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Abstra
t

The 
omputational grid is be
oming the platform of


hoi
e for large-s
ale distributed data-intensive appli
a-

tions. A

urately predi
ting the transfer times of remote

data �les, a fundamental 
omponent of su
h appli
ations,

is 
riti
al to a
hieving appli
ation performan
e. In this

paper, we introdu
e a performan
e predi
tion method,

ARM (Adaptive Regression Modeling), to determine

data transfer times for network-bound distributed data-

intensive appli
ations.

We demonstrate the e�e
tiveness of the ARM method

on two distributed data appli
ations, SARA (Syntheti


Aperture Radar Atlas) and SRB (Storage Resour
e Bro-

ker), and dis
uss how it 
an be used for appli
ation

s
heduling. Our experiments demonstrate that applying

the ARM method to these appli
ations predi
ted data

transfer times in wide-area multi-user grid environments

with a

ura
y of 88% or better.

1 Introdu
tion

Ensembles of distributed 
omputational, storage, and

other resour
es, also known as 
omputational grids [12,

14℄, are be
oming an in
reasingly important platform

for appli
ations whi
h perform 
al
ulations over large

datasets. Su
h appli
ations in
lude image a
quisition

and pro
essing 
al
ulations, digital library sear
hes, high

performan
e massive data assimilation, distributed data

mining and others [11, 17, 15, 10, 1, 24, 3℄. Aggregating

distributed resour
es presents the opportunity to employ

or a
quire data from very large datasets whi
h are too

large to be stored at a single site.
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For several distributed data-intensive appli
ations,

data movement a
ross the network is a 
riti
al deter-

minant of appli
ation performan
e. In parti
ular, in

addition to being data-intensive, su
h appli
ations are

network-bound as well, with appli
ation performan
e

heavily determined by the bandwidth available on net-

work links used during data transfers. Examples of

network-bound distributed data-intensive appli
ations

are JPL's Syntheti
 Aperture Radar Atlas (SARA) ap-

pli
ation [24℄, whi
h allows the user to sele
t and view

images generated from from a large, repli
ated, and dis-

tributed database of radar data, and SDSC's Storage Re-

sour
e Broker (SRB) [3, 19℄, whi
h provides a uniform

interfa
e for users to obtain data from a heterogeneous

and distributed 
olle
tion of data repositories.

EÆ
ient exe
ution of network-bound appli
ations on


omputational grids 
an be 
hallenging. Although

these platforms o�er 
onsiderable performan
e potential

through aggregation of resour
es, performan
e may be

diÆ
ult to a
hieve in pra
ti
e. In parti
ular, the load

and availability of shared resour
es su
h as networks may

be hard to predi
t, yet a

urate predi
tions of �le trans-

fer times are 
riti
al to the development of performan
e-

eÆ
ient appli
ation exe
ution strategies.

In this paper, we present a method, Adap-

tive Regression Modeling (ARM), for predi
t-

ing the duration of data transfer operations in

network-bound distributed data-intensive appli-


ations. Our te
hnique predi
ts performan
e in produ
-

tion, multi-user distributed environments by employing

small network bandwidth probes, provided by the Net-

work Weather Servi
e (NWS) [25, 26℄, to make short-

term predi
tions of transfer times for a range of �le sizes.

Our approa
h is based on the use of statisti
al regression

methods to 
alibrate appli
ation exe
ution performan
e

to the dynami
 state of the system. The result is an a
-


urate performan
e model that 
an be parameterized by

\live" NWS measurements to make time-sensitive predi
-

tions.

