
UCLA
UCLA Previously Published Works

Title
Activity-dependent transcriptional programs in memory regulate motor recovery after 
stroke.

Permalink
https://escholarship.org/uc/item/7v20459c

Journal
Communications Biology, 7(1)

Authors
Joy, Mary
Carmichael, Stanley

Publication Date
2024-08-25

DOI
10.1038/s42003-024-06723-3

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, available at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7v20459c
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


communications biology Article

https://doi.org/10.1038/s42003-024-06723-3

Activity-dependent transcriptional
programs in memory regulate motor
recovery after stroke

Check for updates

Mary T. Joy 1 & S. Thomas Carmichael 2

Stroke causes death of brain tissue leading to long-term deficits. Behavioral evidence from
neurorehabilitative therapies suggest learning-induced neuroplasticity can lead to beneficial
outcomes. However, molecular and cellular mechanisms that link learning and stroke recovery are
unknown.We show that in amousemodel of stroke,which exhibits enhanced recovery of function due
to genetic perturbations of learning and memory genes, animals display activity-dependent
transcriptional programs that are normally active during formation or storage of new memories. The
expression of neuronal activity-dependent genes are predictive of recovery and occupy a molecular
latent space unique tomotor recovery.Withmotor recovery, networksof activity-dependent genes are
co-expressed with their transcription factor targets forming gene regulatory networks that support
activity-dependent transcription, that are normally diminished after stroke. Neuronal activity-
dependent changes at the circuit level are influenced by interactions with microglia. At the molecular
level, we show that enrichment of activity-dependent programs in neurons lead to transcriptional
changes in microglia where they differentially interact to support intercellular signaling pathways for
axon guidance, growth and synaptogenesis. Together, these studies identify activity-dependent
transcriptional programs as a fundamental mechanism for neural repair post-stroke.

Stroke leads to loss of brain tissue, causing persistent long-term motor,
sensory, and cognitive impairments. Therapeutics for stroke recovery are
limited to neurorehabilitative training. Patients, even after rehabilitation,
live with severe impairments. Neurorehabilitation exploits behavioral
principles of learning and adaption to induce functional gains after stroke1,2.
Activities such as task-specific practice3,4, increased dosage5 and duration,
and more recently virtual reality-aided feedback and training6,7 have been
linked with increased neural plasticity and beneficial outcomes as a result.
While much of our conclusions on the relationship between learning and
stroke recovery have been drawn from behavioral evidence3,5,7 and func-
tionalMRImeasures8,9, the exact cellular andmolecularmechanisms in play
are unknown; specifically—it is unclear if cellular and molecular substrates
of learning and memory are recruited for recovery of function after stroke.
An understanding of these pathways will allow for targeting the same cel-
lular and molecular mechanisms in learning and memory to enhance
recovery of function after stroke.

C–C chemokine receptor-5 (CCR5) and cAMP response element-
binding protein (CREB) are critical for the formation of new memories in
the normal adult brain10–14. While CREB expression is important for

allocating neurons with information pertaining to a memory trace; CCR5
closes this temporal window for linking memories over time11. Allocated
neurons that store a memory trace have been classically termed as the
engram and have been causally linkedwith the expression and extinction of
amemory15. Recent efforts using transgenic lines that label neuronsbasedon
the expression of immediate early genes when paired with behavioral
learning paradigms in the adult healthy brain have been able to capture
neurons that participate in the engram15–20. Transcriptional profiling of
participating neurons has uncovered gene signatures that are unique to the
engram. Many of the genes are activity-dependent genes that include
immediate early genes (IEGs) that are expressed at the onset of an incoming
stimulus, succeeded by a wave of late response genes (LRGs) that are nor-
mally targets of IEG transcription factors21. The expression of LRGs mod-
ulates plasticity at the synapse22–24. Existing data on the expression of these
activity-dependent genes in the context of memory formation or novel
experience allows us to ask if the same gene signatures are expressed under
conditions of recovery after stroke.

We have recently shown that downregulation of CCR5 in cortical
neurons adjacent to the infarct following a stroke to the motor cortex leads
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to robust improvements in motor recovery25. Recovery is associated with
increased and differential sprouting of axons, preservation of dendritic
spines in the secondary motor cortex, and increased signaling through the
transcription factor CREB25. Overexpression of CREB alone after a stroke
also improves recovery of motor function26. CREB-overexpressing neurons
are allocated to a motor network such that chemogenetic inactivation of
CREB-overexpressing neurons overturns recovery to a state of motor
deficit26.

Here, we transcriptionally profiled neurons at different stages after
stroke and under conditions ofCCR5 knockdown orCREB overexpression,
which enhances motor recovery. We show that under conditions of
enhancedmotor recovery, cortical neurons express activity-dependent gene
sets that are unique to animals that recover and that these gene sets can
predict functional outcomes in acute stroke. Low dimensional representa-
tions of the data suggest that activity-dependent genes occupy a molecular
latent space unique to cortical neurons from animals that have CCR5
knockdown or CREB overexpression after stroke. Moreover, activity-
dependent genes form robust gene co-expression networks and transcrip-
tion factor-target co-expression networks when compared to untreated
groups. In response to neuronal knockdown of CCR5 or overexpression
of CREB after stroke, we also show that microglia express genes for ligands
and receptors that support axonal guidance, dendritic signaling, and
synaptogenesis.

Results
Cortical neurons after stroke express activity-dependent
gene sets
We collected gene expression data with RNAseq from cohorts of animals
with CCR5 knockdown (CCR5kd) or CREB overexpression (CREBoe) in
healthy and stroke-induced mice. These two molecular perturbations
robustly enhance motor recovery in mouse stroke models25,26 and are
associated with improved cognitive function in human stroke25,27. Cortical
neurons adjacent to the infarct (Supplementary Fig. S2c), from peri-infarct
primary and secondary motor cortices were isolated with fluorescence-
activated cell sorting (FACS) (Fig. 1b). Neurons were isolated frommultiple
cohorts with neuron-specific knockdown of CCR5 or overexpression of
CREB in acute (7 days post-stroke) and chronic stroke (30 days post-stroke)
along with controls that received the same viral backbone that lacked
sequences to target CCR5 or CREB (timelines and groups in Fig. 1a, infarct
sizes and location of virus expression relative to infarct in Supplementary
Figs. S1 and S2).

The timing of neuronal isolations was aligned with when enhanced
behavioral recovery was previously reported25,26. Briefly, with CCR5kd in
acute stroke, robust enhancements inmotor functionwere observed inweek
1. Reducing CCR5 function in chronic stroke led to modest enhancements
in function in week 4. In animals with CREBoe, enhancements in function
were reported in week 4 with delivery of CREBoe in the first week of stroke.
Hence, neurons were FAC-sorted at week 1 forCCR5kd in acute stroke and
week 4 for cohorts of animals with the delivery ofCCR5kd in chronic stroke
or CREBoe in acute stroke (Fig. 1a, S1, S2 for timing of injections, location,
and size of infarct, expressionof virus relative to the infarct and cortical areas
dissected). FAC-sorted neurons were subject to RNA sequencing. Sequen-
cing data were aligned to the mouse reference transcriptome, filtered, and
normalized to attain log2 counts per million (log2CPM), and differentially
expressed genes were identified (Supplementary Fig. S3, Supplementary
Data S1 and SI).

To determine if activity-dependent gene sets are expressed after stroke,
we compiled datasets from 19 published studies16–20,22,28–40 (Supplementary
Data S2 and SI) that measured gene expression changes with RNAseq
captured from neurons tagged during learning a novel task or during long-
term memory storage using activity-dependent transgenic mouse lines; or
when exposed to a novel stimulus. These studies characterized genes dif-
ferentially expressed in neurons of the engram during learning, remote
engram during long-term memory storage, and neurons that express IEGs
and LRGs when exposed to a novel stimulus. Genes from all studies were

categorized into 8 classes: IEGs.up (i.e., IEGs differentially upregulated) and
IEGs.down, LRGs.up, LRGs.down, engram.up, engram.down, remote.en-
gram.up; remote.engram.down.

To determine enrichment of activity-dependent gene sets, we com-
pared (FDR < 0.1) enrichment for several hundred genes per identified gene
set between samples fromanimalswithCCR5/CREBperturbations and their
controls in normal (Supplementary Fig S3j), acute and chronic stroke
(Fig. 1c).We found different classes of activity genes expressed in acute and
chronic stroke when compared to Naïve (Fig. 1c, Supplementary Fig S3j).
Many of these classes are negatively enriched (downregulated) after stroke,
with the exception of gene sets for upregulated IEGs (IEGs.up) and
downregulated LRGs (LRGs.down). The expression of IEGs is in alignment
with previous studies, resulting from the ischemic event41. However, sus-
tained downregulation of LRGs in acute to chronic stroke as seen with
positive enrichment for LRGs.down and negative enrichment for LRGs.up
in both acute and chronic phases, suggest downregulation or repression in
the encoding of transcription factors whose targets are normally LRGs, the
expression of which influences synaptic transmission and plasticity22–24.
Additionally, we found that gene sets for the engram (engram.up) are
negatively enriched in acute stroke and not enriched in chronic stroke. Both
acute and chronic stroke groups are also negatively enriched for genes
downregulated in the engram (engram.down), further supporting the
overall downregulated expression of engram gene sets after stroke.

Under conditions of enhanced motor recovery, with CCR5kd in acute
stroke (Fig. 1c), we found positive enrichment of gene sets for upregulated
IEGs (IEGs.up) showing a further increase in expression of IEGs when
compared to its control in acute stroke, but also further downregulation of
LRGs as seen with positive enrichment for LRGs.down. Unlike its control,
CCR5kd in acute stroke is positively enriched for gene setsupregulated in the
engram (engram.up) and remote engram (remote.engram.up). The oppo-
site pattern of expression was seen in chronic stroke, where both CCR5kd
and CREBoe when compared to its control, show increased expression of
LRGsand reducedexpressionof IEGs.Positive enrichment for LRGs.up and
negative enrichment for LRGs.down (with CCR5kd) show increased LRG
expression and positive enrichment for IEGs.down and negative enrich-
ment for IEGs.up show increased expression of IEGs in chronic stroke with
treatment.

This trend in the expression of IEGs and LRGs in treated groups with
enhanced motor recovery show that IEG expression is restricted to the
earlier phases of stroke, associatedwith an increase in LRGexpression in the
chronic phases. Similar to CCR5 knockdown in acute stroke, the condition
of CCR5kd in chronic stroke is enriched for gene sets upregulated in the
engram(engram.up), but alsodownregulated in the engram(engram.down)
suggesting an overall increase in genes differentially expressed in the
engram.

Unexpectedly, with CREBoe in stroke we did not find enrichment for
the gene set upregulated in the engram (engram.up) but found enrichment
for the gene set downregulated in the engram, which is also in contrast with
data from CREBoe in the normal brain that shows increased expression of
engram genes (Fig. 1c and S3j). The timing of CREB activation plays a
critical role in the allocation of active neurons to an engram42. The down-
regulation of engram genes and the upregulation of LRGs with CREBoe
post-stroke at 4 weeks suggest that an earlier onset of expression of engram
genes and IEGs may have taken place prior to when motor recovery was
observed.

