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Cytosine DNA methylation (mC) is a chemical modification prevalent in

mammalian genome and it plays important roles in transcriptional regulation, de-

velopment and cell differentiation. Recent studies reveal that mC affects how DNA

is interpreted, like an additional information layer on top of the genetic code. Re-

sults of both in vitro and in vivo experiments demonstrate that mC is influential

on the binding affinity of a number of transcription factors. Furthermore, targeted

addition/removal of mC was shown to modulate gene transcription. In addition,

xxi



while mC was thought to be stable chemical decoration on DNA, it can be dynam-

ically added or removed during biological processes such as cell differentiation, and

its distribution is distinct in different cell types and tissues. Given mC’s potential

functional impact and cell/tissue specificity, systematically profiling mC across a

variety of cell types and tissues is essential for understanding its biological signifi-

cance. To fill this gap, I first worked with colleagues to dissect the mC landscape

of 18 human tissue types from 4 individual. We systematically compared the

mC distribution in these human tissues and identified over a million differentially

methylated regions, which are strongly overlapped with tissue-specific regulatory

DNA elements. The dataset serves as the mC state baseline of normal human

tissues. In my second thesis project, I exploited the mC information and devel-

oped a computational approach called REPTILE to improve the identification of

enhancers, the regulatory DNA elements that promote the transcription of their

target genes. Finally, I worked with colleagues to investigate the temporal mC reg-

ulation in 12 developing mouse fetal tissues. Our results indicate that mC changes

dramatically during development primarily at regulatory DNA elements and it

shows a trend of demethylation at fetal stages followed by remethylation after

birth. I applied REPTILE on this dataset and delineated hundreds of thousands

of enhancers related to tissue development.
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Chapter 1

Introduction

DNA stores the code of life. The sequence composed of As, Cs, Gs and Ts

instructs how and when a cell functions, replicates, interacts with other cells and

differentiates to a different cell type. Thousands of cell types exist in the body of

mammals but these very distinct cells carry basically identical DNA information.

Epigenetic modifications, including chemical decorations on DNA or proteins that

DNA wraps around, likely affect how DNA sequence is interpreted by transcription

regulators, shape gene expression landscape and drive the cell type diversity.

1.1 DNA methylation

Cytosine DNA methylation is a chemical modification that methyl group is

added to the 5th position of DNA base cytosine. The distribution of DNA methyl-

ation can be accurately measure at each single cytosine by whole-genome bisulfite

sequencing or MethylC-seq[1]. In mammalian genome, this chemical modification

occurs at cytosines followed by guanine (CG methylation) as well as at cytosines fol-
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lowed by non-guanine bases (CH methylation; H = A, C or T)[1]. CG methylation

is the most prevalent form and it is present in all cell types and tissues. CG meth-

ylation is pervasive in DNA and in somatic cells most of CG sites are methylated,

except forCG islands, the genomic regions with high CG density[2]. A traditional

view of CG methylation is that it is a stable, repressive epigenetic mark, which

is responsible for the repression transposable elements[3]. However, several recent

surveys of the CG methylation distribution in tissues revealed that CG methylation

is highly variable in regulatory DNA elements such enhancers and CG methylation

depletion in these regions is associated with the binding of transcriptions factors

and enhancer activities[4, 5, 6, 7]. Though whether CG methylation has a causal

effect remain debatable, it is informative about gene regulation and cell disease

state[7]. Researchers recently peek into the mechanistic aspect of CG methyla-

tion by studying its interaction with transcription factors. They discovered that

numerous transcription factors are able to recognize CG methylation and their

DNA binding affinity can be reduced or promoted by CG methylation[8, 9, 10, 11].

Non-CG methylation, instead, are understudied and were only found in embryonic

stem cells, oocytes, brain, heart, skeletal muscle and several adult tissues, though

its functional impact remain obscure[12]. Interestingly, the key protein related to

Rett syndrome, methyl CpG binding protein 2 (MeCP2), is able to bind at high

affinity to CH methylated DNA[13, 14, 15, 16]. CH methylation has also been

linked to type 2 diabetes[12].

In mammals, CG methylation is maintained by the activity of DNA methyl-

transferase 1 (DNMT1) during cell division: the newly synthesized DNA molecules

in semiconservative replication contain no DNA methylation and their pairing with
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template DNA molecules form hemimethylated CG sites, which are targeted and

methylated by DNMT1[17]. However, no mechanism is known to maintain non-

CG methylation[12]. The preferable substrate of DNMT1 is hemimethylated DNA

whereas it has little activity on unmethylated DNA[17, 18]. Adding methyl groups

to cytosines on unmethylated DNA (de novo DNA methylation) relies on the en-

zymatic activity of DNMT3a and DNMT3b[17, 18]. While both DNMT3a and

DNMT3b almost exclusively methylate the cytosines on CG context, previous

studies showed that both of them are able to methylated cytosines on non-CG

context at much lower level[12].DNA methylation can be both actively and pas-

sively removed. Active removal involves the activity of Ten-eleven translocation

(TET) enzymes[19]. DNA methylation can also be removed passively in DNA

replication during cell division[19].

Although DNA methylation was extensively studied in the past few decades

and great progress have been made, we still lack a comprehensive set of DNA meth-

ylation maps for various tissues and cell types. Furthermore, it remains difficult to

interpret DNA methylation variation and use such information to infer the func-

tional readouts of DNA segments. In this dissertation, I will present the results of

three research projects, which specifically address the below questions:

• What is the genomic distribution of DNA methylation (CG and non-CG

methylation) in normal human tissues?

• What are the potential functional consequences of tissue-specific DNA meth-

ylation variation?

• Can DNA methylation be used to improve the annotation of functional DNA
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elements, such as enhancers and super-enhancers[20]?

• How is DNA methylation regulated during development especially within

regulatory elements?

• What are the functional implication of the developmental DNA methylation

dynamics?

1.2 Outline

Chapter 2 describes the DNA methylation landscape of 18 human tissue

types from 4 donors. We found the distribution of DNA methylation is distinct in

different tissue types. By systematically identifying differential methylation, over

a million genomic regions were pinpointed. These regions are strongly enriched for

TF binding motifs and are significantly overlapped with distal transcriptional reg-

ulatory elements. In addition, we found the presence of CH methylation at various

levels in almost all human tissues. CH methylation is tissue-specifically enriched

in gene bodies and is associated with transcription repression. Interestingly, CH

methylation is abundant in the bodies of genes that escape X chromosome inac-

tivation. Finally, we found allele-specific DNA methylation, which were linked to

allele-specific gene transcription.

In Chapter 3, we present a computational algorithm, REPTILE, which in-

tegrates DNA methylation and histone modification data to precisely delineate

the location of enhancers. We show that REPTILE outperforms then existing

approaches in both accuracy and resolution. REPTILE best predicts the in vivo
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enhancer activity of DNA elements that were experimentally validated. In addi-

tion, the location of enhancer predictions from REPTILE is nearer to open chro-

matin compared to other methods. Thus, we expect REPTILE will be a useful

tool for annotating the regulatory landscape of the numerous cell types and tissues.

In Chapter 4, we describe a study about the spatiotemporal distribution

of DNA methylation in developing mouse embryo. In this study, we profiled the

DNA methylation landscape of 12 mouse tissue types from embryos of 8 fetal

developmental stages. Close to 2 million regions were identified as showing dif-

ferentially methylation. Using REPTILE, we integrated DNA methylation and

histone modification data to generate enhancer annotation for each tissue at each

fetal stage. Interestingly, these regions predominantly lose CG methylation during

fetal development, whereas the trend is reversed after birth. The CG methylation

dynamics are closely associated with enhancer activity. In addition to CG meth-

ylation, during development, CH methylation is accumulating in almost all tissues

in the bodies of many genes that encode TFs related to tissue development, and it

is associated with their transcription repression at later fetal development stages.

The epigenome maps of developing mouse tissues serve as a valuable resource for

studying not only the dynamic transcription regulation in mammalian embryo but

also the origin of human birth defects.
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Chapter 2

Human Body Epigenome Maps

Reveal Noncanonical DNA

Methylation Variation

2.1 Summary

Understanding the diversity of human tissues is fundamental to disease and

requires linking genetic information, which is identical in most of an individuals

cells, with epigenetic mechanisms that could play tissue-specific roles. Surveys of

DNA methylation in human tissues have established a complex landscape includ-

ing both tissue-specific and invariant methylation patterns[1, 2]. Here we report

high coverage methylomes that catalogue cytosine methylation in all contexts for

the major human organ systems, integrated with matched transcriptomes and ge-

nomic sequence. By combining these diverse data types with each individuals

9
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phased genome[3], we identified widespread tissue-specific differential CG methyl-

ation (mCG), partially methylated domains, allele-specific methylation and tran-

scription, and the unexpected presence of non-CG methylation (mCH) in almost

all human tissues. mCH correlated with tissue-specific functions, and using this

mark, we made novel predictions of genes that escape X-chromosome inactivation

in specific tissues. Overall, DNA methylation in multiple genomic contexts varies

substantially among human tissues.

2.2 Main text

To better understand the variability of DNA methylation across human

tissues, we obtained post-mortem samples of 18 tissue types from 4 individuals

(5 singletons, 8 duplicates, and 5 triplicates; Figure 2.1a; Methods; Supplemen-

tary Table 1) and performed deep transcriptome (36 mRNA-seq samples; 120-475

million reads per sample), base-resolution methylome (36 MethylC-seq[4] samples;

30x-80x genome coverage per sample), and genome sequencing (4 whole genome se-

quences; 20x-45x genome coverage per sample). We focused our initial analysis on

cytosines in the CG context and used a previously published method[1] to identify

differential methylation (Methods). We found that 15.4% (4,073,896 of 26,474,560

sites tested) of CG sites in these experiments are strongly differentially methylated

(DMS; minimum methylation difference 0.3; Figure 2.5a), which is similar to a

previous study[1]. To identify differentially methylated regions (DMRs), we com-

bined sites within 500bp of one another and found 1,198,132 DMRs. Even with

these stringent criteria, 719,837 (60.1%) of the DMRs we identified were novel[1, 5].
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As expected, hypomethylation at DMRs correlated with tissue-specific

functions[1, 6]. For example, strongly hypomethylated DMRs in aorta overlap with

aorta-specific super enhancers[7] around MYH10, a gene involved in blood vessel

function[8] (Figure 2.1b). To further validate our DMRs, we performed hierar-

chical clustering on their weighted methylation levels[9] (Methods; Figure 2.1c;

Figure 2.5b, c). Tissues that were part of the same organ system clustered to-

gether (e.g., heart and muscle tissues). We compared these results to a clustering

of differentially expressed genes identified in the transcriptomes and found a simi-

lar separation of organ systems (Methods; Figure 2.1d; Figure 2.5d). Furthermore,

GREAT[10] analysis on the most hypomethylated tissue-specific DMRs revealed

many tissue-specific functions (Figure 2.5e, f; Methods; Supplementary Table 2-3).