The development of performan
e methods su
h as

ARM is 
riti
al to the appli
ation performan
e for

network-bound distributed data-intensive appli
ations in

1



multi-user 
omputational grid environments. As part of

the Appli
ation Level S
heduling (AppLeS) proje
t [2,

5℄, our experien
e shows that the development and pa-

rameterization of a

urate performan
e models 
an be a

diÆ
ult and error-prone pro
ess. ARM relies on observ-

able performan
e measurements only, and thus 
an be


ontinuously updated to adapt to 
urrent network 
ondi-

tions automati
ally and in real-time. We demonstrate the

e�e
tiveness of the ARM method for two network-bound

data-intensive appli
ations with dissimilar data require-

ments: the SARA image a
quisition tool whi
h targets

relatively small �les (1-3 MB), and the SRB query tool

whi
h is designed for mu
h larger (16 MB or more) �les.

This extended abstra
t is organized as follows: In Se
-

tion 2, we brie
y des
ribe the 
hara
teristi
s of network-

bound distributed data-intensive appli
ations, and in par-

ti
ular, SARA and SRB. Se
tion 3 presents several per-

forman
e models for predi
ting data transfer times for

this appli
ation 
lass. We propose the ARM predi
tion

method and present experiments whi
h demonstrate its

e�e
tiveness for both SARA and SRB in Se
tion 4. In

Se
tion 5, we summarize and brie
y tou
h on related and

future work.

2 Network-Bound Distributed

Data-Intensive Appli
ations

We use the term data-intensive appli
ations to denote


omputations whi
h a

ess and perform operations on nu-

merous or massive datasets. Within this appli
ation 
lass,

we identify a sub
lass of network-bound distributed

data-intensive appli
ations for whi
h a prime determinant

of appli
ation performan
e is movement of data a
ross the

network.

To illustrate the 
hara
teristi
s of network-bound dis-

tributed data-intensive appli
ations we provide a brief de-

s
ription of JPL's Syntheti
 Aperture Radar Atlas appli-


ation and SDSC's Storage Resour
e Broker.

The Syntheti
 Aperture Radar Atlas (SARA) [24, 20℄,

developed at JPL and SDSC, is a web-based distributed

data-intensive appli
ation whi
h allows users with a

ess

to the World-Wide Web to view images of the Earth's

surfa
e taken by a syntheti
 aperture radar. The SARA

datasets are repli
ated a
ross several high-
apa
ity stor-

age sites. Via a Java applet, users of the SARA system


an request an image of an arbitrary sub-region with 
er-

tain features of the data highlighted. The size of SARA

�les transmitted a
ross the network typi
ally ranges from

1 to 3 MB.

SDSC's Storage Resour
e Broker (SRB) [3, 19℄ is mid-

dleware that provides data-intensive appli
ations with a

uniform API to a

ess heterogeneous distributed storage

resour
es systems in
luding �le systems, databases, and

hierar
hi
al and ar
hival storage systems. SRB provides

users the 
apability to a

ess and aggregate massive quan-

tities of data s
attered a
ross wide area networks.

Note that there are several important di�eren
es be-

tween SARA and SRB. Most obviously, SARA �les are

typi
ally small whereas SRB �les 
an be quite large. In

order to a
hieve performan
e, SARA must sele
t a data

server among the data servers whi
h house the target

repli
ated �le. To do that, SARA needs to 
ompare the

predi
ted �le transfer times for the repli
ated �le to all

the data servers. For SRB, the data transfer is often part

of a larger appli
ation framework, and thus, �le transfer

time may be a 
omponent of a larger performan
e model.

Appli
ations whi
h use SRB for data a

ess require rea-

sonably a

urate transfer time estimates in order to per-

form s
heduling de
isions with them.

3 Performan
e Models

It would be reasonable to expe
t that a simple perfor-

man
e model of remote �le transfer time for a network-

bound distributed appli
ation would suÆ
e for s
heduling

and appli
ation exe
ution. In parti
ular, the straight-

forward model RBW (Raw BandWidth model) shown

below:

FileT ransferT ime=

DataSize

AvailableBandwidth


ould be used to estimate the time for transferring

�les between various servers based on the value of

AvailableBandwidth between the 
lient and ea
h of the

servers. This value 
ould be supplied by a network moni-

tor su
h as the Network Weather Servi
e (NWS) [25, 26℄,

whi
h measures and fore
asts the load and availability of

system resour
es (in
luding network bandwidth).

