2d1α

−1
1 (ρ)+2Lu|umax|
(Lx1 +Lx2)

[exp((Lx1 +Lx2)s)−1] (6.25)

completes the proof.

The difference of the Lyapunov function values evaluated at any two points in Ωρ may be

bounded by a quadratic function because V is continuously differentiable and Ωρ is a compact set.

This is stated in the following proposition.

Proposition 6.3 (c.f. Proposition 6.3). For all x1, x2 ∈Ωρ , there exists β > 0 such that

V (x1)−V (x2)≤ fV (|x1− x2|) (6.26)
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where the quadratic function fV (·) is given by

fV (s) := α4(α
−1
1 (ρ))s+β s2 . (6.27)

The following result gives sufficient conditions such that the closed-loop state trajectory of the

system Eq. 6.3 under the LEMPC implemented according to Algorithm 6.1 is always bounded in

Ωρ .

Theorem 6.2. Consider the system of Eq. 6.3 under the LEMPC of Eq. 6.16 designed via a control

law that satisfies Eq. 6.4 which is implemented according to Algorithm 6.1. Let the initial data

φx ∈ C([−d1,0],Rn) be such that φx(s) ∈ Ωρ for all s ∈ [−d1,0] and the initial input φu be such

that the state over the interval [0,d2] is bounded in Ωρ for t ∈ [0,d2] in the sense that x(t) ∈Ωρ for

all t ∈ [0,d2]. Let t̃d ∈ (0, t∗d) and ρ̂ > 0 be such that

ρ̂ < ρ− fV (ᾱ(∆+d2)) (6.28)

and Bδ1 ⊆ Ωρ̂ ⊂ Ωρ ⊆ Bδ2 . If T ≥ ∆, then the closed-loop state trajectory of Eq. 6.3 under the

LEMPC is bounded in Ωρ for all t ≥ 0.

Proof. To prove the theorem, we need to show the following: (1) the LEMPC is feasible for all

x(tk) ∈ Ωρ̂ , under the LEMPC, (2) the state is bounded in Ωρ under the LEMPC, and (3) the

closed-loop state starting from Ωρ \Ωρ̂ will converge to Ωρ̂ in a finite number of sampling times

without coming out of Ωρ . To help the readability of the proof, we divide the proof into three parts

corresponding to the three results that we need to show, respectively.

Part 1: Feasibility of the LEMPC is proved provided that the state at the current sampling

time is in Ωρ̂ . If t̃d ∈ (0, t∗d) (where t̃d and t∗d are defined according to Proposition 6.1), the input

trajectory computed by the stabilizing control law hc(x) applied in a sample-and-hold fashion is a

feasible solution to the optimal control problem of Eq. 6.16. Specifically, let ẑ(t) and v̂(t) denote
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the solution and input trajectory, respectively, to the system:

˙̂z(t) = f̄ (ẑ(t), v̂(t))

v̂(t) = hc(ẑ( j∆)), t ∈ [t j, t j+1)
(6.29)

for j = k, k+1, . . . , k+N−1 with the initial condition ẑ(tk) = x(tk)∈Ωρ̂ . Owing to the properties

of the stabilizing control law hc(x), v̂(t)∈U for all t ∈ [tk, tk+T ). Moreover, from Proposition 6.1,

the input trajectory v̂ is a feasible input trajectory to the optimal control problem of Eq. 6.16. This

statement holds since Ωρ̂ is forward invariant for the sampled-data system of Eq. 6.29 if Bδ1 ⊆Ωρ̂

and if the sampling period is sufficiently small such that Proposition 6.1 holds, i.e., the proof of

forward invariance of the set Ωρ̂ for the system of Eq. 6.29 follows that of Proposition 6.1 with

d1 = d2 = 0.

Part 2: We consider boundedness of the state in Ωρ under LEMPC. The LEMPC computes an

input trajectory such that the predicted state will be maintained in Ωρ̂ over the prediction horizon.

However, the system of Eq. 6.3 does not evolve according to the ODE model of Eq. 6.16b and

the control actions applied to the system over the time tk to tk +d1 may be computed by either the

LEMPC or the stabilizing control law at previous sampling times. Specifically, the predicted state,

z(t), over the prediction horizon will be bounded in Ωρ̂ for all t ∈ [tk, tk +T ) under the computed

input trajectory which is guaranteed by the constraint of Eq. 6.16e. Owing to the input delay the

control action computed at tk is applied to the system from tk +d2 to tk+1 +d2. We need to show

that x(t) ∈Ωρ for all t ∈ [tk, tk+1 +d2] when x(tk) ∈Ωρ̂ .

Let ρ̂ satisfy Eq. 6.28. We proceed by contradiction and assume there exists a time τ∗ ∈

[tk, tk+1+d2] such that V (x(τ∗))> ρ (the case that x(t) is not defined for some τ ∈ [tk, tk+1+d2] is

also covered by this assumption). We define the time τ1 as follows:

τ1 := inf{τ ∈ [tk, tk+1 +d2] : V (x(τ))> ρ} . (6.30)

A standard continuity argument in conjunction with the fact that V (x(tk)) ≤ ρ̂ < ρ shows that
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τ1 ∈ (tk, tk+1 + d2], V (x(t)) ≤ ρ for all t ∈ [tk,τ1] with V (x(τ1)) = ρ , and V (x(t)) > ρ for some

t ∈ [τ1, tk+1 +d2]. If ρ̂ satisfies Eq. 6.28, we have

ρ =V (x(τ1))≤V (z(τ1))+ fV (ᾱ(τ1))≤ ρ̂ + fV (ᾱ(∆+d2))< ρ (6.31)

where the first inequality follows from Propositions 6.2-6.3 and the second inequality follows from

the fact that fV ◦ ᾱ ∈K and τ1≤∆+d2. Eq. 6.31 leads to a contradiction. Thus, x(tk+1+d1)∈Ωρ

if Eq. 6.28 is satisfied (regardless of whether the LEMPC or the stabilizing control hc(x) is used to

compute the input trajectory over tk to tk +d1).

Part 3: We prove that the state will converge to Ωρ̂ for any state starting in Ωρ \Ωρ̂ . When

the current state x(tk) ∈ Ωρ \Ωρ̂ , the control action is computed from the stabilizing control law

hc(x). First, consider tk ∈ [0,d2], by assumption of the initial data and initial input value, the past

data from tk−d1 to tk is in Ωρ . The stabilizing control law will force the state to converge to Ωρ̂

without coming out of Ωρ in finite-time if t̃d ∈ (0, t∗d). This follows from Proposition 6.1.

Now, let us consider the case that the LEMPC previously computed the control actions for the

system. Owing to the plant-model mismatch, the state may come outside of Ωρ̂ . From Part 2, the

state will still remain bounded in Ωρ if indeed it comes outside of Ωρ̂ . Again, once the stabilizing

control law hc(x) starts to compute control actions for the system to force the state to converge to

Ωρ̂ , all the assumptions of Proposition 6.1 are satisfied (assuming t̃d ∈ (0, t∗d)) and thus, the state

will be forced back to Ωρ̂ in finite-time without coming out of Ωρ when x(tk) ∈ Ωρ \Ωρ̂ which

completes the proof.

Remark 6.3. Given the generality of the class of nonlinear time-delay systems considered, it is

difficult to explicitly characterize the functions used in the analysis. The results and conditions of

this section are constructive in the sense that they provide insight into the relationship of system

parameters, e.g., nonlinearities and delay size, and design parameters of the control system, e.g.,

sampling period, choice of stabilizing control law hc(x), and region constraint size, Ωρ̂ .

Remark 6.4. In Eq. 6.21 of the proof of Proposition 6.2, we bound |u(t − d2)− v(t)| by 2|umax|
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() which may appear overly conservative. Even if v(t) = u(t) for all t, the input trajectories are

piecewise continuous. For a given t, the control actions u(t− d2) (control action implemented at

time t) and u(t) (control action computed at time t) could be computed at different sampling times

and u(t) 6= u(t−d2). Within the context of EMPC, it is conceivable that |u(t−d2)−u(t)|= 2|umax|

as is the case when EMPC computes a bang-bang input trajectory. One could consider imposing

rate of change constraints within the context of EMPC that limits how much the computed control

action may change at each sampling time, i.e., |u(tk+1)−u(tk)| ≤ δu. This may allow one to upper

bound |u(t−d2)−u(t)| by δu. Nonetheless, this may make the EMPC problem infeasible and/or

may limit the achievable closed-loop performance when rate of change constraints are imposed in

the EMPC problem.

Remark 6.5. Stabilization at a steady-state typically will provide a degree of robustness to plant-

model mismatch. In contrast, LEMPC may dictate a time-varying operating strategy. While time-

varying operation may lead to better closed-loop economic performance, it may lead to a decrease

in the robustness to uncertainty (see the chemical process example of Section 6.3.3 below for a

demonstration of this point).

Remark 6.6. The sampling period ∆ plays a role in stability and performance. Sufficiently fast

sampling is required to maintain closed-loop stability (Proposition 6.1 and Theorem 6.2). Poten-

tially, faster sampling may also improve closed-loop performance because there are more degrees

of freedom to optimize over. However, in the example considered below, little performance benefit

is achieved through faster sampling. From a practical standpoint, there may also be limitations on

the hardware that may limit how fast one may sample.

6.3.3 Application to a Chemical Process Example

Consider a well-mixed, non-isothermal continuous stirred-tank reactor (CSTR) where an irre-

versible, elementary second-order, and exothermic reaction takes place that converts a reactant

A to a desired product B (A→ B). A process flow diagram of the CSTR is given in Fig. 6.1. The

inlet stream of the reactor with flow rate λF (constant density of the inlet flow stream is assumed),
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Table 6.1: Notation and parameter values of the CSTR with recycle.

Density ρL = 1.0×103 kg m−3

Heat capacity Cp = 4.18kJ kg−1 K−1

Flow rate F = 6.0m3 h−1

Reactor volume VR = 1.0m3

Heat of reaction ∆H =−7.8×104 kJ kmol−1

Activation energy E/R = 5.7×104/8.314K
Feed temperature Tf = 300.0K
Reaction rate constant k0 = 1.0×109 m3 kmol−1 h−1

Splitting fraction λ = 0.70
Concentration of chemical A CA
Reactor temperature T
Heat removal rate from reactor Q
Feed concentration CA f

Figure 6.1: Process flow diagram of the CSTR with recycle.
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temperature Tf , and reactant concentration CA f feeds the reactor with the reactant A in an inert

solvent D. The outlet stream of the reactor is split with a constant splitting fraction λ (λ ∈ [0,1]),

and the fraction λ of the outlet stream is the product stream. A recycle stream, which contains a

fraction of 1−λ of the reactor outlet, is used to recover unreacted A. A transportation lag, which

is modeled as a time-delay with magnitude d1, is considered in the recycle stream leading to a state

delay in the process model. To supply or remove thermal energy to/from the reactor, the CSTR

is outfitted with a jacket. The manipulated inputs to the CSTR are the feed concentration of the

reactant CA f and the heat rate Q supplied to/removed from the reactor.

