UC Irvine
UC Irvine Previously Published Works

Title
Pattern Coupled Sparse Bayesian Learning for Recovery of Time Varying Sparse Signals

Permalink
https://escholarship.org/uc/item/7v60v50\

Authors

Fang, Jun
Shen, Yanning
Li, Hongbin

Publication Date
2014

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,

availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/7v60v50v
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

arXiv:1311.2150v1 [cs.IT] 9 Nov 2013

Pattern-Coupled Sparse Bayesian Learning for
Recovery of Block-Sparse Signals

Jun Fang, Yanning Shen, Hongbin ISenior Member, IEEE, and Pu Wang

Abstract—We consider the problem of recovering block-sparse
signals whose structures are unknowna priori. Block-sparse
signals with nonzero coefficients occurring in clusters ase
naturally in many practical scenarios. However, the knowlelge
of the block structure is usually unavailable in practice. h this

or audio signals [8] usually results in a block-sparse stmgc
in which the nonzero coefficients occur in clusters. In addit
a discrete wavelet transform of an image naturally yieldea t
structure of the wavelet coefficients, with each waveleffcoe

paper, we develop a new sparse Bayesian learming method for Cient serving as a “parent” for a few “children” coefficie {@.

recovery of block-sparse signals with unknown cluster pagrns.
Specifically, a pattern-coupled hierarchical Gaussian pir model
is introduced to characterize the statistical dependenciamong
coefficients, in which a set of hyperparameters are employetb
control the sparsity of signal coefficients. Unlike the conentional
sparse Bayesian learning framework in which each individua
hyperparameter is associated independently with each cdéfient,
in this paper, the prior for each coefficient not only involves
its own hyperparameter, but also the hyperparameters of its
immediate neighbors. In doing this way, the sparsity pattens
of neighboring coefficients are related to each other and the
hierarchical model has the potential to encourage structued-
sparse solutions. The hyperparameters, along with the spae
signal, are learned by maximizing their posterior probability via
an expectation-maximization (EM) algorithm. Numerical results
show that the proposed algorithm presents uniform superioity
over other existing methods in a series of experiments.

Index Terms—Sparse Bayesian learning, pattern-coupled hier-
archical model, block-sparse signal recovery.

I. INTRODUCTION

A number of algorithms, e.g., block-OMP_[10], mixéd/ ¢,
norm-minimization[[11], group LASSQ [12], StructOMP [13],
and model-based CoSaMP _[14] were proposed for recovery
of block-sparse signals, and their recovery behaviors were
analyzed in terms of the model-based restricted isometry
property (RIP)[[11],[[14] and the mutual cohererice [10]. Ana
yses suggested that exploiting the inherent structure arfssp
signals helps improve the recovery performance consitierab
These algorithms, albeit effective, require the knowlealighe
block structure (such as locations and sizes of blocks)arfssp
signalsa priori. In practice, however, the prior information
about the block structure of sparse signals is often uredail

For example, we know that images have structured sparse
representations but the exact tree structure of the caaffici

is unknown to us. To address this difficulty, a hierarchical
Bayesian “spike-and-slab” prior model is introduced in, [9]
[15] to encourage the sparseness and promote the cluster
patterns simultaneously. Nevertheless, for both warkq1%],

the posterior distribution cannot be derived analyticadlyd a

Compressive sensing is a recently emerged technique Méirkov chain Monte Carlo (MCMC) sampling method has to
signal sampling and reconstruction, the main purpose oflwvhibe employed for Bayesian inference. [nl[16].][17], a grapghic
is to recover sparse signals from much fewer linear measupsior, also referred to as the “Boltzmann machine”, was used

ments [1]-[3]
y=Azx (1)

where A € R™*" is the sampling matrix withm < n,
and = denotes the:-dimensional sparse signal with onky

model the statistical dependencies between atoms. Spdigific
the Boltzmann machine is employed as a prior on the support
of a sparse representation. However, the maximum a posterio
(MAP) estimator with such a prior involves an exhaustive
search over all possible sparsity patterns. To overcome the

nonzero coefficients. Such a problem has been extensivigiffactability of the combinatorial search, a greedy meitfid]

studied and a variety of algorithms that provide consiste@fd a variational mean-field approximation method [17] were
recovery performance guarantee were proposed, €.g[ J1]-Jgroposed to approximate the MAP. Recently, a sparse Bayesia
In practice, sparse signals usually have additional sirest learning method was proposed in_[18] to address the sparse
that can be exploited to enhance the recovery performance. signal recovery problem when the block structure is unknown
example, the atomic decomposition of multi-band signia]s [ [18], the components of the signal are partitioned into a

number of overlapping blocks and each block is assigned a
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overlapping structure into a block diagonal structure sat th
the conventional block sparse Bayesian learning algoritam
be readily applied.