The RBW model 
an be used to predi
t the �le trans-

fer performan
e of both SARA and SRB in a wide-area

grid environment. However, this simpli�ed model does

not a

ount for di�eren
es in network 
onditioning (mes-

sage sizes, bu�er sizes, et
.) between NWS probes and

those used by the two appli
ations. In parti
ular, NWS

probes are typi
ally 64 kB pa
kets, whereas SARA has

data transfer sizes of 1-3 MB and SRB may have data

transfer sizes of 16 MB and above. While NWS probes

must be small in order to minimize intrusiveness on the

network, they are insuÆ
ient for predi
ting the available

bandwidth for mu
h larger transfers dire
tly.

In addition, RBW fails to 
onsider appli
ation 
ompu-

tational and internal message bu�ering overheads, whi
h

may have non-trivial e�e
ts on performan
e for even the

most network-bound appli
ations. It is not surprising

then that RBW model predi
ts performan
e relatively

ina

urately (with errors up to 100%), as illustrated in

Table 1. What is interesting is that the peaks and valleys

2
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Figure 1: Linear Regression mapping NWS (16 MB mes-

sages) to SRB (16 MB �le transfers)

as predi
ted by RBW seem to 
orrelate with observed �le

transfer behavior.

3.1 Regression Modeling

Regression modeling is in general a simple method for es-

tablishing a fun
tional relationship among variables [8, 9,

6℄. In order to a
hieve more a

urate predi
tions, we 
on-

sidered the use of a linear regression model to address the

dis
repan
y, exhibited in the RBW model, between the

performan
e behavior of small NWS probes and larger �le

transfers. We developed two linear models that map NWS

bandwidth measurements to the observed �le transfer be-

havior of the network-bound distributed data-intensive

appli
ation within a spe
i�ed time-frame.

The �rst model demonstrates an upper bound on the

expe
ted a

ura
y of this te
hnique. We started by re-

gressing large-�le transfer times with 16MB NWS band-

width probes. This probe size is too large to be pra
ti-


al for the NWS in general, but it allowed the NWS to

more a

urately mimi
 the a
tual network load during

�le transfer. Figure 1 shows the results of using this te
h-

nique to model �le transfer times from the University of

California at Davis to the University of California at San

Diego. The experiments show this regression model pa-

rameterized by data from 16MB data transfers and 16MB

NWS message size probes. The results were very impres-

sive. We observe in the graph how the modeled �le trans-

fer performan
e tra
ks very 
losely the a
tual throughput

measurements. Our next step was to investigate a less in-
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Figure 2: Linear Regression mapping NWS (64 kB mes-

sages) to SRB (16 MB �le transfers)

trusive approa
h to determine if the te
hnique 
ould be

implemented pra
ti
ally.

3.2 A Pra
ti
al Approa
h | NWS with

64 kB Probes Only

In order to de
rease overhead, we 
onsidered a new regres-

sion model, whi
h uses NWS inputs with 64 kB probes.

This is the probe size that is 
ommonly used by the Net-

work Weather Servi
e to perform bandwidth measure-

ments and fore
asts. Using small probes, the NWS is

able to maintain a low level of intrusiveness over the net-

work [25, 26℄.

Representative results using the low overhead model,

are shown in Figure 2. Note that the model still tra
ks

very 
losely the a
tual �le transfer measurements.

In the next se
tion, we fo
us on the development

of a performan
e model using the less intrusive re-

gression approa
h whi
h we 
all Adaptive Regression

Modeling (ARM).

4 Using ARM to Dynami
ally

Predi
t Exe
ution Performan
e

The previous se
tion dis
usses the goodness of the regres-

sion \�t" between tra
es of NWS probe data and a
tual

�le transfers. In this se
tion we des
ribe how to use the

regression te
hnique to a
tually predi
t the exe
ution

performan
e of the SRB and SARA grid appli
ations at

run-time | the ARM fore
asting method.
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Figure 3: Fore
asting SARA �le transfer behavior with

the ARM method.