To examine the relationship between methylation and transcription, we

correlated the methylation levels of DMRs and the expression of the closest genes

(Figure 2.2a; Figure 2.6a, b; Methods). As expected, methylation in DMRs had a

negative correlation with expression, and this correlation grew stronger closer to

the transcription start site (TSS). The strongest negative correlation was not in

gene promoters but downstream of the promoter up to 8kb away (intragenic vs.

promoter median spearman correlation coefficient (SCC) difference -0.12; Mann-

Whitney P-value 6.7e-17; Figure 2.2a). This analysis shows that transcription is

strongly associated with intragenic DMRs in the tissues we examined, extending

similar observations in cancer methylomes[11]

These intragenic methylation differences have previously been hypothesized

to mark intragenic CG islands (CGIs) or CGI shores[5, 12, 13, 14]. However,

only a small fraction of intragenic DMRs fell in these features (19%; Figure 2.6c).
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In addition, predicted enhancers and putative promoters only accounted for 23%

and 22% of intragenic DMRs, respectively, suggesting that the remaining DMRs,

which we call undefined intragenic DMRs (uiDMRs), represent an unrecognized

set of functional elements (35%; Figure 2.6c; Methods). The methylation level

of these uiDMRs correlated strongly with the expression of the genes containing

them. To examine their regulatory potential, we plotted their histone modification

profiles (H3K4me1, H3K4me3, H3K27ac, H3K9me3, H3k27me3 and H3K36me3)

derived from the same tissue samples[15] and found five classes: weak enhancer,

promoter-proximal, transcribed, poised enhancer and unmarked. (Figure 2.6d-h,

Figure 2.7a, b; Methods). Classes with strong, active histone modifications were

moderately negatively correlated with expression (weak enhancer and proximal

promoter uiDMRs; median SCC -0.31 and -0.16, respectively); whereas, uiDMRs

with less active histone modifications exhibited a weak negative correlation (tran-

scribed and poised enhancer uiDMRs). Notably, the correlation between expression

and methylation at promoter-proximal uiDMRs was as strong as the correlation

with intragenic DMRs that overlapped strong promoters (Figure 2.8; Methods),

indicating that intragenic promoter and promoter-proximal sequences are more

predictive of changes in methylation than those enriched for enhancer-like chro-

matin modifications.

In contrast, unmarked uiDMRs showed a weakly positive correlation with

expression (Figure 2.8d). Interestingly, we found many of the motifs in tissue-

specific uiDMRs were present in tissue-specific enhancers (e.g., HNF4a[16] in liver-

specific uiDMRs), suggesting that these DMRs are tissue-specific regulatory el-

ements (Methods; Supplementary Table 4-5). Recently, hypomethylated regions
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that appear inactive in adult tissues but active during fetal development were iden-

tified in mice[6]. We examined the DNase I hypersensitivity profiles of unmarked

uiDMRs in matched fetal tissues[17] and found an enrichment of hypersensitivity

(Figure 2.9; Supplementary Table 6), suggesting that hypomethylation of inactive

DMRs can be maintained at regions active earlier in development.

We next examined whether variation in methylation is associated with ge-

netic variation across individuals, which has not been widely characterized in

healthy primary tissues or using whole genome bisulfite sequencing[18, 19].To iden-

tify individual-specific DMRs, we used a method[20] that is sensitive to these differ-

ences unlike the methodology employed above (Methods). We first restricted our

analysis to our triplicated samples and ranked DMRs by a tissue-specific methyla-

tion outlier score (MOS). We found a 1.6-fold enrichment of SNPs associating with

methylation changes in the top 2,500 MOS ranked DMRs in all tissues (Methods).

We then used the Epigram pipeline[21] to predict tissue-specific methylation from

DNA motifs in these DMRs and found them highly predictive (average area under

the curve (AUC) 0.79; Methods). These full models used an average of 156 motifs;

however, an average AUC of 0.74 was achieved using only 20 core TF motifs per

tissue.

We then identified groups of corresponding motifs by clustering the sets

of tissue-specific motifs (Methods). The motif groups were clustered by their tis-

sue hypo- and hypermethylation specificities (Figure 2.2b). 42 of 95 motifs only

had hypomethylation specificity; for example, MEIS, which is involved in heart

development[22], is hypomethylated in left ventricle, right atrium and right ven-

tricle. We also identified 34 motifs with tissue-dependent methylation specificity.
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Three of these motifs match TF families (FOX, HOX and GATA) and are most

significantly enriched in hypomethylated regions, suggesting they are primarily

involved in regulating hypomethylation.

Mammalian cells have high genome-wide levels of mCG, with the exception

of a cultured human fetal fibroblast cell line (IMR90)[4], cancer cells[23, 24] and

placenta (PLA)[25]. Surprisingly, large regions of the pancreatic methylomes (PA-

2 and PA-3) were significantly hypomethylated (Figure 2.10a). We developed a

method to identify PMDs genome-wide (Supplementary Tables 7-8; Methods) and

found pancreatic PMDs were smaller than those in IMR90 and PLA (Figure 2.10b)

and covered a smaller fraction of the genome (Figure 2.2c). All pairs of PMDs

overlapped significantly indicating that these regions are largely shared (¿40%

overlap; P-value ¡ 0.001; Figure 2.10c).

Genes in samples with PMDs are transcriptionally repressed[25, 26], but

these regions also show reduced expression in all of the tissues we surveyed whether

or not a PMD is present (Figure 2.2d). In both IMR90 and PA-2, these regions

showed an enrichment in repressive modifications (H3K27me3 and H3K9me3; me-

dian difference 0.025 0.168 RPKM (reads per kilobase per million); Mann-Whitney

P-value ¡ 2.51e-161) and a depletion in active modifications (H3K4me1, H3K27ac,

and H3K36me3; median difference 0.050 0.012 RPKM; Mann-Whitney P-value

¡ 2.03e-53) compared to shuffled regions (Figure 2.2e, f; Figure 2.10d, e; Meth-

ods), which provides a potential mechanism for their repression. To try to ac-

count for this global hypomethylation, we plotted the expression levels of DNMT1,

DNMT3A, DNMT3B and DNMT3L but found no systematic expression difference

between samples with and without PMDs (Figure 2.11a-d).
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Previous studies have highlighted the existence of methylation outside of

the CG context (mCH) in human embryonic stem cells[4], brain[2, 20] and at the

promoter of the PGC-1 gene in skeletal muscle[27]. We found evidence for appre-

ciable amounts of mCH in many of these tissues (Figure 2.3a; Figure 2.12a). A

5bp motif split the samples into two groups, one with mCH enriched in a TNCAC

motif and another with mCH enriched in an NNCAN motif (where N is any base)

(Methods). The TNCAC motif is highly similar to the one previously identified

in purified glia (GLA) and neurons (NRN) (TACAC). These motifs are signifi-

cantly different than the motif found in H1 embryonic stem cells (H1) and induced

pluripotent stem cells (TACAG)[4, 26] (Figure 2.3b-d). We quantified the extent

of mCH across these samples by plotting the distribution of methylation levels at

mCH sites in the 25 samples with a TNCAC motif, which revealed a methylation

level similar to that of GLA, NRN and H1 (Figure 2.12b)[4, 20]. Most of the tissue

types were consistently enriched for the TNCAC or NNCAN motif, but several

(esophagus, lung, pancreas and spleen) had replicates which disagreed, suggesting

that mCH is not homogenously distributed across these tissues.

To examine the potential functional effect of mCH in adult tissues, we

plotted the distribution of expression levels for various quantiles of gene body mCH

as it was previously reported to be positively correlated with expression in H1[4]

and negatively correlated with expression in neurons[20]. This analysis revealed a

negative correlation between expression and mCH (Figure 2.12c; Methods). Next,

we combined our replicates and clustered genes by the patterns of CAS methylation

(where S is a G or C) in and around their gene body (Figure 2.3e; Methods). To

characterize the genes assigned to each cluster, we performed DAVID functional
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annotation clustering (Supplementary Table 9; Methods), which revealed several

different classes. Clusters 1, 2, 11, 16 and 19 contained genes highly enriched

for terms involved in basic cellular processes and had an active methylation state

(i.e., hypermethylation in embryonic samples and hypomethylation in tissue and

brain samples) across all samples. Clusters 5 and 6 were dominated by terms

related to neuronal function and genes in this class were differentially methylated

between neurons and glia and have inactive methylation states in other samples

(i.e., hypomethylation in embryonic samples and hypermethylation in tissue and

brain samples). Cluster 12 was enriched for heart and muscle related terms and its

genes had an active methylation state in the three heart tissues as well as a weakly

active methylation state in psoas but appeared inactive in other samples. Lastly,

cluster 14 possessed an active methylation state in brain and tissue samples but

were inactive in embryonic samples. Despite being inactive in the H1 samples, this

class of genes was highly enriched for terms related to development.

To better define the transition of mCH motifs over development, we exam-

ined the ratio of the methylation level of CAC and CAG (mCAC and mCAG)

sites in a variety of differentiated (tissues, NRN, and GLA), embryonic (H1),

and embryonic derived cells (neural progenitor cells, NPC; mesendoderm MES;

trophoblast-like TRO; mesenchymal stem cells, MSC)[28] samples (Figure 2.3f).

With the exception of brain cells, mCH levels drop during differentiation, and the

mCAC/mCAG ratios revealed a shift in motif usage across developmental time

(Figure 2.3f); although, mCAC and mCAG within the same gene remain tightly

correlated in both early embryonic and differentiated tissues (Figure 2.12d, e).

Methylation has previously been shown to be predictive of genes escaping
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X chromosome inactivation (XI) in neurons[20]. We investigated this phenomenon

in these samples by comparing the promoter mCG and gene body mCH of genes

that had previously been identified to escape X chromosome inactivation[29] in 11

tissues with mCH (Figure 2.4a). Female-specific promoter mCG hypomethylation

and gene body mCH hypermethylation was present at escapee genes at a simi-

lar level as in neurons (Figure 2.13a)[20]. Utilizing these tissue methylomes, gene

body mCH was appreciably predictive of biallecially expressed genes (AUC 0.89;

Figure 2.13b; Methods). To a lesser extent, we observed female-specific promoter

mCH and gene body mCG hypermethylation at escapee genes (Figure 2.13a, c, d).

Although female-specific promoter mCG hypomethylation, promoter mCH hyper-

methylation and gene body mCG hypermethylation are somewhat predictive of XI

escapees, female-specific gene body mCH hypermethylation is the most predictive

feature of XI escapees (Figure 2.13a, b-e). We detected significant female-specific

mCH hypermethylation in 109 of 612 X-linked genes, including 9 genes hypermeth-

ylated in all 11 tissues and 72 genes that were significantly hypermethylated in only

one tissue (Figure 2.4b). Several genes such as FUNDC1 showed female-specific hy-

permethylation in several tissues but not in neurons, suggesting a tissue-dependent

regulation of the escape from X inactivation.