Next, to determine if activity-dependent gene expression is correlated
with improved motor function, we used data from previously published
studies25,26 that tested CCR5 and CREB signaling in functional motor
recovery after stroke. Test scores that represent quantitation ofmotor deficit
compared to naïve, were normalized from the different cohorts of mice
across studies. Behavioral scores attained for each of the different conditions
were plotted against the normalized enrichment score for the different
activity-dependent gene sets for that condition when compared to naïve
(Fig. 1d). With a linear regression model to determine the relationship
between observed behavioral scores and enrichment of the different
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activity-dependent genes sets as the predictor variable, we find that 72% of
the variance in the dataset was explained by themodel (adjustedR2 = 0.717,
p = 0.0001).The relationship also exhibited aPearson’s correlationof−0.66,
showing that an increase in motor deficit was associated with lower or
negative enrichment of activity-dependent gene expression.

In summary, we show that IEGs are differentially enriched after stroke
with downregulation of all other activity-dependent gene sets. However,
during conditions of enhanced motor recovery, we show increased
enrichment of many activity-dependent gene sets after stroke, further
enhanced than its control, including increased enrichment of gene sets for
the engram with CCR5kd post-stroke.

Given the enrichment of activity-dependent gene sets after stroke with
differential enrichment profiles in conditions of recovery, particularly for
sets represented in the engram, we asked if these expression profiles are
unique enough to predict recovery. To determine if activity-dependent gene
expression can be used to classify samples with enhanced motor recovery

from CCR5kd or CREBoe, we trained random forest classifiers on the var-
ious activity-dependent gene sets expressed in normal and post-stroke
conditions and tested if the classifiers could predict sample type (Fig. 1e–g,
Supplementary Fig S3k, Supplementary Data 3). In non-stroke conditions,
we found that all classifiers predicted which samples came fromCCR5kd or
CREBoe or naïve conditions with a prediction error of between 15 ± 12.6%
(engram.up; median ± SD) to 10 ± 4.18% (IEGs.up; median ± SD), and
aligns with previously determined roles of CCR5 and CREB in memory
formation and learning11–15,43. In acute stroke, the highest performing clas-
sifiers are those that were trained on remote.engram.up with a prediction
error of 8.3 ± 1.8% (median ± SD) and accuracy of 95.5 ± 5.1% (median ±
SD); IEGs.up with a prediction error of 8.3 ± 11.4% and accuracy of
90.7 ± 9.6% and engram.up with a prediction error of 16.5 ± 6.6% and
accuracy of 86.6 ± 10.2%, further proving that the enrichment of activity-
dependent genes represented during memory formation and consolidation
are uniquely expressed duringmotor recovery. Prediction rates of the above

Fig. 1 | Activity-dependent genes are expressed after stroke. a Experimental
timeline. b FACS plots from groups that correspond to treatments and timelines in
(a), showing gating and selection of NCAM+ve events that are also positive for
fluorescence expression carried by the viral construct (events that fall in the Q2
quadrant). c Gene set enrichment, FDR < 0.1, for various activity-dependent gene
sets (y-axis) across conditions compared to Naïve (groups with *) or treatment
groups compared with controls that received the same viral backbone. Set size
denotes the number of genes in each gene set denoted by the size of the circle: positive
enrichment inwarmer colors and negative enrichment in cooler colors.d Scatter plot
showing behavioral scores for each of the conditions compared to Naïve and their
corresponding enrichment scores compared to Naïve for the various activity gene

sets in (c). Increasing behavioral scores corresponds to increases in motor deficits.
The line drawn represents the line of best fit and gray shaded region is the confidence
interval around the slope of the regression line. e Classification of samples from
untreated and treated groups before and after stroke using random forest classifiers
trained on the various activity-dependent gene sets. Data are median ± SD of pre-
diction error from five iterations. f Heatmap of row normalized gene expression
(z-scores) of hierarchically clustered genes from gene sets from top-performing
classifiers. Columns are individual samples from 3 groups (Naïve, Ctrl stroke acute,
andCCR5kd stroke acute) and gene expression values in rows. gModel performance
metrics for each classifier on training (gray) and test data (red). Data aremean values
from each iteration with standard error.
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classifiers are comparable to classifiers trained on differentially expressed
genes from groups with acute stroke (prediction error—12.5 ± 8.5%; Sup-
plementary Fig. S3k) and are better than classifiers trained on inflammatory
genes involved in interferon signaling pathways44 (prediction error—
27.5 ± 1.6%, Fig. S3k) that are dominantly expressed in acute stroke.Model
performances measured by sensitivity (recall) and specificity of the top-
performing activity-dependent classifiers are in the range of 0.9–1 (Fig. 1g,
Supplementary Data 3) and are superior to most previously reported
models45 to predict stroke outcome based on clinical stroke scales and
structural imaging data. Furthermore, to determine if individual samples
clustered based on the expression of activity-dependent gene sets from the
top-performing classifiers as ameans to assess sample-to-sample variability
in its classification, we performed hierarchical clustering, of samples. We
found that all samples that belonged to one condition clustered in the same
group based on the expression of gene sets from the top-performing clas-
sifiers (Fig. 1f).

On the contrary, all classifiers performed poorly in chronic stroke with
prediction error rates between 45.8 ± 12.2% (remote.engram.up) to
64.1 ± 8.3% (IEGs.down) (Fig. 1e) and are worse compared to classifiers
trainedondifferentially expressedgenes inchronic strokegroups (13.6 ± 7.8%)
(Fig. S3k); suggesting that classifiers trained on activity-dependent genes are
poor predictors of recovered motor control in chronic stroke.

Collectively, these data show that activity-dependent gene sets are
expressed after a stroke and can a priori identify the stroke condition and
treatment category in acute stroke. Cortical neurons with CCR5kd are
enriched with genes expressed in the engram, remote engram and
immediate early genes and, the expression patterns of these gene sets can
predict sample types in acute stroke. CREB-overexpressing neurons in
chronic stroke are enriched with late response genes; however none of the
classifiers trained on activity-dependent gene sets are able to predict sample-
type in chronic stroke.

Activity-dependent genes post-stroke occupy a unique mole-
cular latent space
Latent space representations that have been described as ‘an internal
representation of externally observed events’, have been widely applied to
high-dimensional neural activity datasets to extract low-dimensional fea-
tures that best describe the data46,47. With respect to gene expression data,
given the expression of thousands of genes across multiple conditions,
applying compression methods to extract a latent space allow us to deter-
mine the most informative genes. We applied unsupervised generative
modeling with variational autoencoders (VAE)48, to extract latent space
information to identify genes that carry the highest weights in representing
low-dimensional gene expression information after stroke (Fig. 2 and S2).
VAEs can model complex relationships and non-linearities and retain
biological patterns between conditions and have been shown to offer better
biological insights48,49.

The VAEwas programmed to encode gene expression data from 10,000
most variable genes across all samples in the dataset into 200 different feature
encodings that occupied a latent space (Supplementary Fig. S4a, Methods).
Activation of each encoding was determined by the weighted sum of genes in
the encoding and differentially activated encodings were identified across
treated vs control groups (Fig. 2a, b, Supplementary Fig. S4c). Based on the
activation values, encodings distinct to each of the different groups were
identified and samples per group could be hierarchically clustered based on
activation scores (Fig. 2a). We identified 6 encodings differentially activated
withCCR5kd when compared to its control in acute stroke; 5 encodings with
CREBoe and 7 encodings activated with CCR5kd when compared to its
control in chronic stroke (Fig. 2b, Supplementary Data S4).We also found 11
encodings differentially activated in acute and 22 encodings in chronic control
stroke groups when compared to treated groups showing that the VAE was
able to capture multiple features (encodings) unique to each of the different
post-stroke conditions.

To determine the biological significance of genes expressed in differ-
entially activated encodings, we ran a Gene Ontology analysis on highly

weightedgenes (Fig. 2f, SupplementaryDataS4) fromthe top5differentially
activated encodings. Highly weighted genes were defined as having weights
2 standard deviations above or below the mean of gene weights within the
encoding48. Differentially expressed encodings inCCR5kd in acute stroke vs
control treatment in acute stroke identified upregulated pathways that map
to cellular components of the postsynapse (GO:0098794, adjusted p
value = 0.033) and mitochondrial matrix (GO:0005759, adjusted p value =
0.024), and downregulated pathways that include MHC class1 signaling
(GO:0042824, adjusted p value = 0.023), GABA reuptake (REAC:R-MMU-
888593, adjusted p value = 0.049) and alpha amylase activity (GO:0004556,
adjusted p value = 0.008). In chronic stroke, with CREBoe vs control
treatment,many IEG transcription factors and binding targets such as ELK-
1 (TF:M01981, adjusted p value = 0.014), ERG1 (Zif268) (TF:M01752_1,
adjusted p value = 0.012) and cellular synaptic components (GO:0045202,
adjusted p value = 0.001) are overrepresented whereas pathways in
IRF6 signaling (TF:M02874_1, adjusted p value = 0.036), potassium chan-
nel activity (GO:0015459, adjusted p value = 0.005) and spliceosome
(KEGG:03040, adjusted p value = 0.024) are downregulated. In the case of
CCR5kd in chronic stroke vs control treatment, upregulated pathways
include dendritic transport (GO:0098935, adjusted p value = 0.001), trans-
synaptic signaling (GO:0099537, adjusted p value = 0.027) and CREB sig-
naling (TF:M10200, adjusted p value = 0.024); whereas downregulated
pathways map to similar terms such as IRF6 signaling and spliceosome. In
summary, we find that encodings in the latent space differentially activated
in treated (recovery-enhanced) conditions and control conditions map to
meaningful biological pathways that support neuronal development,
immune signaling and transcription factors that regulate neuronal activity.

Additionally, we found that encoding 20 was differentially encoded
and common to bothCCR5kd in acute stroke andCREBoe in chronic stroke
(Supplementary Fig. S4c, d). Genes in this encoding mapped to several
components including synapse (GO:0045202, adjusted p value = 0.001),
axon (GO:0030424, adjusted p value = 0.0003), and growth cone
(GO:0030426, adjusted p value = 0.043) (Supplementary Fig. S4c, d Sup-
plementary Data S4) suggesting a convergence between the two conditions
that employ the same genes that may be involved in synaptic signaling, as a
learnt biological feature.

Given that many of the encodings map to biological pathways that
support neuronal plasticity, we asked if activity-dependent genes are
encoded in the latent space. We assessed the weights of activity-dependent
genes within differentially expressed encodings, i.e., encodings that have
higher activation scores in treated than control and vice-versa (Fig. 2b,
Supplementary Data S4). Of a total of 3042 activity-dependent genes
expressed in the dataset, 2030 activity-dependent genes are highly weighted
genes expressed across all differentially activated encodings across all
groups, representing 26–31 ± 4% of highly weighted genes within each
differentially activated encoding per group (Fig. 2c). The expression of these
genes is sufficient to cluster sample-type, with the exception of control
chronic stroke (Fig. 2d) andhave collectively higher and bimodal expression
with CCR5 knockdown in acute stroke and CREBoe in chronic stroke
(Fig. 2e, Supplementary Fig. S4b).