To construct a first-principles model of the reactor, constant liquid hold-up, density, and heat

capacity are assumed. In addition to the state delay, the control actuators are assumed to operate

with dead-time which gives rise to input delay. The input delay is assumed to model, for instance,

the actuator dynamics and/or to model the possible computation delay resulting from solving the

EMPC optimization problem on-line. The dead-times of the two manipulated inputs are assumed

to be the same for simplicity of the presentation and are denoted as d2. Using a mass balance of the

reactant A and energy balance along with standard modeling assumptions, a dynamic model may

be constructed of the CSTR with recycle and is given by the following system of DDEs:

ĊA(t) =
(1−λ )F

VR
CA(t−d1)+

λF
VR

CA f (t−d2)−
F
VR

CA(t)− k0e−E/RT (t)C2
A(t) (6.32a)

Ṫ (t) =
(1−λ )F

VR
T (t−d1)+

λF
VR

Tf −
F
VR

T (t)− ∆Hk0

ρLCp
e−E/RT (t)C2

A(t)+
Q(t−d2)

VRρLCp
(6.32b)

where the state variables are the concentration of the reactant CA in the reactor and the reactor tem-

perature T , i.e., xT = [CA T ]. The remaining notation and process parameter values are defined and

summarized in Table 6.1. The admissible input values for each input are bounded in the following

sets: CA0 ∈ [0.5, 7.5] kmol m−3 and Q ∈ [−80.0, 80.0] MJ h−1. The CSTR model of Eq. 6.32

has a steady-state in the operating range of interest: xT
s := [CAs Ts] = [2.96kmol m−3 320.0K]

corresponding to the inputs: CA0s = 4.0kmol m−3 and Qs = 11.5MJ h−1. The steady-state xs is

open-loop asymptotically stable.
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The control objective is to operate the CSTR around the steady-state to maximize the average

production rate of the product B while satisfying two process constraints. The process constraints

are: (1) to maintain the closed-loop state within a bounded and well-defined state-space set and (2)

the time-averaged amount of reactant A that may be fed to the CSTR must be equal to λFCA0s or

mathematically,
1
t f

∫ t f

0
CA0(t) dt =CA0s (6.33)

where t f is the length of operation. To accomplish the control objective while satisfying the pro-

cess constraints, LEMPC is applied to the CSTR. In the closed-loop simulations of this section,

robustness of LEMPC to time-delay is demonstrated. More precisely, we illustrate robustness in

the sense that the closed-loop state trajectory of Eq. 6.32 under an LEMPC system formulated with

an ODE model of the CSTR will be maintained in a compact state-space set (in R2) for sufficiently

small time-delays.

To design an LEMPC system with the ODE model of the CSTR (Eq. 6.32 with d1 = d2 = 0),

an explicit stabilizing control law is designed and a Lyapunov function for the closed-loop system

under the control law is constructed. The explicit stabilizing control law hc : R2 → U is given

component-wise with hT
c (x) = [hc,1(x) hc,2(x)] where hc,1(x) = CA0s to satisfy the input average

constraint of Eq. 6.33 and feedback linearization for h2(x). Specifically, within the range where

the input bounds are satisfied, the following nonlinear control law makes the evolution of T to be

described by a linear model:

h̄c,2(x) =−VRρLCp

(
−λF

VR
Tf +

λF
VR

T +
∆Hk0

ρLCp
e−E/RTC2

A +K(T −Ts)

)
(6.34)

where K is the gain of the control law. To account for the bounds on the admissible input, saturation
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is accounted for in hc,2 which is given by

h2(x) =


Qmin if h̄2(x)< Qmin

h̄2(x) if Qmin ≤ h̄2(x)≤ Qmax

Qmax if h̄2(x)> Qmax

(6.35)

where Qmin and Qmax is the minimum and maximum admissible heat rate value. In this example,

the gain of the controller is tuned to K = 2.0. A quadratic Lyapunov function for the closed-loop

system under the stabilizing control law is constructed, which has the form:

V (x) = (x− xs)
T P(x− xs) (6.36)

where

P =

500 20

20 1

 .

With the control law and Lyapunov function, the stability region is estimated to be a level set of

the Lyapunov function Ωρ with ρ = 1200 by taking it to be points in state-space where V̇ < 0.

The following economic stage cost is used in the LEMPC:

le(x,u) =−k0e−E/RTC2
A +qT (T −Ts)

2 (6.37)

where the first term credits the production rate of B and the second term penalizes temperature de-

viations from the steady-state temperature Ts. The justification for the second term is the stability

region of this system is large and operating over a large temperature range may be impractical.

Thus, the second term penalizes large deviations of the temperature from the steady-state tem-

perature. In this case, the stage cost parameter is qT = 0.05 which has been tuned on the basis

of the delay-free system such that the closed-loop temperature is maintained near the steady-state

temperature.

256



To integrate forward in time the DDEs of Eq. 6.32, the standard Runge-Kutta (4,5) method

was used with an absolute tolerance set at 10−7. The remaining parameters of the LEMPC and

implementation details of the LEMPC are as followed: the sampling period is ∆ = 0.01h, the

number of sampling periods in the prediction horizon is N = 70, i.e., T = 0.70h, and the average

constraint must be satisfied over each operating interval of 0.65h, i.e., the average constraint of

Eq. 6.33 must be satisfied every 0.65h which guarantees that the average constraint is satisfied over

the entire length of operation. For the remainder, the operating period will refer to an interval of

length 0.65h that the average constraint is imposed. The prediction horizon and operating period

length have been chosen so that the asymptotic average closed-loop performance of the CSTR

without time-delays leads to better closed-loop performance compared to that of the operation at

the steady-state. Orthogonal collocation with three Radau collocation points per sampling period

is used to integrate the ODE model within the LEMPC optimal control problem. Ipopt [187] was

employed to solve the optimal control problem of the LEMPC at each sampling time. Analytical

first-order and second-order derivative information was supplied to the solver. The simulations

were completed on a desktop computer with an Intel R© CoreTM 2 Quad 2.66GHz processor running

an Ubuntu Linux operating system. In the simulations below, the computation time to solve the

optimal control problem at each sampling time was less than one percent of the sampling period

(∆ = 0.01h = 36s) on average.

In the first set of simulations, the closed-loop stability and performance properties of the CSTR

without delays under LEMPC are considered. The level set Ωρ̂ is such that ρ̂ = 1000. The closed-

loop CSTR under LEMPC without delay is simulated over six operating periods, and the closed-

loop trajectories are given in Fig. 6.2. From Fig. 6.2, the LEMPC dictates a cyclical operating

policy. Throughout the length of operation, the state trajectory is maintained in Ωρ . The asymptotic

average production rate of B, i.e., average production rate after the effect of the initial condition

becomes insignificant, was 4.820kmol m−3. As a comparison, the average production rate of

B at the steady-state is 4.354kmol m−3 and the closed-loop (asymptotic) production rate under

LEMPC is 10.70 percent better than the steady-state production rate. Moreover, we will use the
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Figure 6.2: The closed-loop trajectories of the CSTR under the LEMPC without time-delays (d1 =

d2 = 0).

average closed-loop economic stage cost index (given and explained below) to assess the closed-

loop performance of the CSTR with time-delay. The asymptotic average economic stage cost index

for this case study is 4.572, while it is 4.354 for operation at the steady-state (performance under

LEMPC as assessed through this metric is 5.01 percent better than that at the steady-state).

In the second set of simulations, we consider the effect of the time-delay on performance and

stability. In all cases, the state and input delays are taken to be equal in magnitude and the time-

delay is denoted as d (d = d1 = d2). Fig. 6.3 shows the closed-loop state evolution of the CSTR

under the LEMPC for d = 0.05h and d = 0.10h, respectively. With the time-delay, the CSTR is

still operated in a cyclical manner, but as the time-delay increases, the CSTR operates over a larger

region of state-space. The closed-loop state is maintained in Ωρ for d = 0.05h, but for d = 0.10h,

the state is not bounded in Ωρ over the length of operation. To assess the closed-loop performance,

the average economic stage cost performance index is used which is given by:

L̄e =
1
t f

∫ t f

0
le(x(t),u(t−d2)) dt . (6.38)

The average economic stage cost is computed with the closed-loop state and input. The reason
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Figure 6.3: The state-space evolution of the closed-loop CSTR states under LEMPC with (a)

d = 0.05h and (b) d = 0.10h.

for using the metric of Eq. 6.38 as opposed to the average production rate of B to assess the

closed-loop performance is as the magnitude of the time-delay increases, the CSTR operates over

a larger temperature range (Fig. 6.3). The temperature is greater than the steady-state temperature

on average for the cases with time-delay. Since the production rate scales with temperature, the

production rate of B increases with the size of the time-delay. Moreover, the LEMPC does not

directly optimize the production rate of B, but rather the stage cost of Eq. 6.37. Thus, we use the

metric of Eq. 6.38 to assess the performance because it also accounts for operation over a larger

temperature range.

Table 6.2 summaries the closed-loop performance and closed-loop stability properties of the

CSTR under LEMPC for several closed-loop simulations each over six operating periods with

varying time-delays. Closed-loop stability is defined as the closed-loop state remaining bounded

in Ωρ over the length of the simulated operation. From Table 6.2, it follows that the closed-

loop performance deteriorates as the time-delay increases. Moreover, for time-delays greater than

0.06h, the closed-loop stability of the CSTR is not maintained. It is important to note that the

state trajectory of the closed-loop system under the stabilizing control law remains bounded in Ωρ
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Table 6.2: Closed-loop performance under LEMPC relative to the performance at the steady-state

and closed-loop stability properties of the CSTR under LEMPC.

d L̄e Diff. (%) Stability

0 4.668 7.21 Yes
0.01 4.654 6.88 Yes
0.02 4.618 6.07 Yes
0.03 4.518 3.77 Yes
0.04 4.441 1.99 Yes
0.05 4.220 -3.09 Yes
0.06 3.995 -8.26 Yes
0.07 2.763 -36.55 No
0.08 3.002 -31.06 No
0.09 1.801 -58.64 No
0.10 0.565 -87.03 No

The average stage cost index for operation at the steady-state is 4.354. The column “Diff.” is the
percent difference of the average stage cost index relative to the steady-state stage cost index.
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Figure 6.4: A comparison of the closed-loop performance with the tuning parameter ρ̂ and magni-

tude of the time-delay.
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for all the magnitudes of the time-delay used in Table 6.2 which suggests that steady-state-type

operation, i.e., stabilization at a steady-state, is more robust to time-delays than time-varying-type

operation.

The available tuning parameter of LEMPC that may be manipulated to make the closed-loop

system more robust to uncertainty is ρ̂ , i.e., the level set where LEMPC operates. In the last set

of simulations, the effect of the size of ρ̂ on closed-loop stability and performance is evaluated.

Several closed-loop simulations were performed each over six operating periods with varying ρ̂

and d. The average economic stage cost indices for these simulations are given in Fig. 6.4. Only

the closed-loop simulations that led to a stable operation were included in Fig. 6.4. Fig. 6.4 shows

that the closed-loop performance degrades with larger time-delays. For small time-delays, the

closed-loop performance is better as the size of Ωρ̂ increases because the LEMPC may operate the

system over a larger state-space set with greater ρ̂ . For small time-delays, the ODE model may

capture enough of the behavior of the system to improve the performance. For larger time-delays,

the closed-loop performance is worse than that achieved at the steady-state.

6.4 Time-delay Compensation for Improved Closed-loop Per-

formance

Larger time-delay may lead to significant performance degradation when the control system does

not explicitly account for the time-delays as demonstrated in the example of the previous section.

In this section, a methodological framework for compensating state and input delay within the

context of EMPC is presented. A closed-loop predictor is used to compensate the adverse effect of

the input delay, and a DDE model is used within the EMPC to predict the behavior of the system

of Eq. 6.3. We restrict our attention to nominally operated systems of the form of Eq. 6.3.
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Predictor LEMPC
Process

ẋ(t) = f(x(t), x(t−d1), u(t−d2))

x(tk)

x̂d(tk + d2) u∗(tk|tk − d2)

Figure 6.5: Flow diagram of the predictor feedback LEMPC scheme.