In this paper, we develop a new Bayesian method for
block-sparse signal recovery when the block-sparse patter
are entirely unknown. Similar to the conventional sparse
Bayesian learning approach [19], [20], a Bayesian hieiaath
Gaussian framework is employed to model the sparse prior,
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in which a set of hyperparameters are introduced to chassumes independence among coefficients and has no plotentia
acterize the Gaussian prior and control the sparsity of th®encourage clustered sparse solutions.

signal components. Conventional sparse learning appesach To exploit the statistical dependencies among coefficients
however, assume independence between the elements ofwikepropose a new hierarchical Bayesian model in which
sparse signal. Specifically, each individual hyperparamist the prior for each coefficient not only involves its own hy-
associated independently with each coefficient of the spagerparameter, but also the hyperparameters of its imnesdiat
signal. To model the block-sparse patterns, in this paper, weighbors. Specifically, a prior over is given by

propose a coupled hierarchical Gaussian framework in which n
the sparsity of each coefficient is controlled not only byoitm p(z|a) = Hp(xi|ai, Qit1, Qi—1) (4)
hyperparameter, but also by the hyperparameters of its imme i=1

diate neighbors. Such a prior encourages clustered pated where
suppresses “isolated coefficients” whose pattern is differ _
froFr)rll3 that of its neighboring coefficients.pAn expectation-p(mai’a”l’ai‘l) = N(@il0, (i + Bais + Baia) 1)5
maximization (EM) algorithm is developed to learn the hyper )
parameters characterizing the coupled hierarchical mal and we assume, = 0 anda;,+1 = 0 for the end pointse;

to estimate the block-sparse signal. Our proposed algorit@ndz,, 0 < 8 < 1 is a parameter indicating the relevance
not only admits a simple iterative procedure for Bayesidietween the coefficient; and its neighboring coefficients
inference. It also demonstrates superiority over othestieng {Zi+1,i—1}. To better understand this prior model, we can
methods for block-sparse signal recovery. rewrite (5) as

_ The rest .of the paper is orgamzed.as fol!ows. In S?Cb(fcilai,aiﬂ,ai_ﬂ x p(as|os) [p(zi|ais)]P [p(xilai1)]?

tion M we introduce a new coupled hierarchical Gaussian (6)
framework to model the sparse prior and the dependencies

among the signal components. An expectation-maximizati$fere p(zilo;) = N(wi]0,a;") for j = i,i+ 1,0 — 1. We
(EM) algorithm is developed in SectionJlll to learn theS€€ that the prior fog; is proportional to a product of three
hyperparameters characterizing the coupled hierarchiodk! Gaussian distributions, with the coefficient associated with
and to estimate the block-sparse signal. Se€fian IV exttrels one of the three hyperparameteis;, o1, -1} for each
proposed Bayesian inference method to the scenario whereditribution. Wheng = 0, the prior distribution[() reduces
observation noise variance is unknown. Relation of our wofR the prior for the conventional sparse Bayesian learning.
to other existing works are discussed[dh V, and an iteratiy¥hen 5 > 0, the sparsity ofz; not only depends on the
reweighted algorithm is proposed for the recovery of blocklyPerparamete;, but also on the neighboring hyperparame-

sparse signals. Simulation results are provided in Seffion ters{ci+1, ai—1}. Hence it can be expected that the sparsity
followed by concluding remarks in Sectibrn VIl patterns of neighboring coefficients are related to eackroth

Also, such a prior does not require the knowledge of the
block-sparse structure of the sparse signal. It naturadly h
the tendency to suppress isolated non-zero coefficients and
courage structured-sparse solutions.
Following the conventional sparse Bayesian learning frame
y=Az +w (2) Wwork, we use Gamma distributions as hyperpriors over the

) ) hyperparameteréa; }, i.e.
where A € R™*™ (m < n) is the measurement matrix, and n n

w is the a_dditive mul_tivariate Gagssian noise with zero mean p(a) = H Gammday|a, b) = Hr(a)ﬂbaaaem @)
and covariance matrix?I. The signalz has a block-sparse

structure but the exact block pattern such as the locatidn an . .
) ) KDp o whereT'(a) = [ °t*"le~'dt is the Gamma function. The
size of each block is unavailable to us. 0

In the conventional sparse Bayesian learning framework,?hOICe of the Gamma hyperprior results in a leaming process