The assignment of high weights to activity-dependent genes that
occupy multiple differentially activated encodings in the latent space, the
mappability of differentially expressed encodings to biological pathways for
neuronal plasticity, the higher expression of these genes in groups with
CCR5kd or CREBoe, and the ability to cluster samples based on the
expression of these highly weighted activity genes, show that the expression
of activity-dependent genes is a defining molecular feature of motor
recovery.

Motor recovery is associated with the expression of robust co-
expression networks of activity genes and their transcription
factors
With the overrepresentation of activity-dependent genes in conditions of
motor recovery,wenext investigated if they formco-expressionnetworks, as
the co-expression of genes is indicative of regulation by the same
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Fig. 2 | Latent space representation of activity-dependent genes with VAEs.
a Heatmap of activation scores for each encoding hierarchically clustered. Rows
correspond to groups and columns represent activation values for 200 encodings.
bMedian activation scores of encodings that are differentially expressed across
treatment-control groups. c Percent fraction of highly weighted activity genes/total
no. of activity genes, both positively and negatively weighted, across all differentially
expressed encodings. Darker to lighter colors for either gray or red represent—
CCR5kd acute, CREBoe chronic, and CCR5kd chronic vs post-stroke controls,
respectively. Gray is for encodings downregulated and red for encodings

upregulated. d Heatmap expression of highly weighted activity genes from encod-
ings in hierarchically clustered samples from different conditions. e Ridge plots
showing density distribution of expression of all activity-dependent genes expressed
in different conditions, activity-dependent genes identified by the VAE, and
expression of different classes of activity-dependent genes; showing higher and
bimodal expression in CCR5kd acute and CREBoe chronic stroke groups. f Gene
ontology terms for highly weighted genes from differentially expressed encodings;
salmon bars are from encodings upregulated and blue are from encodings down-
regulated in treated vs control groups.
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transcriptional programs50.We identifiednetworks of co-expressed activity-
dependent genes in groups withCCR5kd and its control in acute stroke and
CREBoe and its control in chronic stroke, using a previously described
method51 for identification of tight co-expression clusters.We identified two
clusters of 1000–1500 genes in each treatment—control pair where one
cluster is highly expressedwith treatment and downregulated in the control
group and vice versa (Fig. 3c). Within each cluster, we further screened for
genes thatwere activity-dependent anddifferentially expressed compared to
non-stroke (naïve) conditions to identify a co-expression network of
activity-dependent genes unique to post-stroke conditions with high con-
nectivity (i.e., Pearson’s correlation with absolute values >0.8) (Supple-
mentary Data S5).

In acute stroke, we found lower numbers of activity-dependent genes
that are co-expressed (44genes) compared toCCR5kd in acute stroke,which
showed robust expression of a co-expression network with 144 genes
(Fig. 3a, b). The smaller co-expression network of activity-dependent genes
in control vs treated samples in acute stroke is in alignmentwith our data on
the negative enrichment of activity-dependent genes and high predictability
of motor recovery in acute stroke based on the expression of activity-
dependent gene signatures with treatment. In contrast, in chronic stroke,
CREBoe and its control had similar numbers of co-expressed activity-
dependent genes (155 and 152 respectively) (Supplementary Fig. S5a, b)

Given that we had similar-sized co-expression networks with CREBoe
and control groups in chronic stroke, we next asked if these networks
represent functional pathways that are distinct to treatment. Biological
pathways represented by co-expressed genes in the network for each con-
dition were extracted with Gene Ontology (Supplementary Fig. S5c, Sup-
plementary Data S5).

No biological domains were represented by co-expressed activity-
dependent genes in acute stroke. However, with CCR5kd in acute stroke,
which is a condition of enhanced recovery, several pathways such as neu-
ronal development (GO:0007399, adjusted p value = 0.016), transport
(GO:0006810, adjusted p value = 0.001), and kinase binding (GO:0019900,
adjusted p value = 0.009) are represented. In chronic stroke, while similar
sized activity-dependent gene co-expression networks are expressed, there
are only two broad biological domains—protein binding (cellular compo-
nent, GO:0005515, adjusted p value = 0.005)) and intracellular anatomical
structure (molecular function, GO:0005622, adjusted p value = 0.048) that
are represented in the control group.

However, with CREBoe in chronic stroke, which also enhances
recovery, many biological domains inclusive of molecular function, cel-
lular components, and biological processes such as neuronal development
(GO:0048666, adjusted p value = 0.005), differentiation (GO:0030154,
adjusted p value = 0.024), somatodendritic compartment (GO:0036477,
adjusted p value = 0.001) and cytoskeletal signaling (GO:0008092,
adjusted p value = 0.032) are enriched. This suggests thatwhile there is co-
expression of a small number (acute stroke) or similar numbers (chronic
stroke) of activity-dependent genes, the product of this expression does
not map to any known and annotated biological processes except in
conditions of enhanced stroke recovery, in which CCR5kd or CREBoe
activate classes of neuronal development, differentiation, and specific
intracellular signaling cascades.

As co-expression network analysis identified the expression of a robust
network in acute stroke and a network that supported neuronal develop-
ment and plasticity in chronic stroke under conditions of motor recovery,
we reasoned that an activity-dependent molecular program might be
regulated by distinct transcriptional programs during recovery. To identify
transcription factors that control activity-dependent molecular programs
after stroke, we inferred gene regulatory networks using a gradient-boost
learning algorithm to identify transcription factors and their co-expressed
targets52,53. Co-expressed geneswith bindingmotifs for a transcription factor
comprised a regulon. Regulons are either repressive—where expression of
target genes is inhibited, or activators—where expression of target genes is
enhanced. Identified regulons were scored52 and the top 20 regulons were
screened for enrichment in target genes that are activity-dependent genes

(Supplementary Data S6). Across all top 20 regulons, CCR5kd in acute
stroke has 300 target genes that are activity-dependent, of which 297 come
from activator regulons and 3 from repressor regulons; in contrast with the
control groupwith 122 activity-dependent target genes ofwhich 81 are from
repressor regulons (Fig. 3f, Supplementary Data S6). The identification of
targets of transcription factors that are activity-dependent shows that these
transcription factors regulate activity programs after stroke54.

In chronic stroke, neurons with CREBoe expressed 322 genes that are
activity-dependent, of which 300 are from activator regulons and, with
CCR5kd, 236 target genes are activity-dependent and 111 genes are from
activator regulons. However, in the control group in chronic stroke, 101
genes are activity-dependentwith 73 genes from repressor regulons (Fig. 3e,
Supplementary Data 6). These data show increased proportions of activity-
dependent genes under conditions of motor recovery, that are targets of
transcription factors that positively modulate their expression, whereas in
control stroke conditions, there are lower numbers of activity gene targets
and expression of transcription factors that repress their expression.
Moreover, these data provide further insight to previous data on the
enrichment of activity-dependent genes and expression of large co-
expression networks during recovery, showing that these are the result of
programs that are transcriptionally regulated by transcription factors that
support the expression of activity-dependent genes during recovery, that are
normally repressed after stroke.

Next, we screened gene targets that are activity-dependent genes and
identified regulons with the highest proportion of activity-dependent genes
as their targets. With CCR5kd in acute stroke, we found that the tran-
scription factor ETS domain-containing protein Elk-4 (Elk-4) has the
highest number of activity-dependent gene targets—102 genes; whereas
with CREBoe, ETS variant transcription factor 5 (Etv5) and Kruppel-like
factor 6 (Klf6) were enriched with activity-dependent gene targets (76 and
73 activity-dependent gene targets); and with CCR5kd in chronic stroke,
ETS2 Repressor Factor (Erf) has 68 targets (Fig. 3d,e, Supplementary
Data 6).However, in control stroke groups,manyof the regulons have fewer
activity-dependent target genes (<18) with most regulons being repressors
with the exception of V-maf musculoaponeurotic fibrosarcoma oncogene
homolog B (Mafb2). In chronic stroke, expression of regulons that are
activators have far fewer activity-dependent target genes (<15 genes) when
compared to treated groups.

The expression of robust activity-dependent programs through co-
expression networks and transcription factor-target expression networks
during conditions ofmotor recovery not only shows that activity-dependent
genes are expressed but they are uniquely regulated by programs that
support the expression of large networks of activity-dependent genes that
biologically map to neuronal development and dendritic signaling genes.
Contrarily, animals with poor recovery have diminished activity-dependent
programs as seen both at the level of co-expression and the expression of
transcription factor modules (repressor regulons) that either negatively
regulate activity-dependent gene expression or have diminishedmodules of
fewer activity-dependent genes.

Neuronal knockdown of CCR5 or overexpression of CREB
results in transcriptional changes in microglia and neuro-
microglial ligand–receptor interactions unique tomotor recovery
Microglial interactions with neurons shape network connectivity in an
activity-dependent manner and can remodel synapses depending on
context55–60.Microglia sense cellular excitability changes in neurons and can
act as negative feedback regulators, where microglial contact can dampen
neuronal activity to regulate neuronal excitability56. Neuronal excitability is
dampened after stroke and we show the expression of robust activity-
dependent gene expression programs that map to changes in neuronal
excitability26,61,62 as being expressed inmotor recovery.Moreover,CCR5 and
CREB signal betweenneurons andmicroglia in normal anddisease states63,64

in controlling memory function65,66. Hence, we reasoned that neuronal
activitychanges at the gene expression level couldbe influencedbymicroglia
that may express a different transcriptional profile in states of recovery.
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Fig. 3 | Co-expression networks of activity-dependent genes after stroke. Co-
expression networks of differentially expressed activity-dependent genes post-stroke
and their co-expression partners with a CCR5kd in acute stroke and b control
acute stroke group. All gene names and correlation values are available in Supple-
mentary Data S5. Nodes are genes and Pearson’s correlation values are the edges in
the network. cDensity distributions of genes expressed in the co-expressionmodules
identified in treated and control groups, where module 1 is highly expressed in the

treated groups. d Sequence logos for TF binding sites from the top five TFs that bind
activity-dependent genes in neurons from treated conditions. e Expression of neu-
ronal regulons (activators and repressors) with the highest numbers of activity-
dependent genes across conditions post-post stroke. f Gene ontology terms from
genes expressed in activator and repressor regulons expressed in microglia across
conditions.
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To address this, we measured gene expression changes in microglia
through RNAseq where we FAC-sorted microglia from the same cell sus-
pensions from which neurons were isolated in naïve, acute, chronic, and
treated groups post-stroke (groups as described in Fig. 1a, Supplementary
Fig. S6). To determine what gene sets are enriched across treated vs control
conditions post-stroke,we analyzed enrichments for various pathways from
the molecular signature database (FDR < 0.1, Supplementary Fig. S6c).
Many molecular pathways pertaining to translational initiation, ribosomal
proteins and cellular response to stimuli are negatively enriched inmicroglia
where neurons carried knockdown to CCR5 in acute stroke compared to
control stroke. Similarly, with neuronalCREBoe in chronic stroke,we found
many negatively enriched pathways in microglia with the exception of
neurotransmitter release and hippocampal neuronal developmental path-
ways (Supplementary Fig. S6c).