6.4.1 Predictor Feedback LEMPC Methodology and Implementation

A block diagram of the predictor feedback LEMPC methodology is shown in Fig. 6.5. At a sam-

pling time tk, a predictor is used to predict the state at tk + d2 utilizing the past measurements of

the state and the previously computed input trajectory over tk to tk +d2 to compensate the effect of

the input delay. Then, the LEMPC system is initialized with the predicted state and solves for the

optimal control action that will be implemented on the system from tk +d2 to tk+1+d2. Moreover,

instead of using an ODE model within the LEMPC, the DDE model is used to account for the state

delay. Thus, the predictor must also generate the initial data used to initialize the DDE model in

the LEMPC from tk +d2−d1 to tk +d2. The predicted state (initial data) for a given sampling time

is denoted as x̂d(tk +d2) ∈C([−d1,0],Rn).

Given that we consider nominal operation, the predictor may simply consist of solving the

DDEs forward in time which is what we employ in the example below. The predictor is a closed-

loop predictor in the sense that the predictor is reinitialized with a new state measurement at each

sampling time. The closed-loop nature of the predictor allows for the potential use of the predic-

tor feedback LEMPC on open-loop unstable processes as opposed to open-loop predictors, e.g.,

the classical Smith predictor, which require the steady-state solution be open-loop asymptotically

stable. Other types of time-delay compensators or predictors may potentially be used to possibly

increase the robustness of the closed-loop system to plant-model mismatch, e.g., the predictor de-

veloped in [82], but we note that most, if not all, of time-delay compensators have been designed

for systems with input-delay only. Thus, appropriate modifications may need to be made to these

other types of time-delay compensators to account for state delay.
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Figure 6.6: An illustration of the phases of the predictor feedback LEMPC scheme.

A shifted sampling time sequence is defined as {t̄k}k≥0 where t̄k = k∆+d2, k = 0, 1, . . . which

is a time sequence corresponding to when control actions are applied to the system, i.e., the control

action computed at tk is applied to the system from t̄k to t̄k+1. The optimal control problem that

defines the predictor feedback LEMPC is:

min
v∈S(∆)

∫ t̄k+T

t̄k
le(z(τ),v(τ)) dτ +Vf (z(t̄k +T )) (6.39a)

s.t. ż(t) = f (z(t),z(t−d1),v(t)) (6.39b)

zd(t̄k) = x̂d(t̄k) (6.39c)

v(t) ∈ U, ∀ t ∈ [t̄k, t̄k +T ) (6.39d)

z(t) ∈Ωρ̂ , ∀ t ∈ [t̄k, t̄k +T ) (6.39e)

where x̂(tk) = x̂d(t̄k)(0). The main difference between the predictor feedback LEMPC and the

LEMPC of Eq. 6.16 is the DDE model, which is initialized with the initial data computed by the

predictor and provides a prediction of the future evolution of the system in the predictor feed-

back LEMPC. The LEMPC of Eq. 6.16 uses an ODE model and is initialized with a current state

measurement.

An illustration of the implementation of the predictor feedback LEMPC methodology is given

in Fig. 6.6. At a sampling time tk, the predictor, i.e., prediction phase, uses past state data and
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the control actions that will be applied from tk to tk + d2 (these control actions are computed at

previous sampling times) to predict the state trajectory over tk to tk +d2. In the optimization phase,

the predictor feedback LEMPC solves for the optimal input trajectory over tk + d2 to tk + d2 +T .

This implementation is summarized in the following algorithm:

Algorithm 6.2. Implementation of the predictor feedback LEMPC of Eq. 6.39.

1. At sampling time tk, the predictor receives a state measurement x(tk). Go to Step 2.

2. The predictor computes the predicted data x̂d(t̄k). Go to Step 3.

3. If x̂(t̄k) ∈Ωρ̂ , go to Step 3.1. Else, go to Step 3.2.

3.1 Solve the optimal control problem of Eq. 6.39 to compute the optimal input trajectory

v∗(t|t̄k−d2) defined for t ∈ [t̄k, t̄k+N). Go to Step 4.

3.2 Compute the control action from the stabilizing control law v∗(t̄k|t̄k− d2) = hc(x̂(t̄k))

Go to Step 4.

4. Send the computed control action v∗(t̄k|t̄k− d2), to the control actuators to be applied from

t̄k to t̄k+1, i.e., u(t +d2) = v∗(tk +d2|tk) for t ∈ [tk, tk+1). Go to Step 5.

5. Set k← k+1 and go to Step 1.

Remark 6.7. In the design of the LEMPC of Eq. 6.39, we leverage the results of Proposition 6.1 to

again design an explicit stabilizing control law and utilize it to characterize a region constraint that

is imposed in the LEMPC problem. This design methodology allows for standard control tech-

niques developed for systems described by nonlinear ordinary differential equations be applied to

design stabilizing control laws for nonlinear time-delay systems. On the other hand, the results

and size of delays that may be handled in the closed-loop systems may be limited owing to the

fact that the delays are neglected in the design of the stabilizing control law. However, design of

stabilizing control laws for nonlinear time-delay systems is by no means a trivial task. Moreover,
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a complete and rigorous stability analysis of such a closed-loop system is a challenging and po-

tentially intractable task given the degree of complexity, e.g., state and input delay, sampling, and

nonlinearities.

Remark 6.8. It is important to point out that the extension of numerical methods used to obtain

solutions of ordinary differential equations (ODEs) to obtaining solutions of differential difference

equations (DDEs) is not straightforward [17]. Thus, when selecting the numerical method used

to solve the predictor, the practitioner must be aware of potential numerical issues, e.g., “ghost

solutions”, loss of injectivity, and non-uniqueness of solution.

6.4.2 Application to a Chemical Process Example

The predictor feedback LEMPC methodology is applied to the CSTR example of Eq. 6.32. The

LEMPC design and parameters are the same as that used in the previous section (in all simula-

tions below ρ̂ = 1000). To solve the DDEs of Eq. 6.32 embedded in the LEMPC optimization

problem, i.e., the constraint of Eq. 6.39b, orthogonal collocation with three Radau collocation

points per sampling period was employed (see, for example, [16, 17] for stability and convergence

analysis of collocation methods applied to DDEs). As a qualitative comparison, a single-shooting

implementation of the optimal control problem (OCP) of Eq. 6.39 using the explicit Euler method

with first-order derivatives approximated through finite-difference and quasi-Newton method with

the Broyden-Fletcher-Goldforb-Shanno (BFGS) update method for the second-order derivatives

required greater than fifty times more time to solve the optimization problem at each sampling

time compared to the implementation with orthogonal collocation. Moreover, the average com-

putation time required to solve the optimal control problem with the collocation implementation

was approximately two percent of the sampling period. It is important to point out that while the

success of orthogonal collocation used to solve OCPs with ODEs has been well documented [20],

fewer cases of employing orthogonal collocation within the context of OCPs formulated with DDE

models have reported in the literature especially in context of the EMPC literature.

Several closed-loop simulations were completed of the CSTR under the predictor feedback
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Figure 6.7: The closed-loop trajectories of the CSTR under the LEMPC with time-delay of d =

0.10h. The input trajectories shown in the plots correspond to the input values applied to the

system at each time.
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Figure 6.8: The state-space evolution of the closed-loop CSTR states under LEMPC with (a)

d = 0.05h and (b) d = 0.10h.
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Table 6.3: Closed-loop performance of the CSTR of Eq. 6.32 under the predictor feedback LEMPC

relative to the performance at the steady-state.

d L̄e Diff. (%)

0 4.668 7.21
0.01 4.675 7.36
0.02 4.682 7.54
0.03 4.690 7.71
0.04 4.697 7.87
0.05 4.703 8.01
0.06 4.710 8.17
0.07 4.705 8.07
0.08 4.722 8.45
0.09 4.728 8.58
0.10 4.733 8.70

The average stage cost index for operation at the steady-state is 4.354. The column “Diff.” is the
percent difference of the average stage cost index relative to the steady-state stage cost index.

LEMPC with varying magnitudes of the time-delays. Fig. 6.7 gives the closed-loop trajectories of

the CSTR with d = 0.10h. In comparison to the CSTR under LEMPC formulated with an ODE

model (Fig. 6.3(b)), the predictor feedback LEMPC operates the CSTR over a smaller temperature

range (Fig. 6.7). To further emphasize the differences between the evolution of the CSTR under

the predictor feedback LEMPC and the LEMPC of the previous section, Fig. 6.8 gives the state

space evolution of the CSTR with d = 0.05h and d = 0.10h, respectively. Comparing the evolution

of the two cases shown in Fig. 6.7, fewer differences in the evolution between the two cases are

observed compared to the two cases of Fig. 6.3.

The closed-loop performance under the predictor feedback LEMPC is considered with respect

to the magnitude of the time-delay. Table 6.3 summarizes the average economic stage cost of

Eq. 6.38 of six operating period simulations. Interestingly, the closed-loop performance improves

with larger time-delay. The performance improvement is associated with the state delay in the

stream recycle (given that the predictor effectively deals with the effect of the input delay on

the closed-loop system). In all cases, the closed-loop performance under the predictor feedback
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LEMPC was at least 7 percent better than that achieved at the steady-state.

6.5 Conclusion

In this chapter, closed-loop stability and performance of systems described by nonlinear DDEs

under Lyapunov-based economic model predictive control (LEMPC) was considered. First, condi-

tions such that closed-loop stability for systems with sufficiently small state and input delays under

LEMPC, formulated with an ODE model of the system, were derived. A chemical process exam-

ple demonstrated that indeed closed-loop stability is maintained under LEMPC for sufficiently

small time-delays in both the states and the inputs. However, closed-loop performance signifi-

cantly degraded for larger input delays. This motivated designing a predictor feedback LEMPC

methodology. The predictor feedback LEMPC design employs a predictor to compute a prediction

of the state after the input delay and an LEMPC scheme, formulated with a DDE model. The

predicted state from the predictor is used to initialize the DDE model. The predictor feedback

LEMPC was applied to the chemical process example and resulted in better closed-loop stability

and performance properties compared to the LEMPC, formulated with an ODE approximation of

the nonlinear time-delay system.
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Chapter 7

Selection of Control Configurations for

Economic Model Predictive Control

7.1 Introduction

Control structure design, i.e., the selection of manipulated, controlled, and measured variables has

been the subject of extensive research within the process control community for many years result-

ing in many methods for input-output loop pairing and control configuration selection, e.g., [131,

177, 113, 173, 186, 154]. For linear systems, an important early result was the relative gain ar-

ray (RGA) which is commonly used for input-output loop pairing [23], particularly in the context

of proportional-integral-derivative (PID) control. Several extensions and variations of the RGA

have since been proposed like the extension of the RGA to non-square linear systems, i.e., systems

with a different number of inputs than the number of outputs [28] and the various extensions of

RGA to nonlinear systems [66, 130]. Two metrics are often used to evaluate conventional control

structure configurations, e.g., control structures consisting of decentralized proportional-integral-

derivative control loops: the open-loop and/or closed-loop process economics and controllability

analysis [138, 29, 149, 75]. Another potentially important factor in control configuration evalu-

ation may be proper controlled variable (CV) selection. In particular, Skogestad et al.[172] em-
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ployed and mathematically formalized the concept of self-optimizing control, originally proposed

by Luyben in 1988 [117], which is a methodology for determining CVs such that when the se-

lected CVs are maintained at their desired set-points, nearly (economically) optimal steady-state

operation results with an acceptable loss in the presence of disturbances [172, 12, 43]. Many of the

proposed control structure selection methodologies use optimization-based techniques especially

mixed-integer optimization problems [149, 75, 102, 163]. One such example is the so-called back-

off methodology which consists of solving a mixed-integer optimization program using linearized

steady-state process models [75, 102, 151].