Allele-specific methylation (ASM) and expression (ASE) may also play a

role in the regulation of autosomal genes. To examine these phenomena in hu-

man tissues, we combined the RNA-seq and MethylC-seq data sets with phased

genotypes for each individual in this study[3, 15] (Figure 2.14a; Methods). Using

the triplicate tissue samples (FT, GA, PO, SB, and SX), we identified 8,464 -

48,560 ASM events in the CG context and 48 - 403 ASE genes across these tissues
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(Supplementary Table 10-11; Methods). We next looked for ASM events that var-

ied across individuals within a tissue-type (tissue variable) and those that varied

across a tissue-type within an individual (individual variable). Of the ASM events

that varied, 4.1 7.5% and 54.5 70.0% were individual- and tissue-variable, respec-

tively; whereas, of the ASE events that varied, 0.0 20.0% were individual-variable

and 13.3 48.8% were tissue-variable (Figure 2.4c; Methods). Of the ASE events,

38.4 87.4% had an ASM event within 100 kilobases, and of these sites, 76% had

an ASM and ASE event that was matched (i.e., a DMR was hypomethylated on

the same haplotype as the more highly expressed allele). Furthermore, we found

that a larger fraction of ASE genes were observed near ASM events whether or not

the events matched (Figure 2.14b, c; Methods). These results demonstrate a link

between allele specific methylation and expression in human tissues.

Here we have presented the deepest set of base resolution maps of mCG and

mCH to date along with chromatin modification states, haplotype-resolved genome

sequences and transcriptional profiles for a large set of human tissues. These data

sets allowed us to accurately identify cis-regulatory elements. Additionally, they

revealed the existence of mCH genome-wide in a subpopulation of cells from dif-

ferentiated human tissues, which appears to be repressive. Our analysis of genic

mCH indicates that these genes are distinct from those that were previously iden-

tified in embryonic stem cells and the brain and showed enrichment for a variety of

functions, most surprisingly those involved in development. These analyses raise

the intriguing possibility that mCH is utilized in adult stem cells[30] and could

help to repress these genes as the cells transition into their differentiated role.
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2.4 Methods

Additional files referred to throughout these methods can be found here:

http://neomorph.salk.edu/SDEC tissue methylomes/processed data/code data.tar.

http://neomorph.salk.edu/SDEC_tissue_methylomes/processed_data/code_data.tar.gz
http://neomorph.salk.edu/SDEC_tissue_methylomes/processed_data/code_data.tar.gz
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2.4.1 Tissue Collection

Adrenal, adipose, thymus, esophagus, vascular, bladder, pancreas, liver,

stomach, lung, heart, skeletal muscle, ovary, small bowel, colon, and spleen tissues

were obtained from deceased donors at the time of organ procurement at Mid-

American Transplant Services (St. Louis, USA) after research consent from family

was obtained. Samples were flash frozen with liquid nitrogen. From the following

tissues, the luminal epithelial lining was dissected free and flash frozen for this

study: esophagus, bladder, stomach, small bowel and colon. For tissue from the

aorta, the endothelial layer was dissected free and flash frozen. Genomic DNA Se-

quencing Library Construction Two g of genomic DNA was extracted from ground,

frozen tissue using the DNeasy Blood and Tissue kit (Qiagen, Valencia, CA). The

DNA was fragmented with a Covaris S2 (Covaris, Woburn, MA) to 300-400 bp,

followed by library preparation using the TruSeq DNA Sample Prep kit (Illumina,

San Diego, CA) as per manufacturer’s instructions. The library was run on a 2%

agarose gel and gel size selected to 400-500bp using the MinElute Gel Extraction

kit (Qiagen).

2.4.2 RNA-seq Library Construction

Total RNA from tissues and primary cells was extracted using the RNeasy

Lipid Tissue Mini Kit according to protocol (QIAGEN). The mRNA libraries were

constructed using the TruSeq RNA Sample Prep Kit V2 (Illumina, San Diego, CA)

with 4 g total RNA, according to manufacturer’s instructions with modifications to

http://neomorph.salk.edu/SDEC_tissue_methylomes/processed_data/code_data.tar.gz
http://neomorph.salk.edu/SDEC_tissue_methylomes/processed_data/code_data.tar.gz
http://neomorph.salk.edu/SDEC_tissue_methylomes/processed_data/code_data.tar.gz
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confer strand specificity. The RNA was incubated in the Elute, Prime, Fragment

Mix at 94C for 4 min. After first strand synthesis, the product was purified using

RNAClean XP beads (Beckman, Brea, CA) as per manufacturer’s instructions

and eluted in 18 L nuclease free water. Second strand synthesis was performed

by adding the RNAClean XP purified product to 2.5 L 10x NEB Buffer 2 (New

England Biolabs, Ipswich, MA), 2 L dUTP mix (10mM dATPs, 10mM dGTPs,

10mM dCTPs, and 20mM dUTPs), 0.5 L RNAse H (2 U/L), 1 L DNA Polymerase

I (E. coli) (New England Biolabs), and 1 L DTT (100 mM). The 25 L mixture

was incubated at 16C for 2.5 hours. The purified ligation products were incubated

with 2 L Uracil DNA Glycosylase (Fermentas) before PCR amplification. The

completed library was then gel size selected to approximately 350-450 bp using the

QIAquick Gel Extraction Kit (QIAGEN). RNA-seq libraries were sequenced using

the Illumina HiSeq 2000 (Illumina) instrument as per manufacturers instructions.

Sequencing of libraries was performed up to 2 101 cycles. Image analysis and base

calling were performed with the standard Illumina pipeline version RTA 2.8.0

2.4.3 MethylC-seq Library Construction

Genomic DNA was extracted from ground, frozen tissue using the DNeasy

Blood and Tissue Kit (Qiagen, Valencia, CA). Two g of genomic DNA was spiked

with 10 ng unmethylated cl857 Sam7 Lambda DNA (Promega, Madison, WI). The

DNA was fragmented with a Covaris S2 (Covaris, Woburn, MA) to 150-200 bp,

followed by end repair and addition of a 3 A base. Cytosine-methylated adapters

provided by Illumina (Illumina, San Diego, CA) were ligated to the sonicated

DNA at 16C for 16 hours with T4 DNA ligase (New England Biolabs). Adapter-
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ligated DNA was isolated by two rounds of purification with AMPure XP beads

(Beckman Coulter Genomics, Danvers, MA). Adapter-ligated DNA (450 ng) was

subjected to sodium bisulfite conversion using the MethylCode kit (Life Technolo-

gies, Carlsbad, CA) as per manufacturers instructions. The bisulfite-converted,

adapter-ligated DNA molecules were enriched by 4 cycles of PCR with the follow-

ing reaction composition: 25 L of Kapa HiFi Hotstart Uracil+ Readymix (Kapa

Biosystems, Woburn, MA) and 5 l TruSeq PCR Primer Mix (Illumina) (50 l final).

The thermocycling parameters were: 95C 2 min, 98C 30 sec, then 4 cycles of 98C

15 sec, 60C 30 sec and 72C 4 min, ending with one 72C 10 min step. The reaction

products were purified using AMPure XP beads. Up to two separate PCR reac-

tions were performed on subsets of the adapter-ligated, bisulfite-converted DNA,

yielding up to two independent libraries from the same biological sample.

2.4.4 SNP Calling

SNPs in each of the four donor genome sequences and the H1 genome were

detected as follows. Tissue genome sequence fastq files of four donors were mapped

using Bowtie2[31] and its default parameters; whereas, the H1 csfasta files were

mapped with Bowtie using these parameters: -C -k 1 -m 1 –best –strata -e 80.

The UnifiedGenotyper module of GenomeAnalyzerTK[32] (GATK) version 2.4-7

was used to detect SNPs. Default parameters were used, with -dcov 100. The

SNPs detected were compared against the dbSNP database (version 137) for clas-

sifying known and novel (individual-specific) SNPs. The confidence score thresh-

old for SNP detection was selected as 30. This is the minimum phred-scaled Q-

score threshold, provided as a default parameter for high-confidence SNP detection
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within the GATK package.

2.4.5 SNP-substituted Reference Genomes

We created four modified reference genomes to account for misclassification

of CG sites as mCH sites. To that end, we took high-confidence homozygous SNPs

and substituted the SNP bases for a particular individual into the hg19 FASTA

file.

2.4.6 MethylC-seq Mapping

Sequencing reads were first trimmed for adapter sequence using Cutadapt[33].

All cytosines in the trimmed reads were then computationally converted to thymines

and mapped twice, to a converted forward strand reference and to a converted re-

verse strand reference. A converted reference is created by replacing all cytosines

with thymines (forward strand) or all guanines with adenines (reverse strand) in

the reference FASTA file. For mapping we used Bowtie[34] with the following op-

tions: “-S”,”-k 1”,”-m 1”,”–chunkmbs 3072”,”–best”,”–strata”,”-o 4”,”-e 80”,”-l

20”, and “-n 0”. Reads were mapped to hg19 reference genome. Any read that

mapped to multiple locations was removed and one read from each starting loca-

tion on each strand from each library was kept (i.e., clonal reads were removed).

Note that our pipeline (methylpy) does not currently support paired-end reads.

Consequently, for MSC, which only had paired-end reads available, we mapped

the first read in each pair to avoid problems in processing overlapping reads.
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2.4.7 Methylation Calling

To call methylated sites, we summed the number of reads that supported

methylation at a site and the number of reads that did not. We used these counts

to perform a binomial test with a probability of success equal to the non-conversion

rate, which was determined by computing the fraction of methylated reads in the

lambda genome (spiked in during library construction). The false discovery rate

(FDR) for a given p-value cutoff was computed by calculating the fraction of sites

in the lambda genome that had a p-value less than or equal to the cutoff and then

dividing that quantity by the fraction of sites that had a p-value less than or equal

to the cutoff across all other chromosomes. Because the p-value distributions for

each methylation context are different, this procedure was applied to each three

nucleotide context independently (e.g., a p-value cutoff was calculated for CAT

cytosines). All methylation data was visualized with the AnnoJ browser[35].

2.4.8 DMR Finding

To find tissue-specific differentially methylated regions (DMRs), we used

the method described in Ziller et alnding.[1] Briefly, a beta-binomial distribution

was used to model the methylation level of each single CG site in each of the tissues.