The enrichment for several downregulated pathways under conditions
of motor recovery suggests a repressive transcriptional state in microglia
with neuronal CCR5kd or CREBoe after stroke. To determine these tran-
scriptional programs regulated by transcription factor-target co-expression
networks, we inferred gene regulatory networks in microglia and identified
the top 20 regulons across conditions (Supplementary Fig. S6d, Supple-
mentary Data S7). In acute stroke, we found many regulons that are
repressors than activators when compared to Naïve, suggesting an overall
dampening of microglia and has been shown in other disease states where
homeostatic signaling is lowered in microglia under pathological
conditions67,68. However, with CCR5kd in acute stroke, we find more
repressive regulons compared with its control where there are 12 repressors
compared with 8, suggesting further downregulation of programs in
microglia (Supplementary Fig. S6d, SupplementaryData S7). The size of the
regulons also varied, wherewe found that the largest regulon in theCCR5kd
group is a repressorwith110 target genes (peroxisomeproliferator-activated
receptor gamma, PPARG) compared with 11 targets from the largest
repressor (Homeobox D4, Hoxd4) in the control group in acute stroke that
express activators with smaller numbers of targets. In chronic stroke, the
trend in repression continued when compared to Naïve and with com-
parable numbers of activators and repressors with CREBoe or CCR5kd in
chronic stroke. While both acute and chronic stroke groups show dam-
pened transcriptional programs, further dampening is seen with the
CCR5kd in the acute phase and not with the treated groups in the chronic
phase (Supplementary Fig. S6d). Further repression with CCR5kd in acute
stroke could also be a result of disrupted chemokine signaling in microglia
active during a reactive state69.

To determine biological pathways that are represented by these reg-
ulons, we mapped targets from repressors and activators separately using
Gene Ontology (Fig. 3f, Supplementary Data S7)).We found that the target
genes from the repressor regulons with CCR5kd in acute stroke map to cell
activation (GO:0001775, adjusted p value = 0.02) and metabolic processes
(GO:0044238, adjusted p value = 0.036)whereas the activator regulonsmap
to binding (GO:0005488, adjusted p value = 0.002). This is the opposite
trend in acute strokewithout treatment,where activator regulonsmap to cell
communication (GO:0007154, adjusted p value = 0.001), lymphocyte acti-
vation (GO:0046649, adjusted p value = 0.009) and response to stimuli
(GO:0051716, adjusted p value = 0.004); whereas the repressors map to a
single term pertaining to endosome trafficking (GO:0097443, adjusted p
value = 0.01), suggesting that microglia with CCR5kd have lower cellular
activity compared to its control. With CREBoe and its control in chronic
stroke, both activator and repressor regulons map to several processes
involved in synaptic plasticity and neuronal development (Fig. 3f, Supple-
mentary Data S7). These data further illustrate the dampening of biological
pathways inmicroglia in acute strokewithCCR5kd. It also suggests that this
dampening is specific to CCR5 knockdown in the acute phase, whereas
repressive programs expressed in the chronic phase are agnostic to
treatment.

Given the overall repression in microglial signaling post-stroke,
we next explored intercellular interactions with neurons through
ligand–receptor signaling (Fig. 4, Supplementary Fig. S7, Supplementary

Data S8). To determine cell–cell interactions, we used a previously devel-
oped method to identify differentially over-expressed ligands and their
receptors from a curated database between neurons and microglia, and
intercellular communication probabilities were computed70. 857 interac-
tions were detected between neurons and microglia in the naïve condition
(Fig. 4a). In acute stroke, 684 interactionswere detected in the control group
whereas these interactions are reduced to a third with CCR5kd with 262
interactions. These data are in alignment with an expression of repressor
regulons after stroke with further repression seen with CCR5kd in acute
stroke. In chronic stroke, similar trends in reduced numbers of interactions
were detected, with further modest reduction with CREBoe (410 and 304,
respectively). Thiswas in contrastwithCCR5kd in chronic strokewhere 666
interactions were detected, being higher than its control in chronic stroke.

Differential interactions across treatment-control pairswere computed
taking into account differential ligand–receptor interactions between and
within the two cell-types and the directionality of this interaction i.e., from
neurons to microglia or microglia to neurons were inferred based on
weighted directed graphs (Fig. 4b). We found 115 interactions that are
increased between neurons and microglia and 186 autocrine microglial
interactions in control vs CCR5kd in acute stroke. In chronic stroke, we
found 22 interactions that are downregulated between neurons and
microglia and 124 autocrine interactions that upregulated in microglia in
the control group compared to CREBoe after stroke (Fig. 4b).

Next,we identifieddifferentially regulated signalingpathways basedon
differential ligand–receptor interactions in treatment-control pairs. Path-
wayswere clustered usingmanifold learning to produce clusters of signaling
pairs expressed on the two cell-types and the euclidean distances served as a
measure to identify pathways that are furthest apart in treatment vs control
groups (Supplementary Fig. S7a,b) as a means of identifying pathways that
are most active in each condition. In acute stroke, we found many
ligand–receptor pairs for laminin and collagen signaling from microglia to
neurons; whereas with CCR5kd in acute stroke, we found ligand-receptors
pairs that correspond to semaphorin, CLECand thrombospondin signaling
(Fig. 4c, d, Supplementary Data S8). In chronic stroke, similar to acute, we
found many signaling pairs for collagen signaling that were also expressed
with CREBoe in chronic stroke. Interestingly, similar to both CCR5kd in
acute stroke, CREBoe in chronic stroke also differentially expressed sig-
naling pairs for semaphorin and thrombospondin signaling (Fig. 4f, g).

With respect to signaling from neurons to microglia, in acute stroke
withCCR5kd,we found signaling via various neuropeptides includingNPY,
CCK, PACAP and thrombospondin whereas with CREBoe in chronic
stroke, pathways that correspond to WNT, interferon, FGF and GDNF
signaling are expressed (Supplementary Fig. S7c, d).

A Gene Ontology analysis (Fig. 4e, Supplementary Data S8), of ligand
receptor pairs that signal from microglia to neurons show over-
representation for pathways in axon guidance (GO:0007411, CREBoe
adjusted p value = 9.9E−10; CCR5kd, adjusted p value = 0.002) axon
development (GO:0061564, CREBoe adjusted p value = 2.05E−9; CCR5kd
adjusted p value = 0.003), synapse organization (GO:0050808, CREBoe
adjusted p value = 0.0003) and angiogenesis (GO:0001525, CREBoe adjus-
ted p value = 1.79E−7; CCR5kd adjusted p value = 0.006) in groups with
CCR5kd orCREBoe compared to control acute or chronic groups that were
enriched in terms for collagen (GO:0062023, Ctrl acute adjusted p value =
9.65E−14; chronic acute adjusted p value = 0.0001) and extracellular
matrix components (GO:0005201, Ctrl acute adjusted p value = 3.95E−14;
chronic acute adjusted p value = 3.15E−7), immune signaling
(GO:0002252, Ctrl acute adjusted p value = 0.02) and synaptic transmission
(GO:0032224, chronic acute adjusted p value = 0.04).

Taken together, our data show that microglia differentially interact
withneuronsunder conditions ofmotor recovery.Transcriptional repressor
programs are active with CCR5kd reducing cell activation states with
reduced numbers of ligand–receptor interactions between neurons and
microglia. However, with CREBoe, transcriptional programs that activate
and repress synaptic plasticity and development are expressed suggesting
bidirectional control of signaling events. Common to both CCR5kd and
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Fig. 4 | Differential neuro-microglial interactions post-stroke. a Number of
ligand–receptor interactions between neurons andmicroglia in different conditions.
b Differential interactions in (i) control stroke acute vs CCR5kd acute (ii) control
stroke chronic vs CREBoe chronic stroke. Red arrows denote increased no. of
interactions, and blue denotes reduced no. of interactions; line thickness is pro-
portional to no. of interactions. c, d Ligand–receptor interactions (d) frommicroglia
to neurons and signaling pathways (c) represented by ligand–receptor interactions

in treated vs control conditions. eGene ontology termsmapped to expressed ligands
and their receptors expressed across conditions. fWeighted-edge graphs showing
directionality of semaphorin and thrombospondin signaling. Blue arrows from
microglia to neurons and red from neurons to microglia; line thickness denotes
signaling strength. gExpression of ligand–receptor genes from thrombospondin and
semaphoring signaling pathways across cell types and post-stroke conditions.
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CREB are the expression of semaphorins and thrombospondin signaling
pathways from microglia to neurons that support axon guidance and
growth. Distinct to the two treatments are the expression of signaling
pathways fromneurons tomicrogliawhere signaling vianeuropeptideswith
CCR5kd and growth factor signaling with CREBoe are predominant.

Discussion
To determine transcriptional programs expressed under conditions of
motor recovery, we measured gene expression with RNAseq, in cortical
neurons and microglia in animals with varying levels of enhancement in
motor function from knockdown of CCR525 or overexpression of CREB26.
The modulation of the expression of these genes and the timing of when
these genes were perturbed maps to graded changes in behavioral perfor-
mance. For e.g.,—with CCR5kd in the acute phase of stroke, robust
enhancements in motor function have been reported whereas knockdown
ofCCR5 in the chronic phase leads tomodest improvements.WithCREBoe
in acute stroke, recovery of function is observed in the chronic phase of
stroke. To identify cellular andmolecular processes that represent a recovery
state,we sequencedneuronswith different geneperturbations at timeswhen
motor recovery was first observed.We show that neurons are enrichedwith
activity-dependent genes that are expressed when exposed to a novel sti-
mulus in the normal animal, or neurons that participate in formation of new
memories.

With supervised classification and unsupervised generativemodels, we
show that these activity-dependent programs, in particular, programs that
are differentially expressed during formation or long-term storage of
memories are highly enriched and predictive of recovery. While with
supervised classification, predictions are limited to recovery in acute stroke,
fromgenerativemodeling, we learn that activity-dependent gene expression
is a fundamental feature, occupying low-dimensional space in conditions of
motor recovery irrespective of the phase of stroke.

Many of these activity-dependent genes form robust co-expression
networks that map to several biological processes that support neuronal
development anddendritic signaling. Bothprocesses play significant roles in
neural repair in stroke54 and other models of injury71 as well as in learning
and memory72. At the gene regulatory level, transcription factor co-
expression modules, regulons, that support transcription of activity-
dependent genes are expressed under conditions of motor recovery.
Manyof these transcription factors, such asElk-4, Etv-5, Erf,Gabpb1belong
to the E-twenty six, Ets family of transcription factors that are evolutionary
conserved with roles in development73,74 and synaptic plasticity75–77. For eg,
Elk-4 belongs to the ternary complex factor subfamily of the Ets family that
binds serum response element in c-Fos; an immediate early gene and
marker of neuronal activity.