. ; L . which tends to switch off most of the coefficients that are
encourage the sparsity of the estimated sigmails assigned .
- . Lo deemed to be irrelevant, and only keep very few relevant
a Gaussian prior distribution

coefficients to explain the data. This mechanism is als@dall
- as “automatic relevance determination”. In the convertion
pzle) = Hp(a?ilozi) ®) sparse Bayesian framework, to make the Gamma prior non-
=t informative, very small values, e.g0~4, are assigned to the
where p(z;|a;) = N(z40,0; "), anda £ {a;} are non- two parameters andb. Nevertheless, in this paper, we use
negative hyperparameters controlling the sparsity of iipead a more favorable prior which sets a largef(say,a = 1) in
x. Clearly, whena; approaches infinity, the correspondingrder to achieve the desired “pruning” effect for our pragubs
coefficientz; becomes zero. By placing hyperpriorsoyes}, hierarchical Bayesian model. Clearly, the Gamma prior with
the hyperparametefsy; } can be learned by maximizing theira largera encourages large values of the hyperparameters,
posterior probability. We see that in the above conventiorand therefore promotes the sparseness of the solution since
hierarchical Bayesian model, each hyperparameter is astwe larger the hyperparameter, the smaller the variancheof t
ciated independently with each coefficient. The prior modebrresponding coefficient.

Il. HIERARCHICAL PRIOR MODEL

We consider the problem of recovering a block-sparse sig
x € R™ from noise-corrupted measurements

=1 =1



[1l. PROPOSEDBAYESIAN INFERENCEALGORITHM where c is a constant independent ef. Ignoring the term

. ind dent ofa, and Mli , the Q-functi b
We now proceed to develop a sparse Bayesian Iearnl:[rigs)?:rrésiz d(;s and recalling[(#), the Q-function can be

method for block-sparse signal recovery. For ease of exposi
tion, we assume that the noise varianceis knowna priori. 1
T S ®y — z , . ,

Extension of the Bayesian inference to the case of unknofgiedla”’) =logp(a) + 5 Z (1Og(0‘1 + Baivs + fai-i1)
noise variance will be discussed in the next section. Based o =l
the above hierarchical model, the posterior distributiérnzo — (0 + Bevigr + Bay_1) /p(:c|y,a(t))a:?dm>
can be computed as

(14)

n

p(x|esy) ocp(zle)p(ylz) (8) Since the posteriop(z|y, a!)) is a multivariate Gaussian

distribution with its mean and covariance matrix given[D)(1
we have

(9) / p(ly, a'Nalde = By g0 [27] = 37 + ¢ (15)

wherea = {«a;}, p(z|a) is given by @), and

L (- Ae3

It can be readily verified that the posteriofz|c, y) follows where ji; denotes theith entry of f, qS” Adenotes tAheéth
a Gaussian distribution with its mean and covariance givellmgonal element of the covariance matd® 4 and ® are

respectively by computed according td _(1L0), wittx replaced by the current
o estimatea(*). With the specified priof{7), the Q-function can
p=c"PAy eventually be written as
_(~—2 AT -1
P —(0’ AT A + D) (10) Q(Oé|04(t))
where D is a diagonal matrix with itgth diagonal element n 1
equal to(a; + Bait1 + Bai-1), i.e. => (a log a; —ba; + 5 log(as + a1 + fai-1)
=1
£ di 1 . -
D dlaqm + Bas + Bag, ..., 0 + Bag_1 + Ban+l(?|_1) _ 5(041 + Baigr + ﬂaifl)(/ﬁ? + ¢“)> (16)

Given a set of estimated hyperparameters}, the maximum  M-Step: In the M-step of the EM algorithm, a new estimate
a posterior (MAP) estimate aof is the mean of its posterior Of ¢ i obtained by maximizing the Q-function, i.e.

distribution, i.e. o™ = argmax Q(ala®) (17)

- T 2 —1 4T . . . _— .
Buap =p=(A"A+0°D)" A"y (12)  For the conventional sparse Bayesian learning, maxinoizati

o bl theref d i timating th t of the Q-function can be decoupled into a number of separate
ur proobiem ftheretore reduces 1o estimating the Sel Qhi;ations in which each hyperparameter is updated

hyperparameter@ai}. With hyperpriors placed ovet;, Igarn- independently. This, however, is not the case for the proble
ing the hyperparameters becomes a search for their pmteﬂging considered here. We see that the hyperparameters in

mode, i.e. maximization of the posterior probabiliijc|y). the O-function [(16) are entangled with each other due to

A strategy to maximize the posterior probability is to Xihe logarithm termlog(a; + Basst + Bas_1). In this case,

ploit the expectation-maximization (EM) formulation \_/vh_|c an analytical solution to the optimization {17) is difficud

Bbtain. Gradient descend methods can certainly be used to
search for the optimal solution. Nevertheless, such a gradi
based search method, albeit effective, does not provide any
insight into the learning process. Also, gradient-basethous
involve higher computational complexity as compared with a
%nalytical update rule. To overcome the drawbacks of gradie

based methods, we consider an alternative strategy which ai

(tE)—Stedp:r(]BiveE the c(ljjr(rjent e.:,]timéltes of the hyperparam.etea{tq finding a simple, analytical sub-optimal solution bf](17)
o'/ and the observed daty the E-step requires computingg,, -, 5, analytical sub-optimal solution can be obtained by

the expected value (with rgspect to _the_missing variakles examining the optimality condition of {17). Supposé is the
of the complet_e log-posterior ak, which is also referred to optimal solution of [(I7), then the first derivative of the Q-
as the Q-function; we have function with respect tex equals to zero at the optimal point,

