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A new theory of osmotic pressures of binary solutions of non-electrolytes

Viadimir T. Granik and Mauro Ferran
Biomedical Microdevices Center, University of California, Berkeley, California, 94720

A new theory of osmotic pressures is developed which applies to binary solutions of non-electrolytes
separated by a semipermeable or a leaky membrane. Both solutions are assumed to be incompressible,
one of these may be a pure solvent. Unlike the previous theories that are either empirical or stem from
thermodynamic considerations, the present theory is based on the diffusion mechanism of osmosis and
might therefore be termed ‘mechanistic.” The general equations of thus theory bring about a number of
particular formulas for osmotic pressures covering all the possible combinations of the membranes
(semipermeable, leaky from one side, leaky from both sides) and the pairs “A-B” of the solutions in-
volved (among these “concentrated A—concentrated B,” “pure solvent A-concentrated B,” “infinitely
dilute A—infinitely dilute B,” “pure solvent A—~infinitely dilute B”). The ‘mechanistic’ theory is validated
by direct and indirect experimental data on osmotic pressures of aqueous solutions of sucrose and those
of ethanol at all their feasible concentrations. In the case “semipermeable membrane” and “pure solvent
A~infinitely dilute solution B,” the present theory is reduced to the classical law of van’t Hoff or Morse.
In comparison with these and the other previous models of osmotic pressures, the proposed theory (i)
holds for both ideal and non-ideal solutions, (ii) imposes no restrictions on the concentration of the mix-
tures, (iii) includes no adjustable parameters. The ‘mechanistic’ theory enables revealing the existence
of an upper limit 7z,, of osmotic pressure 7, i.e. 7 < 7., the limit 7., depending on the molar volume of
the solvent (7., = 1300 atm for agueous solutions). Information about the limits a,, may be of impor-
tance to applications in biology, chemical engineering, etc. It is shown in particular that due to the limi-
tation 7 < 7, the life of marine animals in sea-water might be wiped out at the depths below approxi-
mately 13 ki, should they exist. The present theory also brings about new expressions for the activity,
the activity coefficient, and the chemical potential of solvent. In contrast to the similar classical laws,

these expressions are in better agreement with physical reality and experimental data.

I INTRODUCTION

Osmosis is a well-known phenomenon of a sponianeous
flow of solvent molecules through a membrane separating
two liquid solutions.' The flow is directed from a solution of
higher solvent concentration (it may be a pure solvent) to a
solution of lower solvent concentration. The membrane is
generally assumed to be semipermeable, ie., permeable to
molecules of solvent but not to molecules of solute.

Osmosis gives rise to osmotic pressure that plays an im-
portant role in physical, chemical, and biological processes.
In particular, it is a dominant driving force in biological sys-
tems moving various solvents and solutes through cell mem-
branes.*’ Also, information about osmotic pressures is a main
source of determining the molecular weights of solute mac-
romolecules®® and the equivalent radii of the membrane pores
and channels.'’

Although osmosis has been studied for more than a cen-
tury, the underlying mechanisms are not yet fully under-
stood.'®"? Such a blind spot might have blocked the progress
of any theory. Surprisingly enough, this has not happened,
and a number of osmotic pressure theories have been devel-
oped that disregard any possible mechanisms of osmosis. A
majority of these non-mechanistic theories (NMTs) are re-
lated to incompressible solutions of non-electrolytes separated
by a semipermeable membrane, one of the solutions being bi-

nary, the other being a pure solvent. The most famous of the
NMTs deal with the following categories of solutions:

1. Ideal dilute mixtures:
The van’t Hoff equation"®

7=RTC, (1

The Morse equation'*

7= RTmy (2)
Here n, R, T, C, and m1,’ are the osmotic pressure, the gas

constant, the absolute temperature, the molar and the volume
molal concentrations of solute, respectively; m,’ is defined as

m;]’ = mgplo (3)

where m;, is the solute molal concentration, p; is the density
of a pure solvent at the given temperature 7 and pressure P.

2. Non-ideal dilute solutions:

The power (‘virial’) series’ >

= RT(CQ/MQ +Ag sz +s43 023 +) (4)



Here Af is the solute molecular weight, 45, 4,,... are the sec-
ond, third, etc. vinial coefficients, ¢ is the mass solute con-
centration (g of solute/liter of solution) expressed by

Oy = C2M2 (5)

3. Non-ideal concentrated solutions:

The logarithmic equation (Variant 1)
7= RT/V ) In (py/py) ©)

where ¥, is the molar volume of a pure solvent, p, " and pd
are the vapor pressures of the pure solvent and of the solvent
in the solution, respectively; both these pressures are taken at
the same 7 and F, the vapor is assumed to obey Boyle's law.
A logarithmic equation similar to (6) had first been estab-
lished by van Laar,'” then modified by the Earl of Berkeley
and Hartley'® and finally brought into the form (6) by some
other contemporary authors.'®* Later on Eq. (6) was altered
and amended by introducing adjustable parameters. >

The logarithmic equation (Variant 2)"'
== RT/)Ina (7

Here a; = xx; is the activity of solvent in the solution, x; is
the mole fraction of the solvent defined as

xp= CLHC) + Coy = my [(my + 1)) =
my! [y + my)) (8)

» 1s the activity coefficient of the solvent measuring its de-
parture from ideality. In general both » and a, depend on T,
P and the mole fraction of soluig x» = 1 — x;:

n=nl F x) 9
oy =al(T, P, xz)=x0(T, P, x3) (10}

In the case of ideal dilute mixtures, x; — 0 and x; — 1, so
that 3 — 1 and a; — x;. Given identities (8), Eq. (7) then re-
duces to Eq. (1) or (2). Also, in some derivations of Egs. (6)
and (7) the volume ¥, is substituted by the partial molar vol-
ume ¥; of the solvent in the solution.®%

Besides Eqgs. (1), (2) and (4), there are some less practi-
cable NMTs of osmotic pressure of dilute solutions surveyed
in books.””™

Whatever their differences, all the NMTs result from one
fundamental thermodynamic relation

th=m +RTha, (11
where £, and y4 are the chemical potentials of a pure solvent

and of the solvent in a solution, respectively. The law (11) is
independent of any mechanisms of osmosis, and this remark-
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able feature 1s generally regarded as great advantage in build-
ing the osmotic pressure theories. Yet such a view does not
seem quite impeccable, at least so far, because the use of Eq.
(11) has imposed certain limitations on each NMTs.

The point is that there still is no comprehensive theory of
liquid mixtures (including their chemical potentials) to be
valid at any feasible temperature, pressure, and solute con-
centration.”** The celebrated theories of non-ideal binary so-
lutions™* are restricted to particular types of mixtures and
limited solute concentrations. Similar limitations are also in-
herent, to different degrees, in recently proposed theoretical
developments. "™ To fit experimental data, all the mixture
models involve faute de mieux adjustable parameters and are
therefore called ‘semitheoretical’.* As a result, up to now the
key thermodynamic factors of non-ideal concentrated solu-
tions—the activity a; by Eq. (10) and the chemical potential
41 by Eq. (11)—can only be expressed as empirical or semi-
empirical functions of the arguments 7, P, x,.

Proceeding from semitheoretical expressions for a4, and
41, the NMTs have a limited range of applicability. This
range depends critically on the kind and concentration of sol-
ute molecules, 1.e., on whether a real solution concerned may
be considered as ideal or non-ideal, dilute or concentrated.
The matter is aggravated by the fact that it is mostly difficult
if not impossible to tell in advance the difference between
these categories of solutions. Moreover, if a solution is suffi-
ciently dilute, the difference between ideality and non-ideality
can practically vanish, but the exact measure of this
‘sufficiency’ is also unknown beforehand.

In particular, the van’t Hoff theory (1) is supposed to
hold if a solution is both ideal and dilute (in terms of molarity
C>). Yet the theory fails for dilute and even very dilute solu-
tions of hemoglobin,™ insulin,” lysozime® and many other
biological macromolecules. This simply means that such di-
lute solutions are non-ideal. On the other hand, at extremely
low molarities some of these solutions exhibit ideal behavior.
For instance, if the hemoglobin concentration C; < (" ~
0.0005 moles/1000 ml, the van’t Hoff theory proves to be
quite satisfactory. Hence at C, < C, the non-ideal dilute solu-
tions of hemoglobin become sufficiently dilute and may be
treated as ideal mixtures. However, the van’t Hoff law passes
by the possible limits C,’, and so its range of applicability can
be brought to light only by a direct comparison with experi-
mental data. The same disadvantage is also peculiar to the
Morse equation (2).

The more general virial theory (4), too, has weak points.
One of them stems from the specific nature of the underlying
virial coefficients 4,, 4;, etc. These coefficients, which de-
pend on the kind of solution and represent its deviation from
ideality, are usually and most reliably determined by os-
mometry.>**** This makes the virial theory semiempirical
and deprives it of the ability to predict osmotic pressures be-
fore they have at least once been measured. Another weak
point is associated with an upper limit of the solute molality
m; . The virial theory is based on the assumption that a solu-
tion is infinitely dilute, i.e., the molality m,” — 0.7 In fact the



theory holds at mb >> 0, but these real limits m, do not enter
into the vinal equation (4) and are to be detected by experi-
ments.

The logarithmic equations (6) and (7) are the most exact
of all the NMTs. Yet they also have limitations. Due to the
absence of a comprehensive theory of non-ideal concentrated
solutions, there is no exact theory of the vapor pressures p; of
those solutions either. Therefore the values of p; in Eq. (6)
are to be determined empirically, with the help of direct
measurements or, conversely, in terms of observed osmotic
pressures. The second variant (7) is more general than the
first ome (6). Nevertheless, as noted above, the underlying ac-
tivity a; by Eq. (10) still cannot be expressed as an exact
theoretical function of x;, T, P and is to be found empirically
before being substituted in Eq. (7). Thus not only the virial
theory (4) but also both the logarithmic equations (6) and (7)
are semiempirical.

It is worth reminding one more weak point of the classi-
cal thermodynamic approach to osmotic problems. Classical
thermodynamics 1s sufficient for dealing with semipermeable
membranes, but if the membranes are leaky (permeable 1o
solute), it fails. So do the NMTs. They can be amended if the
osmotic pressures by these theories are multiplied by the re-
flection coefficient o (0 < o < 1) obtained in terms of irre-
versible thermodynamics.>”’ Nevertheless, such a correction
does not revise the essence of the NMTs and does not there-
fore eliminate thetr intrinsic shortcomings mentioned above.

The limitations of the NMTs and some mystery of os-
motic mechanisms have long challenged the scientific com-
munity and in the last few decades led to revival of theoreti-
cal activity in the field of osmosis and osmotic pressure. The
origin of osmosis was reconsidered from several angles to be
touched upon in Sec. II. Here it suffices to note that these en-
deavors however inventive have neither shed new light on
osmotic mechanisms nor resulted in an advanced theory of
0SmOtiC pressure.