Neurons from animals withmotor deficits, without treatment, in acute
and chronic stroke, also co-express activity-dependent genes, but with key
differences in their expression. In acute stroke, a smaller co-expression
program is expressed that expands in chronic stroke. Moreover, tran-
scriptional programs that regulate activity-dependent gene expression are
repressed in acute stroke, with the exception of Mafb; whereas in chronic
stroke smaller programs are expressed. Mafb signaling has been associated
with reduction in post-stroke inflammation78 and is in alignment with
cellular events where the acute phase of stroke transitions into a phase
marked by endogenous plasticity79,80. The expression of activity-dependent
programs in chronic stroke is indicative of spontaneous rewiring from
endogenous plasticity80 that underlies incomplete or compensated forms of
motor recovery. It can be inferred that these programs are not robust
enough to induce recovery of function as seen with CCR5/CREB pertur-
bations and also from a lack of biological pathways that map to the
expression of these activity-dependent genes.

Moreover, as activity-dependent gene expression programs are tied to
excitability levels in neurons, the ability of the classifiers to predict with
higher accuracies in acute stroke could be reflective of neuronal activity
changes that are most distinct in the acute phase of stroke. The acute phase
of stroke is marked by post-stroke depression, with lost synchronization of

neuronal firing across cortical neurons81 as well as reduced amplitude of
firing26. However, motor recovery is associated with increased neuronal
firing and synchronization82. In chronic stroke, neuronal network activity
resumes to baseline levels83, presumably due to spontaneous rewiring, and
hence the lackof sensitivity of the classifiers todistinguishbetween treated as
well as control groups. It can be inferred that activity-dependent molecular
programs track neural activity changes at the functional levelwith depressed
activity associated with diminished activity dependent transcriptional
programs and increased neural activity being associated with the expression
of robust activity-dependent co-expression networks.

Given increasing evidence on the roles ofmicroglia in tuning neuronal
connectivity in the healthy and diseased brain55–60, we investigated differ-
ential changes in microglial signaling with neuronal perturbations of
CCR5/CREB and under conditions of motor recovery. Given that activity-
dependent programs are enriched within neurons with CCR5kd/CREBoe,
wehypothesized that this could lead to changes inneuronal activity patterns,
thatmaybe shaped by its interactionswithmicroglia, as has been reported in
other systems55–60. We showwith CCR5kd in acute stroke, microglia appear
to be in a dampened cellular state as seen with gene set enrichment and
transcription factor—target co-expression analyses. This dampening
extends to its intercellular communication with neurons where the number
of ligand–receptor interactions with neurons were reduced to a third when
compared with its control in acute stroke. Unlike, CCR5kd, microglial
interactions with neurons that overexpress CREB show modest reductions
in the number of interactions and express transcriptional programs that
activate and repress multiple signaling process in synaptic plasticity.
Microglia were isolated based onTMEM119 expression, originally reported
as being expressed with high cell-type specificity84. However, more recent
work suggests a downregulation in the expression of many microglial
homeostatic genes in diseased states85–87. It can be inferred, that the signaling
process captured here unique to recovery could be confined to certain
subsets of TMEM119-expressing microglia and, future work is required to
determine if different subsets express differential recovery responses in
relation to neuronal expression of activity-dependent genes.

In addition to its roles in learning and memory, knockdown or over-
expression of CCR5 and CREB induces recovery of motor function with
differences in the timing of which this recovery is manifested-early with
CCR5kdanddelayedwithCREBoe; yetCCR5kd in acute stroke andCREBoe
in chronic stroke have similar molecular signaling features. Given that the
samples were isolated at different cellular phases of stroke, there exists close
proximity in their transcriptional profiles, as seen with hierarchical clus-
tering of sample encodings with VAEs, its bimodal expression pattern of
activity-dependent genes and the expression of robust transcriptional co-
expression programs for activity-dependent genes, although they differ in
the transcription factors that modulate these programs. Common and
distinct themes also emerge with neuro-microglial interactions where
thrombospondin and semaphorin signaling are common to both groups
that support axon guidance, axonogenesis and development whereas sig-
naling from neurons to microglia differ based on whether neurons carry
CCR5kd or CREBoe. Commonalities with CREBoe/CCR5kd, that surpass
the cellular phases from which neurons or microglia were isolated but have
similarities at the behavioral level with induction of motor recovery, show
that enrichment of activity-dependent transcriptional programs inmemory
is a fundamental molecular program of neural repair for post-stroke motor
recovery.

Methods
In vivo animal studies
All procedures were performed in accordance with the University of Cali-
fornia, Los Angeles and the Jackson Laboratory’s Institutional Animal Care
and Use Committee (IACUC) guidelines. Authorization numbers are JAX
AUS: 23-059; UCLAARC-2000-159. Adultmale C57BL/6 J, 3–5months of
age were procured from Jackson Laboratories (strain: 000664). Animals
were housed in the animal facility with ad-libitum food and water, con-
trolled temperature, humidity and 12 h of day–light cycles. Animals were
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allowed to acclimatize for 3–7 days prior to experiments.We have complied
with all relevant ethical regulations for animal use.

Stroke model
A focal ischemic stroke was induced using a well-established method25,26.
Briefly, animals were anesthetized with isoflurane and body temperature
was maintained between 36.5–37 °C with a rectal probe. Using aseptic
surgical techniques, an incision to the skin over the skull was made. Light
from a cold light source (KL1500 LCD; Carl Zeiss MicroImaging) attached
to a 40× objective, or from a pigtailed laser diode (Thorlabs) was positioned
and illuminated at 1.5mm lateral to bregma, anterior–posterior coordinates
at 0. Five minutes prior to illumination, animals were injected with a light-
sensitive dye—Rose Bengal (Acros Organics), i.p., at a concentration of
10mg/ml and volume of 1% body weight. Light intensities and duration of
illumination were optimized to attain an infarct with area that extends
across the anterior–posterior axes upto approx. 1.6mm2 in the region that
corresponds to themotor cortex and is contained within the cortex without
infracting underlying sub-cortical structures (Fig. S1).

Cranial injections
Previously validated AAVs that carry an shRNA to target neuronal CCR525

(AAV2/5-hU6-shCCR5-EF1-GFP; control virus: AAV2/5-hU6-dsRED-
EF1-GFP) or neuronal overexpression of CREB26 (LV-Cam2a-tdToma-
to_ns-mCREB; control virus: LV-Cam2a-tdTomato_ns) with lentiviruses
were used. The timelines for stroke induction andAAV/lentiviral injections
are shown in Fig. 1a and S2. AAVswere injected at 1.5mmA/P, 1mmM/L,
0.75D/V, 3daysprior to a stroke toenable thedeliveryof knockdownwithin
the first week and lentiviruses were delivered at 1.5mmA/P, 1.0 mmA/P,
1mmM/L, 0.75 D/V on the day of stroke. For knockdown of CCR5 in
chronic stroke,AAV2/5-hU6-shCCR5-EF1-GFPwas injected 3weeks post-
stroke.

FACS
Tissue anterior to the stroke site, containing peri-infarct cortex and
primary-secondary motor cortices, spanning 2.5mm anterior to bregma
(Supplementary Fig. S2c) were harvested at 1 week or 1 month post-stroke.
Tissue was kept in ice-cold hibernation, sliced and enzymatically digested
with Neurocult dissociation (STEMCELL Technologies) medium at 37 °C
for 8min. The reaction was stopped with the addition of Neurocult inhi-
bition medium, centrifuged for 10min at 300 g and triturated to form a
single cell suspension.Undigested tissuewasfiltered outwith a 70 μmmesh.

Neuronal enrichment. Cells were resuspended in 80 μl of hibernation
and treated with a neuronal isolation antibody cocktail that contains
antibodies against non-neuronal cells and additional anti-GLAST and
CD11b microbeads for 15 min on ice. Cells were passed through mag-
netic columns causing non-neuronal cells to be trapped in the columns
and the flow-through to be enriched in neurons. The flow-through was
treated with surface markers for neurons- APC-conjugated NCAM and
PE-conjugatedCD200 for 30 min on ice; washed and cells resuspended in
300 μl of ice-cold hibernate.

Microglial enrichment. The columns were flushed to release non-
neuronal cells, treated with mouse Fc block for 5 min on ice followed by
rabbit TMEM119 antibody for 30 min on ice. Cells werewashed once and
then resuspended in 80 μl of hibernate and treated with APC-conjugated
CD11b and goat-anti rabbit Alexa-flour 594 for 25 min on ice. Cells were
washed and then resuspended in 300 μl of hibernate.

Sorting. Cells were sorted using the ARIA cell sorter (BD, UCLA FACS
core). Forward and side scatters along with DAPI staining allowed for
elimination of doublets, debris and selection of single viable events.
Further gates were drawn to select events that were triple positive for
GFP, APC and PE to select GFP-expressing CCR5kd/control neurons or
for double positives for APC and td-tomato to select CREBoe/control

neurons. For sorting of microglia, events that were double-positive for
red fluorescence (emission spectra of Alexa-flour 594, TMEM199+ve)
andAPC (CD11b+ve) were selected. As AAVs transducemore cells than
lentiviruses and to ensure that number of events across samples are
comparable i.e within a difference of a log fold of 10, events were capped
at 1,500 positive events per sample. Selected cells were sorted into
50–100 μl of RNA lysis buffer.

RNA isolation and sequencing
RNA was extracted using a Zymo RNAmicro extraction kit in accordance
with manufacturer’s guidelines. cDNA was generated and amplified using
the SMART seq v4 ultra low input and SSv4 PLUS kits fromClonetech and
libraries were prepared with Nextera XT DNA Library Preparation by the
UCLATechnology Center for Genomics and Bioinformatics core, followed
by sequencing with Novaseq 6000 (Illumina) to attain 50 bp paired-end
reads at a depth of 40–50M reads.

Immunohistochemistry, infarct size quantification, and fluores-
cence intensity measurements
Animals were perfused with 4% paraformaldehyde, cryoprotected in 30%
sucrose overnight and sectioned with a cryostat to obtain 40um thick sec-
tions. Sections were then blocked with blocking solution which was a
cocktail of MOM (VectorLabs), BSA (0.05%), goat serum (0.05%), triton
X(0.00001%), tween (0.005%) and PBS (0.1M), for 1 h on a shaker at room
temperature. Sections were then treated with primary antibodies diluted in
blocking solution overnight at 4 °C on a shaker. Primary antibodies used
were mouse NeuN (1:1000, Abcam) and chicken GFAP (1:500,Origene).
Sections were then washed 3 times with PBS and treated with secondary
antibodies-goat anti-mouse (1:500) and goat anti-chicken (1:500) and
incubated at room temperature for 2 h with shaking. Sections were then
washed three times with PBS, mounted on superfrost plus slides (Fisher),
dehydrated with alcohols (50%, 75%, 95%, 100%) for 30 s each, followed by
Xylene for 1min twice, andmounted withDPX. Sections were then imaged
with a fluorescence widefield microscope (THUNDER, Leica micro-
systems) at 5×, 10×, or 20× magnification.

