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ABSTRACT OF THE DISSERTATION

Authenticated Encryption in Practice: Generalized Composition Methods and the
Secure Shell, CWC, and WinZip Schemes

by

Tadayoshi Kohno
Doctor of Philosophy in Computer Science
University of California, San Diego, 2006

Professor Mihir Bellare, Chair

We study authenticated encryption (AE) schemes, or symmetric cryptographic
protocols designed to protect both the privacy and the integrity of digital communi-
cations. When the AE schemes that we propose or study are secure, we prove so using
the modern cryptography approach of practice-oriented provable security; this approach
involves formally defining what it means for an AE scheme to be secure, and then deriv-
ing proofs of security via reductions from the security of the construction’s underlying
components. When we find that an AE scheme is insecure, we support our discoveries
with example attacks and then propose security improvements.

We first study the AE portion of the Secure Shell (SSH) protocol. The SSH AE
scheme is based on the Encrypt-and-MAC paradigm. Despite previous negative results
on the Encrypt-and-MAC paradigm, we prove that the overall design of the SSH AE
scheme is secure under reasonable assumptions. Our proofs for SSH contribute to the
field of cryptography in several ways. First, we extend previous formal definitions of
security for AE schemes to capture additional security goals, namely resistance to replay
and re-ordering attacks. We also formalize a new AE paradigm, Encode-then-E&M, that
captures the differences between the real SSH AE scheme and the previous Encrypt-
and-MAC model. We state provable security results about both the Encode-then-E&M

paradigm and the SSH AE scheme.
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Motivated by the differences between previous models and real AE schemes, we
then consider and prove security results about generalizations of two other natural AE
paradigms, MAC-then-Encrypt and Encrypt-then-MAC, as well as further generaliza-
tions of the Encode-then-E&M paradigm. Motivated by practical requirements and the
IPsec community, we propose CWC — the first block cipher-based AE scheme that is
simultaneously provably secure, fully parallelizable, and free from intellectual property
claims. Finally, we discover and propose fixes to security defects with the WinZip AE-2
AE scheme. Our attacks exploit interactions between AE-2’s provably secure Encrypt-
then-MAC core and the rest of the system. Since WinZip could have avoided certain
attacks by applying the provable security approach to the whole AE-2 scheme, our re-
sults suggest the importance of pushing the provable security approach further into real

systems.
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1 Introduction

In this dissertation we consider two of the most fundamental goals in cryptogra-
phy: the protection of thprivacyof digital communication and the protection of tine
tegrity of digital communication. We consider these goals irsymametrior shared-key
setting, which means that we are interested in studying privacy- and integrity-preserving
mechanisms when two communicating parties already share some secret information,

called a cryptographikey.

1.1 Authenticated Encryption

While cryptographers have long realized the importance ofptineacy andin-
tegrity goals, the traditional approach in cryptography research has been to consider
these two goals in isolation. In this vein, cryptographers designedyption schemes
[4, 30] to protect the privacy of digital communication and they designedsage au-
thentication schemgs.k.a.MAC9 [6, 30] to protect the integrity of digital communi-
cation. It was not until recently that cryptographers began to formally stutlyenti-
cated encryption schemes mechanisms for achieving both of these gaatsultane-
ously[10, 11, 47, 52].

Some of the initial results on authenticated encryption might appear counter-
intuitive. For example, Bellare and Namprempre [10] and Krawczyk [52] both proved

that one natural method for combining a secure, traditional, privacy-only encryption



scheme with a secure, traditional, integrity-only MAC valivaysfail to provide pri-

vacy when the MAC is stateless and deterministic, as many popular MACs are. As a
concrete example, using this approach to combine the popular AES-CTR encryption
scheme with the popular HMAC-SHA1 message authentication scheme will result in
aninsecure(not privacy-preserving) authenticated encryption scheme. The authors dub
this natural but insecure method for combining an encryption scheme with a MAC the
“Encrypt-and-MAC” paradigm.

Results like those of Bellare-Namprempre and Krawczyk suggest a need for fur-
ther investigation into the theory of how to create authenticated encryption schemes with
strong theoretical support, i.e., how to create authenticated encryption schemes that
are provably securd6, 37] under reasonable assumptions. Toward this end, Bellare-
Namprempre and Krawczyk also show that another natural method of combining an
encryption scheme and a MAC does yield a composite authenticated encryption scheme
that provably provides both strong privacy and integrity properties at the same time.
These authors dub the provably secure composition method the “EnberptiAC”
paradigm. (Bellare-Namprempre and Krawczyk additionally consider a third composi-
tion method, MACthenEncrypt, that informally provides a level of security somewhere
between that of the Encrypt-and-MAC paradigm and the Encrypt-then-MAC paradigm.)

Since many popular encryption schemes and MACs are themselves built from one
of cryptography’s most basic components, heck cipher cryptographers also began
to consider how to design authenticated encryption schemes directly from block ciphers.
Efficiency was one of the principle motivations for this line of research, and early ex-
amples of this research direction include the works of Katz and Yung [47], Jutla [44],
Gligor and Donescu [35], and Rogaway, Bellare, and Black [72].

While these early works make great strides in the formal study of authenticated
encryption, there remain gaps between the theoretical results on authenticated encryp-
tion and the needs of practitioners. For example, the previous theoretical analyses of
composition-based authenticated encryption schemes do not fully model many real con-

structions, like the construction used in the popular Secure Shell (SSH) protocol. Ad-



ditionally, no pre-existing block cipher-based authenticated encryption scheme has all
three of the following properties: provable security, full data parallelizability, and free-
dom from intellectual property claims. Consequently, none of the pre-existing block
cipher-based authenticated encryption schemes are suitable for some real deployment
scenarios, like high-speed IPsec routers that must handle data at 10 Gbps. (To better
understand this latter conclusion, we note that the IETF standardization body dislikes
patented constructions, which eliminates the use of parallelizable but patented con-
structions. On the other hand, unpatented and non-parallelizable constructions cannot
achieve 10 Gbps using conventional ASIC technology.) The purpose of this disserta-
tion is to help address these gaps. We summarize our contributions below, after first

elaborating on what we mean pyovable security

1.2 Provable Security

Goldwasser and Micali [37] introduced the notiongsbvable securitywhich is
based on the science of complexity theory. In the Goldwasser-Micali approach, individ-
uals design a cryptographic scheme based on some believed-to-be computationally hard
problems, which they treat dmsic building blocksor primitives The designers also
determine what it means for the scheme to be “secure” by establishing psecisaty
definitionsthat capture the designers’ security goals. After determining the appropriate
security definitions, the designers (attempt to) prove the security of their construction
via areductionfrom the hardness of the underlying building blocks, similar to the way
one reduces SAT to a problem to prove that the problem is NP-hard. The use of reduc-
tions allows the designers to prove tlaay efficient attack against the security of their
scheme would directly correspond to an efficient solution to the problem posed by one
of the underlying building blocks, and as long as the building blocks are truly hard, we
know that the designers’ scheme is secure under the chosen security definitions.

Bellare, Kilian, and Rogaway [6] built on the line of work that Goldwasser and Mi-

cali started and, in doing so, created the fielgmaictice-oriented provable securityhe



fundamental difference between BKR'’s approach and Goldwasser-Micali’'s approach is
that BKR were interested in the design and analysis of practical, implemented protocols
and performed their analyses using concrete reductions from finite objects, whereas
Goldwasser-Micali were largely interested in complexity theoretic questions concern-
ing the asymptotic relationships between different security goals. Since its conception,
many researchers have extensively applied the practice-oriented provable security ap-
proach in the design and analysis of practical cryptosystems. In the case of symmetric
schemes, the underlying basic building blocks are generally engineered objects, such as
theblock cipherAES [28].

1.3 The Secure Shell Protocol and Composition-Based

Authenticated Encryption Schemes

In this dissertation we revisit the composition methods that Bellare and Namprem-
pre [10] and Krawczyk [52] analyzed in their early papers on authenticated encryption.
Specifically, we begin by looking at the authenticated encryption portion of the popular
Secure Shell (SSH) protocol. Of particular interest here is that the SSH authenticated
encryption scheme is based on the insecure Encrypt-and-MAC paradigm, yet we are
able to show that the SSH approach for combining an encryption scheme and a MAC is
in fact secure under reasonable assumptions.

Our provable security results do not contradict the results of Bellare-Namprempre
and Krawczyk. Rather, the critical property that we exploit in our proofs of security is
that, while the SSH protocol is based on the insecure Encrypt-and-MAC paradigm, it
has a few slight differences. Namely, the SSH protocol preprocesses user data (the data
that we are concerned about from a privacy and integrity perspective) before invoking
the underlying encryption scheme and MAC, thereby taking the SSH construction out-
side of the generic Encrypt-and-MAC model and making Bellare-Namprempre’s and
Krawczyk’s results inapplicable. We generalize our analysis by modeling the prepro-

cessing step as ancoding schemand then prove general results for a new paradigm



that we callEncode-then-Encrypt-and-MAEncode-then-E&NL Our results on the
SSH protocol are in Chapter 3.

Motivated by our SSH results, and by the fact that real protocols seldom em-
ploy any of the basic Encrypt-and-MAC, Encrypt-then-MAC, and MAC-then-Encrypt
paradigms without alteration, we then formally study new abstractions that we call the
generalized Encode-then-E&Nhegeneralized Encode-then-Effnd thegeneralized
Encode-then-MtBparadigms. We present these results in Chapter 4. The generalized
Encode-then-E&M paradigm that we consider in Chapter 4 is a more flexible version of
the Encode-then-E&M paradigm that we consider in Chapter 3.

For our provable security results in Chapters 3 and 4, we also introduce new,
strong, formal definitions of privacy and integrity for authenticated encryption schemes.
Our definitions extend the standard definitions of privacy and integrity [4, 10, 11, 47],
but also capture additional security goals that developers often desire. For example, if
a construction is provably secure under one of our new definitions of security, then that
construction will provably resiseplayandout-of-order deliveryattacks.

As an aside, our analysis of the SSH authenticated encryption scheme did uncover
a privacy vulnerability, but this vulnerability is not endemic of the high level SSH con-
struction. Rather, the problem that we identify stems from a poor choice for SSH’s

underlying encryption scheme. Details in Chapter 3.

1.4 The CWC Authenticated Encryption Scheme

In addition to studying composition-based authenticated encryption schemes, we
also propose a new block cipher-based authenticated encryption scheme, which we call
CWC. CWC is the first block cipher-based authenticated encryption scheme that is si-
multaneously provably secure, fully parallelizable, and unencumbered by intellectual
property issues. One of our pragmatic goals was to provide the first provable secure
authenticated encryption scheme for high-speed 10 Gbps IPsec routers.

The heart of the CWC design is to combine a Carter-Wegman-style polynomial



universal hash function-based message authentication scheme [81] with a counter (CTR)
mode encryption scheme, but to do so in an invasive, non-generic way. For example,
while it is generally a poor security design decision to use the same cryptographic key
in an encryption scheme and a MAC, we design CWC in such a way that one can use
the same block cipher key in both CWC'’s underlying encryption component and CWC's
underlying message authentication component. Sharing a key in this manner is advan-
tageous since it minimizes expensive memory accesses in high-speed hardware. Details

in Chapter 5.

1.5 The WinZip Authenticated Encryption Scheme

In Chapter 6 we cryptanalyze WinZip Computing, Inc.’s new AE-2 authenticated
encryption scheme. (WinZip Computing, Inc. is the creator of the popular WinZip file
utility program for Windows machines, as well as an Outlook email plugin.) Unlike pre-
vious chapters, Chapter 6 does not contain provable security results, but rather serves to
help underscore the importance of extending provable security further into real systems
by highlighting examples of security issues that can arise when a construction is not
provably secure, or when a larger system uses a provably secure sub-component with-
out fully addressing the security of the connection between that sub-component and the
larger system.

In more detail, the core of the WinZip AE-2 authenticated encryption scheme is a
provably secure Encrypt-then-MAC construction, where the underlying encryption com-
ponent is the popular AES-CTR mode encryption scheme and the underlying authenti-
cation component is the popular HMAC-SHA1 message authentication scheme. Our
attacks do not invalidate the security of the AE-2 Encrypt-then-MAC core, but rather
exploit problems with the interface between the Encrypt-then-MAC core and the rest
of the WinZip system. For example, one of our attacks exploits the way that WinZip
preprocesses and compresses user data before processing that data with the Encrypt-

then-MAC core. We also uncover a chosen-ciphertext attack that exploits Windows’



association of applications (e.g., Microsoft Word) to filename extensions (@og.,)

and the fact that WinZip does not cryptographically protect the integrity of an encapsu-
lated file’s filename. We further uncover security issues that arise because of the fact that
when a WinZip archive contains multiple files, each file is compressed and encrypted
independently. Details of these and other results, as well as our recommended fixes, are

in Chapter 6.



2 Background

2.1 Notation

If = andy are strings, thetr| denotes the length of in bits andz||y denotes their
concatenation. If is a non-negative integer arids a positive integer) < i < 2/,
then (i), denotes the unsignedbit binary representation of in big-endian format.
If = is a string, thertoint(xz) denotes the integer corresponding to stringn big-
endian format (the most significant bit i®t interpreted as a sign bit). For example,
toint(10000010) = 27 + 2 = 130. If b is a bit andn a non-negative integer, theéf
denoteb concatenated with itself times; e.g. 107 is the stringl0000000. If a4, ..., a,,
are strings, thefa, . . ., a,,) denotes an injective encoding from the set of all possible
values forag, ..., a,,, which will be clear from context, to a set of strings such that
ai,...,a, are recoverable. We denote the empty string:byWhen we say an algo-
rithm is stateful, we mean that it uses and updates its state and that the entity executing
it maintains the state between invocations. tetenote the initial state of any (state-
ful or stateless) algorithm. Let <— y denote the assignment gfto x. If X is a set,
thenz <~ X denotes the process of selecting an element uniformly at randomXrom
and assigning the result to If f is a randomized (resp., deterministic) algorithm, then
& f(y) (resp.,x < f(y)) denotes the process of runnirfigon inputy and assigning
the result tax. If A is a programA < x means “return the value to A.” When we
refer to the time of an algorithm or experiment, we include the size of the code in some

fixed encoding. There is also an implicit bg-surrounding all such time references.



2.2 Pseudorandom Functions

We formalize the notion of pseudorandom functions following the papers [6, 36].
Let F: K x M — R be a family of functions fromM to R indexed by keydC. We
useFx (M) as shorthand faF (K, M). Let RandM, R] denote the set of all functions
from M to R. If [ and L are positive integers, we use Ra&ind| as shorthand for
Rand{0, 1}, {0, 1}*]. Informally, F is asecure pseudorandom functi¢PRF) if it is
hard for all distinguishers (adversarigs),; using reasonable resources to distinguish
Fx(+), with a randomly selected key < K, from a randomly selected functighfrom

RandM, R]. We make this more formal below.

Definition 2.2.1 (Pseudorandom functions [6, 36].)Let 7: K x M — R be a
family of functions fromM to R indexed by key<C. Let D,,,; be a distinguisher faf.

Consider the following experiments, whére {0, 1} is a bit:

ExperimentExp’ (D)
If b=1thenk & K ; g — Fx elseg & Rand M, R]
Ruanf'f)
Reply tog(M) queries as followsD s <= g(M)
Until Dy, returns a bitd

Returnd
We define theerFadvantage of the adversaby,; as
AV (Dyr) = Pr | Bxpf™(Dyue) = 1| = Pr | Exp (D) = 1] .

In the concrete setting [6], we say thatis a secure pseudorandom functi¢pr~

secure) ifAdv?!f(Dprf) is small for all distinguisher®,,,; using reasonable resourceks.

2.3 Pseudorandom Permutations (Block Ciphers)

We formalize the notion of pseudorandom permutations (block ciphers) follow-
ing [6, 56, 63]. LetF: K x M — R be a family of functions from\ to R indexed
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by keysK. F is a family of permutations (i.e., laock ciphe) if M = R andFk(-) is

a permutation ooM for eachK € K. If F is a family of permutations, we usdé.'(-)

to denote the inverse ofx(-) and we useF (-, -) to denote the function that takes
(K, M) as input and computeB,.' (M). Let PerniM] denote the set of all permuta-
tions on M. If L is a positive integer, we use Pein as shorthand for Perfg0, 1}7].
Informally, F is asecure pseudorandom permutati@RP) undechosen-plaintext at-
tacksif it is hard for all distinguishers (adversarieb),,,, using reasonable resources
to distinguishFx(-), with a randomly selected kelf € I, from a randomly selected
permutationf from PermiM|. Additionally, F is a secure pseudorandom permuta-
tion underchosen-ciphertext attacka.k.a.super-pseudorandom permutati{gt] or
strong-PRA63]) if it is hard for all distinguishers (adversarieB),,,, using reasonable
resources to distinguisx (-), Fx'(-), with a randomly selected kel € K, from a
randomly selected permutatighfrom PerniM| and f’s inverse. We make this more

formal below.

Definition 2.3.1 (Pseudorandom permutations [6, 56, 63].L et F: K x M — M
be a family of permutations aM indexed byk. Let D,,,,, and Dy, be distinguishers

for F. Consider the following experiments, whére {0, 1} is a bit:

ExperimenExp’P(D,,.,)
If b= 1thenk & {0,1}%; g — Fx elseg & PermiM]
Run D)
Reply tog(M) queries as followsD,,,, < g(M)

Until D, returns a bitd

pTP

Returnd

ExperimentExp)” ** D)
If b=1thenk & {0,1}"; g — Fx elseg <& PermM]
Run DO
Reply tog(M) queries as followsD,,, <= g(M)
Reply tog~!(C) queries as followsDg,,, < ¢~*(C)
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Until Dy, returns a bitd

Returnd

We respectively define threrP- andspRPadvantages of the adversaries,, and Dy,

as

Advg—[‘)(Dprp) = Pr [Eng-[p-1<Dprp) = 1} —Pr [EXPE—Ep-O(DprD) = 1]
AdVPPSY D) = Pr [Expggp'm‘l( Dapp) = 1}

—Pr [Exp?,_fp'cca_o(DSprp) = 1} )

In the concrete setting [6], we say thAtis asecure pseudorandom permutatiomder
chosen-plaintext attack@Rrr-secure) if Adv:"(D,,,) is small for all distinguishers
D,,, using reasonable resources. Similarly, we say fhas a secure pseudorandom
permutatiorunderchosen-ciphertext attacksPrrsecure) ifAdv:" Y Dy, ) is small

for all distinguishers,,,,,, using reasonable resourcek.

Most cryptographers believe AES [28] to be an exampler#a andsPRPsecure

block cipher.

2.4 Symmetric Encryption

We formalize the notion of a symmetric encryption scheme following [4]. A sym-
metric encryption schem8& = (K, £, D) consists of three algorithm4;, £, andD.
The randomized key generation algoritiiireturns a key< from the seKeySpg,; we
write this ask” <~ K. The encryption algorithm, which could be both randomized or
stateful, takes a ke)k € KeySpse and a plaintextV/ € {0, 1}* as input and returns a
ciphertextC' € {0,1}* or the error code; we write this ag” < £ (M). The decryp-
tion algorithm, which is stateless and deterministic, takes thefkey KeySps- and a
stringC' € {0, 1}* as input and returns either the corresponding plaintéxir the error

code_L; we write this asc < Dg(C). The consistency requirement is that, regardless
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of the state of the encryptor, for all keys € KeySps. and message¥/ € {0, 1}*, if
Ex (M) returnsC, then eithelC’ = L or D (C) = M.

The formal notions oprivacy underchosen-plaintexand chosen-ciphertext at-
tacksfor symmetric encryption schemes come from [4]. Intuitively, the notions of pri-
vacy measure the ability of an adversary to distinguish between the encryption of two
sequences of messages. For the chosen-ciphertext privacy notion, we also give the ad-
versary the ability to decrypt any string of its choice, assuming that the string does not
correspond to a ciphertext generated by the encryptor (since otherwise the adversary
could trivially learn which sequence of messages was encrypted). The idea is that if
an adversary cannot effectively distinguish between the encryption of two different se-
guences of messages, then it certainly cannot accomplish greater tasks, like decrypting
arbitrary ciphertexts or figuring out the encryption key. Toward making this defini-
tion more formal, letS€ = (K, €, D) again denote a symmetric encryption scheme.
For a keyK € KeySpge and bitb € {0,1}, let Ex(LR(-,-,b)) denote deft-or-right
encryption oracle(LR encryption oracle) that takes inpity, M; € {0,1}*, where
|Mo| = |M,|, and returns€x (M,), the encryption of\/,. In pseudocode, we define
Ex(LR(-,-, b)) as follow:

Or&ClegK(ER(Mo,Ml,b)) I |M0| = |M1‘
C & Ex(My)
ReturnC

The definitions of privacy follow.

Definition 2.4.1 (Privacy for symmetric encryption schemes [4].)Let S€ = (K, &,

D) be a symmetric encryption scheme. L&f, be an adversary that has access to a left-
or-right encryption oracl€x (LR (-, -, b)); let A.., be an adversary that has access to a
left-or-right encryption oracle and a decryption oraBlg(-). Each adversary returns a

bit. Consider the experiments below, whére {0, 1} is a bit:

priv-cpa-

ExperimentExp/2y P A
K&K

cpa)
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Run ASERE0)
Reply to€x (LR (Mo, M,b)) queries as follows:
C & Ex(My); Ay <= C
Until A, returns a bitl

Returnd

ExperimentExp/y (A
K&K
Run ASK (ER(-0).Drc ()

cca)

Reply to€x (LR (My, My, b)) queries as follows:
C & Ex(My); Ap = C
Reply toDk (C) queries as followsM «— Dk (C); A, <= M
Until A ., returns a bit/

Returnd

We require that, for all querie§\y, M) to Ex(LR(-,-,b)), |My| = |M;|. For the
PRIV-CCA experiment Exp2y **®(A_ ), we require thatd_, not queryDy(-) on a
ciphertext previously returned & (LR (-, -, b)). We respectively define tieRI1v-CPA-

andpPRIV-CcCA-advantages of the adversaries as

Advgr‘(ifv—cpa(Acpa) = Pr [Expggv—cpa-l<Acpa> = 1i| —Pr [Expgr‘(ifv-cpa-O(Acpa> = 1i|

AdVEY“(A,,,) = Pr|Expl*NA,,) = 1] —Pr| Expl ™ U4,,) = 1] .

In the concrete setting [6], we say th8E is privacy-preservingindistinguishablg

underchosen-plaintext attack@Riv-cpa-secure) ifAdvae P4 A

pe ) is small for all

cpa

adversariesA,,, using reasonable resources. Similarly, we say &étis privacy-

preservingunder chosen-ciphertext attack®RrIv-cca-secure) ifAdvy “AA,.,) is

cca)

small for all adversaried ., using reasonable resourcek.

To provide more intuition behind these definitions, consider the case of indistin-

guishability under chosen-plaintext attacks. In words, we define the chosen-plaintext
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privacy advantage of the adversaty,, with access t&€x (LR(-,-, b)), wherekK is se-
lected at random, as the probability thét,, guesses thatis 1 whenb is actually1
minus the probability thatl , guesses that is 1 wheno is actually0. Intuitively,
AdVRY P (A ) and AdvRy A

time in guessing the b, but Adv2y P A

are small (close to 0) if an adversary has a hard
) and Adv2Y (A

to 1) if an adversary has an easy time in guessing thie bit

cpa cca)

are large (close

cpa cca)

CTR mode and CBC mode [4, 30] are examples of two popular block cipher-
based symmetric encryption schemes that are prowbily-CPA-secure assuming that

the underlying block cipher iBRP-secure.

2.5 Message Authentication

We formalize the notion of a message authentication scheme following [6, 10]. A
message authentication sche(WAC) M.A = (I, 7,V) consists of three algorithms.
The randomized key generation algorithm returns aKeffom the setKeySp ,,4; we
write this ask < K. The tagging algorithm, which may be both randomized and
stateful, takes a keyy € KeySp,,, and a messagé/ < {0,1}* and returns a tag
7 e {0,1}*; we write this asr < T (M). The deterministic and stateless verifi-
cation algorithm takes a ke{ € KeySp,,4, @ messagé/ € {0,1}*, and a can-
didate tagr € {0,1}* and returns a bib; we write b — Vg (M, 7). For any key
K € KeySp 4 and messagé/ < {0,1}*, and for any internal state @f;, we require
thatVy (M, T (M)) = 1.

We consider a secure MAM A = (K, 7,V) to be one that istrongly unforge-
able under chosen-message attafid]. We consider a game in which a forggris
given access to a tagging oradg () and a verification oracl®'x(-). The forger is
allowed arbitrary queries to the oracles and wins if it can find a @Hirr) such that
Vi (M,T) = 1 butT was never returned by (-) as a tag forM/. We denote the ad-
vantage of this forger a&dv'{ ,(F). Although this notion is in general stronger than

the standard notion of unforgeability [6], we note that any pseudorandom function is a
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strongly unforgeable MAC, and most practical MACs seem to be strongly unforgeable.

A more formal presentation of the definition follows.

Definition 2.5.1 (Strong unforgeability of message authentication schemes [10].)
Let MA = (K,7,V) be a message authentication scheme. A.dfe a forger with
access to a tagging oradlg () and a verification oracl¥k (-, -). Consider the follow-

ing experiment:

ExperimentExp'y, ,(F)
K&EK;S—0
Run F7x (Vi ()
Reply to7x (M) queries as follows:
TET(M); S —SU{(M,7)}; F<r1
Reply toVk (M, 7) queries as follows:
v — Vi (M, )
If v =1and(M, ) & S then returnl
F<=v
Until F' halts
Return0

We define thesF-advantage of in forging a message-tag pair as
Advy 4 (F)=Pr[Exp{4(F)=1] .

In the concrete setting [6], we say th&t.A is a strongly unforgeablg¢ur-secure) if

AdvYy ,(F)is small for all forgersF using reasonable resourcek.

If the message authentication schemed = (K, 7,V) has a stateless and de-
terministic tagging functior? : KeySp,,4 x {0,1}* — R for some rangeR, then
we can apply the definition of a pseudorandom function from Section 2A2 1y for
Expﬂﬂ(Dprf) we selectK via K. Moreover, if a MAC isPRFsecure, then it is also

UF-secure [6]. Popular provably pseudorandom (and therefore strongly unforgeable)
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message authentication schemes include OMAC [41] and HMAC [3, 53, 2], the former
secure assuming that the underlying block cipherssecure [41] and the latter secure
assuming that the underlying compression is a secure pseudorandom function under a

small class of related-key attacks [2, 7, 19].

2.6 Authenticated Encryption

The notion of a symmetriauthenticated encryptioacheme was first formally
introduced by Katz and Yung [47], Bellare and Rogaway [11], and Bellare and Nam-
prempre [10]. An authenticated encryption schedte= (I, £, D) is like a traditional
symmetric encryption scheme (Section 2.4), with the same syntax and consistency re-
guirement, but with the goal of providirgpth authenticity (integrity) and privacy. The
definitions of privacy for authenticated encryption schemes are also the same as the
definitions of privacy for symmetric encryption schemes from Section 2.4. The formal
notions of integrity for authenticated encryption schemes in [10, 11, 47] are based on
the notion of unforgeability for message authentication schemes from [6]. Intuitively,
one notion of integrityAUTHC, measures an adversary’s inability to trick the decryp-
tion algorithm into accepting a ciphertext that the encryption algorithm did not generate.
TheAUTHC notion is also calledhtegrity of ciphertextsA weaker notionAUTHP or in-
tegrity of plaintextsmeasures an adversary'’s inability to trick the decryption algorithm
into accepting a ciphertext that decrypts to a message that the encryptor did not encrypt.

These integrity definitions are described more formally below.

Definition 2.6.1 (Integrity for authenticated encryption schemes [10, 11, 47].Let
A€ = (K, €, D) be an AE scheme. L€k, F. be forgers with access to an encryption
oracle€k(-) and a decryption-verification oracle;, (-); the latter, on input, invokes
Dk (C) and returns 1 (i.e., accepts)lify (C) # L and O (i.e., rejects) otherwise. Con-

sider the experiments:

ExperimentExp’s ™ F,)
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K&K S0
Run FE<0Pi0)
Reply to€x (M) queries as follows:
CEEe(M); S —SU{M}; F,<C
Reply toDj, (C) queries as follows:
M « Dg(C)
If M # 1L andM & S then returnl
If M # LthenF, < 1elsef, <0
Until F,, halts

Return0

ExperimentExpie 'y F.)
K&K S0
RunFCEK(%D}(-)
Reply to€x (M) queries as follows:
CEEe(M);: S—SU{C}: F.<C
Reply toD;, (C) queries as follows:
M — Dg(C)
If M # 1L andC ¢ S then returnl
If M # 1 thenF, < 1elsefF. <0
Until F, halts
Return0

We respectively define theuTHP- andAuTHC-advantages of}, and F; as

authp,

Advi{ghp(Fp) = Pr [Epr(g (Fp) = 1]
Adv3PYF.) = Pr[Expifir.)=1] .

In the concrete setting [6], we say thd€ preserves integrity of plaintex{®uTHP-

secure) ifAdv® s ™(F,) is small for all forgerst, using reasonable resources. Similarly,

we say thatA€ preserves integrity of ciphertex{guTHC-secure) ifAdvi{‘gthC(Fc) is

small for all forgersF.. using reasonable resourcek.
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2.6.1 Relations Between Notions

Katz and Yung [47] and Bellare and Namprempre [10] prove that if an authenti-
cated encryption scheme preserves privacy under chosen-plaintext aHaoksc PA-
secure) and also preserves integrity of ciphertextstdc-secure), then it also pre-
serves privacy under chosen-ciphertext attaelra\(-cCA-secure). This important re-
sult means that it is sufficient for designers of authenticated encryption schemes to focus
solely on thePRIV-CPA and AUTHC security properties, even thougiRiv-CCA is the
principle privacy goal.

The formal statement of this result is below. To briefly interpret the following
theorem, the theorem shows that the advantage of an adversary attacking the chosen-
ciphertext privacy ofA€ is upper-bounded by the advantages of adversd&tiesd/,
using similar resources, in respectively breaking the chosen-plaintext privacy or break-
ing the authenticity ofA€. If we assume thatl€ preserves privacy under chosen plain-
text attack, therAdvﬂ{ig"Cpa(B) must necessarily be small (by definition). Similarly, if
we assume thatl& preserves integrity of ciphertexts, theadv3:"{(I) must also be
small. Consequently, if we assume th&f preserves privacy under chosen-plaintext
attacks and also preserves integrity of ciphertexts, then it must preserve privacy under

chosen-ciphertext attacks.

Theorem 2.6.2 (If an AE scheme isPRIV-CPA-secure andAUTHC -secure, then it is
alsoPRIV-cCA-secure [10, 47].)Let AE = (K, &, D) be an authenticated encryption
scheme. Given angRrIV-CCA adversaryd, we can construct amnuTHC adversary and

aPRIV-CPA adversaryB, both of which runA as a subroutine, such that
AdvPY Y A) < AdvPYPAB) + 2 - Adv3YT)
and/ and B use the same resourcesAasl

Bellare and Namprempre [10] prove other relations, e.g., that an AE scheme that

preserves privacy under chosen-ciphertext attaeksf CCA-secure) may not provide



19

integrity of ciphertexts (noAuTHC-secure). While this particular relationship is impor-
tant from a foundational perspective, it is less useful when trying to prove the security
of an authenticated encryption scheme. Bellare and Namprempre [10] also show that
AUTHP in combination withPRIV-CPA, does not implyPRIV-CCA. Because\UTHP and
PRIV-CPA do not implyPRIV-CCA, the AUTHP notion appears less frequently in the lit-

erature than theuTHC notion.

2.6.2 Definitional Variations

There are a number of variations to the definitions presented above. Rogaway,
Bellare, and Black [72] define a notion of chosen-plaintext privacy that is stronger than
the PRIV-CPA notion above, though we stress that the community still believes that the
standardPRIV-CPA notion captures an appropriate level of security; the notion in the
RBB paper [72] measures an adversary’s ability to distinguish between the encryption
of real messages from random strings of the same lengths as the real ciphertexts. Rog-
away [69] also introduces the notion of anthenticated encryption with associated data
(AEAD) scheme, which extends the definition of an authenticated encryption scheme to
allow for the scheme to authenticate more data than it encrypts; AEAD schemes are de-
sirable when processing network packets with headers that need to be authenticated but
not encrypted. Canetti and Krawczyk [25, 26, 52] also model privacy- and authenticity-
providing symmetric protocols as part of their universal composability secure channels

work. We introduce additional definitions later in this dissertation.

2.6.3 Generic Composition

Although the formal definitions of an authenticated encryption scheme only re-
cently appeared in the cryptographic literature [10, 11, 47], applied cryptographers have
been trying to create authenticated encryption schemes for years, and one of the most
popular design strategies has been to combine standard chosen-plaintext privacy-only

(PRIV-CPA-0Nly) encryption schemes with standard authenticity-oniy-gnly) mes-
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sage authentication schemes. For example, IPsec, SSL/TLS, and SSH all use this basic
approach. Bellare and Namprempre [10] and Krawczyk [52] were the first to formally
consider the natural approaches for creating authenticated encryption schemes from
standard encryption schemes and standard message authentication schemes as black
boxes. We summarize their results here, emphasizing the fact that although one can
construct a secure authenticated encryption scheme from a secure encryption scheme
and a secure MAC, simply combining a secure encryption scheme and a secure MAC is
not guaranteed to yield a secure authenticated encryption scheme.

Bellare and Namprempre [10] and Krawczyk [52] identified three paradigms for
constructing composition-based authenticated encryption schemes: Encrypt-and-MAC,
MAC-then-Encrypt, and Encrypt-then-MAC. These constructions are so-named because
of the order in which they run the underlying encryption and message authentication
algorithms. These types of constructions are called “generic composition” constructions
since they treat the underlying components generically, i.e., as black boxes.

For all of the following, letS€ = (K., £, D) be an encryption scheme and let
MA = (K,,,7,V) be a message authentication scheme. For simplicity, assumg that
never outputs the error codeand that all the tags output by are the same length, i.e.,

t-bit strings for some constant

Encrypt-and-MAC. GivenS€ and M A, the composite Encrypt-and-MAC construc-
tion A€ = (K, &, D) is defined as follows:

L o Algorithm Dk, ) (C)
Algorithm K Algorithm &k, r,,, (M)
. . ParseC' asC’||T
Ke — ’CC C/ — gKe (M)
s 5 M < DKE (Cl)
K, — K, 7 — Tk, (M)
UV <— VKm (M> T)
Return(K,, K,,,) C 7
If v=1returnM
ReturnC
Else returnlL

MAC-then-Encrypt. Given S€ and M A, the composite MAC-then-Encrypt con-

struction A€ = (K, €, D) is defined as follows:
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_ _ Algorithm D g, .\ (C)
Algorithm K Algorithm & (k. k., (M)
: ) M’ — Dy, (C)
K., — K, T — Tk, (M)
. ) ParselM’ asM |7
K, — K, C — Ek, (M||T)
v Vg, (M,T)

Return(K., K,) ReturnC
If v =1returnM

Else returnlL

Encrypt-then-MAC. Given S§€ and M A, the composite Encrypt-then-MAC con-

struction A€ = (K, &, D) is defined as follows:

_ o _ _ Algorithm Dk, .\ (C)
Algorithm Algorithm & (k. k., (M)
. ] ParseC asC’||7’
K., < K, C'— Ek (M)
S ) M — Dk (C")
K, — K, 7~ Tk, (C")
v Vg, (C', 7))
Return(K., K,) C |
If v=1returnM
ReturnC
Else returnL

The security of the generic composition constructions. Bellare and Namprempre

[10] presented the following important results about the above composition paradigms.
Krawczyk [52] presented similar results, but under slightly different notions of security.
We omit formal theorem statements since they are not necessary for understanding the

results.

Encrypt-and-MAC: Even if the underlying encryption and message authentication
components are respectivahriv-CPA- and UF-secure, the composite Encrypt-
and-MAC construction may fail to preserve privacy under chosen-plaintext attacks
and may fail to provide authenticity. That is, an Encrypt-and-MAC construction

built from secure components may fail to PRIV-CPA- andAUTHC-secure.

Even worse, for most popular MACs, and in particular for any secure stateless
and deterministic MAC like CBC-MAC or HMAC, the Encrypt-and-MAC con-

struction composed from that MAC can neverHraVv-CPA-secure, regardless of
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the choice of the underlying encryption scheme. The critical problem is that the
MAC may not be privacy-preserving and, therefore, thertagay leak informa-

tion about the original messagdé.

MAC-then-Encrypt: If the underlying encryption scheme PRIV-CPA-secure, then
the resulting MAC-then-Encrypt construction will also brIv-CPA-secure. On
the other hand, even if the underlying encryption and message authentication com-
ponents are respectiveBRIV-CPA-secure andJF-secure, the composite MAC-

then-Encrypt construction may fail to Ip&iv-CCA- andAUTHC-secure.

Encrypt-then-MAC: If the underlying encryption scheme pRIv-CPA-secure and if
the underlying message authentication schemerisecure, then the resulting
Encrypt-then-MAC construction will berIV-CPA-secure anduTHC-secure, and

thus alsaPRIV-CCA-secure by the relation discussed in Section 2.6.1.

Because of these results, Bellare and Namprempre and Krawczyk advise that future
composition-based authenticated encryption schemes should use the Encrypt-then-MAC
method instead of the Encrypt-and-MAC and MAC-then-Encrypt methods. In Chap-
ter 3, however, we show that it is possible to build a secure authenticated encryption
scheme based on the Encrypt-and-MAC paradigm; the trick is to deviate slightly from

the exact Encrypt-and-MAC construction shown above.

2.6.4 Encryption with Redundancy

In addition to the generic composition approach for creating authenticated encryp-
tion schemes, another popular approach in practice is to combine a standard privacy-only
encryption scheme with an unkeyed redundancy function. An example unkeyed redun-
dancy functions might be a 32-bit CRC or a cryptographic hash function like SHA-1,
and example protocols built according to this approach are the IEEE 802.11 WEP pro-
tocol and version 1.5 of the SSH protocol.

The encryption with unkeyed redundancy approach works as followsS&et

(Ke, £,D) be an encryption scheme and Kt: {0,1}* — {0,1}' be an unkeyed
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redundancy function. Then the resulting encryption with redundancy schifne
(K, &, D) composed front andS¢ is defined as:

N o Algorithm D (C)
Algorithm IC | Algorithm & (M)
$ M’ — DK<C)
K — K. h — H(M)
] ParselM’ asM ||h
ReturnkK C — Ex(M||h)
If H(M) = hreturnM
ReturnC
Else returnL

Unfortunately, the attacks in Bellovin [14] against CBC encryption with redundancy and
the attacks in Borisov, Goldberg, and Wagner [24] against WEP show that evénsf
provably PRIV-CPA-secure, the resulting encryption with redundancy construction may
fail to protect the authenticity of encapsulated messagesAiéemay fail to beAuTHC-
secure. This means that, in practice, the encryption with redundancy approach should
be avoided, at least if the redundancy function is unkeyed and if we are only assuming
the standar@RIVv-CPA property onS€.

An and Bellare [1] ask whether the security of the encryption with redundancy
approach changes if we assume different properties of the underlying encryption scheme
or the hash function. For example, what if we assume 8i¢ats not only PRIV-CPA-
secure, but alsBRrIv-cCA-secure? Or what if the redundancy function is keyed? For the
latter, we might also consider what happens if the redundancy function’s key is given to
the adversary. For the former, recall tha&rav-CCA-secure encryption scheme may not
be AuTHC-secure, which makes the question of whether an encryption with redundancy
scheme based onRrRIV-CCA-secure encryption schemeAs THC-secure interesting.

If the redundancy function is keyed but the adversary gets access to the redundancy
function’s key, or if the redundancy function is unkeyed, then An and Bellare prove that
even assumin@RrIVv-CCA-security of the underlying encryption scheme is insufficient

to guarante@uTHC-security of the resulting construction. If the redundancy function

is keyed and the key is kept secret, then the construction is similar to the MAC-then-
Encrypt construction in Section 2.6.3 and, for the same reasons, edhif PRIV-

CPA-secure, the resulting construction may fail toAwerHc-secure.
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On the positive side, i6€ is PRIV-CCA-secure, and if the keyed function satisfies
a weak notion of unforgeability, then the resulting construction will be bottHc- and
PRIV-CPA-secure, and therefore a secure authenticated encryption scheme. This positive
result, however, is mostly of foundational interest since, in practice, most basic encryp-
tion schemes from which we might consider creating authenticated encryption schemes
are notPRIV-CCA-secure, but onlyRIV-CPA-secure. As another positive result, An
and Bellare [1] introduce a specifiR1Vv-CPA-secure encryption scheme, based on CBC
mode encryption, that in combination with certain types of keyed redundancy functions

yields a secure authenticated encryption scheme.

2.6.5 Encode-then-Encipher

All of the provably-secure authenticated encryption mechanisms described thus
far have encryption algorithms that, on input a messageeturn a ciphertext’ where
the length ofC' is strictly larger than the length @ff. Unfortunately, when we wish to
add authenticated encryption to a legacy application, we may not be able to afford the
luxury of changing the packet format and increasing its length. Thus rises the question
of whether it is possible to achieve authenticated encryption while keeping the lengths
of the ciphertexts equal to the lengths of the plaintexts. In general the answer to this
guestion is no since any length-preserving invertible transformation with a stateless in-
verter must be a permutation, and therefore not privacy-preserving (encrypting the same
message twice will always produce the same output).