Then, differentially methylated sites (DMS) were identified if the methylation levels

of certain site were significantly different between tissues (p-value ¡= 0.01) and the

minimum methylation difference was greater than or equal to 0.3. In the next

step, DMSs within 500 bp were merged into DMRs. Lastly, for each DMR, the

methylation difference between each of tissue pairs (i.e. pairwise comparisons)

was computed and only DMRs that have significant methylation difference (p-
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value ¡= 0.01) and the methylation difference is greater than or equal to 0.3 in

at least one of the pairwise comparisons are retained. The scripts for running

this pipeline are included as additional files (DDMR Identification CpG mult.r,

DDMR Identification RegionAnalysis mult.r, parallel run Ziller.py). The results

from this script can be found among the additional files

(Ziller et al DMR finding/DMR final with level.tsv)

To statistically infer DMRs that may vary between individuals (i.e., those

DMRs used in Genetic Origins of Methylation Variation), which the above method-

ology from Ziller et al.[1] does not, we defined a stochastic model of our methylation

data sets in which the observed number of reads supporting methylated and un-

methylated cytosines at each position in each sample is drawn from a binomial

distribution. In each sample at each cytosine in the CG context there is a single

parameter, xin, corresponding to the true fraction of methylated alleles in the pop-

ulation, or the methylation level, where i denotes the position of cytosine and n

denotes the sample. Our null hypothesis is that the methylation level at this po-

sition is equal in all samples (xin = xi for all n). Our procedure is designed to test

whether the observed data are consistent with the null hypothesis, or alternatively

if there is a significant deviation from equal methylation levels. To do this, first

we compute a goodness-of-fit statistic, s, which was introduced and validated by

Perkins et al[36]. Specifically, we arrange the observed data in an Nx2 table, with

one row for each of N samples and a column for reads supporting methylated and

unmethylated cytosines respectively. The number of observed reads in sample n

at position i is oinj, where j = 1 for methylated reads and j = 2 for unmethylated

reads. The expected number of reads in sample n with methylation state j under
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the null hypothesis is einj:

einj = (
N∑

m=1

oimj)(
2∑

k=1

oink)/M i

where M i =
∑N

n=1

∑2
k=1 o

i
nk is the total number of reads in all samples.

The statistic for the goodness of fit is

si =

√√√√ 1

2N

N∑
n=1

2∑
j=1

(oinj − einj)2

Next, we simulated read count data under our stochastic model assuming

the null hypothesis in the following way: Set all cell counts in the table to zero

Randomly select a cell in the table with probability equal to the expected counts

divided by the total number of counts in the table (
einj

M i ). Increment the value in

this cell by one. Repeat this procedure M i times. Finally, calculate the value

of the statistic, sishuff , for the randomly generated table. This randomization

procedure was repeated until we observed 100 iterations with a value of sishuff

that was at least as extreme as that of the observed data, s, up to a maximum of

3,000 iterations. The p-value at position i was then computed as:

pi =
Ri + 1

T i

Where Ri is the number of randomized tables with a statistic greater than
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or equal to the original tables statistic and T i is the total number of randomized

tables that were computed. Our adaptive permutation procedure ensures that any

sites which we may potentially identify as significantly differentially methylated

with pi < 0.01 will be sampled 3,000 times. At other sites, we have observed

an appreciable number (100) of permutations more extreme than our original test

statistic (ssshuff) and the p-value for these sites will be p(100 + 1)/3000 = 0.034;

these sites will therefore not be called as differentially methylated.

To control the false discovery rate (FDR) at our desired rate of 1%, we used

a computationally efficient procedure designed for comparing multiple sequential

permutation-derived p-values[37]. This procedure is designed to account for the

effect of our adaptive permutation procedure on the form of the distribution of

p-values. First we generated a histogram of the p-values across all cytosines in CG

context. We also calculated the expected number of p-values to fall in a particular

bin under the null hypothesis. This expected count is computed by multiplying

the width of the bin by the current estimate for the number of true null hypotheses

(m0), which is initialized to the number of tests performed. We then identified the

first bin (starting from the most significant bin) where the expected number of

p-values is greater than or equal to the observed value. The differences between

the expected and observed counts in all the bins up to this point are summed,

and a new estimate of m0 is generated by subtracting this sum from the current

total number of tests. This procedure was iterated until convergence, which we

defined as a change in the m0 estimate less than or equal to 0.01. With this m0

estimate, we were able to estimate the FDR corresponding to a given p-value cutoff

by multiplying the p-value by the m0 estimate (the expected number of positives
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at that cutoff under the null hypothesis) and dividing that product by the total

number of significant tests we detected at that p-value cutoff. We chose the largest

p-value cutoff that still satisfied our FDR requirement.

In the next stage of analysis, we combined significant sites (DMSs) into

blocks if they were within 250 bases of one another and had methylation changes

in the same direction (e.g., sample A was hypermethylated and sample B was

hypomethylated at both sites). A sample was considered hypo or hyper methylated

if the deviation of observed counts from the expected counts was in the top or

bottom 1% of deviations. These residuals were calculated for a position i using

the following formula for a given cell in row n and column j of the table:

oinj − einj√
einj ∗ (1−

∑N
m=1

eimj

M i ) ∗ (1−
∑2

k=1

eink

M i )

(2.1)

The distinction between hypermethylation and hypomethylation was made

based on the sign of the residuals. For example, if the residual for the methy-

lated read count of sample A was positive, it was counted as hypermethyla-

tion. Furthermore, blocks that contained fewer than 10 differentially methylated

sites were discarded. The DMRs called with this methodology, along with their

methylation levels, are in the additional files (https://bitbucket.org/schultzmattd/

methylpyandDMR by methylpy/DMR methylpy matrix).

https://bitbucket.org/schultzmattd/methylpy and DMR_by_methylpy/DMR_methylpy_matrix
https://bitbucket.org/schultzmattd/methylpy and DMR_by_methylpy/DMR_methylpy_matrix
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2.4.9 Benchmark methylpy and other DMR identification

methods

To further evaluate the performance of the DMR finder (methylpy) used to

find inter-individual DMRs in the section Genetic Origins of Methylation Variation,

methylpy was compared with three published DMR finding methods: BSmooth[38],

DSS[39] and MOABS[40]. The test was done on methylome data of adrenal gland

samples from individual 2 and individual 3 (AD-2 and AD-3) and two aorta sam-

ples from the same individuals (AO-2 and AO-3). Data and code for this bench-

mark can be download from this link (https://drive.google.com/folderview?id=

0B1BhFMhr3HTATjdWLUx3d1ZtZHM&usp=sharing). For BSmooth and

MOABS, the default settings were used. For DSS, we used 1% FDR cutoff for

calling differentially methlyated locus (DMLs). Then DMLs within 300bp were

merged and regions containing at least 3 DMLs were called as DMRs. Note that

these two parameters are the same as the default settings in MOABS. Only data

of chromosome 1 was used in this analysis.

2.4.10 Methylation Levels

Throughout the paper we refer to the methylation levels of regions in various

contexts. Unless otherwise noted, these methylation levels are more specifically

weighted methylation levels as defined here[9]. Sites predicted to be unmethylated

(based on the binomial test) had their methylation level set to zero.

https://drive.google.com/folderview?id=0B1BhFMhr3HTATjdWLUx3d1ZtZHM&usp=sharing
https://drive.google.com/folderview?id=0B1BhFMhr3HTATjdWLUx3d1ZtZHM&usp=sharing
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2.4.11 RNA-seq Analysis

RNA-seq mapping was done using Tophat2[41] with default parameters (-

r 200, –library-type fr-firststrand) against the human reference genome version

hg19. The genomic features were obtained from GENCODE version 14[42]. We

used htseq-count to map reads to GENCODE features and generate read counts

using (http://www-huber.embl.de/users/anders/HTSeq) using default parameters

except -s reverse.

2.4.12 RNA-seq Expression Quantification

In order to quantify expression levels of each of the annotated genomic fea-

ture, we implemented the cufflinks module of the Cufflinks suite version 2.1.1[43].

Cufflinks produces FPKM (Fragments per kilobase of feature per million) for

each of the annotated features. We used default parameters, except for the use

of -upper-quartile-norm option and –max-bundle-frags as 50,000,000. This ex-

treme limit was set to avoid skipping of regions with several fragments. The

default value of 1,000,000 would result in several tissue-specific or highly ex-

pressed genes to be labeled as HIDATA without an actual FPKM value being

reported. Then, we applied quartile normalization to FPKMs, which is described

in http://cufflinks.cbcb.umd.edu/manual.html#library norm meth. Specifically,

we scaled the 75% quartile FPKM of every sample to be the mean 75% quartile

FPKM of all samples (i.e., all 36 tissue samples from this study, IMR90, H1, and

placenta samples).

http://www-huber.embl.de/users/anders/HTSeq
http://cufflinks.cbcb.umd.edu/manual.html#library_norm_meth
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2.4.13 RNA-seq Differential Expression Analysis

In order to obtain genes that are differentially expressed across any of the

samples in this study, we used htseq-count to map reads to GENCODE features

and generate read counts (http://www-huber.embl.de/users/anders/HTSeq) using

default parameters except -s reverse. These read counts were tested for differen-

tial expression using the quasi-likelihood F-test (glmQLFTest)[44] implemented in

edgeR[45]. In contrast to pairwise comparisons (like case vs control or wild-type

vs treatment) this test does not require specifying which groups would be differ-

ent. The set of genes enriched or depleted in one group compared to an average

of all other tissues was obtained. An FDR cut-off of 0.05 was used to identify

differentially expressed genes.

2.4.14 CG DMR Dendrogram

To create the dendrogram shown in Figure 2.1c, we first used the cmdscale

command from R to perform multidimensional scaling and compute the first 15

principal components of the CG DMR methylation level matrix. The percent

variance explained from this multidimensional scaling is presented in Figure 2.5c.

Next, we used the heatmap.2 function in the R package gplots[46] with the default

distance metric, and the Ward hierarchical clustering method on these principal

components to generate the dendrogram.

http://www-huber.embl.de/users/anders/HTSeq
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2.4.15 Differentially Expressed Genes Dendrogram

To create the dendrogram shown in Figure 2.1d, we first used the cmdscale

command from R to perform multidimensional scaling and compute the first 15

principal components of the RPKM values, which were first normalized by the

maximum expression value observed at each locus, from all differentially expressed

genes. The percent variance explained from this multidimensional scaling is pre-

sented in Figure 2.5d. Next, we used the heatmap.2 function in the R package

gplots18 with the default distance metric, and the Ward hierarchical clustering

method on these principal components to generate the dendrogram.

2.4.16 Genomic Feature Definitions

Promoters were defined as -1000bp to +300bp region of the transcription

start sites of transcripts defined in GENCODE version 1414. Exons and introns

were also defined using the GENCODE reference. Putative enhancers were ob-

tained from Leung, Rajagopal, and Jung et al.[15] which were predicted using

histone mark profiles. CG islands (CGIs) were downloaded from UCSC genome

browser[47]. CGI shores were defined as the 2kb regions extending in both direc-

tions from CGIs[13, 5].