Most of the control structure selection methodologies have been developed using linear steady-

state or dynamic process models with the assumption that the system is to be operated at steady-

state, i.e., the main control objective is to force the system to the desired operating steady-state

and maintain operation at this steady-state in the presence of disturbances. Within the context

of dynamic operation of nonlinear systems, fewer results and methodologies on control structure

selection exist that explicitly consider the process dynamics and nonlinearities. One simple and po-

tentially effective method for evaluating control configurations of multivariable nonlinear systems

is to employ a relative degree analysis which may be useful since the relative degree is essentially

a measure of the directness of the effect of an input on an output or the physical closeness between

an input and an output [35].

In the case of tracking model predictive control (MPC) formulated with a quadratic cost func-

tion, i.e., xT Qcx+uT Rcu where Qc and Rc are positive definite matrices, the weighting matrices Qc

and Rc are typically tuned such that all the inputs have a direct effect on the cost function. How-

ever, for EMPC, not all the possible manipulated inputs must have a direct effect on the economic

cost of the EMPC since it is not derived from traditional control objectives. Moreover, since EMPC

may dictate a dynamic operating policy, the system may be operated in a larger region of operation,

i.e., the effect of nonlinearities in the process may become significant compared to tracking control

schemes which force the system to operate in a small neighborhood of the steady-state. Thus, tra-

ditional methods that evaluate control structures on the basis of steady-state operation using linear
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or linearized models may not provide sufficient results within the context of EMPC.

Owing to the aforementioned considerations, a methodology for control configuration selec-

tion for EMPC is developed. Treating the economic cost function as the output, a relative degree

analysis is completed to determine which inputs have the most direct dynamic effect on the eco-

nomic cost. The choice of inputs that are controlled by EMPC are the inputs that have a low

relative degree with respect to the cost function (typically, one or two). The remaining possible

inputs are partitioned to the set of inputs controlled by EMPC and the set of remaining inputs that

are not controlled by EMPC on the basis of a sensitivity analysis and a relative degree analysis

of any known disturbances. Furthermore, the set of inputs selected for EMPC is ensured to be a

stabilizing one. The remaining inputs not controlled by EMPC may be held constant if the control

configuration selected has a sufficient degree of robustness or they may be manipulated through

other control systems, i.e., outside of EMPC. An evaluation and analysis of the control configu-

ration selection methodology is provided using a chemical process example. The results of this

chapter first appeared in [52, 47].

7.1.1 Notation

The notation L f h(x) denotes the Lie derivative of the scalar field h(x) along the vector field f (x),

that is:

L f h(x) =
∂h(x)

∂x
f (x) .

It is also important to recall the following two types of Lie derivatives:

LgL f h(x) =
∂ (L f h)

∂x
g(x) ,

Lk
f h(x) = L f

(
Lk−1

f h(x)
)
=

∂ (Lk−1
f h)

∂x
f (x)

where g(x) is a vector field.
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7.1.2 Class of Nonlinear Systems

The class of input-affine nonlinear systems considered have the following state-space form:

ẋ(t) = f (x(t))+
nu

∑
j=1

g j(x(t))u j(t)+
nw

∑
i=1

wi(x(t))di(t) (7.1)

where x ∈X⊂Rnx is the state vector, u∈U⊂Rnu is the input vector consisting of all possible ma-

nipulated inputs, U is assumed to be a non-empty compact set, and d ∈W⊂Rnw is the disturbance

vector. The disturbance vectors are bounded in the following sets:

W= {d ∈ Rnw : |d| ≤ wb} (7.2)

where wb bounds the norm of the disturbance vector. The vector functions f , g j for j = 1, . . . , nu,

and wi for i = 1, . . . , nw are sufficiently smooth vector functions on X. The existence of a time-

invariant economic cost (scalar) function given by le : X×U→ R, le(x,u) 7→ le(x,u), which is a

sufficiently smooth function of its arguments, is assumed for the system of Eq. 7.1. For reasons

explained below, we assume the economic cost function has the following form:

le(x,u) = le,x(x)+ le,u(u) . (7.3)

This assumption may be relaxed which will be also discussed below. The state vector is assumed to

be measured synchronously at sampling times tk = t0 + k∆, k = 0,1, . . . where t0 is the initial time

and ∆ is the sampling period. Within the context of this chapter, any EMPC methods of Chapter 2

may be used.

7.2 Input Selection for Economic Model Predictive Control

In this section, the input selection methodology for EMPC is presented. In the next four subsec-

tions, the analysis techniques that are employed in the methodology are described which include:
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determining the relative degree of the economic cost with respect to the inputs, computing the

dynamic sensitivity of the economic cost, computing the steady-state sensitivity of the economic

cost, and imposing a stabilizability requirement on the final input selection for EMPC. The last

subsection summarizes the input selection methodology.

The next three subsections develop analysis techniques to quantify the sensitivity of the eco-

nomic cost with respect to inputs. To this end, it is important to point out the differences between

EMPC and tracking MPC. Recall, quadratic stage cost functions used in tracking MPC have the

form:

lT (x,u) = |x|2Qc
+ |u|2Rc

(7.4)

where Qc and Rc are positive definite weighting matrices and thus, the stage cost function is sen-

sitive to all the inputs. In other words, the decision variables of a tracking MPC optimization

problem have a direct effect on the second quadratic term of the cost function as well as an indirect

impact on the first term through the dynamic model. On the other hand, EMPC is formulated with

the economic cost function. Since the economic cost function is typically derived from the process

economics, it may not be sensitive to all the available inputs.

Several issues may arise when the economic cost is not sensitive to some inputs. First, the

optimization problem may be more difficult to solve because, for instance, the optimization prob-

lem may be ill-conditioned if an input has little effect, i.e., low sensitivity, on the economic cost

function (see, for example, [19] for challenges arising in the context of ill-conditioned optimiza-

tion problems). Second, the effect of plant-model mismatch may be significant when the economic

cost is not as sensitive to an input. For instance, large input changes are needed to influence the

cost for inputs with a modeled weak dependence. This makes the optimal solution sensitive to

plant-model mismatch (the actual sensitivity of the economic cost with respect to the input may be

significantly greater/lower). Third, if an input does not influence the economic cost function much,

it may be desirable to decouple this input from the EMPC problem to reduce the computational

burden required for solving the optimization problem on-line by either fixing the input to its nom-

inal value or economically optimal steady-state value or by computing its control action through
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other control systems, e.g., proportional-integral control, or tracking MPC.

7.2.1 Relative Degree of Cost to Inputs

Motivated by the fact that EMPC optimizes the process dynamics with respect to the economic

cost which may lead to dynamic operation, one method for carrying out input selection for EMPC

is to consider the time evolution of the economic cost along the process dynamics. Then, select

the inputs that have more direct impact on the time evolution of the economic cost. In other words,

consider the time derivative of the economic cost function

dle
dt

=
∂ le,x
∂x

dx
dt

+
∂ le,u
∂u

du
dt

(7.5)

where the elements in the term ∂ le,u/∂u are non-zero for any inputs that explicitly appear in the

economic cost. Since the input trajectory is a piecewise constant function, the second term of the

right-hand side of Eq. 7.5 is neglected (with this analysis these inputs should be placed on EMPC

since they explicitly appear in the economic cost).

The vector field of Eq. 7.1 with d ≡ 0 may be substituted into Eq. 7.5 which yields:

∂ le,x(x)
∂x

(
f (x)+

nu

∑
j=1

g j(x)u j

)
=: L f le,x +

nu

∑
j=1

Lg j le,x u j(t) (7.6)

where L f le,x(x) and Lg j le,x(x) denote the Lie derivatives of le,x along vector fields f (x) and g j(x),

respectively. If Lg j le,x(x)≡ 0, the j-th input does not have a direct effect on economic cost (in terms

of the first derivative). Due to the coupled nature of the dynamics, the j-th input may still influence

the economic cost through higher-order derivatives. Therefore, we define the relative degree or

relative order r j of the economic cost with respect to the j-th input as the smallest positive integer

that satisfies:
Lg jL

k−1
f le,x(x)≡ 0, k = 1, 2, . . . , r j−1,

Lg jL
r j−1
f le,x(x) 6≡ 0

(7.7)

or r j = ∞ if no such integer exists. By convention, the relative degree of the economic cost with
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respect to any input with ∂ le,u/∂u 6≡ 0 is zero. Here, the relative degree is similar to standard input-

output analysis for nonlinear systems [87, 104, 100] where the economic cost function is treated

as an output. It is important to point out that the scalar fields le,x(x), L f le,x(x), . . . , Lr j−1
f le,x(x) are

linearly independent [104]. Since Rnx may only have nx linearly independent elements, r j ≤ nx

if r j is finite. Additionally, for disturbances that are explicitly included in the process model, one

may be able to compute the relative degree of the economic cost with respect to these disturbances.

This may be helpful in the input selection methodology for EMPC (see Section 7.2.5 below).

Since the relative degree is essentially a measure of how fast the input affects the process

economics, the relative degree analysis allows for some intuition of how manipulating the j-th

input affects the time evolution of the economic cost. This is of particular interest when EMPC

dictates a time-varying or dynamic operating policy, i.e., off steady-state operation. Using the

relative degree as a basis, a systematic method for selecting the manipulated inputs for which

EMPC computes control actions may be developed while explicitly accounting for the dynamics

of the system. If the relative degree of the j-th input is large, i.e., the j-th input influences high-

order derivatives with respect to each input; perhaps, third-order or higher time derivatives of the

economic cost, using EMPC to compute control actions for the j-th input may not be effective with

respect to the closed-loop economic performance and/or computationally efficient.

Remark 7.1. It may be possible to consider more general cost functions other than the ones of

the assumed form, i.e., le(x,u) = le,x(x) + le,u(u). In this case, for any inputs where ∂ le/∂u j,

j = 1, . . . , nu is non-zero, i.e., any inputs explicitly appearing in the economic cost function, these

inputs have a direct effect on the economic cost. One could still determine the relative degree of

the other inputs by taking the inputs appearing in the cost function as fixed parameters to determine

the relative degree. It is important to note that one type of cost function that possesses the assumed

form is a quadratic cost function. The economic cost functions in the examples considered in this

chapter all have the assumed form. Also, the relative degree analysis could be applied to a time-

varying cost function, i.e., le(t,x,u) = le,x(t,x)+ le,u(t,u) which is an explicit function of the time

when the cost function is a continuous or piecewise continuous function of time by generalizing
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the definition of Lie derivative to time-varying vector fields.

Connection Between Relative Degree and a Directed Graph

For large-scale process networks, analytical computation of the relative degree may become te-

dious. However, one may employ the directed graph method for determining the relative de-

gree [99, 35]. This methodology has the advantage that only structural information of the process

model is required. In the context of this chapter, the output is considered to be the economic cost.