To quantify infarct sizes, sections that represent different
anterior–posterior coordinates, using the Paxinos atlas as a guide, were
sampled and sections that contained an infract, primarily marked by an
absence of NeuN staining were selected and the region of the infarct was
marked with Fiji to compute area of the infarct. To compute distance from
the corpus callosum, the deepest point was marked and line measurements
to the corpus callosum were taken.

To quantify fluorescence intensity from expression of shCCR5 AAV,
imageswere processed in Fiji. Briefly ROI boxeswere drawn around an area
of positive signal aswell as no signal tomeasure intensity from theAAVand
background fluoresce using the integrated density function in Fiji across
sections from different anterior–posterior coordinates. Data were then
normalized to its background fluorescence for each section.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Quantification, statistics, and reproducibility
Sequence read alignment, filtering, and normalization
Paired-end reads were aligned to the mouse reference transcriptome,
EnsDb.Mmusculus.v79, using Kallisto88 resulting in 7.6 ± 4.3 million
uniquely mapped reads per sample. Quality control parameters such as GC
bias and per sequence quality were assessed with fastQC. Count data
expressedas transcripts permillion (TPM) for each transcriptwas estimated
by Kallisto and the abundance files generated were read into R using the txi
import function and the EnsDb package to produce a countmatrix of genes
and TPMs. Using EdgeR89, counts per million (CPM) for each gene was
generated and genes with less than 1 CPM in 2 samples per condition were
filtered out. The total number of genes in the datasets detected following
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filtering were 16,662 genes for neurons and 27,830 for microglia. Normal-
ization factors using the trimmedmeanofM-valuesmethodwere calculated
on log2 transformedCPMdata as a scaling factor for library sizes. Any batch
effects from experimental day and FACS counts from samples with low
events were corrected for using the removeBatchEffect function (in-built
into the limmapackage, Table S1). The expressiondata are thus expressed as
TMM normalized log2CPM. Samples that did not pass the quality metrics,
had lower than 100 K reads per sample, hadmedian gene expression of >|2|
standard deviations in per sample expression distributions, and were out-
liers detected with principal component analysis were removed.

Each sample came from one animal and the total number of samples
per group that were selected for downstream processing include:

Neurons. Naïve (n = 5), CCR5kd (n = 3), CREBoe (n = 5), Ctrl acute
stroke (n = 5), CCR5kd acute stroke (n = 5), Ctrl chronic stroke (n = 4),
CREBoe chronic stroke (n = 5), CCR5kd chronic stroke (n = 5).

Microglia. Naïve (n = 4), CCR5kd (n = 3), CREBoe (n = 2), Ctrl acute
stroke (n = 5), CCR5kd acute stroke (n = 4), Ctrl chronic stroke (n = 5),
CREBoe chronic stroke (n = 5), CCR5kd chronic stroke (n = 4).

For all comparisons, groups were either compared to Naïve, or, to
groups that received the same viral backbone as in groups with CCR5kd or
CREBoe, but lack the sequences to target these genes, also termed as asso-
ciative controls.

Differential gene expression analysis
Differentially expressed genes (DEGs)were identified using linearmodeling
with an open-source package, limma90. Briefly, a design matrix of groups
and batch information was inputted. Contrast matrices, with groups for
comparisons, were either all groups compared to naïve, or pairwise com-
parisons between treated-control pairs. The mean–variance relationship
was calculated, and a linear model was fitted to each gene. Statistical testing
with the empirical Bayesmethod allowed for precise estimates of gene-wise
variability of log-fold changes in gene expression. Differentially expressed
genes fromall groups compared tonaïvewere used for further analysis, such
as to identify overlapping DEGs and activity-dependent genes and for the
construction of co-expression networks. Data can be found in Supple-
mentary Data S1.

Gene set enrichment of activity-dependent genes
Compilation of activity-dependent gene expression set : Data from 19 studies
that reported differentially expressed genes during learning or exposure to a
novel stimulus were selected (Supplementary Data S2). These included:

(a) Studies on learning, memory formation, and consolidation that
collected RNAseq data in tagged neurons that formed the engram using
activity-dependent transgenic lines.Gene expression in the ‘remote engram’
refers to genes expressed following consolidation of memory, expressed a
month after learning.

(b) Studies on experience-dependent plasticity that used activity-
dependent lines or synthetic activity-dependent promoters or in cultured
neurons with neuronal expression of differentially regulated genes prior to
and after exposure to a new stimulus to identify ERGs and LRGs.

Gene expressiondata fromthe above studieswere then categorized into
up and downregulated sets of engram genes, remote engram genes, ERGs
and LRGs. Notably, these gene sets were not mutually exclusive. For, e.g.,
engram gene sets also expressed ERGs and LRGs, as well as genes unique to
the engram. As these datasets were collected from studies in different brain
regions, compiled datasetswere thenfiltered for its expression in the current
data set in this study. Following filtering, 3042 activity-dependent genes
were detected in the current dataset.

Gene set enrichment analysis. GSEA91 was performed with gene
expression data, normalized log2CPM, where every gene was averaged
across samples per condition and the difference in gene expression per
gene across treated and control pairs was calculated. Genes were then

ranked in descending order of the difference in gene expression in treated
vs control groups. Given an a priori set of activity-dependent genes, we
computed if the set was randomly distributed or occupied the top or
bottom of the ranked set of genes. Enrichment scores, negative or posi-
tive, were computed using a running sum statistic. Statistical significance
of the enrichment scores was computed by bootstrapping with shuffled
permutations of conditions 10,000 times, creating a null distribution of
enrichment scores, and the p-value of the observed enrichment scores
was calculated. Normalized enrichment scores (NES) were then calcu-
lated by normalizing the enrichment score for each activity-dependent
gene set (e.g., engram.up and engram.dowm) to account for the size of the
gene set. Multiple hypothesis testing for false discovery rates of less than
0.1 were calculated by comparing the tails of the observed and null dis-
tributions for the NES.

Linear modeling with behavioral data. Behavioral data containing
deficit scoresmeasuredwith grid walkwere taken frompublished studies.
Specifically data presented in Fig. 2d (ref. 25) and Fig. 2b (ref. 26).
Min–max scaling was applied to all experimental groups from each
dataset, for comparability on the same scale. For each of the experimental
conditions time points that had both behavioral scores and normalized
enrichment scores (NES) were selected and plotted. To determine the
relationship between gene expression and motor deficit, a linear regres-
sion analysis was performed where enrichment scores and the different
activity groups were entered as the independent variables to predict
behavioral scores. R2 values adjusted for the number of variables in the
model were computed, as well as the p-values for the regression coeffi-
cients. Additionally, to determine the degree of correlation, a person’s
correlation was computed from the dataset with behavioral and NES
scores.

Random Forest classification
Classifiers were trained with the R package, Ranger on each of the different
activity-dependent gene sets. Data were split into train and test sets (80/20)
with condition (i.e., Ctrl acute stroke and CCR5kd acute stroke) as the
dependent variable (Supplementary Data S3). A random forest model,
trained with bootstrap aggregation from 1000 to 3000 decision trees, was
made from the training dataset, and the out-of-bag (OOB) error was cal-
culated as the average of the prediction error from the trees during training.
Hyperparameters such as ‘mtry’ i.e., the number of variables at each split
were selected to get the least possible OOB error. The random forest model
obtained was then used to predict conditions from the test dataset. The
mean of the prediction error from the test data and the OOB error during
training was calculated as the prediction error for that classifier. Training
and testing were iterated 5 times and the data points are prediction errors
from each iteration expressed as mean ± SD. To determine model perfor-
mance for multiclass classification, precision, recall (sensitivity), specificity,
and accuracy were calculated from confusionmatrices in both training and
testing data based on true positive, true negative, false positive, and false
negative rates from the prediction of each of the different labels and were
averaged across labels for each classifier. The datawere then plotted asmean
performance across all iterations with standard error.

Variational autoencoders
This method was adapted from the use of VAEs trained on The Cancer
Genome Atlas48. Ten thousand most variable genes, selected by median
absolute deviation in the dataset, were identified, and data were augmented
by a factor of 2 by adding Gaussian noise with a mean of 0 and standard
deviation of 0.1. Data were then scaled using 0–1 normalization and split
into train and test data (80/20). 10,000 input genes were encoded into 200
features/encodings and reconstructed to their original dataset (decoding).
Kullback–Leibler (KL) divergence was added to minimize reconstruction
loss. Batch normalization was applied, and hyperparameters, including a
batch size of 500, with 2000 epochs and a learning rate of 0.0002 were
applied. The activation values for each encoding represent learned
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distributions and were used to identify differentially expressed encodings
between treated and control samples. Differentially expressed encodings
were calculated as the median difference in their activation scores between
treated and control, and encoding with a difference of 0.5 and above was
selected (Supplementary Data S4). Within each of these differentially
expressed encodings, high positively or negatively weighted genes with 2
times the standard deviation were selected. Activity-dependent genes
expressed within highly weighted genes for each differentially expressed
encoding were identified.

To determine biologically meaningful terms that map to highly
weighted genes (Supplementary Data S4), Gene Ontology analysis with
g.profiler (gprofiler2) was performed. g.profiler performs over-
representation analysis to identify statistically significant enriched terms.
This allowed for identification of GO terms that map to cellular (CC),
molecular function (MF) and biological processes (BP); as well as pathways
from the KEGG, REACTOME, TRANSFAC and CORUM databases. For
reportingGOterms fromthe topfivedifferentially expressed encodings,GO
terms were selected based on the youngest child term and the size of the
intersection. For terms with comparable intersection sizes, terms with the
lowest p values were selected. If only child terms were present, then child
terms with the highest intersection were selected. In cases where there were
no GO:CC terms, then pathways from REACTOME/KEGG were
considered.

Gene co-expression and regulatory networks
We used a previously reported method51 to identify tight co-expression
clusters of activity-dependent genes with higher co-expression in treated vs
control groups (Supplementary Data S5). Briefly, k-means clustering was
applied to all activity-dependent genes expressed with different k-values to
produce a pool of seed clusters that are then evaluated and selected byM–N
scatter plots to select large non-overlapping clusters with low dispersion.
Unlike most other co-expression methods that partition the entire dataset,
this allowed us to identify tightly co-expressed genes that were up in the
treated condition and cluster of genes that were up in the control condition.
Each cluster contained 1000–1500 genes. Connectivity between genes was
computed with Pearson’s correlation and the nodes in the network were
further pruned to only include genes with high correlation absolute value
>0.8 and genes that are differentially expressed from DGE analysis of all
groups compared to Naïve. This led to the construction of a network of
highly co-expressed activity-dependent genes that are unique to post-stroke
and differentially expressed.