Bellare and Rogaway [11] step back and look at this problem from a different
perspective. Specifically, they ask what happens if the data is already “highly struc-
tured,” e.g., perhaps the portion of the legacy protocol that we wish to encrypt contains
a sequence number, a length field, application data, and a CRC of the preceding three
fields. Bellare and Rogaway show that in some casiesibssible to achieve authenti-
cated encryption of application data by applying a keyed length-preserving operation (a
cipher) to the structured strings containing application data. Bellare and Rogaway call

their approach to authenticated encryption the Encode-then-Encipher paradigm.
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The Encode-then-Encipher building blocks. Bellare and Rogaway model the struc-
tured portion of a legacy protocol as ancodingof the higher-level application data.
Specifically, anencoding schem&C = (Encode, Decode) is a pair ofunkeyedalgo-
rithms. The encoding algorithrincode, which may be stateful or randomized, on
input a messagd/ < {0,1}*, returns a stringl/’” € {0,1}*, and we write this as
M’ & Encode(M). We require that for allfy, M, € {0,1}*, if [My| = |M,], then
|Encode(M;)| = |Encode(M5)|. The encoding algorithm models the process of taking
application data and loading it into a structured packet like the one mentioned above.
The decoding algorithnbecode, which is stateless and deterministic, takes as input a
string M’ € {0, 1}* and returns either a stringy € {0, 1}* or the distinguished symbol
1, and we write this ad/ < Decode(M’). We require that for all/ € {0, 1}* and for
all states of and random tapes focode, Decode(Encode(M)) = M. The decoding
algorithm models the process of extracting application data from a structured packet.
We discuss the security goals for encoding schemes later.

The other component of an Encode-then-Encipher construction is a cipher, which
shares similar properties with block ciphers. &t KeySp, x {0,1}* — {0,1}*
be a function. The functiodF is acipher if for all K € KeySpr, Fx is a length-
preserving permutation of0, 1}*, and in this caseF;;' denotes the inverse ofy.
Let LPernmjM] denote the set of all length-preserving permutations on thév$et
{0,1}*. A cipherF is pseudorandom under chosen-ciphertext attacks if all adversaries
using reasonable resources have a hard time distinguishing between oracle access to
Fr and F.', where K is a randomly selected key, and oracle access to a randomly
selected element of LPeffi), 1}*] and its inverse. More formally, ifl is an adversary
with access to two oracles and that returns a bit, we definerre@advantage ofd in

breaking the pseudorandomness under chosen-ciphertext atta€kassof

AQVER(A) = Pr|K & KeySpy : A0 0 1]

e[ & LPermi(n 1] + 4070 1]

In the concrete setting [6], we say thatis pseudorandom under chosen-ciphertext
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attacksor isspRPrsecure if the magnitude of tleRPadvantage of all adversaries using
reasonable resources is small. Note thatazk cipherlike AES [28] is a special case

of a cipherin the sense that, for each key, the latter takes variable-length messages as
input, whereas the former only takes inputs of some fixed length, such as 128-bit strings.
Moreover, provablysPRPsecure (variable length) ciphers like ENME8] are built from

block ciphers.

The Encode-then-Encipher paradigm. Having defined what encoding schemes and
ciphers are, it now becomes possible to describe Bellare and Rogaway’s Encode-then-
Encipher paradigm. Lef: KeySp,r x {0,1}* — {0,1}* be a cipher. Le€C =
(Encode, Decode) be an encoding scheme. Then the composite authenticated encryption

schemeA€ = (K, £, D) composed fron€C and.F is defined as:

Algorithm Algorithm & i (M) Algorithm D (C)
K & KeySpr M’ & Encode(M) M' — FH(C)
ReturnK C & Fr(M) M < Decode(M')
ReturnC ReturnM

AlthoughD never explicitly returns. in the above construction, recall tHdécode(M")

may return.L.

Security of the Encode-then-Encipher paradigm. Bellare and Rogaway prove that
if F is sprrsecure and i€C hascollision-resistanceandlow density which we de-
scribe below, then the composite construction built frBrand£C is a secure authenti-
cated encryption scheme. Since there exist provablrsecure cipher§, like the re-
cent EME [38], and since natural protocol constructions have structured encodings with
collision-resistance and low density, Bellare and Rogaway'’s results provide a means to
provably add authenticated encryption to legacy protocols that cannot tolerate any addi-
tional packet expansion.

It remains to define whdbw densityand collision-resistancenean. LetfC =

(Encode, Decode) be an encoding scheme. The schefideis e-colliding if for any
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numberq and any (even computationally unbounded) advershwho asksy queries

to anEncode oracle, the probability that two of these queries produce the same valid
response is at mostq). In the concrete setting, we say ti& is collision-resistant

if e(q) is small for all reasonable values @f Collision-resistance is easily achieved if
the encoding algorithm includes a sequence number or large random string in its output.
The schemé&( is §-dense if for all positive integers, the probability over a randomly
selected stringl/’ € {0,1}" thatDecode(M’) # L is less thanj (note that here is

a constant, but aboweis a function). In the concrete setting, we say tBdthaslow
densityif 4 is small. Low density is easily achieved, for example, by including a CRC or
length field in the encoding output and havibgcode return_L if one of these fields is
incorrect (or, if we restrict the inputs &hcode and the composite construction to only
valid parity-adjusted ASCII strings, haviigecode return L for any string that is not a
valid ASCII sequence).

2.6.6 Block Cipher-Based Constructions

All of the above approaches for constructing provably secure authenticated en-
cryption schemes take provably secure components, like encryption schemes, MACs,
or ciphers, and combine or apply them in a way that yields a provably secure authen-
ticated encryption scheme. In turn, these provably secure components are often built
from one of cryptography’s most basic building blocks, the block cipher. Rather than
build authenticated encryption schemes from objects that use block ciphers, from a per-
formance perspective it would seem better to build provably secure authenticated en-
cryption schemes directly from block ciphers.

There are two types of provably secure block cipher-based authenticated encryp-
tion schemes. The first type of construction makes a single pass through the data, apply-
ing approximately one block cipher operation per block of the plaintext message. The
second type of construction is closer to the generic composition constructions, making
two passes through the data, but making optimizations along the way. From a technical

perspective, the difference between the two types may seem rather artificial since most
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two-pass constructions can be converted into single-pass constructions through paral-
lelization or interleaving and since, depending on the metric used, the performance of

the second class can rival the performance of single-pass constructions. The difference
between the two classes of constructions is, however, especially critical in one arena,

namely patents. Multiple parties claim patents on the first class of constructions, but no

party claims patents on the second class.

Elements of the first class include RPC and RPC$ [47], IACBC and IAPM [44],
XCBC and XECB [35], OCB [72], and AEM [70]. Elements of the latter class include
CCM [82], EAX [13], CWC [50], and GCM [60]. All of these constructions are secure
assuming that the underlying block cipher is a secure pseudorandom permutation under
chosen-ciphertext attacks. IAPM, XECB, OCB, AEM, CWC, and GCM are also all data
parallelizable, which makes them attractive in high speed hardware where performance

is critical. We discuss the design of CWC in Section 5.



3 The Secure Shell Authenticated

Encryption Scheme

Bellare and Namprempre [10] and Krawczyk [52] proved that the Encrypt-and-
MAC approach for combining a secure, traditional privacy-omgIi{-cpPa-only) en-
cryption scheme with a secure, stateless and deterministic integritywomigr{ly) mes-
sage authentication scheme wiltveryield a secure authenticated encryption scheme;
recall also Section 2.6.3. Turning to modern cryptographic protocols, we find that the au-
thenticated encryption core of the Secure Shell (SSH) protocol is, however, based on this
insecure Encrypt-and-MAC paradigm. Despite Bellare-Namprempre’s and Krawczyk’s
negative result, we are nevertheless abl@ruve that the overall design of the SSH
authenticated encryption schemeécureunder reasonable assumptions.

This apparent contradiction arises not from any problem with the theoretical re-
sults in the Bellare-Namprempre and Krawczyk works, but from the fact that when real
protocols like SSH do naxactly matchihe idealized models on which they are based,
the theoretical results about these idealized models are no longer applicable. This situa-
tion calls for a broader theory for the construction of authenticated encryption schemes
from traditional encryption schemes and MACs — a theory that can capture the com-
plexities of real-world authenticated encryption schemes, like the SSH authenticated

encryption core. We initiate such a theory in this chapter through our introduction and

An earlier version of the material in this chapter appears in the ACM Transactions on Information
and System Security [8], copyright the ACM.
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analysis of theEncode-then-Encrypt-and-MA@Garadigm, and push these generaliza-
tions further in Chapter 4.

As an aside, our analysis of the SSH authenticated encryption scheme did uncover
one privacy defect. We stress that this defect is not endemic of the overall design of the
SSH authenticated encryption scheme, but is instead due to a poor design choice on the
part of the protocol designers: the original specification of the SSH protocol [87] em-
ploys aninsecureunderlying encryption scheme. We propose fixes to the SSH protocol
that work within the constraints of our provable security results and in particular that do
not require changing SSH's overall Encrypt-and-MAC-based approach. Our preferred
fixes are now defined as an RFC [9] (standard track document) and are implemented in

the OpensSSH application.

3.1 Overview

Conceived as a secure alternative to traditional Unix toolsrbke andrcp , the
IETF standardization bodySecure Shell[SSH protocol (version 2.0) has become one
of the most popular and widely used cryptographic protocols on the Internet. Because of
its popularity and because of the insecurity of programsnske, rcp , andtelnet
a number of institutions now only allow users to remotely access their facilities us-
ing SSH. The cryptographic heart of the SSH protocol isBitsary Packet Protocol
(BPP) [87] — the BPP is responsible for the underlying authenticated encryption of all
messages sent between two parties involved in an SSH connection.

Although others have discussed specific properties of the SSH BPP, e.g., problems
with not using a MAC [79] or problems with SSH’s variant of CBC mode [29], to
the best of our knowledge no one has performed a rigorous, provable security-based
analysis of the entire SSH BPP authenticated encryption mechanism. Our goal was thus
to thoroughly analyze the SSH BPP authenticated encryption scheme and, in the event
that we found any problems, to present provably-secure fixes to the protocol. Further

motivating our analysis is the fact that the SSH BPP is based on the insecure Encrypt-
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and-MAC paradigm.

In order for our fixes to be as useful as possible to the Internet community, when
developing our fixes we considered both (1) provable security and (2) efficiency. Addi-
tionally, since retroactively modifying existing implementations is often very expensive,
we required that our suggested modifications (3) not significantly alter the current SSH
specification. For the last point, we note that the creators of SSH had the foresight to
design the SSH BPP in a modular way: in particular, it is relatively “easy” to change the

SSH BPP’s underlying encryption and message authentication modules.

Analysis and provably secure recommendations. The SSH BPP specification states
that SSH implementations should use CBC mode encryption [30] with chained initial-
ization vectors (IVs); i.e., the IV used when encrypting a message should be the last
block of the previous ciphertext. Unfortunately, CBC mode encryption with chained
IVs is notPRIV-CPA-secure [67], and this insecurity extends to SSH; this extension was
also reported by Dai [29].

Since CBC mode encryption with chained IVs is metiv-CPA-secure, but CBC
mode with random IVs i®RIV-CPA-secure [4], a natural fix to the SSH protocol might
be to replace the use of chained-1V CBC mode with randomized CBC mode. Unfortu-
nately, we show that doing so is not sufficient. In particular, since the SSH specification
does not require the padding to be random, the resulting SSH implementation may be
vulnerable to a rather serious reaction-attack, i.e., a privacy attack that works by modi-
fying a sender’s ciphertexts and observing the receiver’s response.

We next give several secure fixes to the SSH authenticated encryption mechanism.
For example, we suggest using randomized CBC mode encryption; the difference be-
tween this suggestion and the suggestion in the above paragraph is that we require at
least one full block of random padding (this could, however, result in having to enci-
pher more blocks than the previous SSH alternative). We also suggest another CBC
variant that does not require additional random padding: CBC mode where the IV is

generated by enciphering a counter with a different key. As an additional alternative,
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we suggest replacing the underlying encryption scheme with a variant of counter (CTR)
mode [32, 55] in which both the sender and receiver maintain a copy of the counter. We
also present a framework within which to analyze other possible replacements.

One important advantage of these fixes over the current SSH specification is prov-
able security. Making reasonable assumptions, e.g., that SSH’s underlying block ci-
pher isPRP-secure, we show that our alternatives will preserve privacy against adaptive
chosen-plaintext and adaptive chosen-ciphertext attacks. We also show that our alterna-
tives will resist forgery, replay, and out-of-order delivery attacks. Finally, we argue that
our alternatives, and especially the latter two, also satisfy the other two requirements

listed above, namely efficiency and ease of modification.

Theoretical contributions. The previous notions of privacyPRIV-CPA and PRIV-

CCA; Section 2.4 and [4]) and integrita¢(THP and AUTHC; Section 2.6 and [10, 11,

47]) for authenticated encryption only address encryption schemes with stateless de-
cryption algorithms. The SSH BPP decryption algorithm is, however, stateful. Moti-
vated by a desire to analyze the SSH BPP authenticated encryption scheme, and by the
desire to capture the potential “power” of stateful decryption algorithms, we extend the
previous notions of privacy and integrity to encryption schemes with stateful decryption
algorithms. The aforementioned “power” refers to the fact that if a scheme meets our
new notions of security, then, in addition to satisfying the existing notions of privacy
and integrity, the scheme will be secure against replay attacks and out-of-order delivery
attacks — attacks not captured under the previous models.

One alternative approach to our analysis would have been to model the SSH BPP
as a “secure channel,” as defined in [25] and characterized in [62], since the notion of se-
cure channels can be applied to encryption schemes with stateful decryption algorithms.
We point out that the combination of our notions is stronger than the notion of secure
channels: combining a secure key agreement protocol with an authenticated encryption
scheme that meets both of our notions will yield a secure channel. Consequently, since

our fixes to the SSH BPP provably meet our strong notions, the resulting SSH BPP is
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also a secure channel.

We acknowledge that one potential disadvantage of our new notions of security is
that they may be “too strong” and that some applications may not require the strength
associated with our notions; see [25, 52] for reasons. For those applications, the notion
of a secure channel might be more appropriate, as might one of the other notions that
we introduce in Chapter 4. Our notions are, however, more appropriate for applications
like SSH that do require a higher level of protection such as protection against out-of-
order delivery attacks. Finally, we note that side-channel attacks such as those exploiting
information leaked through the length of packets or the interval of time between packets
(e.q., [27, 76]) are not captured by our security models nor any other provable security

models that we are aware of.

Outline. After describing the SSH Binary Packet Protocol in Section 3.2, we present
a simple attack against the current SSH specification in Section 3.3. In Section 3.4,
we show that “fixing” the SSH BPP in the natural way may result in an insecure pro-
tocol. Motivated by the lessons we learned from Sections 3.3 and 3.4, we then present
provably-secure fixes to the SSH Binary Packet Protocol in Section 3.5. In Sections 3.6—
3.8 we present our provable security results. Finally, in Section 3.9, we discuss our re-
sults and make recommendations to the SSH and applied cryptographic communities.
We discuss the significance of our earlier attacks and the advantages and disadvantages
of switching to our proposed modifications. We also discuss the possibility of changing
the SSH BPP from an Encrypt-and-MAC-based construction to an Encrypt-then-MAC-
based construction and the possibility of modifying SSH to use a dedicated authenticated
encryption scheme such as XCBC [35] or OCB [72].

3.2 The SSH Binary Packet Protocol (SSH BPP)

The SSH Binary Packet Protocol [87] is responsible for encrypting and authenti-

cating all messages between two parties involved in an SSH session. Before beginning
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Figure 3.1 The SSH authenticated encryption scheme.

the authenticated encryption portion of an SSH session, a client and a server first agree
upon a set of shared symmetric keys (a different set for each direction of a connection).
The client and the server also agree upon which encryption and message authentication
schemes they wish to use. All of the encryption schemes recommended by the SSH
specification [87] are based on CBC mode encryption [30], and all of the recommended
message authentication schemes are based on HMAC [53].

Figure 3.1 shows how the SSH authenticated encryption scheme works at a high
level. Given apayloadmessage (in octets), the SSH BPP encodes that message into
an encoded packet consisting of the following fields: a four-octet packet length field
containing the length of the remaining encoded packet (in octets), a one-octet padding
length field, the payload message, and (possibly random) padding. The length of the
total packet must be a multiple of the underlying block cipher’s block length, and the
padding must be at least four octets long. Although the SSH specification allows up

to 255 octets of padding per encoded packet, both implementations that we evalu-
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ated,openssh-2.9p2 and SSH Communicationssh-3.0.1 , use the minimum
padding necessary. The resulting ciphertext is the concatenation of the encryption of
the above encoded packet and the MAC of the above encoded packet prepended with a
32-bit counter. In the following discussions, we try to make clear whether we are refer-
ring to theintermediate ciphertexbutput by the underlying encryption scheme or the
ciphertext packefthe concatenation of the intermediate ciphertext and the MAC tag)
output by the SSH BPP.

Decryption is defined in a natural way: the receiver first decrypts the intermediate
ciphertext portion of a ciphertext to get an encoded packet. The receiver then prepends
a 32-bit counter, which it also maintains, to the encoded packet and determines whether
the received MAC tag is valid. If so, the decryptor removes the payload from the en-
coded packet and delivers the payload to the user (or a higher-level protocol). If the
MAC verification fails, the connection is terminated.

The SSH specification recommends the use of CBC mode with inter-packet chain-
ing. This means that, when encrypting an encoded payload, the sender uses as the ini-
tialization vector (IV) either the last block of the immediately preceding ciphertext or,
when encrypting the first message, an IV computed during the SSH key agreement pro-
tocol. We refer to the current instantiation of the SSH protocdb&8l-1PC, or SSH

with inter-packet chaining.

3.3 Attacking the Standard Implementation of SSH

There is a simple chosen-plaintext privacy attack agea®t-IPC; this attack
was also reported by Dai [29]. The problem wHSH-IPC is that an attacker will
know the IV for the next message to be encrypted before the next message is actually
encrypted. This means that if an attacker can control the entire first block of the input
into SSH-IPC’s underlying CBC encryption scheme, it will be able to control the corre-
sponding input to the underlying block cipher. Since a block cipher is deterministic, an

attacker could use this to glean information about a previously encrypted message (by
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looking to see if some value was ever the input to a previous block cipher invocation).

We describe the attack in slightly more detail. We assume for now that an adver-
sary can control the entire first block of an encoded packet. Suppose that an adversary
has a guesé&; of the first encoded block of th#h packet, and le€’; be the last CBC
block of thei — 1st intermediate ciphertext. Since we are conside8&ii-IPC, the
block C; was used as the IV when encrypting tile packet. LetC; be the first block
of theth ciphertext. And let’; be the last CBC block of the underlying ciphertext the
user just output (i.e., the user will uég as its next IV). If the adversary is able to force
the user to encrypt the bloak; ® C3 @& G, where® is the XOR operation, and if the
resulting block i”;, the adversary knows its guess of téwas correct; otherwise the
adversary knows its guess was incorrect.

A small complication arises when mounting this attack ag&®t-1IPC because
the attacker cannot control the entire first block of an encoded message (because the
first 40 bits of an encoded packet contain metadata). This means that an attacker may
not be able to force a user’s underlying CBC scheme to encrypt the blpekCs5 @
G. An attacker will, however, be able to mount this attack'ifandCs are identical
in the bits that the attacker cannot control. Ldie the block length (in bits) of the
underlying block cipher. Since an attacker can control approximéiélys) bits of the
padding length field and approximatel§ — 1g(1/8) bits of the packet length field of
an encoded message (SSH implementations are only required to support packets with
payloads containing less thal® octets and all packets must be padded to a multiple of
the block length), an attacker could mount a variant of the above attack by waiting for
a collision on approximatel5 bits (but the adversary’s last encryption request may be

up to2'% octets long).

3.4 Attacking a Natural “Fix”

The problem witi'SSH-IPC in Section 3.3 stems from the fact that its underlying

encryption scheme is itself vulnerable to chosen-plaintext attacks, i.e., FRNOTCPA-
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secure. A logical attempt to fix the protocol might therefore be to replace the underlying
encryption scheme with randomized CBC mode, i.e., CBC mode in which a new random
IV is chosen for each message; this new IV must also be sent with the ciphertext. Ran-
domized CBC mode is provabBRIVv-CPA-secure assuming reasonable properties of the
underlying block cipher [4]. We refer to an SSH implementation that uses randomized
CBC mode a$SSH-NPC, or SSH with no packet chaining.

One can prove th&SH-NPC preserves privacy against chosen-plaintext attacks
and integrity of plaintexts assuming that a user does nos&$¢-NPC to encrypt more
than23? messages with any given key. This proof holds even if the paddings used in
encoded packets are not random, a situation allowed by the SSH specification. As the
following attack shows, however, even thou§8H-NPC with non-random padding
preserves privacy against chosen-plaintexts attacks, it does not preserve privacy against

chosen-ciphertext attacks.

Reaction attack againstSSH-NPC. The SSH specification encourages, although
does not require, implementations to use random padding. Unfortunately, when the
padding value is fixed, e.g., all zer&&SH-NPC is susceptible to an easily-mountable
reaction attack. Furthermore, one can extend this attack to the case where the padding
values are not fixed but short and not hard to predict: an attacker can simply wait until
the predicted padding values collide and then use the predicted value to successfully
mount an attack. The attack we describe here is similar in spirit to Wagner’s attack
in [14] and to the attacks in [52, 79]. The term “reaction attack” comes from [39].

The attack proceeds roughly as follows: an attacker intercepts and prevents the
delivery of two ciphertexts sent by one party involved in an SSH connection. The adver-
sary then makes a guess about the relationship between the two plaintexts corresponding
to the two intercepted ciphertexts. The adversary then uses that guess and those two ci-
phertexts to create a new “ciphertext,” which the adversary then sends to the other party
involved in the SSH session. Recall that if the second party does not accept the doctored

ciphertext, the connection will be terminated. Thus, by observing the second party’s
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reaction, an adversary will learn whether its guess was correct. Intuitively, this attack
succeeds because an attacker can modify the ciphertext in such a way that if its guess
was correct, the ciphertext that the second party receives will verify. If its guess was
incorrect, with high probability the ciphertext will not verify.

We now describe the attack in more detail. As before,dletienote thexor
operation, let| denote the concatenation of two strings, and tetnote the block length
(in bits) of the block cipher thaBSH-NPC uses in CBC mode. Suppose a user uses
SSH-NPC to encrypt two equal-length messadésand )/, with lengths at most—40
(or messages that are identical after thei 40-th bit). For simplicity of exposition,
let us assume that the two messages are exaety0 bits long. LetP;; and P;; be
the first and the second block of the encoded packet corresponding to the paglpad
respectively. Similarly, lef’; and P», be the first and the second block of the encoded
packets corresponding t/s, respectively. The block#&;; and P,; correspond to the
packet length, the padding length, and the payload fields of the two encoded packets,
and the blocksP; and P, correspond to the padding fields. Since we are assuming
fixed padding (such as padding with all zeros), the padding blétkand P,, will be
equal.

When SSH-NPC'’s underlying CBC mode encryption scheme encrypts the first
encoded packe®,, || Py, it will generate a ciphertext; = C,|/C11||C12. Additionally,
SSH-NPC'’s underlying MAC will generate a tag, (the MAC being computed over
the concatenation of a counter amy || P;2). Similarly, SSH-NPC will generate the
CBC ciphertextCy||Cs: ||C22 and the MAC tagr, for the encoded packét,; || P. The
two blocksC'y andCs, correspond to the underlying CBC mode’s random initialization
vectors.

Now assume that the receiver has not yet received the two ciphertexts correspond-
ing to M; and M. In particular, this means that the recipient’s counter is identical to
the counter that the sender used when she encrypted the first message. Suppose that
the attacker knows eithe¥/; or M, and wants to verify a guess of the other or that

the attacker wants to verify a guess of the relationship betwéeand M,. Let X be
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the valueP;; & Py & Cy. The attacker then asks the receiver to decrypt the message
X||Ca1||Ca2||m1. Now recall that the block#’; and P,; both begin with the samé0

bits of header information and that they respectively end/inand M,. Thus, if the
attacker’s guess is correct, thef|Cy | Cao Will decrypt, viaSSH-NPC’s underlying

CBC scheme, td’ || P12, the MAC tagr; will verify, and the decryptor will accept the
message. However, if the attacker’s guess is incorfégt)’s; ||Coo Will not decrypt to

Py || P12, the tagr will not verify (unless the attacker also succeeds in breaking the se-
curity of the underlying MAC scheme), and tB&H-NPC connection will terminate.

The adversary, by watching the recipients reaction, therefore learns information about
the plaintexts the sender is encrypting.

There are two aspects of this attack that make it easy to mount. First, this attack
only requires modifying encrypted packets; no chosen-plaintexts are required. Second,
an attacker can learn whether its guess is correct simply by watching the recipient’s re-
sponse. These observations mean that all an attacker needs to perform this attack is the
ability to monitor, prevent the delivery of, and inject messages in the encrypted com-
munications between two parties. Similar to Wagner’s attack in [14], an adversary can
use this attack to, for example, infer the characters that a user types over an interactive
SSH-NPC session. Of course, once the attacker makes an incorrect @#4sNPC
terminates the connection. Nonetheless, an attacker might still be able to repeat its attack

after the user begins a new session.

Information leakage, replay, and out-of-order delivery attacks. Although the SSH

draft suggests that an SSH session rekey after every gigabyte of transmitted data, doing
so is not required. We caution that if &&&H-NPC (or SSH-IPC) session is not rekeyed
frequently enough, then the session will be vulnerable to a number of other attacks.
Recall that the SSH binary packet protocol includég-dit counter in each message to

be MACed. These attacks make use of the fact that if the SSH connection is not rekeyed
frequently enough, then the counter will begin to repeat.

The simple observation exploited by the information leakage attack is the follow-
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ing. Recall that SSH generates each MAC using the encoded payload prepended with
a counter as an input and then appends the MAC to the intermediate ciphertext to gen-
erate a ciphertext packet. As a result, if the underlying MAC algorithm is stateless and
deterministic (which many MACs are), then allowing the counter to repeat will leak in-
formation about a user’s plaintexts (through the MAC). We present the attacks in more
details for completeness. Suppose that the underlying message authentication scheme
is stateless and deterministic and that the padding is some fixed value. Suppose that an
attackerA sees a ciphertext with a MAC tagand suspects that the underlying payload

is M. To verify its guessA waits for the sender to encrypt?> — 1 more packets and

then requests the sender to encrypt the payldad.et 7’ be the MAC tag returned in re-
sponse to the request. Afs guess is correct, ther will equal 7. Otherwiser’ £ 7 with

very high probability. The attack can also be used to break the privaBgbENPC
whenSSH-NPC uses random padding. In particular, if the fiXét messages that a user

tags result in encoded packets that use the minimwutets of random padding, then

an attacker capable of forcing a user to tag an addititfathosen-plaintexts will be

able to learn information about the user’s inittdt messages. The property used in this
attack, namely that tagging with a deterministic MAC leaks information about plain-
texts, was also exploited by Bellare and Namprempre [10] and Krawczyk [52] when
showing the generic insecurity of all Encrypt-and-MAC constructions using stateless
and deterministic MACs; recall also Section 2.6.3.

If the counter is allowed to repe&@SH-NPC also becomes vulnerable to replay
attacks and out-of-order delivery attacks. For replay attacks, once the receiver has de-
crypted23? messages, an attacker will be able to convince the receiver to re-accept a
previously received message. For out-of-order delivery attacks, after the sender has en-
crypted more tha??? messages, an attacker will be able to modify the order in which

the messages are decrypted.
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3.5 Secure Fixes to SSH

We now briefly describe our new SSH instantiations. We show in Section 3.8 that
these new alternatives provably meet our strongest notions of security. That is, assum-
ing that these fixes are not used to encrypt more #¥arpackets between rekeying,
these new constructions will resist chosen-plaintext and chosen-ciphertext privacy at-
tacks as well as forgery, replay, and out-of-order delivery attacks. Security above
is not guaranteed because, aftér packets are encrypted, the SSH BPP’s 32-bit inter-
nal counter will begin to wrap. We will compare these instantiations of SSH to others
and discuss additional possible modifications, including extending the length of SSH’s

internal counter, in Section 3.9.

SSH via randomized CBC mode with random padding:SSH-$NPC. Recall that

the attack again§SH-NPC involves creating a new intermediate ciphertext that would
decrypt to an encoded packet that the user previously encrypted (assuming the attacker’s
guess was correct). With this in mind, we propose a provably secure SSH instantiation
(SSH-$NPC) that uses randomized CBC mode for the underlying encryption scheme
and that requires that encoded packets use random padding. We require that the random
padding be chosen anew for each encryption and that the random padding occupy at least
one full block of the encoded packet. This conforms to the current SSH specification
since the latter allows padding up to 255 octets.

The intuition behind the security of this alternative and the reason that this alter-
native resists the attack in Section 3.4 is the following. Since the random padding is not
sent in the clear, an attacker will not know what the random padding is and will not be
able to forge a ciphertext that will decrypt to that previously encoded message (with the
same random padding). Furthermore, any other attack ag®t$t$NPC would trans-
late into an attack against the underlying CBC mode encryption scheme, the underlying

MAC, the encoding scheme, or the underlying block cipher.
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SSH via CBC mode with CTR generated IVs:SSH-CTRIV-CBC. Instead of using

CBC mode with a random 1V, it is also possible to generate a “random-looking” IV by
encrypting a counter with a different key; we call this alterna®&H-CTRIV-CBC.

Unlike SSH-$NPC, for SSH-CTRIV-CBC we donot require a full block of padding

and we do not require the padding to be random. The reason we do not require random
padding for this alternative is because the decryptor is stateful and that any modification
to an underlying CBC ciphertext will, with probability; change the encoded packet.
This alternative is more attractive th&$H-$NPC because it does not increase the size

of ciphertexts compared t8SH-IPC, but it does require one additional block cipher

application compared t8SH-IPC.

SSH via CTR mode with stateful decryption: SSH-CTR. SSH-CTR uses standard

CTR mode as the underlying encryption scheme with one modification: both the sender
and the receiver maintain the counters themselves, rather than transmitting them as part
of the ciphertexts. We refer to this variant of CTR modeCaRR mode with stateful
decryption We point out that this CTR mode variant offers the same level of chosen-
plaintext privacy as standard CTR mode, the security of which was shown in [4]. As with
SSH-CTRIV-CBC, SSH-CTR does not require additional padding and does not require
the padding to be random. Furthermore, uni#&®H-$NPC and SSH-CTRIV-CBC,
SSH-CTR requires the same number of block cipher invocationSSid-1PC.

Other possibilities. There are numerous other possible fixes to the SSH BPP. Rather
than enumerate all possible fixes to the SSH BPP, in Sections 3.6-3.8 we discuss how
one can use our general proof techniques to prove the security of other fixes (assuming,
of course, that the other fixes are indeed secure). For example, another fix of interest
might beSSH-EIV-CBC, or SSH where the underlying encryption scheme is replaced
by a CBC variant in which the 1V is thenciphermenof the last block of the previous

ciphertext.
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3.6 Definitions and the Encode-then-E&M Paradigm

Analyzing SSH via a new paradigm. An SSH ciphertext is the concatenation of the
encryption and the MAC of (some encodings of) an underlying payload message. At first
glance this seems to fall into the Encrypt-and-MAC method of composing an encryption
scheme with a MAC. As pointed out in [10, 52] and summarized in Section 2.6.3, this
particular composition methodmotgenerically secure: security under standard notions

of the encryption and MAC schemes used as building blocks under this composition
method is not enough to guarantee the privacy of the payload. Naturally, this raises a
guestion regarding the security of the general SSH construction.

We show here that, with an appropriate encoding method, such as the method
used in SSH, an Encrypt-and-MAC-based scheme can actually be secure. In fact, our
analysis models SSH more generally as an authenticated encryption scheme constructed
via a paradigm we calEncode-then-E&Mto encrypt a message, first encode it (as SSH
does), then encrypt and MAC the encoded packets. Our analysis is done in a general way
in order to better ensure that the definitions and techniques we develop will be useful to
the evaluators of other SSH-like schemes.

As described in Section 3.2, an SSH BPP encoded message (for encryption) con-
sists of a packet length field, a padding length field, payload data, and padding. An
encoded message (for MACing) is identical to an encoded message for encryption ex-

cept that it is prepended with a 32-bit counter.

Encoding schemes. We model our use of encodings after [11] as summarized in Sec-
tion 2.6.5. When we refer to encoding schemes in this chapter, we mean the type of
encoding schemes that we are about to define, which share similar properties with but
are different than the encodings schemes defined in Section 2.6.5.

An “encoding” scheme is amnkeyedransformation. We use encodings to capture
the process of loading a payload message into a packet for encryption and a packet for
message authentication (recall that the encoded packet that the SSH BPP encrypts is
slightly different than the encoded packet that the SSH BPP MACs). Syntactically,
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anencoding schem&C = (Encode, Decode) consists of an encoding algorithm and a
decoding algorithm. The encoding algoritincode, which may be both randomized
and stateful, takes as input a messagi@nd returns a pair of messaged., M;). The
decoding algorithnDecode, which may also be stateful but not randomized, takes as
input a messagé/, and returns a pair of messaged, M), or (L, L) on error. The
following consistency requirement must be met. Consider any two messagks
where|M| = |M'|. Let (M,,M,) < Encode(M) for Encode in some state, and let
(M!, M) & Encode(M’) for Encode is in some (possibly different) state. We require
that| M. | = |M!| and|M,| = |M/|. Furthermore, suppose that bdthcode andDecode
are in their initial states. For any sequence of messafjes/?, ... andfori = 1,2, ...,

let (M!, M}) = Encode(M"), and then le{m?, m}) = Decode(M!). We require that

M' = m' and thatM; = m for all i.

Encryption schemes with stateful decryption. As in Chapter 2, aymmetric encryp-

tion schemeor authenticated encryption scher8¢ = (K, £, D) consists of three al-
gorithms. The randomized key generation algorithm returns alkeyhe encryption
algorithm, which may be both randomized and stateful, takedkeyd a plaintext and
returns a ciphertext. Motivated by SSH, we redefine the notion of an encryption scheme
to allow the decryption algorithm to be stateful, but not randomized; the decryption al-
gorithm takes keyx and a ciphertext and returns either a plaintext or a special symbol
L indicating failure. In this chapter the encryption algoritémever returnsl..

Consider the interaction between an encryptor and a decryptor. If at any point in
time the sequence of inputs to the decryptor is not a prefix of the sequence of outputs
of the encryptor, then we say that the encryption and decryption processes have become
out-of-synand refer to the decryption input at that point in time as the dustof-sync
input. The usual correctness condition, which said thét i produced by encrypting
M under K then decryptingC' under K yields M, is replaced with a less stringent
condition requiring only that decryption succeed when the encryption and decryption

processes are in-sync. More precisely, the following must be true for anykagd
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plaintexts M, Ms, .... Suppose that bothx and Dy are in their initial states. For

i=1,2,...,letC; = Ex(M;) and letM! = Dk (C;). It must be that\/; = M/ for all 4.

Message authentication schemes.In this chapter, we use the same definition of a
message authentication scheme as in Section 2.5, but require that the tags output by the

tagging algorithm all have the same length in bits.

Encode-then-E&M paradigm. Now consider an encoding scheme, and Iét, M,)

be the encoding of some messdde To generate a ciphertext far using the Encode-
then-E&M construction, the messagé. is encrypted with an underlying encryption
scheme, the messagé, is MACed with an underlying MAC algorithm, and the re-
sulting two values (intermediate ciphertext and MAC) are concatenated to produce the
final ciphertext. The composite decryption procedure is similar except the way errors
(e.g., decoding problems or tag verification failures) are handled. We take the approach
used in SSH whereby, if a decryption fails, the composite decryption algorithm enters
a “halting state.” This approach is perhaps the most intuitive since, upon detecting a
chosen-ciphertext attack, the decryption algorithm prevents all subsequent ciphertexts
from being decrypted. We note, however, that this also makes the decryptor vulnera-
ble to a denial-of-service-type attack. Construction 3.6.1 shows the Encode-then-E&M

composition method in details.

Construction 3.6.1 (Encode-then-E&M.) Let £C = (Encode, Decode), S€ = (K., &,

D), and M A = (K;,7,V) respectively be encoding, encryption, and message authen-
tication schemes with compatible message spaces (the output&iiroie are suitable
inputs to€ and7). Let all states initially be. We associate to these schemes a com-

positeEncode-then-E&M schen®€ = (K, £, D) as follows:
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Algorithm Dk, x,)(C)

Algorithm
If st =1 then returnlL

K, &K K, & K,

If cannot pars&’ thenst «— L ; return_L
Return(K., K;)

ParseC aso||7; M. < Dk, (o)

If M, =1 thenst «+—_L ; returnL
(M, M) < Decode(M,)

If M =1 thenst «—_L ;return_L

Algorithm & k., e,y (M)
(M., M) < Encode(M)
o i gKe(Me) y T <i TKt(Mt)

v Vi, (M, 1)
C—o|r

If v =0thenst —_L ; return_L
ReturnC

ReturnM

Although only D explicitly maintains state in the above pseudocode, the underlying

encoding, encryption, and MAC schemes may also maintain slate.

Security notions for encryption schemes with stateful decryption. A secure au-
thenticated encryption schens& = (K, £, D) is one that preserves both privacy and
integrity. The standard notion of indistinguishability (privacy) under chosen-plaintext
attacks PRIV-CPA) is as defined in Section 2.4, i.e., is unmodified even though we
changed the definition of an encryption scheme to allow for a stateful decryption al-
gorithm.

For our new notion of chosen-ciphertext privacy for stateful decryptirai-
SFCCA), we consider a game in which an advers&ris given access to an LR encryp-
tion oracle€x (LR (-, -, b)) and a decryption oracl®x(-). As long asB’s queries to
Dk(-) are in-sync with the responses frafg (LR (-, -, b)), the decryption oracle per-
forms the decryption (and updates its internal state) but does not return a respsnse to
Once B makes an out-of-sync query 1 (-), the decryption oracle returns the output
of the decryption. We definddv2y A B) as the probability thaB returns1 when
b = 1 minus the probability thaB returnsl whenb = 0. The newPRIV-SFCCA no-

tion implies the previous notion of indistinguishability under chosen-ciphertext attacks,

PRIV-CCA. Note that, without allowing an adversary to query the decryption oracle with
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in-sync ciphertexts (e.g., in the standa®Iv-CCA setting), we would not be able to
model attacks in which the adversary attacks a stateful decryptor after the latter had
decrypted a number of legitimate ciphertexts (perhaps because of some weakness re-
lated to the state of the decryptor at that time). A more formal presentation of this new

definition follows.

Definition 3.6.2 (Privacy for symmetric encryption schemes with stateful decryp-
tion.) LetS€ = (K, &, D) be a symmetric encryption scheme. L&t be an adver-
sary that has access to a left-or-right encryption or&gleCR (-, -, b)) and a decryption
oracleDg(-). The adversary returns a bit. Consider the experiments below, where

b e {0,1}is abit.

ExperimentExpy s A

sfcca
K<—/C' 1+ 0; 7« 0; phase +— 0
Run A ERC-0).Px ()

sfcca

Reply to€x (LR (Mo, M,b)) queries as follows:
i i+ 1; C & Eg(My) 5 Aggen <= Ci
Reply toDg (C) queries as follows:
j—Jj+1; M« Dg(C)
If 7 >¢0rC # C; thenphase < 1
If phase = 1thenA,, , < M

Until A, returns a bid
Returnd

We require that, for all querie@Vly, M;) to Ex(LR(-,-, b)), |Mo| = |M;|. We define

the PRIV-SFCCAadvantage, of the adversary as

Adv grlgv sfcca(A — Pr [E ppnv -sfcca- ](Asfcca o 1]

— Pr | Bxplr =Y., =1 .

sfcca

In the concrete setting [6], we say th&f is PRIV-SFCCAsecure ifAdviy Y A

sfcca

is small for all adversaried ;.. using reasonable resourcek.

sfcca
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Section 2.6 gives the standard notion for integrity of plaintextst@p) and in-
tegrity of ciphertexts AUTHC) from [10], both of which still apply to symmetric en-
cryption schemes with stateful decryption algorithms. For our new notion of integrity of
ciphertexts for stateful decryptioaTHSF), we again consider a game in which an ad-
versaryFy; is given access to the two oraclgs(-) andDj (-). We defineA dvas"( Fy)
as the probability thaky; can generate a ciphertextsuch thatDj. (C') = 1 andC'is an
out-of-sync query. The new notion abTHSFimplies the previous notion of integrity of
ciphertextsAUTHC, as well as security against replay and out-of-order delivery attacks.

A more formal presentation of the definitions follows.

Definition 3.6.3 (Stateful ciphertext integrity.) Let S€ = (K, &, D) be a symmetric
encryption scheme. Ldf; be an adversary with access to an encryption orégle)
and a decryption-verification oraclej.(-). The decryption-verification oracle invokes

Dk (C)andreturns 1 iDx () # L and 0 otherwise. Consider the experiment below.

ExperimentExpaans( ;)
KilC; 1+ 0; 7« 0; phase +— 0
Run AS<OPk0)
Reply tofx (M) queries as followsi «— i +1; C; & Ex(M) ; Fy < C;
Reply toDj, (C) queries as follows:
jej+1; M« Dg(C)
If j >iorC # C; thenphase « 1
If M #1 andphase = 1 then returnl
If M #1 thenF < 1elseFy; <0
Until £y halts
Return0

We define theuTHSF-advantage of the adversaFy; in attacking thestateful ciphertext

integrity of the scheme as

Advi™(Fy) = Pr[Exp3f(Fy) =1] .
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In the concrete setting [6], we say th8E preserves integrity of stateful ciphertexts
(AUTHSF-secure) if the advantag&dvf‘g?th(st) Is small for all forgerst; using rea-

sonable resourced

The following proposition states that, if an authenticated encryption scheme is
indistinguishable under chosen-plaintexts attacks and if the scheme meets our strong
definition of integrity of ciphertexts, then the scheme will meet our strong definition of
indistinguishability under chosen-ciphertext attacks. It is similar to the results in [10]
and [47], restated in Section 2.6.1, which show that the stanelardcpA and the

standardauTHC notions imply the standamRIiv-CCA notion.

Proposition 3.6.4 Let S€ = (K, &, D) be an authenticated encryption scheme. Given
any PRIV-SFCCAadversaryA, we can construct anRUTHSF adversaryl and anPRIV-

CPA adversaryB such that
AdvE Y A) <2 AdvAS(T) + Advi Py B)

and/ and B use the same resourcesAs|

Proof of of Proposition 3.6.4: Our proof is modeled after the proof of a similar prop-
erty in [10]. LetSE = (K, &, D) be a symmetric encryption scheme, andAdbe any
PRIV-SFCCAadversary againsi€. We associate tel a PRIV-CPA adversaryB and an
AUTHSF adversaryl. The adversary3 runs A almost exactly as ifExp%y % A)
whereb is B's LR encryption oracle bit. The only exception is thatreturn L to A
if A submits an out-of-sync decryption query. Théhputputs whatA outputs. Sim-
ilarly, I runs A almost exactly as iExpfy ***(b) whereb is a bit that/ chooses
at random. The only exception is that, whdnsuccessfully submits an out-of-sync
decryption query, the adversafyerminates.