The edges are constructed using the following modified rules based on that of [35] to treat the

economic cost as the output:

1. If ∂ fi(x)/∂xk 6≡ 0 for i = 1, . . . , nx and k = 1, . . . , nx, then there is an edge from xk to xi.

2. If g j,k(x) 6≡ 0 for k = 1, . . . , nx and j = 1, . . . , nu, then there is an edge from u j to xk.

3. If ∂ le(x,u)/∂xi 6≡ 0 for i = 1, . . . , nx, then there is an edge from xi to le.

4. If ∂ le(x,u)/∂u j 6≡ 0 for j = 1, . . . , nu, then there is an edge from u j to le.

where fk(x) and g j,k(x) denote the k-th elements of the vector fields f (x) and g j(x), respectively.

If there are known disturbances, the disturbance may be treated as an input in the above directed

graph rules.

Utilizing the first main result from [35], a connection between the relative degree as defined in

Eq. 7.7 and the directed graph constructed with the rules presented above may be made. Defining

the length of the shortest path connecting the j-th input to the economic cost, i.e., the smallest

number of edges connecting the j-th input to the economic cost as L j, the relative degree of the

j-th input with respect to the economic cost is r j = L j− 1. It is important to point out that this

works for many cases. However, there are cases where this does not work like cases where there

are potential cancellations (see [35] for more details on this point). This gives a rather intuitive

understanding of how the inputs affect the economic cost. Furthermore, it requires only limited

structural understanding of the process dynamics, i.e., not detailed process models, during the input

selection phase of the control structure design. For instance, consider the following example.
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Example 7.1. Consider the following input-affine nonlinear system:

ẋ1 = f1(x2,x3)+g1,1(x)u1

ẋ2 = f2(x1,x2)

ẋ3 = f3(x1,x3)+g2,3(x)u2

(7.8)

where the vector fields are f T (x) = [ f1(x2,x3) f2(x1,x2) f3(x1,x3)], gT
1 (x) = [g1,1(x) 0 0] and

gT
2 (x) = [0 0 g2,3(x)] and the economic cost function has the following form:

le(x,u) := l̂e,x(x2)+ l̂e,u(u2) (7.9)

The relative degree of the economic cost with respect to u2 is defined to be 0 since the economic

cost is an explicit function of this input. For the input u1, the Lie derivative of le(x,u) along the

vector field g1(x) is

Lg1le =
∂ le
∂x

g1(x)≡ 0 (7.10)

Since the first Lie derivative is zero, higher order Lie derivatives are computed. The next Lie

derivative is:

Lg1L f le =
∂

∂x1

[
∂ le
∂x2

f2(x1,x2)

]
g11(x) 6≡ 0 (7.11)

From this analysis, the relative degree of the economic cost function with respect to the input u1 is

2.

Applying the construction rules for the nodes and edges, the directed graph for the system of

Eq. 7.8 is displayed in Fig. 7.1. From the directed graph, one may easily determine the relative

degree. The shortest path between the input u1 and the economic cost is 3. Therefore, the relative

degree of the economic cost with respect to u1 is 2. Similarly, the shortest path from the input

u2 to the economic cost is 1, so, the relative degree is 0. The relative degrees computed from the

directed graph agree with the ones computed analytically.
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x1

x2

x3

u1

u2

le

Figure 7.1: Directed graph representing the system of Eq. 7.8.

7.2.2 Dynamic Sensitivity of the Economic Cost

While the relative degree is a readily computable metric that quantifies the directness of the effect

of an input on the economic cost, it is unable to capture the magnitude of the interaction between

an input and the economic cost [35]. One cannot distinguish the degree of the sensitivity of the

economic cost with respect to inputs of the same relative degree. In linear systems, the steady-state

gain on the economic cost with respect to an input is one metric that captures such a sensitivity.

However, the steady-state gain is state-dependent for nonlinear systems in general. Therefore, in

this subsection, an analysis technique to quantify the dynamic sensitivity of the economic cost with

respect to an input is developed.

For dynamic sensitivity analysis, we consider the inputs with the same relative degree. Let

û ∈ Rnr be a vector containing all inputs with relative degree r. The inputs with relative degree

not equal to r are taken as constants in this analysis set to their economically optimal value and

are incorporated in the f (x) term of the model of Eq. 7.1. To avoid potential scaling differences of

inputs which may potentially skew the sensitivity analysis, all inputs contained in the vector û are

scaled so that û j ∈ [−1,1] for j = 1, . . . , nr. The auxiliary scalar output variable y(t) is defined as
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the state-dependent part of the economic cost y(t) = le,x(x(t)). Consider a Taylor series expansion

of y(t) at a time t∗:

y(t) =
∞

∑
k=0

(t− t∗)k

k!
dky(t∗)

dtk (7.12)

The k-th derivative of y for k = 0, 1, . . . , r−1 is:

dky(t∗)
dtk = Lk

f le,x(x(t∗)) (7.13)

and the r-th derivative of y is:

dry(t∗)
dtr = Lr

f le,x(x(t∗))+
nr

∑
j=1

Lg jL
r−1
f le,x(x(t∗))û j(t∗) (7.14)

Thus, the Taylor series expansion may be written as:

y(t) =
r

∑
k=0

(t− t∗)k

k!
Lk

f le,x(x(t∗))+
(t− t∗)r

r!

nr

∑
j=1

Lg jL
r−1
f le,x(x(t∗))û j(t∗)

+
∞

∑
k=r+1

dky(t∗)
dtk

(t− t∗)k

k!
. (7.15)

The high-order (r+1 order and higher) derivatives of y are neglected to obtain an approximation

of y(t):

y(t)≈
r

∑
k=0

(t− t∗)k

k!
Lk

f le,x(x(t∗))+
(t− t∗)r

r!

nr

∑
j=1

Lg jL
r−1
f le,x(x(t∗))û j(t∗) . (7.16)

Consider the difference of the output ∆y(t) = y1(t)− y2(t) with respect to a change

∆û j(t∗) = û j,1(t∗)− û j,2(t∗)

and all other inputs constant. From Eq. 7.16, the following may be derived:

∆y
∆u j

∣∣∣∣
∆uk,k 6= j

=
(t− t∗)r

r!
Lg jL

r−1
f le,x(x(t∗)) (7.17)
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Therefore, the nr-dimensional vector Sr is defined with elements:

Sr, j := Lg jL
r−1
f le,x(x(t∗)) (7.18)

for j = 1, . . . , nr. The vector Sr contains elements that essentially quantify the dynamic sensi-

tivity of inputs with the same relative degree on the economic cost. To use the sensitivities in a

comparison, they are normalized with respect to the Euclidean norm:

S̄r, j :=
S2

r, j

|Sr|2
=

S2
r, j(

∑
nr
j=1 S2

r, j

) (7.19)

and S̄r, j ∈ [0,1]. The economic cost is more sensitive to inputs whose corresponding S̄r, j values

are close to one compared to inputs with corresponding S̄r, j values close to zero. Thus, the dy-

namic sensitivity analysis ranks inputs with the same relative degree on the basis of their dynamic

sensitivities. Also, S̄r, j may be computed for various points in state-space to capture the dynamic

sensitivities, i.e., sensitivity of the economic cost with respect to inputs for states off steady-state.

Example 7.2. Consider a non-isothermal CSTR where an elementary second-order reaction of the

form A→ B occurs. The states of the CSTR are the reactor temperature x1 and the concentration

of A in the reactor which is denoted as x2, i.e., the state vector is xT = [x1 x2]. The evolution of the

CSTR system is described by the following ordinary differential equations in dimensionless form:

dx1

dτ
= x10− x1−β1e−1/x1x2

2 +β2 +β3u1 (7.20a)

dx2

dτ
=−x2−β4e−1/x1x2

2 +β5 +u2 (7.20b)

where the process parameters are β1 = −1.73×105, β2 = 1.44×10−3, β3 = 1.44×10−3, β4 =

5.92×106, and β5 = 1.14. The CSTR has two candidate inputs: the heat rate u1 supplied to the

reactor and the inlet concentration of species A to the reactor u2. Both inputs have been scaled so
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that u j ∈ [−1,1] for j = 1, 2. The production rate of B corresponds to the dominant factor in the

operating profit of the CSTR. Thus, the economic cost function is:

le(x,u) = e−1/x1x2
2 (7.21)

The relative degree of the economic cost with respect to both inputs is 1, so the relative degree

analysis would not be able to discriminate between the importance of controlling each of the inputs

with EMPC. The Lie derivatives of le,x(x) = le(x,u) with respect to the vector fields g1(x) = [β3 0]T

and g2(x) = [0 1]T are

Lg1le,x(x) =
β3

x2
1

e−1/x1x2
2 , (7.22)

Lg2le,x(x) = 2e−1/x1x2 . (7.23)

From the Lie derivatives, the dynamic sensitivities may be computed. For simplicity of presen-

tation, the Lie derivatives are evaluated at the economically optimal steady-state x∗1s = 0.08 and

x∗2s = 0.21 and the normalized dynamic sensitivity vector for the inputs with relative degree 1 is

S̄1 = [0.0 1.0] . (7.24)

This analysis suggests that the input u2 has a more substantial dynamic effect compared to the input

u1. In terms of input selection for EMPC, it would be more desirable in terms of the dynamic sen-

sitivity analysis to control the input u2 compared to the input u1. In fact, it has been demonstrated

that periodic switching of the inlet concentration achieves greater production rates compared to a

constant inlet concentration equal to the time-average inlet concentration of the periodic switching

policy (Section 3.3.2). Since the reaction rate is concave with respect to the temperature, the max-

imum production rate is achieved by supplying the maximum allowable heat rate to the reactor,

i.e., little benefit with respect to the economic cost is achieved when the heat rate is controlled by

EMPC under nominal operation.
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7.2.3 Steady-state Sensitivities of the Economic Cost

From the dynamic sensitivity analysis, the inputs with the same relative degree may be ranked on

the basis of the dynamic sensitivity of the economic cost. However, this ranking is made with

respect to other inputs with the same relative degree, i.e., the dynamic sensitivity vector S̄r is

normalized with the sensitivity of the other inputs. Therefore, a procedure is needed to identify if

the interaction between an input and the economic cost is significant with respect to all the other

inputs. To accomplish this, a steady-state sensitivity is employed.

The input vector is scaled so that u j ∈ [−1,1] for j = 1, . . . , nu to remove any scaling differ-

ences between the inputs. A steady-state of the system of Eq. 7.1, which is denoted as xs, with its

corresponding steady-state input, which is denoted as us, satisfies the following algebraic equation:

f (xs)+
nu

∑
j=1

g j(xs)us, j = 0 . (7.25)

For a given steady-state input, the corresponding steady-state may be computed, and thus, we may

write: xs = f̄ (us) where f̄ : U→ X maps a given steady-state input to a corresponding steady-

state. With xs = f̄ (us), the state dependence on the steady-state economic cost may be removed:

le(xs,us) = le( f̄ (us),us)≡ l̄e(us). The steady-state sensitivity on the economic cost to the j-th input

is determined numerically by:

∂ l̄e
∂us, j

≈ 1
2δ

[
(l̄e(us,1, . . . ,us, j−1,us, j +δ ,us, j+1, . . . ,us,nu)

−l̄e(us,1, . . . ,us, j−1,us, j−δ ,us, j+1, . . . ,us,nu)
]

(7.26)

where δ > 0 is a small perturbation term. Similar to the dynamic sensitivity analysis, the steady-

state sensitivity is normalized with respect to the other inputs:

Ŝ j =

(
∂ l̄e

∂us, j

)2/∣∣∣∣ ∂ l̄e
∂us

∣∣∣∣2 = ( ∂ l̄e
∂us, j

)2
(

nu

∑
j=1

(
∂ l̄e

∂us, j

)2
)−1

(7.27)
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where Ŝ j will be approximately one for any inputs with a large steady-state sensitivity on the

economic cost and will be approximately zero for any inputs with a small steady-state sensitivity

on the economic cost.