Allowing for the above background, in this paper we try
to develop a theory of osmotic pressure based on a mechanis-
tic rather than on the thermodynamic consideration of osmo-
sis. The aim of the study is to circurnvent the limitations of
the NMTs and provide a simpler and sufficiently precise
technique for computing osmotic pressures. Qur theory deals
with incompressible binary solutions of non-electrolytes of
any feasible concentrations. The solutions are separated by ei-
ther a semipermeable or a leaky membrane. The underlying
mechanism of osmosis is assumed to be diffusion of solvent
molecules accompanied, for a leaky membrane, by diffusion
of solute molecules,

The paper is organized as follows. In Sec. II we touch
upon major hypotheses of osmotic mechanisms. Stemming
then from the diffusion hypothesis, we set the stage for our
model in Sec. IIl. The mechanistic theory of osmotic pres-
sures for both semipermeable and leaky membranes is devel-
oped in Sec. IV. Particular cases of the theory are specified in
Sec. V. In Sec. VI the theory is compared with the classical
laws (1), (2) and verified by experimental daia. Some signifi-
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cant features and consequences of the theory are discussed in
Sec. VIL

fil. OSMOTIC MECHANISMS

As mentioned in Sec. 1, the thermodynamic approach to
osmotic problems is based on Eq. (11) for the chemical po-
tenual of solvent iy = 14(T, P, x3). Since this function is inde-
pendent of an osmotic mechanism, a search for the latier has
commonly been considered unesscntial and even neediess.
Such a mainstream opinion was first voiced in the early
monograph on osmotic pressure” and later echoed in many
works on physical and biophysical chemistry (see, for in-
stance,l’z’g"] 1 ,26,586})

However popular, this view seems somewhat categorical.
It implies an unconditional perfection of the thermodynamic
approach and disregards its considerable limitation, the inca-
pacity io yield the underlying function (7, P, x;). Only if a
sysiem 15 ideal and dilute, the imitation is of no importance.
In this particular case, the chemical potential is given by the
relation

= +RTInx, = +RTIn (1 - x2) (12)
which results from Eq. (11) at 1 = 1 and leads to the limiting
laws (1) and (2). In all other cases, the function (7, P, x,) is
unknown beforehand and has to be borrowed from additional
sources: mixture theories, experiments, stc.

As a result of being incapable to furnish the underlying
function (T, P, x;), the thermodynamic approach is insuffi-
cient to solve osmotic problems for non-ideal and/or concen-
trated solutions. Although this fact is not new, it has not usu-
ally been emphasized. Meanwhile, it suggests an alternative
technique that per se, in contrast to the thermodynamic ap-
proach, might be able to provide a comprehensive solution to
osmotic problems by allowing for an osmotic mechanism.

The quest for this mechanism began in the 1850s and is
sull in progress stimulated mostly by biochemical
needs.**'*"* Many hypotheses have been advanced to clear
up what is behind the osmotic flow and osmotic pressure. An
admirable review of early hypotheses is given in a treatise.®
Several recent explanations of osmotic phenomena are pro-
posed in articles.®®° All the hypotheses refer to the classical
case of osmosis when a semipermeable membrane separates a
pure solvent from a binary solution. The most remarkable of
the osmosis explanations are as follows.

Kinetic hypothesis-1."> It stems from an analogy be-
tween solute molecules in dilute liquid solutions and the
molecules of gases. Osmotic pressure is attributed to the
bombardment of a semipermeable membrane by solute mole-
cules.

Kinetic hypothesis-2.”° Osmosis is ascribed to the bom-
bardment of a semipermeable membrane by the molecules of
solvent. Because there are more solvent molecules in the pure
solvent than in the solution, the bombardment brings about



an excess (osmotic) pressure exerted on the membrane. The
pressure drives the solvent molecules into the solution and
thus generates the osmotic flow.

Solubility h}/pothesis.”'73 A semipermeable membrane
is assumed to aftract solvent molecules that are dissolved on
one side of the membrane and given up on the other. The
process leads to osmosis, 1.¢., to a net flow of the solvent into
the solution where an additional hydrostatic pressure devel-
ops. The pressure builds up to a certain lumit that 1s high
enough to check the flow. This limit is called osmotic pres-
sure.

Sieve hypothesis.”*’® A semipermeable membrane is
supposed to act as a sieve that permits the passage of small
molecules of solvent but traps larger molecules of solute.
Such an action results in a net flow of the solvent into the so-
Iution and thus gives rise to osmotic pressure in the same way
as the solubility hypothesis explains.

Vapor pressure hypothesis.” A semipermeable mem-
brane is assumed to be pierced by a multitude of dry capillar-
ies. The capillaries retain both the liquid solvent and solution
but pass vapor. Since the vapor pressure of the solvent is
more than that of the solution, vapor diffuses through the
capillaries from the solvent to the solution and then con-
denses there. The volume of the solution rises and so do its
hydrostatic and vapor pressures until the latter becomes equal
to the vapor pressure of the solvent. At this moment the hy-
drostatic pressure of the solution reaches its upper limit
called osmotic pressure.

Surface tension hypothesis.”>""™ By this hypothesis,
there is a positive difference in surface tensions of the solu-
tion and the solvent on both sides of the membrane. Due to
the difference, a motive force springs up that drives (sucks)
the whole body of solvent into the solution through the mem-
brane capillaries and thus brings about the osmotic pressure.

Solvent tension hypothesis. It was first proposed in
works® % and then, in many years, reintroduced in articles.®>
 The hypothesis ascribes osmotic pressure to the action of
solvent tension which is defined as ‘negative pressure’ in-
duced by the thermal motion of solute molecules. Also, the
solvent tension is “attributable to the attractive forces be-
tween solvent molecules”® either in pure solvent or in a so-
lution. Osmotic pressure is defined as the difference of the
solvent tension in the solution and that in pure solvent. This
explanation has been severely criticized **® One of the
scathing remarks is as follows: “there is no need to introduce
a solvent tension hypothesis that is more difficult to under-
stand than the phenomena it is supposed to explain

There are some other comparatively new but also vague
suggestions about osmotic mechanisms such as a pressure
drop within the membrane at the membrane-solution inter-
face,®” solvent dilution by solute,” solvent cohesiveness, the
interaction of solute particles with the semipermeable mem-
brane or with the free surface of the solvent,” etc.

Diffusion hypothesis. In 1918 Haldane® put forward an
idea of ‘diffusion pressure’ as explaining osmosis. A year
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later Kosakai stemming from his own osmotic experiments
with boric acid, formaldehyde and carbamide®™®' came to the
conclusion that osmotic pressure is exerted by pure solvent
“which has passed, by the process of unexplained diffusion,
through a semipermeable membrane.” Later on the diffusion
origin of osmosis was arrived at by other researchers and in
the long run the spontaneous diffusion of solvent has been
accepted as the most plausible mechanism of osmotic pres-
sure.””* "% Jt has been adopted in a number of textbooks as
the definition of osmosis'*"'? and applied in numerous theo-
retical works on the transport of molecules through natural
and artificial membranes.

In the present paper we also take up the diffusion hy-
pothesis and in the next Section discuss possible ways of its
application to building a new theory of osmotic pressure.

iIl. SETTING THE STAGE

Consider the arrangement in Fig. 1 where compartments
A and B are separated by a rigid membrane M and contain
liquid binary non-electrolyte solutions of the same names A
and B, respectively. In what follows, molecules of solvent are
denoted by / = 1 (species 1) and those of solute by i = 2
(species 2). We also suppose that the solutions are incom-
pressible and the membrane M is in general leaky so that sol-
vent and solute molecules can freely pass through it owing to
their random thermal motion.'"

In mixtures A and B, the partial molal volumes of spe-
cies / = 1, 2 and their molar concentrations are respective-
Iy Via, Vipand C 4, C;5. The concentration difference is

AC,ECiA—C,,B (13)

Provided AC) > 0 and hence AC, < 0, the random motion
of species 1 and 2 brings about two net diffusion flows
(fluxes). One of them is a self-diffusion flux J, of solvent 1
from compartment A to compartment B and the other is an
interdiffusion flux J, of solute 2 in the opposite direction
from B to A (see Fig. 1), the dimension of the fluxes being
mol xm? x s, The terms ‘self-diffusion’ and ‘interdiffusion’
originate from two kinds of the random motion of the species
involved''”: the motion of a solvent molecule through its
identical twins (‘self-diffusion’), and the motion of a solute
molecule through the same solvent particles (‘interdiffu-
sion’).

In addition to the fluxes J; and J,, the diffusion process is
characterized by the corresponding volume flows J,' = ¥ 4J;
and J;' = VopJy (m° xm” xs7). AsJ,’ and J;' arise and keep
passing the membrane M, in one of the two compartments
(for instance B when J,' > J)') the volume of the solution
builds up and brings about an increasing hydrostatic pressure
difference AP across M (see Fig. 1). This pressure gives rise
to an increasing secondary bulk flow Jp = J5' of solution B as
a whole. Both J;' and J3' counteract the prevailing osmotic
flow J;' and at a certain moment ¢ = f,, >> 0 check it. Just at



this moment, the net volume flow J’ of ail the molecules in-
volved comes to zero, 1.¢.,

J'=Jdy + 0 +Js = Viadi+ Vapds +J5' =0 (14)
and the pressure difference AP reaches its maximum AP,...
which is equal to osmotic pressure 7 by definition (see the
solubility hypothesis in Sec. II).

It follows that the diffusion treatment of osmosis makes
it possible to determine osmotic pressure 7 ¢ither directly, by
measuring AP, = 7, or indirectly, in terms of the fluxes .J,',
Jo', J3' obeying Eq. (14). The first approach is empirical, the
second one more theoretical and corresponding to the aim of
our paper. To accomplish it, we must take into account some
factors. Let us mention them,

First of all, diffusion is a process and hence the natural
way to cope with the osmotic problem is to apply appropriate
dynamic equations.

Also, before condition (14) takes place, i.e, at 0 <1 <t,,,
the net volume flow .J' = I;I,A Ji+ 1725 Jo + J3' is developing
as a ume-dependent or nonstatiopary process. Time-depend-
ent processes, especlally rapid ones, are not easy to deal with.
In the meantime, ample experiments show that the hydro-
static head AP indicating the rate of all the fluxes J,', J), J3'
increases very slowly at ¢ < #,,, stops at ¢ = £, and then re-
mains practically constant for a certain time interval 7 € [t,,,
t,.:). The problem may thus be facilitated by assuming that at
t 21, the variables Jy', J.', J5' become time-independent or
stationary (steady). This means that condition (14) will hold
not only at the moment ¢, but also thereafier, at f > 1,,, when
in addition to Eq. (14) we have

AP =AP .=m, € [ty toul (15)
Further in this paper we will consider only the steady state of
osmosis which, in this Section, follows Eqs. (14) and (15).