Let Pr, [ -] denote the probability oveExpe **% A) and a random choice for
b € {0,1}, and lett’ denote the output ofl in these experiments. Létr, [ -] denote
the probability inExpa4™{(7). Let Prs |- ] denote the probability oveExp%y P> B)

wherec is randomly selected frorfi0, 1} and let¢’ be the bitB returns. LetE denote
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the event thatd makes at least one query topaase 1 decryption oracle that would

successfully decrypt. Note that

Pr, [0/ =bA E] <Pr[E] < Adv3s(r)

authsf

since, prior toF occurring, Exp2i"(1) runs A exactly as inExp%y *°*"(4) for a

randomb and, oncer occurs,/ succeeds in forging a ciphertext. Also,

Pry [0/ =bAE]| <Prs[d =c]

. 1 .
- Pr [Expgrg’{pa'l B) = 1] + 5 <1 —Pr [Expgr'gv'Cpa'O(B) =1 D

AdvgP(B) +

N~ DN~

1
2
since wheneved does not cause evehtto occur,A’s view when run byB is equivalent

to its view when run irExp%y ¥°®% 4). Consequently,

1 - 1
5Aclvf;[';'Sfc‘”‘(A) +5 =P [V =b]

=Pr [V =bAE]+Pr [ =bAE]

1 v 1
< Adva3™S(1) + §Advf;['; P4 B) + 3

The adversarie® and/ use the same resources.agxcept thatB does not perform

any chosen-ciphertext queries to a decryption oraégle.

Collision resistance of encoding schemes.The security of a composite Encode-then-
E&M construction depends on properties of the underlying encoding, encryption, and
MAC schemes. In addition to the standard assumptions of indistinguishability under
chosen-plaintext attacks of the encryption scheme and unforgeability and pseudoran-
domness of the MAC scheme, we requilision resistancef the encoding scheme.

We motivate this notion as follows. Consider an integrity adversary against a composite
Encode-then-E&M scheme. If the adversary can find two different messages that en-
code (or decode) to the same input for the underlying MAC, then the adversary may be
able to compromise the integrity of the composite scheme. Consider now an indistin-

guishability adversary against the composite scheme. As long as the adversary does not
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generate two inputs for the underlying MAC that collide, the underlying MAC should
not leak information about the plaintext. The following describes the notions of collision
resistance for encoding schemes.

An adversaryA who is mounting a chosen-plaintext attack against an encoding
schemefC = (Encode, Decode) is given access to an encoding oraEteode(-). If A
can make the encoding oracle output two pairs that collide on their second components
(i.e., theM,’s), then A wins. We allowA to repeatedly query the encoding oracle with
the same input. Similarly, an adversaymounting a chosen-ciphertext attack against
EC is given access to both an encoding oracle and a decoding @raxlée(-). If B can
cause a collision in the second components of the outpuEsa@fde(-), Decode(-), or
both, then it wins. We exclude the cases whineses the two oracles in a trivial way to
obtain collisions (e.g., submitting a queryliacode(-) and then immediately submitting
the first component of the result, nam@lg., to Decode(-)). We refer to the advantages
of the adversaries in these two settingsAadve *44) and Advi 4 B), respec-
tively. All encoding schemes with deterministic and stateless encoding algorithms are
insecure under chosen-plaintext collision attacks. Furthermore, all encoding schemes
with stateless decoding algorithms are insecure under chosen-ciphertext collision at-

tacks. A more formal presentation of the definitions follows.

Definition 3.6.5 (Collision resistance.) Let £C = (Encode, Decode) be a encoding
scheme. LetA.,, be an adversary with access to an encoding oracle antlebe an
adversary with access to an encoding or&elerde(-) and a decoding orac®ecode(-).
Let M denote an adversaryisth encoding query and 1¢f\/¢, M) denote the response
for that query. Letn! denoteA...’s i-th decoding query and l€in’, m}) denote the

response for that query. Consider the following experiments:

ExperimentExpia (A, )

Encode(-
Run AETCod<0)
If AShe°*") makes two queries/?, M7 to Encode(-)

such that # j and M} = M/ then return 1 else return 0
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ExperimentExp$d A A..,)
Run AE"code().Decode()
If one of the following occurs:
— Ao makes two queries/*, M7 to Encode(+)
such that # j and M} = M}
— Acea Makes two queriesi’, m? to Decode(-)
such that # j, mi #1, andmi = m/
— Ao makes a query/* to Encode(-) and a queryn? to Decode(-)
such that{ # j or M* # m/ or M! # mJ) and M} = m/]

then return 1 else return O

We respectively define theoLL-CPA- and cOLL-CCA-advantages of the adversaries

Acpa @and A, in finding a collision as
Advg%“-cpa(ACpa) = Pr [Eng%ll-cpa(ACpJ = 1}
Advg%"'cca(Acca) = Pr [Expg%n'cca(Acca) = 1} )

In the concrete setting [6], we say tifat meets the respective definitionadllision re-
sistancei.e., areCOLL-CPA- andCOLL-CCA-secure, if the advantagasdv sy P4 A.,,)
and Advg%"-cca(Acca) are small for all adversaried.,, and A.., using reasonable re-

sources.l

3.7 General Security Results for the Encode-then-E&M
Paradigm

Since our analysis models SSH more generally as an authenticated encryption
scheme constructed via the Encode-then-E&M paradigm, we first present here general
results for the Encode-then-E&M composition method. In Section 3.8 we build upon
these results and prove additional properties about our proposed fixes to SSH. The re-
sults in this section will also be useful to the evaluators of other Encode-then-E&M

constructions.
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3.7.1 Chosen-Plaintext Privacy

To build an authenticated encryption scheme that provides chosen-plaintext pri-
vacy via the Encode-the-E&M paradigm, it is enough to usera/-CPA-secure en-
cryption scheme, a pseudorandom MAC, antia L-CPA-secure encoding scheme as
building blocks. The following theorem states this result more formally. We defer the
proof of Theorem 3.7.1 to Section 3.7.3. Recall again that the basic Encrypt-and-MAC
paradigm does not provide privacy under chosen-plaintext attacks when the underlying

MAC is stateless and deterministic.

Theorem 3.7.1 (Privacy for Encode-then-E&M with respect to chosen-plaintext at-
tacks.) Let S€, M A, and&C respectively be an encryption, a message authentication,
and an encoding scheme. L8f be the encryption scheme associated to them as per
Construction 3.6.1. Then, given argriv-CPA adversarys againstSE, we can construct

adversariesi, D, andC such that
AdvEYPY(S) < AdvBYPHA) + 2 Advii4(D) +2 - Advie Y(C) .

Furthermore A, D, andC' use the same resources@agxcept thatd’s and D’s inputs

to their respective oracles may be of different lengths than thoSgddie to the encod-

ing). 1

3.7.2 Integrity of Plaintexts

The following theorem states that the composed scheme provides plaintext in-
tegrity if the underlying MAC is unforgeableand if the underlying encoding scheme
is collision-resistant against chosen-ciphertext attacks. We need more than chosen-
plaintext collision resistance of the underlying encoding scheme here because an ad-

versary is allowed to submit ciphertext queries when mounting an integrity attack. We

L Although the theorem statement refers to strong unforgeability [10], weak unforgeability [6] of the
underlying MAC scheme is actually sufficient here sincedloe L-cCA property of the underlying en-
coding scheme ensures that inputs to the MAC algorithm will not collide.
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remark that the combination @RIv-CcPA andAUTHP does not, however, imply our no-

tion of privacy under chosen-ciphertext attacks, as exemplified by the reaction attack in
Section 3.4 and the fact that the construction in Section 3.4 isHRIt CPA- andAU -
THP-secure; we consider how to achieve our chosen-ciphertext privacy notion, via our

integrity of ciphertexts notion, in Section 3.8.

Theorem 3.7.2 (Integrity of plaintexts for Encode-then-E&M.) Let S€ be a sym-
metric encryption scheme, le¥1.A be a message authentication scheme, anddet
be an encoding scheme. L&E be the encryption scheme associated to them as per
Construction 3.6.1. Then, given aryTHP adversaryA againstSE, we can construct

adversarieg” andC such that
AdvEIA) < AdvY 4 (F) + AdvE2H(C) .

Furthermore,F’ and C' use the same resources Asxcept thatF’s messages to its
tagging and tag verification oracles may be slightly larger tAanencryption queries
(due to the encoding) and th@fs messages to its decoding oracle may have different

lengths tham’s decryption queries]

Proof of of Theorem 3.7.2: Let S€ = (K, &, D) be the composite encryption scheme
constructed via Construction 3.6.1 from the encryption sché&e= (K., &, D), the
MAC schemeMA = (K;,7,V), and the encoding schend€ = (Encode, Decode).
Assume we have an adversatyattacking the integrity of plaintexts &¥€. We associate
to A two adversaries: a forgdr breaking the unforgeability aM.A and a collision

finder C breaking the collision resistance &€ such that
AdvER(A) < AdvY 4 (F) + AdvEZ () . (3.1)

The forgerF’ and the collision finde€' are simple. The forgeF usesC. to generate an
encryption key and uses the encryption key and its tagging oracle to ardss\eueries

in a straight-forward manner. In particular, it follows Construction 3.6.1. Similarly, the
collision finderC' uses the same approach. This ensuresAhatexecuted in the same

environment as that iExp2a {(A).
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Let Pry [- ], Pro -], andPr; | - | respectively denote the probabilities associated
with the experiment&xpia {(A), Exply;4(F), andExpZ A C). Let E denote the
event thatd makes a query that would cauSeto succeed in finding a collision. Then,

by the definition ofF,
Pr;[E] =Prs [ Exp@AC)=1] .
Furthermore,

Pry Exp%ugthp(A) =1 /\E} <Pry [Exp%lA(F) =1]

since £ implies that the verification request that causetb succeed must have pro-
duced (through the decoding) a previously unseen tagging messa(eereby allow-

ing F' to succeed). Consequently,

Pry | Exp2™(4) = 1 }

= Pny [Exp%thp(A) =1 /\E} + Pry [Exp%ugthp(A) =1A E}

< Pry [ExpYu(F) = 1] +Pr3 [ ExpR*¥C) = 1]

and Equation 3.1 follows. Adversarids and A use equivalent resources except that
F’s messages to its oracles may be slightly larger due to the encoding. Adversaries
C and A also use equivalent resources except tfiatmessage to its oracle may not

be the exactly the same size A% decryption-verification queries, although they are

polynomially related. I

3.7.3 Proof of Theorem 3.7.1

We now prove Theorem 3.7.1. One notable feature of the proof is that it actu-
ally uses a weaker property than pseudorandomness for the underlying MAC. The said

property is the following.

Distinct plaintext privacy of message authentication schemes.Let M A = (K, 7T,

V) be a message authentication scheme. The noti®rof-DCPA for M A is based
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on thePRIV-CPA notion for encryption. For a bit and a keyK, let 7 (LR(-,-, b))
denote thd R tag oraclewhich, given equal-length plaintexid,, M, returnsZy (M,).
We stress that the LR tag oracle returns only the tag rmotdthe message-tag pair

M,|| 7Tk (M,). ThePRIV-DCPA notion is defined as follows.

Definition 3.7.3 (Privacy against distinct chosen-plaintext attacks.) Let MA =
(K, 7T,V) be a message authentication scheme. bLet {0,1}. Let A be an adver-

sary that has access to an ora€lg LR (-, -, b)). Consider the following experiment:

ExperimentExp?; "% A
K&K

Tr (LR(-\b
Run AT (ER (D)

cpa

Reply to7x (LR (M,, My,b)) queries as follows:
C & Tic(My); Ao < C
Until A, returns a bitl
Returnd

Above it is mandated that all left messagesA¥ queries be unique and that all right

messages afl’'s queries be unique. We define thriv-DCcPA-advantage ofl via
prlv dcpa(A [ Expprlv dcpa- l(A ] [ EX prlv dcpa- O(A) —1

In the concrete setting [6], we say th&t.A is privacy-preservinginderdistinct chosen
plaintext attackgPRIV-DCPA-secure) ifAdvR;*PYA) is small for all adversaries!

using reasonable resourcek.

The following theorem relates the distinct plaintext privacy and pseudorandomness no-

tions.

Theorem 3.7.4 (Relation between IND-DCPA and PRF.)Let M A be a message au-
thentication scheme. Then, given aPRIV-DCPA adversaryA againstM.A, we can

construct a distinguishdp againstM.A such that
AdvIVIPY A) < 2. AV (D)

Furthermore D uses the same resourcestdf |
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This theorem implies that iM A is secure as a PRF, as is expected of many MACs [6],

then it will also bePRIV-DCPA-secure. The theorem is easy to verify; we omit the proof.
Theorem 3.7.1 follows directly from Theorem 3.7.4 above and Lemma 3.7.5 pre-

sented below. We therefore turn our attention to Lemma 3.7.5 below. Throughout, we let

Encode’(+, -) andDecode™ (-, -) denote the encoding algorithrBscode(-) andDecode(-)

except that they explicitly take a state as part of the input and return a new state as part

of the output.

Lemma3.7.5Let S€ = (K., &, D) be an encryption scheme, 181A = (K;,7,V)

be a message authentication scheme, anfldet= (Encode, Decode) be an encoding
scheme. LeS€ be the encryption scheme associated to them as per Construction 3.6.1.
Then, given anyPRIV-CPA adversaryS againstSE, we can construct arIv-CPA ad-
versaryA againsiSE, aPRIV-DCPA adversaryB againstM.A, and a collision finde€’

such that
AdvEYPY(S) < AdvEYPYA) + AdviPYB) +2 - Adver PAC) .

FurthermoreA, B, andC use the same resourcessasxcept thatd’s and B’s inputs to

their respective oracles may be slightly larger than those (@ue to the encoding)l

Proof of of Lemma 3.7.5: Let S denote aPRIV-CPA adversary that has access to an
Ex(LR(-,-,b)) oracle,b € {0,1}. Letz € {1,2,3}. We define three experiments

associated witly as follows.

ExperimentExpH,,
KeilCe; KtilCt; Sty «— € sty «— €
Run S replying to its oracle queryM,, M, ) as follows:
(Mo, M, sto) & Encode™ (Mo, sto)
(M., M, 1, st;) < Encode* (M, sty)
Switch (x):
Caser = 1: 0 & &k, (M.y) ; T < Tg, (M)
Caser = 2: 0 <& Ex, (M) ; 7 & Ti, (M)
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Caser = 3: 0 & Ek, (M) ; T < Tx, (M)
S<o|r
Until .S halts and returns a bit

Returnbd.

Let P, ¥ pr [ ExpH, = 1] denote the probability that experimdakpH,, returns 1,

for z € {1,2,3}. By the definition ofAdng;"Cpa(S), we have

Adv%"ig"-cpa(S) =P —-P3=(P—P)+ (- PF). (3.2)

Given S, we can construct three new adversaries3, andC' such that the following
lemmas hold and the new adversaries use the resources specified in the statement of

Lemma 3.7.5.

Lemma 3.7.6 P, — P, < Adviy P A).

Lemma 3.7.7 P, — Py < Adv®4(B) + 2 - Adve PY0).
Equation 3.2 and the above lemmas imply Lemma 3.1.5.

Proof of of Lemma 3.7.6:We construct an adversarybreaking privacy of the under-

lying encryption schem&¢& = (K., £, D) using the adversary below.

AdversaryASx (ER(-b)

KtﬁlCt; Stg«— € sty «— ¢

Run S replying to its oracle queryM,, M;) as follows:
(Me0, Mg, sto) & Encode™ (M, sty)
(M1, My, sty) & Encode™ (M, stq)
0 & ER(LR(M,g, Moy, b)) 7 & Ti, (M, 1)
S <ol

Until S halts and returns a bit

Returnd'.
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If b = 1, the adversaryl simulatesS in the exact same environment as thatsfpH, .
Similarly, if b = 0, the adversaryl simulatesS in the exact same environment as that

of ExpH,. Thus,

P —-P, = Pr Expgrév'Cpa'l(A) = 1} —Pr [ExpggV'Cpa'O(A) =1

— AdVRYP4)

The adversaryd uses the same resourcesagxcept that, due to the encoding, the
queries thatd makes to its oracle may be slightly larger than the queriesShmatkes

to its oracle. AlsoA performs two encodings for each query thanakes and, thus, its
running time is polynomially larger than that 8f Recall the standard convention that
running time of an adversary is measured with respect to the entire experiment in which

it runs. Hence, Lemma 3.7.6 followd

Proof of of Lemma 3.7.7:Given S, we can construct an adversdsythat can break the
distinct chosen-plaintexts privacy of the underlying MAC schemel = (K;,7,V)
and an adversarg' that can break the collision resistance of the underlying encoding

schemeC = (Encode, Decode). These adversaries are defined in below.

AdversaryB7x (£R(-b))
KeilCe; Sty «— € sty «— €
Run S replying to itsith oracle query A/, M7) as follows:
(M g, Mg, sto) < Encode™ (M, sto)
(M, M}, st;) < Encode” (M7, st;)
It Mi e {M},..., Mg }or Mjy € {M},...., M7} then returrD
o< 5K6(Mei,o)
T TK(£R(Mti,OaMf,17b))
S <o|r
Until S halts and returns a bit

Returnd

Adversary(CEncode()
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K. &Ko K & Kysosty — ¢
d&{0,1};c—d
Run S replying to its oracle queryM,, M, ) as follows:
(M4, My 4) < Encode(M,)
(M c, My, sty) & Encode*(M,,st,,)
0 < Ex,(Meo)
& Tr, (M 1)
S < ol|r

Until S halts and returns a bit

LetPr;y [ -] andPr; [ - | denote the probabilities associated with the experimBrisH,,
andExpH,, respectively. Lef, denote an event that there exists at least one collision
among theM, ,’s or among thel/, ;'s in ExpH,. Let E; denote an event that there
exists at least one collision among thg ,’s or among thel/, ;’s in ExpH,. We make

the following claims.
Claim 3.7.8 Pry [ B, ] < 2- Advi ().
Claim 3.7.9 Pr, [ ExpH, = 1 A B, | — Pry [ ExpH, = 1 A B3 | = Adv2y “PA(B).
We can now bound the differendg — P; as follows:
Py, — Py =Pry [ExpH, = 1] — Pry[ ExpH; = 1]
= Pry [Epo2 =1 /\E} + Pry [ ExpH, = 1 A Es |
— Pry [ExpHy; = 1 A Ej3 | — Pry [ExpHy = 1 A E3 ]
< AdvRY P B) 4 2 AdviePA0) .

To justify Claim 3.7.8, letE), be the event that there exists at least one collision among
the M, o’s in ExpH, and letE; be the event that there exists at least one collision among

the M, ,’s in ExpH,. LetPr[ -] be overExp **%(C). Then,
Pr [Expg‘(’J"°Pa(O) - 1] —Pr[EgAd=0]+Pr[E,Ad=1]
1

:2.<P1~2[E0]—|—Pr2[E1]) E%PQ[EQ]
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where the second equality comes from the fact that the messageturns toA are
independent of the bit. To justify Claim 3.7.9, we note thd® returnsl only if all the
M, ’'s and MM, ;s are unique (i.e., events, or E; did not occur).

The adversarie® andC' use the same resourcessaexcept that the queries that
B makes to its oracle may be slightly larger than thos# diie to the encoding. Also,
B and C' each perform two encodings for each query tRatakes and, thus, their
running times are (polynomially) larger than that$f Recall the standard convention
that running time of an adversary is measured with respect to the entire experiment in

which it runs. Hence, Lemma 3.7.7 followd.

3.8 SSH Security Results

Figure 3.2 shows the SSH encoding scheme when used witkbdrblock ci-
pher; see also Section 3.2. Recall thetdenotes the length of string in bits, not
octets, and thatz), denotes the representation.ofas ak-bit unsigned integer. The
statesst,, andst,, are maintained across invocations. As mentioned, although Figure 3.2
shows the padding as a random string (the second boxed equation), the SSH specifi-
cation does not require thatbe random. Additionally, although the SSH specification
allows up to255 octets of padding, the two major implementations of the SSH pro-
tocol that we evaluatedpenssh-2.9p2 and SSH Communicationssh-3.0.1
use the minimum-recommended padding length shown in Figure 3.2. The proposed
SSH-$NPC instantiation of SSH replaces the first boxed statement bygith— bpl + [
if bpl < [ andalwaysuses random padding as shown in the second boxed statement.
The instantiationSSH-CTRIV-CBC, SSH-EIV-CBC, andSSH-CTR, on the other
hand, uses the first boxed statement with no modification and allows pagdmbe

non-random.
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Algorithm Encode(M) /I |[M| =0 (mod 8) | Algorithm Decode(/M.)
If st,, = ¢ thenst,, «— 0 If st, = ethenst, «— 0
bpl < 1 — ((|]M| 4 40) (mod 1)) My — (sty)za| M.
If bpl < 32 thenbpl «— bpl + | sty « st, + 1 mod 2%

S If cannot parse\/,

p— {0, 13> then return( L, 1)
th— (8 + |M| +bpl)/8 ; pl < bpl/8 Parsel, as (tl)s.||(pl)s|| M||p
M, — (th)s2[|(pl)s|| M||p Return(M, M)
Mt — <Stn>32”Me
st,, «— st, + 1 mod 232
Return(M,, M,)

Figure 3.2 The SSH encoding scherd€ = (Encode, Decode) for [-bit blocks, where
[ =0 (mod 8) and64 <[ < 252-8.

3.8.1 Collision-Resistance of the SSH Encoding Scheme

The following lemma gives the collision bounds for the SSH encoding as shown
in Figure 3.2. Notice that if, < 232, then[g. - 2732] — 1 < 0 and AdvS2" P 4) = 0
for any adversaryd. Also, if a coLL-CCA adversaryC' submits more tharR3? en-
coding queries o2*? decoding queries, then it can completely break the scheme, i.e.
AdvEIea(C) = 1. ForcoLL-CCA security of up ta2%? decoding queries it is critical
that the decoding algorithm increment its counter on every invocation, even for mes-

sages that do not correctly decode.

Lemma 3.8.1 (Collision resistance of the SSH encoding.let £C be the encoding
scheme shown in Figure 3.2 and tebpl be the minimum padding length (32 bits in
Figure 3.2; the 32 in the equations below corresponds to the length of the encoding
scheme’s internal counter, not the minimum padding length). Focany -cpPA adver-
sary A and anycoLL-CCA adversaryB, each making,. encoding queries and, in the

case ofB, makingg, decoding queries, we have that

Advg(éll—cpa(A) < "qe A 2—32—‘ X ([qe A 2—32—‘ _ 1) X 231—mbp|

AdvE*AB) = 0 if g, q4 < 2%

and thatcoLL-ccA collision resistance is not provideddf or ¢; > 232. 1
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Proof of of Lemma 3.8.1: First, we prove the inequality in the theorem. Recall that the
padding is chosen independently at random fi@ml }™°P' wherembpl is the minimum
padding length. For aoLL-cPA adversaryA to win, it must make at least two encoding
queriesM?, M7 such that # j andM; = M. From the construction, this means that
the values of the counters and the paddings must collidesfiie= st/ andp’ = p/).

For each counter value, the probability that the paddings collide§"'. There are
232 possible values for the counter, and each value occurs at [mg&f?] times over
the course of the experiment. Therefore, the probability that any coll-cpa adversary
making at most, encoding queries can win is at most

([qe : 2_32—|> . 232 . 2—mbp|
2

After some simplification, the first inequality in the theorem follows.

Now, we prove the equality in the theorem. Recall that the construction in Figure
3.2 specifies thadl, — (st,)s2||M. for the encoding and that/; «— (st,)ss| M, for
the decoding. Since the states,, st, are counters that are maintained internally by
the oracles, no adversary can have control over them. Since both states start at O,
if B is limited to fewer thar23? encoding queries an2f? decoding queries, then it
is easy to see thaB cannot possibly make two queries satisfying either of the first
two conditions in the experimedtxpS> Y B). We now turn our attention to the last
condition in the experiment and argue tiatannot possibly satisfy it either. Suppose
toward a contradiction tha® can somehow make a queky’ to Encode(-) and a query
m to Decode(-) such that(i # j or M # m/ or M! # mj) and M; = m] where
i,j < 2%2. From Figure 3.2M/ = m] implies thatM! = mJ and consequently that
M? = m’. Therefore, for this condition to be satisfiednust be different fromy.
However,i, j < 2°2. Thereforej # j implies thatst! # st. Therefore M} # m?, and

we have a contradiction. Thua,dvea 4 B) = 0. 1



64

3.8.2 Integrity and Privacy of Our Recommendations

We have already provided enough information (Theorems 3.7.1 and 3.7.2 and
Lemma 3.8.1) to show that our fixes from Section 3.5 are secure under the notions
of chosen-plaintext indistinguishability Ri1v-CPA) and integrity of plaintextsA\UTHP).

But we can prove a much stronger result, namely, that our proposed fixes are secure
under our strong notions of chosen-ciphertext indistinguishabitigt(-sFcca) and
integrity of ciphertextsAUTHSF). We present our proof of security f&SH-CTR. The

proof technique extends naturally to other possible fixes to the SSH BPP.

Theorem 3.8.2 (Security of SSH-CTR.) Let S€ be a CTR-mode encryption scheme
with stateful decryption, letM.A be a message authentication scheme, anéldebe
the encoding scheme described above. 28H-CTR be the encryption scheme asso-
ciated to them as per Construction 3.6.1. Then, givensmHsF adversaryl against
SSH-CTR, we can construct adversariésandC such that Equation 3.3 holds. Sim-
ilarly, given anyPRIV-SFCCAadversaryA againstSSH-CTR, we can construct adver-

sariesS, B, E, andG such that Equation 3.4 holds.

AdvASt (1) < AdvY ,(F) + Adv(C) (3.3)
AdvEgcr(4) < 20 AdvESTtm(S) + AdvEy™(B)

+2- AdVR L (E) +2 - Advie ™(G) (3.4)

Furthermore,F” and C' use the same resources aAgxcept thatF’s messages to its
oracles may be of different lengths thdis queries to its oracles (due to encoding)
and C’s messages to its decoding oracle may have slightly different lengths/than
decryption queries. Alsa3, B, E, andG use the same resourcesAagxcept thatB’s
and E’s inputs to their respective oracles may be of different lengths than thode of

(due to the encoding)l

We interpret Theorem 3.8.2 as follows. Equation 3.3 states3B&t-CTR pro-
vides stateful chosen-ciphertext integrityj THSF-security, if the MAC is strongly un-

forgeable and if the encoding @0LL-CCA collision resistant. Equation 3.4 states that



65

SSH-CTR provides stateful chosen-ciphertext privaeg|v-SFCCAsecurity, if it pro-
videsAUTHSF stateful chosen-ciphertext integrity, if the underlying encryption scheme

IS PRIV-CPA-secure, if the MAC is a secure pseudorandom function, and if the encoding
is COLL-CPA-secure. As an example, making reasonable assumptions about the security
of the HMAC scheme, an implementation 86H-CTR that uses HMAC and AES in
stateful-decryption CTR mode will be secure under both of the strong notions provided
that at mosk3? messages are encrypted between rekeying. Notice here that we use dif-
ferent security properties of the MAC to obtain different security aspe@Sef-CTR,
namely strong unforgeability for integrity and pseudorandomness for privacy. This dis-
tills the property of the MAC that leads to each aspect of security. Now we present the

proof of Theorem 3.8.2.

Proof of of Theorem 3.8.2: First we provide a proof sketch. To prove Theorem 3.8.2,
we first use Lemma 3.8.1, Theorem 3.7.1, #rv-cPA proof of security for CTR
mode [4], and the assumed pseudorandomness of the underlying MAC to show that
SSH-CTR is PRIV-CPA-secure. We then prove Equation 3.3. Applying Proposition
3.6.4 and ouPRIV-CPA andAUTHSF results forSSH-CTR leads to Equation 3.4. We
briefly discuss our proof of Equation 3.3. L&the anAUTHSF adversary and led/*

be I's i-th chosen-plaintext query to its encoding oracle Mgt A/ be the encoding of

M’, and let;||7; be the returned ciphertext. Lef||7; be’s j-th decryption-verification
oracle query, letn’ be the decryption of; by the underlying decryption algorithm. To
prove Equation 3.3, we show that given anTHSF adversary attackingSH-CTR,

that adversary can also be used to attack the unforgeability of the underlying MAC, to
attack thecoLL-ccA collision resistance of the underlying encoding scheme, or that
the first out-of-order ciphertext submitted by the adversajyr;, is such that; # o;

but M7 = mJ. By properties of CTR mode with stateful decryption, the latter event
cannot occur. The same property holds$&H-CTRIV-CBC andSSH-EIV-CBC. For
SSH-$NPC the latter event can occur, but the probability the latter event occurs is small
because the last (random) block of the encoded packet is not given to the adversary. The

strategy we outlined in this paragraph can be used to prove the security of other fixes to
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the SSH BPP that work by replacing the underlying encryption scheme; namely, prove
that the underlying encryption schememiv-cPA-secure and that the probability of the
event we described is small. (We only consider the first out-of-order ciphertext query an
adversary makes because if the first out-of-order ciphertext query does not decrypt, the
decryptor enters a halting state.)

Now we present the proof in more detail. First, we note that Equation 3.4 follows
directly from Proposition 3.6.4 and Theorem 3.7.1. Now, we prove Equation 3.3. Let
SE = (K,&,D) be the composite encryption schen&SH-CTR in this case) con-
structed via Construction 3.6.1 from the encryption sché&&ie= (K., £, D), the MAC
schemeMA = (K;,7,V), and the encoding schend€ = (Encode, Decode). Con-
sider anyaAUTHSF adversary againstS€. We associate td a UF forger F againstM.A
and acoLL-ccA collision finderC' agains€C as follows. The forgeF’ useskC, to gen-
erate an encryption key and uses the encryption key and its tagging oracle to aisswer
gueries in a straight-forward manner. In particular, it follows Construction 3.6.1. Sim-
ilarly, the collision finderC' uses the same approach. This ensuresitimexecuted in

authsf

the same environment as thatlixp$z"°(/) until  succeeds in making an out-of-sync

query.

Recall that theauTHSF adversaryl can make two types of queries: encryption
queries tc€ x and decryption-verification queriesl_ﬁ{. Supposd makes;, encryption
queries and,; decryption-verification queries. We dendts i-th query tof x as M?,
the encoding of\/* asM?, M, and the returned ciphertext ag|r;. We denotd’s i-th
query tol_)} aso’||7/ (assuming that’s i-th query is parsable since otherv\rﬁé would
enter a halting state). We denote the decryption @)af o/ asm! and the decoding
of m? as(m’,mi). By convention, ifD,’s internal state isL, thenm’ =_1. Also, if
m! =1, then(m’,mi) = (L, 1).

Now, letj be the index off’s first out-of-sync decryption query, and letbe the
number of encryption queries prior 1¢s j-th decryption query. LeBad be an event in
which all of the following conditions holdi’s j-th decryption query correctly verifies,

mi € {M},...,Mf}, k > j, 7/ = 7;, andmi = MJ. (Recall that if the first out-
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of-sync decryption query fails to verify, the decryption algorithm will returrior all

subsequent decryption queries.) We state the following lemmas.
Lemma 3.8.3 Advai™(1) < AdvY 4(F) + AdvE () + Pr[Bad |
Lemma 3.8.4Pr[Bad] =0

Then, Equation 3.3 in Theorem 3.8.2 follows.

Proof of of Lemma 3.8.3: Let Pr|[ -] denote the probability function underlying the
experimenExpg—‘gth(] ). Leto;||7; beI's first out-of-sync query t@, (). Recall that,
prior to I's j-th decryption-verification query, madek queries ta€ - (-). We define the

following events.

EventF . I’'sfirst out-of-sync query to orac@}(-) correctly verifies
EventE;, : FEoccursandn! & {M} ... MF}

EventE, : Foccursandn! € {M}, ... M

EventE,; : F,occursand eithet < jorml # M

EventE,, : F,occursand: > jandml = M

EventE,,, @ Es,0cCCurs andjf # 7;and

mi ¢ {M}, .. MU MY MRy
EventE,,, @ FE,,0ccurs and; # 7; and

mi e {M}, .. MU MY MRy

EventE,,5 @ E,- OCCUrS andj’. = 7;.

If I's first out-of-sync query td_)}(-) does not correctly verify, then the decryption

oracle enters its halting state, and thus, no further decryption queries will correctly verify

authsf

2uhs{(1) cannot returri. Therefore Advaa™*(]) = Pr[ E']. Also, notice that

Pr [ E] = Pr { El V E2’271 ] + Pr [ E271 V E27272 ] + Pr { E27273 ]

andExp

As previously pointed out, the adversariésndC' run I exactly as in experiment

authsf

se () until I succeeds in making an out-of-sync decryption-verification query.

Therefore, if eventd’; or E, 5, occur, thenF' succeeds in finding ar forgery against

Exp
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MA. Similarly, if eventsE, ; or E; 5 » occur,C succeeds in finding a collision against

EC. Consequently,

AdVZ%tth(I) =Pr[E;V Ey21]|+Pr[Ey1VEs0]|+Pr[Esss|

< AdvY L (F) + Adve24(C) + Pr[Bad |
as desired.l

Proof of of Lemma 3.8.4: We are interested in the event thdt+# o; butm] = M/
(wherej is the index of the first out-of-order decryption query and the adversary has
already queried the encryption oracle at leasimes). SinceSSH-CTR uses CTR
mode with stateful decryption, since the encryption and decryption states are in-sync
prior to thej-th decryption query, and since, for each CTR mode state, there is a bijec-
tion between plaintexts and ciphertextsgif # o;, thenm? # M. This means that
Pr[Bad] = 0. 1

3.9 Discussion and Recommendations

Having presented our main results, we are now in a position to make specific rec-
ommendations to the SSH community. We begin by noting that one problem with the
current SSH specification is that the counter that is prepended to the encoded payload
before MACing is only32 bits long. As shown in Section 3.4, once tBiebit counter
repeats, an SSH session’s MAC tags may begin to leak information about a user’s plain-
texts. Our provable security results reflect this constraint: strong security is maintained
only if the parties rekey at least once evéry packets. Two natural solutions to this
problem are to either make the counter longer or to require an SSH session to rekey at
least once everg?? messages. We recommend the second option because it does not
affect the packet format and thus will likely require minimal changes to existing SSH
implementations. As a slight variant of the first option, we do note that it would be pos-
sible to define new message authentication modules for SSH that maintain and update

their own, longer counters; this approach would also not affect the packet format.



69

With respect to the underlying encryption mode, we now compare the current in-
stantiation of the SSH BPP transport proto@g§H-IPC, to our specific recommenda-
tions. We also consider two other possible alternatives, namely switching to an Encrypt-
then-MAC-based construction or to a dedicated authenticated encryption construction.
The former involves re-engineering the SSH BPP so that it first encrypts a message
with some underlying encryption scheme and then MACs the resulting ciphertext. The
latter involves modifying SSH to use a dedicated authenticated encryption scheme like
XCBC [35] or OCB [72].

Continue to useSSH-IPC? As mentioned SSH-IPC is susceptible to an adaptive
chosen-plaintext attack requiring an SSH user to encrypt on the ordet phckets.
However, the attack may not be considered practical since it requires the attacker to,
after seeing a ciphertext collision, control thextmessage that a user encrypts. If the
session is encrypting a lot of data very quickly (e.g., while transferring a file), then
an attacker may not have time to both recognize that a collision has occurred and to
force the user to encrypt a specially-doctored message, though an adversary might try to
slow down the entire connection in anticipation of mounting a chosen-plaintext attack.
Additionally, if we consider how the SSH transport protocol is used within SSH (and
not as an entity by itself), then the attack is complicated by the fact that an application
may compress and further encode user data before passing the resulting compressed
payload to theSsSH-IPC protocol. Nonetheless, we suggest that the useSH-IPC

be deprecated. One simple reason is that, even if these attacks may be difficult to mount
in practice, in the modern era of strong cryptography it would seem counterintuitive to
voluntarily use a protocol with low security when it is possible to fix the security of SSH

at low cost.

Switch to SSH-NPC? SinceSSH-NPC requires similar changes to the specification
and implementations &SH-$NPC while achieving less security than our other fixes,
there does not appear to be any substantial reasons to swis@HaNPC. Therefore,

we do not consider it further.
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Switch to SSH-$NPC? The advantages offered ISSH-$NPC are clear: it is prov-

ably secure and requires relatively minor and mostly localized changes to the SSH speci-
fication and to implementations. The added security, however, comes with the additional
cost of up to two extra blocks per packet. In interactive sessions where an individual
packet may only contain a few octets of user data, the additional cost associated with
those extra blocks may be significant (in terms of bandwidth consumption, the time nec-
essary to encrypt and MAC those two extra blocks, and the time required to generate
the extra block of randomness). Another potential problem 8&H-$NPC is that

it is prone to accidental implementation mistakes. Recall that if the padding used with
SSH-$NPC is not randomized, then the same reaction attack agaBidtNPC will be
effective here. Since two SSH implementations will inter-operate regardless of whether
their padding is random or fixed, an SSH developer might accidentally use non-random
or predictable padding. Such an accidental implementation mistake could have serious

security consequences.

Switch to SSH-CTR? SSH-CTRIV-CBC? or SSH-EIV-CBC? TheSSH-CTR in-
stantiation is attractive since it is provably secure, does not incur packet expansion, and
does not require the padding to be random. Furthermore, there are several performance
advantages with using CTR mode instead of CBC mode; for example, a software CTR
mode implementation can be up to four times faster than a well-optimized CBC imple-
mentation [55]. Although perhaps not as attractives&H-CTR, SSH-CTRIV-CBC

and SSH-EIV-CBC are also promising candidates because they also require no addi-
tional padding and because they only use one more block cipher invocation per packet
thanSSH-IPC.

The underlying encryption schemes for ti8H-CTR, SSH-CTRIV-CBC, and
SSH-EIV-CBC recommendations all require both the sender and the receiver to main-
tain state. Prior to this work, most provable security analyses focused on encryption
schemes with stateless decryption algorithms (hence our need to define security notions

for encryption schemes with stateful decryption algorithms). Consequently, one initial



71

objection to these three constructions might be that they require the underlying decryp-
tion algorithms to maintain state. However, since the composite SSH BPP decryption
algorithm is already stateful (because the decoding algorithm is stateful), the fact that
these three fixes use underlying encryption schemes with stateful decryption algorithms
should be of little concern. Another potential disadvantage with CTR mode is that it
is often perceived as being too “risky” [55]. As [55] points out, however, when used
correctly and with proofs of security, CTR mode has many advantages over other en-
cryption modes. Furthermore, as Bellovin and Blaze point out in [15], one can minimize
the risk incurred with using CTR mode (including the risk of being forced to use repeat-
ing counters) if key management is done dynamically and properly, if it is not used with
multiple senders who share keys, and if it is used in conjunction with strong integrity
checks. All of these conditions hold in the cas&S&H-CTR.

Switch to Encrypt-then-MAC? Instead of insisting on continuing to use the cur-
rent SSH Encode-then-E&M construction, it would also be possible to switch to an-
other paradigm such as Encrypt-then-MAC. This alternative is attractive because, as
we recalled in Section 2.6, an Encrypt-then-MAC construction is provably secure as-
suming that its underlying encryption and message authentication schemes are also se-
cure [10, 52]. We note, however, that since our recommended fixes provably meet our
strongest notions of security, there may be little motivation to switch to an Encrypt-
then-MAC-based construction. Additionally, switching to an Encrypt-then-MAC con-
struction will likely require more intrusive modifications to the current SSH specifica-
tion and to SSH implementations. Furthermore, unless care is taken, implementations
of the modified SSH specification may not be compatible with implementations of the
current SSH specification. Conceptually speaking, the changes incur@8HNCTR,
SSH-$NPC, SSH-CTRIV-CBC, and SSH-EIV-CBC involve only changing the un-
derlying encryption module and, in the cases&H-$NPC, adding more random num-

ber generation for the padding. In contrast, the changes incurred by switching to the

Encrypt-then-MAC construction involve changing the whole construction. (We ac-
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knowledge that the difference in the actual efforts that developers need to exert to im-

plement these changes will be highly implementation dependent.)

Switch to dedicated authenticated encryption schemes?As noted in Section 2.6.6,

there are symmetric key-based authenticated encryption schemes that are designed from
scratch and, thus, are potentially more efficient than schemes based on a black-box
composition of off-the-shelf encryption and MAC components. Recall that currently
the input to the SSH BPP’s underlying encryption scheme is different from the input to
the underlying MAC. There are two possible ways to incorporate a dedicated authen-
ticated encryption scheme into SSH: (1) specifically re-design the SSH specification
around a single authenticated encryption component or (2) somehow plug a dedicated
authenticated encryption scheme into the current SSH design.

For option (1), as we mentioned when we considered the Encrypt-then-MAC
paradigm, re-designing the SSH specification is probably not an attractive option. For
option (2), the most logical way to incorporate a dedicated scheme into SSH would be
to replace the current encryption scheme (CBC mode with chained IVs) with something
like XCBC or OCB and to use the “none” message authentication scheme. As we ar-
gued forSSH-CTR, SSH-$NPC, SSH-CTRIV-CBC, andSSH-EIV-CBC, this modi-
fication should be fairly easy to do, and, given the efficiency of dedicated authenticated
encryption schemes, could result in significant performance gains. The present draw-
back with this approach is that the current SSH specification does not include the 32-bit
counter in the input to the underlying encryption scheme. Since, under this construc-
tion, the counter will not be bound to the input to the dedicated authenticated encryption
scheme, this construction cannot protect against replay and out-of-order delivery at-
tacks (while our proposed recommendations can). To rectify this situation, one would
still have to modify more than just the “black-box” encryption component of the SSH
BPP, perhaps by using an authenticated encryption with associated data scheme [69],
which has the same drawbacks as possibility (1) above, or use as the underlying encryp-

tion scheme an authenticated encryption scheme with its own internal counter, which
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we view as an inelegant, though still viable, solution.