Q(afa™) =Eyjy.am[logp(alz)] ie. )
9 t
N / p(zly, &) log p(a|z)dz % =0 (18)

a=aox

the expected value of the complete log-posterioragfi.e.
Ezy,«llog p(a|z)], where the operatoE,, [-] denotes the
expectation with respect to the distributiptic|y, ). Specifi-
cally, the EM algorithm produces a sequence of estimatés
t=1,2,3,..., by applying two alternating steps, namely, th
E-step and the M-step [21].

:/p(a:|y,a(t))log[p(a)p(m|a)]dfc+C (13) To examine t_his opt?mglity condition more thqroughly, we
compute the first derivative of the Q-function with respext t



each individual hyperparameter:

90 (ala® a 1 1
%i) = a—l — b — 5(,(}1 “+ E(V’i—"_ﬂy’i‘i’l + BVifl)
Vi=1,....n
(19)
whereyy =0, v,41 =0, and fori = 1,...,n, we have

wi 23 + dii) + By + birrirr) + BAZy + dic1im1)
(20)

N 1
o + Baip1 + Bai—a

(21)

Vi

casew; is a weighted summation qf; + ¢y forj =i —
1,4,i+1.
For clarity, we now summarize the EM algorithm as follows.
1) Atiterationt (t = 0,1,...): Given a set of hyperparame-
tersa® = {a!"}, compute the meapt and covariance
matrix & of the posterior distributiom(x|a®,y) ac-
cording to [I0), and compute the MAP estimai&’
according to[(IR).
2) Update the hyperparametens’t!) according to [(25),
wherew; is given by [2D).
3) Continue the above iteration unfig“+% — ® |, <,
wheree is a prescribed tolerance value.
Remarks. Although the above algorithm employs a sub-

indices of the notationg; and ¢;,; in ) equal to0 and  gtep, numerical results show that the sub-optimal upddée ru

n + 1. Although these notation$fio, do,0, fin+1, dnt1m+1}  is quite effective and presents similar recovery perforoean

do not have any meaning, they can be used to simplify ogg using a gradient-based search method. This is because the
expression. Clearly, they should all be set equal to zeeo, isyb-optimal solutio{25) provides a reasonable estimiteso

flo = fin+1 = $0,0 = Pnt1,n+1 = 0. Recalling the optimality optimal solution when the parameteis set away from zero,

condition, we therefore have

1 1
ai + 5(1/2‘ + v+ Br) = b+ Wi Vi=1,...,n
(22)
wherev; =0, v, =0, and
2 1
aj + ﬁa;ﬁrl + Bal_y

*
K2

Vi=1,...,n

say,a = 1. Numerical results also suggest that the proposed
algorithm is insensitive to the choice of the parameten
(25) as long a%: is within the rangda, a + ¢¢] for a properly
chosena. We simply sets = a in our following simulations.
The update rule[{25) not only admits a simple analytical
form which is computationally efficient, it also provides an
insight into the EM algorithm. The Bayesian Occam'’s razor
which contributes to the success of the conventional sparse
Bayesian learning method also works here to automatically

Since all hyperparametefgy;} and 3 are non-negative, we select an appropriate simple model. To see this, note that in

have
1 N .
— > >0 Vi=1,....n
Q;
1 " .
&“—*>Vi>0 V2=1,...,n—1
i+1
1 " .
&“—*>Vi>0 Vz:2,...,n
1—1

the E-step, when computing the posterior mean and covarianc
matrix, a large hyperparametey tends to suppress the values
of the corresponding componeHis;, ¢;} for j = i—1,4,i+1

(c.f. (IQ)). As a result, the value af; becomes small, which in
turn leads to a larger hyperparamater(c.f. (28)). This nega-
tive feedback mechanism keeps decreasing most of the ntrie
in & until they reach machine precision and become zeros,
while leaving only a few prominent nonzero entries survited

Hence the term on the left-hand side[0fl(22) is lower and uppexplain the data. Meanwhile, we see that each hyperparamete

bounded respectively by

a—+ ¢ a 1, ., ” * a
o > a—r+§(ui + Bvi .+ Briy) > a—r

(23)

wherecy = 1.5fori =2,...,n—1,andcy = 1 fori = {1,n}.
Combining [22)-H(28B), we arrive at

. a a+ co
i 0.5w; + b 0.5w; + b

Vi=1,...,n (24)

(67

a; not only controls the sparseness of its own corresponding
coefficientz;, but also has an impact on the sparseness of the
neighboring coefficient§x; 1, x;—1 }. Therefore the proposed
EM algorithm has the tendency to suppress isolated non-zero
coefficients and encourage structured-sparse solutions.