Gene regulatory networks of transcription factor-target co-expres-
sion modules were inferred using a gradient-boost learning algorithm52,53.
Genes co-expressed with transcription factors were identified and were
pruned for enrichment with binding motifs near the transcriptional start
site. This produces regulons of transcription factors and their co-
expressed targets that are either negatively correlated (repressor regulons)
or positively correlated (activator regulons) measured by Pearson
product–moment correlation coefficient of their expression values. The
enrichment of a regulon for that condition was determined by the area
under the curve for genes expressed in the regulon. Regulons were then
ranked by a regulon specificity score92 measured by Jensen–Shannon
divergence with scores between 0 and 1, identifying condition-specific
regulons. The top 20 regulons in each condition were identified (Sup-
plementary Data S6 and S7). In the neuronal dataset, from the top 20,
regulons with activity-dependent genes as targets were screened, and the
top 5 regulons with the highest number of activity-dependent genes as
targets were plotted. For the microglia dataset, target genes were mapped
to Gene Ontology terms with g.profiler.

Ligand–receptor interactions
Ligand–receptor interactions between neurons andmicroglia were inferred
with CellChat70. Briefly, over-expressed ligand–receptors across neurons
and microglia were identified, and communication probabilities between
the two cell types were computed. Probability values were assigned to an

interaction by integrating gene expression data and known interactions of
ligands with their receptors and co-factors. Gene expression per condition
with a trimmed mean of 25% was used for calculating the number of
ligand–receptor interactions. Functional clustering and manifold learning
for signaling pathways were calculated using functions within CellChat
(Supplementary Data S7).

Data availability
RNAseq data with metadata are deposited in GEO (GEO accession:
GSE270766). All source data for the figures are available in Supplementary
Data S1–S8. All other data are available from the corresponding author (or
other sources, as applicable) on reasonable request.

Code availability
Source packages have been listed in the resources table—Table S1, Sup-
plementary Information—and code can be made available on reasonable
request.

Received: 15 September 2023; Accepted: 12 August 2024;

References
1. Roemmich, R. T. & Bastian, A. J. Closing the loop: from motor

neuroscience to neurorehabilitation. Annu. Rev. Neurosci. 41,
415–429 (2018).

2. Dimyan, M. A. & Cohen, L. G. Neuroplasticity in the context of motor
rehabilitation after stroke. Nat. Rev. Neurol. 7, 76–85 (2011).

3. Kwakkel, G., Veerbeek, J. M., van Wegen, E. E. & Wolf, S. L.
Constraint-induced movement therapy after stroke. Lancet Neurol.
14, 224–234 (2015).

4. Livingston-Thomas, J. et al. Exercise and environmental enrichment
as enablers of task-specific neuroplasticity and stroke recovery.
Neurotherapeutics 13, 395–402 (2016).

5. Ward, N. S., Brander, F. & Kelly, K. Intensive upper limb
neurorehabilitation in chronic stroke: outcomes from the Queen
Square programme. J. Neurol. Neurosurg. Psychiatry 90,
498–506 (2019).

6. Laver, K. E. et al. Virtual reality for stroke rehabilitation. Cochrane
Database Syst. Rev. 11, CD008349 (2017).

7. Krakauer, J. W. et al. Comparing a novel neuroanimation experience
to conventional therapy for high-dose intensive upper-limb training in
subacute stroke: the SMARTS2 randomized trial. Neurorehabil.
Neural Repair 35, 393–405 (2021).

8. Grefkes, C. & Fink, G. R. Connectivity-based approaches in stroke
and recovery of function. Lancet Neurol. 13, 206–216 (2014).

9. Liew, S. L. et al. The ENIGMA Stroke Recovery Working Group: big
data neuroimaging to study brain-behavior relationships after stroke.
Hum. Brain Mapp. 43, 129–148 (2022).

10. Frank, A. C. et al. Hotspots of dendritic spine turnover facilitate
clustered spine addition and learning and memory. Nat. Commun. 9,
422 (2018).

11. Shen, Y. et al. CCR5 closes the temporal window for memory linking.
Nature 606, 146–152 (2022).

12. Zhou, M. et al. CCR5 is a suppressor for cortical plasticity and
hippocampal learning and memory. Elife 5, e20985 (2016).

13. Sano, Y. et al. CREB regulatesmemory allocation in the insular cortex.
Curr. Biol. 24, 2833–2837 (2014).

14. Zhou, Y. et al. CREB regulates excitability and the allocation of
memory to subsets of neurons in the amygdala. Nat. Neurosci. 12,
1438–1443 (2009).

15. Josselyn, S. A. & Tonegawa, S. Memory engrams: Recalling the past
and imagining the future. Science 367, eaaw4325 (2020).

16. Chen, M. B., Jiang, X., Quake, S. R. & Sudhof, T. C. Persistent
transcriptional programmes are associated with remote memory.
Nature 587, 437–442 (2020).

https://doi.org/10.1038/s42003-024-06723-3 Article

Communications Biology |          (2024) 7:1048 13

www.nature.com/commsbio


17. Marco, A. et al. Mapping the epigenomic and transcriptomic interplay
during memory formation and recall in the hippocampal engram
ensemble. Nat. Neurosci. 23, 1606–1617 (2020).

18. Rao-Ruiz, P. et al. Engram-specific transcriptome profiling of
contextual memory consolidation. Nat. Commun. 10, 2232 (2019).

19. Cho, J. H., Huang, B. S. & Gray, J. M. RNA sequencing from neural
ensembles activated during fear conditioning in the mouse temporal
association cortex. Sci. Rep. 6, 31753 (2016).

20. Zhu, Y. et al. Class IIa HDACs regulate learning and memory through
dynamic experience-dependent repression of transcription. Nat.
Commun. 10, 3469 (2019).

21. Yap, E. L. &Greenberg,M.E. Activity-regulated transcription: bridging
the gap between neural activity and behavior. Neuron 100,
330–348 (2018).

22. Mardinly, A. R. et al. Sensory experience regulates cortical inhibition
by inducing IGF1 in VIP neurons. Nature 531, 371–375 (2016).

23. Bloodgood, B. L., Sharma, N., Browne, H. A., Trepman, A. Z. &
Greenberg, M. E. The activity-dependent transcription factor
NPAS4 regulates domain-specific inhibition. Nature 503, 121–125
(2013).

24. Gao, M. et al. A specific requirement of Arc/Arg3.1 for visual
experience-inducedhomeostatic synapticplasticity inmouseprimary
visual cortex. J. Neurosci. 30, 7168–7178 (2010).

25. Joy, M. T. et al. CCR5 is a therapeutic target for recovery after stroke
and traumatic brain injury. Cell 176, 1143–1157.e1113 (2019).

26. Caracciolo, L. et al. CREB controls cortical circuit plasticity and
functional recovery after stroke. Nat. Commun. 9, 2250 (2018).

27. Assayag, E. B. et al. Preventing post-stroke dementia. The MARCH
Trial. Protocol andstatistical analysisplanof a randomizedclinical trial
testing the safety and efficacy of Maraviroc in post-stroke cognitive
impairment. Eur. Stroke J. 7, 314–322 (2022).

28. Hrvatin, S. et al. Single-cell analysis of experience-dependent
transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21,
120–129 (2018).

29. Cheadle, L. et al. Visual experience-dependent expression of Fn14 is
required for retinogeniculate refinement. Neuron 99, 525–539
e510 (2018).

30. Tyssowski, K. M. et al. Different neuronal activity patterns induce
different gene expression programs. Neuron 98, 530–546 e511
(2018).

31. Chatzi, C. et al. Exercise-induced enhancement of synaptic function
triggered by the inverse BAR protein, Mtss1L. Elife https://doi.org/10.
7554/eLife.45920 (2019).

32. Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular
signatures of activation. Nat. Commun. 7, 11022 (2016).

33. Jaeger, B. N. et al. A novel environment-evoked transcriptional
signature predicts reactivity in single dentate granule neurons. Nat.
Commun. 9, 3084 (2018).

34. Yap, E. L. et al. Bidirectional perisomatic inhibitory plasticity of a Fos
neuronal network. Nature 590, 115–121 (2021).

35. Tepe, B. et al. Single-cell RNA-seq of mouse olfactory bulb reveals
cellular heterogeneity and activity-dependent molecular census of
adult-born neurons. Cell Rep. 25, 2689–2703.e2683 (2018).

36. Garay, P. M. et al. RAI1 regulates activity-dependent nascent
transcription and synaptic scaling. Cell Rep. 32, 108002 (2020).

37. Spiegel, I. et al. Npas4 regulates excitatory-inhibitory balance within
neural circuits through cell-type-specific gene programs. Cell 157,
1216–1229 (2014).

38. Saha, R. N. et al. Rapid activity-induced transcription of Arc and other
IEGs relies on poised RNA polymerase II. Nat. Neurosci. 14,
848–856 (2011).

39. Madabhushi, R. et al. Activity-induced DNA breaks govern the
expression of neuronal early-response genes. Cell 161, 1592–1605
(2015).

40. Sando, R. et al. HDAC4 governs a transcriptional program essential
for synaptic plasticity and memory. Cell 151, 821–834 (2012).

41. Akins, P. T., Liu, P. K. & Hsu, C. Y. Immediate early gene expression in
response to cerebral ischemia. Friend or foe? Stroke 27,
1682–1687 (1996).

42. Park, A. et al. A time-dependent role for the transcription factor CREB
inneuronal allocation to an engramunderlying a fearmemory revealed
using a novel in vivo optogenetic tool to modulate CREB function.
Neuropsychopharmacology 45, 916–924 (2020).

43. Han, J. H. et al. Neuronal competition and selection during memory
formation. Science 316, 457–460 (2007).

44. Androvic, P. et al. Decoding the transcriptional response to
ischemic stroke in young and aged mouse brain. Cell Rep. 31,
107777 (2020).

45. Bonkhoff, A. K. & Grefkes, C. Precision medicine in stroke: towards
personalized outcome predictions using artificial intelligence. Brain
145, 457–475 (2022).

46. Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I. &
Shenoy, K. V. Cortical preparatory activity: representation of
movement or first cog in a dynamical machine? Neuron 68, 387–400
(2010).

47. Pandarinath, C. et al. Latent factors anddynamics inmotor cortex and
their application to brain-machine interfaces. J. Neurosci. 38,
9390–9401 (2018).

48. Way, G. P. & Greene, C. S. Extracting a biologically relevant latent
space from cancer transcriptomes with variational autoencoders.
Pac. Symp. Biocomput. 23, 80–91 (2018).

49. Seninge, L., Anastopoulos, I., Ding, H. & Stuart, J. VEGA is an
interpretable generative model for inferring biological network activity
in single-cell transcriptomics. Nat. Commun. 12, 5684 (2021).

50. Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. A gene-coexpression
network for global discovery of conserved genetic modules. Science
302, 249–255 (2003).

