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Abstract

The computational grid is becoming the platform of
choice for large-scale distributed data-intensive applica-
tions. Accurately predicting the transfer times of remote
data files, a fundamental component of such applications,
is critical to achieving application performance. In this
paper, we introduce a performance prediction method,
ARM (Adaptive Regression Modeling), to determine
data transfer times for network-bound distributed data-
intensive applications.

We demonstrate the effectiveness of the ARM method
on two distributed data applications, SARA (Synthetic
Aperture Radar Atlas) and SRB (Storage Resource Bro-
ker), and discuss how it can be used for application
scheduling. Our experiments demonstrate that applying
the ARM method to these applications predicted data
transfer times in wide-area multi-user grid environments
with accuracy of 88% or better.

1 Introduction

Ensembles of distributed computational, storage, and
other resources, also known as computational grids [12,
14], are becoming an increasingly important platform
for applications which perform calculations over large
datasets. Such applications include image acquisition
and processing calculations, digital library searches, high
performance massive data assimilation, distributed data
mining and others [11, 17, 15, 10, 1, 24, 3]. Aggregating
distributed resources presents the opportunity to employ
or acquire data from very large datasets which are too
large to be stored at a single site.
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For several distributed data-intensive applications,
data movement across the network is a critical deter-
minant of application performance. In particular, in
addition to being data-intensive, such applications are
network-bound as well, with application performance
heavily determined by the bandwidth available on net-
work links used during data transfers. Examples of
network-bound distributed data-intensive applications
are JPL’s Synthetic Aperture Radar Atlas (SARA) ap-
plication [24], which allows the user to select and view
images generated from from a large, replicated, and dis-
tributed database of radar data, and SDSC’s Storage Re-
source Broker (SRB) [3, 19], which provides a uniform
interface for users to obtain data from a heterogeneous
and distributed collection of data repositories.

Efficient execution of network-bound applications on
computational grids can be challenging.  Although
these platforms offer considerable performance potential
through aggregation of resources, performance may be
difficult to achieve in practice. In particular, the load
and availability of shared resources such as networks may
be hard to predict, yet accurate predictions of file trans-
fer times are critical to the development of performance-
efficient application execution strategies.

In this paper, we present a method, Adap-
tive Regression Modeling (ARM), for predict-
ing the duration of data transfer operations in
network-bound distributed data-intensive appli-
cations. Our technique predicts performance in produc-
tion, multi-user distributed environments by employing
small network bandwidth probes, provided by the Net-
work Weather Service (NWS) [25, 26], to make short-
term predictions of transfer times for a range of file sizes.
Our approach is based on the use of statistical regression
methods to calibrate application execution performance
to the dynamic state of the system. The result is an ac-
curate performance model that can be parameterized by
“live” NWS measurements to make time-sensitive predic-
tions.

The development of performance methods such as
ARM is critical to the application performance for
network-bound distributed data-intensive applications in



multi-user computational grid environments. As part of
the Application Level Scheduling (AppLeS) project [2,
5], our experience shows that the development and pa-
rameterization of accurate performance models can be a
difficult and error-prone process. ARM relies on observ-
able performance measurements only, and thus can be
continuously updated to adapt to current network condi-
tions automatically and in real-time. We demonstrate the
effectiveness of the ARM method for two network-bound
data-intensive applications with dissimilar data require-
ments: the SARA image acquisition tool which targets
relatively small files (1-3 MB), and the SRB query tool
which is designed for much larger (16 MB or more) files.

This extended abstract is organized as follows: In Sec-
tion 2, we briefly describe the characteristics of network-
bound distributed data-intensive applications, and in par-
ticular, SARA and SRB. Section 3 presents several per-
formance models for predicting data transfer times for
this application class. We propose the ARM prediction
method and present experiments which demonstrate its
effectiveness for both SARA and SRB in Section 4. In
Section 5, we summarize and briefly touch on related and
future work.