SRB { NMAE

site RBW ARM

U.C. Davis 54.10% 11.09%

NCSA 105.20% 9.20%

W.U. St. Louis 96.31% 11.95%

Rutgers 101.56% 1.15%

SARA { NMAE

site RBW ARM

Utah 34.43% 9.97%

UIUC 36.06% 11.04%

Calte
h 15.80% 11.67%

Table 1: Normalized Mean Absolute Errors

(NMAE) for �le transfer throughput fore
asts obtained

dire
tly from bandwidth measurements RBW and from

the Adaptive Regression Modeling (ARM) fore
aster.

Sin
e linear regression is 
heap to 
ompute, we start by

deriving an initial model from histori
al appli
ation and

NWS performan
e data. As the appli
ation exe
utes, we

monitor its performan
e and add the monitored values to

the performan
e history of the program. When a predi
-

tion is required, we re
al
ulate the regression 
oeÆ
ients

\on-the-
y" using the original performan
e history, the

most re
ent performan
e measurements, and the 
orre-

sponding NWS data for the most re
ent time frame. In

this way, the model evolves and adapts in response to


hanging performan
e 
onditions.

We term the initial set of samples required to \heat-up"

the regression model the Start-up Window. Having an ini-

tial regression model derived from the Start-Up Window,

we obtain a new bandwidth sample from NWS, and use

this value in the regression model to generate a predi
tion

of the �rst �le transfer throughput value.

While the appli
ation exe
utes, the regression fun
tion

is updated at ea
h new appli
ation �le transfer. The new

�le transfer sample and the network bandwidth value

(from the NWS) are in
orporated as a new pair within

history of network and �le transfer samples that will

be used in the 
al
ulation of the next regression model.

Then, the updated regression model is used to fore
ast

the next �le transfer, and so on.

We refer to the set of samples used to generate ea
h

new regression model at exe
ution time as the Running

Time Window. The Running Time Window slides over

the past history of network and appli
ation measurements

at ea
h new appli
ation transfer. The regression model is

updated at ea
h new sample assuring that the fore
aster

will adapt to the most re
ent appli
ation resour
e require-

ments and observed network behavior. At ea
h update,

the oldest sample pair of the Running Time Window is

4
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asting SRB �le transfer behavior with the ARM method.
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dis
arded at ea
h new transfer. In this way, we �lter

out of the regression model past history that is no longer

relevant for new trends of system behavior.

We investigated the e�e
t of varying the size of the

Start-up Window and Running Time Window respe
-

tively. After simulating the fore
aster for several Start-Up

Window and Running Time Window lengths, we found

that the the modeling te
hnique remains a

urate for

a wide range of parameterizations. Usually a Running

Time Window length between 8 and 20 samples will yield

good predi
tions for the environments we have investi-

gated. The algorithm is even less sensitive to the length of

the Start-Up Window, sin
e its e�e
t is felt only initially.

A more detailed dis
ussion of the e�e
ts of Start-

Up Window and Running Time Window param-

eters on performan
e, and the ARM pseudo-
ode

will be provided in the �nal paper.

Figures 3 and 4 show a representative and 
omprehen-

sive set of experiments to predi
t �le transfer times using

the ARM method for SARA and SRB respe
tively. In

the experiments, SARA transferred �les of 3MB, at every

5 minutes from data-servers running at the University of

Utah, University of Illinois Urbana-Champaign and Cal-

te
h. The SRB 
lient transferred 16MB �les at intervals

ranging from 2 to 25 hours from the University of Cal-

ifornia at Davis, University of Washington at St. Louis,

NCSA and Rutgers. Both 
lients ran at the University

of the California, San Diego. In the �gures, the di�er-

en
es (the error) between predi
ted (in bla
k) and a
tual

exe
ution times (in white) are represented by the verti-


al distan
e between ea
h pair of points. In Table 1, we

summarize the error results for this data.

