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Origins of glial cell populations in the insect nervous system

Jaison J Omoto, Jennifer K Lovick, and Volker Hartenstein
Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 
Los Angeles, CA 90095, USA

Abstract

Glia of vertebrates and invertebrates alike represents a diverse population of cells, divided into 

numerous classes with different structural and functional characteristics. In insects, glia fall within 

three basic classes: (1) surface glia (SG), subdivided into perineurial and subperineurial glia, are 

located on, and extend processes that envelop, the outer surface of the nervous system; (2) cell 

body glia (CBG) are located amongst neuronal somata in the outer cell body rind (cortex) and 

extend processes which encapsulate them; (3) neuropil glia (NPG), subdivided into astrocyte-like 

and ensheathing glia, exhibit somata located between the cortex and central domains consisting of 

neuronal processes and synapses (neuropil) and is thus the glial class most closely associated with 

neurites. With the help of current genetic tools developed in Drosophila it is possible to establish 

the origin of these glial populations and follow them throughout their migration and 

differentiation. Differentiated glia of the larva (primary glia) forms largely from a small set of 

uniquely identifiable progenitors (glioblasts and neuro-glioblasts) located in the embryonic 

neurectoderm. Differentiated glia of the adult (secondary glia) is formed by different mechanisms 

depending on the glial class. Primary neuropil glia undergoes programmed cell death during 

metamorphosis and is replaced by secondary neuropil glia which develop from a new set of larval 

neuro-glioblasts. By contrast, primary surface and cell body glia likely remains intact from the 

larval to the adult stage, and some populations (perineurial and cell body glia, specifically) 

proliferate during the larva to form the secondary, adult populations. Recent lineage tracing studies 

have also shed light on the developmental relationship between the large and diverse sets of 

secondary glial progenitors associated with the larval optic lobe and optic stalk, and their progeny 

in the adult visual system.

Neurectodermal origin of glia

Cells of the nervous system fall into two main classes of cells: neurons and glia. In 

vertebrates, glial cells include three major types, astrocytes, oligodendrocytes, and 

microglia. Astrocytes and oligodendrocytes, together called macroglia, are generated by 

multipotent neural progenitors that constitute the neuroepithelium lining the neural tube 

(Bayraktar et al., 2014; Miller, 2002; Fig.1A). During their first rounds of division these 

cells produce only neurons that segregate from the neuroepithelium (ventricular layer) and 

form a cellular mantle that matures into nerve tissue (Fig.1B). The neuroepithelial cells left 

in the ventricular layer become elongated cells, called radial glia. Continued proliferation of 
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radial glia located at discrete domains within the neural tube produces oligodendroctye 

progenitors (OLPs) that spread throughout the CNS and differentiate into oligodendrocytes 

(Fig.1C). The remainder of radial glia gives rise to astrocytes. Microglial cells are 

phagocytes combating degenerative processes and infections in the neural tissue. They are 

derived from blood-forming (hematopoietic) stem cells that migrate into the nervous system 

during the embryonic period (Lavin et al., 2015; Fig.1A).

In Drosophila, and arthropods in general, glial cells include (1) surface glia (SG) that 

surrounds the CNS and peripheral nerves and forms the blood-brain barrier; (2) cell body 

glia (CBG; also called cortex glia), encapsulating neuronal cell bodies which form the outer 

cellular layer of the CNS; (3) neuropil glia (NPG), located at the interface between the 

cortex and the neuropil, and forming sheaths around neuropil compartment boundaries, 

certain long axon bundles, and peripheral nerves (ensheathing glia (EG), wrapping glia), as 

well as highly branched processes interacting with terminal nerve fibers and synapses 

[reticular or astrocyte-like glia (ALG)] (Hoyle, 1986; Cantera; 1992; Ito et al., 1995; 

Pereanu et al., 2005; Awasaki et al., 2008;). Phagocytotic microglial cells are absent; 

however, blood stem cell-derived macrophages occupy the outer surface of the CNS. Most 