2 Network-Bound Distributed
Data-Intensive Applications

We use the term data-intensive applications to denote
computations which access and perform operations on nu-
merous or massive datasets. Within this application class,
we identify a subclass of network-bound distributed
data-intensive applications for which a prime determinant
of application performance is movement of data across the
network.

To illustrate the characteristics of network-bound dis-
tributed data-intensive applications we provide a brief de-
scription of JPL’s Synthetic Aperture Radar Atlas appli-
cation and SDSC’s Storage Resource Broker.

The Synthetic Aperture Radar Atlas (SARA) [24, 20],
developed at JPL and SDSC, is a web-based distributed
data-intensive application which allows users with access
to the World-Wide Web to view images of the Earth’s
surface taken by a synthetic aperture radar. The SARA
datasets are replicated across several high-capacity stor-
age sites. Via a Java applet, users of the SARA system
can request an image of an arbitrary sub-region with cer-
tain features of the data highlighted. The size of SARA
files transmitted across the network typically ranges from
1 to 3 MB.

SDSC’s Storage Resource Broker (SRB) [3, 19] is mid-
dleware that provides data-intensive applications with a
uniform APIT to access heterogeneous distributed storage
resources systems including file systems, databases, and

hierarchical and archival storage systems. SRB provides
users the capability to access and aggregate massive quan-
tities of data scattered across wide area networks.

Note that there are several important differences be-
tween SARA and SRB. Most obviously, SARA files are
typically small whereas SRB files can be quite large. In
order to achieve performance, SARA must select a data
server among the data servers which house the target
replicated file. To do that, SARA needs to compare the
predicted file transfer times for the replicated file to all
the data servers. For SRB, the data transfer is often part
of a larger application framework, and thus, file transfer
time may be a component of a larger performance model.
Applications which use SRB for data access require rea-
sonably accurate transfer time estimates in order to per-
form scheduling decisions with them.

3 Performance Models

It would be reasonable to expect that a simple perfor-
mance model of remote file transfer time for a network-
bound distributed application would suffice for scheduling
and application execution. In particular, the straight-
forward model RBW (Raw BandWidth model) shown
below:

DataSize
Available Bandwidth

could be used to estimate the time for transferring
files between various servers based on the value of
Available Bandwidth between the client and each of the
servers. This value could be supplied by a network moni-
tor such as the Network Weather Service (NWS) [25, 26],
which measures and forecasts the load and availability of
system resources (including network bandwidth).

The RBW model can be used to predict the file trans-
fer performance of both SARA and SRB in a wide-area
grid environment. However, this simplified model does
not account for differences in network conditioning (mes-
sage sizes, buffer sizes, etc.) between NWS probes and
those used by the two applications. In particular, NWS
probes are typically 64 kB packets, whereas SARA has
data transfer sizes of 1-3 MB and SRB may have data
transfer sizes of 16 MB and above. While NWS probes
must be small in order to minimize intrusiveness on the
network, they are insufficient for predicting the available
bandwidth for much larger transfers directly.

In addition, RBW fails to consider application compu-
tational and internal message buffering overheads, which
may have non-trivial effects on performance for even the
most network-bound applications. It is not surprising
then that RBW model predicts performance relatively
inaccurately (with errors up to 100%), as illustrated in
Table 1. What is interesting is that the peaks and valleys
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Figure 1: Linear Regression mapping NWS (16 MB mes-
sages) to SRB (16 MB file transfers)

as predicted by RBW seem to correlate with observed file
transfer behavior.

3.1 Regression Modeling

Regression modeling is in general a simple method for es-
tablishing a functional relationship among variables [8, 9,
6]. In order to achieve more accurate predictions, we con-
sidered the use of a linear regression model to address the
discrepancy, exhibited in the RBW model, between the
performance behavior of small NWS probes and larger file
transfers. We developed two linear models that map NWS
bandwidth measurements to the observed file transfer be-
havior of the network-bound distributed data-intensive
application within a specified time-frame.