4.1 Analysis

To determine predi
tion a

ura
y, we use the Normalized

Mean Absolute Error (NMAE), given by

N

X

i=1

jEstimatedPerf

i

�MeasuredPerf

i

j

N �MeasuredPerf

� 100%

where N is the total number of predi
ted measurements

and MeasuredPerf is the mean measured �le transfer

performan
e for a parti
ular site. The 
on
ept behind

the Normalized Mean Absolute Error is to 
al
ulate the

mean predi
tion error, then normalize it by the mean �le

transfer throughput whi
h is given by MeasuredPerf .

In this way we provide an e�e
tiveness metri
 
omparable

among di�erent appli
ations and sites, sin
e ea
h di�erent

environment might have distin
t performan
e 
hara
ter-

isti
s. In other words, the error is given as a proportion

or per
entage of the average performan
e per
eived by an

appli
ation.

From observing the graphs it is striking how the ARM

predi
tions very 
losely tra
k the a
tual measured per-

forman
e of both SARA and SRB appli
ations. More-

over, Table 1 numeri
ally 
on�rms the eÆ
a
y of this

method. As it 
an be observed, the highest relative errors

(NMAE) for ARM predi
tions are on the order of only

10%, whereas the errors for predi
tions using the RBW

model rea
h up to 100%. The largest di�eren
e o

urs

for the Rutgers data server, where the RBW model re-

sulted in an error of 101.56%, while the ARM fore
asting

method predi
ted with an error of just 1.15%.

Furthermore, it is important to emphasize that we were

able to su

essfully obtain this high level of predi
tion

a

ura
y with a low level of intrusiveness on the system

| using only small 64 kB messages to probe the network

behavior.

Although our analysis in this extended abstra
t is 
on-

�ned to NMAE values, we also in
lude Table 2, showing

mean square errors (MSE) for the predi
tions for all sites

in the experiments. Table 3 shows the mean �le transfer

throughput for ea
h data-server. In the �nal version

of the paper, we will dis
uss the MSE values in

greater detail.

4.2 Using ARM for S
heduling

The Appli
ation-Level S
heduling (AppLeS) approa
h

in
orporates both appli
ation-spe
i�
 system require-

ments and dynami
 resour
e performan
e information

to s
hedule distributed appli
ations in multi-user dis-

tributed environments [5, 20, 27℄. AppLeS appli
ation-

level s
hedulers use a performan
e model (based on the

appli
ation's 
ommuni
ation and 
omputational needs),

whi
h is parameterized by values representing system


hara
teristi
s (su
h as available network bandwidth).

An AppLeS s
heduler delays evaluation of the model until

run-time, at whi
h point the model parameters are sup-

plied by a fore
aster su
h as the Network Weather Servi
e

(NWS) [25, 26℄, whi
h reports 
urrent 
onditions and gen-

erates fore
asts of various system performan
e measures,

su
h as network bandwidth and CPU load.

The initial AppLeS s
hedulers we developed [2, 5, 27,

20, 18℄ fo
used on the development of adaptive 
ustom

s
hedules for individual grid appli
ations. We are 
ur-

rently developing AppLeS templates for s
heduling stru
-

turally similar 
lasses of grid appli
ations. We are fo-


using on several appli
ation 
lasses, in
luding network-

bound distributed data-intensive appli
ations. For 
er-

tain appli
ations in this 
lass, like a basi
 SARA appli
a-

tion, using the RBW model to rank potential data servers

suÆ
es [20℄. However, appli
ations for whi
h predi
tions

using RBW are insuÆ
ient require methods like ARM,

whi
h provide reasonably a

urate run-time estimates of

�le transfer performan
e. Su
h estimates are used to de-

termine an exe
ution s
hedule for the target appli
ation

whi
h is implemented by the AppLeS template.