Drosophila glial cells, along with neurons, are derived from a small number of uniquely 

identifiable progenitors, called neuroblasts, that delaminate from the neurectoderm of the 

early embryo (Fig.1G-I). Neuroblasts divide in an asymmetric, stem cell-like pattern, where 

each division produces a renewed neuroblast, and a ganglion mother cell that becomes 

postmitotic after one more round of mitosis. Most neuroblasts generate exclusively neurons 

(which, unlike in vertebrates, outnumber glia by a large margin). Some neuroblasts produce 

both neurons and glia (“neuro-glioblasts”); very few give rise to glia only (“glioblasts”; 

Beckervordersandforth et al., 2008; Altenhein et al., 2015). Drosophila exhibits a highly 

stereotyped nervous system along with a wealth of glial markers and genetic lineage tracing 

methods allowing for the specific and stable labeling of cells, frequently in a temporally-

controlled manner. As a result, insights into the origin and development of the 

aforementioned progenitors and their glial progeny, often times at the single-cell level, has 

been assessed throughout multiple stages of the Drosophila life cycle.

Glia for the larval and adult nervous system: Primary and secondary 

gliogenesis

After delamination, embryonic neuroblasts enter an initial phase of proliferation, thus 

producing the functional neurons of the larval CNS (primary neurons). Many primary 

neurons, although remodeled during metamorphosis, are retained into adulthood, whereas 

many others undergo programmed cell death. Along with the neuroblasts, embryonic 

glioblasts and neuro-glioblasts produce the functional glial cells that differentiate in the late 

embryo, forming processes around the surface, cell bodies, and neuropil of the larval CNS 

(“primary glia”; Fig.2A). Glioblasts only generate glia, and express the glial determinants 

gcm and repo right after they delaminate from the neurectoderm. Neuro-glioblasts show 

different modes of gliogenesis (Altenhein et al., 2015; Fig.2B). In type 1 neuro-glioblasts, no 

early separation of neural vs glial fate takes place; instead, neurons and glial cells derive as 

siblings from the division of ganglion mother cells. Type 2 neuro-glioblasts switch from 
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neurogenesis to gliogenesis at some point in proliferation. Type 3 neuro-glioblasts are 

defined by the fact that they comprise at least one pure glioblast progenitor. Finally, midline 

precursors (MPs) constitute a peculiar type of fundamentally-distinct glioblast 

(mesectodermally-derived) that divide just once to give rise to a subtype of primary neuropil 

glia, called midline glia (Bossing and Technau, 1994).

A second phase of neurogenesis and gliogenesis takes place during the larval period. 

Neuroblasts produce secondary neurons that integrate into the circuitry of retained primary 

neurons during metamorphosis. Thus, a typical neuroblast lineage consists of 

embryonically-born primary and postembryonically-born secondary neurons. Functional 

glial populations of the adult (“secondary glia”) appear to exhibit a more variable pattern of 

origin. (1) Secondary neuropil glial cells are generated by a select subpopulation of neuro-

glioblasts that become active in the larva (Izergina et al., 2009; Omoto et al., 2015; Fig.2A, 

C, F; see below). (2) By contrast, secondary perineurial and cell body glia are generated by 

the continued proliferation of their respective primary cell types (Pereanu et al., 2005; 

Colonques et al., 2007; Awasaki et al., 2008; Kato et al., 2009; Fig.2A, C-E). (3) Primary 

subperineurial glia do not divide and appear to persist into adulthood.

Neuropil Glia

The two types of glia in direct contact with nerve processes, astrocyte-like and ensheathing 

glia, may play different roles in the mature nervous system, but share a common origin. 