The first model demonstrates an upper bound on the
expected accuracy of this technique. We started by re-
gressing large-file transfer times with 16MB NWS band-
width probes. This probe size is too large to be practi-
cal for the NWS in general, but it allowed the NWS to
more accurately mimic the actual network load during
file transfer. Figure 1 shows the results of using this tech-
nique to model file transfer times from the University of
California at Davis to the University of California at San
Diego. The experiments show this regression model pa-
rameterized by data from 16MB data transfers and 16MB
NWS message size probes. The results were very impres-
sive. We observe in the graph how the modeled file trans-
fer performance tracks very closely the actual throughput
measurements. Our next step was to investigate a less in-
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Figure 2: Linear Regression mapping NWS (64 kB mes-
sages) to SRB (16 MB file transfers)

trusive approach to determine if the technique could be
implemented practically.

3.2 A Practical Approach — NWS with
64 kB Probes Only

In order to decrease overhead, we considered a new regres-
sion model, which uses NWS inputs with 64 kB probes.
This is the probe size that is commonly used by the Net-
work Weather Service to perform bandwidth measure-
ments and forecasts. Using small probes, the NWS is
able to maintain a low level of intrusiveness over the net-
work [25, 26].

Representative results using the low overhead model,
are shown in Figure 2. Note that the model still tracks
very closely the actual file transfer measurements.

In the next section, we focus on the development
of a performance model using the less intrusive re-
gression approach which we call Adaptive Regression
Modeling (ARM).

4 Using ARM to Dynamically
Predict Execution Performance

The previous section discusses the goodness of the regres-
sion “fit” between traces of NWS probe data and actual
file transfers. In this section we describe how to use the
regression technique to actually predict the execution
performance of the SRB and SARA grid applications at
run-time — the ARM forecasting method.
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site RBW ARM
U.C. Davis 54.10% | 11.09%
NCSA 105.20% 9.20%
W.U. St. Louis 96.31% | 11.95%
Rutgers 101.56% | 1.15%
SARA - NMAE
site RBW ARM
Utah 34.43% 9.97%
UIUC 36.06% | 11.04%
Caltech 15.80% | 11.67%
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Figure 3: Forecasting SARA file transfer behavior with
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the ARM method.

Table 1: Normalized Mean Absolute Errors
(NMAE) for file transfer throughput forecasts obtained
directly from bandwidth measurements RBW and from
the Adaptive Regression Modeling (ARM) forecaster.

Since linear regression is cheap to compute, we start by
deriving an initial model from historical application and
NWS performance data. As the application executes, we
monitor its performance and add the monitored values to
the performance history of the program. When a predic-
tion is required, we recalculate the regression coefficients
“on-the-fly” using the original performance history, the
most recent performance measurements, and the corre-
sponding NWS data for the most recent time frame. In
this way, the model evolves and adapts in response to
changing performance conditions.

We term the initial set of samples required to “heat-up”
the regression model the Start-up Window. Having an ini-
tial regression model derived from the Start-Up Window,
we obtain a new bandwidth sample from NWS, and use
this value in the regression model to generate a prediction
of the first file transfer throughput value.

While the application executes, the regression function
is updated at each new application file transfer. The new
file transfer sample and the network bandwidth value
(from the NWS) are incorporated as a new pair within
history of network and file transfer samples that will
be used in the calculation of the next regression model.
Then, the updated regression model is used to forecast
the next file transfer, and so on.

We refer to the set of samples used to generate each
new regression model at execution time as the Running
Time Window. The Running Time Window slides over
the past history of network and application measurements
at each new application transfer. The regression model is
updated at each new sample assuring that the forecaster
will adapt to the most recent application resource require-
ments and observed network behavior. At each update,
the oldest sample pair of the Running Time Window is
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Figure 4: Forecasting SRB file transfer behavior with the ARM method.



discarded at each new transfer. In this way, we filter
out of the regression model past history that is no longer
relevant for new trends of system behavior.