51. Abu-Jamous, B. & Kelly, S. Clust: automatic extraction of optimal co-
expressed gene clusters from gene expression data. Genome Biol.
19, 172 (2018).

52. Aibar, S. et al. SCENIC: single-cell regulatory network inference and
clustering. Nat. Methods 14, 1083–1086 (2017).

53. Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring
regulatory networks fromexpression data using tree-basedmethods.
PLoS ONE https://doi.org/10.1371/journal.pone.0012776 (2010).

54. Li, S. et al. An age-related sprouting transcriptomeprovidesmolecular
control of axonal sprouting after stroke. Nat. Neurosci. 13,
1496–1504 (2010).

55. Akiyoshi, R. et al. Microglia enhance synapse activity to promote local
network synchronization. eNeuro https://doi.org/10.1523/ENEURO.
0088-18.2018 (2018).

56. Badimon, A. et al. Negative feedback control of neuronal activity by
microglia. Nature 586, 417–423 (2020).

57. Cserep, C. et al. Microglia monitor and protect neuronal function
through specialized somatic purinergic junctions. Science 367,
528–537 (2020).

58. Favuzzi, E. et al. GABA-receptive microglia selectively sculpt
developing inhibitory circuits. Cell 184, 5686 (2021).

59. Parkhurst, C. N. et al. Microglia promote learning-dependent synapse
formation through brain-derived neurotrophic factor. Cell 155,
1596–1609 (2013).

60. Schafer, D. P. et al.Microglia sculpt postnatal neural circuits in an activity
and complement-dependent manner. Neuron 74, 691–705 (2012).

61. Clarkson, A. N., Huang, B. S., Macisaac, S. E., Mody, I. & Carmichael,
S. T. Reducing excessive GABA-mediated tonic inhibition promotes
functional recovery after stroke. Nature 468, 305–309 (2010).

62. Kraft, A.W., Bauer, A.Q., Culver, J. P. &Lee, J.M.Sensorydeprivation
after focal ischemia in mice accelerates brain remapping and

https://doi.org/10.1038/s42003-024-06723-3 Article

Communications Biology |          (2024) 7:1048 14

https://doi.org/10.7554/eLife.45920
https://doi.org/10.7554/eLife.45920
https://doi.org/10.7554/eLife.45920
https://doi.org/10.1371/journal.pone.0012776
https://doi.org/10.1371/journal.pone.0012776
https://doi.org/10.1523/ENEURO.0088-18.2018
https://doi.org/10.1523/ENEURO.0088-18.2018
https://doi.org/10.1523/ENEURO.0088-18.2018
www.nature.com/commsbio


improves functional recovery through Arc-dependent synaptic
plasticity. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.
aag1328 (2018).

63. Festa, B. P. et al. Microglial-to-neuronal CCR5 signaling regulates
autophagy in neurodegeneration. Neuron https://doi.org/10.1016/j.
neuron.2023.04.006 (2023).

64. Gao, Y. et al. Microglia CREB-Phosphorylation Mediates Amyloid-
beta-Induced Neuronal Toxicity. J. Alzheimers Dis. 66,
333–345 (2018).

65. Sanguino-Gomez, J. et al. An emerging role for microglia in stress-
effects on memory. Eur. J. Neurosci. 55, 2491–2518 (2022).

66. Bartolotti, N. & Lazarov,O.CREBsignals asPBMC-basedbiomarkers
of cognitive dysfunction: a novel perspective of the brain-immune
axis. Brain Behav. Immun. 78, 9–20 (2019).

67. Sobue, A. et al. Microglial gene signature reveals loss of homeostatic
microglia associated with neurodegeneration of Alzheimer’s disease.
Acta Neuropathol. Commun. 9, 1 (2021).

68. Chitu, V. et al. Microglial homeostasis requires balancedCSF-1/CSF-
2 receptor signaling. Cell Rep. 30, 3004–3019.e3005 (2020).

69. Rosito, M. et al. Microglia reactivity entails microtubule remodeling
from acentrosomal to centrosomal arrays. Cell Rep. 42,
112104 (2023).

70. Jin, S. et al. Inference and analysis of cell-cell communication using
CellChat. Nat. Commun. 12, 1088 (2021).

71. Poplawski, G. H. D. et al. Injured adult neurons regress to an
embryonic transcriptional growth state. Nature 581, 77–82 (2020).

72. d’Aquin, S. et al. Compartmentalized dendritic plasticity during
associative learning. Science 376, eabf7052 (2022).

73. Hollenhorst, P. C., McIntosh, L. P. & Graves, B. J. Genomic and
biochemical insights into the specificity of ETS transcription factors.
Annu. Rev. Biochem. 80, 437–471 (2011).

74. Fontanet, P., Irala, D., Alsina, F. C., Paratcha, G. & Ledda, F. Pea3
transcription factor familymembers Etv4 andEtv5mediate retrograde
signaling and axonal growth of DRG sensory neurons in response to
NGF. J. Neurosci. 33, 15940–15951 (2013).

75. Besnard,A.,Galan-Rodriguez, B., Vanhoutte, P. &Caboche, J. Elk-1 a
transcription factorwithmultiple facets in thebrain.Front. Neurosci.5,
35 (2011).

76. Briguet, A. & Ruegg, M. A. The Ets transcription factor GABP is
required for postsynaptic differentiation in vivo. J. Neurosci. 20,
5989–5996 (2000).

77. Schaeffer, L., de Kerchove d’Exaerde, A. & Changeux, J. P. Targeting
transcription to the neuromuscular synapse.Neuron31, 15–22 (2001).

78. Shichita, T. et al. MAFB prevents excess inflammation after ischemic
stroke by accelerating clearance of damage signals through MSR1.
Nat. Med. 23, 723–732 (2017).

79. Corbett,D. et al. Enhancing thealignment of thepreclinical andclinical
stroke recovery research pipeline: consensus-based core
recommendations from the stroke recovery and rehabilitation
roundtable translational working group. Neurorehabil. Neural Repair
31, 699–707 (2017).

80. Joy, M. T. & Carmichael, S. T. Encouraging an excitable brain state:
mechanisms of brain repair in stroke. Nat. Rev. Neurosci. 22,
38–53 (2021).

81. Mischa V. & Bandet, I. R. W. Aberrant cortical activity, functional
connectivity, and neural assembly architecture after photothrombotic
stroke in mice. eLife 12, RP90080 (2023).

82. Ganguly, K., Khanna, P., Morecraft, R. J. & Lin, D. J. Modulation of
neural co-firing to enhance network transmission and improve motor
function after stroke. Neuron 110, 2363–2385 (2022).

83. Guo, L., Kondapavulur, S., Lemke, S. M., Won, S. J. & Ganguly, K.
Coordinated increase of reliable cortical and striatal ensemble
activations during recovery after stroke. Cell Rep. 36, 109370
(2021).

84. Bennett,M. L. et al. New tools for studyingmicroglia in themouse and
human CNS. Proc. Natl Acad. Sci. USA 113, E1738–E1746 (2016).

85. Zrzavy, T. et al. Loss of ‘homeostatic’ microglia and patterns of
their activation in active multiple sclerosis. Brain 140, 1900–1913
(2017).

86. Mercurio, D. et al. Protein expression of the microglial marker
Tmem119 decreases in association with morphological changes and
location in a mouse model of traumatic brain injury. Front. Cell
Neurosci. 16, 820127 (2022).

87. Kenkhuis, B. et al. Co-expression patterns of microglia markers Iba1,
TMEM119 and P2RY12 in Alzheimer’s disease. Neurobiol. Dis. 167,
105684 (2022).

88. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal
probabilistic RNA-seq quantification. Nat. Biotechnol. 34,
525–527 (2016).

89. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a
Bioconductor package for differential expression analysis of digital
gene expression data. Bioinformatics 26, 139–140 (2010).

90. Ritchie, M. E. et al. limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res. 43,
e47 (2015).

91. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles.
Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

92. Suo, S. et al. Revealing the critical regulators of cell identity in the
mouse cell atlas. Cell Rep. 25, 1436–1445.e1433 (2018).

Acknowledgements
These studieswere funded byDr.Miriam and SheldonG. AdelsonMedical
Research Foundation (S.T.C) and JAX—institutional start-up funds
(M.T.J.). We thank Dr. Xinmin Li and the UCLA Technology Center for
Genomics and Bioinformatics core for library preparation and RNA
sequencing and Felicia Codrea, Jessica Scholes, and Jeff Calimlim from
the UCLA BSCRC FACS core for fluorescence activated cell sorting of all
samples used in this study.

Author contributions
S.T.C. and M.T.J. conceived the project and designed experiments. M.T.J.
conducted experiments and collected data. M.T.J. and S.T.C. analyzed and
interpreted data and wrote the paper.

Competing interests
Theauthorsdeclarenocompeting interests.MaryT. Joy isanEditorialBoard
Member for Communications Biology but was not involved in the editorial
review of nor the decision to publish this article.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-06723-3.

Correspondence and requests for materials should be addressed to
Mary T. Joy.

Peer review information Communications Biology thanks Rajkumar
Verma, Richard Kopchok III, and the other anonymous reviewer(s) for their
contribution to thepeer reviewof thiswork.PrimaryHandlingEditors:Mireya
Plass and David Favero. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s42003-024-06723-3 Article

Communications Biology |          (2024) 7:1048 15

https://doi.org/10.1126/scitranslmed.aag1328
https://doi.org/10.1126/scitranslmed.aag1328
https://doi.org/10.1126/scitranslmed.aag1328
https://doi.org/10.1016/j.neuron.2023.04.006
https://doi.org/10.1016/j.neuron.2023.04.006
https://doi.org/10.1016/j.neuron.2023.04.006
https://doi.org/10.1038/s42003-024-06723-3
http://www.nature.com/reprints
www.nature.com/commsbio


Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42003-024-06723-3 Article

Communications Biology |          (2024) 7:1048 16

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commsbio

	Activity-dependent transcriptional programs in memory regulate motor recovery after stroke
	Results
	Cortical neurons after stroke express activity-dependent gene sets
	Activity-dependent genes post-stroke occupy a unique molecular latent space
	Motor recovery is associated with the expression of robust co-expression networks of activity genes and their transcription factors
	Neuronal knockdown of CCR5 or overexpression of CREB results in transcriptional changes in microglia and neuro-microglial ligand–receptor interactions unique to motor recovery

	Discussion
	Methods
	In vivo animal studies
	Stroke model
	Cranial injections
	FACS
	Neuronal enrichment
	Microglial enrichment
	Sorting

	RNA isolation and sequencing
	Immunohistochemistry, infarct size quantification, and fluorescence intensity measurements
	Reporting summary

	Quantification, statistics, and reproducibility
	Sequence read alignment, filtering, and normalization
	Neurons
	Microglia

	Differential gene expression analysis
	Gene set enrichment of activity-dependent genes
	Gene set enrichment analysis
	Linear modeling with behavioral data

	Random Forest classification
	Variational autoencoders
	Gene co-expression and regulatory networks
	Ligand–receptor interactions

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