ALGs extend processes into the neuropil and express amino acid transporters, optimally 

situated to modulate synaptic and/or extrasynaptic processes and thus the circuit properties 

of neurons, via the uptake of neurotransmitters or other cell-cell signaling pathways (Liu et 

al., 2014, MacNamee et al., 2016). Ensheathing glia wraps around neuropil compartment 

boundaries, axon tracts, and fascicles, likely acting as structural insulators of mature neurons 

(Spindler et al., 2009). Dye injection experiments revealed that a single glioblast, the lateral 

glioblast (LGB), in each hemisegment gives rise to most of the primary neuropil glia of the 

embryonic ventral nerve cord, called longitudinal glia based on their association with the 

longitudinal connectives (Fig.3A-C). Longitudinal glial cells are differentially specified into 

six ALGs and three EGs, depending on their expression of Notch, Pointed, and Prospero 
(Peco et al., 2016; Fig.3D-F). Other classes of embryonic primary neuropil glia include 

repo-negative midline glia (MG), produced from mesectodermally-derived midline 

precursors (Bossing and Technau, 1994), and nerve root glia (NRG), derived from the neuro-

glioblast NB1-3 and NB7-4 (Beckervordersandforth et al., 2008; Fig.3A-C). Primary 

neuropil glia of the brain is thought to be derived from the Td7 neuroblast (nomenclature 

according to Urbach and Technau, 2003), based on its expression of glial specific genes, and 

its close proximity to the longitudinal glia equivalent of the brain, the basal procephalic 

longitudinal glia (BPLG; Hartenstein et al., 1998; Omoto et al., 2015; Fig.3G).

The number of differentiated primary neuropil glia remains constant throughout larval 

development. These cells increase in size presumably to account for the growing neuropil 

volume (Omoto et al., 2015). Temporally-controlled lineage tracing demonstrated that 

primary astrocyte-like glia, and likely ensheathing glia as well, undergoes programmed cell 

death during metamorphosis and is not retained into adulthood (Fig.3H-J). Although the 
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number of differentiated primary neuropil glial cells does not change throughout the larval 

period, clone induction via MARCM (mosaic analysis with a repressible cell marker) during 

the secondary phase of neuroblast proliferation revealed that repo-positive neuropil glial 

precursors appear in large numbers as a result of the proliferation of a few secondary neuro-

glioblasts (Izergina et al., 2009; Viktorin et al., 2011; Omoto et al. 2015; Fig.2C, F). Lineage 

tracing experiments revealed that these secondary neuropil glial precursors migrate from 

their site of origin in the brain cortex towards the neuropil, proliferate, spread out 

tangentially around the neuropil surface/between neuropil compartments, and differentiate 

into secondary neuropil glia. The analogous process occurs in select, yet to be identified 

neuro-glioblasts of the ventral nerve cord. Although primary and secondary neuropil glia 

exhibit fundamental similarities, they differ in size and in gene expression profiles (Omoto et 

al., 2015; Huang, et al., 2015). Primary midline glia of the ventral nerve cord show an 

unusual behavior: like other neuropil glia they degenerate during metamorphosis, but they 

proliferate profusely prior to this event, possibly to assist in circuit formation (Awad and 

Truman, 1997).

Surface Glia

Surface glia surrounding the larval and adult brain, as well as all peripheral nerves, can be 

subdivided into perineurial (PNG) and subperineurial glia (SPG). Subperineurial cells form 

conspicuous septate junctions (the invertebrate equivalent of tight junctions) and are thereby 

primarily important to generate a blood-brain barrier that prevents unregulated passage of 

molecules between the nervous system and hemolymph (Limmer et al., 2014). Perineurial 

glial is also involved in the blood-brain barrier, even though the mechanism by which it 

participates in this function is not clear, since perineurial glial cells do not form a complete 

sheath connected by septate junctions around the brain. Furthermore, in the early larva, 

PNGs are lacking at most locations; they only form a relatively dense cover after a phase of 

intense proliferation in the late larva (Pereanu et al., 2005; Avet-Rochex et al., 2014; Fig.

2D). Recent evidence also suggests a role of surface glia in regulation of neuronal 

metabolism, as well as the coupling of systemic metabolism to brain development (Chell and 

Brand, 2010, Volkenhoff et al., 2015).