7.2.4 Stabilizability of Control Configurations

The aforementioned analysis techniques identify the inputs that influence the economic cost func-

tion, but they do not explicitly consider control considerations like controllability and stabilizabil-

ity. Before a final input selection for EMPC may be made, a verification of such control consid-

erations must be completed. Below, one stabilizability assumption is given which is verifiable for

nonlinear systems of the form of Eq. 7.1. If this assumption is satisfied, a specific formulation of

EMPC may be applied to the closed-loop system of Eq. 7.1 and the closed-loop system will have

guaranteed stability properties. Other EMPC formulations that require other types of controllabil-

ity/stabilizability assumptions, e.g., weak controllability, could be used instead of the assumption

and the EMPC formulation provided below.

Lyapunov-based EMPC

Without loss of generality, the origin of the system of Eq. 7.1 is assumed to be the steady-state of

the unforced system, i.e., f (0) = 0 with u ≡ 0 and d ≡ 0. The following assumption is placed on

the system of Eq. 7.1 which is essentially a stabilizability assumption for nonlinear systems.

Assumption 7.1 (Existence of a Lyapunov-based Controller). There exists a Lyapunov-based con-

troller u = k(x) ∈ U that renders the origin of the nominal closed-loop system of Eq. 7.1 under

k(x) asymptotically stable. This implies that there exists a continuously differentiable Lyapunov

function V (x) [115, 100] such that the following holds:

α1(|x|)≤V (x)≤ α2(|x|) (7.28a)

∂V (x)
∂x

(
f (x)+

nu

∑
j=0

g j(x)k(x)

)
≤−α3(|x|) (7.28b)
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∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ α4(|x|) (7.28c)

for x ∈ D where D is an open neighborhood of the origin where the functions αi : [0,a)→ [0,∞),

i = 1, 2, 3, 4 are class K functions.

It is important to point out that in Assumption 7.1 the controller k(x) is implemented in a con-

tinuous fashion. However, when the controller k(x) is implemented in a sample-and-hold fashion

with a sufficiently small sampling period, the origin of the closed-loop system is rendered practi-

cally stable. The stability region under the Lyapunov-based controller is defined as Ωρ ⊂ D and

Ωρ ⊆X which is a level set of V (x) where the time-derivative of the Lyapunov function is negative.

Taking advantage of the explicit Lyapunov-based controller and its corresponding stability re-

gion Ωρ , the Lyapunov-based economic model predictive control (LEMPC) scheme is character-

ized by the following optimization problem:

min
u∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ)) dτ (7.29a)

s.t. ˙̃x(t) = f (x̃(t))+
nu

∑
j=0

g j(x̃(t))u j(t) (7.29b)

x̃(tk) = x(tk) (7.29c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (7.29d)

V (x̃(t))≤ ρe, ∀ t ∈ [tk, tk+N)

if V (x(tk))≤ ρe (7.29e)

∂V (x(tk))
∂x

(
f (x(tk))+

nu

∑
j=0

g j(x(tk))u j(tk)

)

≤ ∂V (x(tk))
∂x

(
f (x(tk))+

nu

∑
j=0

g j(x(tk))k j(x(tk))

)
,

if V (x(tk))> ρe (7.29f)

where the LEMPC is a two-mode control strategy with the two modes defined by the Lyapunov-

based constraints of Eqs. 7.29e-7.29f.
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The design procedure of LEMPC is as follows: (1) an explicit stabilizing controller k(x) is

designed for the system of Eq. 7.1, (2) a Lyapunov function is derived for the closed-loop system

under the controller k(x), and (3) the stability region Ωρ of the closed-loop system is estimated by

taking it to be the (largest) level set of the Lyapunov function such that the time-derivative of the

Lyapunov function along the closed-loop state trajectory is negative. For more details on LEMPC,

please refer to Chapter 3.

7.2.5 Input Selection Methodology

The description of the input selection methodology is given in this subsection which is summarized

by the flow chart of Fig. 7.2. All the possible manipulated inputs to the system of Eq. 7.1 are

candidate manipulated inputs whose control action may be computed by EMPC. For the remainder

of this section, an input on EMPC will refer to an input whose control action is computed by

EMPC and an input not on EMPC will refer to an input that is fixed or whose control action is

computed through another controller. For the latter case, explicit design of an integrated EMPC

with another controller to compute control actions for the inputs not on EMPC is beyond the scope

of this chapter and thus, only the case where the inputs not on EMPC are fixed to a constant value

will be considered in the example presented in Section 7.3.

The input selection methodology for EMPC is as follows (Fig. 7.2): the relative degree of the

economic cost with respect to each candidate input is computed. Any input with an infinite overall

relative degree should not be placed on EMPC as these inputs have no influence on the process

economics. These inputs may be set to any arbitrary value without adversely affecting the closed-

loop economic performance. For the remaining inputs, the inputs with a low relative degree should

be on EMPC. Typically, inputs with relative degree 2 or less should be placed on EMPC unless

identified otherwise through the sensitivity analysis. When the economic cost function is associ-

ated with the outlet product stream of a process network, e.g., the economic cost is the amount

of desired product leaving the process, it may be necessary to include more inputs with relative

degree greater than 2 owing to closed-loop performance, stability and robustness considerations.
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Figure 7.2: A flowchart of the input selection for EMPC methodology. Solid lines are used to

represent necessary steps and dashed lines are used to represent optional steps.
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Several factors may influence the decision on which of the remaining inputs, i.e., inputs with

relative degree three or higher, should be on EMPC and to confirm that inputs with relative degree

two or lower should be on EMPC. First, the dynamic sensitivities are computed for inputs of the

same relative degree which creates a ranking of inputs with the same relative degree on the basis of

the dynamic sensitivity of the economic cost. Second, the steady-state sensitivities are computed.

If S̄r, j and Ŝ j are close to one, the input should be placed on EMPC since it has both a dynamic and

a steady-state impact on the economic cost. If S̄r, j and Ŝ j are close to zero, the input should not be

placed on EMPC since the economic cost is not sensitive with respect to this input. For inputs with

S̄r, j close to one and Ŝ j close to zero or vice versa, the decision to control these inputs with EMPC

should be made on the basis of the remaining two criteria, i.e., relative degree of the economic

cost with respect to the disturbances and the stabilizability requirement. It may be desirable from

a disturbance rejection standpoint to pick additional inputs that have a smaller relative degree with

respect to the cost than the known disturbances. Inputs with S̄r, j close to one and with a low

relative degree compared to the disturbances may be chosen to be placed on EMPC. The dynamic

sensitivity S̄r, j is used because it quantifies the dynamic sensitivity and EMPC dictates a dynamic

operating policy in general to optimize the process economics.

All the aforementioned factors contribute in partitioning the set of inputs controlled by EMPC

and the set of inputs not controlled by EMPC. One must try to find a stabilizing Lyapunov-based

controller k(x) with the inputs that will be placed on EMPC. This is a verification step to ensure

the selected inputs are able to achieve the stabilizability requirement. If no such controller exists,

i.e., it is difficult to find such a controller, then the inputs are repartitioned to include more inputs

that will be on EMPC. For this step, the additional inputs to be placed on EMPC should be inputs

with the lowest relative degree and highest sensitivity. Once a stabilizing controller is constructed

for a certain set of inputs that will be on EMPC, an LEMPC may be formulated for the system and

a final verification step is completed. In the final verification step, extensive closed-loop simula-

tions are completed to ensure that the LEMPC scheme has desirable closed-loop properties, e.g.,

performance, stability, and robustness.
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It may be beneficial to use more available inputs as manipulated inputs in the final EMPC con-

trol configuration than what is determined from the input selection methodology to increase the

overall robustness of the control structure to the effects of disturbances and uncertainty. Two strate-

gies to include more manipulated inputs are: (1) to modify the economic cost, i.e., add quadratic

terms, so that these inputs have a more direct effect on the cost function used in the EMPC or (2)

to use another controller to compute control actions for the added manipulated inputs instead of

setting them to a fixed value, e.g., proportional-integral control may be used to compute the control

actions for these inputs. In fact, the former strategy has already been utilized in many EMPC case

studies [86, 6, 50].

Remark 7.2. If there is some flexibility in the choice of economic cost and the sources of the sig-

nificant disturbances are known, i.e., how the disturbance enters into the process model of Eq. 7.1

is known, one may determine the relative degree of the candidate economic cost functions with re-

spect to the disturbances. The economic cost that should be used is the one where the disturbances

have a high relative degree compared to the selected manipulated inputs, i.e., the disturbances will

have a weaker dynamic effect on the economic cost.

Remark 7.3. The potential limitations of the methodology for control structure selection for EMPC

are: (1) there is no guarantee that there will be a discrete dichotomy between the relative degree of

the economic cost and the sensitivities of economic cost with respect to the inputs. For instance,

the relative degree analysis may not result in two distinct sets of inputs: one containing the inputs

with a low relative degree and another containing the inputs with high relative degree and similarly

for the sensitivity analysis. This may make picking the EMPC inputs solely on the basis of these

tools difficult. Since the methodology provides tools to identify which inputs to control with

EMPC, (2) the final control structure configuration decision is ultimately left to the control engineer

(as is the case in many control configuration selection methodologies). Therefore, there is no

guarantee that the optimal input selection will be selected. However, given the possible uncertainty

involved with input selection, it may not be possible to determine the optimal input selection.

Lastly, (3) closed-loop simulations may be particularly important to select the final input selection
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Table 7.1: Process parameters of the reactor-reactor process.

Notation Value Description

T10 300.0 K CSTR-1 Inlet Temp.
T20 300.0 K CSTR-2 Inlet Temp.
F10 5.0 m3 h−1 CSTR-1 Inlet Flow Rate
F20 5.0 m3 h−1 CSTR-2 Inlet Flow Rate
V1 1.5 m3 CSTR-1 Volume
V2 1.0 m3 CSTR-2 Volume
k0 3.0×104 m3 kmol−1 h−1 Pre-exponential Factor
E 3.0×104 kJ kmol−1 Activation Energy

∆H −5.0×103 kJ kmol−1 Heat of Reaction
Cp 0.231 kJ kg−1 K−1 Heat Capacity
R 8.314 kJ kmol−1 K−1 Gas Constant
ρL 1000 kg m−3 Density

from many candidate control configurations. For large-scale systems with many candidate inputs,

many simulations may need to be completed to make the final input selection decision given the

combinatorial nature of the number of possible control configurations.

7.3 EMPC Input Selection for a Chemical Process Example

In this section, the input selection methodology for EMPC is applied to a chemical process exam-

ple. Various closed-loop simulation results and analyses are provided to demonstrate the method.

The specific example has been chosen since it is manageable to consider all possible combinations

of input pairs, while being of sufficient complexity to demonstrate the input selection methodology.

Consider a chemical process example consisting of two CSTRs in series. In each of the reactors

a second-order, exothermic reaction of the form A→ B occurs where A is the reactant material

and B is the desired product. Each of the two reactors are fed with fresh reactant material with

concentration CA j0 and flow rate Fj0, j = 1, 2 where j = 1 denotes the first CSTR and j = 2 denotes

the second CSTR. To provide heat to the reactor contents, each of the reactors has a heating jacket.