2.4.17 DMR Tissue Specificity Determination

To find CG DMRs that are strongly and specifically hypomethylated or

hypermethylated in a particular tissue, we ranked tissues by the methylation level

of a CG DMR (from lowest to highest). Then, starting from the tissue with the
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lowest methylation level, we computed the difference in methylation level between

adjacent tissues. Next, we identified the largest difference, and if it was greater

than or equal to 0.1, we divided the tissues into two groups (i.e., hypomethylated

tissues and hypermethylated tissues). If the hypomethylated group contained ten

or fewer tissues, the DMR was classified as a tissue-specific, hypomethylated CG

DMR in those tissues. If the hypermethylated group had ten or fewer tissues, the

CG DMR was classified as a tissue-specific, hypermethylated CG DMR in those

tissues. We ignored other CG DMRs (including CG DMRs with difference less

than 0.1 between adjacent ranked tissues) were because their tissue specificity was

too obscure.

2.4.18 DMR GO Enrichment

We used GREAT[10] with default parameters to find functional terms of

genes near CG DMRs as these terms indicate the potential regulatory functions

of these CG DMRs. Since too many DMRs can saturate the Hypergeometric Test

it uses, we considered at most the top 5,000 DMRs sample-specific DMRs ranked

(largest to smallest) by the difference (which has to be greater or equal to 0.1)

in methylation level between the hypermethylated and hypomethylated groups as

input. Furthermore, we require each of these DMRs to have at least 4 DMSs.

We focused on the GO Biological Process and Mouse Phenotype categories and

representative results from this analysis are shown in Figure 2.5e and f. The

complete results are in Supplementary Tables 2 and 3.
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2.4.19 Correlating Methylation States of DMRs with Gene

Expression

To compute the correlations shown in Figure 2.2a, we used the nearest

gene model to predict the target gene of every DMR (i.e., the gene with the closest

transcription start site was predicted as the target gene of a DMR). Then, we com-

puted the Spearman correlation coefficient between the methylation level of that

DMR and the expression level of its target gene. Only intergenic hypomethylated

DMRs with differentially expressed protein-coding genes as a target were included

in this analysis. To understand the role of these DMRs and their association with

expression, we grouped them into different categories according the genomic ele-

ments they did or did not overlap. Genebody DMRs were defined as those that

overlapped gene bodies. Enhancer DMRs were defined as those that overlapped

enhancers. Promoter, CGI and CGI shore DMRs were defined as those that over-

lapped promoters, CGIs, or CGI shores. DMRs not in these categories and lying

outside any gene body labeled as intergenic. Finally, undefined intragenic DMRs

were those that didnt overlap any of these categories. As a control we shuffled the

sample labels of the methylation levels and computed the Spearman correlation

coefficients as above, which labeled as shuffled.

2.4.20 Annotating undefined intragenic DMRs and pro-

moter DMRs

We used K-means clustering to cluster the histone modification profiles of

undefined intragenic DMRs (uiDMRs). We assigned the strand of target gene
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to each uiDMR to ensure that the TSSs of target genes were always upstream of

uiDMRs and eliminate the possibility that strandedness would affect the clustering.

Next, we divided each uiDMR into 10 equally sized bins and we divided the 5kb

region on either side of each uiDMR into 100bp bins. We split DMRs into equally

sized bins for several reasons. Firstly, DMRs varied in length, and we needed a

way of comparing the locations of motifs in different DMRs. Secondly, to estimate

and show the location preference of motifs, DMRs needed to be binned in order to

get an appreciable number of motif instances falling to fall in each position across

a DMR. Finally, we wanted to avoid splitting DMRs into bins with different sizes

to keep the analysis unbiased as we did not want to introduce confounding factors

like differing bin sizes in a single DMR.

We then created a vector of input-normalized ChIP-seq RPKMs of the six

histone marks for each bin. The uiDMRs were then clustered into five groups

using these vectors. We labeled these groups as weak enhancer (strong H3K4me1,

depleted H3K4me3 and strong H3K27ac), promoter-proximal (near region with

strong H3K4me3 and strong H3K27ac and depleted in H3K4me1), transcribed

(strong H3K36me3), poised enhancer (strong H3K4me1 and weak H3K27ac) and

unmarked (no noticeable active histone marks).

We performed a similar analysis for DMRs that overlapped promoters (i.e.,

the same fixed window definition previously mentioned). Not all of these regions

were active (i.e., marked by H3K4me3 and H3K27ac), so to identify active and

inactive promoters we applied K-means clustering to the histone modification pro-

file of promoter DMRs into two categories: strong promoters and unmarked pro-

moters. DMRs in strong promoters showed an H3K4me3 and H3K27ac signal;
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whereas, DMRs in unmarked promoters displayed at most a very weak H3K27ac

and H3K4me3 signal. Sequence motifs enriched in tissue-specific uiDMRs and

tissue-specific enhancers were identified using Homer[48].

2.4.21 DNase I sensitivity analysis

To plot DNase I sensitivity data of fetal tissues in Figure 2.9, we downloaded

DNase I data from GEO (GSE18927 and Supplementary Table 6). To profile

the DNase I sensitivity of unmarked uiDMRs, we divided each unmarked uiDMR

into 10 equally sized bins and the 2.5kb region on either side of each uiDMR

into 50bp bins. The DNase I sensitivity RPKMs were calculated for each bin for

each unmarked uiDMR, and the values were aggregated to generate the average

profile. The same approach was applied to generate the average profiles of DMRs

overlapping intragenic enhancers and unmarked uiDMRs with shuffled locations.

Only DMRs greater than 200bp in length (i.e., each bin is greater than 50bp) are

included in this analysis.

2.4.22 Measuring the genetic origins of DNA methylation

If DNA sequence is involved in regulating DNA methylation we should

observed an enrichment of sequence variants where there is epigenomic variation.

To rank DMRs by epigenomic variation, we created a tissue-specific methylation

outlier score (MOS). The MOS takes advantage of some tissues methylomes being

sequences in triplicate and identifies DMRs where one individuals methylation

state is divergent from the other two. MOS is calculated as,
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MOSi = |∆ij + ∆ik

2
| − |∆jk| (2.2)

, where i, j and k represent the three individuals and ∆ij represents the

difference in methylation state scores between individuals j and k. MOSi rep-

resents the degree to which individual i is an outlier at a particular DMR. We

subtract |∆jk| to account for background level of DNA methylation variability at

the DMR. A separate MOS is calculated for each individual at each DMR. Each

DMR is assigned its single greatest MOS score and the corresponding individual

is considered the outlier. We hypothesized that MOS performs better than stan-

dard deviation as it considers the level of similarity between the two concordant

replicates. Thus, DMRs where variation might be increased by measurement error

are less highly ranked as some measurement errors may be consistent across the

samples, and therefore, would increase the variation between the concordant repli-

cates. The motif associated SNPs (maSNP) occurrence in the top 2,500 DMRs

ranked by standard deviation was: FT = 1.51; GA = 1.45; PO = 1.61; SB =

1.61; SX = 1.46. These numbers result in an average maSNP occurrence of 1.528.

When MOS is used to rank the DMRS the enrichment scores are: FT = 1.58; GA

= 1.65; PO = 1.65; SB = 1.60; SX = 1.63. The MOS ranked DMRs result in

an average maSNP occurrence of 1.622. Thus, MOS does a better job or rank-

ing DMRs by their enrichment with maSNPs. Further, to determine that maSNP

enrichment of DMRs when ranked by MOS was statistically significant we used

a Chi-squared test to compare the association between the number of maSNPs
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and non-maSNPs in a DMR and its SD or MOS rank. To do this, the maSNP

and non-maSNP counts were compared between the top MOS ranked 2500 DMRs

and the DMRs ranked between 497500 and 500000 (i.e., we constructed a 2x2

table where rows indicated whether or not the DMR was in the top 2500 DMRs

and columns indicated whether or not that DMR contained an maSNP). The P-

values for maSNP enrichment in the top 2,500 MOS ranked DMRs were: FT =

0.0006811861; GA = 2.443996e-16; PO = 4.2191e-16; SB = 0.00202069 and SX

= 6.313224e-08. Thus, demonstrating the significance of the maSNP enrichment

in the MOS ranked DMRs. The Chi-squared test of significance was repeated us-

ing DMRs ranked by strand deviation: FT = 0.01908347; GA = 0.09873; PO =

6.997994e-07; SB = 0.0003348352 and SX = 0.002674707. In all cases, the P-value

was more significant for the MOS ranked DMRs. To evaluate the level of sequence

variation at cis-regulatory elements we created sets of DNA motifs that are puta-

tively involved in the tissue-specific regulation of DNA methylation levels at the

DMRs. For each tissue we created two de novo motif sets: (i) hypo and (ii) hyper.

The tissue-specific de novo motif sets were created using the Epigram pipeline[21]

to identify a set of motifs that are discriminative of tissue-specific hypo and hy-

permethylated regions. Briefly, the Epigram pipeline works as the following: (i)

the two sets of sequences (tissue-specific hypo and hypermethylated regions) are

balanced so that they have the same distribution of lengths and GC-content; (ii)

two de novo motif finding methods, HOMER[48] and its own, are used to identify

motifs that are enriched in either set; (iii) a LASSO logistic regression[49] is used

to select the motifs that are most discriminative of the two regions; (iv) a Random

Forest classifier and 5-fold cross-validation are used to assess the collective ability
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of the motifs to classify the sequences into hypo or hypermethylated; (v) a second

round of feature selection is performed to heuristically select a subset of 20 motifs

that has the greatest discrimination power. Thus, the Epigram pipeline identi-

ties motifs that are predictive of tissue-specific hypo- and hypermethylation and

measures their ability to distinguish the two sets. During the creation of both the

de novo and known motif sets it is necessary to have sets of tissue-specific hypo

and hypermethylated regions. The tissue-specific hypomethylated regions were

taken from the DMR GREAT analysis as previously defined. The set of hypo-

and hyper-methylated sequence sets were then balanced so that they were equal

in size and had the same distribution of GC-content and region lengths[21]. The

number of hypomethylated DMRs for each tissue after sampling ranged from 278

to 15,732 with a mean of 7,307 while the hyper sets ranged from 745 to 12,190 with

a mean of 6,028. To create known set of known motifs five motif databases were

combined: (i) Transfac[50], (ii) Jaspar[51], (iii) Uniprobe[52], (iv) hPDI[53] and