Primary surface glia of the ventral nerve cord is derived from five neuro-glioblasts (Type 1: 

NB1-1, NB2-2, NB5-6; Type 2: NB1-3, NB7-4), located at the boundary between two 

adjacent segments (Beckervordersandforth et al., 2008; Altenhein et al., 2015; Fig.3A). The 

contribution of primary surface glia to the insulating layers around the peripheral nerves 

have been revealed by Flybow, a stable, multicolor labeling technique (von Hilchen et al., 

2008, 2013), and its origins traced back to NB2-5 and NB5-6, or NB1-3, respectively (Fig.

3A, C). In addition, a subset peripheral nerve surface glia is produced by sensory organ 

progenitor cells which form outside the neurectoderm (Fig.3C). How surface glia is 

specified into the perineurial and subperineurial type is unknown. During the larval period, 

primary subperineurial cells increase in size, but not number, due to polyploidization, akin to 

what has been observed for primary neuropil glia (Unhavaithaya and Orr-Weaver, 2012). We 

posit that these cells are retained throughout metamorphosis and become the functional 

subperineurial glia of the adult brain. This hypothesis is supported by the developmental fate 

of subperineurial glia of the optic stalk (called carpet glia), which is also retained in the adult 

Omoto et al. Page 4

Curr Opin Insect Sci. Author manuscript; available in PMC 2018 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



optic lobe (Edwards et al., 2012; Fig.3K). Perineurial glia, in contrast to subperineurial glia, 

continually proliferates throughout the larval period, and forms the perineurial glia of the 

adult brain (Awasaki et al., 2008). Proliferating perineurial cells may also contribute to other 

glial types, as observed for the the perineurial glia of the optic stalk, which differentiates 

first into a cell type that envelops the retinal axons invading the optic lobe (“wrapping glia”; 

Bauke et al., 2015), and ultimately gives rise to a type of cortex glia of the optic lobe (distal 

satellite glia; Edwards et al., 2012; Fig.3K).

Cell body glia

Cell body glia ensheathes individual neuronal somata, and in doing so, structurally stabilize 

them while simultaneously regulating whole nervous system excitability (Melom and 

Littleton, 2013). Primary cell body glial cells of the ventral nerve cord, numbering 3 per 

hemisegment, are generated by the neuro-glioblasts NB6-4 (Type 3) and 7-4 (Type 2; Fig.

3A-C; Altenhain et al., 2015). For the brain, the specific neuro-glioblasts which give rise to 

the primary cell body glia, as well as surface glia, have not yet been identified. However, 

clusters of repo-positive cells that include precursors of both cell types were mapped to a 

domain at the border between protocerebrum and deuterocerebrum, and to the dorsal edge of 

the protocerebrum, respectively (Hartenstein et al., 1998; Fig.3G). Like perineurial glia, cell 

body glia enters a phase of proliferation during the late larval period. MARCM analysis 

revealed that proliferation for both glial types depends on several signaling pathways, among 

them Hippo (Reddy and Irvine, 2011), InR/TOR, and FGF (Avet-Rochex et al., 2012A, 

2014). The ligands activating these pathways appear to act locally. Thus, the FGF cognate 

Pyramus (Pyr), is secreted by neighboring glial cells (in case of perineurial glia) or neurons 

(in case of cell body glia). Likewise, the signal activating the InR/TOR pathway, Drosophila 
insulin-like peptide 6 (Dilp-6), is found in glial cells (Avet-Rochex et al., 2012).