We investigated the effect of varying the size of the
Start-up Window and Running Time Window respec-
tively. After simulating the forecaster for several Start-Up
Window and Running Time Window lengths, we found
that the the modeling technique remains accurate for
a wide range of parameterizations. Usually a Running
Time Window length between 8 and 20 samples will yield
good predictions for the environments we have investi-
gated. The algorithm is even less sensitive to the length of
the Start-Up Window, since its effect is felt only initially.
A more detailed discussion of the effects of Start-
Up Window and Running Time Window param-
eters on performance, and the ARM pseudo-code
will be provided in the final paper.

Figures 3 and 4 show a representative and comprehen-
sive set of experiments to predict file transfer times using
the ARM method for SARA and SRB respectively. In
the experiments, SARA transferred files of 3MB, at every
5 minutes from data-servers running at the University of
Utah, University of Illinois Urbana-Champaign and Cal-
tech. The SRB client transferred 16MB files at intervals
ranging from 2 to 25 hours from the University of Cal-
ifornia at Davis, University of Washington at St. Louis,
NCSA and Rutgers. Both clients ran at the University
of the California, San Diego. In the figures, the differ-
ences (the error) between predicted (in black) and actual
execution times (in white) are represented by the verti-
cal distance between each pair of points. In Table 1, we
summarize the error results for this data.

4.1 Analysis

To determine prediction accuracy, we use the Normalized
Mean Absolute Error (NMAE), given by

i |EstimatedPer f; — MeasuredPer f;]

e x 100%
N x MeasuredPer f

i=1
where N is the total number of predicted measurements
and MeasuredPerf is the mean measured file transfer
performance for a particular site. The concept behind
the Normalized Mean Absolute Error is to calculate the
mean prediction error, then normalize it by the mean file
transfer throughput which is given by MeasuredPerf.
In this way we provide an effectiveness metric comparable
among different applications and sites, since each different
environment might have distinct performance character-
istics. In other words, the error is given as a proportion
or percentage of the average performance perceived by an
application.
From observing the graphs it is striking how the ARM
predictions very closely track the actual measured per-

formance of both SARA and SRB applications. More-
over, Table 1 numerically confirms the efficacy of this
method. As it can be observed, the highest relative errors
(NMAE) for ARM predictions are on the order of only
10%, whereas the errors for predictions using the RBW
model reach up to 100%. The largest difference occurs
for the Rutgers data server, where the RBW model re-
sulted in an error of 101.56%, while the ARM forecasting
method predicted with an error of just 1.15%.

Furthermore, it is important to emphasize that we were
able to successfully obtain this high level of prediction
accuracy with a low level of intrusiveness on the system
— using only small 64 kB messages to probe the network
behavior.

Although our analysis in this extended abstract is con-
fined to NMAE values, we also include Table 2, showing
mean square errors (MISE) for the predictions for all sites
in the experiments. Table 3 shows the mean file transfer
throughput for each data-server. In the final version
of the paper, we will discuss the MSE values in
greater detail.

4.2 Using ARM for Scheduling

The Application-Level Scheduling (AppLeS) approach
incorporates both application-specific system require-
ments and dynamic resource performance information
to schedule distributed applications in multi-user dis-
tributed environments [5, 20, 27]. AppLeS application-
level schedulers use a performance model (based on the
application’s communication and computational needs),
which is parameterized by values representing system
characteristics (such as available network bandwidth).
An AppLeS scheduler delays evaluation of the model until
run-time, at which point the model parameters are sup-
plied by a forecaster such as the Network Weather Service
(NWS) [25, 26], which reports current conditions and gen-
erates forecasts of various system performance measures,
such as network bandwidth and CPU load.