It should also be kept in mind that osmosis is not an iso-
lated phenomenon—it is developed as a combination of the
coupled stationary flows Jy’, J.', J3'. To deal with them, we
need corresponding coupled stationary dynamic equations.
The most appropriate phenomenological relations of this kind
seem to be linear equations of nonequilibrium (irreversible)
thermodynamics''**'* that for our particular case take the
form

S =L X+ L X+ Lis Xy (16)
Sy = Loy X+ L X + Ly X (17)
S = Ly Xy + Ly Ko + L33 X (I8)

Here X;, X», X3 are generalized forces, or gradients, produc-
ing the fluxes J,', J7, J5', and L, (r, s = 1, 2, 3) are experi-
mental quantities (phenomenological transport coefficients)
obeying Onsager’s reciprocal relations''*'!’

5

Lis=1L, (19)

The transport coefficients Z,, are independent of the
forces X, and may be split up into two groups. The first one
consists of the coefficients L,, that relate conjugate (similar)
fluxes and forces {J,", X,}. The couples {J,, X} represent di-
rect phenomena, i.e., reactions of the fluxes J, to the forces
X, acting right on J,". The second group includes the coeffi-
cients L,, (r # s) that relate dissimilar fluxes and forces {J,',
A} The couples {J,', X} stand for indirect (cross) phenom-
ena, viz., reactions of the fluxes J,' to the forces X, acting
straight on the other fluxes J,".

Eguations (14)-(19) make up a certain mathematical
model of osmosis and raise therefore a natural question: Is
this model suitable for obtaining the required osmotic pres-
sure 7 in terms of the concentration differences AC, and
AC?

To answer this question, we begin with reminding that
the conjugate couple {Jy', X3} represents the bulk flow J5'
driven directly by the above hydrostatic head AP. Therefore
the gradient X3 = AP, = 7, as follows from Eq. (15). Ac-
cordingly, the conjugate couple {J;, X} stands for the diffu-
sion of solvent 1 through the membrane M, the flux J;' being
generated directly by the concentration gradient AC,. Hence
the force X7 = fi(AC). Analogously X> = f5(AC.). Since irre-
versible thermodynamics deals with linear processes, both
S(AC)) and f2(AC)) are to be linear functions, that is f;(AC))
= b ACy and f2(AC,) = b,AC,, where b, and b, are some con-
stants to be found.

For this purpose, we invoke the key relation of irreversi-
ble thermodynamics'"?

A=0'X+ X+ 05 X5 (20)
where A is the local entropy production. In the model (14)-
(19), all the fluxes Jy’, Jo', J5' are of the same dimension.
Then, according to Eq. (20), all the forces X}, X5, X5 must
have another but also one and the same dimension. The gen-
eralized force X5 is the osmotic pressure 7 whose dimension
is, for instance, atm. Therefore the dimension of both X, =
5 AC) and X; = b,AC, has to be atm as well. This require-
ment 1s satisfied if we take b, = b, = RT.

As a result, the mathematical model (14)-(19) will in-
clude the following generalized forces:

./Y] - RTAC1 (2 1)
X, = RTAC, 22)
Xs=xm (23)

We now suppose for simplicity that the membrane M in
Fig. 1 1s semipermeable. In this case, the flow of solute 2
across the membrane is forbidden so that



J' =0 (24)
Hence condition (14) takes the form
Ji=dy +Jy = Viad +J5 =0 (25)

Both identity (24) and Onsager’s relations (19) require that
Ly=Lo=0 (r=1,2,3) (26)
In view of (19) and (26), Egs. (16)-(18) reduce to
H' =Ly X, + L X 27
Jy = L3 X+ L Xy (28)
and owing to Eqgs. (27) and (28), condition (25} changes to
(Liy + Ly) Xy +(Lys + Lan) X5 =0 (29)

With regard to relations (21)-(23), Egs. (27)-(29) become

J;’ :L]]RTA(:] +L‘137[ (30)
ng-'—'-LHRTAC; +L337z (31)
(L + Lis) RTAC, + (Li3 + L3z) 7 =0 (32)

Equation (32) seems to bring about a solution o our
problem. Indeed, if the forces RTAC, and 7 were dependent,
Eq. (32) would result in a desirable expression of osmotic
pressure i

== (L + Lis)(Lis + Ls3)' RTAC (33)
Also, if (L) + Ly3)(Lya + Li3) 2 0, then relation (33) would
differ from the van’t Hoff equation x = RTAC, and would
therefore represent a new osmotic law.

In fact, however, solution (33) is incorrect because irre-
versible thermodynamics does not permit dependent forces' '
and fluxes.'"” Consequently, the generalized forces RTAC,
and 7 must be independent and Eq. (32) must hold at any
values of these forces. This is possible only if the terms
within the parentheses of Eq. (32) are identical zeroes:

Lyy+Li5=0 (34

Lis+L33=0 (35)
Equations (34) and (35) reduce to

Lyy=Lys=—Li (36)

When inserted in Eq. (33), the coefficients Ly, Lss, L3 by
(36) lead to an indeterminate form 7 = 0/0 and give us noth-
ing.
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it should be noted that there is a certain similarity be-
tween Egs. (30)-(32) and the celebrated Kedem-Katchalsky
theory of permeation across biological membranes.'”" If the
gencralized forces o and RTAC, are substituted respectively
by the equivalent pressure difference Ap = AP, and by the
force RTAC,, then Eas. (30)-(32) will in principle coincide
with a particular case of the Kedem-Katchalsky theory when
the membrane is semipermeable. Also, in that theory the gen-
eralized forces Ap and RTAC, are assumned to be independent
which brings about a relationship between the transport coef-
ficients L, identical to Eq. (36).°"°

We thus see that the mathematical model (303-(32) of
two coupled fluxes J," and .JJ5' is unsuitable for finding the os-
motic pressure 7 as a function of the concentration difference
ACy. We omit for brevity the proof that the model (14)-(19)
of three coupled fluxes J,', J2, J5' also fails to solve this prob-
lem. So do all other models of coupled fluxes if their number
n = 2. Hence being a powerful technique for studying linear
coupled processes, the phenomenological equations of irre-
versible thermodynamics (16)-(18), (27)-(28), (30)~(31) and
the like are inapplicable to building a new osmotic pressure
theory. This problem calls for a different approach to be dealt
with in the next Section.

IV. DEVELOPMENT OF THE THEORY

In Sec. Il we have seen that a solution to the osmotic
pressure problem is infeasible if osmosis is considered as a
set of n = 2 coupled diffusion fluxes. Thus nothing remains
but to treat the osmotic phenomenon as a set of uncoupled
diffusion flows. The term “uncoupled’ means here the follow-
ing:

(1) for any solution involved, diffusion of solvent mole-
cules is not isolated from that of solute molecules. Unlike
Sec. 111, these two processes are regarded together as one
compound diffusion flow of the solution;

(it) whatever the number of such compound flows, they
all are treated separately as uncoupled fluxes.

In this Section we show that such an approach, despite
some complications, results in a new osmotic pressure theory.

As stated above, we will now consider osmosis as a set of
two uncoupled diffusion fluxes J4,5 and Jz,, (mol x m™ x
s1). Here Ja_p (J5,4) is the flux of a liquid binary solution A
(B) to a liquid binary solution B (A) across a rigid membrane
M of thickness & (Fig. 2). We also suppose that the diffusion
process is isothermal, external forces are absent, both the
membrane M and the non-electrolyte incompressible mix-
tures A and B are isotropic and homogeneous. Under such
conditions, the diffusion of A and B is governed by Fick’s

laws! 11112121
Jamn =~ D4 grad Cy (37)
Jga =~ Dp grad Cy (38)

6C /0t = Dy, div grad Ca (39)



OCy/0t = Dy div grad Cy (40)

where C,, and Cp are certain molar concentrations of the dif-
fusible substances A and B (mol x m™) to be discussed later,
Dy and Dy are the diffusion coefficients of the membrane (m”
« s') which are assumed to be independent of position but de-
pendent on the concentrations C, and Cg, 1.€., Dy # Dg.

Before applying the general laws (37)-(40), we make
them specific by additional assumptions:

1. The diffusion is a stationary process so that

OCJ3t =0 (41)

OCy/0t =0 (42)

2. The stationary process (41)~(42) may develop when
the concentrations C, and Cy are maintained at fixed values

on both sides of the membrane M (see Fig. 2):

Co=0at x=h 43)

IS

A =(Cx) at x=0,

CB 0 at X=O7 CBT—(CB} at x=h (44)

It

3. The stationary diffusion fluxes J, ,p and Jp_,, are
one-dimensional and directed along the x-axis. This means
that

Jasp = Japi (45)
Jpsa = Jpoal (46)
grad C, = (dCa/dx)i (47)
grad Cg = (dCy/dx)i (48)
div grad C = d*Cu/dx’ (49)
div grad Cg = d*Cp/dx” (50

where i is the unit vector in the direction of positive x-axis,

UA—»B' = |JA~>B’, IJB-»\AI = [JB»A[~
In view of (41)-(42) and (45)~(50), Egs. (37)-(40) take
the form

Jams = - Da dCa/dx (51)
Jpa = — Dy dCp/dx (52)
d*Cp/dx* =0 (53)
d*Cp/dx* =0 (54)

The general solutions of Egs. (53) and (54) are

Ca=riax +r (55)

Cy=rpx +rs (56)

The arbitrary constants ry 4, 724, 715, F25 can be determined by
the boundary conditions (43)-(44) 1o vield the final solutions
of Egs. (55) and (56)

-~

,WA pas <C:\>(1 - X/}.’) {57}
CB = <C5>X/h

On substituting Cx and Cy from Egs. (57)-(58) into Eqgs.
(51)-(52), we have

Jawn=Dah™ (Cy) (59)

Josa=—Deh' (Cs) (60)
Now we may define a net diffusion flux Jp = J, .5 +
Jo,a In view of Egs. (59)-(60), this flux is

Jo=Dak [(Ca) = E(Cr)] (61)

where £ = Du/Dy. Relation (61) is a key to the forthcoming
analysis and is therefore to be discussed closely.

It is obvious that Eq. (61) makes sense if the concentra-
tions {C,) and (Cy) refer to identical molecules. For instance,
if we studied interdiffusion of solute molecules (species 2),
then (Cx) and (Cs) would be the molar concentrations Cs 4
and C, 5, respectively (see Sec. ITI). On the other hand, if we
dealt with self-diffusion of solvent molecules (species 1), then
(Ca) and (Cy) would equal the molar concentrations | » and
C} B

The matter under discussion is, however, quite different
because diffusion of solvent and solute molecules is now con-
sidered as one compound diffusion flow. It follows that the
corresponding compound concentrations (C,) and (Cy) are
neither of the above quantities and must be some combina-
tions of them. The simplest ones are linear functions (C,) =
Cia+ Cyaand (Cg) = Cy 5 + Cop. There may be a number of
other plausible combinations, but it is not clear in advance
which one of them is true. This uncertainty sets up a substan-
tial obstacle. To overcome it, we should ‘homogenize’ (in a
specified sense) solvent and solute molecules and on this ba-
sis find such tenable functions (C,) and (Cg) of the underly-
ing molar concentrations C) 5, C; 4 and C) g, Cs 5 that would

(1) apriori stem from a molecular consideration of the so-
lutions involved and

(i) aposteriori result in a new osmotic pressure theory to
be borne out experimentally over any real range of the solute
concentrations C; 5 and Cop or my " and my 5.