Glia of the optic lobe

The optic lobe, which receives retinotopically ordered input from the compound eye, 

develops postembryonically from two neuroepithelial optic anlagen, called outer and inner 

optic anlagen, which, initially, grow by symmetric division, followed by their conversion 

into a large number of asymmetrically dividing neuroblasts (Fischbach and Hiesinger, 2008; 

Ngo et al., 2010). Glia of the optic lobe exhibits numerous morphologically distinct 

subclasses that are not evident in the central brain or ventral nerve cord. For example, cortex 

glia of the lamina include distal and proximal satellite glia; neuropil glia has epithelial glia 

and marginal glia, as well as outer chiasm glia (Edwards et al., 2012). Surface glia of the 

optic lobe is derived from the proliferating perineurial glia surrounding the larval brain and 

optic stalk (Fig.3K). Neuropil and cell body glia of the lamina are formed by four distinct 

populations of glial progenitors that derive from the glial precursor zone (Chotard and 

Salecker, 2005; Edwards et al., 2012), a subdomain of the outer optic anlage (Fig.3K). 

Perineurial glia of the optic stalk, which first differentiates into wrapping glia (Bauke et al., 

2015), also contributes to the lamina cortex glia (distal satellite glia; Edwards et al., 2012). 

Precursors of neuropil and cortex glia of the other optic ganglia (medulla, lobula, lobula 

plate) are born at a later stage during the asymmetric division of neuro-glioblasts of the outer 

and inner optic anlage (Hartenstein, 2011; Edwards et al., 2012; Fig.3K).
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Hemocytes and the nervous system

Blood cells populating the body cavity of the Drosophila larva (primary or “primitive” 

hemocytes) are formed in the head mesoderm of the early embryo (Tepass et al., 1994). 

Gcm, the transcription factor specifying glial fate in the progeny of neuro-glioblasts, is also 

expressed and required for mesodermal cells to adopt a hemocyte fate (Bernardoni et al., 

1997; Lebestky et al., 2000; Cattenoz et al., 2016). From their anterior location, hemocytes 

migrate along the surface of the nervous system and other inner organs, laying down 

components of the extracellular matrix (Fig.4A-D).

In addition, a major role of hemocytes (similar to vertebrate microglia) lies in phagocytosing 

apoptotic cell bodies resulting from programmed cell death. Loss or altered function of 

hemocytes results in severe defects in nervous system development (Sears et al., 2003; 

Oloffson and Page, 2005). The removal of cellular debris in the CNS, which in vertebrates is 

carried out by microglia, is a function shared between hemocytes and (macro-)glia in 

Drosophila. In the fly embryo, primary neuropil glia and surface glia, in addition to 

hemocytes, act as macrophages (Sonnenfeld and Jacobs, 1995). Postembryonically, neuropil 

glia exhibits functions reminiscent of vertebrate microglia, depending on the context; 

astrocyte-like cells clear neuronal debris as a consequence of neuronal remodeling during 

metamorphosis, whereas ensheathing glia clears neuronal debris during neurite injury in the 

adult brain (Doherty et al., 2009, Tasdemir-Yilmaz and Freeman, 2014). Interestingly, by 

triggering an immune response (activation of the Imd pathway) in glial cells resulted in the 

appearance of a non-neural/non-glial cell type type within the brain neuropil that appeared to 

be migratory, and expressed markers for phagocytosis (Stratoulias and Heino, 2015). It is 

tempting to draw a close functional and ontogenetic connection between these cells, derived 

from immune-challenged glia or hemocytes (or both), and vertebrate microglia.

The conservation of many molecular pathways controlling their development and functions 

suggest that hemocytes in arthropods and blood cells in vertebrates, including microglia and 

other tissue-resident-macrophages, are homologous cell types. Certain types of macroglia, 

such as vertebrate astrocytes and Drosophila astrocyte-like cells, also share many functional 

properties, but it is currently uncertain whether this is based on homology on the cellular 

level. Thus, glial cells are absent from the nervous system of many basal metazoans 

(Hartline, 2011), and it is doubtful that the common bilaterian ancestor possessed glial cells. 