6



SRB { MSE

site RBW ARM

U.C. Davis 0.7536 0.0534

NCSA 0.3320 0.0195

W.U. St. Louis 1.2147 0.0112

Rutgers 0.8129 0.0004

SARA { MSE

site RBW ARM

Utah 0.9674 0.1446

UIUC 0.8669 0.1515

Calte
h 0.5128 0.2975

Table 2: Mean Square Errors (MSE) for �le transfer

throughput fore
asts obtained dire
tly from bandwidth

measurements RBW and from the Adaptive Regression

Modeling (ARM) fore
aster. These values are not nor-

malized.

SRB { Mean Throughput

site Mbits/s

U.C. Davis 1.4399

NCSA 1.0218

W.U. St. Louis 0.5659

Rutgers 0.8792

SARA { Mean Throughput

site Mbits/s

Utah 2.6838

UIUC 2.3569

Calte
h 3.4825

Table 3: Mean Measured File Transfer Throughput values

for SRB and SARA

5 Con
lusions and Future Work

This paper presents ARM, a dynami
 fore
asting method

to predi
t the performan
e of data transfer operations for

network-bound distributed data-intensive appli
ations.

Our method a
hieves a high level of a

ura
y for exem-

plar appli
ations SARA and SRB. In summary, this paper

makes the following 
ontributions:

� An ARM fore
aster is derived automati
ally and in

real-time, by using a regression model to map mea-

surements of system behavior to observed appli
ation

performan
e.

� ARM fore
asters dynami
ally adapt in time to


hanges in the environment. In parti
ular, 
hanges

in the workload and system re
on�gurations are used

to parameterize frequent updates of the model.

� The overhead of 
omputing predi
tions using ARM

is low and relatively straightforward { the linear re-

gression is applied to a sliding window of a small

number of sample pairs, minimizing 
omputational

overhead. Moreover, generating predi
tions of ap-

pli
ation performan
e using the model is inexpen-

sive, making it possible reevaluate the model often

to adapt to rapidly 
hanging network 
onditions.

� The ARM method hides the internal details of the

underlying system. No knowledge about 
ommu-

ni
ation proto
ols, network topology, or lo
al �le

systems was ne
essary to a
hieve good predi
tions.

For example, even though the SARA appli
ation ex-

hibits higher �le throughput than the NWS mea-

sured bandwidth and exa
tly the opposite happens

for the SRB transfers, the fore
aster is able in both

instan
es to make a

urate predi
tions.

Regarding related work, performan
e analysis and

s
heduling of data-intensive appli
ations are des
ribed by

the ADR group from University of Maryland in [23℄ and

by Thakur in [21℄. However, they fo
us on parallel data

servers running over lo
al area networks. Performan
e

monitoring and fore
asting of wide-area networks is dis-


ussed in works su
h as the NWS [25, 26℄, GloPerf [13℄

and [7, 4℄. The Netlogger system [22℄ presents a pro�ling

framework for distributed storage systems. A more de-

tailed related work se
tion will be in
luded in the

�nal version of this paper.

In the future, we intend to investigate adaptive Run-

ning Window length 
hoi
es, adapting the past history

length a

ording to the 
urrent statisti
al trends regard-

ing the relation between system and appli
ation behavior.

In addition, we intend to extend this work to a

ount for

data transfers performed on hierar
hi
al storage systems

su
h as HPSS [16℄, in
luding system with tertiary storage

(tapes). We should also be able to use the ARM method

to generate network fore
asts for varied 
ommuni
ation

proto
ols and 
on�gurations and a

urate relative rank-

ing among several data servers. In extending the s
ope

of this work to new s
enarios, we also intend to look at

the possibility of on-demand re�nement of the regression

model to in
lude additional fa
tors, su
h as disk or tape

behavior and server load, in order to do a better job of

assessing end-to-end �le transfer, and hen
e appli
ation,

performan
e.
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