Closing remarks. We acknowledge that there are many possible ways to fix the cur-
rent problems with the SSH protocol. We are biased toward our recommended fixes,
and in particulaiSSH-CTR, because they are “less intrusive” than the other possible
modifications but are still efficient and secure.

Following the initial publication of our research results, we submitted an Internet-
Draft to the IETF Secure Shell working group specifying 88H-CTR recommenda-
tion. The working group and the IESG has since approved our specification as an RFC
(standards-track document) [9] and &8H-CTR recommendation is implemented in

the latest version of the OpenSSH application.

Additional Information

An earlier version of the material in this chapter appears in the ACM Transactions
on Information and System Security [8], copyright the ACM. | was a primary researcher

for this work. The full citation for this work is:

Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking
and provably repairing the SSH authenticated encryption scheme: A case
study of the Encode-then-Encrypt-and-MAC paradigk@®€M Transactions

on Information and System Secuyif2):206—-241, May 2004.



4 Generalized Composition Methods

for Authenticated Encryption

In this chapter we further extend our generalization of the generic Encrypt-and-
MAC paradigm from Chapter 3, and we also formally study generalizations of the
generic MAC-then-Encrypt and Encrypt-then-MAC paradigms. To differentiate the
composition methods that we consider in this chapter from the earlier composition
paradigms, we refer to the paradigms in this chapter agéneralized Encode-then-
E&M, Encode-then-MtEandEncode-then-Ethparadigms. See Figures 4.1-4.3.

We generalize our analysis in several ways. First, motivated by Rogaway [69] and
properties of real protocols, we consider authenticated encryption schemes that can au-
thenticate more data than they encrypt; note the two inputs to the encoding algorithms
in Figures 4.1-4.3. Using Rogaway'’s terminology, we refer to such authenticated en-
cryption schemes amuthenticated encryption with associated déd&AD) schemes.

We further broaden our study by considering five classes of AEAD schemes, all
sharing the same syntax but having different consistency requirements and security
goals. We refer to these five classes as Type 1 through Type 5 AEAD schemes. Intu-
itively, Type 1 AEAD schemes should accept any ciphertext, in any order, and possibly
multiple times, as long as the ciphertext was generated by the encryptor. Type 1 AEAD
schemes are equivalent to the AEAD schemes that Rogaway considers except that our
Type 1 AEAD schemes do not take a nonce as input, we allow the encryption algorithms

to be randomized and stateful, we allow the decryption algorithms to be stateful, and we
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| associated data M, | |  payload M, |
| ENCODE |
M, M,| |M, M,| |M,
ENCRYPT | | MAC |
o T
COMBINE |

| ciphertext C' |

Figure 4.1 The generalized Encode-then-E&M paradigm.

| associated data M, |

| payload M |

| ENCODE |
M, M,| M, M, | |M,
COMBINE
| ENCRYPT | || MAC |
o 7
COMBINE |

| ciphertext C' |

Figure 4.2 The generalized Encode-then-MtE paradigm.
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| associated data M, | | payload M |
| ENCODE |
Mp Mo Me Mn Mt
o
COMBINE
ENCRYPT | | | MAC |
g T
COMBINE |

| ciphertext C |

Figure 4.3 The generalized Encode-then-EtM paradigm.

base our definition of chosen-plaintext privacy on left-or-right indistinguishability; we
do not expose a nonce to the caller because our goal is to model higher-level authen-
ticated encryption schemes, and we believe that users of such authenticated encryption
schemes should not be required to manipulate nonces. Type 2 AEAD schemes are like
Type 1 AEAD schemes except that they should also protect against replay attacks. Type
3 AEAD schemes should only accept ciphertexts in monotonically increasing order of
creation. Type 4 and Type 5 AEAD schemes are like Type 3 AEAD schemes except
that they should only accept ciphertexts in exactly the order in which they were created.
The latter two types differ in that a Type 4 AEAD scheme should halt after detecting a
forgery attempt, and a Type 5 AEAD scheme should not. A Type 4 AEAD scheme is
equivalent to the type of authenticated encryption schemes that we consider in Chap-
ter 3, except that in Chapter 3 we do not handle associated data. As in Chapter 3, but
unlike [10, 11, 47, 69], we allow the decryption algorithms for all five types of AEAD
schemes to be stateful.

We also consider generalizations of the underlying encryption and message au-
thentication components, and in particular we allow the encoding scheme to control

the underlying encryption scheme’s and MAC's initialization vectors (theand M,,
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variables in Figures 4.1-4.3). To contrast this approach with previous approaches, re-
call that it is traditional to assume that an underlying encryption scheme and MAC will
internally handle the selection of any initialization vectors. Exposing the initialization
vectors to the encoding schemes allow us to, for example, share initialization vectors
between the encryption scheme and the MAC and to reuse the initialization vectors for
other purposes, like protecting against replay attacks. When studying the privacy of
the generalized Encode-then-E&M construction, we also consider the possibility of em-
ploying a privacy-preservingPR1v-cpPA-secure) MAC, such as UMAC [22]; recall that
in Chapter 3 we focused our results on MACs thatrR& or PRIV-DCPA-Secure, not
PRIV-CPA-secure. ConsideringRIV-CPA-secure MACs allows us to prove tirRIv-
CPA-security of a generalized Encode-then-E&M construction without placing require-
ments on the underlying encoding scheme, which we were not able to do in Chapter 3.
In Chapter 3 we prove@RIv-CPA and AUTHP results for the (non-generalized)
Encode-then-E&M paradigm (Section 3.7), but restricted our chosen-ciphertext privacy
(PRIV-CCA) and integrity of ciphertextAUTHSF) results toSSH-CTR (Section 3.8).
We address this deficiency here by presenting strong integrity of ciphertexts results for
all three generalized composition paradigms and all five classes of AEAD schemes.
Toward giving these results, we first introduce new properties for generalized Encode-
then-E&M and generalized Encode-then-MtE constructions. Informally, the purpose of
these properties are to capture the probability of eventlikiein the proof of security
for SSH-CTR (recall Lemmas 3.8.3 and 3.8.4). We call these new propez&es-sp
andMTE-spand note that there are common scenarios for which it is easy to determine if
a generalized Encode-then-E&M or generalized Encode-then-MtE construction satisfies

the respective property (Propositions 4.5.3 and 4.6.3).

4.1 Authenticated Encryption with Associated Data

We begin by formally defining what we mean by an AEAD scheme. Recall that

our definition of a Type 1 AEAD scheme is identical to Rogaway’s definition of an
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AEAD scheme [69] except that we do not expose a nonce to the caller, we allow the
encryption algorithm to be randomized and stateful, we allow the decryption algorithm
to be stateful, and we use a notion of chosen-plaintext privacy based on left-or-right
indistinguishability. Further recall that a Type 5 AEAD scheme is identical to the type

of authenticated encryption scheme that we considered in Chapter 3 except that here we

allow the encryption algorithm to accept associated data as input.

4.1.1 Syntax

ATypen,n € {1,...,5}, authenticated encryption with associated data (AEAD)
schemed& = (K, &, D) consists of three algorithms and is defined for some key space
KeySp 4¢, associated-data spakeSp 4., and message spakgSp .. The randomized
key-generation algorithnC returns a keyK' € KeySp ,¢; we write K & K. The
possibly randomized and possibly stateful encryption algorithtakes a keyK €
KeySp 4¢, associated datd/, € AdSp ,¢, and a messagkl, € MsgSp 4., and outputs
a ciphertexiC' € {0,1}*; we writeC' < Ex(M,, M,). The deterministic and possibly
stateful decryption algorithrv takes a keyX' € KeySp 4 and a messagé < {0, 1}*,
and outputs a pair of messadéd,, M) € AdSp 4¢ x MsgSp 4¢ or the pair(_L, L); we
write (M,, M) < Dk (C). We say thaDx acceptC' if Di(C) # (L, L); otherwise

Dy rejectsC.

4.1.2 Consistency and Security

As is tradition and as we do elsewhere in this dissertation, we distinguish between
the consistency requirements for AEAD schemes and their security goals. We first state
a chosen-plaintext privacy goal, which is identical for the five types of AEAD schemes.
We then consider each AEAD type individually, presenting first its integrity goal and
then its consistency requirements. We state the security goals first since, in some cases,
the consistency requirements need only be met if an adversary has not already succeeded

in breaching the security of the scheme; for example, if an adversary forges a message,
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it may place the decryptor in a state that it cannot recover from. We then restate the

security properties in pseudocode for clarity.

Chosen-plaintext privacy. Our notion of privacy for AEAD schemes is similar to
Rogaway'’s notion [69], which we will later use in Section 5, but here we use a formal-
ization based on left-or-right-indistinguishability [4] and we do not expose a nonce to
the adversary. Letl€ = (K, £, D) be an AEAD scheme. Fak € KeySp 4. andb €

{0,1}, let&x (-, LR(-, -, b)) denote deft-or-right (LR) encryption oracléhat takes input

M, € AdSp 4 and My, M; € MsgSp 4¢, and returns (M, M,). Let A be an adver-

sary that returns a bit and has access to an LR encryption oracle. We require that for each
query M,, My, M, that A makes,|My| = |M;|. We define theeRIV-CPA-advantageof

PRIV-CPA-adversaryA as

AP L) = Pr[K & ATCERED) ]

~Pr [K S ASKCLRC0) - 1} .

In the concrete setting [6], we say thdf preserves privacy under chosen-plaintext
attacks (or isPRIV-CPA securg if the PRIV-CPA-advantage of alPRIV-CPA-adversaries

using reasonable resources is small.

Integrity and chosen-ciphertext privacy. Forn € {1,...,5}, the integrity notion for

a Typen AEAD schemeAUTHn, addresses the authenticity of tiphertextgenerated

by the encryption algorithm. As with classic authenticated encryption schemes (recall
Section 2.6 and [10]), this is different from protecting the integrity of the original inputs
to the encryption method. Indeed, the latter, in combination withpie-CcPA notion,

is insufficient to guarantee privacy under chosen-ciphertext attacks, whevegas:
security together witl?RIv-CPA security imply a strong notion of privacy under chosen-
ciphertext attacks that we caR1v-cCAn security. SinceRIV-CPA andAUTHn imply
PRIV-CCAn, we focus all our discussions on the former two notions, but present the

PRIV-CCAn notions later for completeness.
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Throughout the following discussions, 1t = (K,&,D) be a Typen, n €
{1,...,5}, AEAD scheme, the exact type will be clear from context. For each authen-
ticity notion, we consider an adversarywith access to an encryption oradg (-, -)
and a decryption-verification oraclg(-); the latter, on input’, invokesDy (C') and
returns 1 (i.e., accepts) Py (C) # (L, L) and 0O (i.e., rejects) otherwise. We de-
fine theauTHn-advantageof AUTHn-adversaryA, Advi{’gm(A), as the probability that
A “forges” when given access ®(-,-) andDj.(-) for a randomly selected’. We
describe what “forges” means below. In the concrete setting [6], we say that anType
AEAD scheme preserves authenticity if theTHn-advantage of ahuTHn-adversaries

using reasonable resources is small.

Type 1. We say that amuTH1-adversary “forges” if it makes th®j.(-) oracle ac-

cept a ciphertext not previously returned &y(-, -). This security definition is similar

to the AUTHC [10, 11, 47] definition recalled in Section 2.6 and Rogaway’s integrity
definition [69] except that here we consider AEAD schemes, not basic authenticated en-
cryption schemes, and our AEAD schemes do not take nonces as input. The consistency
requirement for Type 1 AEAD schemes is thak (Ex (M., My)) = (M,, M;) for all

M, € AdSp 4¢, M € MsgSp 4¢, K € KeySp 4¢, and all internal states and random tapes

of the encryptor and decryptor.

Type 2. We say that amuTH2-adversary “forges” if it makes thHBj, () oracle accept

a ciphertext not previously returned By (-, -), or makes it accept the same ciphertext
twice. For consistency, we require that for ], € AdSp 4, My € MsgSp 4 andK €
KeySp 4¢, if C = Ex(M,, M) for any internal state and random tape of the encryp-
tor, C' has not been submitted @, and an adversary has not succeeded in forging,
thenDy (C) = (M,, M,). We also require that for any two message paig, M}),

(M2, M?), if the encryptor compute€; < Ex (M}, M!) at some point in time and

Oy & Ex (M2, M?) at some other time, it is the case tliat# C, (even if (M}, M}) =

(M2, M?)). Otherwise, a legitimately encrypted message might incorrectly be rejected

by the receiver.
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Type 3. For Type 3 AEAD schemes, we say that anTH3-adversary “forges” if it
can make th@®j, (-) oracle accept a ciphertext not previously returned by, -), accept
the same ciphertext twice, or accept a ciphertext that was returnéd(by) before the
last accepted ciphertext. For consistency, we require that faZale AdSp 4., M, €
MsgSp 4 and K € KeySp ¢, if C' = Ex(M,, M) for any internal state and random
tape of the encryptorl’ or a ciphertext generated aftér has not been submitted to
Dk, and an adversary has not succeeded in forging, thefC') = (M,, M;). We also
require that for any two message pditg!, M1), (M2, M?), if the encryptor computes
Oy & Ex (M}, M!) at some point in time and, < Ex (M2, M?) at some other point

in time, it is the case that; # C, (even if (M}, M}) = (M2, M?2)).

Type 4. The authenticity game for Type 4 AEAD scheme begins with a flegse

set to0. If at any point the sequence of queries to g(-) oracle fails to be a pre-

fix of the responses frorfix (-, -), phase is set tol. TheAuTH4-adversary “forges” if

it can force theDj () oracle to accept a message aftéase becomesl. This secu-

rity definition is similar to the notion of integrity that we introduced in Chapter 3 for
SSH except that here we are considering AEAD schemes. Consider some sequence of
message pair&M}, M), (M?, M?),... and, fori = 1,2,..., letC; = Ex(M!, M),

starting with& in its initial state. Then, for consistency purposesjf is run on the
sequencé’;, (s, . .. in order and without the injection of additional packets, we require
thatDy (C;) = (M, M?).

Type 5. Let C; denote the-th ciphertext produced b§x (-, -). An AUTH5-adversary
“forges” if the first message th®j.(-) oracle accepts is nat’. Inductively, if the
last ciphertext accepted ;. (-) wasC, then anauTH5-adversary “forges” if it can
make the oracle accept afy+# C;.; before being invoked witld’; ;. Let (M}, M}),
(M2, M?),... denote a sequence of message pairs@nd, . .. denote their encryp-
tion under€ and any keyK. For consistency, we require thatZif; has not yet ac-
cepted any message (i.8 is in its initial state or has always returnédl, 1)), then
Dk (Cy) = (M}, M}). Fori > 1, if the only packets accepted By areC}, Cs, . .., C;,
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in that order but with possibly some rejected packets in the sequence of messages given

to Dy, thenDK(OZ-_H) — (Mé-i-l’ M§+l),

Pseudocode for security definitions. For clarity, we now present in pseudocode our
PRIV-CPA and AUTHn notions of security for AEAD schemes. For completeness, we
also present ouPRIV-CCAn chosen-ciphertext privacy notions. We also give Theo-
rem 4.1.3, which shows that if a Type AEAD schemes is bothPRIV-CPA-secure

and AUTHn-secure, then it is alseRIV-CCAn-secure. Like the tradition&RIv-CCA
chosen-ciphertext privacy notion for encryption schemes recalled in Section 2.4 [4],
our PRIV-CCAn notions give an adversary as much power as possible without allow-
ing the adversary to trivially win the associated game. For example, in the experiment
Expﬂ{g"ccal'b(Al), the adversaryl, againstA&, when querying its oracl®, with input

C, will only be returned(M,, M,) if C ¢ S (we present this definition in a slightly
different way than we presented theiv-CCA definition in Section 2.4 since here we

do not disallow the adversary from making decryption queriesfoe S, but rather

have the experiment handle such a situation as a special case).

Definition 4.1.1 (Privacy.) Let A = (K,&,D) be an AEAD scheme and lét €

{0,1} be a bit. LetA_,, be an adversary with access to an LR encryption oracle
Ex( LR(-,-,b)) and letA,, A,, A;, As, and A, be adversaries with access to an LR
encryption oracle and a decryption ora@ (-). The behaviors o (-, LR(-,-, b))
andDg (-) are specified in the following experiments. Assume each adversary returns a
bit. Consider the following experiments.

ExperimenfExpﬁ{ig"cpa'b(A

K&K
Run AS5(ERC-0)
Reply to€x (M., LR(My, My, b)) queries as follows:
C & Ex(My, My) 3 Ay, = C

cpa)

Until A, returns a bitl
Returnd
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ExperimentExp®y **0(4,)
K&EK; S0
Run AS<CERC-0) D)
Reply to€x (M., LR(My, My, b)) queries as follows:
C & Ex(My, M) ;S —SU{CY; A, < C
Reply toDg (C) queries as follows:
(Mg, Ms) < Dk(C)
If C' ¢ SthenA; < (M,, M)
Until A, returns a bit/
Returnd

ExperimentExp®y *** 1 A,)
K&K, 8S—0;,8 <0
Run AZx CERCA0)P ()
Reply to€x (M, LR(My, M, b)) queries as follows:
C & Ex(My, M) ; S« SU{C}; A, = C
Reply toDg (C
(Mg, Ms) < Dk(C)
If C ¢ SorC € S thenA, <« (M,, M)
If (M., M) # (L, L) thenS” — S"U{C}
Until A, returns a bit/

) queries as follows:

Returnd

ExperimentExpy “** A,)
K&EK:i—0;5<0
Run AZx CERCA0)P ()
Reply to€x (M,, LR(My, M, b)) queries as follows:
i—i41;0; & Ex(My, M) ; Ay <= C;
Reply toDg (C) queries as follows:
(Mg, Ms) < Dk(C)
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If C ¢ {Cji1,...,Ci}thenA; < (M,, M)
Elsej — index ofC'in {C};4,...,C;}
Until A, returns a bit/
Returnd

ExperimentExp®y ***%4,)
K& K:;i—0;j«0;phase — 0
Run A< CERC8)P ()
Reply to€x (M., LR(My, My, b)) queries as follows:
i—i41;C; & Ex(My, M) ; Ay <= C;
Reply toDg (C) queries as follows:
J—Jj+1;(Ma, M) — Dg(C)
If 7 >¢0rC # C; thenphase < 1
If phase = 1thenA, < (M,, M)
Until A, returns a bit/
Returnd

ExperimentExp®y *** % Ag)
K&K ie055«0
Run A CERC-0)Px ()
Reply to€x (M., LR(My, My, b)) queries as follows:
i—i+1;C & E(My, M) ; As < C;
Reply toDg (C) queries as follows:
(Ma, M) < Dk(C)
If j+1>io0rC # Cj;q thenAg < (M,, M)
If (M,, M) # (L, L)thenj «— j+1
Until Ag returns a bitl
Returnd

We require that for all queried/,, My, M; t0 Ex (-, LR(-,-,b)), |Mo| = |My|. We

define thePRIV-CPA-advantageof PRIV-CPA-adversaryA,_ ., and forn = 1,...,5, the

cpa’
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PRIV-CCAn-advantageof adversaryA,, as

Advﬂg'Cpa(A = Pr [Expﬂ?’Cpa'l(Acpa) = 1} — Pr [Expﬂ?’Cpa'o(A =1

cpa) cpa)

Advﬂ{g'ccm(An) = Pr [Expﬂg'ccm'l(A )= 1}

—Pr [Exppw ccandig ) = 1} |

Definition 4.1.2 (Integrity.) Let A = (K, &, D) be an AEAD scheme. Let;, A,

As, A4, and As be adversaries each with access to an encryption ofadle-) and a
decryption-verification oracl®j. (). The decryption-verification oracle, on inpGt,
invokesDy (C) and returns 1 ifDx(C) # (L, L) and O otherwise. Consider the ex-
periments defined below. Each experiment returns 1 if the adversary “forges” and 0

otherwise.

ExperimentExp?iM(A;)
K&K S0
Run A%< ) Pic0)
Reply to€x (M,, M) queries as follows:
C & (M, M) ;S —SU{CY; A< C
Reply toDj, (C) queries as follows:
(Ma, M) — Dg(C)
If (M., M) # (L, L)andC ¢ S then returnl
If (M,, M) # (L, L1)then4; <1
ElseA; <0
Until A4 halts
Return0

ExperimenExp?ii'y A,)
K&K, S—0;,8 <0
Run 45K Pi0)
Reply to€x (M, M) queries as follows:
C & (M, M) ;S —SU{CY; A, <= C
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Reply toDj, (C) queries as follows:
(M, M) < Dg(C)
If (M., M) # (L, L)and C ¢ SorC € S’) then returnl
If (M., M) # (L, L)thenS” — S"U{C}; A, <=1
ElseA, <0
Until A, halts
Return0

ExperimenExp?ii™( A3)
K&EK:i—0;5<0
Run 45K ) Pic0)
Reply to€x (M,, M) queries as follows:
i—i41;0; & E(M,, M,); Az <= C;
Reply toDj, (C) queries as follows:
(Ma, M) < Dk(C)
If (M,, M) # (L, L)andC ¢ {C;;1,...,C;} thenreturnl
If (M,, M) # (L, L) then
j—indexofCin {Cj;4,...,C;}; Az <=1
ElseA; < 0
Until Az halts
Return0

ExperimentExp?i™(A,)
K& K;i—0;j«0;phase < 0
Run A< ) Pic)
Reply to€x (M,, M) queries as follows:
i—i+1;C & Ep(M,, M,); Ay <= C;
Reply toD;, (C) queries as follows:
J e 3J+1; (M, M) < Dg(C)
If 7 >¢0rC # C; thenphase «+ 1
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If (M,, M) # (L, L) andphase = 1 then returnl
If (M,, M) # (L, L1)thend; <1
ElseAd, <0

Until A4 halts

Return0

ExperimentExp?i™( As)

K&K ie055<0
Run A< () Pic)
Reply to€x (M,, M) queries as follows:
i—i+1;C & E(M,, M,); As < C;
Reply toD3, (C) queries as follows:
(My, M) < Dk(C)
If (M., M) # (L, L)and(j +1 > iorC # C;;,) then returnt
If (M,, M) # (L, L)thenj «— j+1; A5 <1
ElseAs < 0
Until Ag halts
Return0

Forn =1,...,5, we define thesuTHn-advantageof AUTHn-adversaryA,, as

Advi{gm(An) = Pr [Expfﬂjgtm(An) = 1} A |

Relations between notions. The following theorem shows that if a Type AEAD
scheme is botlPRIV-CPA-secure anduTHn-secure, then it is alseRIV-CCAn-secure.
The proof of this theorem follows closely the structure of the proof of similar properties

in [10, 47] and the proof of Proposition 3.6.4; we omit details.

Theorem 4.1.3Let AE = (K, &, D) be a Typen AEAD scheme. For angRIV-CCAn

adversaryA, there exist aaUTHn adversaryl and aPRIV-CPA adversaryB such that
AdvPY ™ (A) < 2 AdvE™(T) + AdvPy PA(B)

and/ and B use the same resourcesAs|
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4.2 Building Blocks

4.2.1 Encryption Schemes

Syntax and consistency. We modify the definition of a symmetric encryption scheme
from Section 2.4 to explicitly expose the IV to the caller, and possibly to the adver-
sary. Our approach for exposing the IV to the caller is a generalization of exposing a
nonce for encryption schemes [69, 71, 72]. Specifically, in this chapsgmanetric
encryption schem&€& = (K, £, D) consists of three algorithms and is defined for some
key spaceKeySpg,, IV spacelVSpge, and message spabsgSps.. The randomized
key-generation algorithniT returns a key' € KeySpgse; we write K & K. The pos-
sibly randomized and stateful encryption algoritintekes a keyX' € KeySpse, an IV

I € IVSpge, and a messagkl € MsgSpse, and returns a ciphertext € {0,1}*; we
write C' <& £L(M). Example values fol/Sp, are{c} (whenSE takes no IV) and

{0, 1} for some positive integet The stateless and deterministic decryption algorithm
D takes a keyK € KeySpge, an IV I € IVSpge, and a ciphertext € {0,1}*, and
returns a messag®l € {0,1}*; we write M «— DI (C). The following consistency
requirement must be meR’, (€L (M)) = M for all M € MsgSpse, I € IVSpge, K €
KeySpse, and any internal state and random tapé&.obeviating from tradition, we con-
sider three types of encryption schemes, which differ in their IV requiremantxed

length-based I\Vandrandom IVedencryption schemes, the details of which are below.

Privacy. Our notion of privacy for symmetric encryption schemes is based on the
notion of left-or-right-indistinguishability under chosen-plaintext attacks [4] which we
recall in Section 2.4. Le§& = (K, &, D) be a symmetric encryption scheme. Lebe

an adversary that returns a bit and has accesddti-ar-right (LR) encryption oracle
Ex(-,LR(-,-,b)), for K € KeySpgse andb € {0, 1}, which takes inpuf € IVSpg, and

My, M, € MsgSpse, and returns (M,). We require that for each query M, M,
that A makes,|My| = |M,|. If S€ is anonced encryption schemee further require

that all the IV's chosen by the adversary are uniqu&dfis arandom IVed encryption
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schemave require that the adversary always chooses the IV uniformly at random from
IVSpge, and that the choice of IV is madster the plaintext pairlM,, M; to encrypt

is determined. IfS€ is alength-based I\encryption scheme, we require that the first

IV is randomly selected frofVSpg, as per the requirements for random IV encryption
schemes, and that each subsequent IV is a deterministic function of the initial IV and the
lengths of the previous plaintexts; we call this deterministic functioriehgth-based
IV-deriving functionfor the encryption scheme. (I¥Sps. = {¢}, then the random IV

is alwaysz, and this is how we model standard encryption schemes, which do not take

IVs as input.) We define therIv-cPA-advantageof adversaryd as

AQVEEPHA) = Pr[ K&K : ATCERCD) 2 ]

In the concrete setting [6], we say th&f preserves privacy against adversaries that re-
spect the IV properties of the scheme (opiEV-CPA securg if the PRIV-CPA-advantage
of all such adversaries using reasonable resources is small.

We note that in our constructions we can enforce the IV requirements through
our use ofencodings Specifically, when attacking a generalized Encode-then-E&M,
Encode-then-MtE, or Encode-then-EtM construction, an adversary will not have direct
control over the inputs to the underlying encryption algorithm, and in particular may
not be able to choose arbitrary IVs. Rather, the adversary against the composite AEAD
scheme may only access the underlying encryption algorithm via the encoding algo-

rithm.

4.2.2 Message Authentication Schemes

Syntax and consistency. As with symmetric encryption, in this chapter we consider
message authentication schemes that expose an IV to the caller. Specifically, in this
chapter amessage authentication scheov.A = (KC,7,V) consists of three algo-
rithms and is defined for some key spaGs/Sp,, 4, IV spacelVSp,, 4, message space

MsgSp .4, and tag spac&agSp,,4. The randomized key-generation algorithm re-
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turns a keyK € KeySp,4; we write K & K. The possibly randomized and state-
ful tagging algorithm takes a kel € KeySp,4, an IV I € IVSp,,4, and a mes-
sageM € MsgSp,4, and returns a tag € TagSp,,,; we write 7 & TE(M).
The deterministic and stateless verification algorithm takes alkey KeySp 4, an

IV I € IVSp,4, a messagé/ € MsgSp,,4, and a tagr € {0,1}*, and returns a
bit; we write b — VL (M, 7). The following consistency requirement must be met:
VE(M, TE(M)) = 1forall M € MsgSp 4, I € IVSp 4, K € KeySp 4, and any in-
ternal state and random tape®f We consider two types of MACsioncedMACs and
conventional MACs withVSp,, » = {¢}; the latter are MACs that do not take nonces

as input.

Unforgeability. The principle notion of security for MACs that we consider is based
on strong unforgeability under chosen-message attacks [10]; recall Section 2.5. Let
MA = (K,7,V) be a MAC. LetF" be an adversary with access to a tagging oracle
7.9(-) and a verification oracle} (-, -), for K € KeySp,, 4. If MA is anonced MAG

we require that all the IV’s chosen by the adversary when invokingZ';?PQ) oracle

are unique. We say thdt “forges” if it makes a verification query, M, r such that
VI(M,7) = 1 andT was never returned bgflg')(-) in response to query, M. We

define theur-advantageof forger F’ as
AdvY4(F) = Pr [K S FTEOYEO) forges

In the concrete setting [6], we say thatl.A is strongly unforgeable under chosen-
message attacks (oF securg if the urF-advantage of all forgers using reasonable re-

sources and respecting the IV properties of the MAC is small.

Pseudorandomness. Let M A = (K, 7,V) be a MAC. For the definition of a MAC
used in this chapter, we can still apply the notion of pseudorandomness [6, 36] from
Section 2.2 ifiVSp .4 = {¢} and if the tagging algorithm is stateless and deterministic.

Specifically, letD be an adversary with access to an oracle, andFlgly denote the
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set of all functions fronMsgSp ,, 4 to TagSp (4. We define therRFadvantageof PRF

adversaryD as
Adviy (D) =Pr | K &K« DTl = 1] —Pr [gﬁfm : DI = 1] .

In the concrete setting [6], we say th&t.A is asecure pseudorandom functi@@RF) if
thePRFadvantage of alPRFadversaries using reasonable resources is small. If a MAC

is PRFsecure, then it is alsorF-secure [6].

Privacy. One can apply theRIv-CPA notion of privacy for symmetric encryption
schemes to MACs. Carter-Wegman MACs [81] and UMAC [22] are examples of MACs
that preserve privacy.

We can extend theriv-DCPA definition of privacy undedistinctchosen-plaintext
attacks from Chapter 3 to MACs that expose their IVs to the caller. Specifically, let
MA = (K,7,V) be a message authentication scheme as defined in this chapter. Let
b € {0,1} be a bit. LetA be an adversary with access to a left-or-right tagging
oracle 7k (-, LR(-,-, b)) that, on input/ € IVSp 4, Mo, M1 € MsgSp, 4, returns
T.L(M,). We require that for all queriels M,, M, to the tagging oracleM,| = | M, ]|. If
I', M, M is thei-th oracle query, we require that for all indicgs:, j # k, (17, M) #

(I*, M¥)y and (17, M) # (I*, MF); i.e., all left queries are distinct and all right queries
are distinct. We call the adversadynonce-respecting it never queries its oracle with
the same nonce twice. We define thistinct-chosen-plainteXPRI1v-DCPA) advantage

of PRIV-DCPA-adversary4 as

AdVREPA) = Pr [ K&K ATRGLR(D) 1}
—Pr [K Sk ATRGERC0) 1} .
We can also restate Theorem 3.7.4 from Chapter 3 for the type of (IV-exposing) message

authentication schemes that we consider in this chapter. This theorem states that if a

MAC MA haslVSp,,4 = {¢} is a secure PRF, then it is als&IVv-DCPA-secure.
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Theorem 4.2.1Let M.A be a message authentication scheme Witp ,,, = {¢}
and with a stateless and deterministic tagging algorithm. Then, giveRRIWDCPA

adversaryA againstM.A, we can construct a distinguishBragainstM.A such that
AdvEPAA) < 2 AdVR (D)
Furthermore D uses the same resourcesf 1

As in Chapter 3, even though many popular MACs RRre&secure and theRrRF notion
implies thePRIV-DCPA notion, we consider therIv-DCPA notion because we wish to

minimize the properties necessary in order to achieve our security goals.

4.3 Encoding Schemes

4.3.1 Overview

Our definition of encodings generalizes the encoding schemes in Chapter 3. An
encoding schemé&C is anun-keyedpublic transformation that consists of four algo-
rithms: Encode, DecodeA, DecodeB, and DecodeC. All algorithms may be stateful
and Encode may be randomized. The decoding algorithBeodeA, DecodeB, and
DecodeC may share state. The specific properties of the algorithms, including their
syntax, depend on the paradigm and the type of AEAD scheme in question. We first
discuss some commonalities between the encoding schemes for the three composition
paradigms and five AEAD types. Determining the appropriate consistency and security
requirements for encoding schemes is one of the main aspects of this research; we dis-
cuss these in detail in Section 4.3.2. We take care to ensure that if an encoding scheme
satisfies its consistency requirements, then a composite scheme built from this encod-
ing scheme, an encryption scheme, and a MAC is an AEAD scheme that satisfies its

corresponding consistency requirements.

Encoding for encryption. Algorithm Encode pre-processes the input messagés

M, of an AEAD scheme’s encryption algorithm. Specifically, on inpfit, M, Encode



93

outputs a 5-tuplé M, M, M,,, M., M,). Intuitively, M, is cleartext data communi-
cated with the ciphertext)/, is the IV/nonce for use with the underlying encryption
scheme,)., is the input for the encryption schem&], is the 1V/nonce for use with

the underlying MAC, andV/, is the input for the MAC. The different paradigms then
use these five strings in slightly different ways and slightly different orders, as shown in

Figures 4.1-4.3 and described in detail in Section 4.4.

Decoding and decrypting. The algorithmsDecodeA, DecodeB, and DecodeC are
used in an AEAD scheme’s decryption process, which typically involves first invok-
ing DecodeA on M, to get back (at least)/,. After the underlying encryption scheme’s
decryption algorithm uses/, to recover the message., the AEAD scheme invokes
DecodeB(MM,, M. ) to recover (at least)/, and M,. If no errors occurred, then the
AEAD scheme’s decryption algorithm retur(df,,, M;).

Errors may occur during the decryption process, however. For example, the algo-
rithmsDecodeA or DecodeB may returnl, indicating that there was a decoding failure,
perhaps upon detecting a replayed message. VitzeodeA or DecodeB return 1,
the decryption algorithm does not accept the ciphertext. It may also be the case that
DecodeA andDecodeB do not returnl, but the MAC verification fails. When this oc-
curs, the decryption algorithm invok&ecodeC(_L). If the tag verification succeeds,
the decryption algorithm invokeBecodeC(T). By calling DecodeC in this way, the
decryption algorithm tells the decoding algorithms whether the packet was accepted.

These can then update their state, perhaps by incrementing a counter.

Respecting the IV properties ofS€ and M.A. The encryption schem&& and the
MAC M A that theEncode algorithm is combined with in a generalized Encode-then-
{E&M,MtE,EtM} construction may have certain IV requirements in order for them to
be secure. Let)M}!, M), (M2 M?), ... be a sequence of messagesEletode begin in
its initial state, and foi = 1,2,... let (M}, M, M, M}, M}) = Encode(M_, M}). We
call an encoding schemeonce-respecting for encryptidh M? = M/ for all distinct

i, 7. We call an encoding schemence-respecting for MACini§ M # M? for all dis-
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tincti, j. An encoding scheme for use with generalized Encode-{iM,EtM } con-
structions (resp., generalized Encode-then-MtE constructiomahdom-IV-respecting

for encryptionif the encoding algorithm always picks the valt&, uniformly at ran-

dom fromIVSpg., and only does so after determinidd. (resp.,M., M,, and M;).

An encoding scheme isngth-based IV-respecting for encryptiasith respect to some
length-based IV-deriving functiofi if the first M, value the encoding scheme generates

is chosen according to the rules described above for random-IV-respecting encoding
schemes, and all subsequet values are generated according fiothe initial M,

value, and the lengths of the previoli& values.

If the IV spaces are finite, then it is impossible to run a nonce-respecting encoding
scheme on an infinite number of inputs. Therefore, we associate to any encoding scheme
EC a parameteMaxNumgc, and we assume that the encoding scheme is not invoked
more thanMaxNumg. times. In the above discussion and in the following sections,
whenever we write “fori = 1,2, ..., run Encode,” we assume that the iterations stop
beforei gets larger thariMaxNum¢e. We use the same convention when discussing
AEAD schemes built fron€C.

4.3.2 Syntax, Consistency, and Security

In this section we describe the properties of Type 1-5 E&M, MtE and EtM encod-
ing schemes. A consequence of the generality of our analyses is that the definitions of
the consistency and security have a number of detailed sub-cases. Nevertheless, one can
create natural encoding schemes that have these target consistency and security proper-

ties.

E&M encoding scheme syntax and consistency.Let ECF*™ = (Encode, DecodeA,
DecodeB, DecodeC) be an E&M encoding scheme. The syntakoéode is as described
in Section 4.3.1.DecodeA, on input a string\/,,, outputs a string\/, or L. DecodeB,
on input two message¥,,, M., returns a 4-tuple of message¥,, M, M,,, M;) or (L,
1,1, 1). DecodeC takes as input the symbal or the symboll and returns nothing.
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Consider any two pairs of messadéd,, M), (M,, M!) with |M,| = |M]]. Let
(M,, M, M,,, M., M,) <~ Encode(M,, M;) for Encode in some state, ant’, M,
M/, M!, M]) < Encode(M,, M!) for Encode in some (possibly different) state. We
require that M, | = |M!| and|M;| = |M]|. If this were not the case, the composite
generalized Encode-then-E&M construction might not preserve privacy.

Consider also any two sequences of message fbifsM}), (M2, M?),... and
(N;,NJ),(NZ,NZ),.... LetEncode begininits initial state and far= 1,2, ... let (M},
M, M:, M:!, M}) = Encode(M¢, M!). Similarly, letEncode begin in its initial state and
fori =1,2,...let (N}, N., N}, N}, N}) = Encode(N;, N). If Encode is randomized,
assume that both sequences are generated using the same random tape. Further assume
that the randomness used in each invocation is recoverable from the output and that the
amount of randomness used per invocation is a deterministic function of the lengths of
the inputs. Consider any indéxIf [M?| = |N?| andM? = N/ for all j < 4, then we
require that\/! = N/, M} = N}, andM; = N.

Let (M}, M}), (M2, M?),... be asequence of message pairs, and beginning with
the encodeEncode in its initial state, let(A/), M?, M;, M¢, M;) = Encode(M, M})
fori = 1,2,.... We make the following additional consistency requirement§@™,
depending on the type of AEAD scheme in question. We use the nofad¢ianie ABC]

to denote any one of the decoding algorithms.

Type 1 For any: and for any state of the decoder, we require tbmodeA(M;) =M
andDecodeB(M], M?) = (M, M, M}, Mj).

Type 2 For any distinct indices, j, we require that M, M}) # (M], M?). For anyi,
we require that for any state of the decod&ecodeA(M)) = M. Furthermore,
if DecodeB has not been invoked with\Z!, M?) or if DecodeB has been invoked
with (M}, M?) but for each such invocation the next call Decode[ABC] was
DecodeC(L), then it must be the case thatcodeB(M, M) = (M}, M}, M},
M}).

Type 3 For any distinct indices, j, we require thatM;, M}) # (M, M?). For anyi,
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we require that for any state of the decod®ecodeA(M)) = M. Furthermore,
if DecodeB has not been invoked withh//, M) for any;j > i, or if DecodeB has
been invoked with(A77, M), for somej > 4, but for each such invocation the
next call toDecode[ABC] wasDecodeC(_L), thenDecodeB(M, M) = (M, M,
M;,, My).

Type 4 Fori = 1,2,... and with the decoder beginning in its initial state, fef =
DecodeA(M]) and (m!,, m}, m,,m;) = DecodeB(M}, M!). We require thai\f}

=m., M! =m., M. =m!, M =m!, andM; = m] for all i.

Type 5 We use the term E&Malling sequencéo denote some sequence of calls to
Decode[ABC] as they might appear in a generalized Encode-then-E&M construc-
tion. Namely, an E&M calling sequence consists of a BattodeA(1/,,) for some
M, and, if the response is ndt, a callDecodeB(M,, M.) for somel/,, and, if
the responseisndtL, L, L, 1), a call toDecodeC. We say that/,, M. ) is suc-
cessfully decoded, in an E&M calling sequence, the responses of the first two
decoding algorithms are nator (L, 1, L, 1), respectively, an@®ecodeC(T) is

called.

Assume that the decoding algorithms are always called as per the E&M call-
ing sequence (e.g., BecodeB call is always followed by @ecodeC call un-
lessDecodeB returns(L, 1, 1, 1)). Fix: > 0 and assume that the messages
that have been successfully decoded (@, M), ..., (M}, M!), and that they
were decoded in order. We require that after invokirgodeA (1) *) followed

by DecodeB (M, M!™!) and therDecodeC(T), the response to the first call is

Mi+! and the response to the second on@ig+!, M1, Mi+t M+,

MtE encoding syntax and consistency. Let EC™® = (Encode, DecodeA, DecodeB,
DecodeC) be an MtE encoding scheme. The algorithms that constitute an MtE encoding
scheme have the same syntax as those in an E&M encoding scheme.

Consider any two pairs of messaged,, M), (M,, M!), where|M,| = |M]|.
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Let (M,, My, M,, M., M,) <~ Encode(M,, M,) for Encode in some state, and\/!, M,

M, M!, M!) & Encode(M,, M!) for Encode is in some (possibly different) state. We
require thatM, | = | M!|. Consider also any two sequences of message (@gifsi}),

(M2 M?),...and(N}, ND), (N2, N2),.... Let Encode begin in its initial state and for
i=1,2,...let (M}, M, M;, M, M;) = Encode(M_, M?). Similarly, letEncode begin

in its initial state and foi = 1,2,... let (N}, N}, N}, N}, N{) = Encode(N}, N?). If

Encode is randomized, assume that both sequences are generated using the same random
tape. Unlike with E&M encoding schemes, we do not require that the randomness used
in each invocation be recoverable from the output. Consider any inde}\//| = | N/|

andM] = N for all j < 7, then we require that/) = N} and M = N,

The remainder of the consistency requirements for Type 1-Type 4 MtE encoding
schemes are the same as those for the corresponding E&M encoding schemes. We make
the following consistency requirement on encoding schemes for Type 5 CTs. We use
the term MtEcalling sequencéo refer to some sequence of calls@ecode[ABC| as
they might appear in a generalized Encode-then-MtE construction. Namely, an MtE
calling sequence consists of a cAllcodeA(M,,) and, if the response is ndt, either a
call DecodeC(_L) finalizing the calling sequence, or a cBécodeB ()M, M.) for some
M., and, if the response is nét, L, L, 1), a call toDecodeC. We say that M/, M.)
is successfully decodef] in an MtE calling sequence, the responses of decoding algo-
rithmsDecodeA andDecodeB are notL or (L, L, 1, 1), respectively, an®ecodeC(L)
is never called.