(v) Taipale[54]. We removed known if their name was not listed in GENCODE

or they were not annotated with the gene ontology term sequence-specific DNA

binding or DNA binding. To make the final set of motifs non-redundant, if there

was more than one motif for the same gene, then only the motif with the great-

est information content was retained. To calculate motif-breaking cut-offs for the

known motifs we created background distribution and took a cut-off that corre-

sponds to a 0.05 P-value. Taking the DMR DNA sequences and shuffling them

so that order of nucleotides was randomized created the background distribution

sequences. A motif specific background distribution was created by recording the

best score of S (see above) in each of the shuffled sequence.
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2.4.23 PMD Identification

To identify PMDs, we created a random forest classifier. Random forests

are an ensemble machine learning technique (described in detail here (Breiman,

L. Random Forests. Machine Learning. 2001)) used for classification. We first

visually classified regions on chromosome 22 that we felt were strong candidates

as PMDs or non-PMDs (Supplementary Table 7). These regions were then used

to train a random forest, which was implemented in the python function Ran-

domForestClassifier from the module sklearn.ensemble[55]. Specifically, we then

divided these regions into 10kb nonoverlapping bins and computed the percentiles

of the methylation levels at the CG sites within each bin. We divided genome into

10kb non-overlapping bins mainly to reduce the effect of smaller DNA methyla-

tion variation. PMDs were first discovered by Lister et al. as large (mean length

= 153kb, PMID: 19829295) regions with intermediate methylation level (¡ 70%,

PMID: 19829295). Consequently, we chose a large bin size (10 kb) to reduce the

effect of methylation variations in smaller scale (such as DMRs). Furthermore,

the features (methylation level distribution of CG sites) used in classifier required

enough CG sites inside each bin to accurately estimate this distribution, which ne-

cessitated a relatively large bin. We excluded 10kb bins with fewer than 10 CG sites

because of the same reason mention above: accurately estimating the methylation

level distribution of CG sites inside bin required enough number of sites. Therefore,

for bins with very few CG sites (¡ 10 here), we were unable to classify them (into

PMD or non-PMD). These percentiles were used as features for the random for-

est. The following arguments were supplied to the Python function: n estimators =

10000, max features=None, oob score=True, compute importances=True In this
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procedure, out-of-bag error estimation is used to assess the performance of the

classifier. More specifically, when building the classifier, the training data can be

bootstrap sampled, which leaves a portion of the data out of the classifiers con-

struction and can later be used to assess the rate at which the classifier is correctly

predicting known labels. To assess the performance of our models, we calculated

one minus the out-of-bag error rate reported by RandomForestClassifier, which

yielded a correct prediction rate of at least 90% (PA-2 - 90.23%, PA-3 - 92.37%,

IMR90 - 97.65%, PLA - 92.33%).

2.4.24 Comparing PMDs Called in IMR90, PA-2, PA-3

and Placenta

We used GAT[56] to estimate the significance of the overlap between PMDs

in different samples shown in Figure 2.10c. The workspace we used was the hu-

man reference genome (hg19) excluding ENCODE blacklisted regions. The op-

tions provided to GAT were: –ignore-segment-tracks –num-samples=1000 –bucket-

size=10000.

2.4.25 Histone Modification Profiles Across PMDs

To profile the histone marks in PMDs and the surrounding regions shown in

Figure 2.2e, f, we divided the 300kb upstream and downstream of each PMD into

10kb bins. The body of PMD was divided evenly into 10 bins. Next, we averaged

the input normalized ChIP-seq RPKM for each bin. As a control we shuffled the

PMDs and performed the same computation.
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2.4.26 Testing Histone Modification Enrichment and De-

pletion Inside and Outside of PMDs

For each histone mark and separately for each sample (PA-2 and IMR90),

we grouped the signal medians displayed in Figure 2.2e, f by whether they were

inside or outside of the PMD. Next, we performed a Mann-Whitney test on these

groups to estimate the significance of the difference in signal medians inside and

outside of PMDs.

2.4.27 mCH Motif Calling

To find the predominant nucleotide context of mCH in each sample, we

took the top 800,000 methylated, mCH sites (the least number of sites in the three

samples displayed in Figure 2.3b-d) that did not overlap with a heterozygous SNP

and input the surrounding (+/- 5bp) nucleotides from the SNP-corrected reference

genomes to the seqLogo package[57] in Bioconductor. Distribution of Expression

Across mCH Quantiles To examine the correlation between expression and mCH,

we binned the expression levels genes into quantiles based on the mCH levels in the

tissue where expression was measured. For example, the boxplot in Figure 2.12b

labeled 85 contains expression levels from all the genes that were between the

85th and 90th quantile of mCH level. It is important to note that the absolute

methylation level for the 85th and 90th quantile will vary from tissue to tissue. We

took this approach to account for the differences in cellular heterogeneity between

these tissues.
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2.4.28 mCH Pattern Clustering

To identify sets of genes that share similar DNA methylation patterns in

an unbiased fashion, we applied a procedure that combines dimensional reduction

using principal component analysis, followed by clustering[20]. We profiled the

methylation level (mCAC/CAC and mCAG/CAG) in gene bodies (TSS-TES) and

5 promoter regions (1 kb upstream of the TSS) within each of 25 samples included

in this analysis (collapsed tissue replicates, NRN, GLA, H1 and its derivatives).

The methylation level in each sample for each gene was normalized by the average

over the genes distal flanking region (50-100 kb upstream of TSS or downstream

of TES). Normalized mC/C values were then log-transformed. These data were

combined into a matrix of 104 features for each of 17,138 autosomal genes. Any

bins with missing data due to insufficient coverage in one of the samples (0.22%

of the total) were replaced with the median value of the entire data set. We

performed singular value decomposition on this data matrix to identify the linear

combinations of methylation features that account for the largest fraction of the

total data variance. We retained the top 7 PCs as a low-dimensional representation

of robust genomic methylation features, accounting for 70.3% of the total data

variance. Next, we used k-means clustering to estimate gene sets with highly

similar withinset methylation patterns. We chose to extract k=20 clusters to

capture a diverse range of methylation features, while still allowing visualization

and statistical enrichment analysis of functional association for each gene set. We

repeated the clustering procedure 5 times using random initialization of the cluster

centers, choosing as the final estimate the run with the smallest within-cluster sum

of distances from each point to the cluster centroid. To display the methylation
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patterns within these gene clusters in Figure 2.3f, we profiled the methylation level

(mCAS/CAS) in bins of size 1 kb starting 100 kb upstream of the TSS and ending

100 kb downstream of the transcription end site (TES). To compare genes with

different lengths, we divided each gene body into 10 non-overlapping bins of equal

size extending from the TSS to the TES. Methylation levels were normalized by the

flanking region as described above. We then linearly interpolated the gene-body

mCAS/CAS data at 100 evenly spaced bins within the gene body in order to give

roughly equal weight to the gene-body and flanking methylation data. To visualize

the heatmaps of mCAS/CAS patterns for each of 17,138 genes, we smoothed and

downsampled the genes 40-fold to allow representation of genome-scale features.

2.4.29 CAC and CAG Correlation Analysis

In Figure 2.12c, d we examined the relationship between mCAC and mCAG

in the following way. The total methylation level (mCAC/CAC or mCAG/CAG)

was calculated within all autosomal gene bodies (from TSS to TES). We excluded

genes shorter than 2kb. We computed the Spearman (rank) correlation coefficient

between these two methylation levels across all genes. These correlations may

be diminished by noise due to sampling a finite set of reads for each gene. To

determine the magnitude of this effect, we simulated MethylC-Seq basecalls under

the assumption of a perfect rank correlation of the true methylation levels. The

rank correlation of the simulated reads provides an upper bound on the level of

correlation that could have been observed.
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2.4.30 Read Position Methylation Level Biases

It has previously been noted that sequencing biases may erroneously be

interpreted as mCH[38, 58]. To test for this possibility, we constructed m-bias

plots as described here[38] and found a very slight bias in the methylation level at

the beginning of our reads (Figure 2.12f-h). Consequently, we trimmed the first 10

bases of reads in a sample with (PO-2) and without (EG-2) mCH to see if this bias

affected our identification of the CAC mCH motif. This analysis revealed that the

original and bias-free motifs are highly concordant with the mCH motif becoming

slightly stronger in the bias-free sample (Figure 2.12i-l). Given that this gain was

so slight, we did not feel it justified discarding roughly 10% of our data, so we

proceeded with the untrimmed results.

2.4.31 X Chromosome Inactivation

Gender-specific methylation patterns were examined in 9 pairs of tissue sam-

ples from adult male (STL003) and female (STL002), as well as paired neuronal

(NeuN+) and glial (NeuN) samples from adult male (55yo) and female (53yo)[20].

For each of the genes assayed here[29], we examined the total mCG/CG within

the promoter region, defined to be a 1 kb region ending at the TSS, and the total

mCG/CG or mCH/CH within the gene body (TSS to TES). For this analysis, we

included 612 X-linked genes that were ¿1 kb in length and met a coverage criterion

(¿4000 basecalls at CG and CH positions within the gene body in all 22 samples

examined). The heatmap in Figure 2.4b shows the ratio of gene body mCH/CH in

female vs. male, without any correction for the non-conversion rate. The black out-

line in Figure 2.4b indicates genes that were found to be significantly hyper-mCH in
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female (likelihood ratio test, Yekutieli-Benjamini FDR 0.15), with at least 1.2-fold

greater mCH/CH in female vs. male, and with mCH/CH¿0 in the female sample

(Fisher exact test, p¡0.01). The likelihood ratio test takes into account the sample-

specific bisulfite non-conversion rate for mCH sites, as calibrated using sequencing

of unmethylated lambda phage DNA. To assess the relationship between female-

specific mCH/CH and escape from X-chromosome inactivation (XCI), we relied

on a published survey of expression on the inactive human X-chromosome[29].

That study used rodent/human somatic cell hybrids to assign a XCI score to each

gene; 0 corresponds to inactivated genes, 9 to escapees, and intermediate values

show varying levels of expression from the inactivated X-chromosome. We used

liftOver to match 405 of the surveyed genes to our pool of 612 X-linked genes;

this set included 34 escapee genes (XCI=9). The box plot (Figure 2.4b) shows

the difference between female and male methylation level for genes ranked accord-

ing to the X-inactivation status index[29]. For each box, the central black line

is the median and the box edges are the 25th and 75th percentiles. We used re-

ceiver operating characteristic (ROC) analysis to assess how well female-specific

mCH hypermethylation allows discrimination of X-escapee genes (Figure 2.13b).