To begin with, we consider solution A and suppose for a
moment that it consists of a pure solvent 1 only. If we took
one liter of A (or m, o’ moles of the solvent) and added in it
mz 4" moles of the same solvent, we would get Vaq;, = 1 +
myx/Imy ' liters of the same one-component solution A. In
reality, however, solution A is binary, ie., made by dissolv-
ing m; 4" moles of solute 2 in each liter of solvent 1, so that



instead of one liter of species 1 we obtain Vy o, = V) 4'
+ Vo amy 4 liters of the real solution A, the partial molal vol-
umes » and Vs a depending on the mole fraction of solute
Xoa =M A 1y A"+ 1o ").

The above relations will apply to mixture B if subscripts

.....

A are replaced by B. Also, the volume molal concentrations
m, 4" and m, g’ refer to one liter of the same solvent 1 and are
therefore independent of the kind of solution, ie, m ) =
myg =m'. As aresult, we will have

Vagay=1+mo s fmy (62)

Vean=1+mp'/m/ (63)

Vain = ﬁu\m]’ + i:;?.,A m (64)

Ve oy = I"’”_',?Bmf + IT'M’“:,B my g’ (65)
Now we introduce dimensionless parameters

Ao = Voo 2/ Vaas (66)

re = Voo o/Vea (67)

that are some measurcs of similarity between molecules of
solute 1 and solvent 2. Indeed, either of these parameters
equals unity if species 1 and 2 are identical, and departs from
unity 1if these species are different.

More preciscly, the parameters A, and Ap refer to the
‘volume’ response of one liter of pure solvent 1 to dissolving
in it respectively my 4" and m, s’ moles of solute 2 in lieu of
the same amounts of solvent 1. For instance, A, shows by
how much one liter of pure solvent increases if instead of dis-
solving in it m,," moles of species 1, we dissolve the same
m; " moles of species 2. It follows that m. . moles of solute 2
are equivalent in volume to and may be substituted by Aam- s’
moles of solvent 1. The same holds if subscripts A are re-
placed with B.

Thus, we may suppose both solutions A and B 10 be Ao-
mogeneous mixtures consisting of volume-identical species 1
and having the following compound molal concentrations:

(ma) =mi" +hamy s (68)

(mp") =m' + Agmyp' (69)

Relations (68)-(69) enable us to obtain the compound molar
concentrations (Ca) and (Cg):

(Ca) = maVag 2y = (" + hamp MV 2) (70)

(Co) = (meMVaa 2= (' + A mo' W Vea 2 (71)
In view of the identities

Cra=m'WVa o (72}

ConzmmaalVag o (73)
(TKTB = '/I’/’B(],E} (74)
Cop= mz,e’/l’}m,z) (75)

equations (66)-(67) and (70)~(71) can be rewritten as follows:

ha = Van /(1 + ConlC 2) (76)
rp = Ve /(1 + Cop/Crp) (77)
(Cay=Cra+rnCoa (78)
(Coy=Cip+rgCap (79)

It should be noted that Egs. (68)-(71), (78)-(79) are not
final. They have to be modified by taking account of the
membrane selectivity to different molecules. Indeed, solute
molecules are usually ‘reflected’ from the membrane— com-
pletely or partially—whereas solvent molecules do not. Thus
only a fraction of species 2 may pass the membrane. We de-
note this fraction by 1, 4 for species 2 in compartment A and
by 1. g for species 2 in compartment B (see Fig. 2). The in-
troduction of 7, 4 means that of m, ,' moles of the solute in A
only T 42 »" can diffuse to B. The same is true for the frac-
tion 1,5 if one replaces A by B.

The above reasoning has a direct bearing on Egs. (68)-
(71). (78)-(79) in which the terms m,,' and m- g are to be
supplanted by 1, am5 4" and Ty, respectively. We thus
obtaln

(ma"y=m' + XAatoama s (80)
(mgy =m' +hgtopma g (&1
(Ca) = (m' + haton ma A )V aa 2 (82)
(Co)y=(m" + hgTommop ) Vea o (83)
(Cay=Cra+rataaCip (84)
(Cg) =Cp+ AgTae Con (85)

In Egs. (80)~(85), both the fractions 1, 4 and 1,3 are lim-
ited and related to the corresponding Staverman reflection
coefficients o, 4 and . by

O<ta<l) (86)

T27A:l”’0'2’A

(O<tp<1) (87)

13531“023

If the membrane under discussion is completely leaky, it
permits all the solute molecules to pass through so that

To :’(2’}3—‘—1 and 02A$Gw:0 (88)



On the contrary, if the membrane is semipermeable, we have

TzAzfzﬁzo and GQAZG'wzl (89)

site in a sense to the reflection coefficients o4, 0,5 and may
therefore be called the permeation coefficients.

We now return to the underlying equation (61) and find
the unknown function £ = Dp/Da using Egs. (84)~(85) and
(88). Equation (61) states that

elations (88)-(89) show that the fractions 1 4, 1.5 are oppo-

E=(COCe) if Jp=0 (90)
According to (90), the function & is wholly determined by
those concentrations (Ca) and (Cg) that correspond to the
zero net flux Jp = 0.

It 1s clear that J, = 0 if the mixtures at hand A and B arc
identical. In this case, all the solution characteristics with
subscripts A are equal to those with subscripts B, viz., C; 4 =
Cyp, Cop = Cop, etc. Consequently, (Ca) = (Cg) = (C and
Eq. (61) reduces to Jp = D‘Ah"(C,')(l -~ &), Taking Jp = 0, we
get £ = 1, in conformity with Eq. (90).

The above example is almost trivial. It has, however,
some reason because of raising an important question: Is
there a solution to Eq. (90) when the mixtures A and B are
not identical but different? In other words: If Jp = 0, is it pos-
sible that (C,) » (Cg) and & = 17

To answer this question, we consider a completely leaky
membrane M obeying Eq. (88). Now, if we take one liter of
each solution A and B, these equal volumes will have the
compound molar concentrations (C,) and (Cg) # (Cay by
Egs. (78)-(79) to which the general equations (84)-(85) re-
duce at 1,4 = 1 = 1, in accordance with (88). Since the
membrane M is completely leaky, any fraction of the above
liter of solution A diffusing through M to compartment B will
be counterbalanced by an equal volume fraction of solution B
diffusing through M in the opposite direction, to compart-
ment A. As a result, the net flux Jp will be zero. We thus
come to the conclusion that

Jp=0 if (Ca)and (Cg) = (Ca) obey Egs. (78)-(79) (91)
Combining this condition with Eq. (90), we have
& =(CalCs) (92)

where (C,) and (Cg) follow Egs. (78)-(79). Given these equa-
tions, relation (92) takes the final form
E:: (CI,A +?\-AC2A)/(C1,B+A'BC2,B) (93)

Substituting £ from (93) into Eq. (61) and taking account
of Egs. (84)-(85), we obtain

=Dkt y (94)

where

Y= C’*; At }VATZ,A CYZ,A - (C) B+ )VBTLB Cz,g) X

(Cra+ ha G NCr g+ 2s Cap) (95)
If the membrane M is not completely leaky, then accord-
ing to Eq. (94)-(95) there will be a net diffusion flux Jp = 0.
It may be directed either from compartment A to compart-
ment B and be positive, Jp > 0, or vice versa and be negative,
Jp < 0. Without loss of generality we take Jp > 0. Then Jp will
be the current of solution A (solvent and solute molecules to-
gether!) across the membrane M to compartment B with a
stationary velocity v4 = constant. This flux has the ‘homoge-
neous’ concentration (C,) and may be represented as'*

Jo={(Ca)va (96)
where the velocity v 1s determined by
Va=baXa (97)

Here b, is the mechanical mobility of a particle'?"'** (the
solvent or solute molecule of solution A), X, is the force driv-
ing the particle through the membrane against the counter-
flow Jg_, A (see Fig. 2).

Equating the function J by both expressions (94) and
(96) and allowing for Eq. (97), we have

baXalCa)=Dah™y (98)
If both sides of Eq. (98) are multiplied by the Avogadro num-
ber N and the thickness /# and divided by the mobility 5., we
obtain

NhX,(Co)=NDxb (99)

Now consider an arbitrary volume Vi, = 44 of the mem-
brane M, 4 being some area on the surface of M. Clearly
N(Ca)Viy is the number of the particles of the current Jp, =
(Cayva in the volume Vi at any given moment f. Accord-
ingly, F'= N(Ca)VuXa = N(Cy)ARX, is the resultant of all the
elementary driving forces X, in Vi directed from compart-
ment A to compartment B. To stop the flux J, one must apply
the same force F in the opposite direction, from B to A. Di-
viding this force by the area 4, we obtain a stress F/4 =
NIX,(Ca) which, by definition, is equal to the osmotic pres-
sure 7. In other words, 7= NhX,(C4). Given this expression,
Eq. (99) becomes

x=NDA by (100)

Equation (100) can be manipulated further by means of
the Einstein relation'” D, = kTha, where k = R/N is the
Boltzmann constant. In view of this relation, Eq. (100) takes



the form

7 =RTy (101
Equation (101) is the solution to the osmotic pressure prob-
lem we have sought for in this paper.

V. PARTICULAR CASES OF THE THEORY

The solution (101) includes the function y to be written
in extenso. Substituting  from Eq. (95) into (101), we have

7 :RT[CLACQE KBO'/_’B - CE,BC?.,A)‘*A Goa +

CoaCopratn(cys ~ 02 W(Cip + Conhn) (102)

In this relation, the reflection coefficients o 4, G2 have sup-
planied the permeation cocfficients 1,4, T;5 in conformity
with Eqgs. (86)-(87).

Equation (102) involves the parameters A, and g to be
replaced with the volumes Vaq 1. Vean, Vaa 2y, Vao 2 accord-
ing to Egs. (66)-(67). Note that these volumes, by definition
in Sec. 1V, are measured in fiters of solution per liter of sol-
vent. It is therefore convenient to drop the dimension “/iter
per liter” and treat all the volumes Faany, Veaay Vaao
Vaa 2) as dimensionless quantities, as will be done further.