IV. BAYESIAN INFERENCE UNKNOWN NOISE VARIANCE

In the previous section, for simplicity of exposition, we
assume that the noise varianeé is known a priori. This

With a = 1, andb = 104, a sub-optimal solution td_(17) canassumption, however, may not hold valid in practice. In this

be obtained as

o R .
G=———9—+ Vi=1,...,n

© T 05w + 102 (25)

section, we discuss how to extend our previously developed
Bayesian inference method to the scenario where the noise
variances? is unknown.

For notational convenience, define

for somex within the rangel + ¢y > « > 1. We see that the
solution [25) provides a simple rule for the hyperparameter
update. Also, notice that the update rulel(25) resembles thgyjiowing the conventional sparse Bayesian learning frame
of the conventional sparse Bayesian learning work [19]] [2Q,ork [19], we place a Gamma hyperprior over

except that the parameter; is equal toj? + ¢;,; for the e e —d

conventional sparse Bayesian learning method, while for ou p(y) = Gammdy|c,d) = T'(¢c)~ d™ye™"

A
vEo07?

(26)



where the parameters and d are set to small values, e.g.ii and ® are computed via[{10) withy (i.e. 62) and «
c=d=10"* As we already derived in the previous sectionmeplaced by the current estimatés®, a(Y}. Hencey can
given the hyperparameters and the noise variance?, the be computed as

posteriorp(x|a, v, y) follows a Gaussian distribution with its 7 T AT T AT

mean and covariance matrix given byl(10). The MAP estimate X=y'y - 2Bz ATy|+ E[z" A" Ax]

of z is equivalent to the posterior mean. Our problem therefore  =yTy — 2" ATy + p" AT Ap +tr (éATA)
becomes jointly estimating the hyperparametarsand the n
noise variance? (or equivalentlyy). Again, the EM algorithm @Hy —Ap|3+ (,Y(t))fl Z pi (33)

can be used to learn these parameters via maximizing their
posterior probabilityp(«, v|y). The alternating EM steps are
briefly discussed below.

E-Step In the E-step, given the current estimates ofty (@ATA) —tr (@ATA—I—(')/(t))_l(i)D—(’y(t))_l‘iﬁ)
the parametersa(’, ()} and the observed datg, we A
compute the expected value (with respect to the miss- Z(V(t))_ltf( (vWATA+ D) - ‘I>D)
ing variablesx) of the complete log-posterior ofx, v}, _ .o~
that is, E,, o o [logp(a,y|z,y)], where the operator =)' (I_‘I)D)

Eyy.at 4m[] denotes the expectation with respect to the ()~
distribution p(z|y, o™, ~y®)). Since =(v ZP (34)

ple |z, y) o ple)p(|a)p()plyle, ) 27) in which D is given by [I1) witha replaced by the current
the Q-function can be expressed as a summation of two teressimatea(*), and

where the last equalitya) follows from

Q71,7 1) =By, 0 4o log p(e)p(@]a)] pi 21— il + By + ail)y) v (39)
+ Eply,atm 4o [log p(y)p(yle, 7)) Note thatay ) and aff}rl are set to zero when computing

andp,. Substltutmg [(3B) back intd_(82), a new estimateyof

where the first term has exactly the same form as the @e. the optimal solution td_(30), is given by
function [I3) obtained in the previous section, except with 112 Oy —1 _
the known noise variance? replaced by the current estimate (t1+1) = ly — Al + () 2 pi+2d
(c)2 = 1/4®, and the second term is a function of the 7 m + 2c
variable~. The above update formula has a similar form as that for

M-Step: We observe that in the Q-functioh (28), the pathe conventional sparse Bayesian learning (C.fl [19, Eooat
rameterso and~ to be learned are separated from each othép0)]). The only difference lies in thafp;} are computed
This allows the estimation oft and~ to be decoupled into differently: for the conventional sparse Baye5|an leagnin
the following two independent problems: method, p; is computed as); = 1 — ¢;al”, while p; is
given by [35) for our algorithm.

The sparse Bayesian learning algorithm with unknown noise
(30) variance is now summarized as follows.

1) At iterationt (¢t = 0,1,...): given the current estimates
The first optimization problem[(89) has been thoroughly  of a® and~(*), compute the meaf and the covariance
studied in the previous section, where we provided a simple  matrix & of the posterior distributiop(z|a(®),~®) )
analytical form [(2b) for the hyperparameter update. We now via (I0), and calculate the MAP estimaté&’) according
discuss the estimation of the parameteiRecalling [26), we to (12).
have 2) Compute a new estimate ak, denoted asa(**h,
according to [(Zb), wherey; is given by [2D); update

%‘y""(t)”(;) [log p(v)p(y|, )] ~ via (38), which yields a new estimate of denoted
=5 1087 = 5 By an o [ly = Az[3] + clogy — dy asy "+,

31)  3) Continue the above iteration unti ") — &[|; <,
wheree is a prescribed tolerance value.