The contents of each of the CSTRs have a uniform temperature Tj, concentration of the reactant

CA j, and concentration of the product CB j for j = 1, 2. Under standard modeling assumptions, the

following set of differential equations describing the evolution of the reactor state variables may
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be derived from first principles modeling techniques:

dT1

dt
=

F10

V1
(T10−T1)−

∆Hk0

ρCp
e−E/RT1C2

A1 +
Q1

ρCpV1
(7.30a)

dCA1

dt
=

F10

V1
(CA10−CA1)− k0e−E/RT1C2

A1 (7.30b)

dCB1

dt
=−F10

V1
CB1 + k0e−E/RT1C2

A1 (7.30c)

dT2

dt
=

F20

V2
T20 +

F10

V2
T1−

(F10 +F20)

V2
T2−

∆Hk0

ρCp
e−E/RT2C2

A2 +
Q2

ρCpV2
(7.30d)

dCA2

dt
=

F20

V2
CA20 +

F10

V2
CA1−

(F10 +F20)

V2
CA2− k0e−E/RT2C2

A2 (7.30e)

dCB2

dt
=

F10

V2
CB1−

(F10 +F20)

V2
CB2 + k0e−E/RT2C2

A2 (7.30f)

where the process parameters are given in Table 7.1. The possible inputs to the process are the heat

rates supplied to the reactors Q1 and Q2 and the inlet concentrations of the reactant material CA10

and CA20. The available control action is bounded in the following set: Q j ∈ [0.0, 100.0]MJ h−1,

j = 1, 2 and CA j0 ∈ [0.5, 7.5]kmol m−3, j = 1, 2.

The operating profit of the process is considered to be proportional to the product molar flow

rate out of the second reactor. Therefore, the economic cost is:

le(x,u) = (F10 +F20)CB2 (7.31)

where F10+F20 is the outlet volumetric flow rate of the second CSTR and CB2 is the concentration

of the product in the second CSTR. An economics-based constraint is imposed which limits the

amount of reactant that may be fed to each reactor:

1
t f

∫ t f

0
Fj0CA j0 dt = ṀA j0,avg (7.32)

for j = 1, 2 where ṀA j0,avg = 20kmol h−1. The average constraint of Eq. 7.32 is enforced over op-

erating windows of length 0.55 h which has been determined through simulations as the operating

window length that leads to improved asymptotic performance of the closed-loop system under
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EMPC compared to steady-state operation (refer to Section 3.3.2 for the details for implementing

the average constraint over a finite-length operating window). The economically optimal steady-

state with respect to the cost of Eq. 7.31 and the constraint of Eq. 7.32 corresponds to the econom-

ically optimal steady-state input of Q∗1 = Q∗2 = 100MJ h−1 and C∗A10 = C∗A20 = 4.0kmol m−3 and

is open-loop (locally) asymptotically stable.

Remark 7.4. The fact that the economically optimal steady-state is open-loop asymptotically stable

implies that there exists a control Lyapunov function (CLF), i.e., there exists a smooth positive-

definite function V (x) that satisfies L fV < 0 for all states in some neighborhood of the origin when

LgiV ≡ 0 for all i = 1, . . . , nu, see, for example, [33] for more discussion of this point. Further-

more, there exists a stabilizing controller which satisfies the conditions of Eq. 7.28a-7.28c. Thus,

an explicit characterization of the stabilizing controller for each of the simulated control structure

configurations is not given. Also, it is important to point out the EMPC is able to maintain op-

eration in a bounded region around the economically optimal steady-state (verified by extensive

simulations). Although the optimal steady-state is open-loop asymptotically stable, the main ob-

jective of applying feedback control is to maintain robustness of the operation and to optimize the

process economics in a manner that cannot be achieved through open-loop operation.

The purpose of applying EMPC to the process is to maximize the economic cost function of

Eq. 7.31 through dynamic (off steady-state) operation of the process. First, we demonstrate that

dynamic operation of the process with the cost function of Eq. 2.5a and constraint of Eq. 7.32 is

better than operation at the economically optimal steady-state. In this set of simulations, control

actions for all possible inputs are computed by EMPC. We apply the EMPC with the following
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Figure 7.3: The closed-loop state trajectories under the EMPC of Eq. 7.33.

formulation to the process:

max
u∈S(∆)

∫ tk+N

tk
le(x̃(τ),u(τ)) dτ

s.t. ˙̃x(t) = f (x̃(t))+
4

∑
j=1

g j(x̃(t))u j(t)

x̃(tk) = x(tk)

u(t) ∈ U, ∀ t ∈ [tk, tk+N)

1
τM

∫
τM

0
Fj0CA j0 dt = ṀA j0,avg, j = 1, 2

(7.33)

where the dynamic model is that of Eq. 7.30, the prediction horizon is N = 5, the sampling period is

∆ = 0.05h and the number of sampling periods in the operating window that the average constraint

is enforced is M = 11, i.e., τM = 0.55h. To numerically integrate the dynamic model, explicit

Euler method is employed with an integration time step of 1.0×10−3 h. Ipopt [187] was used to

solve the nonlinear optimization problem of Eq. 7.33. All simulations below were completed on a

desktop PC with an Intel Core R© 2 DuoTM processor running an Ubuntu operating system.

The EMPC of Eq. 7.33 is applied to the chemical process of Eq. 7.30. The chemical process

is initialized at a transient initial condition, i.e., off steady-state initial condition, and a length
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Figure 7.4: The manipulated input trajectories under the EMPC of Eq. 7.33.
The input trajectories Q1(t) and Q2(t) are not shown because they are constant profiles with Qi(t) =
100MJ h−1, i = 1,2 for all t ≥ 0 over the entire 33.0 hour length of operation.

of operation of 33.0 h was simulated. The closed-loop state and input trajectories over the time

period 31.0 h to 33.0 h are shown in Figs. 7.3-7.4 to illustrate the asymptotic operating behavior of

the process under EMPC. The EMPC dictates a dynamic operation policy (Figs. 7.3-7.4) through

continuous manipulation of the inlet reactant concentration. However, for the heat rate inputs,

the EMPC computes a constant input profile which corresponds to 100 MJ h−1, i.e., the maximum

allowable heat rate. The reason for this behavior is that the reaction rate is maximized at large

temperature and thus, the molar flow rate of the desired product leaving the process is the largest

when the maximum amount of heat is provided to the reactors. To show that the operating policy

is economically better than steady-state operation, the average economic cost is defined as:

J̄e =
1
t f

∫ t f

0
le(x(t),u(t))dt . (7.34)

For the process of Eq. 7.30 under EMPC, the asymptotic performance, i.e., the average economic

cost after a sufficiently long operating time such that the effect of the initial condition becomes

negligible, is 29.98. The economically optimal steady-state has an (average) economic cost of

28.21. Thus, asymptotic operation under EMPC is 6.27% better than steady-state operation.

Since there is a benefit in terms of the economic cost to operate the chemical process of Eq. 7.30

under EMPC, input selection for EMPC is considered. First, the input selection methodology

(Fig. 7.2) is applied to the chemical process example. Subsequently, closed-loop simulation re-
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Figure 7.5: A directed graph constructed for the chemical process example for the economic cost

function of Eq. 7.31 to compute the relative degree of various input variables using the method-

ology of [35]. The candidate manipulated inputs are dark gray and the economic cost is light

gray.

sults are provided to confirm this is the proper choice of input selection for EMPC. Two sets of

simulations are considered. In the first set of simulations, all the possible 16 combinations of input

selections for EMPC are simulated under nominal operation. In the second set, operation with

process noise is considered.

Applying the input selection methodology for EMPC (Fig. 7.2), the relative degree of the eco-

nomic cost with respect to each input is computed with the directed graph method of [35] (Fig. 7.5).

Based on this analysis, the inputs Q1 and CA10 have a relative degree of 3, while the inputs Q2 and

CA20 have a relative degree of 2. No inputs have an infinite relative degree. The normalized dy-

namic and steady-state sensitivities are computed. All the inputs are scaled such that u j ∈ [−1,1],

j = 1, 2, 3, 4 and the following notation is adopted for the inputs: u1 = (Q1 −Qshift)/Qre f ,

u2 = (Q2−Qshift)/Qre f , u3 = (CA10−Cshift)/Cre f , and u4 = (CA20−Cshift)/Cre f where Qre f and

Cre f are scaling factors, Qshift and Cshift are shifting constants, and the vector fields g1(x), g2(x),

g3(x), and g4(x) are the vector fields corresponding to the inputs u1, u2, u3, and u4, respectively

from the dynamic model of Eq. 7.30.
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Figure 7.6: The dynamic sensitivities for inputs with relative degree 2 which are computed with

the closed-loop state trajectory under the EMPC with all inputs on EMPC.
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Figure 7.7: The dynamic sensitivities for inputs with relative degree 3 which are computed with

the closed-loop state trajectory under the EMPC with all inputs on EMPC.
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The dynamic sensitivities of Eq. 7.19 for the inputs with relative degree of 2 are:

S2,1 = Lg2L f le,x(x) =
Qre f k0E(F10 +F20)

ρCpV2RT 2
2

e−E/RT2C2
A2 , (7.35)

S2,2 = Lg4L f le,x(x) =
2F20Cre f k0(F10 +F20)

V2
e−E/RT2CA2 . (7.36)

for u2 and u4, respectively. The dynamic sensitivities are computed from the closed-loop state

trajectory under the EMPC with control actions computed by EMPC for all inputs and are shown in

Fig. 7.6. The average normalized dynamic sensitivities over the length of operation are S̄2,1 = 0.02

and S̄2,2 = 0.98. From this analysis, the input u4 has a much greater dynamic sensitivity on the

economic cost than u2. A similar analysis is completed for inputs with relative degree of 3 and

their dynamic sensitivities are given by:

S3,1 = Lg1L2
f le,x(x) =

Qre f F10k0E(F10 +F20)

ρCpV1V2R

(
1

T 2
1

e−E/RT1C2
A1 +

1
T 2

2
e−E/RT2C2

A2

)
(7.37)

S3,2 = Lg3L2
f le,x(x) =

2F2
10Cre f k0F3

V1V2

(
e−E/RT1CA1 + e−E/RT2CA2

)
(7.38)

for u1 and u3, respectively and are shown in Fig. 7.7. The average normalized dynamic sensitivities

are S̄3,1 = 0.01 and S̄3,2 = 0.99. A similar relationship is observed, that is, the inlet concentration

input u3 has a greater dynamic sensitivity than the heat rate input u1.

The dynamic sensitivity analysis identified that the inlet concentration inputs have a more sub-

stantial dynamic sensitivity compared to the heat rate inputs (comparing inputs with the same

relative degree). Using steady-state sensitivity, all inputs are compared to see if these effects are

significant across the set of all the possible inputs. For simplicity, the steady-state sensitivities
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(Eq. 7.27) are computed with the economically optimal steady-state and are given by:

Ŝ1 = 0.01

Ŝ2 = 0.01

Ŝ3 = 0.56

Ŝ4 = 0.43

(7.39)

for the inputs u1, u2, u3, and u4, respectively. Based on both sensitivity analyses, the inlet concen-

tration inputs should be placed on EMPC. Based on the relative degree analysis, Q2 may also be

placed on EMPC. However, the sensitivity analysis revealed that the economic cost is not sensitive

to this input.