The area under the ROC curve (AUC) is a statistical measure of discriminability,

which ranges from 0.5 when little or no discrimination information is present to 1

for perfect discriminability. A similar analysis was done to assess how informative

female-specific promoter CG hypomethylation, female-specific promoter mCH hy-

permethylation and female-specific gene body mCG, respectively, is for predicting

X-escapee genes. Results are shown in Figure 2.13c-e.
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2.4.32 Haplotype Reconstruction using HaploSeq

First, genotypes for all donors were obtained as above. Next, Hi-C reads and

paired-end genome sequencing reads were mapped independently using Novoalign

(http://www.novocraft.com) to the donor variant-masked hg19 genome as de-

scribed above. We mapped the Hi-C reads as single ends and paired them later

using in-house scripts. We then performed GATK walkers such as Indel realign-

ment and base recalibration to obtain high quality mapping. Finally, we combined

our high-quality genome sequencing and Hi-C reads and performed HaploSeq[3] to

obtain higher resolution haplotypes than using Hi-C data alone. We then improved

the resolution of our seed haplotype generated by HapCUT[59] using local condi-

tional phasing. Briefly, local conditional phasing is performed by Beagle (v4.0)[60]

using all known variants in the population (1000 Genomes dataset, phase1 v3).

Using the seed haplotypes generated by HapCUT, Beagle infers the haplotype of

unphased gap variants using a Hidden Markov Model. In order for a variant to be

conditionally phased, we required a 100% match between the phase status present

in the seed haplotype and the phase status predicted by Beagle.

2.4.33 Allele-specific Mapping of methylome data

We first generated modified references for each sample (STL001, STL002,

STL003, and STL011) to avoid biasing mapping towards reads containing the hg19

reference variant. To this end, we used the SNP calls described above and identified

high quality SNPs by recalibrating variants using the default parameters of variant

recalibration (GATK) (2) and only genotypes of highest quality (100% confidence

calls by GATK) were used for downstream analyses. We masked any heterozygous
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SNP with a PASS by replacing them with an N and replaced any homozygous SNP

with the appropriate variant. Using these references, we remapped our methylome

data with Bowtie2[31] as this aligner allows for alignment to sequences containing

Ns using the default settings with the following modifications: “-k 2”,”–np 0”.

2.4.34 Assigning methylome reads to alleles

Mapped methylome reads were assigned to alleles based on base calls on

reads that overlapped phased heterozygous SNPs. For reads overlapping multiple

phased heterozygous SNPs, they were assigned to allele with support from ma-

jority of phased heterozygous SNPs and reads were discarded if two alleles were

with equal support. To assign reads to a particular allele, we used the scripts as-

sign read to allele WGBS se.pl found in the assign reads folder (additional files).

2.4.35 Allele-specific methylation analysis

Methylome reads assigned to each allele, were then processed in the same

way as that we used for whole sample, which is described above. Then, by com-

paring methylomes of two alleles, DMRs (i.e. allele-specific methylation (ASM)

events) were called using the same approach as described above. We also sepa-

rated ASM events that were caused by changing one of the alleles cytosine context

(i.e., it occurred in one of the two bases following the methylated cytosines) and

those that did not. Furthermore, we required that each allele was covered by at

least 10 reads. The sequence context of ASM may differ in two alleles and only

ASM events that contain CG site(s) in at least one allele were included in following

analysis.
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2.4.36 Aligning RNA-seq reads to alleles

List of genes showing allele-specific expression in each tissue sample was

obtained from Leung, Rajagopal, and Jung et al.[15]. Specifically, For RNA-seq

data of all tissue samples, the paired-end reads were mapped using Novoalign to a

variant masked transcriptome genome, which was constructed using Useq software

based on Gencode annotation (hg18). The mapped reads were assigned alleles

according to the sequence match in each variant between two alleles. Then, for

each allele, duplicate reads were considered as PCR duplicates and removed with

Picard. To determine whether removing duplicate reads in RNA-seq datasets is

appropriate during downstream analysis, we investigate the distribution of dupli-

cate reads in terms of gene expression levels. If the duplicate reads are biased to

the highly expressed genes the duplicate reads reflect gene expression levels. If

not, the duplicate reads can be considered as PCR duplicate reads. We observed

that the samples containing high duplicate reads showed uniformly distributed du-

plicate reads regardless of gene expression levels (data not shown), indicating that

the duplicate reads contain a lot of PCR duplicate reads. To avoid any statisti-

cal bias during downstream analysis we decided to remove duplicate reads across

whole samples. Although reads were aligned to variant-masked genome, there are

still others biases favoring either of alleles. First, to reduce the effect of the map-

pability bias, we aligned simulated reads spanning surrounding variants location

and then checked if one allele was favored than the other. If more than 5% reads

were mapped to one allele than the other, those variant loci were removed as they

are likely to subject inherent mapping bias. Second, to reduce the effect of copy

number variation and allelically biased copy number variable regions on allelic
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analysis, we compared the coverage between two alleles based on WGS data. Any

variant that had more than three standard deviations above the mean coverage of

each haplotype was excluded. Any variant showing biased WGS coverage between

two alleles was also excluded (binomial test p-value less than 0.05 after Benjamini

correction). Lastly, we remove heterozygous variants that were erroneously called

during genotyping. The probability of each called heterozygous variant that was

actually homozygous was calculated from the likelihood of observing the coverage

on each allele from whole genome sequencing. Only heterozygous SNPs that had

a FDR of less than 0.5% were included in downstream analysis. To identify allel-

ically expressed genes, we performed binomial test (with probability 50% as null

hypothesis) on the numbers of aligned reads of two alleles. Only reads spanning

exonic regions were counted and only genes containing at least 10 aligned reads

were tested. Allelically expressed genes were defined based on 5% FDR cutoff.

2.4.37 Tissue and Individual Variability of Allele-specific

Methylation and Expression

We defined an ASM (and ASE) event as individual variable if there was any

disagreement across the tissues from a single individual (e.g., FT-1 had an ASM

event and SX-1 did not). Similarly, we called a site tissue variable if there was any

disagreement across a single tissue from the three individuals (e.g., SB-2 had an

ASM event and SB-3 did not).
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2.4.38 Association between Allele-specific Methylation and

Expression

If there is a strong association between allele-specific methylation (ASM)

and allele-specific expression (ASE) events, we should expect more allelic expressed

genes rather than bi-allelic expressed genes are proximal to ASM events. To test

this, we calculated the fraction of ASE genes and bi-allelically expressed genes that

have at least one ASM event within a certain distance. Bi-allelically expressed

genes were defined as genes that were covered by at least 10 reads and whose p-

values given by binomial test for allelic expression were greater than 0.2. Then,

since the distance between genuine ASM and ASE events was unknown, we varied

the distance cutoff from 10kb to 100kb. The computation was done for all samples

from triplicate tissues and the aggregated the results are shown in Figure 2.14b.

Similarly, if ASE is associated with ASM, we should expect more allelic expressed

genes can be linked to matched ASM event(s) than matched ASM event(s) with

their locations shuffled. Therefore, we computed the fraction of ASE genes that

were linked to matched ASM event(s) and matched ASM events but with their

locations shuffled. Similar to analysis above, distance cutoff was varied from 10kb

to 100kb. The aggregated the results of samples from triplicate tissues are shown

in Figure 2.14c.
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2.5 Figures

Figure 2.1: The methylomes and transcriptomes of human tissues. a,
The tissues analyzed in this study. Samples are denoted by the two letter code
in parentheses followed by an individual ID. b, Browser screenshot of an example
DMR. The top track contains gene models. The following four tracks contain green
blocks indicating the location of super enhancers, enhancers, and hypomethylated
DMRs in aorta, respectively. The remaining tracks display methylation data from
each sample. Gold ticks are CG sites with heights proportional to their methylation
level. Ticks on the forward and reverse strand are projected upward and downward
from the dotted line, respectively.c-d, Hierarchical clustering of DMR methylation
levels (c) and expression levels of differentially expressed genes (d). Colors indicate
organ systems each sample belongs to.
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Figure 2.2: DNA methylation and its relationship with gene expres-
sion. a, The mean Spearman correlation coefficient at various distances between
the methylation level of autosomal DMRs and the expression of the nearest gene.
These correlations are shown for DMRs: overlapping genes (Genebody), overlap-
ping enhancers (Enhancer), overlapping promoters or CpG islands (CGIs) or CGI
shores (Promoter, CGI, CGI shore), not overlapping genes (Intergenic) and all
remaining DMRs (Undefined). b, Heatmap showing each motifs tissue-specific
methylation preference. The tissues are colored according to Figure 2.1c, and the
ordering is listed at the bottom of the figure. The bar plot at the end of the panel
shows the number of times the motif was present in the 20 motif models. c, The
number of base pairs covered by PMDs in all samples. d, The distribution of ex-
pression inside and outside of PA-2 PMDs across various samples. Notches indicate
a confidence interval estimated from 1,000 bootstrap samples. Each PMD boxplot
consists of 3,627 genes and each non-PMD boxplot consists of 22,907 genes. e-f,
Histone modification profiles in and around PMDs in PA-2 (e) and IMR90 (f).
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Figure 2.3: mCH is prevalent in human tissues. a, The fraction of methy-
lated cytosines in the CH context by sample. b-d, Representative mCH motifs
from embryonic, (H1; b), tissue (LI-11; c), and brain (NRN; d) samples. The
height of each letter represents its information content. e, A heatmap of genic
mCAS patterns normalized to the flanking region. Each gene was assigned to
one of twenty clusters, which is indicated by the number and tick marks on the
y-axis. The tick marks on the x-axis indicate the upstream, transcription start,
transcription end, and downstream segments of each gene. The boxes around var-
ious patterns highlight regions referenced in the main text. f, Bar plot of the ratio
of the genome-wide mCAC to mCAG in various samples.
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Figure 2.4: Allele-specific Methylation and Expression. a, Browser screen-
shot of the increase in female mCH for a gene known to escape X chromosome
inactivation (MED14). Sample names are colored by gender (male, black; female,
red). b, Ratio of mCH level in female vs. male samples across genes with a signif-
icant difference in at least one sample. Cells boxed in black denote samples with
a statistically significant difference between females and males. c, The number
of ASM and ASE sites across the triplicated tissues. The top row depicts ASM
events (left) and ASE events (right) which are allele-specific in all tissues (black),
are variable across tissues (white), or do not possess enough data to tell (grey).
The bottom row depicts the distribution of variable sites from the top row that
vary by individual (white), tissue (black), or neither (grey).
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Figure 2.5: Identification of differentially methylation regions (DMRs)
and Multidimensional Scaling Analysis. a, Line plot showing the fraction of
differentially methylated CG sites (DMSs, dynamic CGs) out of all CG sites under
various methylation difference cutoffs. The methylation difference of a CG site is
defined in Ziller et al.[1] b, A plot of the first two principal components from the
methylation level multi-dimensional scaling. Tissues are shaded by the organ group
they belong to as in Figure 1c and 1d. c-d, Bar charts of the cumulative amount of
variance explained by the first N principal components from the multi-dimensional
scaling performed on the methylation levels of all DMRs (c) and the expression
levels of all differentially expressed genes (d). e, A representative example of
enriched GO biological process terms based on the most hypomethylated DMRs
from LV-1. f, A representative example of enriched mouse phenotype terms based
on the most hypomethylated DMRs from LV-1.
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Figure 2.6: DMRs and their correlation with transcription. a, A browser
screenshot of an example DMR downstream of the TSS. b, Expression level of the
BIN1 gene which contains the DMR in (a). c, The percentages of hypomethylated
intragenic DMRs in each class of genomic features. d-h, Histone modification
profiles of five categories of uiDMRs.
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Figure 2.7: Classification of uiDMR histone profiles and uiDMR proper-
ties. a, heatmap of the histone modification profiles for the five types of uiDMRs.
The profiles were plotted for each mark across the DMR and the 5kb upstream
and downstream and the colors of each cell indicate the input normalized ChIP-
seq RPKM. The colors on the left indicate the group of each profile assigned by
k-means clustering (red, weak enhancer; orange, promoter-proximal; green, tran-
scribed; blue, unmarked; black poised enhancer). b, A pie chart of the distribution
of uiDMRs across the classes defined by k-means clustering.
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Figure 2.8: Classification of promoter histone profiles. a, A heatmap of the
histone modification profiles across strong (rows labeled with red) and unmarked
(rows labeled with orange) promoters. The profiles were plotted for each mark
across the promoter and the 5kb upstream and downstream and the colors of each
cell indicate the input normalized ChIP-seq RPKM. b-c, The aggregate profiles
for strong and unmarked promoters (b) and (c), respectively. d, The distribution
of the Spearman correlation coefficients between the methylation level of different
types of hypomethylated intragenic DMRs and the expression of the nearest gene.
Notches indicate a confidence interval estimated from 1,000 bootstrap samples.
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Figure 2.9: uiDMR fetal DNase I profiles. DNase I profiles of various fetal
tissues corresponding to the tissues presented in this study. The samples are ar-
ranged columnwise by age, and row-wise by fetal tissue. The uiDMR unmarked
line represents the DNase I profile of uiDMRs without histone modifications. The
DMR enhancer line represents the DNase I profile of DMRs that overlapped an
enhancer in a matched tissue in this study (indicated in the row label in parenthe-
ses). The shuffled line represents the DNase I profile of uiDMRs randomly shuffled
across the genome.