(36)

ottt = arg max Eoly,a® [log p(a)p(z|ax)] (29)

FD = arg max Eoly,at 4o [logp(v)p(ylz, v)]

Computing the first derivative of (81) with respecttoand

setting it equal to zero, we get V. DISCUSSIONS

1_x+2 (32) A Related Work
v omt2 Sparse Bayesian learning is a powerful approach for regres-
where sion, classification, and sparse representation. It watyfirs
2 By a0 [||y—Am||§] introduced by Tipping in his pioneering work [19], where

the regression and classification problem was addressed and
Note that the posteriop(x|y, a®,~®) follows a Gaussian sparse Bayesian learning approach was developed to automat
distribution with meani and covariance matrix@, where ically remove irrelevant basis vectors and retain only a few



‘relevant’ vectors for prediction. Such an automatic ralese formulation of the prior forx is not available, instead, a prior
determination mechanism and the resulting sparse solotibn is assigned to the augmented new signal which is constructed
only effectively avoid the overfitting problem, but also dem by stacking a number of overlapping blocks; }.
superior regression and classification accuracy. Laternon i
[20], [22], sparse Bayesian learning was introduced toesoly , , ,
the sparse recovery problem. In a series of experimentssespa>: A Proposed Iterative Reweighted Algorithm
Bayesian learning demonstrated superior stability forspa Sparse Bayesian learning algorithms have a close connec-
signal recovery, and presents uniform superiority oveepthtion with the reweighted’; or ¢; methods. In fact, a dual-
methods. form analysis[[25] reveals that sparse Bayesian learnimg ca

In [23], sparse Bayesian learning was generalized to solwe considered as a non-separable reweighted strategygolvi
the simultaneous (block) sparse recovery problem, in whighnon-separable penalty function. Inspired by this insigie
a group of coefficients sharing the same sparsity pattern &eere propose a reweightédmethod for the recovery of block-
assigned a multivariate Gaussian prior parameterized byspgarse signals when the block structure of the sparse signal
common hyperparameter that controls the sparsity of thisknown.
group of coefficients. Specifically, we have Conventional reweighted; methods iteratively minimize

pl@s|as) = N(0, ai_lI) 37) :Ee follpwing Weightg(fl function (for simplicity, we consider
e noise-free case):

wherex; denotes the group of coefficients that share a same

sparsity pattern; is the hyperparameter controlling the min Xn:w(t)|xi|

sparsity ofx;. In [24], the above model was further improved x P !

to accommodate temporally correlated sources st Az =y (39)
p(xilai) = N(0,0; ' By) (38)

. . . - o _ where the weighting parameters are given h;ft) =
in which B; is a positive definite matrix that captures thq/(|$(t—1)| + €),Vi, and ¢ is a pre-specified positive pa-
correlation structure of;. We see that, in both models '-23]vramezter. In a series of experiments |[26], the above itera-

[24], each coefficient is associated with only one sparseneg, e reweighted algorithm outperforms the conventional
controlling hyperparameter. This explicit assignment affe inimization method by a considerable margin. The fasci-
coefficient to a certain hyperparameter requires to know thging idea of the iterative reweighted algorithm is that th
exact block sparsity pattera priori. In contrast, for our \yeights are updated based on the previous estimate of the
hierarchical Bayesian model, each coefficient is assatialgy|ytion, with a large weight assigned to the coefficient seho
with multiple hyperparameters, and the hyperparamet&'s @kiimate is already small and vice versa. As a result, theeval
somehow related to each other through their commonly Cogy the coefficient which is assigned a large weight tends to
nected_ coefficients. Such a coupled hierarchical mo_delﬁms be smaller (until become negligible) in the next estimate.
potential to encourage block-sparse patterns, while Withornis explains why iterative reweighted algorithms usually

imposing any stringent or pre-specified constraints on .4 sparser solutions than the conventiofahinimization
structure of the recovered signals. This property enalfles {,,athod.

proposed algorithm to learn the block-sparse structurenin a ag giscussed in our previous section, the basic idea of our

automatic manner. proposed sparse Bayesian learning method is to establish a
Recently, Zhang and Rao extended the block Spar@&upling mechanism such that the sparseness of neighboring

Bayesian learning framework to address the sparse Sige%fﬁcients are somehow related to each other. With this

recovery problem when the block structure is unknowr [18], mind, we slightly modify the weight update rule of the
In their work [18], the signale is partitioned into a number reweighted’; algorithm as follows

of overlapping blocks{x;} with identical block sizes, and

each blockx; is assigned a Gaussian prigfxz;|«;) = t) _ 1 .