All 16 possible input selection combinations for EMPC are simulated. If the control action

is not computed by EMPC, then it is fixed to its economically optimal steady-state value. The

case where no inputs are placed on EMPC is also considered. The resulting EMPC schemes were

applied to the process under nominal operation. The average economic cost for each of these cases

depended only on whether CA10 and CA20 were on EMPC. If none of inlet concentrations were on

EMPC, the average economic cost was J̄e = 28.22; if CA10 was manipulated by EMPC and CA20

was fixed, the cost was J̄e = 28.54; if CA10 was fixed and CA20 was manipulated by EMPC, the cost

was J̄e = 29.57; and if both CA10 and CA20 were on EMPC, the cost was J̄e = 30.13. The reason

the economic cost function is not influenced by the heat rates is the computed heat rate trajectories

by EMPC are constant trajectories; that is, the constant trajectory when the heat rate was fixed to

its economically optimal value is the same as the computed heat rate trajectory of EMPC.

From the average economic cost results, the inlet concentration CA20 has more of an impact on

the average cost than the inlet concentration CA10 (the case that CA20 is on EMPC and CA10 is not

on EMPC the performance is 1.1% better than the case that CA10 is on EMPC and CA20 is not on

EMPC). This agrees with the relative degree of the economic cost function with respect to CA10 and

CA20 which are 3 and 2, respectively. The average computation time required to solve the EMPC

problem, a key metric considered in the last set of simulations, was also considered for each of
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Figure 7.8: The closed-loop state trajectories of the chemical process under EMPC with added

process noise.

the 16 simulations considered here. It was found that the computation time was mainly a function

of the number of inputs whose control action was computed by EMPC, i.e., the computation time

scaled with the number of decision variables, and the computation time of each EMPC with the

same number of inputs were all comparable. The average computation time required to solve the

EMPC with the inputs CA10 and CA20 was 36.4 ms, while, that of the EMPC with all inputs was

163.6 ms.

In the last set of simulations, process operation in the presence of process noise was consid-

ered. The process noise was modeled as bounded Gaussian noise. The process noise added to

the temperature differential equations was wT ∼ N (0,152) and was bounded by wb,T = 40.0,

i.e., |wT (t)| ≤ wb,T ; the process noise added to the concentration differential equations was wC ∼

N (0,22) with a bound of wb,C = 5.0. The process noise was realized by generating a new random

number and adding it to the right-hand side of the process model of Eq. 7.30 over the sampling

period. Four cases were considered: (1) all the inputs were controlled by EMPC, (2) the inputs

having relative degree 2 (CA20 and Q2) were controlled by EMPC, (3) the inputs having relative

degree 3 (CA10 and Q1) were controlled by EMPC, and (4) the inputs CA10 and CA20 were controlled
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Figure 7.9: The manipulated input trajectories of the chemical process under EMPC with added

process noise.

by EMPC. For each of the four cases the process was initialized with the same initial condition

and simulated for 16.5 h length of operation with the same realization of the process noise. The

closed-loop trajectories are given in Figs. 7.8-7.9 for the case where control actions for all inputs

are computed by EMPC.

The average economic costs over the simulation for these cases were: (1) J̄e = 29.87, (2)

J̄e = 29.21 (a decrease of 2.2% over all inputs on EMPC), (3) J̄e = 28.26 (a decrease of 5.4%

over all inputs on EMPC) and (4) J̄e = 29.87, respectively for each case. Furthermore, the average

computation time required to solve the EMPC for each case was (1) 4041 ms, (2) 239 ms, (3)

584 ms, and (4) 718 ms, respectively. The computation time reduction going from all four inputs

to two inputs was an order of magnitude since the number of decision variables in the optimization

problem is a dominant factor in the computational burden of solving the optimization problem.

Also, case (4) has two average constraints imposed in the optimization problem compared to cases

(2) and (3) which only have one average constraint. It is important to emphasize that the same

program and computer processing power were used in all cases. Thus, the comparison of the
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computation time is consistent. The average computation time was computed for a simulation with

320 sampling periods, i.e., the EMPC was solved 320 times. The computation time required to

solve the EMPC that computes control actions for CA20 and Q2 is less than the computation time

of EMPC that computes control actions for CA10 and Q1 (the reduction in computation time is

approximately a factor of two) which suggests that the computational burden is associated with

how direct is the dynamic effect of the input on the economic cost.

This example is relatively small and thus, it may be computationally viable to compute control

actions for the full set of manipulated inputs with EMPC. In the final input selection, the inputs CA10

and CA20 are controlled by EMPC. The inlet concentrations are the inputs that are continuously

manipulated by the EMPC which leads to dynamic operation of the process that is economically

better compared to steady-state operation. The input CA20 has more of an impact on the closed-

loop performance compared to the input CA10. Even though the relative degree of the economic

cost with respect to Q2 is 2, it is not included on EMPC because practically no benefit is realized

with this input on EMPC which the sensitivity analysis showed.

7.4 Conclusions

In this chapter, control configuration selection for economic model predictive control was consid-

ered. A methodology to identify the manipulated inputs from the set of all possible manipulated

inputs for which EMPC should compute control actions was developed on the basis of the process

economics. Since EMPC will typically enforce a dynamic operating policy, the relative degree

and the sensitivities of the economic cost function with respect to an input were used to explicitly

account for the nonlinear process dynamics and choose the manipulated inputs assigned to EMPC.

The set of inputs selected for EMPC is guaranteed to be a stabilizing one. The overall methodology

was demonstrated with a chemical process example.
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Chapter 8

Conclusions

This dissertation presented approaches to economic model predictive control (EMPC) of nonlinear

process systems. The approaches were formulated to address several key theoretical considerations

of EMPC including recursive feasibility, closed-loop stability, closed-loop performance, and com-

putational efficiency. Many of the developed EMPC schemes took advantage of Lyapunov-based

control techniques. The effectiveness and performance of the developed EMPC approaches were

illustrated via applications to chemical process examples.

In Chapter 3, various LEMPC designs were developed, which are capable of optimizing closed-

loop performance with respect to general economic considerations for nonlinear systems. Numer-

ous issues arising in the context of chemical process control were considered including closed-loop

stability, robustness, closed-loop performance, and explicitly time-varying economic cost func-

tions. The formulations of the LEMPC schemes were provided as well as rigorous theoretical

treatments of the schemes were carried out. Closed-loop stability, in the sense of boundedness

of the closed-loop state, under the LEMPC designs was proven. Additionally, when desirable,

the LEMPC designs may be used to enforce convergence of the closed-loop state to steady-state.

Under a specific terminal constraint design, the closed-loop system under the resulting LEMPC

scheme was shown to achieve at least as good closed-loop performance as that achieved under

an explicit stabilizing controller. Demonstrations of the effectiveness of the LEMPC schemes on
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chemical process examples were also provided. Moreover, the closed-loop properties of these

examples under the LEMPC schemes were compared with respect to existing approaches to op-

timization and control. In all cases considered, the closed-loop economic performance under the

LEMPC designs was better relative to the conventional approaches.

In Chapter 4, several computationally-efficient two-layer frameworks for integrating dynamic

economic optimization and control of nonlinear systems were presented. In the upper layer, EMPC

is used to compute economically optimal time-varying operating trajectories. Explicit control-

oriented constraints were employed in the upper layer EMPC. In the lower layer, an MPC scheme

is used to force the system to track the optimal time-varying trajectory computed by the upper

layer EMPC. The properties, i.e., stability, performance, and robustness, of closed-loop systems

under the two-layer EMPC methods were rigorously analyzed. The two-layer EMPC methods

were applied to chemical process examples to demonstrate the closed-loop properties. In all the

examples considered, closed-loop stability was achieved, the closed-loop economic performance

under the two-layer EMPC framework was better than that achieved under conventional approaches

to optimization and control, and the total on-line computational time was better with the two-layer

EMPC methods compared to that under one-layer EMPC methods.

In Chapter 5, a strategy for implementing Lyapunov-based economic model predictive control

(LEMPC) in real-time with computation delay was developed. The implementation strategy uses

a triggering condition to precompute an input trajectory from LEMPC over a finite-time horizon.

At each sampling period, if a certain stability (triggering) condition is satisfied, then the precom-

puted control action by LEMPC is applied to the closed-loop system. If the stability condition is

violated, then a backup explicit stabilizing controller is used to compute the control action for the

sampling period. In this fashion, the LEMPC is used when possible to optimize the economics

of the process. Conditions such that the closed-loop state under the real-time LEMPC is always

bounded in a compact set were derived. The real-time LEMPC scheme was applied to a chemical

process network and demonstrated that it may maintain closed-loop stability in the presence of

significant computation delay and process noise while also, improving the closed-loop economic
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performance compared to the economic performance at the economically optimal steady-state.

In Chapter 6, closed-loop stability and performance of systems described by nonlinear DDEs

under Lyapunov-based economic model predictive control (LEMPC) was considered. First, condi-

tions such that closed-loop stability for systems with sufficiently small state and input delays under

LEMPC, formulated with an ODE model of the system, were derived. A chemical process exam-

ple demonstrated that indeed closed-loop stability is maintained under LEMPC for sufficiently

small time-delays in both the states and the inputs. However, closed-loop performance signifi-

cantly degraded for larger input delays. This motivated designing a predictor feedback LEMPC

methodology. The predictor feedback LEMPC design employs a predictor to compute a prediction

of the state after the input delay and an LEMPC scheme, formulated with a DDE model. The

predicted state from the predictor is used to initialize the DDE model. The predictor feedback

LEMPC was applied to the chemical process example and resulted in better closed-loop stability

and performance properties compared to the LEMPC, formulated with an ODE approximation of

the nonlinear time-delay system.

In Chapter 7, control configuration selection for economic model predictive control was con-

sidered. A methodology to identify the manipulated inputs from the set of all possible manipulated

inputs for which EMPC should compute control actions was developed on the basis of the process

economics. Since EMPC will typically enforce a dynamic operating policy, the relative degree

and the sensitivities of the economic cost function with respect to an input were used to explicitly

account for the nonlinear process dynamics and choose the manipulated inputs assigned to EMPC.

The set of inputs selected for EMPC is guaranteed to be a stabilizing one. The overall methodology

was demonstrated with a chemical process example.

In summary, EMPC is a viable option to integrate dynamic economic optimization and control

of nonlinear systems, and this dissertation has developed several such EMPC methods that may

contribute in enabling the vision of Smart Manufacturing.
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editors, Assessment and Future Directions of Nonlinear Model Predictive Control, volume
358 of Lecture Notes in Control and Information Sciences, pages 419–434. Springer Berlin
Heidelberg, 2007.

[93] J. V. Kadam, W. Marquardt, M. Schlegel, T. Backx, O. H. Bosgra, P.-J. Brouwer,
G. Dünnebier, D. van Hessem, A. Tiagounov, and S. de Wolf. Towards integrated dy-
namic real-time optimization and control of industrial processes. In Proceedings of the 4th
International Conference of the Foundations of Computer-Aided Process Operations, pages
593–596, Coral Springs, Florida, 2003.

[94] J. V. Kadam, M. Schlegel, W. Marquardt, R. L. Tousain, D. H. van Hessem, J. van den Berg,
and O. H. Bosgra. A two-level strategy of integrated dynamic optimization and control of
industrial processes–a case study. In J. Grievink and J. van Schijndel, editors, Proceed-
ings of the European Symposium on Computer Aided Process Engineering-12, volume 10
of Computer Aided Chemical Engineering, pages 511–516, The Hague, The Netherlands,
2002.

[95] R. E. Kalman. Contributions to the theory of optimal control. Boletin de la Sociedad
Matematica Mexicana, 5:102–119, 1960.

[96] I. Karafyllis. Stabilization by means of approximate predictors for systems with delayed
input. SIAM Journal on Control and Optimization, 49:1100–1123, 2011.
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