In view of this remark, Eqgs. (62)-(63) yicld the following
dimensionless relations

Vg uy=m/(m' +moA’) = x4 (103)

l/l"&]’]‘,i’—"ﬂ]’/( 1711’ +m373')5x;,13 (104)
where x| » and x, 5 are the mole fractions of solvent 1 in solu-
tions A and B, respectively. Given relations (103)-(104), Eqgs.
(66)-(67) become

ha=Vaonxia (105)
e =Vaa2 X8 (106)
The identities

A= A Ca+Con) (107)
xp=Ca/(Cig+Con) (108)
X285 Coal(Cra+ Cop)=mpal(my’ +my4) (109)
x5 = Cop/( Crp + Cop) = myp'/(m' + myp') (110)

permit the following manipulations:

Coaxia= CoaCral(Cia + Cop) = Craxon (111)
Copnip=CopCia(Cip+ Con) = Cipxop (112)
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Moy’ Xy = o m my 4 g a) =y xg (113)

map Xy p = Mg ) + mog) = my xap (114)
Also, Egs. (72), (74) bring about a new formula

CalCrg = Vea 2/ Va2 (115

Now we insert the parameters A, Ap by (105)-(106) into
Eq. (102) and make use of Eqgs. (111)-(112) and (115). As a
result, Eq. (102) will take the desired form

7=RTVeVy" (1 + x28V8) opCopx 6V (1 +

x24Va) = VaVe ™ 0aCoaxi aVa (1 + x25V5)] (116)

,

where for simplicity we have denoted I, = Vag 2, Vo = Vai o,

CA=0Cza, Op E Oop.

Equation (116) is written in terms of molarities. It can
casily be transformed into the molal scale by taking account
of Eqs. (73) and (75):

7=RTV." (1 +x28V8)  [opmap' 11 sVa (1 +
(117

124 8) — oamn s X1 AV (1 + x2878)]

If the reflection coefficient oy = 0, Egs. (116)-(117) may
be rewritten as

7=0pRTVel A" (1 + 3281 8) [Copri b (1 +

x4V = Valy” oamCaxy aVa (1l +x28V5)] (118}
and respectively

7= 6pRTVA™" (1 + x26V8) [mop 31 pVp (1 +

X2 AVa) = oo 4 x) aVa (1 + x25V8)] (119)

where aap = 04/0p # ® is a measure of comparative reflec-
tion of solute molecules of different mixtures A and B from
the same membrane M (see Fig. 2). If the solute molecules of
both the mixtures are equally reflected from or permeated
through this partition, the ratio aap = 1. Otherwise cap = 1.
Hence a.p characterizes the leakage ‘asymmetry’ of the
membrane: it is ‘symmetric’ at a,p = 1 and ‘asymmetric’ at
aam # L

The basic equations (116)-(119) of our theory have some
advantageous features to be emphasized here:

1. They hold for both semipermeable and leaky mem-
branes.

2. They include no adjustable parameters.

3. They are derived without resorting to the concepts of
ideal and non-ideal soltions.

4. They impose no restrictions on the concentrations of
the liquid mixtures invoived.



It follows that Egs. (116)-(119) apply in principle to any
real liquid solutions, no matier whether they are ideal or non-
ideal, dilute or concentrated.

Now we can specify particular cases of the basic equa-
tions (116)-(119). For convenience we split up the liquid so-
lutions under discussion into two groups, concentrated and
infinitely dilute.

1. Concentrated solutions (no restrictions on the solute
concentrations Co », Cop, M2 4, M2g').

1.1. Binary solution A—Binary solution B.

1.1.1. Completely leaky membrane (o, = 65 = 0). The
solute molecules of both mixtures A and B can freely pass
through the membrane. According to Egs. (116)~(117), os-
motic pressure is absent: 7= 0 as could be expected.

1.1.2. Partially leaky symmetric membrane (o, = o =
o < 1, asr = 1). The membrane is equally permeable to the
solute molecules of mixtures A and B. The molar equation
(118) and the molal equation (119) take respectively the form

7=oRTVely ' (1 + x5V ) [Copxy 6V (1 +

X aVa) = Vs VE{1 Conxi aVa(l +x25V5)] (120)
= 0RTV,™ (1 + x2Ve) mas' x5V (1 +
X284V 8) = mop' x1 aVa (1 + x28V38)] (12D

1.1.3. Semipermeable symmetric membrane (o, = oy
= 1, aaps = 1). The membrane is impermeable to the solute
molecules of both mixtures A and B. Equations (116), (118)
change to

7= RTVeV " (1 +x6V5) [Copxi pVa (1 +

x24Va) = Vals " Coaxi aVa(l + x25V5)] (122)
and Egs. (117), (119) to

7=RTVS (1 + x28Ve) [mop x1 8Fa (1 +

x24Va) = moa' xy AVA (1 + x25V35)] (123)
1.1.4. Semipermeable asymmetric membrane-1 (o =

1, o4 < Op, oas < 1). The membrane is impermeable to the
solute molecules of mixture B. Equations (118)-(119) become

= RTVBVA‘} (1 +XQ§VB)WI[CW3’BVB(1 +

xZ,AI/A) - VAL’B“] Q'A/'BCZ,AXI,AVA(I + xZ,BI/B)] (124)
n= RTVA'I (1+ xz,BI/B)“] [mlg’x],BVB(l +
x2aVa) = anpma s 31 AVa (1 + %25V 0)] (125)
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1.1.5. Semipermeable asymmetric membrane-2 (o, =
I, op <oa, aap > 1 and app = op/os = Voas < 1). The
membrane is impermeable to the solute molecules of mixture
A Relations (116)-(117) take the form

, bl g N . .
7= RIVeVA" (1 + x28V8) [apaCopr pVa(l +

X2V a) = VaVe™ Coaxpala(l +x2508)) (126)
m= RTVA:I (1 + xzﬁl«’g)"] [ag/Amzﬁ’ X BVB {l +
x2.aVa) = moa x1 aVa (1 +x28V38)) (127)

1.2, Pure solvent A—Binary solution B (C. , = m, ' =
0, Va=log=0,Cp=Cymp =m' Ve=V, xnip=x, x5
= X2).

1.2.1. Partially leaky membrane (0 < 5 < 1). The basic
equations {116)-(117) change to

7= RTCV  x/ (1 + x,1) (128)

m=0RTmy' Vxy /(1 + x,1) (129)
or, in view of identities (108) and (110), 1o

7= GRTCV?/[1 + (1 + W, /Cy] (130)

7= 6RTm V{1 + (1 + Vymy'/my') (131)

1.2.2. Semipermeable membrane (o = 1). Equations
(128)-(131) are simplified:

7=RICV* x3/ (1 + x.1) (132)
7= RTmy'Vxi/ (1 +x,1) (133)
a=RTCH*/[1 + (1 + N, /O] (134)
m=RIm,' V1 + (1 + Vymy'imy’] (135)

2. Infinitely dilute solutions (Con — 0, Cop — 0, mo
= 0,8 50,5020, 20,014 =1, 55> 1V,
1, Vg — 1)

2.1. Binary solution A—Binary solution B. The basic
equations (116)-(119) become

7 Rl{opChp — 64C24) (136)
7 —» RI(opmyps’ — oamy ) (137)
77— oRT(Cog — aasCaa) (138)
> opRT (myp’ — camms A') (139)

2.1.1. Partially leaky symmetric membrane (6, = op =
o < 1, asm = 1). Equations (136)~(139) assume the form



77— oRTAC, {140)

7~ oRTAm, (141)

where ACZ = ng - C:,Aﬂ Nﬂz’ = m23' - !712}:“

2.1.2. Semipermeable symmetric membrane (c, = Cp
=1, oap = 1). Equations (140)-(141) reduce to

7 —> RTAC, (142)

7> RTAm,' (143)

2.1.3. Semipermeable asymmetric membrane-1 (o5 =
1, 04 < Op, 0sp < 1). Equations (136)-(139) become

7= RI{Cyp — 04Cs8) {144)
7= RI(mo g — Camaa') (145)
77— RT(Cop ~ atapCon) (146)
7= RT(mp" — Camioa’) (147)

2.1.4. Semipermeable asymmetric membrane-2 (o, =
1, ©g < Oa. aga < 1). Equations (136)-(139) take the form

77— RT(cpCap — Can) (148)
7 RT(cpmagp' —m2 ") (149)
7= RT(ctpianCap — Con) (150)
71— RT(0pamz g’ — mas') (i51)

2.2. Pure solvent A—Binary solution B (Co . = moa' =
0,0p=0, Cop= Cy, mag =my)

2.2.1. Partially leaky membrane (0 <c < 1). Equations
(136)-(139) change to

7> cRTC, (152)

7 —» oRTm) (153)
2.2.2. Semipermeable membrane (o = 1). Equations
(152)-(153) are simplified to the extreme

7 —> RTC, (154)

7wy RTmy (155)
The right-hand sides of Eqs. (154) and (155) coincide
with those of van’t Hofl"s law (1) and Morse’s formula (2),
respectively. Hence in the simplest particular case “Pure sol-
vent A—Infinitely dilute binary solution B and Semiper-
meable membrane” the just established basic equations
{116)-(117) reduce to the celebrated laws (1) and (2).
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Vi. COMPARISON WITH THE CLASSICAL LAWS,
EXPERIMENTAL VERIFICATION OF THE THEORY

The sheer bulk of experiments on osmotic pressure refers
to the case of a semipermeable membrane separating a pure
solvent from a binary solution. This case is represented here
by the classical laws of van’t Hoff (1) and Morse (2) for infi-
nitely dilute solutions and by our equations (134)-(135) for
concentrated mixtures. It is therefore reasonable, before turn-
ing to experimental data, to compare Eqs. (1) and (2) with re-
lations (134) and (135). Such a comparison will enable us to
evaluate the upper limits m, and C, of applicability of the
laws (1) and (2) (sce Sec. I).

For this purpose we introduce the following ratios:

By = musaymy = V21 + (1 + NG /G (156)

B2 = myssy/ moy = VI + (1 + V' [my) (157)
where 7). 72, 7isq and 735, denote the osmotic pressures
by Egs. (1), (2), (134) and (135), respectively. The ratio 3
characterizes a deviation of the osmotic pressure 7,34, from
the van’t Hoff one 7, the ratio B, does the same with re-
spect to the osmotic pressure 7;3s) and the Morse one 7).

Both B, and B; in Egs. (156) and (157) depend critically
on the volume ¥ which in turn is a function of the concentra-
tions C) and C, or m;’ and m-’. Remind that I is a dimen-
sionless quantity, viz., the specific volume of a solution in li-
ters per liter of solvent. We may thus take }* “in liters” and
drop the words in the quotes.

According to Eqs. (3) and (72)~(75), Co/Cy = my'imy’ =
ma/m;. Therefore the couple of relations (156)-(157) can be
transformed into either the molar scale

Br=F7/[1+ (1 +NCC] (156)

Bo=V/[1+(1+NC/Cy] (158)
or the molal scale

By =V 1+ (1 + PVymstmy] =

VAL + (1 + Wymaofmy ] (159)

Bo=V/[1 4+ (1 +Nmfm'} =

VI + (1 + Vymofmy] (160)

To compute B; and B; by Egs. (156)-(160), we should
first know the specific volume V. For aqueous solutions, the
values of I can be derived in terms of the total water concen-
tration C, in kg of water per liter of solution:

V=pdC, (161)

Here p, is the density of pure water under the specified tem-



perature 7" and pressure £. For instance, o, = 0.99823 kg/l at
T=20°C and P = 1 atm.'** The values of C,, can also be bor-
rowed from the handbook'** where they are tabulated against
the molar concentrations of solute Cs, i.e., C, = Co ().