Assume that the decoding algorithms are always called in successive MtE calling
sequences. Fik> 0 and assume that the messages that have been successfully decoded
are(M,,M]),...,(M;, M?), and that they were decoded in order. We require that after
invoking DecodeA(M, ") followed by DecodeB(M*!, M*') and thenDecodeC(T),
the response to the first callig’ ™! and the response to the second on@i$™!, Mt
M7iz+1a Mti+1)_
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EtM encoding syntax and consistency. Let EC*™ = (Encode, DecodeA, DecodeB,
DecodeC) be an EtM encoding scheme. The syntaxeéode is as described in Sec-
tion 4.3.1. DecodeA, on input a string)/,, outputs a 3-tuple of message¥/,, M,,,
M;)or(L,L,1). DecodeB, on input two message¥,,, M., returns a pair of messages
(M,, M) or (L, L). DecodeC takes as input the symbdl or the symbolL and returns
nothing.

Consider any two pairs of messadéd,, M), (M,, M!) with |M,| = |M]|. Let
(M,, M,, M,,, M., M) < Encode(M,, M;) for Encode in some state, ant’, M,
M, M!, M) & Encode(M,, M) for Encode in some (possibly different) state. We
require thatM. | = | M!|. Consider also any two sequences of message (@gifsi}),
(M7, M?),... and (N,,N}),(NZ,N2),.... Fori = 1,2,... let (M}, M. M., M,
M}) = Encode(M}, M}) and (N/, N}, N}, N/, N}) = Encode(N;, N!). Assume that
each sequence is generated Vitlrode starting in its initial state. lEncode is random-
ized, assume that both sequences are generated using the same random tape. Consider
any index:. If |MJ| = |[N/| andM] = N/ for all j < i, then we require that/, = N,
M! = N!, M! = N!,andM = N.

We make the following additional consistency requirement§ @H", depending
on the type of AEAD scheme in question. L@/}, M), (M2 M?), ... be a sequence
of messages and, beginning withcode in its initial state, le{ M, M}, M., M}, M}) =
Encode(M!, M?) fori = 1,2,.... We use the notatioBecode[ABC] to denote any one

of the decoding algorithms.

Type 1 For anyi and for any state of the decoder, we require medodeA(M;) =
(M}, M}, M;) andDecodeB(M;, M!) = (M, M).

Type 2 For any distinct indices, j, we require thatM;, M?) # (M], M]). For any
i, we require that for any state of the decod@e¢codeA (M) = (M., M, , Mj).
If DecodeB has not been invoked witfi\/;, M) or if DecodeB has been invoked
with (M}, M?) but for each such invocation the next call Decode[ABC] was

DecodeC(L), thenDecodeB (M}, M?) = (M, M?}).
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Type 3 For any distinct indices, j, we require that M, M}) # (MJ, M7). For any
i, we require that for any state of the decod@ecodeA(M)) = (M, M, M;}).
Furthermore, iDecodeB has not been invoked witfi/7, M) for any;j > 4, or if
DecodeB has been invoked with\//, A7), for some;j > i, but for each such invo-
cation the next call tecode[ABC] wasDecodeC (L), thenDecodeB(M}, M) =
(Mg, M;).

Type 4 Fori = 1,2,...and the decoder beginning in its initial state,(lef , m’ , m}) =
DecodeA(M) and (m},, m}) = DecodeB(M, M}). We require that\l}, = m/,

M!=mi, M} =m:, M} =m, andM; = m! for all :.

Type 5 We use the term EtMalling sequencéo refer to some sequence of calls to
Decode[ABC]| as they might appear in a generalized Encode-then-EtM construc-
tion. Note that they have the same form as MtE calling sequences. We say that
(M, M.) is successfully decodef] in an EtM calling sequence, the responses of
decoding algorithm®ecodeA andDecodeB are not(L, L, 1) or (L, L), respec-

tively, andDecodeC(_L) is never called.

Assume that the decoding algorithms are always called in successive EtM calling
sequences. Fix > 0 and assume that the messages that have been successfully
decoded ar¢M,, M), ..., (M}, M}), and that they were decoded in order. We
require that after invokin@ecodeA (M ") followed by DecodeB (M ™, M)

and thenDecodeC(T), the response to the first call (87, M+ M) and

the response to the second onéig/ ™!, Mi+1).

Security definitions. We now state our security definitions for E&M, MtE and EtM
encoding schemes. We state the E&M and MtE definitions together because, for a given
n € {1,...,5}, the chosen-ciphertext security definition for a Typ&&M encod-

ing schemeE& M-SEM, is equivalent to the chosen-ciphertext security definition for

a Typen MtE encoding scheme. The& M-SEC4 definition is based to theoLL-CCA

definition from Chapter 3. For E&M encoding schemes, we also state a chosen-plaintext
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collision resistance definitiorE& M-coLL, which is based on the definitiatoLL-CPA

from Chapter 3.

Definition 4.3.1 (Security of E&M and MtE encoding schemes.)Let £C = (Encode,
DecodeA, DecodeB, DecodeC) be an E&M or an MtE encoding scheme. Lét,, be
an adversary with access to an encoding or&ealede(-,-) and forn = 1,...,5, let
A, be an adversary with access to an encoding oracle and decoding @recidsA(-),
DecodeB(+, -), DecodeC(-). Let(M!, M!) denote an adversary’gh encoding query and
let (M, M, M}, M}, M) denote the response for that query. Let,, m/) denoteA,’s
i-th DecodeB(-, ) query and letm!, m’, m’ m!) denote the response for that query.

Consider the following experiments.

e&m-coll

ExperimentExpz:" " (Acpa)
Run A5°%) and if it makes two querieV/i, M) and(M?, M?) to
Encode(-, -) such that # j and(M?, M}) = (M7, M7)
then return 1 else return O

e&m-sec

ExperimenExpam™seci A,)
RunAlEncode(-,~),DecodeA(~),DecodeB(~,-),DecodeC(-) and, if the following occurs:
— A, makes a queryM;, M}) to Encode(-, -) and a querym/, m]) to
DecodeB(-, -) such that( M, M) # (mJ, mi) and(ME, M}) = (m, m])

then return 1 else return O

e&m-sec

ExperimentExp&™seq A,)

RunA2Encode(-,~)7DecodeA(~),DecodeB(~,-),DecodeC(-) and, if one of the following

occurs:

— A, makes a queryM;, M}) to Encode(-, -) and a querym/, m]) to
DecodeB(-, ) such tha( M}, M!) # (md, mi) and(M, Mj) = (mi,, m])

— A, makes querieém?, mi) and(m?, m}), where(m/, mi) = (m}, mF) and
j # k, to DecodeB(-, -) such that the nex@ecode[ABC]| query following
the first of these queries is a cBlécodeC(T ), and the response for the

second of these queriesisriat, 1, 1, 1)
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then return 1 else return O

ExperimenExpiam™seey A,)
RunA3Encode(-,~),DecodeA(~),DecodeB(~,-),DecodeC(-) and, if one of the fO”OWing

occurs:

— Az makes a queryM;, M) to Encode(-, -) and a querym/, m?) to
DecodeB(-, -) such that( M, M) # (mJ, mi) and(ME, M}) = (m, m])

— A, makes querieém), m?) and(mJ*, mi*'), wherel > 1, to DecodeB(-, )
such that the nexdecode[ABC| query following the first of these queries
is a callDecodeC(T), the response for the second of these queries is not
(L, L, L, 1), and for some, k with k <, (mJ, m?) = (M, M?) and
(mi+, mitt) = (M}, MF)

then return 1 else return O

ExperimenExpiam™see{ 4,)

RunA4Encode(-,~),DecodeA(~),DecodeB(~,-),DecodeC(-) and, if one of the fO”OWing

occurs:

— A, makes a queryM;, M) to Encode(-, -) and a querym, m?) to
DecodeB(-, -) such that # j and (M}, M}) = (mi,m])

— A, makes a queryM;, M) to Encode(-, -) and a querym/, m}) to
DecodeB(-, ) such tha( M, M?) # (md,m?) and(M3, M}) = (mi,, m])

then return 1 else return O

ExperimenExpiam™seq A,)

RunA5Encode(-,~),DecodeA(~),DecodeB(~,-),DecodeC(-) and, if one of the foIIowing

occurs:

— Ag makes a queryM;, M) to Encode(-, -) and a querym/, m?) to
DecodeB(-, -) such that( M, M?) = (mi m]) and, prior to thej-th
DecodeB(+, -) query, A¢ did not make exactly — 1 DecodeB(-, -) queries
that returned messages (i.e., dgtand that were followed bpecodeC(T)

calls
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— Ag makes a queryM;, M}) to Encode(-, -) and a querym/, m]) to
DecodeB(-, -) such thai( AL}, M!) # (m],m]) and
(M, M}) = (mi,ml), and, prior to the-th DecodeB(-, -) query, Ag
madeexactlyi — 1 DecodeB(-, -) queries that returned messages
(i.e., notl) and that were followed becodeC(T) calls

then return 1 else return O

The experimentExply (A, ) for MtE are identical to thEExpSe™se® (A ) experi-
ments for E&M.

We define the&& m-coLL-advantage of adversad,,, and, forn = 1,...,5, the
E& M-SE-advantage and theTE-SE-advantage of adversary,, respectively, as

follows:

Advgﬁm'con(Acpa) = Pr [Exp?%m'w"(Acpa) = 1}
Adv%m'sem(An) = Pr [Exp?%m'sem(An) = 1}

Adv?ée'se@(An) = Pr [Exprgnée'se@(An) =1 }

In the concrete setting [6], we say that an E&M encoding schéthés E&M-COLL-
secure ifAdvgﬁm'””(Acpa) is small for all adversaried.,. using reasonable resources.
Forn = 1,...,5, we say that a Type E&M encoding schem&C is E&M-SEM-
secure ifAdvEE™se® (4 ) is small for all adversaried, using reasonable resources.
Forn =1,...,5, we say that a Type MtE encoding schemé&C is MTE-SEM-secure

if AdvIe°¢®(A,) is small for all adversaried,, using reasonable resourcek.

Definition 4.3.2 (Security of EtM encoding schemes.)Consider an EtM encoding
schemeEC = (Encode, DecodeA, DecodeB, DecodeC). Forn = 1,....5, let A,
be an adversary with access to an encoding oretede(-, -) and decoding oracles
DecodeA(-), DecodeB(+, -), DecodeC(-). Let (M}, M!) denote an adversaryisth en-
coding query and letM}, M}, M}, M¢, M;) denote the response for that query. ket
denoteA,’s i-th DecodeA(-) query and lefm? m!,m¢) denote the response for that

guery. Consider the following experiments.
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ExperimenExpin et A, )
RunAlEncode(-,~),DecodeA(~),DecodeB(~,-),DecodeC(-) and, if the following oceurs:
— A, makes a queryM;, M}) to Encode(-, -) and a queryn/ to DecodeA(-)

such thatM! # mJ and(M;, M;) = (mi,, m})

then return 1 else return O

ExperimentExp$i ¢4 4,)

RunA2Encode(-,~),DecodeA(~),DecodeB(~,-),DecodeC(-) and, if one of the foIIowing

occurs:

— A, makes a queryM;, M}) to Encode(-, -) and a queryn/ to DecodeA(-)
such thatV! # mJ and(M;., M) = (md,, m])

— A, makes querie&n’, m?) and(my, m}), where(m/, m!) = (m}, m}) and
j # k, to DecodeB(-, -) such that the nex@ecode[ABC]| query following
the first of these queries is a cBlécodeC( T ), and the response for the
second of these queries is rdt, L)

then return 1 else return O

ExperimentExpSi e} 4,)
RunA3Encode(-,-),DecodeA(-),DecodeB(-,-),DecodeC(-) and, if one of the fO”OWing
occurs:
— Ay makes a queryM;, M}) to Encode(-, -) and a queryn/ to DecodeA(-)
such thatV} # mJ and(M}, M;) = (mi,, m])
— A, makes queriegn), m?) and(mJ ™, m/*'), wherel > 1, to DecodeB(-, )
such that the nexdecode[ABC] query following the first of these queries is
a callDecodeC(T), the response for the second of these queries is not
(L, 1), and for some, k with k <4, (mJ, m!) = (M, M}) and
(mi, mi+t) = (M}, MF)
then return 1 else return O
ExperimenExpir et A,)

RunA4Encode(-,-),DecodeA(-),DecodeB(-,-),DecodeC(-) and, if one of the fO”OWing
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occurs:

— A, makes a queryM;, M}) to Encode(-, -) and a queryn/ to DecodeA(-)
such that # j and(M?, M}) = (mi,, m])

— A, makes a queryM, M]) to Encode(-, -) and a queryn/, to DecodeA(:)
such thatV} # mi and (M3, M}) = (mi, m])

then return 1 else return O

ExperimentExp$i et A)

RunA5Encode(-,-),DecodeA(-),DecodeB(-,-),DecodeC(-) and, if A only invokes

Decode[ABC] in legitimate EtM calling sequences, and one of the following

occurs:

— Ag makes a queryM;;, M}) to Encode(-, -) and a queryn/ to DecodeA(-)
such tha{ M?, M{) = (mi, m?) and, prior to thej-th DecodeA(-) query,

Ag did notmake exactly — 1 Decode[ABC] calling sequences that ended
in the callDecodeC(T)

— Ag makes a queryM;, M) to Encode(-, -) and a queryn/ to DecodeA(-)
such thatV} # mJ and(M}, M;) = (mi,, m{), and, prior to the-th
DecodeA(-) query, A madeexactlyi — 1 Decode[ABC] calling sequences
that ended in the calbecodeC(T)

then return 1 else return O
Forn =1,...,5, we define th&eTM-sE-advantage of adversary, as
AdvET®®(A,) = Pr [Exp?g"sem(An) = 1} )

In the concrete setting [6], for = 1,. .., 5, we say that a Type EtM encoding scheme
EC is ETM-SEm-secure ifAdviy*®(A,)) is small for all adversaried,, using reason-

able resourcesl
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4.4 Composition Methods

Having defined the syntax we use in this chapter for encryption and message au-
thentication schemes and having presented our new definitions of encoding schemes, we
are now in a position to formally state our generalized composition paradigms. Recall

also Figures 4.1-4.3.

Construction 4.4.1 (Generalized Encode-then-E&M.) Let ECF¥™ = (Encode,
DecodeA, DecodeB, DecodeC), S€ = (K., &, D), andMA = (K, 7,V) be E&M en-
coding, encryption, and message authentication schemes, respectively, with compatible
message spaces (e.g., the outputs fEsirvde are suitable inputs t6 and7). Let all

states initially bez. We associate to these schemegeaeralized Encode-then-E&M
AEAD schemel£5M = (I, €, D) defined as follows:

Algorithm K
K. &Ko K& K
Return(K., K;)

Algorithm & g, e,y (M, M)
(M, M,, M,,, M,, M) < Encode(M,, M,)
o & EMe(M,) ;T & T (M)
Return(M,, o, )

Algorithm D k., ,,(C)

If st = L thenreturn( L, 1)

If there does not exist/,,, o, 7 s.t.C' = (M,, 0, 7) then

return(L, L)

ParseC' as(M,, 0, 7) ; M, < DecodeA(M,)

If M, = L then|st — L; |return(L, 1)

M, — Dy (o)
(M, Mg, M,,, M,) < DecodeB(M,, M.)

If My, =1 then return(L, 1)
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v — V%"(Mt, T)

If v = 0then| st — L ; |DecodeC(L); return(L, L)
DecodeC(T)

Return(M,,, M)

Type 4 AEAD schemes include the boxed portions of the above pseudocode and
the other types do not. Recall thaty,...,a,,) denotes an encoding of the strings
ai,...,ay, such thata,, ..., a,, are recoverable. For the call ecodeB(M,, M,),

recall that if any one oMM, M,, M,,, M, is L, then they are all.. Although onlyD ex-

plicitly maintains state in the above pseudocode, the underlying encoding, encryption,

and MAC schemes may also maintain stale.

Construction 4.4.2 (Generalized Encode-then-MtE.) Let ECM® = (Encode,
DecodeA, DecodeB, DecodeC), S€ = (K., &, D), andMA = (K, 7,V), respectively,

be MtE encoding, encryption, and message authentication schemes with compatible
message spaces. Assume thadlways produces tags of the same length. Let all states
initially be e. We associate to these schemegeaeralized Encode-then-MtE AEAD
schemed&£ME = (IC, €, D) defined as follows:

Algorithm
K. &Ko K& K
Return(K., K;)

Algorithm & g, e,y (M, M)
(M, M,, M,,, M,, M) < Encode(M,, M,)
T TN (M) s 0 ERr((Me, 7))
Return(M,, o)

Algorithm D k., ,,(C)

If st = L thenreturn( L, 1)

If there does not exist/,,, o s.t.C' = (M, o) then| st — L ; |return(L, 1)
ParseC as(M,, o) ; M, < DecodeA(M,,)
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If M, =1 then return(L, 1)

M — Dy (o)

If there does not exist/,, 7 s.t. M = (M., ) then
DecodeC(.L) ; return(L, L)

ParseM as(M., )

(Mg, Mg, M,,, M,) < DecodeB(M,, M.)

If My =1 then return(L, 1)

v — V%"(Mt,T)

If v = 0then| st — L ; |DecodeC(L); return(L, L)

DecodeC(T)
Return(M,,, M)

Type 4 AEAD schemes include the boxed portions of the above pseudocode and the

other types do not. We require that the length of the st(ing, 7) depend only on the

lengths ofM, andr. 1

Construction 4.4.3 (Generalized Encode-then-EtM.) Let £CF™ = (Encode,
DecodeA, DecodeB, DecodeC), SE€ = (K., &, D), andMA = (K, 7,V), respectively,

be EtM encoding, encryption, and message authentication schemes with compatible

message spaces. Let all states initially=b&Ve associate to these schemegeaeral-
ized Encode-then-EtM AEAD schemé&™ = (K, £, D) defined as follows:

Algorithm

K. & Ke; K, & Kt
Return(K., K;)

Algorithm & ., e,y (M., M)

(M, M,, M,,, M,, M,) <~ Encode(M,, M,)
o & EM(M,) ;T < T ((My, o))

C — (M,,0,7)

ReturnC'



108

Algorithm D k., ,,(C)
If st = L thenreturn L, 1)

If there does not exist/,,, o, 7 s.t.C = (M,, 0, 7) then

return(L, 1)

ParseC as(M,, 0, 7) ; (M,, M, M,) < DecodeA(M,,)

If M, = L then|st — L; |return(L, 1)

v Vi ((My, o), 7)

Ifv=0 then DecodeC(L) ; return(L, L)
M, — Dy (o)

(M,, M) < DecodeB(M,, M.)

If My =1 then return(L, 1)
DecodeC(T)

Return(M,,, M)

Type 4 AEAD schemes include the boxed portions of the above pseudocode and the

other types do notl

4.5 Generalized Encode-then-E&M Security

45.1 Privacy

Theorem 4.5.1 below captures our chosen-plaintext privacy result for generalized
Encode-then-E&M AEAD constructions. Informally, this theorem states that if a Type
n, n € {1,...,5}, generalized Encode-then-E&M constructigi€ is built from an
encryption schem&&, a MAC M A, and a Type: E&M encoding scheméC, and if
the latter respects the nonce requirementSoand M A, then AE will be PRIV-CPA-
secure if (1)S€ is PRIV-CPA-secure M A is PRIV-DCPA-secure, andC iISE& M-COLL-
secure or (2)S€ is PRIV-CPA-secure and\.A is PRIV-CPA-secure. We remark that
if the underlying MAC requires a nonce, thé@ is automaticallyfe& M-coLL-secure

(AdveEm-eol &) = 0). We also recall that some MACs, e.g., Carter-Wegman MACs [81]
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like UMAC [22] are PRIV-CPA-secure, and th&RFsecure MACs like OMAC [41] are

alsoPRIV-DCPA-secure via Theorem 4.2.1.

Theorem 4.5.1 (Privacy of Generalized Encode-then-E&M Schemes.) Let S€,
MA, and EC be an encryption, a message authentication, and an E&M encoding
scheme, respectively. Led€ be the AEAD scheme associated to them as per Con-
struction 4.4.1. Then, given any adversaragainst4&, there exist adversarie$, B,

D, andC such that
AdvPYPAS) < AdvRY A A) + AdVRLIPAD) 4 2- AdvE™!(C) and

AdVEPYS) < AdvRYPYA) + AdVRPAB)

Furthermore,A, B, D, and C use the same resources aexcept thatd’s, B’s, and

D’s inputs to their respective oracles may be of different lengths than thosé of
(due to the encoding). IEC is nonce-respecting-for-encryption (resp., length-based
IV-respecting-for-encryption or random-IV-respecting-for-encryption), tHewill be
nonce-respecting (resp., length-based IV-respecting or random-IV-respecting). Simi-

larly, if £C is nonce-respecting-for-MACing, thes and D will be nonce-respectingl

The proof of Theorem 4.5.1 is similar to the proof of Theorem 3.7.5 from Chapter 3; we
omit details. The principle differences between the proof of Theorem 4.5.1 and the proof
of Theorem 3.7.5 are the following: we consider AEAD schemes that take associated
data; we allowS¢€ to take nonces, length-based IVs, or random-IVs as input,\aodl

to take nonces as input; in order to use the hybrid argument, we exploit the fact that we
can by definition recover the randomness from the outpult¥ encoding function;
because the encoding algorithm controls the IVs for the underlying encryption scheme

and MAC, we use the same randomness for both encoding sequences.

4.5.2 Integrity

We begin by formalizing a new property for generalized Encode-then-E&M
AEAD schemes. As with our use of tlRERIV-DCPA notion, we use this security no-

tion because we believe it important to accurately describe the specific properties that
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we require from the AEAD scheme. In most situations, however, one does not actu-
ally need to manipulate this definition but must merely invoke Proposition 4.5.3, which
states that if an AEAD scheme’s underlying encryption algorithm is length-preserving,

then the AEAD scheme automatically has the property that we specify below.

Definition 4.5.2 Fixn € {1,...,5}. LetSE, MA, and&C, respectively, be an encryp-
tion, a message authentication, and an E&M encoding schemeddet (K,&,D)
be a Typen AEAD scheme associated to them as per Construction 4.4.14 lbet an
adversary with access to an encryption oratig-, -) and a decryption oract®y ().
Let (M}, M) denote the adversaryisth encryption oracle query,M;, M}, M, M,
M;}) denote the encoding of that query, a(r:i\d;, 0;, ;) denote the returned ciphertext.
Let (m}, o7, 7/) denote the-th decryption query (assuming it is parsable), aridm;,,
mt,mi,m’ m' denote the internal values in the decryption processl(dfr an error
occurs during decryption)A “wins” if it makes a decryption querX(mg;, 0%, 7;) such
that (m], m]) = (M, M}) for somei € {1,...,k} buto} # o; (Wherek is the number
of £k (-, -) oracle queries made by before A’s j-th decryption query). We define the

E&M-SP-advantage oE& M-spPadversaryA as

AdveE™P(A)=Pr | K &K : A*wins” | . I

The following proposition shows that if the underlying encryption scheme is length

preserving, then an adversary cannot win the game described in the above definition.

Proposition 4.5.3Fix n € {1,...,5}. LetS&E, MA, and&C, respectively, be an en-
cryption, a MAC, and a Type E&M encoding scheme. Letl€ = (K, &, D) be a Type
n AEAD scheme associated to them as per Construction 4.4.14 lbet anE& M-S

adversary. IfSE’s encryption operation is length-preserving, then

AdvEP(A) =0 1

Proof: If SE&’'s encryption operation is length-preserving, then given any |the en-

cryption operation is bijective. This meadscan never win. |
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We now state our authenticity result for generalized Encode-then-E&M constructions.
Informally, this theorem states that if a Typen € {1,...,5}, generalized Encode-
then-E&M constructiond€ is built from an encryption schen®, a MAC M A, and a
Typen E&M encoding scheméC, and if the latter respects the nonce requirements of
S&€ and M A, then A€ will be AuTHn-secure ifM.A is UF-secure £C is E&M-SEM-
secure, andd€ has thee& M-spproperty specified above. As Proposition 4.5.3 shows,
it is easy to construct AEAD schemes that have#Bev-sp property. We further re-
mark that while the definitions fa& M-SEM-security may be involved, with multiple
subcases, there exist natural encoding schemes that satis# tihesen security def-

initions.

Theorem 4.5.4 (Integrity of Generalized Encode-then-E&M Schemes.) Fix n €
{1,...,5}. LetSE, MA, and&C, respectively, be an encryption, a MAC, and a Type
n E&M encoding scheme. Letl€ be a Typen AEAD scheme associated to them as
per Construction 4.4.1. Then, given anyTHn-adversaryl againstA&, there exist

adversarieg’, C', andS such that

Adva™(I) < AdvY (F) + AdvEE™se® () + Advea™R(s) .
Furthermoref’, C', andS use the same resources/axcept that’s messages to its or-
acles may be of different lengths th&s queries to its oracles (due to encoding) &fisl

messages to its decoding oracle may have slightly different lengthd ¥hdecryption

queries. If€C is nonce-respecting-for-MACing, then will be nonce-respectingl

The proof of the above theorem is below. The proof for Type 4 AEAD schemes is similar
to the proof of Theorem 3.8.2 in Chapter 3 except that here we consider AEAD schemes

that handle associated data.

Proof of Theorem 4.5.4: Let F, C, andS be adversaries that ruhand reply tol’s
oracle queries using their own oracles. In more defaihresents/ with encryption
and decryption-verification oracles exactly as in Construction 4.4.1 except'thaes
its own oracles for handling the tagging and verification portions of Construction 4.4.1.

Similarly, C runs/ exactly as in Construction 4.4.1 except that it runs all encoding and
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decoding operations through its own oracles. In the case 8fsimply passes all of’s
encryption and decryption queries to if8g) own oracles.

Let (M}, M!) denotel’s i-th oracle query, letM), M}, M}, M¢, M;) denote the
encoding of that query, and IeM;, 0;, 7;) denote the returned ciphertext. Additionally,
let <m§,, ol, 7]y denote the-th decryption-verification query (assuming it is parsable),
andm’ m! m!, m! m’ m’ denote the internal values in the decryption process (or
if an error occurs during decryption). Ledenote the index of’s (first) winning query
and letk denote the number of encryption oracle queries performed at the timies.

Let £ be the event thal wins. By partitioning event, we will see that if/
succeeds in forging, then one Bf C, andS also wins their game.

For a Type 1 AEAD scheme, we partition evdnis follows:

E : Iwins
e{(M},M},7;) : 1<i<k} Il Swins
%{(M;,Mei,n) 1<i<k}

By @ Eyoceurs andmi,mi, 7)) & { (Mi, M}, 7,) : 1<i<k} /Il Fwins

E, : Eoccursandm, mi, 7]
/

e’ ])
E, : Eoccursandmi,mi,})

E»» : Eyoccurs andmi, mi, 7)) € { (Mi, M},7;) : 1<i<k} I Cwins

The above partitioning shows that if eveitoccurs, then one aty, Es;, or E; » must
occur. Note that iff; occurs thenS wins its game. This is becaus;e; = M;; (and
thereforem! = M by consistency requirements on the encoding schemey and
7; but o} # o; (otherwise this would not be a winning forgery féy. Consequently
(md,ml) = (M, M}), buto} # o;. Also, if E,; occurs, therF forges. This follows
from the fact thatF never queried its tagging oracle witm?,m?) or, if it did, the
response was nat. Lastly, if E,, occurs, then” wins its game. This is because
we know that there is some indéxsuch that(m?, m]) = (M}, M;) but (mJ,m?) #
(M;,Mg) (the latter comes from everif;). Together, this means that the probability
that 7 wins is upper bounded by the sum of the probabilities thak’, and.S win their
respective games. The theorem follows for Type 1 AEAD schemes.

We now consider the other types of AEAD schemes. For Type 2, we parfition

as follows:
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E : Iwins
Ey : Eoccursandm),ml, i) € { (M), M!,7;) : 1<i<k}
E,; : E; occurs and there does not exist
such thaim?, o}, 7j) = (M}, 04, 7;) Il S wins
E, 5 : E; occurs and there exists
such thatm?, 0%, 7}) = (M,, 04, 7;) Il C wins

E, : Eoccursandm),ml, 7)) & { (M), M!,7;) : 1<i<k}

e 'y
Eay @ Eyoccurs andmi,mi, 7)) & { (Mi, M}, 7,) : 1<i<k} Il Fwins

n?

E»p : Eyoccurs andmi, mi, 7)) € { (Mi, M},7;) : 1<i<k} Il Cwins

This partitioning of event is the same as with Type 1 except that we further
partition eventF;. If event E;; occurs thenS wins (since(m?, m?) = (M!, M!) for
some index buto; # ;). Inthe case ofs, , in order forl’s j-th decryption query to be
considered a forgery, it must be a replayed packet. The first would have been accepted
(by the consistency requirements on AEAD schemes). This meanBdbadeB failed
to return all_Ls in response to its second query Wi;ﬁlg, m?, allowing C' to win.

For Type 3 we partition’ as with Type 2. As with Type 2, wheh;, , occursC
will win its game (althoughC’s game with Type 3 encoding schemes is different than
its game with Type 2 encoding schemes).

For Type 4 we partitior® as follows:

E . Iwins

E, : Eoccursandmi,ml) & {(M} M},... . (MF MF} Il Fwins

E, : Eoccursandm/,m]) e {(M}, M}),... (M~ MY

E,1 : E,occurs and either < j or (m), m]) # (MJ, M]) Il C wins

E,» : E,occursand: > j and(m}, mi) = (MJ, MJ)

Eapi @ Eypoccurs and # 7; and(md, mi) & {(M}, M}), ..., (MI~', M} ™),
(MY MY (ME, MF)Y I F wins

By @ Eap0ccurs and; # 7; and(mj, my) € {(Mp, M}), ..., (Mi~4, M} ™),
(MY MY, (MY, MF)Y I C wins
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Eys3 @ By, 0cCCUrs andj’. =1; Il Swins

If eventsE; or E, 5, occur thenF wins its game; if eventd’, ; or E -, occur, then

C wins its game; if event, , 3 occurs, thenS wins its game. Note that, faE 5 s,

we make use of the fact that, as per Construction 4.4.1, once a forgery attempt is de-
tected, the decryption algorithm enters the stateThis means that, prior to the first
forgery attempt, all the decryption-verification queries were in order and, singeth
decryption-verification oracle query is a forgery, it must be the caserthato;. (Note

that, for Type 4 constructions, if the decryption algorithm didn’t enter a halting state we
could not guarantee that # o;.) Additionally, by the consistency requirements on the
encoding schemey’ = M.

Let us now consider Type 5. As before, letlenote the index of’s winning
decryption-verification-oracle query. LEbe the number of decryption-verification or-
acle queries (including thgth query) that succeeded in decrypting (i.e., not returning
(L, 1)). We partitionE as follows:

E : Iwins

E, : FEoccursandm’,ml) & {(M} M}),...,(MF, MF} Il Fwins
E, : Eoccursandmi, m]) e {(M! M},... (MF MF)}

E»1 : E,occurs and either <[ or (m),ml) # (M., M!) Il C wins
Ey» : E,occurs and: > [ and(mi, mi) = (M}, M)

Eapy @ Eppoccurs and’ # 7 and(md,,m]) & {(M}, M}), ..., (M7, MY,
(MUY MY (ME MFY I F wins

Eapa 1 Ehyoccursand # m and(md,mi) € {(M}L, M}),. .., (M= M),
(MY MY (MEMFY I C wins

Ess3 1 Ey50ccCUurs andj’. =7 Il Swins

If eventsE; or E, 5, occur thenF wins its game. Furthermore, if evenfs ; or Es 5 -
occur, then”' wins its game. And if evenk , 3 occurs, ther wins its game. To see

that.S wins whenE » 5 occurs, we use the consistency requirement on Type 5 encoding
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schemes which imply that) = M!. Furthermore, it must be the case that# o

since otherwise thg-th decryption-verification query would not be a forgety.

4.6 Generalized Encode-then-MtE Security

4.6.1 Privacy

Theorem 4.6.1 below gives our chosen-plaintext privacy result for generalized
Encode-then-MtE constructions. Informally, the theorem states that a Typec
{1,...,5}, generalized Encode-then-MtE construction will preserve privacy under
chosen-plaintext attacks (Ip&i1v-CPA-secure) if the underlying encryption scheme pre-
serves privacy against chosen-plaintext attacks, i.e., if the underlying encryption scheme

is alsoPRIV-CPA-secure.

Theorem 4.6.1 (Privacy of Generalized Encode-then-MtE Schemeslet SE, M A,
and&C, respectively, be an encryption, a message authentication, and an MtE encoding
scheme. Letd€ be the AEAD scheme associated to them as per Construction 4.4.2.
Then, given any adversaryyagainstA&, there exists an adversarysuch that

AdvPyP(S) < AdVRYPYA) .
FurthermoreA uses the same resourcessaaxcept that its input to its oracle may be of
different lengths than those 6f (due to the encoding). §C is nonce-respecting-for-
encryption (resp., length-based IV-respecting-for-encryption or random-I1V-respecting-

for-encryption), thend will be nonce-respecting (resp., length-based IV-respecting or

random-IV-respecting)l

The proof is similar to that of Theorem 4.5 in [10]; we omit details. We remark that the
proof relies on the fact that if the encoding algorithm is run using the same random tape,
on two pairs of messagésd/,, M), (M,, N) such thai M,| = | N,|, then the resulting
values for), and M, will be the same due to the consistency requirements for MtE

encoding schemes in Section 4.3.2.
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4.6.2 Integrity

We first formalize a new property for generalized Encode-then-MtE AEAD
schemes, analogous to th& m-sp property for generalized Encode-then-E&M AEAD

schemes.

Definition 4.6.2 Fix n € {1,...,5}. LetSE, MA, and&C, respectively, be an en-
cryption, a message authentication, and an MtE encoding schemd£Let(K, £, D)
be a Typen AEAD scheme associated to them as per Construction 4.4.24 lbet an
adversary with access to an encryption oratig-, -) and a decryption oract®y ().
Let (M, M) denote the adversaryisth encryption oracle queryM;, M}, M, M,
M) denote the encoding of that querydenote the intermediate tag, a0}, o;) de-
note the returned ciphertext. Lem;, o}) denote the-th decryption query (assuming
it is parsable);/ denote the intermediate tag, and, m’, m!, m!, m’, m’ denote the
internal values in the decryption process (oif an error occurs during decryption)
“wins” if it makes a decryption querym?, o) such that(m}, m}, ;) = (M;, M, ;)
for somei € {1,...,k} buto} # o; (Wherek is the number of (-, ) oracle queries
made byA before A’s j-th decryption query). We define theTE-sradvantageof

MTE-SP-adversaryA as

AdvTSRA) = Pr | K &K : A“wins’ ] O

As in Section 4.5, we present a proposition showing that if the underlying encryption
scheme is length preserving, then an adversary cannot win the game described above;

we omit the proof.

Proposition 4.6.3Fix n € {1,...,5}. LetSE, MA, and&C, respectively, be an en-
cryption, a MAC, and a Type MtE encoding scheme. Let€ = (K, &, D) be a Type
n AEAD scheme associated to them as per Construction 4.4.2A lbet anMTE-SP

adversary. IfSE’s encryption operation is length-preserving, then

AdvTERA) =0. 1
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We now state our integrity result for generalized Encode-then-MtE constructions. In-
formally, this theorem states that if a Typen € {1,...,5}, generalized Encode-then-
MtE construction4¢ is built from an encryption schen®f, a MAC M A, and a Type

n MtE encoding schem&C, and if the latter respects the nonce requirement&&odnd

MA, thenAE will be AUTHn-secure itM.A is UF-secure£C is MTE-SE-secure, and

AE has themTE-sP property specified above. As Proposition 4.6.3 shows, it is easy to
construct AEAD schemes that have thee-spproperty. As with thee& M-SE secu-

rity property, there exist natural encoding schemes that satisfytiEeSE security

definitions.

Theorem 4.6.4 (Integrity of Generalized Encode-then-MtE Schemes.) Fix n €
{1,...,5}. LetSE, MA, and&C, respectively, be an encryption, a message authen-
tication, and an MtE encoding scheme. &£ be a Typen AEAD scheme associated

to them as per Construction 4.4.2. Then, given aoyHn-adversaryl againstAE,

there exist adversarids, C', andS such that

AdvAI™ (1) < AdvY ((F) + AdvEE™®(C) + AdvsS) .
Furthermore/’, C', andS use the same resources/axcept that’s messages to its or-
acles may be of different lengths th&s queries to its oracles (due to encoding) &risl

messages to its decoding oracle may have slightly different lengthd ¥hdecryption

queries. If€C is nonce-respecting-for-MACing, then will be nonce-respectingl

Proof: The proof is based on the proof of Theorem 4.5.4 for generalized Encode-then-
E&M constructions. The partitioning of eveht for Type 2 and Type 3 differs slightly

from the partitioning we used in the proof of Theorem 4.5.4. The difference is because
in the generalized Encode-then-MtE construction, the tag is not sent in the clear. The

revised partitioning is as follows:

E : Iwins
Ey : Eoccursandm),ml, i) € { (M), M!,7;) : 1<i<k}

E,; : E; occurs and there does not exist
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such thaim/, o) = (M}, 0;) /I S wins
E» : E occurs and there existsuch thatm/, o) = (M}, 0;) I C wins

E, : Eoccursandm),ml, i) & { (M), M!,7;) : 1<i<k}

Eay @ Eyoceurs andmi,mi, 7)) & { (Mi, M}, 7,) : 1<i<k} Il Fwins

By @ By oceurs andmi,mi, 7)) € { (Mi, M}, 7,) : 1<i<k} Il Cwins

The partitioning of ¥ for Type 1, Type 4, and Type 5 is the same as in the proof of
Theorem 4.5.4.1

4.7 Generalized Encode-then-EtM Security

4.7.1 Privacy

Theorem 4.7.1 below gives our chosen-plaintext privacy result for generalized
Encode-then-EtM constructions. Informally, the theorem states that a dypec
{1,...,5}, generalized Encode-then-EtM construction will preserve privacy under
chosen-plaintext attacks (lBRiv-cPA-secure) if the underlying encryption scheme is

PRIV-CPA-Secure.

Theorem 4.7.1 (Privacy of Generalized Encode-then-EtM Schemeslet S&, M A,
and&C, respectively, be an encryption, a message authentication, and an EtM encoding
scheme. LetA€ be the AEAD scheme associated to them as per Construction 4.4.3.
Then, given anyRIV-CPA adversaryS against4&, there exists an adversary such

that
AdvPYP(S) < AdvRYP(A) .

FurthermoreA use the same resourcesssxcept that its inputs to its oracle may be of
different lengths than those 6f (due to the encoding). §C is nonce-respecting-for-
encryption (resp., length-based IV-respecting-for-encryption or random-1V-respecting-
for-encryption), themA will be nonce-respecting (resp., length-based IV-respecting or

random-1V-respecting)
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The proof is similar to that of Theorem 4.7 in [10]. We note that the proof relies on the
fact that if the encoding algorithm is run using the same random tape, on two pairs of
messagesi,, M), (M,, N,) such thai M| = | N

, then the resulting values far,,
M,, M, and M, will be the same per the consistency requirements for EtM encoding

schemes specified in Section 4.3.2.

4.7.2 Integrity

Theorem 4.7.2 below gives our integrity result for generalized Encode-then-EtM
constructions. Informally, this theorem states that if a Types € {1,...,5}, gen-
eralized Encode-then-EtM constructiott is built from an encryption schemgg, a
MAC M A, and a Type: EtM encoding schem&C, and if the latter respects the nonce
requirements o6& and M A, then A€ will be AUTHn-secure ifM A is UF-secure and
EC is ETM-SEM-secure. Note that unlike the integrity results for generalized Encode-
then-E&M and generalized Encode-then-MtE constructions (Theorems 4.5.4 and 4.6.4),
the security ofA£ does not depend on an additional property4srt (like the properties
E&M-sPandMTE-SP). As with theE& M-SE andMTE-SEMN security properties for
E&M and MtE encoding schemes, there exist natural EtM encoding schemes that satisfy

the ETM-SE security definitions.

Theorem 4.7.2 (Integrity of Generalized Encode-then-EtM Schemes.) Fix n €
{1,...,5}. LetSE, MA, andE&C, respectively, be an encryption, a message authen-
tication, and an EtM encoding scheme. &£ be a Typen AEAD scheme associated

to them as per Construction 4.4.3. Then, given anyHn adversaryl againstAE,

there exist adversarigs andC such that
AdvAM(1) < AdvY 4 (F) + Advamsee o),

FurthermoreF’ andC use the same resourcedascept thaf’s messages to its oracles
may be of different lengths thafis queries to its oracles (due to encoding) ard
messages to its decoding oracle may have slightly different lengthd thdecryption

queries. If€C is nonce-respecting-for-MACing, thanwill be nonce-respectingl
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Proof: The proof is similar to that of Theorem 4.5.4 and Theorem 4.6.4.FLahdC

be adversaries that ruhand reply tol’s oracle queries using their own oracles. Let
(M, M) denotel’s i-th encryption query, letM;, M, M, M}, M}) denote the en-
coding of that query, and Igf\/}, o;, 7;) denote the returned ciphertext. Lgt,, o, 7/)
denote the-th decryption-verification query (assuming it is parsable), afjdn’ , m,

m’, m: m’ denote the internal values in the decryption procesd (ifran error occurs
during decryption). Assume thatwins and letj denote the index of its (first) winning
decryption-verification query anddenote the number of encryption queries performed
at the timel wins. We will prove that eithef’ or C' also wins its game.

For the 5 types of AEAD schemes, we consider the following events:

E : I'wins
Ey 1 Eoccurs andmi,, m{, o}, 71) & { (M¢, M}, 05,7) : 1<i<k} [l Fwins
E, @ Eoccurs andmi,, mj, o}, /) € { (Mi, M}, 05,7;) : 1<i<k} Il Cwins

Note that if eventr occurs then eitheF; or F; must occur. Evenf; implies that

the query(m?, (m{,a;>,rj’.) is accepted by the MAC verification oracle (otherwise

(mg;, 0%, 7;) would not be a winning query faf) and is such that; was never returned

by the tagging oracle as an answer to queny,, (m?, o%)). Therefore, ifE; occurs then
F forges.