The initial AppLeS schedulers we developed [2, 5, 27,
20, 18] focused on the development of adaptive custom
schedules for individual grid applications. We are cur-
rently developing AppLeS templates for scheduling struc-
turally similar classes of grid applications. We are fo-
cusing on several application classes, including network-
bound distributed data-intensive applications. For cer-
tain applications in this class, like a basic SARA applica-
tion, using the RBW model to rank potential data servers
suffices [20]. However, applications for which predictions
using RBW are insufficient require methods like ARM,
which provide reasonably accurate run-time estimates of
file transfer performance. Such estimates are used to de-
termine an execution schedule for the target application
which is implemented by the AppLeS template.



| SRB — MSE |

site RBW | ARM
U.C. Davis 0.7536 | 0.0534
NCSA 0.3320 | 0.0195
W.U. St. Louis || 1.2147 | 0.0112
Rutgers 0.8129 | 0.0004
| SARA - MSE |
site RBW | ARM
Utah 0.9674 | 0.1446
UIuC 0.8669 | 0.1515
Caltech 0.5128 | 0.2975

Table 2: Mean Square Errors (MSE) for file transfer
throughput forecasts obtained directly from bandwidth
measurements RBW and from the Adaptive Regression
Modeling (ARM) forecaster. These values are not nor-
malized.

| SRB — Mean Throughput |

site Mbits/s
U.C. Davis 1.4399
NCSA 1.0218
W.U. St. Louis 0.5659
Rutgers 0.8792

SARA — Mean Throughput

site Mbits/s
Utah 2.6838
UIuC 2.3569
Caltech 3.4825

Table 3: Mean Measured File Transfer Throughput values
for SRB and SARA

5 Conclusions and Future Work

This paper presents ARM, a dynamic forecasting method
to predict the performance of data transfer operations for
network-bound distributed data-intensive applications.
Our method achieves a high level of accuracy for exem-
plar applications SARA and SRB. In summary, this paper
makes the following contributions:

e An ARM forecaster is derived automatically and in
real-time, by using a regression model to map mea-
surements of system behavior to observed application
performance.

e ARM forecasters dynamically adapt in time to
changes in the environment. In particular, changes
in the workload and system reconfigurations are used
to parameterize frequent updates of the model.

e The overhead of computing predictions using ARM
is low and relatively straightforward — the linear re-
gression is applied to a sliding window of a small
number of sample pairs, minimizing computational
overhead. Moreover, generating predictions of ap-
plication performance using the model is inexpen-
sive, making it possible reevaluate the model often
to adapt to rapidly changing network conditions.

e The ARM method hides the internal details of the
underlying system. No knowledge about commu-
nication protocols, network topology, or local file
systems was necessary to achieve good predictions.
For example, even though the SARA application ex-
hibits higher file throughput than the NWS mea-
sured bandwidth and exactly the opposite happens
for the SRB transfers, the forecaster is able in both
instances to make accurate predictions.

Regarding related work, performance analysis and
scheduling of data-intensive applications are described by
the ADR group from University of Maryland in [23] and
by Thakur in [21]. However, they focus on parallel data
servers running over local area networks. Performance
monitoring and forecasting of wide-area networks is dis-
cussed in works such as the NWS [25, 26], GloPerf [13]
and [7, 4]. The Netlogger system [22] presents a profiling
framework for distributed storage systems. A more de-
tailed related work section will be included in the
final version of this paper.

In the future, we intend to investigate adaptive Run-
ning Window length choices, adapting the past history
length according to the current statistical trends regard-
ing the relation between system and application behavior.
In addition, we intend to extend this work to account for
data transfers performed on hierarchical storage systems
such as HPSS [16], including system with tertiary storage
(tapes). We should also be able to use the ARM method
to generate network forecasts for varied communication
protocols and configurations and accurate relative rank-
ing among several data servers. In extending the scope
of this work to new scenarios, we also intend to look at
the possibility of on-demand refinement of the regression
model to include additional factors, such as disk or tape
behavior and server load, in order to do a better job of
assessing end-to-end file transfer, and hence application,
performance.
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