N(0,0; ' B;). To address the overlapping issue, the original [z~ (1) (1) Vi (40)
(0,07 ' B;). To address the overlapping issue, the origina 12D+ 8120 + Bl + e

data model is converted into an expanded model which re- ) ) )

moves the overlapping structure by adding redundant ccﬁurrWe) see that unlike the conventional update rule, the weight

to the original measurement matrik and stacking all blocks @ ~ 1S not only a function of its corresponding coefficient

{z;} to form an augmented vector. In doing this way, the; ', but also dependent on the neighboring coefficients

prior for the new augmented vector has a block diagonal for{n:(t_l) =0

i1 ,xE_l }. In doing this way, a coupling effect between
similar as that for the conventional block sparse Bayesi#ime sparsity patterns of neighboring coefficients is eisthéd.
learning. Thus conventional block sparse Bayesian legrninlence the modified reweighted,-minimization algorithm
algorithms such as [24] can be applied to the expanded models the potential to encourage block-sparse solutionser=xp
This overlapping structure provides flexibility in definimy ments show that the proposed modified reweiglfiethethod
block-sparse pattern. Hence it works well even when thekblogields considerably improved results over the conventiona
structure is unknown. A critical difference between our kvorreweighted?; method in recovering block-sparse signals. It
and [24] is that for our method, a prior is directly placed oalso serves as a good reference method for comparison with
the signake, while for the method proposed in [24], a rigoroushe proposed Bayesian sparse learning approach.



VI. SIMULATION RESULTS

1
We now carry out experiments to illustrate the performan I
of our proposed algorithm, also referred to as the patter
coupled sparse Bayesian learning (PC-SBL) algorithm, &nd 0.8~
comparison with other existing methods. The performance ¢
the proposed algorithm will be examined using both synthet § o6k
and real dath The parameterg and b for our proposed
algorithm are set equal to = 0.5 andb = 10~ throughout § —— PC-SBL (8=0)
our experiments. go4 —=—PC-SBL (3=0.2)]|
n —4— PC-SBL (8=0.5)
A. Synthetic Data 0.2 —#— PC-SBL (B=1)
Let us first consider the synthetic data case. In our sim —e—SBL
lations, we generate the block-sparse signal in a similar w 0 YA , BP :
to [18]. Suppose th@-dimensional sparse signal contaifs 0.2 0.3 0.4 0.5 0.6 0.7
nonzero coefficients which are partitioned intablocks with m/n

random sizes and random locations. Specifically, the block _ _ _
sizes {Bl}lL:1 can be determined as follows: we randoml@]%igéssol#gcess rates of the proposed algorithm vs. thewatio for different
generateL positive random variable§r; } -~ with their sum '

equal to one, then we can simply 98t = [ Kr;]| for the first

L—-1

L — 1 blocks andB;, = K —>,", B, for the last block, 5 _ ( our proposed algorithm performs the same as the SBL.
yvhere [z] denotes the ce|I|_ng_0perator that gives the smallephis is an expected result since in the case3of& 0, our
integer no smaller tham. Similarly, we can partition thei-  sroposed algorithm is simplified as the SBL. Nevertheless,
dimensional vLector intal. super-blocks using the same Sefyhen 3 > 0, our proposed algorithm achieves a significant
of values{r;};_,, and place each of thé nonzero blocks nerformance improvement (as compared with the SBL and
into _each super—l_:)lock V\{|t_h a randomly generated startighy through exploiting the underlying block-sparse stive}
position (the starting position, however, is selected sielt oyen without knowing the exact locations and sizes of the
the nonzero block will not go beyond the super-block). Algo, on_zero blocks. We also observe that our proposed algorith
our experiments, the nonzero coefficients of the sparsekigp ot very sensitive to the choice ¢f as long as3 > 0:

x and the measurement matrid € R™*" are randomly i gchieves similar success rates for different positiviies

generated with each entry independently drawn from a nom@lﬂ_ For simplicity, we set3 = 1 throughout our following
distribution, and then the sparse sigmabnd columns ofA experiments.

are normalized to unit norm. Next, we compare our proposed algorithm with some other

Two metrics are used to evaluate the recovery performangeenty developed algorithms for block-sparse signabvec
of respective algorithms, namely, the normalized meanr:aqhaery, namely, the expanded block sparse Bayesian learning

errorA(NQMSE)Q and the success rate. The NMSE is defined a4 (EBSBL) [[18], the Boltzman machine-based greedy
lz—2|[3/|[||2, where2 denotes the estimate of the true signgl, it algorithm (BM-MAP-OMP) [[16], and the cluster-
x. The success rate is computed as the ratio of the numbeggf,.t,red MCMC algorithm (CIuSS-MCMC) [L5]. The mod-
successful trials to the total number of independent runs. A4 iterative reweighted; method (denoted as MRL1) pro-
trial is considered successful if the NMSE is no greater th%sed in SectioRV is also examined in our simulations. Note
—4 H - . .
107%. In our simulations, the success rate is used to measiig; 5| these algorithms were developed without the knowl-
the recovery performance for the noiseless case, while ge of the block-sparse structure. The block sparse Bayesi
NMSE is employed to measure the recovery accuracy WhPerérning method (denoted as BSBL) developed [inl [18] is