We will further consider aqueous solutions of ethanol
CH,CH,OH and sucrose C,-H»,Oy,. For both these solutions,
the above values of C,(C5) along with the density p, =
0.99823 kg/l are substituted in Eq. (161) and so the specific
volumes F(C,) are found. In view of the identity m. = Gl o,
the functions V() are converted to J{m.). On inserting
V{my) in relations (159)-(160), the osmotic pressure ratios f;
and B, are obtained as functions of the variable molality mi,,
the water molality m; being taken equal to 55.51 mol/kg.

The plots By and B; versus m, for the aqueous solutions
of ethanol and sucrose are shown in Fig. 3 and Fig. 4, respec-
tively. From these figures, one can see the following features
of Py and B,.

With increase in the molal concentrations m1,, the van’t
Hoff ratio B riscs sharply and builds up by 10%, 1.¢., be-
comes equal to 1.10, at moderately low m; = 1.41 mol/kg
(Fig. 3) and m; = 0.256 mol/kg (Fig. 4).

The behavior of Morse’s ratio B, is dissimilar. Unlike
By, the curves B, are flat in both the cases (Fig. 3 and 4).
They keep close to unity and do not fall outside the limits
090 < o, < 1.10 over different ranges of concentrations.
These ranges are wide in Fig. 3 (0 < m, < 29.2 mol/kg) and
narrow in Fig. 4 (0 < m; < 0.591 mol/kg).

The above data make it possible to evaluate the upper
limits m, and C, of applicability of the classical laws (1)
and (2). Provided Eqs. (134) and (135) are practically exact
(which will be shown later), the limits 7, and €, can be ap-
proximated to an accuracy of % 10% as follows.

For the van’t Hoff equation (1):
mny =14 mol/kg and C," =~ 1.3 mol/1 (ethanal),
my =~ 0.26 molkg and C," ~ 0.24 mol/l (sucrose).

For the Morse equation (2):
m> =29 mol/kg and C," = 11 mol/l (ethanol),
m; = 0.59 mol/kg and C,” =~ 0.52 mol/l (sucrose).

These results confirm (see Sec. I) that van’t Hoff's law
(1) 1s extremely limited. It fails when a solution 1s moderately
dilute (m, ~ 1 moVkg), no matter whether it involves mole-
cules of ethanol (the molecular weight M, = 46.07) or larger
molecules of sucrose (A, = 342.3).

The Morse formula (2) has a wider range of applicability
which depends, however, on the kind of solute molecules. Be-
ing unfit for moderately dilute solutions of sucrose, it is none-
theless appropriate for very concentrated solutions of ethanol
{m, ~ 30 mol/kg).

Figures 3 and 4 also display some other salient features
of the classical laws (1) and (2).

For the solutions of both ethanol and sucrose, the van’t
Hoff ratio B = my34/my > 1 and hence my; < /i34 at all the
concentrations m, > 0. In addition, the higher m,, the more
£1. It follows that van’t Hoff s law (1) afways underestimates
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osmotic pressures, the error growing as the concentrations -
ncrease.

The same drawback is also inherent in the Morse for-
mula (2) as applied to the aqueous solutions of sucrose (Fig.
4). Indeed, here the ratio B, = mys5/7mp > 1 and thus =y, <

molality m, ., on the verge of saturation. Note that at 7 = 20
10 30 °C, my e ~ 6 mol/kg.29 As to the solutions of ethanol,
Morse’s ratio B, = 1 only at 0 <m; < 18.67 mol/kg (Fig. 3).
Hence for such solutions, the Morse law (2) either underesti-
maies 0smMotic pressures (at m, < 18.67 mol/kg) or overesti-
mates them (at m, > 18.67 mol/kg).

We conclude the discussion of Egs. (1) and (2) with a
brief remark. Considering aqueous solutions of ethanol and
sucrose, we have tacitly assumed that in both of these mix-
tares osmotic pressures are physical realities which can be
determined experimentally. In the meantime, there are ex-
perimental data on osmotic pressures of solutions of sucrose,
but no such data are available, to our knowledge, on solutions
of ethanol. It does not mean, however, that ethanol solutions
cannot generate osmotic pressures. The detection and meas-
urement of these pressures may only be hindered by difficul-
ties in preparation of appropriate membranes.'®'*® This ob-
stacle 15 not insurmountable in principle. Therefore the above
analysis of osmotic pressures is justifiable not only for solu-
tions of sucrose, but also for those of ethanol. We may add to
the point that as early as 1908, G. N. Lewis in his classical
work® made a similar analysis considering solutions of (i)
ethylene chloride in benzene and (ii) propylene bromide in
ethylene bromide despite the absence of direct experimental
data on osmotic pressures of those mixtures.

Let us now return to the aqueous solutions of sucrose and
compare two kinds of osmotic pressures of these solutions at
T'=20°C: experimental data .., and theoretical values eo.

The experimental data 7., are shown in Fig. 5 as the fol-
lowing five series.

Series 1 (hollow circles) represents 7., from two
SOUICES. Mewp = Mhmorse Dy MoTsE €1 al.’*® at the molalities ms <
I molkg, and 7. = 7., by Lotz and Frazer'” at m, > 1
mol/kg.

1t shouid be noted that the pressures 7., were measured
at the temperature 30 °C = 303.15 K, whereas .., have been
computed at 20 °C = 293.15 K. To make these pressures
comparable, 7., should have been recalculated to 303.15 K
or, the same, multiplied by a correction factor £, =
303.15/293.15. Mecanwhile, an opposite operation is equally
permussible: 1nstead of multiplying 7. by C;, we have di-
vided . by ; and thus transformed 7., to the designed
temperature 7' = 20 °C. In both the cases the ratio Tpeo/ Zexp =
Toneo Mo, TEMAINS the same which complies with the needs of
our comparative analysis.

Series 2 (hollow boxes) shows experimental osmotic
PIESSUTES 7, = M by Frazer and Myrick'”® The original
data 7., were obtained at 30 °C. Therefore, as in Series 1,



we have divided 7g.... by the same correction factor £, and
thus reduced them to the given temperature 7 = 20 °C.

Series 3 (hollow diamonds) depicts osmotic pressures
Texp = Tperkeley according to the experimenis of the Earl of
Berkeley and Hartley.'” Since the original pressures Therkeley
were measured at 0 °C = 273.15 K, we have divided these
data by the corresponding correction facior ; =
273.15/293.15 to transform them to the designed temperature
T=20°C.

Series 4 (dots) and Series 5 (filled circles) represent os-
MOLIC PIESSUIES Mexp = b ald Maxp = Migemam, TESpECtively.
Here both the pressures 7., have been obtained as follows.

We adopted an expression for the solvent activity ¢
(notation is partially changed)”

Ina; = 1.9462 (T//T; - 1) - 4.5920 In (75 /T (162)
where 7; = 273.15 K is the normal freezing point of pure wa-
ter, 77 1s the freezing point of an aqueous solution. The freez-
ing-point depression AT, 1s defined as

AT =T - T; (163)
Having then mserted In a; by Eq. (162) into Eq. (7) and in-
cluded identity (163), we obtained osmotic pressure, denoted
here by ... as function of the relative freezing-point depres-
sion 6 = AT}/T;

T = = (RT/) [1.9462 6 /(1 - @) +

4.5920 In (1 - &) (164)
Since AT; depends on the concentration 7, of the solution,
the osmotic pressure 7., by Eq. (164) is also a function of
my, as should be expected.

Equation (164) bas been used for determining 7., via
experimental data on the freezing-point depression A7 at
variable molalities m; and constant 7y = 273.15K, 7 =20°C
=293.15 K, R = 0.082057 liter x atm » mol” « K and ;" =
0.01802 liter x mol”. For the osmotic PIESSUIES Moy, = 7Hiap
(Series 4) the data on ATy have been taken from Table 88 of
the handbook,'** and for 7., = Zjremenn (Series 5) from the ex-
periments by Kremann and Eitel.'*

Series 6 (a solid line) plots theoretical osmotic pressures
Thneor VEISUS variable molalities m, = m;//p, at p, = 0.99823
kg/l. The pressures .., have been computed by Eq. (135).
The specific volumes V involved in this relation have being
calculated in terms of Eq. (161) just as described above, while
analyzing the osmotic pressure ratios B, and f3,. The values
of R and V;” have been taken as in Series 4 and 5.

Figure 5 shows that all the experimental data 7., on os-
motic pressures are very close to the values .., by our the-
ory [Eq. (135)]. There are only minor deviations D of 7,
from e depicted in Fig. 6 where the experimental Series 1
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to 5 coincide with those in Fig. 5. For each couple {7,
Tneor . the deviation D have been calculated in percent as

D = 100 x (Fexp/ Zipoer — 1) (165)
A majority of these deviations D (37 out of 43, or 86%) range
approximately from - 8% to + 7%. The other six values of D
(14%) are within the limits — 11% and + 12%.

It is also seen from Fig. 6 that all the experimental data
Texp ar€ split up into two different sets G, and G,.

The set G, includes the values of ., obtained indirectly,
through the measurements of the freezing-point depression
ATy (Series 4 and 5). These data .., are represented in Fig. 6
by dots and filled circles that are almost equally scatiered
above and below the zero dispersion level D, = 0. In other
words, with about equal probability any value of 7., € G
may be either more or less than its theoretical counterpart
Thneor- This implies that the dispersions D of the set G, are
caused mainly by random errors of the A7; measurements.

Unlike (5, the set G, covers the data Texp Ineasured di-
rectly by osmometers (Series 1 to 3). The hollow circles,
boxes and diamonds depicting this set in Fig. 6 are spread
mostly below the level D, = 0, i.e., the experimental data Tesp
€ G are less than their theoretical counterparts ... It fol-
lows that the dispersions D of the set G, originate not so
much from random errors of measurements as from some sys-
tematic deviations.

These deviations occur because in reality the semiperme-
able membranes tend to be leaky through mechanical faults
or by not being quite impermeable to the solute molecules. In
general, the more concentrated the solution, the higher the
osmotic pressure and consequently the more intense the soi-
ute leakagem’l28 As a result, the experimental data 7., € G,
become less as compared with their would-be theoretical val-
UES ipeer. Such pressure drop can be corrected by the reflec-
tion coefficient o < 1 that enters into our Egs. (116)-(121),
(128)~(131), etc. Yet we have avoided this because the rela-
tion (135) tested is valid at o = 1 and if & < 1 were included,
it would be transformed into its ‘leaky’ counterpart (131).