Assume that event, occurs. Then there exists an indéx< £ such that
(m%,mi,a},Tj/-) = (M! M} o;7;). For Type 1 AEAD schemes, it must be the case
thatm? # M (otherwise(m/, o, 7/) would not be a winning query fof). Since
M} # m] and(M},, M}) = (mi,m{), C' wins. For Type 2 and Type 3 AEAD schemes,
C also wins ifm), # M. If m} = M then for Type 2 AEAD schemes, it must be the

case thatm?, o, 77) is a replayed packet (otherwise this would not be a winning query

for I). Hence(m}, m!) was decoded correctly (i.e., without returnifig, 1)) twice.
Therefore (' also wins in this case. For Type 3 AEAD schema%,: M; implies that
(mg, 0%, 7;) is areplayed or out-of-order packet (otherwise this would not be a winning

query for ). Again, this implies that”' wins. For Type 4 AEAD schemes, it must
be the case that either# j or m/) # M (if i = j andm), = M, thenj < k and



121

(m), a%,7i) = (MJ, 0;,7;), which contradicts the assumption tHat/, o, 7/) is a win-
ning query forl). In both of these cases wins. Finally, for Type 5 AEAD schemes,
let [ be the number of decryption-verification oracle queries prior tojthie one that
succeeded in decrypting (i.e., did not ret@in 1 )). Then it must be the case that either
I #i—1orm) # M) (if I =i—1andm] = M, thenl +1 < k and(m}, o}, 7}) =

(M, 0141, 7141), contradicting the assumption that/, o/, 7/) is a winning query for
I). In both of these cas&s wins. Hence for all AEAD-scheme typeg;, implies that

C wins. 1

Additional Information

The material in this chapter comes from in-progress work. | was a primary re-

searcher for this work, the full citation of which is currently:

Tadayoshi Kohno, Adriana Palacio, and John Black. Authenticated-

encryption: New notions and constructions. Manuscript, 2006.



5 The CWC Authenticated

Encryption Scheme

In addition to creating AEAD schemes from standard encryption and message
authentication schemes, there is a push toward producing block cipher-based AEAD
schemes [13, 35, 44, 47, 69, 72, 82]. Despite this push, among the previous works
there does not exist any block cipher-based AEAD scheme simultaneously having all
five of the following properties: provable security, parallelizability, high performance in
hardware, high performance in software, and freedom from intellectual property claims.
Even though not all applications require all five of the these properties, we believe that
many applications will benefit from at least one of these properties. Moreover, appli-
cations may need to interoperate with other systems that desire a different subset of
properties.

In this chapter we investigate the design of a block cipher-based AEAD scheme
having all five of the above properties. Finding an appropriate balance between all five of
these properties is, however, not straightforward since natural approaches to addressing
some of the properties are actually disadvantageous with respect to other properties. We
believe we have overcome these challenges and, in doing so, introduce a new encryption

scheme that we caCarter-Wegman CountdCWC) mode.

An earlier version of the material in this chapter appears in Fast Software Encryption, volume 3017
of Lecture Notes in Computer Science [50], copyright the IACR.

122
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5.1 Overview

Motivation. One principle motivation for the research in this chapter is IPsec. (IPsec

is a suite of cryptographic protocols that the IETF is currently in the process of stan-
dardizing.) From a pragmatic perspective, standardization bodies like the IETF, as well
as some vendors, prefer patent-free modes over patented modes. For example, the el-
egant OCB scheme [72] was apparently rejected from the IEEE 802.11 working group
because of patent concerns. From a hardware performance perspective, because none
of the pre-existing patent-free AEAD schemes are parallelizable, it to impossible to
make pre-existing patent-free AEAD schemes run faster than approximately 2 Gbps us-
ing conventional ASIC technology and a single processing unit. Nevertheless, future

network devices may need to run at 10 Gbps.

CWC. The AEAD scheme that we propose in this chapter has all five of the proper-
ties that we mention in the introduction. First, CWC is provably secure. Moreover, our
provable security-based analyses helped guide our research and helped us reject other
schemes with similar performance properties but with slightly worse provable security
bounds. CWC is also parallelizable, which means that we can make CWC run at 10
Gbps when using conventional ASIC technology and AES as the underlying block ci-
pher. One can also implement CWC efficiently in software. Our implementation of
CWC using AES runs at about the same speed as the other patent-free modes on 32-bit
architectures (Section 5.6); we anticipate significant performance gains on 32-bit CPUs
when using more sophisticated implementation techniques, and we also see significantly
better performance on 64-bit architectures. (Patented schemes like OCB are still capable
of running faster than CWC in software.)

Like the other two pre-existing unpatented block cipher-based AEAD schemes,
CCM [82] and EAX [13], CWC avoids patents by using two inter-related but mostly in-
dependent modules: one module to “encrypt” the data and one module to “authenticate”
the data. Adopting the terminology used in [13], it is because of the two-module struc-

ture that we call CWC &onventionalblock cipher-based AEAD scheme. Although
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CWC uses two modules, one can implement it efficiently in a single pass. By using
the conventional approach, CCM, EAX, and CWC are very much like composition-
based AEAD schemes built from existing encryption schemes and MACs. Unlike
composition-based AEAD schemes, however, by designing CWC directly from a block
cipher, we eliminate redundant steps and fine-tune CWC for efficiency in both hardware
and software. For example, we use only one block cipher key, which saves expensive
memory access in hardware.

The encryption core of CWC is based on counter (CTR) mode encryption, which
is well-known to be efficient and parallelizable. For authentication, we base our design
on the Carter-Wegman [81] universal hash function approach for message authentica-
tion. Part of the design challenge is to choose an appropriate universal hash function,
with appropriate parameters. Since one can parallelize polynomial evaluation (if the
polynomial is inz, one can split the polynomial intointerleaved polynomials in?),
we choose to use a universal hash function consisting of evaluating a polynomial mod-
ulo the prime2'?” — 1. Our hash function is similar to Bernstein’s hash127 [17] except
that Bernstein’s hash function is optimized for software performance at the expense of

hardware performance. To address this issue, we use larger coefficients than hash127.

Notation. In our research we first created a general approach for combining CTR
mode encryption with a universal hash function in order to provide authenticated en-
cryption. We refer to this general approach as CWC (no change in font), and we use
CWC-BC to refer to a CWC instantiation with a 128-bit block cipfB« as the underly-

ing block cipher and with the universal hash function summarized above. W&\W€&x

as shorthand foEWC-BC and useCWC-AES to meanCWC-BC with AES [28] as

the underlying block cipher. There are other possible instantiations of the general CWC
approach, e.qg., for lega®#-bit block ciphers. Since we are targeting new applications,
and since a mode using a 128-bit block cipher cannot interoperate with a mode using a

64-bit block cipher, we focus this paper only on our 128V C instantiation.
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Table 5.1 Software performance in clocks per byte oW C-AES, CCM-AES, and

EAX-AES on a Pentium Ill. Values are averaged over 50 000 samples.

Linux/gcc-3.2.2 Windows 2000/Visual Studio 6.0

Payload message lengths (bytesPayload message lengths (bytes)
Mode 128 256 512 2048 819128 256 512 2048 8192
CWC-AES | 105.5|88.4| 78.9| 72.2 | 70.5|84.7| 70.2| 62.2| 56.5| 55.0
CCM-AES | 97.9 | 87.1|82.0| 78.0| 77.1|64.8| 56.7| 52.5| 49.5 | 48.7
EAX-AES | 114.1|94.9|86.1| 79.1| 77.5| 75.2| 61.8| 55.3| 50.4 | 49.1

Performance. Let (A, M) be some input to th€WC encryption algorithm, where
A is the associated data aid is the payload data. ThEéWC encryption algorithm
derives a universal hash subkey from the block cipher key. Assuming that the universal
hash subkey is maintained across invocations, encrypting/) takes[|M|/128] + 2
block cipher invocations. The polynomial usedGwWC's universal hashing step will
have degred = [|A|/96] + [|M|/96]. There are several ways to evaluate this poly-
nomial; details in Section 5.6. As noted above, one can evaluate this polynomial in
parallel. Serially, assuming no precomputation, one can evaluate this polynomial using
d 127x127-bit multiplies. As another example, assumirgrecomputed powers of the
hash subkey, which are cheap to maintain in software for reasonatle could eval-
uate the polynomial using — m 96x127-bit multiplies andn 127x127-bit multiplies,
wherem = [(d+1)/n] — 1.

In hardware using conventional ASIC technology at 0.13 micron, it takes approx-
imately 300 Kgates to reach 10 Gbps throughpuGQ@C-AES. This is approximately
twice as much as OCB, but avoids IP negotiation overhead and royalty payments to three
parties. Table 5.1 relates the software performance, on a Pentium GW&-AES to
the two other pre-existing patent-free AEAD modes CCM and EAX; the patented modes
such as OCB are not included in this table, but are about twice as fast as the times given
for the patent-free modes. The implementations used to compute Table 5.1 were writ-
ten in C by Brian Gladman [34] and all use 128-bit AES keys; the cuGdMC-AES

implementation does not use the above-mentioned precomputation approach for eval-
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uating the polynomial. Table 5.1 shows that the current implementations of the three
modes have comparable performance in software, the relative “best” depending on the
OS/compiler and the length of the message. Using the above-mentioned precomputa-
tion approach and switching to assembly, we anticipate reducing the c@Vafs
universal hashing step to approximately 8 cpb, thereby significantly improving the per-
formance ofCWC-AES in software compared to CCM-AES and EAX-AES (since the
authentication portions of CCM-AES and EAX-AES are limited by the speed of AES
but the authentication portion @WC-AES is limited by the speed of the universal
hash function). For comparison, Bernstein’s related hash127, which also evaluates a
polynomial modul®'?” — 1 but whose specific structure makes it less attractive in hard-
ware, runs approximately 4 cpb on a Pentium Il when written in assembly and using
the precomputation approach. On 64-bit G5s, our initial implementation of the hash
function runs at approximatelycpb, thus suggesting th@WC-AES is also attractive
on 64-bit architectures (when running the G5 in 32-bit mode, our implementation runs
at approximately 15 cpb).

We do not claim tha€WC-AES is efficient on low-end CPUs such as 8-bit smart-
cards. However, our goal was not to develop an AEAD scheme for such low-end pro-

Cessors.

The patent issue. The patent issue is a peculiar one. While it may seem odd to let
patents influence research, we note that doing so is also not uncommon in some sciences.
We view this line of research as discovering the most appropriate solution given real-

world constraints.

Additional related works. CWC is similar to a combination of McGrew’s UST [59]

and TMMH [58], where one of the main advantagesGWC over UST+TMMH is
CWC'’s small key size, which, as the author of UST and TMMH notes, can be a bot-
tleneck for UST+TMMH in hardware at high speeds. The integrity portio€WfC

builds on top of the Carter-Wegman universal hashing approach to message authentica-
tion [81]. The specific hash functidBWC uses is similar to Bernstein’s hash127 [17],
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but is better suited for hardware. Shoup [74] and Nevelsteen and Preneel [64] also re-
searched software optimizations for universal hash functions. Following the original
publication of the material in this chapter, Bernstein introduced a new, efficient MAC
that uses polynomial evaluation mod@&® — 5 [18]. Rogaway and Wagner released

a critique of CCM [73]. For each issue raised in [73], we find that we have addressed
the issue (e.g., we design€JVC to be on-line) or we disagree with the issue (e.g., we
feel that it is sufficient for new modes of operation to handle arbitrary octet-length, as
opposed to arbitrary bit-length, messages; we stress, however, that, if desired, it is easy
to modify CWC to handle arbitrary bit-length messages, see Section 5.5).

CWC recently served as the starting point for GCM [60], a new conventional
AEAD scheme also having all five of the target properties that we mentioned at the
beginning of this chapter. Unlike our design, however, GCM offers weaker security than
our construction under some scenarios. In particular, Ferguson [33] describes attacks
against GCM when configured to produce small authentication tags. We designed CWC

specifically to avoid attack scenarios like the one Ferguson exploits (Section 5.5).

5.2 Preliminaries

Authenticated encryption schemes with associated data.In this chapter we use Ro-
gaway'’s notion of an AEAD scheme [69]. Recall that we based our definition of a
Type 1 AEAD scheme in Chapter 4 on Rogaway'’s notion except that in Chapter 4 we
do not expose a nonce to the caller, we allow the encryption algorithm to be random-
ized and stateful and the decryption algorithm to be stateful, and we use a left-or-right
indistinguishability definition for privacy. As we define it in this chapter, an AEAD
schemeS€ = (K., £, D) consists of three algorithms and is defined over some key space
KeySpse, Some nonce spadénceSpse = {0, 1}", n a positive integer, some associated
data spacé\dSps. C {0,1}*, and some payload message spslseSps. C {0,1}*.

We require that membership MsgSps. andAdSpg,. can be efficiently tested and that if

M, M’ are two strings such thatl € MsgSps. and|M'| = | M|, thenM’ € MsgSpge.
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The randomized key generation algorithi@a returns a keyk € KeySpg.; we
denote this process d < K,.. The deterministic encryption algorithé takes as
input a keyK € KeySpge, a nonceN € NonceSpge, associated datd € AdSpg,, and
a payload messagl/ € MsgSpse, and returns a ciphertext € {0, 1}*; we denote
this process a§' — EN*(M) or C' — Ex(N, A, M). The deterministic decryption
algorithmD takes as input a ke € KeySpgse, a nonceN € NonceSpge, a header
A € AdSpge, and a string”’ € {0,1}* and outputs a messagé € MsgSpg. or the
special symboll on error; we denote this process/as«— DI]\(”A(C). We require that
DNAENA(M)) = M for all K € KeySpse, N € NonceSpge, A € AdSpgg, and
M € MsgSpg.. Leti(-) denote thdength functionof SE; i.e., for all keysK, nonces
N, headersd, and messagel/, |EX(M)| = I(|M]).

Under the correct usage of an AEAD scheme, after a random key is selected, the
application should never invoke the encryption algorithm twice with the same nonce
value until a new key is randomly selected. In order to ensure that a nonce does not
repeat, implementations typically use nonces that contain counters. We use the notion
of a nonce, rather than simply a counter, because the notion of a nonce is more general

and allows developers the freedom to structure the nonces as they desire.

Block ciphers. We define the notion of a block cipher in Section 2.3. For the purposes
of this chapter, we restrict ourselves to block ciph&rs K x D — D wherek =
{0,1}* andD = {0, 1}, for some positive integeris and L, rather than arbitrary sets
K andD. We usef < E as short hand fok’ < {0,1}* ; f «— Ex. We callk the key
length of £ and we callL the block length.

We use the same definition of pseudorandomness from [6, 56] summarized
in Section 2.3. As alternative notation for the definition of pseudorandomness, if
E: {0,1}* x {0,1}Y — {0,1}* and A is an adversary with access to an oracle and

that returns a bit, then we defiledv>"(A) as
AdvPP(A) = Pr [fziE 40 1] _pr [gg PermiL] : A7) — 1] .

As before,AdvhP(A) denotes therradvantage ofd in distinguishing a random in-
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stance off from a random permutation af+bit strings.

5.3 Specification

LetBC: {0,1}* x {0,1}'*® — {0,1}'?® be a128-bit block cipher. Letl < 128
is the desired tag length in bits. Then the CWC mode of operation @hgvith
tag lengthtl, CWC-BC-tl = (K, CWC-ENC, CWC-DEC), is defined as follows. The

message spaces are.

MsgSpewesc = { 7 € ({0,1}%)" : |z < MaxMsglen }
AdSpCWC-BC-t| = {:C (- ({O, 1}8)* . ‘l’| S MaXAdLen }
KeySpewe-scu = {0> 1}kl

NonceSpewegcn = {0, 1}

whereMaxMsglen and MaxAdLen are both128 - (23 — 1). That is, the payload and
associated data spaces @WC-BC-tl consist of all strings of octets that are at most
232 — 1 blocks long.

The CWC-BC-tl key generation, encryption, and decryption algorithms are de-

fined as follows:

Algorithm K
K & {0,134
ReturnK

Algorithm CWC-ENC (N, A, M)
o — CWC-CTR (N, M)
7 < CWC-MACK (N, A, 0)

Returno||m

Algorithm CWC-DECk (N, A, C)
If |C| < tlthen returnL
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ParseC asc||T where|r| = tl

If A & AdSpcwe.se OF 0 € MsgSpewe.sc.y then returnl
If 7 # CWC-MACKk (N, A, o) then returnL

M «— CWC-CTRg(N, o)

ReturnM

The algorithmsCWC-CTR, CWC-MAC, CWC-HASH are defined below. The
CWC-CTR algorithm handles generating the encryption and decryption keystreams,
CWC-MAC handles the generation of an authentication tag, andC$éS-HASH as

the underlying universal hash function.

Algorithm CWC-CTRg (N, M)
o — [|M]/128]
Fori = 1toa dos; « BCx(107||N||{i)32)
x « first | M| bits of sy ||sa|| - - - || Sa
oc—xzdM

Returno

Algorithm CWC-MACKk (N, A, o)
R « BCx(CWC-HASH (A, o))
7« BCg(107||N||0%*) & R

Return firsttl bits of 7

Algorithm CWC-HASHk (A, o)
Z « last127 bits of BCx(110'%9)
K, — toint(2)
| + min integer such th&i6 divides|A||0’|
I' — min integer such thai6 divides|s||0" |
X AJ|0'[lo]]0"; 5 |X]/96
Break X into chunksXy, X, ..., X3
Fori =1to 5 doY; « toint(X;)
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ly < |o|/85 la < |A]/8

Yo 200 14+,

R~ YiK] + -+ Y3K), + Y31 mod 227 — 1
Return(R);2s

5.4 Theorem Statements

The CWC scheme is a provably secure AEAD scheme assuming that the un-
derlying block cipher, e.g., AES, iBRPsecure. As noted in Section 2.3, this as-
sumption is reasonable since most modern block ciphers, including AES, are believed
to be PRPsecure. Furthermore, all provably-secure block cipher modes of operation
that we are aware of make at least the same assumptions we make, and some modes,
such as OCB [72], require the stronger, albeit still reasonable, assumption of super-
pseudorandomness. The specific result<dfC appear as Theorem 5.4.1 and Theo-

rem 5.4.2 below.

5.4.1 Privacy

We first show that ifBC is a secure block cipher, the@WC-BC-tl will pre-
serve privacy under chosen-plaintext attacks. In this chapter we use the strong defini-
tion of indistinguishability for AEAD schemes from [69]. This notion of privacy un-
der chosen-plaintexts attacks is stronger than the conventional left-or-right notion. Let
S€ = (K., &,D) be an AEAD scheme with length functidi). Let $(-,-,-) be an
oracle that, on inputV, A, M) € NonceSpgs X AdSpgs X MsgSpse, returns a random
string of length/(|M|). Let B be an adversary with access to an oracle and that returns
a bit. Then

AVEITPUB) = Pr | K & K, B0 =1 | = Pr [ B3 = 1]

is thePRIV$-CcPA-advantage of3 in breaking the privacy af€ under chosen-plaintext

attacks; i.e. Adv2e*°P B) is the advantage d8 in distinguishing between ciphertexts
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from Ex(-,-,-) and random strings. An adversaBy is honce-respectingf it never
queries its oracle with the same nonce twice. In the concrete setting [6], a sdttme
preserves privacy under chosen plaintext attackegis$-cPa-secure) if thePRIVS-

cPA-advantage of all nonce-respecting adversaries using reasonable resources is small.

Theorem 5.4.1 (Privacy of CWC.) Let CWC-BC-tl be as in Section 5.3. Then given a
nonce-respectingrIv$-CcPA adversaryA againstCWC-BC-tl one can construct 2RP
adversaryC', againstBC such that ifA makes at mosj oracle queries totaling at most
1 bits of payload message data, then

(/128 + 3q + 1)?

AdyPrive-cpa (A) < Advgrg(CA) + 9129

CWC-BC-tl

(5.1)

Furthermore, the experiment féf, takes the same time as the experimentAocand

C'4 makes at most,/128 + 3¢ + 1 oracle queries.

We prove Theorem 5.4.1 in Section 5.7. Let us elaborate on why Theorem 5.4.1 implies
that CWC-BC will preserve privacy under chosen-plaintext attacks. AssBias a
secure block cipher. This means thatlvi’(C) must be small for all adversari€s
using reasonable resources and, in particular, this means thdt, fas described in
the theorem statemenfdv5>(C4) must be small assuming that uses reasonable
resources. And iAdvgl(C.4) is small andu, ¢ are small, then, because of the above
equations, Adv2ye P2 (A) must also be small as well. l.e., any adversarysing
reasonable resources will only be able to break the privac§WwiC-BC-tl with some
small probability.
As a concrete example, let us consider limiting the number of applications of

CWC-BC-tl between rekeyings to some reasonable value sugh-a2*?, and let us
limit the total number of payload bits between rekeyingg te 2°°. Then Equation 5.1
becomes

AdvELCEEq(4) < AdVER(C) + 355
which means that, assuming that the underlying block cipher is a seelgean at-
tacker will not be able to break the privacy@WC-BC-tl with advantage much greater

than2—42,
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5.4.2 Integrity

We now present our results showing thaBI€ is a secure block cipher, then
CWC-BC-tl will protect the authenticity of encapsulated data. We use the strong notion
of authenticity for AEAD schemes from [69]. This definition is similar to the definitions
of AUTHC integrity from Section 2.6 anduTH 1 integrity from Section 4.1.2, but stated
for AEAD schemes as defined in this chapter. IS& = (K., &, D) be an AEAD
scheme. LeF' be a forging adversary and consider an experiment in which we first pick
a random keyk <~ K, and then run with oracle access t6x (-, -, -). We say that”
forgesif F'returns a pai{N, A, C') such thaﬂ)%’A(C) =# 1 but F' did not make a query
(N, A, M) toEk(,-,-) that resulted in a respongé Then

AdvA(F) = Pr [K E K, o Fo) forges

is theAuTHC-advantageof I in breaking the integrity/authenticity &f€. Intuitively,
the schemeSE preserves integrity/authenticity if theuTHC-advantage of all nonce-

respecting adversaries using reasonable resources is small.

Theorem 5.4.2 (Integrity/authenticity of CWC.) Let CWC-BC-tl be as specified in
Section 5.3. (Recall th&C is a 128-bit block cipher and that the tag lengtis < 128.)
Consider a nonce-respectingyTHC adversaryA againstCWC-BC-tl. Assume the
execution environment allows to query its oracle with associated data that are at most
n < MaxAdLen bits long and with messages that are at mest MaxMsgLen bits long.
AssumeA makes at mosf— 1 oracle queries and the total length of all the payload data
(both in these; — 1 oracle queries and the forgery attempt) is at mosthen givenA

we can construct arPadversaryC', againstBC such that

(u/1284+3¢+1)2 n+m 1 1
9129 9133 9125 + otl (5.2)

Adv(all\J/U]C(::-BC-tI(A) < AdvgrcF:)(CA) +

Furthermore, the experiment féf, takes the same time as the experiment4oand

C'4 makes at most /128 + 3¢ + 1 oracle queries|

We prove Theorem 5.4.2 in Section 5.7. Let us elaborate on why Theorem 5.4.2 im-

plies thatCWC-BC will preserve authenticity. AssumiC is a secure block cipher.
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This means thadvg(C) must be small for all adversari€$ using reasonable re-
sources and, in particular, this means that, @or as described in the theorem state-
ment, Advi2(C4) must be small assuming that uses reasonable resources. And if
Advgrg(OA) is small andu, ¢, m andn are small, then, because of the above equations,
Advaihe o (A) must also be small as well. l.e., any adversdrysing reasonable
resources will only be able to break the authenticityCo%C-BC-tl with some small
probability.

Let us consider some concrete examples. het= MaxAdLen and m =
MaxMsglLen, which is the maximum possible allowed by t8&/C-BC construction.
Then Equation 5.2 becomes

(n/128 +3¢+1)* 1 1
2129 Tom T

AdVGClL\j/t\;EC-BC-tI(A) < Advgr([:)(CA) +

If we setq = 232 andu = 2°° as before, and if we take > 43, then the above equation
becomes

AdvEngacy(4) < AdvRE(Ca) + %
which means that, assuming that the underlying block cipher is a sereran attacker
will not be able to break the unforgeability GWC-BC-tl with probability much greater

than2—41,

Chosen-ciphertext privacy. Since theCWC-BC-tl scheme preserves privacy under
chosen-plaintext attacks (Theorem 5.4ahd provides integrity (Theorem 5.4.2) as-
suming thatBC is a secure pseudorandom permutation, it also provides privacy under
chosen-ciphertext attacks under the same assumption Bl@uRecall Sections 2.6,

3.6, and 4.1.2 for a discussion of the relationship between chosen-plaintext privacy, in-

tegrity, and chosen-ciphertext privacy for authenticated encryption schemes.

5.5 Design Decisions

Finding an appropriate balance between provable security, hardware efficiency,

and software efficiency, while simultaneously avoiding existing intellectual property is-
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sues, was one of the principle components of this research project. In this section we

discuss how our diverse set of goals affected our design decisions.

The CWC-HASH universal hash function. We chose to simultaneously achieve our
parallelizability, hardware, and software goals by basing the authentication portion of
CWC on the Carter-Wegman [81] universal hash function approach to message authen-
tication. This is because universal hash functions, and especially the one we created for
CWC, can be implemented in multiple ways, thus allowing different platforms and ap-
plications to implemen€CWC-HASH in the way most appropriate for them. For exam-

ple, hardware implementations will likely parallelize the computatio€WfC-HASH

by splitting it into multiple polynomials irK’; for somei. In more detail, if the polyno-

mial is
Y1K5+Y2K5_1+Y3K5_2+Y;1K5_3+"'+Y5Kh+Y5+1 mod 2127 — 1

then, setting = 2, andy = K? mod 2'?" — 1, and assuming is odd for illustration

purposes, we can rewrite the above polynomial as
(}/lym + }/éym—l + oo+ YB)[L’ + (}/Qym + }/4ym—1 + cee 4 Y,B-i-l) mOd 2127 . 1 7

After splitting the polynomial, hardware implementations will then likely compute each
polynomial using Horner's rule (e.g., the polynomidt? + bK + ¢ would be evalu-
ated aq((a)K}, + b)K}) + ¢). Software implementations on modern CPUs, for which
memory is cheap, will likely precompute a number of powerd{gfand evaluate the
CWC-HASH polynomial directly, or almost directly, using a hybrid between a precom-
putation approach and Horner’s rule. We consider a number of possible implementation
strategies in more detail in Section 5.6.

CWC-HASH is an instantiation of the classic polynomial universal hash approach
to message authentication [81], and is closely related to Bernstein’s hash127 [17], which
also evaluates a polynomial modul&#” — 1. Although hash127 is very fast in soft-

ware, its structure makes it less suitable for use on high-speed hardware. In particular,
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hash127’s use of 32-bit coefficients, while great for software implementations with pre-
computed powers ak,, means that hardware implementations using Horner’s rule will
be “wasting work.” Specifically, even with 32-bit coefficients, incorporating each new
coefficient using Horner’s rule will require a 127x127-bit multiply because the accu-
mulated value will be 127 bits long. By defining t@WVC-HASH coefficients to be
96-bits long, we increase the performance of Horner’s rule implementations by a factor
of three. (We could have gone even further and made the coefficients 126 bits long,
but doing so would have required additional complexity to perform bit and byte shifting
within the coefficients.) An alternative approach for increasing the performance of a
serial implementation of Horner’s rule would be to reduce the size oCiME-HASH
subkeyK, to 96 bits. We discuss why we rejected this option in more detail later, but
remark here that there are more efficient strategies than Horner’s rule for implementing
CWC-HASH in software, and that in a parallelized approach the vakligs > 2, will

most often be full 127-bit values evenff, is only 96-bits long.

On using a single key. From a security perspective, it would have been perfectly ac-
ceptable, and in fact more traditional, to make @&C-CTR block cipher key and
the twoCWC-MAC block cipher keys independent. Like others [13, 82], however, we
acknowledge that there are several important reasons for sharing keys between the en-
cryption and authentication portions of modes sucB8A&C. One of the most important
reasons is simplicity of key management. Indeed, fetching key material can be a major
bottleneck in high-speed hardware, and minimizing key material is thus important. This
fact is also why we derive the hash subkey from the block cipher key rather than use
an independent hash subkey. We could have defined a mode that derived a number of
essentially independent block cipher and hash keys from a single block cipher key, but
doing so would either have required more memory or more computation and, because
we have proofs that our construction is secure, would have been unnecessary.

Sharing the block cipher key in the way described above and deriving the hash

subkey from the block cipher key did, however, mean that we had to be careful with
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our proofs of security. To facilitate our proofs, we took extra care in our design to
ensure that there would never be a collision in the plaintext inputs to the block cipher
between the different usages of the block cipher. For example, by de@@Wwi@-HASH

to produce a 127-bit value as output, we know that the first applicatioB®fto
CWC-HASHK (A, o) in CWC-MAC will always have its first bit set to. To avoid a col-
lision with the input to the keystream generator, the block cipher inpuBMC-CTR
always have the first two bits set 0. When using the block cipher to create the hash

subkeyk,, the first two bits of the input are set 1a.

On the choice of parameters. Part of this effort involved specifying the appropri-

ate parameters for theWC encryption mode. Example parameters include the nonce
length and the way the nonce is encoded in the input to the block cipher. We chose to
fix these parameters for interoperability purposes, but note that our general approach in
Section 5.7 does not have theses parameters fixed. We chose to set the nonce length to
88 bits in order to handle future IPsec sequence numbers. And we chose to set the block
counter length t32 bits in order to allowCWC to be used with IPsec jumbograms

and other large packets. We also chose to use big-endian byte ordering for consistency
purposes and to maintain compatibility with McGrew’s ICM Internet-Draft [57] and the

IETF, which strongly favors big-endian byte-ordering.

Handling arbitrary bit-length messages. Since we do not believe that many appli-
cations will actually require the ability to encrypt arbitrary bit-length messages, we do
not defineCWC to take arbitrary bit-length messages as input. That said, we did design
CWC in such a way that it will be easy to modify the specification to take arbitrary bit-
length messages without affecting interoperability with existing implementations when
octet-strings are communicated. For example, one could augment the computation of
Y311 in CWC-HASH as follows:

74— |Almod 8; r, « |o| mod 8; Ygq «— 2120y 4212 g 4200 1,
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Of course, a cleaner approach for handling arbitrary bit-length messages would be to
computel, «— |A| andl, « |o| in CWC-HASH. We do not defineCWC this way
because we do not consider it a good trade-off to define a mode for arbitrary bit-length

messages at the expense of octet-oriented systems.

64-bit block ciphers. We did not defineCWC for use with64-bit block ciphers be-

cause we are targeting future high-speed cryptographic applications. Nevertheless, one
can instantiate the general CWC approach in Section 5.7 with 64-bit block ciphers.
A 64-bit instantiation may, however, require several undesirable tradeoffs, e.g., in the

length of the nonce.

On the length of the hash subkey. As noted earlier, it is possible to use smaller
subkeyskKj, in CWC-HASH (simply truncateBC (110'2¢) appropriately). Recall that

we have fixed the block length &C to 128 bits. Lethkl denote the length of the hash
subkey in an altered construction. hlkl < 127, then the upper-bound in Equation 5.2

becomes

orp (/128 +3q¢+1)>  (n+m)/96+2 1
Advgc(Ca) + 9129 T ohKI T 5

Consider an application that sétkl to 96. If we replacem andn by their maximum

possible values, the upper-bound becomes

orp (n/128+3¢+1)* 1 1
Advpli(Ca) + 512 + 56 T o -

Since2-% is already very small (and, in fact, dominated by the128 + 3¢ + 1) -
27129 term for some reasonable values;@nd,.), from a provable-security perspective,
developers would be justified in using 96-bit hash subkeys.

Rather than use shorter hash subkeys, however, our current CWC instantiation in
Section 5.3 uses 127-bit hash subkeys. We do so for several reasons. First, in hardware,
to obtain maximum speed, one would parallelize@WC hash function by evaluating,
for example, two polynomials ifk? in parallel. As noted before, sinde? would gen-

erally not be 96-bits long, there is no performance advantage with using 96-bit subkeys
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K}, in this situation. In software, the use of 96-bit hash subkeys could lead to improved
performance when evaluating the polynomial using Horner’s rule. However, we esti-
mate that the performance of such a construction will be close to the performance of
the current construct when not using Horner’s rule but using pre-computed powers of
K. Since we believe that high-performance implementations will not benefit from the
use of 96-bit hash subkeys (i.e., the additiotiakey bits come with no or negligible
additional cost), we have chosen to fix the length of our hash subkéys tuits.

There may occasionally be reasons to u§B¥C variant with hash subkeys even
shorter thard6 bits. When these situations arise, one must exercise caution since the
use of the shorter hash subkeys could significantly impact security. For example, using
a 64-bit hash subkey would increase the upper-bound on the probability of an adversary

forging to around®—3°, which may be too large for some applications.

On computing the tag. In CWC the MAC consists of hashing, o), enciphering the
hash with the block cipher, and th&mRing the result with some keystream (i.e., in the
current proposal the tag BC i (107|| N ||03%) & BCx (CWC-HASHk (A4, 0))).

Instead of the two block cipher applications, one couldBSe (1 (N, A, o)) as
the tag, wheré/’ is a modified version c€WC-HASH designed to hash 3-tuples instead
of pairs of strings (this is important because the nonce must also be authenticated).
The main disadvantage of this approach is that it would change the upper-bound in

Equation 5.2 to

AdvEi(Cy) +

(u/128+3¢+1)* , (n+m 1 1
9129 +q- 9133 +ﬁ +ﬁ

(note the new;? term). If we setn = MaxAdLen, m = MaxMsglLen, ¢ = 232, and

= 25, then for anytl > 29, we get that the advantage of an adversary in breaking the
unforgeability of this modified CWC variant is upper-bounded®b3, which, although

not extremely large, is worse than the upper-boun2df we get using Equation 5.2.
Even if n andm are at most one million blocks long, we see that the integrity upper-
bound for the altered CWC construction is worse than the upper-bound for the CWC

construction we present in Section 5.3. More generally, this means that for reasonable
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values ofn, m, q, u, the insecurity upper-bounds of this alternative will be worse than
the insecurity upper-bounds of tii3VC mode described in Section 5.3. Furthermore,
the upper-bound would be even worse if one keys the hash function with shorter keys,
which may happen in some situations.

Another possible way to reduce the number of block cipher invocations necessary
to compute the MAC would be to take the output of the current hash function and run
it through another hash function that is almastr-universal (see Section 5.7 for a
description of this property). However, this approach is not attractive because it requires
additional key material. In particular, while this approach may save one block cipher
operation, in hardware the block cipher operation is actually smaller and simpler than
managing the extra key material, given that the hardware already has a block cipher
encryptor running at high speed. One could take another block cipher operation to
generate the extra key material, but doing so would largely defeat the purpose, except
that this block cipher operation could be precomputed or done in parallel.

Another possibility would be to use something IRE€x(N) + Y1 K™ 4 -+ +
YK} +14K? +1,K), mod 2'*" — 1, encoded as a 127-bit string and truncated bits,
as the MAC (herdBCk (N) is interpreted as an integer). Doing so would, however,
result in a new integrity upper-bound

(M/128+2q+1>2+4q+4+ (n+m)/96 + 5

AdvE@(CA) + 9129 otl

If we taken andm to beMaxAdLen andMaxMsgLen, respectively, then the upper-bound

becomes
(u/128 +2g+ 1) +4g+4 2%
9129 ot -

Compared to Equation 5.2, we see the presence2fd term. This means that, in

Advgrg(CA) +

some situations, when using the above upper-bound as a guide for parameter selection,
tag lengths must be longer than one might expect. For example=f32, then the

above equation would upper-bound the advantage of an adversary against this modified
construction as 1. This means that 32-bit tags should not be used with this modified

construction when authenticating long messages. While one might consider this more
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of a “certificational” problem than a real problem, we view this property as undesirable.
(The attack that Ferguson [33] recently discovered against GCM with small tags exploits

the fact that GCM operates as per this CWC alternative.)

EAX2. Motivated by EAX2 [13], one possible alternative @VC might be to use
BCx(1110°|| V) both as the value to encryfitin CWC-MAC and as the initial counter

to CTR mode-encryptM (with the first two bits of the counter always set 10).

Other EAX2-motivated constructions also exist. For example, the tag might be set to
BCx (h(Xo||N)) ® BCx(h(X1||A)) & BCk(h(X2||o)), whereX,, X, X, are strings,

none of which is a prefix of the other, ands a parallelizable universal hash function,

like CWC-HASH but hashing only single strings (as opposed to pairs of strings). Com-
pared toCWC, these alternatives have the ability to take longer nonces as input, and,
from a functional perspective, can be applied to strings upibblocks long. But we

do not view this as a reason to prefer these alternatives@WE. From a practical
perspective, we do not foresee applications requiring nonces longer than 11 octets, or
needing to encrypt messages longer th&n- 1 blocks. Moreover, from a security per-
spective, applications should not encrypt too many packets between rekeyings, implying
that even 11 octet nonces should be more than sufficient. We do comment, however, that
we believe the alternatives discussed in this paragraph are still more attractive than EAX

because, lik€€WC but unlike EAX, these alternatives are parallelizable.

Using existing MACs. We chose not to base the authentication portion of our new
mode on XOR-MAC [5] or PMAC [23] because of patent concerns and our software
performance requirements; we chose not to base the authentication portion on software-
efficient MACs such as HMAC [3] because of our hardware parallelizability require-

ment.
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5.6 Performance

Hardware. Since one of our main goals is to achieve high performance in hardware
and, in particular, to provide a solution for future 10 Gbps IPsec (and other) network
devices, we focus first on hardware costs. As we noted eatrlier, it should take approx-
imately 300 Kgates to achieve 10 Gbps throughputG¥vC-AES when using 0.13
micron CMOS ASIC technology. This estimate, which is applicable to AES with all
key lengths, includes four AES counter-mode encryption engines, each running at 200
MHz and requiring about 25Kgates each. In addition, there are two 32x128-bit mul-
tiply/accumulate engines, each running at 200 MHz with a latency of four clocks, one
each for the even and odd polynomial coefficients. Simply keeping these engines “fed”
may be challenging, but that is generally true of any 10 Gbps path. There may be better
methods to structure an implementation, depending on the particular ASIC vendor li-
brary and technology. Regardless of the implementation strategy, 10 Gbps is achievable
because of the inherent parallelism@#/C.

Since OCB isCWC'’s main competitor for high-speed environments, it is worth
comparingCWC with OCB instantiated with AES (we do not comp&®&/C with CCM
and EAX here since the latter two are not parallelizable). We first noteOMAT-AES
saves some gates because we only have to implement AES encryption in hardware, i.e.,
we do not need to implement the inverse of the block cipher. However, at 10 Gbps OCB
still probably requires only about half the silicon areaGWC-AES. The main ques-
tion for many hardware designers is thus whether the extra silicon ar€ANQ-AES
costs more than three royalty payments, as well as negotiation costs and overhead. With
respect to negotiation costs and royalty payments, we note that despite significant de-
mands, to date the relevant parties have not all offered publicly available IP fee sched-
ules. Given this fact, and given today’s silicon costs, we believe that the extra silicon for
CWC-AES is probably cheaper overall than the negotiation costs and IP fees required
for OCB.
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Software. One can also implemer@WC-AES efficiently in software. Table 5.1
shows timing information folCWC-AES, as well as CCM-AES and EAX-AES, on

a 1.133GHz mobile Pentium Ill dual-booting RedHat Linux 9 (kernel 2.4.20-8) and
Windows 2000 SP2. The numbers in the table are the clocks per byte for different mes-
sage lengths averaged over 50 000 runs and include the entire time for setting up (e.qg.,
expanding the AES key-schedule) and encrypting. All implementations were in C and
written by Brian Gladman [34] and use 128-bit AES keys. The Linux compiler was gcc
version 3.2.2; the Windows compiler was Visual Studio 6.0. OCB runs at about twice
the speeds given in Table 5.1.

From Table 5.1 we conclude that the three patent-free modes, as currently im-
plemented by Gladman, share similar software performances. The “best” performing
one appears to depend on OS/compiler and the length of the message being processed.
On Linux, it appears thaCWC-AES performs slightly better than EAX-AES for all
message lengths that we tested, and better than CCM-AES for the longer messages,
whereas Gladman’s CCM-AES and EAX-AES implementations slightly outperform his
CWC-AES implementation on Windows for all the message lengths that we tested.

Note, however, that all the implementations used to compute Table 5.1 were writ-
ten in C. Furthermore, the curre@WC-AES code does not make use of all of the
optimization techniques, and in particular precomputation, that we describe below. By
switching to assembly and using the additional optimization techniques, we anticipate
the speed foCWC-HASH to drop to better than 8 clocks per byte, whereas the speed
for the CBC-MAC portion of CCM-AES and EAX-AES will be limited by the speed of
AES (the best reported speed for AES on a Pentium Il is 14.1 cpb, due to a proprietary
library by Helger Lipmaa; Gladman’s free hand-optimized Windows assembly imple-
mentation runs at 17.5 cpb [54]). Returning to the speddWfC-HASH, for reference
we note that Bernstein’s related hash127 [17] runs around 4 cpb on a Pentium Il when
written in assembly and using the precomputation approach. Bernstein’s hash127 also
works by evaluating a polynomial modut&?” — 1; the main difference is that the coeffi-
cients for hash127 are 32 bits long, whereas the coefficienGWEC-HASH are 96 bits
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long (recall Section 5.5, which discusses why we use 96-bit coefficients). We also note
that the performance &@WC-HASH will increase dramatically on 64-bit architectures
with larger multiplies; an initial implementation on a G5 using 64-bit integer operations
runs at around 6 cpb (when running the G5 in 32-bit mode, the hash function runs at
around 15 cpb). Bernstein agrees that it is possible to significantly improve our initial
performance results faWC-HASH [18], but does not give performance numbers in
his paper (rather, he proposes a new hash function that evaluates a polynomial modulo
2130 _ 5),

Since the implementation &@WC-HASH is more complicated than the imple-
mentation of theCWC-CTR portion of CWC, we devote the rest of this section to
discussingCWC-HASH.