Nevertheless, recent analyses provide an increasing body of evidence that molecular 

pathways controlling functions such as phagocytosis, transmitter re-uptake, or response to 

injury are shared between glial cells of vertebrates and Drosophila (reviewed in Freeman, 

2015), which would argue for a deep homology, where pre-existing, homologous gene 

networks controlling such functions were recruited into cells that then became glial cells. In 

all, due to its genetic amenability, progress to understand the development and function of 

Drosophila glia has accelerated and will surely continue to yield valuable insight into glial 

biology in general.
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Figure 1. 
(A-C) Schematic cross section of vertebrate neural tube at mid-embryo stage (A, B), and 

around birth (C). Neuroepithelial cells undergo symmetric and asymmetric divisions, 

thereby generating neural precursors and maintaining their own number. At later stages (C) 

neuroepithelial cells, now called radial glia, turn to the production of oligodendrocyte 

progenitors. Other radial glial cells become astrocytes (blue). Microglial cells derived from 

yolk sac-derived hematopoietic cells spread throughout the mesoderm of the early embryo 

(A) and infiltrate the neural tube at later stages (B, C). Design of panels (B, C) after 

Kriegstein and Alvarez-Buylla (2009). (D-F) Types of neuroglia in Drosophila. Frontal 

confocal sections of late larval brain hemisphere, depicting GFP-labeled MARCM clones of 

perineurial surface glia (D; 4-cell clone), cortex glia (single cell clone; E), and astrocyte-like 

neuropil glia (single cell clone; F). Arrow in inset of (D) marks Repo-positive nucleus 

located within the GFP-labeled perineurial clone; arrowhead points at Repo-positive, GFP-

negative nuclei underneath which represent subperineurial glia. In all three panels, the 

neuropil is labeled with antibody against Drosophila N-cadherin (magenta). (G-I) Schematic 

cross sections of Drosophila ventral nerve cord at embryonic stages 11 (G), 13 (H), and 16 

(I). Neuroblasts and Neuro-Glioblasts delaminate from the neuroepithelium (G) and give rise 
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to fixed neural or neuro-glial lineages by asymmetric division (H). Glial cells then spread 

out throughout the growing ventral nerve cord and adopt the shape and function of neuropil 

glia, cortex glia, and surface glia (I). Mesodermally-derived hemocytes migrate along the 

outer surface of the central nervous system but do not penetrate inside.

Astrocytes ensheath terminal nerve processes and synapses, as well as the capillary network; 

they form the blood-brain barrier. Oligodendrocytes have large, lamellar processes that 

assemble into the myelin sheath around long axons in the white matter of the central nervous 

system (CNS). Similar cells, called Schwann cells, enwrap axons in the peripheral nerves.
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Figure 2. 
Origin of primary (larval) and secondary (adult) glia. (A) In the embryo, primary glia arise 

from a small subset (“b, c, d, e”) of proliferating, neural lineages (”a-m”). Primary 

perineurial glia and cortex glial cells remain mitotically active in the larva and generate 

secondary glia. Primary neuropil glial cells undergo programmed cell death during 

metamorphosis and are replaced by glial precursor cells generated from a different set of 

neural lineages (“g, h”) that, along with all other neural lineages, undergo a secondary phase 

of proliferation during the larval period. Primary subperineurial glial cells most likely are 
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retained into the adult period. The primordia of the optic lobe and eye, which proliferate in 

the larva, contribute a large number of secondary glia of all types. (B) Proliferation pattern 

of glial progenitors as glioblasts, and type 1-3 neuro-glioblasts (after Udolph et al., 2001; 

Altenhein et al., 2015). (C) Schematic frontal section of late larval brain hemisphere, 

showing spatial relationship between differentiated primary glia and secondary glial 

progenitors. (D, E) Frontal confocal sections of part of late larval brain hemisphere showing 

proliferating (BrdU-positive; magenta) perineurial glia (D) and cortex glia (E), as well 

neuropil glia progenitors (D). Nrv-2-Gal4-activated GFP labels cortex glia and neuropil glia 

(green). (F) Repo-positive neuropil glia progenitors (magenta) form part of secondary 

lineages, labeled by anti-Neurotactin (green; modified from Omoto et al., 2015).
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Figure 3. 
Fatemap of glial progenitors. (A-C, G) Progenitors of primary glia of the larval ventral nerve 

cord and peripheral nerves (A-C), and brain (G). (A) Map of the ventral nerve cord with 

glioblasts and neuro-glioblasts identified by different coloring (after Hartenstein, 2011). 