In addition to the membrane imperfections, there are
some other factors responsible for the decline in the measured
values of 7eg.”*'®"'* We do not, however, discuss these
factors as well as the values of the reflection coefficient o as
being outside the scope of the present paper.

Now return to the deviations D by Eq. (165) which give
us a point estimation of how each 7., departs from the corre-
sponding ... A similar global estimation for a set of n > 1
experimental data 7., can be represented by the standard de-
viation S defined in percent by the formula'”

S =100 x [n"kgi(;ze,(p(k)/%w) - 1] (166)

Equation (166) has been applied to computing the values
of § for the series of experimental data shown in Figures 5



and 6. The results are given in Table L.

TABLE 1 Standard deviations S of experimental osmotic pressures
Jrexp from their theoretical counterparts Zineor.

Series Characteristics of experimental data Standard
CIUAEd | g deviation 5, %
"""" 1 Direct experiments '’ 5.9
2 Direct experiments'?® 8.6
3 Direct experiments'® 6.8
4 Indirect experiments'*’ 43
5 Indirect experiments' ™ 45
T3 All the direct expeniments 7.0
4and 5  All the indirect experiments 4.4
lto3s All the experiments 5.8

We sce that all the values of 5 are small enough and do
not exceed 8.6%. The most representative of these standard
deviations is the last one which covers all the set of 43 ex-
perimental data over the entire range of the sucrose concen-
trations, from m» = 0 to 6 mol/kg. Since this deviation is
about 5-6%, the theoretical equation (135) tested is able to
predict osmotic pressures of concentrated solutions of sucrose
with possible errors of the order of 5-6%. Such errors are ad-
missible in most applications. This fact bears witness to the
validity of the molal formula (135) and its molar variant
(134).

Consider now Figures 7 and 8 extending our compara-
tive analysis to the classical laws (1) and (2). These figures,
instead of two sets of the above experimental data 7ey.ie, and
7 10 Fig. 5, include two new theoretical curves: Series 3 (a
dashed line) by Morse’s equation (2) for 7., and Series 4 (a
dotied line) by van’t Hoff's law (1) for m,, = 7o/l Senes 1,
2, 5 and 6 remain as in Fig. 5.

Figures 7 and 8 display an additional drawback of the
classical laws (1) and (2). These laws fail to reproduce os-
motic pressures of concentrated solutions not only quantita-
tively, as shown earlier in this Section, but also qualitatively.
Indeed the plot 4 by van’t Hoff’s law (1) is a curve concave
downward and the plot 3 by Morse’s equation (2) is a straight
line. Both the plots are at variance with the experimental data
Txp (Series 1, 2 and 5) clustered round the curve 6 by our Eq.
{135) which is concave upward at 0 < my < my° (m° = 6
mol/kg) and concave downward at m; > m,°.

Vil. DISCUSSION

A. Lower and upper limits of osmotic pressure

If the membrane is semipermeable and the solution infi-
nitely dilute, then the concentration m," — 0, the molar frac-
tion x, — 0 and consequently the volume J” — 1. As shown
in Sec. V, in this case the osmotic pressure 7 by Eq. (135)
tends to the lower limit 7., given by the Morse law (2):
(167)

T Yf(_)ERTiﬂzl as x;,—0
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When both components of the solution, solvent and sol-
ute, are completely miscible with each other, the solute con-
centration m,’ may range from zero to infinity and hence the
solution can be infinitely concentrated. In this case, which is
opposite 1o the previous one, #;’ —» @, x; — 1 and V" —» .
Then, as may easily be proven, the osmotic pressure 7 by Eq.
(135) tends to an upper Limit 7,

(168)

m= o =ERlm’ as  x— 1

Given the identity m," = 1/1}", Eq. (168) can be written as

7= 7y =RINVY as x> 1 (169)
It is noteworthy that the limit 7., depends only on the molar
volume 1, of a pure solvent. If it is water at 7 = 20 °C, the
volume ;" = 0.018047 liter/mol, so that by Eq. (169) Ty =
1323 atm.

Equations (167)-(169) bring to light a startling feature of
a completely miscible solution: at any given concentration
my" of the solute, from zero to infinity, esmotic pressure of
the solution is always restricted—it cannot fall below the
lower Limit 7., and go over the upper limit 7.y

RTmy) = m < < my=RTmy' = RT/VY (170)

While the restriction (167) is well known, the limitations
(168)~(169) are new and should therefore be validated.

Before doing this, let us remind that there is no direct
experimental information on osmotic pressures of infinitely
concentrated solutions. We can, however, dispense with it by
using Eq. (164) to obtain the necessary data indirectly, just as
in Sec. VL. Toward this end we may consider any kind of
completely miscible binary mixtures, e.g., an aqueous solu-
tion of ethanol. If this solution is infinitely concentrated, it
only consists of pure ethanol, its freezing point 7, ranging
from ~110.5 to ~117.3°C. "%

In view of these data, Egs. (163)-(164) give us the fol-
lowing maximum values of osmotic pressures at 20 °C: 7, =
1413 atm at 7y = -110.5°C,'** and 7. = 1484 atm at Ty =
~117.3°C"**. The above upper limit 7, = 1333 atm by Eqgs.
(168)-(169) is less than these values by 5.7 and 10.2%, re-
spectively. Such departures are, however, insignificant since
Eq. (162) and its corollary Eq. (164) are not completely accu-
rate as the freezing point 7y falls considerably below 0 °C.%
We thus may conclude that the relations (168)-(169) tested
are validated by the indirect experimental data.

Apart from possible chemical applications, Eqs. (168)-
(169) may be of importance to such a seemingly remote field
as marine biology. We will only touch upon one facet of this
subject from a mechanical point of view on Egs. (168)-(169),
without any intention of going into the subtleties of underly-
ing biological processes.

A biological cell is known™'***'“"1*¢ 1o contain a mate-
rial of considerable concentration—imacromolecules of pro-



teins, mostly in a colloid state, and a solution of sugar, vari-
ous salts and other substances. This material is retained by a
semipermeable membrane supported by the cell wall. As the
cell is healthy, the membrane 15 furgid, ie., kept expanded
against the cell wall by osmotic pressure developed by diffu-
sion flux of water through the membrane into the cell.

Most animal cells are weak. Therefore in order to cope
with the osmotic pressure, if it is too high, they have evolved
two major mechanisms.'”” First, the entering water is stmply
pumped out of the cell by a contractile vacuole. Second, the
cell can alsoc drive out a diffusible component (solute) and
thus diminish both the concentration gradient and the os-
motic pressure. So, the two mechanisms are aimed at reduc-
ing osmotic pressure 7; inside the cell. Yet there might be
quite an opposite situation when the cell will be in need to in-
crease the osmotic pressure.

If the cell is placed in a medium of high external hydro-
static pressure F,, it will be able to survive if P, is equal o
the internal osmotic pressure ;. Otherwise the cell may burst
if P, < ; or it may be crushed if P, > 7#;. As mentioned above,
the cell can come through the first situation. The second
situation is, however, more serious and may even become
deadly at sufficiently high external pressures P,. Let us show
this.

Consider the sea environment where the external hydro-
static pressure P, is independent of the cell. Consequently, in
the case of P, > =, the cell is unable to lower the dangerous
pressure F,. The only way for the cell to succeed now is to in-
crease the internal osmotic pressure 7, There are certain
mechanisms to make it really possible—numerous deep-sea
animals bear witness to this. Nevertheless, there remains one
essential question to be cleared up: Can those mechanisms
work at any high external pressures P, or not?

In search for an answer, we resort to Eqs. (168)~(169) by
which the limiting osmotic pressures of aqueous solutions
vary from 7, = 1244 to 1333 atm at 0 to 20 °C. These values
of m ., correspond approximately to the depths of 12.85-13.8
km of pure water or, disregarding 2-3.5% salinity,"”’ to the
same depths of sea-water. The above upper limits of osmotic
pressure 7,y are fixed and remain the same for any animal
cell at any depth of sea-water unlike the hydrostatic pressure
P, that increases with depth. If the depth falls below the
range of 12.85-13.8 km, the pressure P, will exceed the high-
est possible values of osmotic pressure 7 (,; = 1244-1333 atm
and crash the animal cell.

It follows an important conclusion. If not protected by an
additional mechanism of high-pressure pumping, as it is in
the ordinary way, any animal cell will not be able to survive
in the ocean below the critical depths of 12.85-13.8 km. Note
that so far the maximum ocean depth, namely 11.515 km, has
been recorded in the Mindanao Trench of the Pacific
Ocean.'®

The foregoing conclusion is in accord with marine ecol-
o0gy.**'* Indeed, the ocean biomass is found to decline im-
petuously with depth: below 9 km it only amounts to 0.5%
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and 0.005% of the biomass at the depths from 4 to 5 km and
from 0 to 0.2 km, respectively (see Table 7.1'*%).

A number of factors are considered to govern such a re-
markably inhomogenecous distribution of the biomass in
depth: extreme external pressure and temperature, darkness,
scanty food sources, etc.'”” Now it is possible to add one more
factor, the restriction 7, < 7, ~ 1300 atm imposed on the
internal osmotic pressure 7. Because of this limitation, the
life of marine animals in deep-sea zones is not only aggra-
vated but also might be wiped out below the critical depths of
about 13 km, should they exist.

B. The activity and the chemical potential
of solvent

Let us return to Eq. (7) that has already been touched
upon in Sec. 1. Recall that within the framework of the
NMTs, Eq. (7) is regarded as an exact law of osmotic pres-
sures of concentrated non-electrolyte solutions. As shown
above, this is also true for Eq. (135) and hence for all its
equivalent variants from (132) to (134). Now, since Eq.
(132)-(135) are mechanistic counterparts of the thermody-
namic law (7), we may equate (7) and (133) to get a new rela-
tion for the solvent activity &,

Ina, =— V, Vimy/xy (1 + Vi) (171)
Here we have used more rigorous variant of Eq. (7) with the
partial molar volume 1&1 instead of the molar volume 7, .

