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ABSTRACT — We find that a Dicke-switched radiometer is optimized for minimum
output noise, if the square-wave modulation has a slightly asymmetric cycle. For a balanced
receiver the optimum switching time ratio is ~ 1.5, and is larger for unbalanced receivers. The
improvement in sensitivity over a symmetric square wave modulation is 10% for a balanced

receiver, and increases for increasing imbalance.
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1 Introduction

Differential radiometers are widely used for high-sensitivity applications, particularly in fields
such as radioastronomy and remote sensing. The great advantage of differential receivers is
the suppression of the effects of gain fluctuations. The primary concept is to compare target
signal of interest, 5, with a reference signal R, at a very rapid rate so that the receiver gain
changes very little in one cycle. Residual effects due to gain fluctuations are proportional to

the difference in input powers. Expressed in terms of antenna temperature,
0G
6T = —G——(Ts —TR) (1)

The simplest and best known differential radiometer concept is the Dicke-switched ra-
diometer (Dicke 1946). Most applications of the Dicke receiver use square wave modulation,
particularly when the two signals are comparable in power. Often, however, the two tar-
get antenna temperatures are not equal, thus reducing the suppression of gain fluctuations.
When Ts # Tr balance can be obtained either through modulating the gain or by adjusting
the integration times on each target so the difference of the two semi-cycles of the switching
is nulled (see e.g. Kraus 1966), or with a combination of the two methods.

In general, a Dicke receiver with system noise temperature Ty viewing two sources with

antenna temperatures Tj and T3 will be balanced when
(ITn+T)fi = (Tn +T2) f29 (2)

where f; and f, are the fractions of integration time 7 spent each cycle on Ty and Ty,
respectively, and g is the gain modulation factor — the ratio of the gains in each part of the
switch cycle. The ratio of integration times f/f; is controlled by the duration of each cycle

of the square wave modulation, and they sum to unity
it fa=1 (3)

For a traditional, symmetric Dicke radiometer f; = f2 = 0.5.

2 Optimum Asymmetric Modulation

We now find the integration time ratio fi/f, that minimizes the root mean square statistical
noise, 6Trms = (T —(T))?)1/2. An “ideal” system — meaning most well-designed systems and

neglecting gain fluctuations — with noise equivalent temperature, Ty, continuously looking



at a target with antenna temperature T}, has rms noise

Tn + T,
6Trms—ideal = I:I/—BTrt

where B is the system effective bandwidth and 7 is the observation (integration) time.

(4)

First we consider a perfectly balanced system, so that equation (2) holds. The RMS
statistical noise 6T, of the output difference signal is given by the quadrature sum of the

noise in each semi-cycle, i.e.:

2 _ (In+T1)? | (In+T3)%¢°
6Tr'ms - BfIT + BfZT . (5)

Substituting (T + T»)g from equation (2) and taking a square root, we find:

_(Tn+Th)

s = e F (i) = F(:) 8Trma-ide (6)

where F(f;) is
1/2

(1- )2+ £]

e M

F(fi) =

or equivalently, in terms of f,:
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The function F(f) thus represents the increase in noise of the switched system over an “ideal”

receiver spending full time looking at the target. The minima of the functions F(f;) and
F(f;) represent the values of f; and f; which optimize the signal to noise ratio for given
noise and target temperatures.

Figure 1 is a plot of the functions F(f;) and F(fz). It is found that their minima corre-
spond to the values f; = 0.39 and f, = 0.61, rather than f, = f2 = 0.5. The improvement
achieved by using such integration time ratio is of order 10% over a symmetric modulation
scheme.

It should be noted that this improvement does not depend on the system or target tem-
perature. It does not matter which side of the input load has the higher integration time
as long as equation (2) is satisfied. Thus, one can always take advantage of such asymmet-
ric modulation in conjunction with the best configuration for balancing the system, i.e., by
setting the higher integration time on the colder target load. The same rms noise provided
by the symmetric case is reached for f; ~ 0.25 and f; ~ 0.75. Thus a highly asymmetric
cycle (about 1/4 to 3/4) provides the same efficiency in terms of signal to noise of a standard

symmetric square-wave Dicke radiometer. Therefore systems with target temperature ratios
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Figure 1: Plot of increase in noise over an ideal radiometer for an asymmetrical square-wave
switching versus the fraction of the cycle time in one state. Note symmetrical switching has
f1 = f2 = 0.5, for which, as expected, F(f;) = 2. Curves are shown for three levels of balance:
1) solid line —- exact balance 2) short dash - - imbalance of 0.1 of the total receiver output

power 3) long dash — — imbalance of 0.4 of the total receiver output power.



of a factor T} /T, ~ 4 can be balanced with a noise comparable to a situation with equal tem-
perature loads. If the noise figure Ty and reference temperature T, are accurately known,
then one can deterime T} to a level set by éT»ms by measuring the gain g ncessary to null

the output.