Precomputation. As noted in Section 5.5, there are two general approaches to im-
plementingCWC-HASH in software. The first is to use Horner’s rule. The second is
to evaluate the polynomial directly, which can be faster if one precomputes powers of
the hash keyx;, at setup time (here the powers &f, can be viewed as an expanded
key-schedule). In particular, as noted in Section 5.5, evaluating the polynomial using
Horner’s rule requires a 127x127-bit multiply for each coefficient, whereas evaluating
the polynomial directly using precomputed powerg@frequires a 96x127-bit multiply
for each coefficient. (We discuss in Section 5.5 why we did not make the hash subkey
96-bits, which could have sped up a serial Horner’s rule implementation.) Bernstein
observed the advantage with precomputation in the context of hash127 [17].

The above description of the precomputation approach assumed that if the poly-
nomial isYlK,Z’1 +---+ Y, 1K, +Y, (i.e., the polynomial has coefficients), then
we had precomputed the powersigf for all i € {1,...,7 — 1}. The precomputa-
tion approach extends naturally to the case where we have precomputed theﬁéwers
j€{1,...,n}, forsomen <~ — 1. For simplicity, first assume that we know the poly-
nomial has a multiple of coefficients. For such a polynomial, one processes thefirst

coefficients (to geYlK,’:‘1 +...4Y,_1K,+Y,), then multiplies the intermediate result
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by K (to getV1 K" ' + ... + Y,  K;'t! + Y, K}"). After that, one can continue pro-
cessing data with the same precomputed values (tﬁlgéin‘l +.. 4+ Y 1K+ Y5,),

and so on. Note that each chunkrotoefficients take$n — 1) 96x127-bit multiplies,

and all but the last chunk takes an additional 127x127-bit multiply. Now assume that
the number of coefficients: in the polynomial is not necessarily a multiple of If

m IS known in advance, one could first processnod n coefficients, multiply byK7’,

then process im-coefficient chunks as before. Alternately, as long as the end of the
message is known coefficients in advance, one could processoefficients chunks,
and then finish off the finah mod n coefficients using Horner’s rule. Or, if the number
of coefficients in the polynomial is not known until the final coefficient is reached, one
could process the messagenktoefficient chunks and then multiply by a precomputed
power of K, ! once the end of the message hash been reached.

Naturally, precomputation requires extra memory, but that is usually cheap and
plentiful in a software-based environment. Using 32-bit multiplies, the precomputation
approach requires 12 32-bit multiplies per 96-bit coefficient, as well as 17 adds, all of
which may carry. In assembly, most of these carry operations can be implemented for
free, or close to free by using a special variant of the add instruction that adds in the
operand as well as the value of the carry from the previous add operation. But when im-
plemented in C, they will generally compile to code that requires a conditional branch
and an extra addition. An implementation using Horner’s rule requires an additional
four multiplies and three additions with carry per coefficient, adding about 33% over-
head, since the multiplies dominate the additions. A 64-bit platform only requires four
multiplies and four adds (which may all carry), no matter the implementation strategy
taken, which explains why implementations@# C-HASH for 64-bit architectures are

much faster.

Exploiting the parallelism of some instruction sets. On most 32-bit platforms,
it turns out that the integer execution unit is not the fastest way to implement

CWC-HASH. Many platforms have multimedia instructions that one can use to speed
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up the implementation. As another alternative, Bernstein demonstrates that on some
platforms one can use the floating point unit to implement this class of universal hash
function more efficiently than one can with the integer unit. This is particularly true on
the x86 platform where, in contrast to using the standard registers, two floating point
multiples can be started in close proximity without introducing a pipeline stall. That is,
the x86 can effectively perform two floating-point operations in parallel. The disadvan-
tage of using floating-point registers is that the operands for the individual multiplies
need to be small, so that the operations can be done without loss of precision. On the
x86, Bernstein multiplies 24-bit values, allowing the sums of product terms to fit into
double precision values with 53 bits of precision without loss of information. Bernstein
details many ways to optimize this sort of calculation in [17].

There are only two main differences between the structure of the polynomials of
Bernstein’s hash127 amdWC-HASH. The first is that Bernstein uses signed coeffi-
cients, wherea€WC-HASH uses unsigned coefficients; this should have little impact
on efficiency. The other difference is that Bernstein uses 32-bit coefficients, whereas
CWC-HASH uses 96-bit coefficients. While both solutions average one multiplica-
tion per byte when using integer math, Bernstein’s solution requires only .75 addi-
tions per byte, whereaSWC-HASH requires 1.42 additions per byte, nearly twice as
many. Using 32-bit multiplies to build a 96x127 multiplier (assuming precomputation),
CWC-HASH should therefore perform no worse than at half the speed of hash127.
When using 24-bit floating point coefficients to build a multiply (without applying any
non-obvious optimizations), hash127 requires 12 multiplies and 16 adds per 32-bit word.
CWC can get by with 8 multiples per word and 12.67 additions per word. This is be-
cause a 96-bit coefficient fits exactly into four 24-bit values, meaning we can use a 6x4
multiply for every three words. With 32-bit coefficients, we need to use two 24-bit
values to represent each coefficient, resulting in a single 6x2 multiply that needs to be
performed for each word.

Gladman’s C implementation @WC-HASH uses floating point arithmetic, but

uses Horner’s rule instead of performing precomputation to achieve extra speed. Noth-
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ing about theCWC hash indicates that it should run any worse than half the speed of
hash127, if implemented in a similar manner, in assembly, and using the floating point
registers and precomputation. This upper-bound paints an encouraging picQw@r
performance, because hash127 on a Pentium Il runs around 4 cpb when implemented in
assembly and using the floating point registers and precomputation. This indicates that
a well-optimized software version @WC-HASH should run no slower than 8 cycles

per byte on the same machine.

5.7 Security Proofs

Before proving Theorem 5.4.1 and Theorem 5.4.2, we first state results about the
general CWC construction; see Lemma 5.7.2 and Lemma 5.7.3 below. We then show
how Theorems 5.4.1 and 5.4.2 follow from Lemmas 5.7.2 and 5.7.3. We then prove

these two lemmas.

5.7.1 More Definitions

Universal hash functions. A hash functior{F = (K, H) consists of two algorithms
and is defined over some key sp#@gSp,, -, Some message spadsgSp;, -, and some
hash spacéiashSp,,~. The randomized key generation algorithm returns a random
key K € KeySp;, -, we denote this ag’ & K. The deterministic hash algorithm
takes a keyK € KeySp,,» and a messag#&/ € MsgSp,,» and returns a hash value
h € HashSp,,-; we denote this ag «— Hy(M). Let H & HF be shorthand for
K <& Kp; H — Hg.

The hash functiori{F is said to bec-almost universale-Auv) if for all distinct

m, m' € MsgSpy, 7,

Pr[HiH}" CH(m)=Hm') | <e.

The hash functior{F is said to be:-almostxoRr universal(e-AXU) if HashSp,,» =

{0,1}" for some positive integer and for all distinctm, m’ € MsgSp,,» andc €
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{0,1}",
Pr[HiH}" cHm)®@ Hm')=c| <e.

Pseudorandom functions. We restate the definition of pseudorandom functions from
Section 2.2, using slightly different notation. LEtbe a family of functions fronD to
R. Let A be an adversary with access to an oracle and that returns a bit. Then we define

Adv?(A) as
Advarf<A) =Pr|f S p A0 = 1] — Pr [g B RandD, R] : A9C) — 1] ‘

As in Section 2.2Adv‘}”(A) denotes the@rRFadvantage ofd in distinguishing a ran-

dom instance of” from a random function frond to R.

Message authentication. We now present the definition of a MAC that we will use
for the remainder of this chapter. The definition we give below is like the definition in
Section 4.2.2 except that here we restrict ourselves to MACs with stateless and deter-
ministic tagging algorithms. In detail, a nonced message authentication s¢hiedne
(K., T,V) consists of three algorithms and is defined over some key 308 4 4.
some nonce spadéonceSp ,, 4, SOme message spabbgSp ,, 4, and some tag space
TagSp 4. The randomized key generation algorithm returns a Key KeySp 4;
we denote this agk < K,,. The deterministic tagging algorith takes a key
K € KeySp,,4, @ nonceN € NonceSp,,,, and a messagd/ € MsgSp,,, and re-
turns a tagr € TagSp4; We denote this process as— 7> (M) or 7 « Tx (N, M).
The deterministic verification algorithi takes as input a kel{ € KeySp,, 4, @ nonce
N € NonceSp, 4, a messagé/ € MsgSp,, 4, and a candidate tag € {0,1}*, com-
putest’ = 7Y (M), and returnaccept if 7/ = 7 and returnseject otherwise.

Let F' be a forging adversary and consider an experiment in which we first pick
a random keyk < K,, and then run¥’ with oracle access t@x(-,-). We say that?’
forgesif F returns a triplg NV, M, 7) such that ¥ (M, 7) = accept but F' did not make
aquery(N, M) to 7 (-, -) that resulted in a response Then

AdvY (F)=Pr | K & K, : FT<0) forges
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denotes thesF-advantageof F' in breaking theunforgeabilityof M.A. An adversary
IS nonce-respectingf it never queries its tagging oracle with the same nonce twice.
Intuitively, M A is unforgeable if thesF-advantage of all nonce-respecting adversaries

with reasonable resources is small.

5.7.2 The General CWC Construction

We now describe our generalization of the CWC construction.

Construction 5.7.1 [General CWC.] Let [, L, n,o,t, k be positive integers such that
t < L. (Further restrictions will be placed shortly.) Essentiallis the length of the
input to aPRF(e.qg., 128),L is the length of the output from tierF(e.qg., 128) 5 is the
length of the nonce (e.g., 88)js the length of the offset (e.g., 32)is the length of the
desired tag (e.g., 64 or 128) s the length of the hash function’s keysize (e.g., 127).

Let ' be a family of functions from{0,1}! to {0, 1}*. Let HF = (K, H) be
a family of hash functions witHashSp,,» = {0,1}' andKeySp,,» = {0,1}* (and
K, works by randomly selecting and returning an element fg@m }* with uniform
probability). Letctr0: Zpy — {0,1}, ctrl: {0,1}" x (Zeo — {0}) — {0,1}
andctr2: {0,1}" — {0, 1} be efficiently-computable injective functions. W =
{ctr0(0) : O € Zpyyry }, X = { ctrl(N,0) : N € {0,1}*,0 € (Zy — {0}) },
Y ={ctr2(N) : N € {0,1}"},andZ = {Hk(M) : K € KeySpyr, M € MsgSp;,+ },
we require thatV, X, Y, andZ be pairwise mutually exclusive.

Letextract: {0, 1}/*/L1L — {0, 1}* be a function that takes as inpuf/a/L] - L-
bit string and that outputs bit string. We require thaéxtract always pick the same
k bits from the input string and always outputs those bits in the exact same order (e.qg.,
extract returns the firsk bits of its input).

Let SE[F, HF] = (K., £, D) be an AEAD scheme built from function family
and hash functiof{ 7 and using the above functioastract, ctr0, ctrl, ctr2. We assume
thatAdSpse iz X MsgSpse(rar © MsgSpy,» and that all messagesiisgSp ez

have length at modi-(2°—1). Note that the former means that the message spag¢gof
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actually consists of pairs of strings. LebnceSpgepyr = {0,1}". LEtSE[F, HF]'s

component algorithms be defined as follows:

Algorithm K,
fEF
| K — extract(f(ctr0(0))[|f (ctrO(1)]| - - I (ctrO([k/L] = 1)) ; H — Ha,
Return(f, H)

Algorithm &} (M)
o « CTR-MODE} (M)
T « first¢ bits of (f(ctr2(N)) @ f(H(A,0)))

Returno||7

Algorithm D, (C)

If |C| < t then returnL

ParseC aso||T where|r| =t

If A& AdSpsep iz OF 0 & MsgSpseras then returnl
7'« firstt bits of (f(ctr2(N)) & f(H(A,0)))

If 7 # 7" return L

M « CTR-MODE} (o)

Return)/

Algorithm CTR-MODE} (X)
o — [IX|/L]
Fori=1toadoZ; « f(ctrl(N,i))
Y « (first | X| bits of Z1 || Z5|| - - - || Za) & X
Returny” 1

Before proceeding we make several observations. Recall that one requirement on the
message space for any AEAD scheme is that if it contains any stfintpen it contains
all strings of lengthM/|. This means that the membership test MsgSpsg(.r and

the application off to (A, o) makes sense.
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As specified in the definitiomMdSp ez X MsgSpseiryr C MsgSpyz. This
means that wé{F is used to haspairs of strings, not just string. This is not a serious
restriction since given any hash function that hashes strings it is trivial to construct a
hash function that hashes pairs of strings by encoding the pair of strings as a single
string in some appropriate manner.

It is also worth commenting on the purposecof0, ctrl, andctr2. As shown in
Construction 5.7.1, these functions are used to derive the inputs to the construction’s
underlying functionf. By requiring that none of the outputs collide (i.e., that the sets
W, X, Y, Z in the definition are pairwise mutually exclusive), we ensure that the inputs
to f for different purposes never collide. For example, the inputs tigsed for counter
mode encryption will always be different than the inputsftevhen enciphering the

output of H.

5.7.3 Security of the General CWC Construction

We now state the following results for all Construction 5.7.1-style AEAD
schemes. We shall prove Lemmas 5.7.2 and 5.7.3 in Sections 5.7.5 and 5.7.6, respec-

tively.

Lemma 5.7.2 [Integrity of Construction 5.7.1.] Let SE[F, HF| be as in Construc-
tion 5.7.1 and letHF be ane-Au hash function. Then given any nonce-respecting
AUTHC adversaryA againstSE[F, HF], we can construct arRFadversaryB, against
F such that

AdVEEym(A) < AdVE (Ba) +e 27"

Furthermore, the experiment fét, takes the same time as the experiment4cand,
if A makes at mosy — 1 oracle queries and a total of at mgsbits of payload data
(for both these; — 1 oracle queries and the forgery attempt), thgn makes at most

wu/L + 3q+ [k/L] oracle queries|

Lemma 5.7.3 [Privacy of Construction 5.7.1.] Let SE[F,’HF] be as in Construc-
tion 5.7.1. Then given a nonce-respectimyVv$-crPA adversaryA againstSE[F, HF|
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one can construct@RFadversaryB 4, againstF’ such that

AV (A) < AdvE(Ba) .

Furthermore, the experiment fét, takes the same time as the experiment4and, if
A makes at mosi oracle queries totaling at mgstits of payload data, theB , makes

atmostu/L + 3q + [k/L] oracle queries|

We interpret these lemmas as follows. Intuitively, the first lemma states tiatsf

a securerrF, if HF is e-AU wheree is not too large, and if is not too small, then

SE[F, HF] preserves integrity. We comment that most modern block ciphers (e.g.,

AES) are considered to be secwrers (and therefore also securgrs up to a birthday

term). We also comment that we can construct hash functigfisvith provably smalk.
Intuitively, the second lemma states thak'ifs a secur@rF, thenSE[F, HF] will

preserve privacy.

5.7.4 Proofs of Theorem 5.4.1 and Theorem 5.4.2

The security of the CWC construction from Section 5.3 follows from Lem-
mas 5.7.2 and 5.7.3 assuming that (1) CWC as described in Section 5.3 is really an
instantiation of Construction 5.7.1 and (2) that the hash function used in Section 5.3 is

e-AU for some smalk. We begin by justifying the second bullet.

Lemma 5.7.4 [CWC-HASH is e-almost universal.] Consider theCWC-BC-tl con-
struction from Section 5.3. LétF = (KC;,, H) be the hash function whose key genera-
tion algorithm selects a random kéy from {0, 1}'2” and letHx be theCWC-HASH

function except that we replace
7 « last127 bits of BC (110"29)

with
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Note thatAdSpewe.sct X MsgSpewe-sc.u © MsgSpy,#; that is,’H - takes two strings
as input. Assumé&{F hashes pairs of strings where the first string is always at most
n < MaxAdLen bits long and the second string is always at mast MaxMsgLen bits

long. ThenHF is e-almost universal where

<n—|—m 1
€> 9133 +ﬁ'

Proof of Lemma 5.7.4: Let (A, o) and(A’, ¢’) be two distinct inputs td{x and let
X = (By,...,Bgs1) andY = (C4,...,C,41) respectively denote their encodings
as vectors ob6-bit integers (withBs,, andC.,, possibly longer than 96-bits long).
Without loss of generality, assume< v and letX’ = (Bj,..., B! ;) whereB} = 0
forje{l,...,y—p}andB; = B; ,,zforje{y—-p+1,...,7+1}(i.e, prepend
~v — (3 zero elements to th& vector).

If (A,0) # (A’,0') thenX’ # Y. This follows from the fact that! ,, andC, 4
respectively encode the lengths #fando and of A’ ando’ and that if X’ = Y, then
theB! , = C,;1and(A, o) = (A, o).

Note thatH (A, o) = Hx(A’,o’) when

(B;-Kg+---+Bg.Kh+B;H)

—(C1 K] 4 4 O Kyt Cpp ) =0mod 2% 1 (5.3)

wherek, is the hash key derived froid as specified ICWC-HASH. Since the vectors
X" andY are not equaI(B{-K}%L- - -+B;-Kh+B;+1> — <CI-K;+- : -+(JV-Kh+CV+1>

is a non-zero polynomial of degree at mgstTherefore, by the Fundamental Theorem
of Algebra, Equation 5.3 has at massolution modul@'?” — 1.

We are interested in the probability, over the 127-bit k&yghat Equation 5.3 is
true. We note that all key&;, modulo2!?” — 1 (except0) have exactly one ways of
occurring and that the 0 key can occur in one additional way (i.e., tHesiting and
the all1 string). This means that of ti8%7 possible keyd<, at mosty + 1 can lead to
keys K, such that Equation 5.3 is true.
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Finally, note thaty is at most + (n+m)/96 (the+2 comes from the fact that we
append 0 bits tol ando). Consequently

<"5r—6m+3 n4+m 1
€= ol27 = 9133 +2125

as desired.1

We now prove Theorem 5.4.1 and Theorem 5.4.2, which are corollaries of Lem-
mas 5.7.2,5.7.3, and 5.7.4.

Proof of Theorem 5.4.1 and Theorem 5.4.2:To prove these theorems we must show
that the CWC-BC-tl constructions from Section 5.3 are instantiations of Construc-
tion 5.7.1. We begin by noting that the block cip in CWC-BC-tl plays the role of
Fin Construction 5.7.1 and that the hash funct@®W~C-HASH (with the simplified key
generation algorithm from Lemma 5.7.4) plays the rol&{of in Construction 5.7.1.

Since BC plays the role ofF’, we have that = L = 128. Furthermore, as
described in Section 5.3; = 88, 0 = 32, t = tl, andk = 127. We note that the
output the hash function isi&8-bit string whose first bit is alway®. This property, as
well as the encodings for the nonce/offsets when encrypting the message and the Carter-
Wegman MAC and when generating the hash key, ensure that requisite properties for
the interactions between the hash functian), ctrl, andctr2.

A direct comparison of the Construction 5.7.1 algorithms and the algorithms from
Section 5.3 shows that they are equivalé¥VC-BC-tl is therefore an instantiation of
Construction 5.7.1 and the provable securityCdWC-BC-tl follows.

Finally, we apply the standamRFPRP switching technique [6, 12, 75] in order
to model the underlying block cipher ascaprather than @RFin Theorem 5.4.1 and

Theorem 5.4.2.1

5.7.5 Proof of Lemma5.7.2

We being by sketching the proof of Lemma 5.7.2. We first show that applying a

random function to the output of arau hash function yields afd-Axu hash function
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(Proposition 5.7.6). We then recall the result of Krawczyk [51] tharing the output

of anAxuU hash function with a one-time pad yields a secure MAC (Proposition 5.7.8).
Such a MAC essentially corresponds to the second and third boxed steps in Construc-
tion 5.7.1. (We do not need this final block cipher application if the input to the hash
includes the nonce and if we accept a birthday term of the @)

We then observe that if we consider a construction like Construction 5.7.1 but with
the latter two boxed steps replaced with calls to a secure MAC that tags pairs of strings
(A, o) with noncesV, then that construction would be unforgeable (Proposition 5.7.10).

In Proposition 5.7.13 we use the above results to show8@éRand!, L|, HF]| pre-
serves integrity (wher6£[Randl, L|, HF]| is as in Construction 5.7.1). Lemma 5.7.2

follows.

From AU to AXU. Let us begin with the following construction.

Construction 5.7.5 [Building AXU hash functions from AU hash functions.] Let
HF = (K, H) be a hash function and 18t.F[t] = (K, H), t a positive integer, be the

hash function defined as follows:

Kh Hare) (M)
HEHF Returne(H (M))
e < RandHashSp,, -, {0, 1}/]
Return(H, e)

Note thatMsgSps; 75 = MsgSpy,» andHashSps iz = {0, 1} 1

Proposition 5.7.6 Let HF, t, andHF|t] be as in Construction 5.7.5. HF is e-AU,

thenH.F|t] is (e + 27%)-Axu. 1

This result follows from a result in [68, 78] which states that the composition of an
¢’-AXU hash function, with domaim® and range’, with ane-Au hash function, with
domainA and rangeB, is an(e + ¢')-AxuU hash function with domaint and range”,

and the fact that the hash function whose key generation algorithm returns a random

function from Ran{HashSp,,~, {0, 1}'] is 27*-AXU.
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Carter-Wegman MACs. Consider now the following construction.

Construction 5.7.7 [Building MACs from AXU hash functions.] LetHF = (K, H)
be a hash function with hash spafe 1}/, ¢ a positive integer. We can construct a

nonced message authentication schewd = (/C,,,, 7, V) as follows:

K
H & HF ;g < RandNonceSp 4, {0,1}]
Return(H, g)

V(H,g>(N, M,T)
If g(N)® H(M) = 7 then

returnaccept
,]-<va> (N7 M)

Returng(N) & H(M)

Else returnreject

Note thatMsgSp .4 = MsgSp;,#, TagSpy4 = {0, 1}, and thatNonceSp 4 is arbi-
trary. 1

We now state the following result, due to Krawczyk [51].

Proposition 5.7.8 Let HF and M A be as in Construction 5.7.7. HF is e-AXU, then

for all nonce-respectingr adversarieg” attackingM A, Advy ,(F) <e. |

As noted in [51], this proposition follows from the facts tharing the output of the
hash function withy(V) prevents any loss of information (assuming that the adversary
IS nonce-respecting), that a forgery attempt with a previous nonce is upper-bounded by

¢, and that a forgery attempt with a new nonce is upper-bounde@d’by .

Encrypt-then-MAC. Consider the following Encrypt-then-MAC construction.

Construction 5.7.9 [Encrypt-then-MAC.] Let(, L,n,o,t be positive integers. (Fur-
ther restrictions will be placed shortly.) Essentiallis the length of the input to arRF
(e.q., 128),L is the length of the output from therF (e.g., 128) is the length of the
nonce (e.g., 88); is the length of the offset (e.g., 32).

Let I’ be a family of functions fron{0, 1} to {0, 1}£. Let MA = (K,,, 7, V) be

a message authentication scheme WidhceSp 4, = {0, 1} andTagSp 4 = {0, 1}".
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Letctrl: {0,1}" x (Z —{0}) — {0, 1}! be an efficiently-computable injective func-
tion.

Let SE[F, MA] = (K., &,D) be an AEAD scheme built from function family
F and message authentication schemed and using the above functiontrl. We
assume thahdSpseip s X MsgSpseipara S MsgSpy s and that all messages in
MsgSpseir a4 have length at most - (2° — 1). Note that the former means that the
message space d#1.4 actually consists of pairs of strings. LEbnceSpgeip g =

NonceSp (4. Let SE[F, M. A]'s component algorithms be defined as follows:

Algorithm £,
fEF

K&K,
Return(f, K)

Algorithm £, (M)
o « CTR-MODE} (M)
T THN(A, o)

Returno || 7

Algorithm D}7 (C)

If |C| < tthen returnlL

ParseC aso||T where|T| =t

If A & AdSpseip g OF 0 & MsgSpser g then returnl
T — THN(A, o)
If 7 # 7' return_L

M « CTR-MODE} (o)
ReturnM

Algorithm CTR-MODE} (X)
a — [|X]/L]

Fori=1toado
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Z; «— f(ctrl(N, 1))
Y « (first | X| bits of Z1|| Zs|| - - - || Zo) ® X
ReturnY 1

Proposition 5.7.10Let SE[F, MA] be as in Construction 5.7.9. Then given a
nonce-respectinguTHC adversaryB againstSE[F, M .A], we can construct a nonce-

respecting forgery adversaryz againstM.4 such that
AdV%?Fﬁ,MA](B) < Adv4(Ds) .

Furthermore the experiment f@’; uses the same time as the experimentBaand if

B makesy encryption oracle queries, thénz makesg tagging oracle queriesl

To prove Proposition 5.7.10, we use the approach in [10] for analyzing Encrypt-then-
MAC constructions. The only difference is that we consider MACs that also take nonces

as input.

Combining these constructions. Let us now combine these constructions.

Construction 5.7.11 [Combined CWC.] Let [, L, n,o,t, k be positive integers such
thatt < L. (Further restrictions will be placed shortly.) Essentidlig the length of the
input to aPRF(e.g., 128),L is the length of the output from tierF(e.qg., 128) 5 is the
length of the nonce (e.g., 88)is the length of the offset (e.g., 32)is the length of the
desired tag (e.g., 64 or 128) s the length of the hash function’s keysize (e.g., 128).
Let F' be a family of functions from{0, 1}! to {0, 1}*. Let HF = (K, H) be
a family of hash functions witHashSp,,» = {0,1}' andKeySp;,,;» = {0,1}* (and
K, works by randomly selecting and returning an element o }* with uniform
probability). Letctrl: {0,1}" x (Zy — {0}) — {0, 1} be an efficiently-computable
injective function. Letextract: {0,1}*/£1'L — 10, 1}* be a function that takes as
input a[k/L] - L-bit string and that outputs &-bit string. We require thaéxtract
always pick the samg bits from the input string and always outputs those bits in the

exact same order (e.@xtract returns the firsk bits of its input).
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Let SE[F,HF] = (K., &, D) be an AEAD scheme built from function family
F and hash functiotHF and using the above functiomstract andctrl. We assume
thatAdSpse iz X MsgSpserar © MsgSpy,+ and that all messagesiisgSpse 7]
have length at modi-(2°—1). Note that the former means that the message spag¢gof
actually consists of pairs of strings. LEbnceSpse(yr = 10, 1}". LetSE[F, HF|'s

component algorithms be defined as follows:

Algorithm /C,

fEF

d RandZy, .1, {0,1}"]

e < RandHashSp,, {0, 1}]

g < RandNonceSpse(z .77, {0, 1}']
K}, « extract(d(0)[|d(1)|| - - ||d([k/L] — 1)) ; H <« Hk,
Return(f, H, e, g)

. N,A
Algorithm &7 . (M)
o « CTR-MODE} (M)

T—g(N)®e(H(A, o))

Returno||7

Algorithm D%, . (C)

If |C| < t then returnL

ParseC aso||T where|T| =t

If A & AdSpsep 7 OF 0 & MsgSpsep7 then returnl
T — g(N) D e(H(A,0))
If 72 7/ return L

M « CTR-MODE} ()
ReturnM

Algorithm CTR-MODE} (X)
a — [|X[/L]
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Fori =1toa do

Z; — f(ctrl(N, 7))
Y « (first|X| bits of Z1|| Zs|| - - - [| Za) © X
ReturnY 1

Proposition 5.7.12 Let SE[F, HF] be as in Construction 5.7.11 and tF be ane-
AU hash function. Then the advantage of any nonce-respestimgc adversaryA in

breaking the authenticity $£[F, HF] is upper bounded by

AdVENE () < e+ 2701

Proof of Proposition5.7.12: We first note that the stepsd <
RandZ 11, {0, 134 5 K, — extract(d(0)||d(L)]| - ld([k/L] ~ 1)) ; H « Hp, is
equivalent to the stefl <~ HF.

Note thate(H (A, o)) can be rewritten a&l .y (A, o) whereHF[t] = (I, H) is
composed fronHF per Construction 5.7.5.

Also note thaty(N) & H . (A, o) can be replaced witiT%<

H,e>1g>

MA = (K,,,T,V) is composed front F|t] as per Construction 5.7.7.

(A, o) where

By Proposition 5.7.10, giverdl we can construct an adversaBy againstM.A
such that
AdVgustFlg,Hf](A> < AdV%A(BA) .

By Proposition 5.7.8 we know that
Advy (Ba) < ¢

wheree’ is € + 27 (the latter by Proposition 5.7.6)l

Integrity of SE[Rand[l, L], HF]. We now consider the integrity of
SE[Randl, L], HF].
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Proposition 5.7.13Let SE[Randl, L], HF¥] be a AEAD scheme as in Con-
struction 5.7.1. Then for any nonce-respectingTHC adversary A against

S€[Randl, L], HF], we have that

Adv‘aslgFganql,L},HF} (A) <e+ 27t |

Proof of Proposition 5.7.13: Let S&’[Randl, L], HF] be as in Construction 5.7.11.
Note thatSE[Randl, L], HF] andSE&'[Randl, L], HF] are identical except that the for-

mer uses only one random functigrandS&’[Rand!, L], HF] uses four random func-
tions (one to generate the hash key, one to CTR-mode encrypt the message, one to
encipher the output of the hash function, and one to CTR-mode encrypt the output of
the hash function). Furthermore, recall that, 8 [Rand/, L], HF], there is never a
collision in the input tof between the four different uses ¢f(this was a requirement
imposed orH{.F, ctr0, ctrl, andctr2). Consequently, the fact th&€'[Randl, L], H.F]

uses four random functions astf [Rand(, L], HF| uses one is immaterial. Hence the
probability thatA forges againsS£[Randl, L|, HF] is the same as the probability that

it forges againsS&’'[Randl, L], HF]. l.e.,

Adv‘aSL‘JSthanql,L],Hf}(A) = Advglgp[%anql,L],Hf](A) .

By Proposition 5.7.12, we know the latter probability is upper boundedb~". 1

Proof of Lemma 5.7.2. We now prove Lemma 5.7.2.

Proof of Lemma 5.7.2: AdversaryB, runs A and replies tod’s oracle queries using
its oraclef. If A returns a valid forgeryB4 returnsl, otherwiseB 4 returns0. This
implies that
Adv3re, - (A) = Pr [ FE R BO = 1]
and
AV g 11 70m(4) = Pr | f < Randl, 1] : BY) =1] .
Since

h _
AdVERangi . nr(A) < e+27°
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by Proposition 5.7.13, we have
AdvglgF}%H}'}(A> = AdVngF}?,H}'](A> - AdvglgFISanql,L],H}"](A)
+ Advglg[thanql,L] nr(A)
<Pr|faF B =1|-Pr|fERand,z) B =1
+e+27"
= AdeFrf(BA) +e+27"

as desired.1

5.7.6 Proof of Lemma5.7.3

Proof of Lemma 5.7.3: Let B, be aPRFadversary againgt’ that uses adversany
and that has oracle access to a functon {0,1}' — {0,1}£. AdversaryB, runs A
and replies tod’s encryption oracle queries using its own orag(e for the functionf

in Construction 5.7.1. Adversamy, returns the same bit that returns. Then
Pr [ (f HY & K, ASuan(e) = 1} —Pr [g Sp. Bl = 1}
since whenB, is given a random instance &f it runs A exactly as ifA was given the
real encryption oracle. Furthermore
Pr[ %) —1] =Pr[g < RandL L] « By =1]
sinceB 4 replies to all ofA’s oracle queries with independently selected random strings.

Consequently

Advgfg;;g;](,q) < Adv?(By)

as desired.1

Additional Information

An earlier version of the material in this chapter appears in Fast Software Encryp-

tion, volume 3017 of Lecture Notes in Computer Science [50], copyright the IACR. |
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was a primary researcher for the theoretical results in this paper. The full citation for

this work is:

Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A high-
performance conventional authenticated encryption mode. In Bimal Roy
and Willi Meier, editors,Fast Software Encryptigrnvolume 3017 ofLec-

ture Notes in Computer Sciengeages 408-426. Springer-Verlag, February
2004.



6 The WinZip Authenticated

Encryption Scheme

WinZip [85] is a popular compression utility for Microsoft Windows computers,
the latest version of which is advertised as having “easy-to-use AES encryption to pro-
tect your sensitive data” [85]. Because of WinZip’s already established large user base,
and because of its advertised encryption feature, we anticipate that many current and
future users will choose to exercise this encryption option with the hopes of crypto-
graphically protecting their personal data. Additionally, because of WinZip’s Microsoft
Outlook email plugin [84] and given other comments on WinZip's websites [85, 86],
we anticipate that many users will also choose to use WinZip’s encryption feature in an
attempt to cryptographically protect the contents of their email attachments and other
shared data.

Unfortunately, WinZip’s new encryption scheme, called “Advanced Encryption-2”
or AE-2 [83] and shipped with WinZip 9.0, is insecure in a number of natural scenarios.
We exhibit several attacks and then propose ways of fixing the protocol. We believe that
our proposed fixes to the Zip file format are relatively non-intrusive and that they will
require only a moderate amount of reimplementation on the part of WinZip Computing,
Inc. and the vendors of other WinZip-compatible applications.

We include this discussion of WinZip in this dissertation because the WinZip ap-

An earlier version of the material in this chapter appears in the Proceedings of the 11th ACM Con-
ference on Computer and Communications Security [49], copyright the ACM.
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plication has security vulnerabilities despite having a provably secure authenticated en-
cryption scheme as its core (an Encrypt-then-MAC construction using AES in CTR
mode for encryption and HMAC-SHAL for message authentication). Our attacks do not
violate the provable security of the Encrypt-then-MAC core, but rather exploit problems
with the interface between this secure core and the rest of the WinZip system.

Our results serve to highlight both the limitations of and possible future directions
for the provable security approach. First, our results show that the provable security a
system’s sub-component is, by itself, not sufficient to guarantee the security of the larger
system. Rather, the designer of the larger system must take care when designing that
system; for example, the designer of a larger system must ensure that the larger system
establishes the proper preconditions for the correct use of the sub-component. As other
examples, recall Bellare and Namprempre’s [10] and Krawczyk’s [52] attack against the
generic Encrypt-and-MAC paradigm in Section 2.6.3 and our attack against a natural fix
to the SSH authenticated encryption scheme in Section 3.4.

If we look closer at our results, however, there is a more positive conclusion.
Namely, the makers of WinZip could have deflected many of our attacks if they had
used the provable security approach to help them design the whole AE-2 system, rather
than just incorporate the provably secure Encrypt-then-MAC sub-component into AE-
2 in anad hocmanner. Therefore, the results in this chapter highlight our belief that
there is still much to gain by pushing the provable security approach further into real
systems. This lesson is consistent with the other major thrusts of this dissertation, i.e.,
the work in Chapters 3 and 4 toward modeling and understanding realistic composition-
based authenticated encryption schemes and the work in Chapter 5 on designing an

authenticated encryption scheme around pragmatic constraints.

6.1 Overview

WinZip. We shall write “WinZip” when we mean “WinZip 9.0” or any other recent

version of WinZip or a WinZip-compatible tool that uses the AE-2 authenticated en-
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cryption scheme [83). A WinZip archive can contain multiple files, and when that is
the case, each file is encapsulated independently. For each file to archive, if the length
of the file is above some threshold, WinZip first compresses the file using some standard
compression method such as DEFLATE [31]. WinZip then invokes the AE-2 encryp-
tion method on the output of the previous stage. Specifically, it derives AES [28] and
HMAC-SHA1 [52] keys from the user’s passphrase and then encrypts the output of the
compression stage with AES in counter (CTR) mode (AES-CTR) and authenticates the
resulting ciphertext with HMAC-SHAL. As noted in Section 2.6.3, the underlying AES-
CTR-then-HMAC-SHAL1 core is a provably secure authenticated encryption scheme per
results by Bellare and Namprempre [10] and Krawczyk [52] and standard assumptions
on AES-CTR and HMAC-SHAL1.

A collection of issues. All our attacks exercise different problems with the way that
WinZip attempts to protect users'’ files. Furthermore, our attacks work in a variety of dif-
ferent settings, require a variety of different resources, and accomplish a variety of dif-
ferent goals, which means that different adversaries may prefer different attacks. Since
no single “best” attack exists, since in order to eventually fix the protocol we first wish
to understand the (orthogonal) security issues with the current design, and since we be-
lieve that each of the issues we uncover is informative, we discuss each of the main
problems we found, and their corresponding attacks, in turn. We believe that our ob-
servations also serve to highlight the subtlety of cryptographic design since the WinZip
AE-2 authenticated encryption method uses a provably-secure Encrypt-then-MAC core
in a natural and seemingly secure way and since one of the attacks we discover was
made possible because of the way that WinZip chose to fix a different problem with its
earlier encryption method, AE-1.

The main issues we uncover include the following:

I According to the documentation packaged with WinZip 9.0, “Because the technical specification for
WinZip’'s AES format extension is available on the WinZip web site, we anticipate that other Zip file
utilities will add support for this format extension.”
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Information leakage. According to the WinZip documentation, there is a known
problem with the WinZip encryption architecture in that the metadata of an encrypted
file appears in the WinZip archive in cleartext. Contained in this metadata is the en-
crypted file’s original filename, the file’s last modification date and time, the length of
the original plaintext file, and the length of the resulting ciphertext data, the latter also
being the length of the compressed plaintext data plus some known constant. Although
WinZip Computing, Inc. may have had reasons for leaving these fields unencrypted, the
risks associated with leaving these fields unencrypted should not be discounted. For ex-
ample, if the name of a compressed and encrypted file iRithiSlips.zip archive

is PinkSlip-Bob.doc , encrypting the files in the archive will not prevent Bob from
learning that he may soon be dismissed. Additionally, a recent result from Kelsey [48]
shows that an adversary knowing only the length of an uncompressed data stream and
the length of the compression output will be able to learn information about the un-
compressed data. For example, from the compression ratio an adversary might learn
the language in which the original file was written [16]. Of course, the mere name,
date, and size of the entireip  archive may reveal information to an adversary, so the
goal here should not be to prevent all information leakage, but to reduce the amount of

information leakage whenever possible.

Interactions between compression and encryption. One of our chosen-ciphertext
attacks exploits a novel interaction between WinZip’s compression algorithm and the
AE-2 Encrypt-then-MAC core. In particular, although the underlying AES-CTR-then-
HMAC-SHA1 core of AE-2 provably protects both the privacy and the integrity of en-
capsulated data, an attacker can exploit the fact that the metadata fields indicating the
chosen compression method and the length of the original fila@rauthenticated by
HMAC-SHA1 as part of AE-2.

An example situation in which an adversary could exploit this flaw is the follow-
ing: two parties, Alice and Bob, wish to use WinZip to protect the privacy and integrity

of some corporate data. To do this, they first agree upon a shared secret passphrase.
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Suppose Alice uses WinZip to compress and encrypt some file n&xed , using

their agreed upon passphrase to key the encryption, akdzipt denote the resulting
archive. Now suppose Alice senfiszip to Bob, perhaps using WinZip's Outlook
email plugin or by putting it on some corporate file server or an anonymous ftp server.
We argue that the type of security that Alice and Bob would expect in this situation is
very similar to the authenticated encryption notion®RBfv-CCA-privacy (Section 2.4)
andAuUTHC-integrity (Section 2.6).

Unfortunately, an adversary, Mallory, could break the security of WinZip under
this model. For example, assume that Mallory has the ability to change the contents of
F.zip ,replacing it with a modified versiof-prime.zip  , that has a different value
in the metadata field indicating the chosen compression method and an appropriately
revised value for the plaintext file length. When Bob tries to decrypt and uncompress
F-prime.zip , he will use the incorrect decompression method, and the contents of
F.dat upon extraction will not be the original contentsfatlat , but will now look
like completely unintelligible garbagé. Now suppose that Mallory can obtain in
some way. For example, suppose Bob sends the frustrated note “The file you sent was
garbage!” to Alice. If Mallory intercepts that note, he might reply to Bob, while pretend-
ing to be Alice, “I think I've had this problem before; could you send the garbage that
came out so that | can figure out what happened; it's just garbage, there’s no reason not
to include it in an email.” Mallory, after obtaining, can reconstruct the true contents
of Alice’s original F.dat file.

We believe that the above attack scenario is realistic. It is the same scenario that
Katz and Schneier [46] and Jallad, Katz, and Schneier [42] used when attacking email
encryption programs and PGP, so any attack against WinZip’s Outlook email plugin
under the same scenario is at least as damaging; one difference is that our attack is
applicable to WinZip in its default setting, whereas the previous attacks against PGP
require the user to choose a non-default setting or to encrypt already compressed data.
Even when users do not use WinZip’s Outlook plugin to send encrypted attachments,

we believe that there are other natural scenarios in which an adversary could mount
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our attack. For example, employees of at least one large corporation, Diebold Election
Systems, transported important election-related files, compressed and encrypted into Zip
archives, via an anonymous ftp site [#3)Given Jones’ [43] discussion of Diebold’s
procedures, we would be surprised if an adversary able to médifiy could not

also get access to the decrypted, garbage-looking odtputastly, even if security-
conscious users might try to prevent an adversary from lear@ing/e believe that
security products should remain secure even in the face of potential misuses by non-
security conscious users, which further suggests that the attack we describe is significant

and should be protected against.

On the names of files and their interpretations. There are a number of systems
that associate software applications with filenames; for example, a Microsoft Windows
machine will by default operdoc files with Microsoft Word andppt files with Mi-
crosoft Power Point. Unfortunately, WinZip’s AE-2 authenticated encryption method
does not authenticate an encrypted file’s filename metadata field, meaning that Mallory
could modify the names of the encrypted files in an archive without triggering any detec-
tion mechanism within the extraction utility. This is problematic since, on a system like
Microsoft Windows, it is important for an extracted file to have the same extension as
the original file. Otherwise, when Bob tries to open that file, he will accidentally use the
wrong application, get an error message, and thereby possibly allow Mallory to mount
an attack similar to the one described in the previous heading. The issue described here
is orthogonal to the issue of leaving an encrypted file’s filename unencrypted; specifi-
cally, the issue is not that the filename is stored in cleartext, but that the filename is not
authenticated, though also encrypting the filename would not hurt.