Neuroblasts and neuro-glioblasts of one hemineuromere are identified alphanumerically. 

Lateral glioblast (LGB), Midline progenitors (MP). (B-C): schematic horizontal sections (B, 

B’) and cross section (C) of late embryonic ventral nerve cord and peripheral nerve, showing 

location of glial cells, identified by same colors as their corresponding progenitors in (A), 

relative to the boundaries of neuromere, neuropil, and peripheral nerves (modified from 

Beckervordersandforth et al., 2008; von Hilchen et al., 2011, 2013; Hartenstein, 2011). 

Boxed areas in (C) indicate dorso-ventral levels of corresponding horizontal sections shown 

in (B, B’). Bottom of (C): Color key for types of glia used in schematic drawings of panels 

(A-C, G, K). (D-F) Fate decision between astrocyte-like glia (ALG, green) and ensheathing 

glia (EG, magenta) depends on Notch activity. Low levels of Notch (E) change structural 

phenotype of ALG into that of EG (from Peco et al., 2016, with permission). (G) Schematic 

neuroblast map of the brain, indicating boundaries between the brain neuromeres 

protocerebrum, deuterocerebrum, and tritocerebrum, and approximate location of glial 

progenitor clusters giving rise to surface and cortex glia in the protocerebrum (DPSG, 

VPSG) and deuterocerebrum (ADSG, PDSG), and to neuropil glia (BPLG; neuroblast Td7)

(after Omoto et al., 2015). (H-J) Frontal confocal section of brain hemisphere of late larva 

(H), mid-stage pupa (I), and pharate adult (J), showing development of astrocyte-like glia. 

Primary astrocyte-like glia (pALG) are lineage-traced from larva onward (white nuclei); 

these cells are no longer detectable in adult. Secondary astrocyte-like glia (sALG), produced 
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in the larva, spread out over the neuropil surface (I) and differentiate in the late pupa (J; 

reticular processes of pALG and sALG indicated by cyan arrowheads). (K) Fatemap of glia 

in the optic lobe. Schematic cross sections of larval optic lobe and eye disc (left) and adult 

optic lobe (right). Nomenclature of optic lobe glia and relationship between larval 

progenitors and adult glial types is indicated by coloring and arrows. For color code see (C). 

Abbreviations: CG carpet glia; DSG distal satellite glia; EG epithelial glia; MG marginal 

glia; NPG neuropil glia; PG perineurial glia; PSUG pseudocartridge glia; SG surface glia; 

SPG subperineurial glia; XG outer optic chiasm glia
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Figure 4. 
Origin and migration of hemocytes. (A, B) Drawings of embryos (lateral view) at stage 11 

(A) and 13 (B). Profiles of interior structures are shaded (brain, ventral nerve cord) or given 

as dashed lines (gut primordia). The distribution of hemocyte precursors (small light green 

circles) and differentiated, phagocytotic hemocytes (large, dark green circles) is indicated, 

based on camera lucida drawings of anti-Peroxidasin labeled whole mount of representative 

embryo. Hemocytes migrate along the surface of the CNS (arrows) and other organs (from 

Tepass et al., 1994, with permission). (C, D) Horizontal confocal sections of anterior ventral 

nerve cord at embryonic stage 15 (C) and 16 [D; plane of section indicated in (B)]. Nuclei of 

all cells labeled by Sytox (magenta). Differentiated hemocytes are labeled by anti-

Peroxidasin; they contain phagolysomes with cellular debris (arrowhead) and are associated 

with the surface of the ventral nerve cord. By stage 16, hemocytes have deposited a 

Peroxidasin-positive basement membrane around nerve cord (D).
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