3 The Measurement of Small Signal Variation Case

Often the situation is such that one is actually trying to measure the small variations T}
of T} about its mean value T;. Examples are the remote sensing of the sky and surface
temperatures. In this situation the target T; is a stable reference load used to switch against
to remove gain variations. If the radiometer is balanced on average, then the radiometer
output is the signal T plus receiver noise which is gaussian with standard deviation 6Tyms
derived in equation (6). The balancing gain ratio is

Tn+T: fo Tn+T2 1-H

The presence of a small signal imposed upon one of the targets power T, breaks the

symmetry of the situation. In order to recover the signal and its error, one must put the
gain ratio g on the 7} side of equation (2) so that the error estimate on T} does not have an
explicit g dependence. Then the derivation of the optimum integration time is correct for the
balanced case f; = 0.39. If the target temperature T} is less than the reference temperature

T5, this leads to a lower gain on the T; side both for the optimized and symmetric case.

4 The Unbalanced Case

So far we have considered a perfectly balanced system. In practice, even in the best situations,

some residual unbalance (or offset AT) will be present, i.e.:
AT = (Tn + Th) L — (Tn + T2) fag. (10)

The mean square noise will be the quadrature sum of the noise in each switch cycle plus
a term which is the square of the rms gain fluctuations (6G/G)rms times the offset AT.
Neglecting the gain fluctuations but accounting for the offset term, equation (6) becomes:

_(Tn+T)

6T ms = \/F; -H(fz) = 6Trms—idealH(fi) (11)

where
1/2

AT f 1 AT? where fo=(1- f1) (12)

_ 2 _g_—
H(R) = |F(h) = 25— 5t B gy v



with f; and f; related by equation (3). The function H(f;) is the increase in rms noise
fluctuations over an ideal radiometer including the effect of the offset and depends on the ratio
r = AT/(Tn +T1). Note that one would get a similar result in terms of ' = —AT/(Tn +T3)
by reversing the substitution after equation (4).

1/2

AT fo L AT where fi=(1—f)  (13)

H(f2) = |F(f2)* + 2——-——TN T + DY
In fact, for given system noise temperature and integration time ratio, the noise depends on
both target temperatures Ty and T through the offset term AT.

Table 1 gives the optimum integration time ratios and the decrease in noise factor,
6T rms—opt/ 6Trms—1/2 corresponding to values of r in the range 0 to 1. We also show in
figure 1 the shape of H(f;) for two values of r. For an unbalanced Dicke receiver the op-
timization of the modulation can have a relatively large effect. As expected (Figure 1) the
overall efficiency decreases, since H(f;), and thus 6T;ms, gets higher values. The optimum
integration time ratio for increasing values of r tends to depart more and more from the con-
ventional symmetric condition. For example, for r = 0.1 the optimized modulation requires
fi = 0.36 and f, = 0.64; for r = 0.4, we find f, = 0.30 and f, = 0.70. The improvement
in the signal sensitivity over a symmetric modulation increases roughly proportionally to r.

However, switching, which was introduced to reduce the effect of gain fluctuations, is not

likely to be appropriate, when the imbalance (offset) is very large.

5 Conclusion

We have shown that the ideal modulation in a balanced Dicke-type radiometer is obtained
with a somewhat asymmetric cycle in the square wave pattern. If the system is significantly
offset, even more asymmetric modulations is required to optimize the signal to noise ratio.
The improvement in sensitivity by using optimum asymmetric modulation is a 10% factor
for balanced systems, and about 30% for an offset AT/(Tn + T2) ~ 0.5. Asymmetric wave
optimization can be used conveniently to balance a Dicke radiometer with T3 # T3. For
example, in many radio or microwave astronomical observations one wishes to measure the sky
temperature (Ts ~ 5 K), by difference with a stable reference load termination at moderately
cooled temperatures. If T, ~ 70 K and Ty =~ 120 K, the system is well balanced for fs/f2 ~
1.5 without gain modulation (i.e. g = 1). This ratio (see Table 1) also optimizes the signal

to noise ratio as due to the square wave cycle.
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Table 1

Optimized asymmetric modulation

r fo/h 6T rms—opt/ §Trms—1/2
0 1.56 0.899
0.1 1.78 0.857
0.2 1.94 0.817
0.3 2.13 0.781
04 2.23 0.749
0.5 2.45 0.721
0.6 2.57 0.695
0.7 2.85 0.673
0.8 3.00 0.653
09 3.17 0.635
1.0 3.35 0.619