We discuss other issues that can arise from allowing an adversary to modify the
names of encrypted files. The main lesson with all of these issues is that a file encryption
utility must not only protect the integrity of theontentsof an encrypted file, but must

also protect the integrity of all of theetadatalike the filename or filename extension,

2These events preceded WinZip’s invention of AE-2; Diebold used the traditional Zip encryption
method.
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necessary for the surrounding system to correctly interpret that data.

Interactions with AE-1 and a protocol rollback attack. According to the WinZip

AE-2 specification [83], the AE-2 authenticated encryption method fixes a security prob-
lem with an earlier AE-1 authenticated encryption method. Further, according to [83],
software implementing the AE-2 authenticated encryption method must be able to de-
crypt files encrypted with AE-1. While AE-2 does protect against a specific attack
against AE-1, there is a protocol rollback attack against WinZip that exploits the fact
that an adversary can force WinZip to use the AE-1 decryption method on an AE-2-
encrypted file. The attack also exploits the fact that in addition to using HMAC-SHAL,
AE-1 also uses a 32-bit CRC of the unencrypted file.

The attack works in the same setting as the previous attacks. In this attack, Mallory
intercepts~.zip , makes a guess of the contentd=oflat , and creates a replacement
F-prime.zip based off his guess. If Bob can successfully deckptime.zip
i.e., if Bob doesn’t complain to Alice that the file failed to decrypt because of a failed
CRC check, then Mallory learns with high probability whether his guess was correct.
To compare this attack with the previous attack, note that Mallory only needs to learn
whether~-prime.zip decrypted successfully. On the other hand, Mallory only learns
whether his guess was correct. Still, this may constitute a serious attack if Mallory
knows that the contents &fdat is from a small set of possible values, perhaps because
of pre-existing knowledge of the message space or additional information gleaned from
the compression ratio, and wants to know which value it is. In some situations Mallory

may learn more than just whether his guess was correct; details in Section 6.6.

Archives with encrypted and unencrypted files. According to the WinZip AE-2
specification, archives can contain both encrypted and unencrypted files. While this
may have some functionality and usability advantages, there is also a rather serious se-
curity disadvantage. In particular, when a user invokes WinZip 9.0’s extraction utility
on an archive containing both encrypted and unencrypted files, WinZip 9.0 will ask for

a passphrase. It will then proceed to extr@tof the files in the archive, without telling
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the user which files were encrypted and which were not. The user will thus think that
all the files in the archive were encrypted (and authenticated), but, in fact, an adversary
could have complete control over the contents of all but one of the files in the archive
(one file must remain encrypted under the user’s passphrase in order to force WinZip 9.0
to prompt the user for the passphrase). In Section 6.7 we provide evidence that suggests
that although WinZip Computing, Inc. was unaware of the attack we found when they
designed AE-2, other Zip manufacturers may have been aware of it, or at least knew that
there were risks associated with allowing both encrypted and unencrypted files in Zip

archives.

Key collisions and repeated keystream. When encrypting a file, WinZip first takes
the user’s passphrase and derives cryptographic keys for AES and for HMAC-SHAL.
The key derivation process is randomized; one of the reasons for this randomization is
so that two different files encrypted with the same passphrase will use different AES and
HMAC-SHA1 keys. Unfortunately, because not enough randomness is used in the key
derivation process, we expect AES key collisions after encrypting ®#lfiles when
using AES with128-bit keys. Furthermore, the AE-2 specification says that the initial
CTR mode counter is always zetdCombining these two observations, we can expect
CTR mode keystream reuse after encrypting only aratfidiles, which is much less
than the2%* files we would expect if we chose a different random key for each file.
Additionally, assuming that the encrypted files are all of realistic size, then this is also
less than the number of files we would expect if we used AES in CTR mode with just a
single key but a randomly selected initial counter for each file.

Because WinZip encrypts each file in an archive independentlg?%afiles need
not be put into separate archives; we expect keystream reuse even’f files are

distributed amongst only a small set of WinZip archives. The problems with keystream

3Previously we said that the underlying Encrypt-then-MAC core of AE-2 is a prowaaly-ccA- and
AUTHC-secure authenticated encryption scheme per Bellare and Namprempre [10] and Krawczyk [52].
Because the initial CTR mode counter is always zero, we were assuming that each key is used to encrypt at
most one message, which is typically the case with WinZip assuming that lesx*#fidas are encrypted
per passphrase.
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reuse are well known: once Alice reuses keystream, Mallory will be able to learn in-
formation about the compressed and encrypted plaintext. In a worst-case scenario, if
Mallory knew the entire content of the larger, after compression, of two files encrypted
with the same keystream, then Mallory would immediately know the entire contents of
the other file.

Other ways of attacking WinZip. There are other ways in which an adversary might
attack WinZip or any other compression utility. For example, as noted in the WinZip
documentation, an adversary might try to capture a user’s passphrase by installing a key-
board logger on the user’s computer or might try to resurrect a plaintext file from mem-
ory. We also observe what we believe to be a new integrity attack against self-extracting
password-protected executables: an adversary wanting to replace the data encapsulated
by a password-protected self-extracting executable could write a new executable, with a
similar user interface to the real self-extracting executable, that asks for but ignores the
user-entered passphrase and simply creates a data file of the adversary’s choice. How-
ever, attacks such as these are unrelated to the AE-2 encryption method, and since our
focus is on the AE-2 encryption method and WinZip’s use of cryptography, we do not

consider these attacks further.

Secure alternatives. In response to the cryptographic issues and attacks we found,
we discuss a number of approaches for fixing the WinZip encryption method while

simultaneously minimizing the changes to the AE-2 specification.

Other Zip encryption methods. There are a number of other passphrase-based Zip
encryption methods besides WinZip’s new AE-2. The traditional Zip encryption mech-
anism [40] has similar functionality to AE-2, but it has significantly worse security: the
traditional Zip stream cipher has been broken [21, 77] and the contents of traditionally-
encrypted archives can be efficiently recovered from the Zip archives directly, i.e., there

is no need to mount a chosen-ciphertext attack like the ones we describe above.
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PKWARE also recently announced a new passphrase-based encryption mecha-
nism called EFS [65]. The January 2004 version of the PKWARE's EFS specifica-
tion [66], as well as the traditional Zip encryption mechanism, are all vulnerable to
our attacks that exploit generic properties of the Zip file format, namely the attacks ex-
ploiting (1) the information leakage of an encrypted file's metadata, (2) the fact that an
encrypted file’s filename is not authenticated, and (3) the fact that an archive can contain
both encrypted and unencrypted files. Although the global applicability of issue (1) is
by now folklore knowledge, and we have evidence to believe that some people, although
unfortunately not WinZip Computing, Inc., may have known about some aspects of issue
(3), we have seen no previous discussions of issue (2). The lack of previous discussions
and awareness of these latter and other issues is likely because, until the creation of
applications like Zip Outlook plugins, and until the publication of works like Katz and
Schneier [46], the risks of chosen-ciphertext attacks were under-estimated.

The EFS specification [65], dated April 26, 2004 and appearing after the origi-
nal release of the material in this chapter (IACR ePrint Report 2004/078), adds a new
“filename encryption” feature that will encrypt the filename and other metadata fields
of encrypted files. Although EFS’s approach for addressing issue (1) is different than
ours, and is an option that users or administrators may fail to turn on (it was not the de-
fault in the version we tested), we are pleased to find that our suggestions for fixing (1)
are less intrusive to the Zip file format than PKWARE’s (when “filename encryption” is
turned on under PKWARE'’s new specification [65], PKWARE-encrypted archives are
not parsable under the traditional Zip specification [40]). Unfortunately, PKWARE's
new “filename encryption” feature alone cannot always fully protect against variants of
our problems with issues (2) and (3), largely because encryption alone does not imply
authentication. PKWARE's specification [65] also includes the ability to encrypt and
sign files using public key cryptography, assuming the presence of the requisite addi-
tional infrastructure, though it is worth noting that the “certificate processing method
for ZIP file encryption remains under development ... and is subject to change without
notice [65].”
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Although a full treatment of PKWARE’s new EFS passphrase-based encryption
mechanism, as well as PKWARE's use of public key cryptography, is outside the scope
of this chapter, we make a few observations here. The passphrase-based encryption
mechanism does not include a message authentication code at all, and thus does not
appear to have been designed to protect the privacy or integrity of files under chosen-
ciphertext attacks. This is problematic since, although digital signatures can be used
to protect the authenticity of the encapsulated data, it is still important to protect the
authenticity of files encrypted with passphrases when the necessary infrastructure for
digital signatures is not available, or when a user does not want to be bound to the con-
tents of a file with a digital signature. The specification is also incomplete, making it not
only difficult to implement the system from the specification alone, but to fully analyze
the system for potential security problems without making conjectures about how the
system is actually supposed to behave; e.qg., if the user or developer chooses RC4 for
encryption, how exactly is RC4 supposed to be used and are results like Mironov’s [61]
taken into consideration? Where the specification is unambiguous, the specification still
leaves decisions, such as the choice of the underlying cipher (e.g., 40-bit RC2, 64-bit
RC4, 3DES, AES) and the length of the randomr®Bsavhen deriving encryption keys,
up to the choice of implementors. This is a concern since even if PKWARE makes safe
choices with respect to these decisions, there is nothing in the specification to prevent

third-party developers from making unsafe choices.

Additional related works. Biham [20] introduced the notion of key-collision attacks

in the context of DES, noting that we expect one key collision after encrypting about
228 messages using randomly selected 56-bit DES keys; our keystream reuse attack in
Section 6.8 is related to Biham'’s key-collision attack except that it is more efficient than
a normal key collision attack because of the way that WinZip derives AES keys from

passphrases. Wagner and Schneier discuss protocol rollback attacks in [80].
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6.2 The WinZip Compression and Encryption Method

WinZip’s compression architecture follows the Info-ZIP specification [40]. The
AES-based AE-2 extension is described on WinZip’s website [83]. The difference be-
tween the AE-2 authenticated encryption method and the AE-1 authenticated encryption

method is slight and is mentioned at the end of this section.

Basic structure. We present here the basic Zip file format and the AE-2 extensions,
omitting details that are not relevant to our attacks and to our security improvements.

A Zip archive can contain multiple files. When archiving a set of files, WinZip
creates twaecordsfor each file, anain file recordand acentral directory record The
resulting Zip archive contains all of the main file records concatenated together followed
by all of the central directory records. Following the central directory recordsésndn
of archive recorgdwhich is not relevant to our attacks and suggested improvements. The
main file recordcontains metadata about the file, like the filename, as well as the file’s
contents, the latter typically being compressed and, in the case of AE-2, encrypted. The
contents of each file is compressed and encrypted independentlgeftral directory
record mirrors the metadata stored in the main file record and also contains information
about the location of the file’s corresponding main file record in the Zip archive. One of
the reasons for the existence of the central directory record is for usability when working
with multi-volume floppy or CD archives. For example, when extracting a file from a
multi-volume CD archive, the user can insert the last CD, WinZip can read the central
directory information, and then WinZip can prompt the user to insert the CD containing
the main file record.

When referring to the fields of a Zip archive, byte strings will be written like
504b0304 s, meaning that the first byte 80,5 = 80, the second byte idb,s = 75,
and so on. Integers, such as lengths, that are stored in multi-byte fields are encoded in

little endian format.
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Main file record. According to the Info-ZIP specification [40], and barring certain
extensions that do not affect our attacks, all main file records have the following structure
(the fields important to our work are highlighted): main file record indicator (4 bytes,
always504b0304 ), version needed to extract (2 bytes), general purpose bit flag (2
bytes),compression metho@ bytes) last modification timg2 bytes)Jast modification
date (2 bytes),32-bit CRC(4 bytes), compressed size (4 bytag)compressed si{d
bytes), filename length (2 bytes), extra field length (2 byti#ghame(variable size),
andextra field(variable size). Following the above fields, but still part of the main file

record, is thdile datafield.

Central directory record. The central directory record for a file consists of the fol-
lowing fields (important fields highlighted): central directory record indicator (4 bytes,
always504b0102 ), version made by (2 bytes), version needed to extract (2 bytes),
general purpose bit flag (2 bytespmpression metho@ bytes) last modification time

(2 bytes),last modification daté€2 bytes),32-bit CRC(4 bytes), compressed size (4
bytes), uncompressed siz@ bytes), filename length (2 bytes), extra field length (2
bytes), file comment length (2 bytes), disk number start (2 bytes), internal file attributes
(2 bytes), external file attributes (4 bytes), relative offset of local header (4 biites),

name(variable size)extra field(variable size), and file comment (variable size).

AE-2 settings and the AE-2 extra data field. The following is applicable to both the

main file record and the central directory record. When the AE-2 WinZip encryption
algorithm is turned on, the four bytes reserved for the 32-bit CRC are set to zero, bit 0
of the general purpose flag is set to 1, and the two bytes reserved for the compression
method are set t6300,s. The extra data field will consist of the following 11 bytes
(again, important fields highlighted): extra field header id (2 bytes, al¥a99 ), data

size (2 bytesQ700 ps for AE-2 since there are seven remaining bytes in the 11-byte extra
data field),version numbe(2 bytes, alway9200 s for AE-2), 2-character vendor ID

(2 bytes, alway#145 s for AE-2), value indicating AES encryption strength (1 byte),

andthe actual compression method used to compress th@filgtes). The encryption
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strength field will be01 4 (resp.,02p5 or 03y,4) if the file is encrypted with AES using
a 128-bit (resp.,192-bit or 256-bit) key. Example values for the actual compression

method aré800 s if the file is DEFLATEd [31] and)000 5 if no compression is used.

File data field. When afile is AE-2-encrypted, the file data field of the main file record
contains the following informationsalt (variable length) password verification value

(2 bytes),encrypted file datgvariable length), and thauthentication cod€10 bytes).

The salt is 8 bytes (resp., 12 bytes or 16 bytes) long if the AES key is 128 bits (resp.,
192 bits or 256 bits) long.

The encrypted file data and authentication code. Before applying the AE-2 authen-
ticated encryption method, the contents of the plaintext file is compressed according
to the “actual compression method used to compress the file” field of the AE-2 extra
data field described above. Then an AES encryption key, an HMAC-SHAL key, and a
password verification value are derived from the user’s passphrase and a salt using the
PBKDF2-HMAC-SHAL algorithm [45]. The length of the salt depends on the chosen
length of the AES key and is described above. The specification [83] states that the
salt should not repeat, and since this must be true across different invocations of the
compression tool, suggests making the salt a random value.

The derived AES key is used to encrypt the compressed data using AES in CTR
mode with the initial counter set to zero. The compressed plaintext data is not padded
before encryption. After encryption, the encrypted data is MACed using HMAC-SHA1
and the derived MAC key, and 80 bits of the HMAC-SHAL output are used as the au-

thentication code.

Differences between AE-1 and AE-2. The only differences between the AE-2
method and the earlier AE-1 method is that in AE-1 the version number in the main
file record’s and central directory record’s extra data fieldsOdi@0 ,s and the 32-bit
CRC fields are not all zero but actually contains the CRC of the original unencrypted

data, which the WinZip specification [83] states must be checked upon extraction. The
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motivation for zeroing out the CRC field in AE-2 is because the CRC of the plaintext

will leak information about the plaintext.

6.3 Information Leakage

The metadata fields of encrypted files leak important and potentially security-
critical information in several ways. The names of the encrypted files are stored in
cleartext, which can obviously be a concern. The files’ last modification dates and times
are also stored unencrypted, which can be used to infer some relationship between the
contents of different encrypted files or some event in the past. Additionally, the length
of plaintext files are stored in the files’ metadata fields unencrypted. This is a concern
since, based on Kelsey's recent results about compression as a side-channel [48], an
adversary can learn information about the plaintext simply given the lengths of both the
original and the compressed data. As Kelsey notes, information leakage via the com-
pression ratio of files becomes patrticularly effective if Mallory has pre-existing partial
knowledge of the plaintext or if Mallory can see the compression ratio of multiple re-
lated files, e.g., different versions of the same file over time. The WinZip documentation
notes that these pieces of information are included unencrypted in the file’s metadata,
but the risks associated with leaving these fields unencrypted is not considered. Fur-
thermore, many users may fail to read the documentation, and thus may not realize that
these information leakage side-channels exist in the first place.

It is a well known fact that the classic Zip encryption method [40] also leaks the
information that we mention above, plus the 32-bit CRC of an encrypted file’s original
plaintext. It is interesting to ask why WinZip Computing, Inc. did not fix this problem
in their new AE-2 specification. The most likely conjecture is that WinZip Computing,
Inc. chose not to do so either because of engineering or design complexities, or because
of functionality issues (e.g., they wanted to allow users to be get a directory listing of the
contents in their encrypted archives without having to enter a passphrase). To address the

former reason, we discuss technical approaches for addressing the information leakage
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concerns in Section 6.10.

6.4 Exploiting the Interaction Between Compression

and Encryption

Recall the setup described in Section 6.1, where Alice encFypst and sends
the resulting Zip archivel-.zip , to Bob, but where Mallory prevents the delivery of
F.zip andinstead gives Bob afilE;prime.zip  , thatisrelated té.zip butthatis
slightly different. The critical observation for our attack is that despite the fact that the
underlying encryption core is a provably secure Encrypt-then-MAC authenticated en-
cryption scheme, the compression method and original file length fields in an encrypted
file’s main file and central directory records aret authenticated, which means that an
adversary can change these fields without voiding the HMAC-SHAL1 authentication tag
attached to the file. Consequently, assuming that the new uncompressed file length field
is correct or that the extraction tool does not check that field, when Bob attempts to
decrypt and decompress the modified figrime.zip , the MAC verification will
succeed and WinZip will not report any errors. But because the adversary changed the
compression method, the file will be decompressed using the wrong algorithm and the
resulting contents; of the extracted file will look like garbage. This issue immediately
violates the type of security goal captured by therHc definition in Section 2.6. If
Mallory can learnz, which we argue in Section 6.1 is reasonable in some cases, Mallory
can recover the original contents of Alice’s flledat . This latter step, in addition to
being of concern in practice, violates the type of security goal captured IpRrivecCA

definition in Section 2.4.

Implementing the attack. When mounting the attack, Mallory would likely change
the compression method indicators in the main file and central directory records from
0800 s, which appears to be WinZip’s default and which corresponds the DEFLATE

algorithm [31], to0000 s, Which corresponds to no compression. This is very easy to



180

do and very efficient and can be done in a linear pass through the file, as can updating
the original file length field. We implemented this attack against WinZip 9.0. To create
F-prime.zip from F.zip , rather than parsg.zip and switch the compression

type from0800 s to 0000 s, we found that the Unixcsh command line

cat F.zip |\
sed ’'s/\(\x02\x00\x41\x45\x01\)\x08\x00/\1\x00\x00/g’\

> F-prime.zip

was sufficient in all of the cases that we tried, showing that the attack is indeed very easy
to mount? We would only expect the above command line to not work as desired if the
7-byte stringd2004145010800 s appears irF.tar in a place not corresponding to

the extra data field of a file’s main file or central directory records. Since the WinZip 9.0
extraction tool did not seem to verify the length of the extracted file, we did not need to

modify the original file length fields of the file’s main file and central directory records.

Subtlety of cryptographic design. Recall that in AE-1 the CRC field of an encrypted
file’s header contains the CRC of the original plaintext file but that the field is all zero
in AE-2. When trying to mount the above attack against AE-1, since the extraction
utility will also verify the CRC of the plaintext, which will typically fail because the
plaintext is now different, the resulting garbage-looking dataill not be saved and

the attack will not immediately go through. While it is true that if Bob is crafty he may
be able to viewF.dat (the file with content€y) among the temporary files created by
WinZip during the extraction process and before the CRC failure is noted,(sénd
Alice, and thereby leaks to Mallory, it might be unrealistic for Mallory to assume that
Bob will find F.dat among WinZip’s temporary files, at least not without more active
intervention by Mallory. This discussion highlights the subtlety of cryptographic design
since the vulnerability presented in this section was accidentally introduced when the

authors of the specification tried to fix a different problem with AE-1.

“Different versions ofed appear to handle binary streams differently. The attack worked on default
RedHat 9.0 systems witted version 4.0.3.
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6.5 Exploiting the Association of Applications to File-
names

To complement the attack in Section 6.4, we note that on many systems, including
Microsoft Windows machines, software applications are automatically attached to files
based on the files’ flename extensions; e.g., Microsoft Windows will by default open
.doc files with Microsoft Word. Since the filename fields of an encrypted file’'s main
file and central directory records are unauthenticated, an adversary could modify those
field without voiding the MAC included at the end of the encrypted file’s main file
record. Once Mallory does this, he can mount a variant of the attack in Section 6.4
since applications will usually report an error when trying to open a file of the wrong
extension. Fortunately, some applications give descriptive error messages and Bob may
realize that the file has the wrong filename extension (e.g., Microsoft Excel gives the
error “File.xls  : file format is not valid” when opening a document created with
Microsoft Word), but this is largely serendipitous and should not be relied upon for
security. This discussion suggests that a file encryption utility must not only protect
the integrity of the encapsulated data itself, but also the metadata, like the filename
extension, necessary for the surrounding system to correctly interpret that data.

We also observe that an adversary could benefit from changing the names of the
encrypted files in an archive while still maintaining the files’ original extensions. For
example, if Alice’s salary is currently higher than Mallory’s, Mallory could swap the
names of the filed\lice-Salary.dat and Mallory-Salary.dat in an en-
crypted archiveSalaries.zip without triggering any detection mechanism within

the extraction utility.

6.6 EXxploiting the Interaction Between AE-1 and AE-2

The motivation for the change from AE-1 to AE-2 is that in AE-1 the CRC of the

plaintext file is included unencrypted in an AE-1-encrypted WinZip archive, and that
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will leak information about the encrypted files’ contents. While the CRC is no longer
included in the output of the AE-2 authenticated encryption method, one can exploit an
interaction between AE-1 and AE-2 in the followirgiVv-CCA-style attack that reveals
information about an AE-2-encrypted file’s CRC to an adversary. Our attack makes
use of the fact that, according to the AE-2 specification [83], Zip tools that understand
AE-2 must be able to decrypt files encrypted with AE-1 and must verify the CRC upon

extraction.

Details. Recall thePRIV-CCA-based setting used in Section 6.4 and Section 6.5. As-
sume Alice sends the encrypted fezip to Bob, but assume that Mallory can modify

the file in transit and can learn whether Bob can successfully extract the file he receives
using the passphrase he shares with Alice. Now suppose that Mallory has a guess for
what the original contents d¥ are, but is not completely sure and wants to verify his
guessH. He can do this as follows: compute the 32-bit CRCrbiand then modify

F.zip such that the version number in the main file and central directory records’ extra
data fields ar®100 s and the CRC fields in the file’'s main file and central directory
records has the CRC df. Let F-prime.zip denote the Mallory-doctored file. If
Mallory’s guess is correct, then Bob will be able to extr&ctrom F-prime.zip

without any error. Otherwise, Bob will with high probability see an error dialog box
which, when using WinZip 9.0, says “Data error encountered indil& [.] Possibly
recoverable, contattelp@winzip.com  and mention error code 56.” By observing
Bob’s reaction, Mallory will with high probability learn whether his guess was correct.

If we look more closely at how WinZip behaves when it attempts to extract a
modified file with an incorrect CRC guess, it appears that the file is first extracted, the
CRC is checked, the user is told that the CRC check failed, and then the extracted file is
deleted. This means that if Bob is crafty he will be able to access the unencrypted file
between when it is extracted and when it is automatically deleted after the CRC check
fails. Even if Bob does this, which we expect to be unlikely, he may not be confident

in the correct extraction of the file and, if so, will likely convey this lack of confidence
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to Alice. Other implementations of the AE-2 specification may delete the extracted file

before informing the user that the CRC check failed.

Extension. Although not necessarily the case with all Zip tools but in the case of
WinZip, after dismissing the initial error dialog box Bob will have the option of viewing
a more detailed error log. If Bob chooses to see this error log, he will see a line like the

following:
bad CRC 1845405d (should be 1945405d)

If Bob decides to copy and paste this detailed error message in an email to Alice or
help@winzip.com , and if Mallory sees this email, then Mallory will learn the CRC

of the plaintext file, and thereby learn additional information about the plaintext.

6.7 Attacking Zip Encryption at the File Level

When a Zip archive contains multiple files, each of the files in the archive is en-
capsulated independently, which means that some files in an archive may only be com-
pressed and some may be both compressed and encrypted. This fact makes the WinZip
AE-2 authenticated encryption method vulnerable to a number of attacks. Consider
the following: Mallory knows that the encrypted archi$alaries.zip contains
the filesAlice.dat , Bob.dat andMallory.dat , all encrypted using AE-2 un-
der the CFO'’s secret passphrase. Now, because of the properties described above, an
adversary could remove the encryptddllory.dat file from theSalaries.zip
archive and replace it with aew unencryptedile, also namedallory.dat , but
with the contents of Mallory’s choice. When the CFO tries to extract the files in the
archive using the WinZip 9.0 application, she will be prompted for her passphrase since
the filesAlice.dat andBob.dat are still encrypted. WinZip will then extract the
files Alice.dat , Bob.dat , and Mallory.dat . Since the CFO had to enter her
passphrase, she will likely believe that the extradtiedlory.dat file is the same one

that she encrypted, and thus contains Mallory’s real salary, when in fact the contents of
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Mallory.dat are completely under Mallory’s control. Similarly, if Alice creates an
archive containing both encrypted and unencrypted files and sends that & e

to Bob, Mallory will be able to easily modify the contents of the unencrypted files in
the archive. But, like in the previous attack, since Bob has to enter a passphrase to ex-
tract the contents of the archive, and because no warning is given about some files being
unencrypted, Bob will believe that all the files were encrypted by Alice and that they
contain Alice’s original content.

WinZip Computing, Inc. does not appear to have been aware of the above attacks
when they specified AE-2 [83] and when they implemented WinZip 9.0, as supported
both by the fact that WinZip 9.0 does not generate a warning when extracting an archive
containing both encrypted and unencrypted files, and by quotes taken from the AE-2
specification [83], which only mention usability reasons for encrypting all the files in
an archive and which do not suggest that vendors issue warnings when encountering
unencrypted files in an archive with encrypted files. E.g., the specification states: “The
presence of both encrypted and unencrypted files in a Zip [archive] may trigger user
warnings in some Zip file utilities, so the user experience may be improved if all files
(including zero-length files) are encrypted. Again, however, this is only a recommenda-
tion.” This quote does suggest that other Zip vendors may have known of the attack we
describe above, or at least knew to be wary of archives containing both encrypted and
unencrypted files.

Because files in a Zip archive are encrypted on a per-file basis, an adversary could
also delete files from an archive. An adversary could also create a composite Zip archive
with encrypted files taken from multiple different archives, but we view these properties
as less interesting than the first attacks in this section. Related to the first attacks in
this section, in Section 6.5 we observed that an adversary could swap the filenames of
different encrypted files, and that he could also use this fact to modify the contents of
Alice’s encrypted files; the attacks in Section 6.5 exploit a different security problem,

that for encrypted files the filenames are not authenticated.
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6.8 Keystream Reuse

When AE-2 is used with a 128-bit AES key, one can expect CTR mode keystream
reuse after encrypting approximatef}f files, which is much less than one would expect
given that AES has 128-bit blocks. (When using 192-bit AES keys with AE-2, we expect
keystream reuse after encryptiad® files; when using 256-bit AES keys, we expect
collisions after encrypting®* files). The security problems with reusing keystream are
well-known, and therefore we can expect the AE-2 authenticated encryption method
with 128-bit AES keys to start leaking additional information about the compressed and
encrypted plaintext after® files are encrypted with the same passphrase.

This problem arises for two reasons. First, the salt used when deriving the AES
and HMAC-SHAL1 keys from the passphrase is only 64 bits (resp., 96 bits and 128 bits)
long when the desired AES key length is 128 bits (resp., 192 bits and 256 bits). Second,
AES-CTR is specified to always use zero as the initial block counter. The former means
that, with 128-bit keys, after encryptiraj? files we expect there to be one AES key that
we used twice. The latter means that when we use the same AES key twice, we will use

the same keystream both times.

6.9 Dictionary Attacks

One of the reasons for using PBKDF2 [45] and a salt when deriving AES and
HMAC-SHA1 keys from passphrases is to impede dictionary attacks. Specifically, an
exhaustive search through the most common passphrases will be slow because of the
computational requirements for PBDKF2, and a dictionary of HMAC-SHAL keys, cor-
responding to the most common passphrases and all possible salt values, will be ex-
tremely large because of the number of possible salt values.

But since a different salt is used to encrypt each file, an adversary may not need
to useall possible salt values when populating an HMAC-SHA1 key dictionary. In par-
ticular, Mallory would only need to populate the dictionary using enough different salt

values to ensure, with high probability, that one of the salt values that a user uses when
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encrypting her files will collide with one of the salt values that Mallory used when cre-
ating his dictionary. For example, if the salt is 8 bytes long and if each user is expect
to encrypt on the order af*? files, then Mallory would only need to uge® different

salt values when creating his HMAC-SHAL1 dictionary. The dictionary can be indexed
off of the saltand the two-byte password verification value; the password verification
value thus further reduces the amount of HMAC-SHAL keys the attacker has to try in
the dictionary attack. Once Mallory finds an HMAC-SHA1 key such that the MAC

of the encrypted file verifies, he will with high probability learn the user’s correspond-
ing passphrase, and thereafter be able to decrypt all of the files encrypted under that
passphrase. While this is a time-memory trade-off in terms of not having to compute
PBKDF2 for every passphrase guess, the memory and precomputation requirements are

still quite enormous.

6.10 Fixes

In this section we consider fixes to the problems we discussed in Section 6.3
through Section 6.9, starting with Sections 6.4-6.9 and returning to Section 6.3 at the

end. We also discuss our preferred instantiations of these suggestions.

Authenticate all. To address the problems raised in Section 6.4, one approach might
be to MAC the original uncompressed plaintext instead of the ciphertext and then en-
crypt the resulting tag in a MAC-then-Encrypt-style construction. We recall from Sec-
tion 2.6.3 and Chapter 4 that, while MAC-then-Encrypt is not generically secure, it
is possible to base secure authenticated encryption schemes on the MAC-then-Encrypt
paradigm. Alternatively, we could build on WinZip’s current provably secure Encrypt-
then-MAC core. If we continue to use the existing Encrypt-then-MAC core, we still
note the following general design principle for cryptographic encapsulation methods:
a cryptographic encapsulation algorithm should authentedatef the information that

an extractor/decapsulator will use when reconstructing the original data, excluding the
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authentication tag itself and assuming that the extractor already has a copy of the shared
authentication key. In the case of WinZip, since the compression type field of an en-
crypted file’s header will be accessed when extracting an encrypted file, this means that
the compression type value should be MACed along with the AES-CTR-generated ci-
phertext. We can naturally extend this general principle to mandate the authentication
of all data necessary to ensure the coristgrpretationof the data once the data has
been correctly reconstructed, which means that the filename, date, and any other im-
portant metadata fields in an encrypted file’s header must also be authenticated, which
addresses the concerns raised in Section 6.5. If WinZip Computing, Inc. does not mind
deviating further from their current AES-CTR-then-HMAC-SHAL construction, then
the new encryption core can be any provably-secure AEAD scheme as long as the im-

portant metadata fields are authenticated.

Addressing protocol rollback attacks. To prevent protocol rollback attacks like the

one described in Section 6.6, it might be tempting to apply the above principle and
create a new scheme that MACs the encryption method version number field in the extra
data field of an encrypted file’'s header. Unfortunately, this may not necessarily work
since here we are concerned about attacks that exploit the interaction between different
encapsulation/decapsulation schemes, and, in particular, interactions with schemes, AE-
1 and AE-2, that have already been specified and that do not currently authenticate that
field. To see why this is a problem, note that an adversary could move the extra data
MACed using the new method into the ciphertext portion of an AE-2-format archive and
thereby mount a protocol rollback attack.

While one might try MACing information not directly available to an adversary,
such as the encipherment of some nonce, we view such an approach as inelegant. Rather,
we suggest diversifying the AES and HMAC-SHA1 key derivation process in such a
way that the AES and HMAC-SHAL1 keys derived from some passphrase and salt us-
ing the new encryption method will be different from the keys derived from the same

passphrase and salt when using the AE-1 and AE-2 encryption methods. This could
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involve prepending the encryption method version number, vendor ID, and encryption
strength field to the salt before running the key derivation procedure. If it were not the
case that the length of the salt for AE-1 and AE-2 were fixed, but if the length of the
salt was variable and if the length of the salt is encoded in a metadata field of an en-
crypted file, then even our solution here would not be a sufficient since an adversary
could simply add the method version number, vendor ID, and encryption strength field
into the (now larger) salt in an AE-2-formatted archive. For similar reasons, there is still
the potential of interaction with other (non-WinZip) applications that uses PBKDF2-
HMAC-SHA1, but it seems impossible for WinZip to complete avoid such interactions

with applications that are not under their control.

Addressing the concerns in Section 6.7. There are several possible solutions for the
problems that we raised in Section 6.7. The obvious approach of authenticating an entire
archive would likely break some of WinZip Computing, Inc.’'s functionality design cri-
teria, namely the desire to (efficiently) handle updates to large archives, and in particular
archives spanning multiple CD volumes. Another approach might be to authenticate the
entire central directory (the concatenation of all the central directory records), since the
central directory will always be stored at the end of the archive, and in particular on the
last CD in a multi-volume archive. Toward this end, we note that the Zip specification
already has the ability to sign the central directory using public key cryptography, so
adding the ability to authenticate the central directory using a MAC is certainly reason-
able. However, we point out that this solution has a number of issues that one must be
careful of. For example, the extractor must check the consistency between the metadata
in a file’s main file record and a file’s central directory record. If we are concerned
about adversaries deleting files from an archive, then the absence of files must also be
checked (this may follow as a corollary of checking the consistency of the individual
files if the consistency check includes main file record offsets, which are stored in the
central directory record). But of most concern is the fact that authenticating the cen-

tral directory alone willhot prevent an attacker from modifying unencrypted files in an
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archive. Rather, those unencrypted files must be cryptographically bound to the cen-
tral directory in some way, perhaps by including a MAC of an unencrypted files in its
central directory record. Another potential problem with this solution isithatithen-
ticating the central directory is an option, then one must be careful to ensure that an
adversary cannot simply take a Zip archive, turn that option off, and remove the MAC
of the central directory. One possible way of handling this might be to use different AES
and HMAC-SHAL1 keys when the option is turned on and when the option is turned off.
Alternatively, a reasonable solution might simply beequire applications implement-

ing the AE-2 decryption algorithm talwaysreport a warning when an archive contains

both encrypted and unencrypted files.

Addressing keystream reuse and dictionary attacks. To address the issues raised
in Section 6.8, we suggest two possible solutions. First, one could double the current
salt length. Alternatively, instead of always using zero as the initial AES-CTR mode
counter, one could use a random initial counter selected from the set of all pd2sible
bit integers. The initial counter should be included in the resulting archive and should
also be included in the string to be MACed. Furthermore, under this approach the same
AES and HMAC-SHA1 keys can be used with all files protected by the same passphrase;
i.e., the same randomly-selected salt could be used with all such files in an archive. The
latter property is a performance gain since in the current design, where a different salt is
used with each file, the passphrase-based key derivation step dominates the time when
creating or extracting archives containing lots of small files. When adding new files to
an existing archive, it is important to select new salts or to verify that the users knows the
passphrase corresponding to the files encrypted with the existing salt values (otherwise
an attacker could force a user to use a salt of the attacker’s choice, which would make
dictionary attacks more feasible).

Possible solutions to the issues raised in Section 6.9 include increasing the length
of the salt or using the same salt when encrypting multiple files. Fortunately, these two

recommendations align with our recommendations for the issues raised in Section 6.8.
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Additionally, we suggest not storing the password verification values in a file’'s metadata
since it can be used to quickly eliminate keys in a dictionary attack against a user’s

passphrase.

Minimizing information leakage. There are a number of different approaches for ad-
dressing the information leakage concerns raised in Section 6.3. The latest (April 26,
2004) specification from PKWARE [65], which is incompatible with WinZip’s new en-
cryption method, introduces an option for encrypting the metadata fields of an encrypted
file; when the option is turned on (it is not on by default), PKWARE’s SecureZIP prod-
uct encrypts the entire central directory and removes most of the metadata information
from a file’s main file record, either by zeroing out the appropriate fields or replacing
them with random data. Aside from the fact that the central directory is not MACed,
our two main concerns with PKWARE's solution are that (1) we believe that protecting
against information leakage from an encrypted file's header should not be an option and
(2) archives created with the above option turned on are no longer parsable under the
traditional Zip specification [40]. In contrast, our proposed fixes involve modifying the
main file and central directory records such that privacy-critical metadata information is
always hidden and the resulting Zip archives are still parsable under the traditional Zip
specification [40].

We can achieve this goal in several ways. For example, using AES in CTR mode,
it would be possible to encrypt specific metadata fields of a file’'s main file record and
central directory record in-place. In the case of the central directory record, this ap-
proach would require us to copy the salt necessary to derive the encryption key from
the file data field of the main file record into the extra data field of the central directory
record. Unfortunately, this solution must still leak the length of a file’s filename since,
under this approach, we cannot encrypt any information necessary for parsing the file,
and the length of a file’s filename is necessary information.

The solution that we prefer is to not encrypt portions of a file’s main file record

and central directory records in-place, but to encrypt (and also authenticate) the main
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file record and the central directory record completely. Our solution would then store
the resulting ciphertext in the file data or extra data fields of a wrapper main file record
or wrapper central directory record, respectively. Preceding the ciphertexts must be
the information, like the salt, necessary to derive the file’'s cryptographic keys from
the user’s passphrase. The metadata fields of these wrapper records can be fixed, or
random, as long as the “compression method field” in the main file record indicates that
the record is just serving as a wrapper for an encrypted file. When extracting an archive,
the extractor should see this specific compression method type, decrypt the wrapped
data, and then treat the resulting plaintext as an unencrypted record to parse as normal.
In order to give an intuitive error message to users who try to decrypt a file en-
crypted under this method, we suggest making the filename field of the wrapper records
something likeWinZipEncryptedFile ; one could even add more information, like
a URL. Lastly, another attractive property of this solution is that, by also authenticating
these records completely, this solution immediately implements our previous recom-

mendations for addressing the concerns in Section 6.4 and Section 6.5.

A possible instantiation. Given the recommendations made in the above paragraphs,
one possible instantiation might be the following, which is based on AE-2 but which
we call BE since it is different enough to warrant a new name. For each file to archive,
compress the file and create main file and central directory records as if encryption was
not used. Then select a random value the same length as the salt in AE-2, concatenate
information about the encryption scheme (BE algorithm identifier, version number, and
AES-key-length value) with the random value, and call the resulting value the salt for
BE. Derive AES and HMAC-SHAL1 keys from the user’s passphrase and the salt using
PBKDF2-HMAC-SHAL. Then use that AES key to CTR mode encrypt all of the main
file and central directory records, using a randomly selected initial counter (IV) for
each record (the main file and the central directory records for a single file should have
different random IVs). Then MAC the IVs concatenated with each of the ciphertexts

using HMAC-SHA1. Then concatenate the BE algorithm identifier, version number,
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AES-key-length, the random value in the salt, the CTR mode 1V, the ciphertext, and the
MAC for each record. No password verification value is stored in these resulting strings.
For the resulting string consisting of the encryption of the main file record, load it into
the data portion of a wrapper main file record that has bit O of the general purpose flag
set to 1 (meaning that the file is encrypted) and that has a “compression method” field
indicating that the file is encrypted under our new encryption method; the other fields
can be anything that does not leak information about the wrapped file. For the resulting
string consisting of the central directory record, load it into the extra data portion of a
wrapper central directory record that has the same general purpose flag and compression
method as for the wrapper main file record.

When extracting an archive, the user must be warned whenever encountering an
unencrypted file in an archive with encrypted files. The MAC must also be checked
during decryption. Although all the data necessary to reconstruct a file is stored in the
file's wrapped main file record, we still maintain the central directory record since it
is part of the classic Zip file format [40] and since it will be used by some parties to
quickly find specific files in an archive. If there are inconsistencies between a file’s pair
of records, an error should occur.

Although the same random value in the salt can be used for multiple files when
encrypting them all at once, a new random value should be chosen if the user decides to
update afile or add a new file to an archive. Alternatively, when updating a file or adding
a new file to an archive, if one wants to use the same random value in the salt as before,
they must check that the user’s passphrase combined with the existing salts successfully
decrypts currently-encrypted files. If either of these solutions were not in place, then an
adversary could replace the random values in the salts in an archive with any value of
his choice, and create a dictionary of AES and HMAC-SHAL keys corresponding to the
single chosen salt value. Additionally, when changing the contents of the file, and to
avoid keystream reuse, a new random initial counter for CTR mode must be selected.

The security of this construction follows from the earlier discussions in this section
and the provable security of AES-CTR-then-HMAC-SHAL; unlike with AE-2, we can
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employ Bellare and Namprempre’s [10] and Krawczyk’s [52] positive results on the
generic Encrypt-then-MAC paradigm when discussing BE since we are now encrypting
all the data of interest, rather than just a portion of it. The risks associated to AES key
collision attacks are minimized by the use of a random IV in AES-CTR (specifically,
AES key collisions no longer immediately imply keystream reuse). BE can still leak
information from the compression ratio of a file if the adversary knows the original
length of the file (the original length is now no longer visible directly from the archive
itself); this is acceptable because we are unaware of any solution to the information-
leakage-through-compression problem without adding additional padding and thereby
reducing some of the space savings generally associated with compression. Our new
method is more efficient than AE-2 when adding multiple files to an archive in batch, or
extracting multiple archives from a file in batch; this is because PBKDF2 is intentionally
slow by design and, unlike AE-2, BE only invokes PBKDF2 once for all files added to

an archive at the same time.

Additional Information

An earlier version of the material in this chapter appears in the Proceedings of the
11th ACM Conference on Computer and Communications Security [49], copyright the
ACM. | was a primary researcher and single-author on this paper. The full citation for

this work is:

Tadayoshi Kohno. Attacking and repairing the WinZip encryption scheme.
In Birgit Pfitzmann, editorProceedings of the 11th ACM Conference on
Computer and Communications Securjpages 72-81. ACM Press, Octo-
ber 2004.
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