Given that I my' = 1, x, = 1 - x; and m'xy = my'xy, Eq.
(171) becomes

Ina, =~ nlx, (1 + Vxy)™! (172)

or
ay =exp [~ nVx; (1 + Vxy) '] (173)
where 7= 13/V,". If the solution is infinitely dilute, the sol-
ute mole fraction x, — 0, the specific volume " — 1 and, by
Eq. (173), a; = 1. On the other hand, if the solution is infi-
nitely concentrated, then x; — I, V' — o0 and a; — ¢ 7. We
thus have
(174

a; —» 1 as  x,— 0.

ay e as  xy-» 1 (175)
As a result, the solvent activity @, by our theory falls within
the limits
e"<a <1l and -p<lna <0 (176)
On substitution a; from Eq. (173) into (11), we obtain a
new expression for the chemical potential g of the solvent

th = = RTVa (1 + Vi)™ (177)



In the above limiting cases, Eq. (177) resalts in

14 :y{’ as x; >0 and IV — 1 (178)

,u;:/qn-RTr; as xo—> 1 and V- (179)
In the second case the solution consists of solute molecules
only. It is therefore quite natural to take the chemical poten-
ual s of the solvent in such a solution equal o zero and thus
obtain its value g in the standard state (whenxy =1, x, =0
and P =1 atm):

i =RTn (180)
In view of thus expression, Eqg. (177) takes a simple final
form

= RTn (1 + Vxy)™ (181)

C. ldeality and non-ideality of solutions

Relations (171)-(181) may have several applications.
Consider one of these concerning the concept of ideal and
non-ideal solutions. The borderline between these kinds of
solutions is governed by the solvent activity coefficient »
which is, in general, an empirical factor.'*" Now it may also
be found theoretically on the basis of Eq. (173) and identity
(10). Indeed, taking » = a1/xy = a1/(1 ~ x;) by (10) and substi-
tuting here a; by (173), we get

p=(=x) exp [~ b (1 + Vx) ] (182)

If the activity coefficient 1 = 1, the solution under dis-
cussion is ideal by definition. In this case the chemical poten-
tial 24 of the solvent is determined by Eq. (12) that brings
about the corresponding osmotic pressure”®

Totea == (RT/ 1) In (1 = x2) (183)

Now suppose that the activity coefficient » = 1 and
hence the solution is non-ideal. As such, it may display two
types of deviation from ideality: positive when » > 1, and
negative when y < 1. Is it possible to tell apriori which one
of these deviations will occur in reality?

To answer this question, we take » = 1. Equation (182)
then gives us

Vo ==1n(1-x) [ (7 + Inxp)] " (184)
The volume V" marks a border between the positive and the
negative deviations from ideality:

1. If the real volume V' = V", then 1 = 1 and there is no
deviation. In this case the osmotic pressure 7,4 by Eq. (183)
is equal to the corresponding osmotic pressure 7 by our the-

ory [either of Egs. (132) to (135)], i.e., Muem = 71,

2.V < V", then » > 1 and the deviation is positive. As
aresult, maoy > 7

3. V> V7, then 3 < 1 and the deviation is negative.
Consequently, Zg.q < 7w

Equation (184) is illustrated by Fig. 9 where the volume
borderlines J”” are plotted versus the mole fraction x, of sol-
ute at 7 = 1 (Series 1, a solid line), = 0.8 (Series 2, a
dashed line) and 7 = 1.2 (Series 3, a dotted line). The do-
mains of positive and negative deviations of ideality lie re-
spectively below and above the corresponding borderline 17,
All the values of 1" are seen to grow as the concentration x,
increases, save Series 3 in the vicinity of x, = 0. Also, the
growth of 17 is intensified as 7= I/m’l/V,:’declines from 1.2 to
0.8

The real values of I in comparison with J° are shown in
Fig. 10. Here the theoretical curves of ” (Series 1-3) are the
same as in Fig. 9 whereas Series 4 and 5 (dots and holiow
circles) refer to the experimental volumes 1 of aqueous solu-
tions of sucrose and ethanol, respectively, J being determined
by Eq. (161) as described in Sec. VI

As 1s clear from Fig. 10, the sucrose solutions are mark-
edly non-ideal. Their deviation from ideality is negative eve-
rywhere, at all the feasible concentrations x, < 0.13 regard-
less of the parameter 7, except a small region 0 < x» < 0.025
at 77 = 0.8. The ethanol solutions aiso exhibit non-ideal be-
havior. It is, however, not so pronounced as that of the su-
crose mixtures. Moreover, the ethanol solutions may have ei-
ther positive or negative deviation depending on 7 and x,:

1. If 77 =1 (Series 1), the deviation is negative at 0 < x, <
0.47 and positive at x, > 0.47.

2. If 7 = 0.8 (Series 2), the deviation is positive every-
where, at any mole fraction x; > 0.

3. If 7= 1.2 (Series 3), the deviation is negative over the
whole range of concentrations 0 < x; < 0.48 shown in Fig. 10.

One should mention that the question of whether a solu-
tion at hand is ideal or non-ideal is not of great importance
per se. It is clanified as soon as we know the underlying activ-
ity coefficient y. The usual way of obtaining the values of
is based on the relation’

% =pil(p %) (1853)
where the solvent vapor pressures p; and p, are directly
measured at the solvent concentrations x; = 1 and x; < 1, re-
spectively. At the same time, the present theory of osmotic
pressure offers another method of determining the activity
coefficient y by employing Eq. (182). This equation may ri-
val formula (185) not only in accuracy, but also in simplicity
because of including the parameter J'—the volume of solution
per liter of pure solvent—which is measurable much more
easily than the above vapor pressures p,d and p;.



D. Comparison of the activity equations

The deviations of solutions from ideality and Limitations
of the corresponding logarithmic law (12) were revealed at
the carly stages of physical chemistry. Just ai that ume G. N.
Lewis revised the relation (12) in his celebrated works'**'*.
Lewis’ approach was straightforward: intending to preserve
the logarithmic form of (12), he simply replaced the mole
fraction x; by a new unknown function a; termed “activity”
and thus transformed Eq. (12) into Eq. (11). Since then the
logarithmic relation (11) has been generally accepted as the
law for non-ideal solutions.

In essence, however, Lewis’ jformal procedure only ex-
changed one difficulty for another. It bas neither advanced
the understanding of non-ideality nor enabled a theoretical
determination of the chemical potentials. As wrote one of
Lewis” contemporaries about the functions of activity and fu-
gacity, “their introduction adds nothing new to the content of
thermodynamic theory, and they are not so important as the
more fundamental functions such as entropy and energy.”'*
Even sixty years later, the modern authors’® echo that opinion
and call the activity “a very tricky concept in thermodynam-
ics.” We may now add that the logarithmic law (12) based on
the “tricky concept” of activity leads in some instances to
quite erroneous results. Let us show this.

Within the framework of classical thermodynamics, the
solvent activity a, is a “fudge factor”'*' that can only be de-
termined through experimental data. Several methods have
been devised to make it possible.”''*****>1* One of these is
based on Eq. (162) which permits calculations of the solvent
activity a; proceeding from experimental data on freezing
points of aqueous solutions.

Another method stems from Egs. (185). Combining it
with Eq. (10) results in

ar=plpr (186)
Relation (186) enables computing the solvent activity a; 1n
terms of experimental vapor pressures p; and p,. This is
good news. The bad news is that Eq. (186) leads to a mathe-
matical singularity which is hardly consistent with physical
reality. The point is that the vapor pressure p; declines as the
solvent concentration x; decreases and hence the solute con-
centration x; = 1 — x; grows, so that p; — 0 as x; — 0 and x;
- 1. Since p;o = constant, the activity a, by Eq. (186) tends
to zero:

a4 —>0 as x-—1 (187)
Consequently, the function (- In a;) and the osmotic pressure
7, by the logarithmic theory (7), tend to infinity:

(188)

~ina; —» o as  x;— L.

7 O as x;—1 (189)
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On substituting In a, from (188) into (11), we have

o= > as  xp-» 1 (190)

Expressions (187)-(188) and (189) are at variance with
the corresponding limiting equations (175) and (168)-(169).
They also contradict the results furnished by other thermody-
namic methods inciuding Eq. (162). For instance, in the
cases of agqueous solutions of ethanol and those of methanol,
whose freezing points at x; —» 1 are respectively —114.5 and -
97.9 °C,"** equation (162) brings about the following values
of the solvent activities:

ay=0336 as (191)

x; -» 1 (ethanol)

a =0.386 as (methanol) (192)

Xy —» i
which are far from 4, — 0 by Eq. (187) and very close to the
theoretical limit a; — ™' = 0.368 by Eq. (175) at n = 1.

Also, Eq. (190) means that following the logarithmic law
(11), the difference in magnitude between the standard g,
and the actual s chemical potentials of the solvent tends to
infinity as the concentration x, — 1. This runs counter to
Eqgs. (180) and (181) which at the same x, — 1 and hence I
— o give us a finite difference: 1, — 1y — RT7.

Needless to say that in real finife systems, infinite values
of pressures and chemical potentials are impossible. As they
sprung up in theoretical calculations, it is an indication that
something is wrong with the mathematical description of the
system, just as happened in the case of the logarithmic law
(11) and its corollary (7) when applied to the extremely con-
centrated solutions at x, — 1.

Vil CONCLUSION

I. In this work a new theory of osmotic pressures of in-
compressible binary solutions of non-electrolytes is devel-
oped. Unlike the previous theories that are either empirical or
stem from thermodynamic considerations, the present theory
is based on the diffusion mechanism of osmosis.

2. The proposed mechanistic theory is validated by direct
and indirect experimental data on osmotic pressures of aque-
ous solutions of sucrose and those of ethanol at all their fea-
sible concentrations.

3. In comparison with the earlier (empirical and thermo-
dynamic) models of osmotic pressure, the mechanistic theory
has at least one of the following advantages:

— It holds for both ideal and non-ideal solutions.

— It imposes no restrictions on the concentrations of the
mixtures involved.

~ It includes no adjustable parameters.

It is also equally applicable to semipermeable and leaky
membranes.

4. Due to the mechanistic theory, the existence of an up-
per limit of osmotic pressures is revealed. Thus limitation is



borne out by indirect experimental data and is shown to be
able to have considerable influence on the life of marine ani-
mals in deep sea-water.

5. The present theory also brings about new expressions
for the activity, the activity coefficient, and the chemical po-
tential of soivent. In contrast with the similar classical laws,
these expressions are in better agreement with physical real-
ity and experimental data.

6. The mechanistic approach, which has resulted in the
proposed theory for binary solutions, may be naturally ex-
tended to many-component mixtures. It also admits of includ-
ing such phenomena as, for instance, the solution com-
pressibility, the solute dissociation on dilution,” the interrup-
tion of hydrogen bonds.'**7*" These problems will be dealt
with in the forthcoming publications.
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Figure 6. Osmotic pressures of aqueous solutions of sucrose. De-
viations of experimental data from theoretical values by the present
theory



Comparison of Osmotic Pressures
Aqueous Solutions of Sucrose
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Figure 7. Osmotic pressures of aqueous solutions of sucrose.
Comparison of the present theory with experimental data and the
classical theories of van’t Hoff and Morse over the range of molali-
ties from 0 to 6 mol/kg
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Figure 8. Osmotic pressures of aqueous solutions of sucrose.
Comparison of the present theory with experimental data and the
classical theories of van’t Hoff and Morse over the extended range

of molalities from 0 to 16 mol/kg



"Liquid-Liquid" or "Liquid-Solid"
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Figure 9. Volume borderlines " * vs mole fraction x; of solute at
different values of the parameter 7. Domains of positive and nega-
tive deviations of the solution from ideality lie respectively below

and above the corresponding borderline V*
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Figure 10. Deviations of aqueous solutions of sucrose and ethanol
from ideality. Comparison in terms of the volume borderlines ¥ " vs

mole fraction x; of solute at different values of the parameter 7
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