the measurements are corrupted by additive noise. included as well. Although the BSBL algorithm requires the
We first examine the recovery performance of our proposgfojedge of the block-sparse structure, it still providesent

algorithm (PC-SBL) under different choices ®f As indicated performance if the presumed block size, denotedhbyis

earlier in our paper; (0 < 3 < 1) is a parameter quantifying oonerly selected. Figl 2 plots the success rates of raspect

the dependencies among neighboring coefficients. [ig. 1 dsorithms as a function of the ratin/n and the sparsity level

picts the success rates vs. the ratign for different choices ;" respectively. Simulation results show that our proposed
O,f ﬁ,_where we set = 1,00’ K = 25, and L = 4. Results algorithm achieves highest success rates among all digusit

(in Fig.[1 and the following figures) are averaged over 1000,y otperforms other methods by a considerable margin. We
independent runs, with the measurement matrix and theespalkq noticed that the modified reweightédmethod (MRL1),
signal rand(_)mly generated for_each run. The performance hough not as good as the proposed PD-SBL, still delivers
the conventional sparse Bayesian learning method (de'me%cceptable performance which is comparable to the BSBL and

“SBL") _[19; an.d the basis pursuit method (denoted as “BP")atter than the BM-MAP-OMP and the CluSS-MCMC.
[1], [2] is also included for our comparison. We see that When \ya now consider the noisy case where the measurements

IMatlab  codes for our algorthm  are  avalable  at@® contamlna}ted. by addltlvg noise. The observation neise i
http://www.junfang-uestc.net/ assumed multivariate Gaussian with zero mean and covarianc
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Fig. 2. Success rates of respective algorithms.

matrix o2 1. Also, in our simulations, the noise variance is asn Fig.[8. It can be seen that our proposed algorithm provides
sumed unknown (except for the BM-MAP-OMP). The NMSEseconstructed coefficients that are closest to the groutidtr
of respective algorithms as a function of the ratign and the
sparsity levelK are plotted in Fig.13, where the white Gaussian VIl. CONCLUSIONS
noise is added such that the signal-to-noise ratio (SNRgiwh  We developed a new Bayesian method for recovery of
is defined as SNR(dB$: 20log,, (|| Az||2/||w]2). is equal to block-sparse signals whose block-sparse structures &irelgn
15dB for each iteration. We see that our proposed algorithamknown. A pattern-coupled hierarchical Gaussian priodeho
yields a lower estimation error than other methods in thgas introduced to characterize both the sparseness of ¢tie co
presence of additive Gaussian noise. ficients and the statistical dependencies between neigigoor
coefficients of the signal. The prior model, similar to theco
ventional sparse Bayesian learning model, employs a set-of h
B. Real Data perparameters to control the sparsity of the signal coefftsi

In this subsection, we carry out experiments on real worlMevertheless, in our framework, the sparsity of each coeffic
images. As it is well-known, images have sparse (or approxiet only depends on its corresponding hyperparameter, but
mately sparse) structures in certain over-complete basid) also depends on the neighboring hyperparameters. Sucbra pri
as wavelet or discrete cosine transform (DCT) basis. Morkas the potential to encourage clustered patterns andessgppr
over, the sparse representations usually demonstratereds isolated coefficients whose patterns are different fromir the
structures whose significant coefficients tend to be locategspective neighbors. The hyperparameters, along with the
together (see Fid.l6). Therefore images are suitable d&ta sparse signal, can be estimated by maximizing their posteri
for evaluating the effectiveness of a variety of block-sgar probability via the expectation-maximization (EM) algbri.
signal recovery algorithms. We consider two famous pictur&lumerical results show that our proposed algorithm aclsieve
‘Lena’ and ‘Pirate’ in our simulations. In our experimerttse a significant performance improvement as compared with
image is processed in a columnwise manner: we sample efuh conventional sparse Bayesian learning method through
column of thel128 x 128 image using a randomly generatedxploiting the underlying block-sparse structure, evethatit
measurement matrid € R™*128 recover each column from knowing the exact locations and sizes of the non-zero blocks
the m measurements, and reconstruct the image based lbalso demonstrates its superiority over other existinghoes
the 128 estimated columns. Fidll 4 ald 5 show the originaind provides state-of-the-art performance for block-spar
images ‘Lena’ and ‘Pirate’ and the reconstructed imageasgusisignal recovery.
respective algorithms, where we set = 64 andm = 80
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