69

D
N

as
e 

I S
en

si
tiv

ity
 (R

PK
M

)

A
rm

(P
O

-3
)

La
rg

e 
In

te
st

in
e

(S
G

-3
)

H
ea

rt
(L

V-
3 

an
d 

R
V-

1)

D
N

as
e 

I S
en

si
tiv

ity
 (R

PK
M

)

Day 105 Male

0.
0

0.
2

0.
4

0.
6

Day 115 Male

0.
00

0.
05

0.
10

0.
15

Day 105 Male

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Upstream 2.5kb DMR Downstream 2.5kb

Day 110 Male

0.
0

0.
2

0.
4

0.
6

0.
8

Day 120 Male

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Day 115 Male

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Upstream 2.5kb DMR Downstream 2.5kb

Day 96 Male

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Day 91 Male

0.
00

0.
05

0.
10

0.
15

Day 91 Male

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Upstream 2.5kb DMR Downstream 2.5kb

D
N

as
e 

I S
en

si
tiv

ity
 (R

PK
M

)

uiDMR−unmarked
Shuffled
DMR−enhancer



70

Figure 2.10: PMD Features. a, A browser screenshot (see Figure 1 for de-
scription) of an example PMD found in IMR90, PLA, PA-2, and PA-3. RV-1 is
included as a representative sample without PMDs. b, The distribution of sizes
of PMDs in various samples. c, A heatmap representation of the overlap between
various sets of PMDs. The denominator of the fraction of overlap is determined
by the sample on the y-axis. d-e, ChIP-seq profiles of the PMD regions defined in
PA-2 (c) and IMR90 (d) after shuffling.
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Figure 2.11: DNMT expression across tissues. a-d, Bar plots of the expres-
sion (measured in log10 FPKMs) of DNMT1 (a), DNMT3A (b), DNMT3B (c),
and DNMT3L (d) across various samples.
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Figure 2.12: mCH distribution and correlation. a, A browser screenshot (see
Figure 1 for description) of an example region with non-CG methylation (mCH).
Purple and pink ticks are methylated CHG and CHH sites, respectively (H = A,
C, or T). Ticks on the forward strand are projected upward from the dotted line
and ticks on the reverse strand are projected downward. b, The distribution of
methylation levels at mCH sites across all samples with a discernible TNCAC mo-
tif. Only mCH sites with at least 10 reads and a significant amount of methylation
were considered. c, Boxplots of the expression values across different quantiles of
CAC gene body methylation (Gene body mCAC). d, Scatterplot of mCAG vs.
mCAC inside gene bodies. e, Bar plot of the correlation of mCAG and mCAC in-
side gene bodies (blue) and the theoretical maximal correlation (red) if mCAC and
mCAG are perfectly correlated. f-h, The methylation levels of C (upper panel),
CG (middle panel) and CH (lower panel) across the read positions for PO-2 (red
line) and EG-3 (blue line). Vertical lines indicate the position (10th base from the
beginning) where trimming was applied. i, mCH motif from PO-2 with the first
10 bases of each read trimmed. j, mCH motif from PO-2 without trimming. k,
mCH motif from EG-3 with the first 10 bases of each read trimmed l, mCH motif
from EG-3 without trimming. The height of each letter represents its information
content (i.e., prevalence).
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Figure 2.13: X chromosome inactivation. a, Distributions of promoter CG
methylation (mCG) levels (mCG/CG), gene body non-CG methylation (mCH)
levels (mCH/CH), gene body mCG levels and promoter mCH levels in genes pre-
viously reported to express from only one allele (inactivated) or biallelically (es-
capee). Black ticks show median, and bars indicate 25-75th percentile range. Genes
more prone to escaping inactivation have lower promoter mCG, higher gene body
mCH, higher gene body mCG and higher promoter mCH in females. b-e, Discrim-
inability analysis using b, gender-specific gene-body mCH, c, promoter mCG, d,
promoter mCH and e, gene body mCG to predict the escapee status of X-linked
gene, respectively. Among them, gene body mCH is the most predictive feature of
chromosome X inactivation escapees.
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Figure 2.14: Allele-specific Methylation and Expression. a, An example
of allele-specific methylation (ASM). Reads that contain a heterozygous SNP (red
box) are separated by allele. The number of methylated (reads containing Cs) and
unmethylated (reads containing Ts) at adjacent CG sites (black boxes) and tested
for differential methylation. b, Fraction of allele-specific expressed (ASE) genes
(blue) and bi-allelically expressed genes (grey) that have at least one ASM event
within a certain distance. Bi-allelically expressed genes were defined as genes that
were covered by at least 10 reads and whose p-values given by binomial test for
allelic expression were greater than 0.2 (i.e. no significance). c, Fraction of ASE
genes that were linked to matched ASM event(s) (blue) and matched ASM events
with their locations shuffled (grey). b-c are aggregated results using samples from
triplicate tissues.
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Chapter 3

Improved regulatory element

prediction based on tissue-specific

local epigenomic signatures

3.1 Abstract

Accurate enhancer identification is critical for understanding the spatiotem-

poral transcriptional regulation during development as well as the functional im-

pact of disease-related non-coding genetic variants. Computational methods have

been developed to predict the genomic locations of active enhancers based on

histone modifications but the accuracy and resolution of these methods remain

limited. Here, we present a novel algorithm REPTILE, which integrates histone

modification and whole genome cytosine DNA methylation profiles to identify the

precise location of enhancers. We tested the ability of REPTILE to identify en-
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hancers previously validated in reporter assays. Compared to existing methods,

REPTILE shows consistently superior performance across diverse cell and tissue

types, and the enhancer locations are significantly more refined. We show that by

incorporating base-resolution methylation data, REPTILE greatly improves upon

current methods for annotation of enhancers across a variety of cell and tissue

types. REPTILE is available at https://github.com/yupenghe/REPTILE/.

3.2 Significance Statement

In mammals, when and where a gene is transcribed is primarily regulated by

the activity of regulatory DNA elements, or enhancers. Genetic mutation disrupt-

ing enhancer function is emerging as one of the major causes of human diseases.

However, our knowledge remains limited about the location and activity of en-

hancers in the numerous and distinct cell types and tissues. Here, we develop a

new computational approach, REPTILE, to precisely locate enhancers based on

genome-wide DNA methylation and histone modification profiling. We systemat-

ically tested REPTILE on a variety of human and mouse cell types and tissues.

Compared to existing methods, we found that enhancer predictions from REP-

TILE are more likely to be active in vivo and the predicted locations are more

accurate.

3.3 Introduction

In mammals, genes are transcribed in a temporally and spatially specific

manner during development. The precise regulation of gene expression is primarily

https://github.com/yupenghe/REPTILE/
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driven by the activity of distal regulatory sequences, known as enhancers. Disrup-

tion of enhancers can cause developmental abnormalities and diseases [1, 2, 3, 4, 5,

6]. Moreover, the vast majority of genetic variants associated with human diseases

by Genome-Wide Association Studies (GWAS) lie in noncoding regions, which po-

tentially affect gene transcription and contribute to diseases through disrupting

enhancer activity[7, 8]. In order to identify causal noncoding variants and un-

derstand their functional consequences, comprehensive and methods for accurate

enhancer annotation are essential.

Enhancers are bound by transcription factors (TFs), which in turn recruit

co-factors such as the histone acetyltransferase EP300 to achieve transcription

activation of target genes from a distance[9]. Active enhancers are generally lo-

cated in accessible chromatin and marked by enrichment of histone H3 lysine 4

monomethylation (H3K4me1) and H3 lysine 27 acetylation (H3K27ac)[10, 11, 12].

Enrichment of histone modifications in the genome can be determined by chro-

matin immunoprecipitation followed by massively parallel sequencing (ChIP-seq).

Computational approaches have been developed to predict active enhancers

from the combinations of these genome-wide profiles (see review[13] for a list of

representative methods). They generally use machine learning algorithms to learn

the histone modification profiles of putative enhancers active in a given cell/tissue

type and then predict enhancers in additional cell/tissue types. Although they have

proven to be useful, these methods have several important limitations. First, the

centers and boundaries of enhancer predictions are not well defined because of the

broad enrichment of histone modifications in regions around enhancers. Second,

existing methods often perform worse when tested on cells and tissues other than
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the cell/tissue types used for training of the algorithm. Third, existing methods

consider only one cell/tissue type at a time, and thus neglect potentially useful

information about the variation between cell/tissue types.

To address these limitations, we developed REPTILE (Regulatory Element

Prediction based on TIssue-specific Local Epigenetic marks), a novel algorithm to

predict enhancers by integrating whole genome, base-resolution cell/tissue-specific

DNA methylation data along with histone modification data. Cytosine DNA meth-

ylation (mC) is a type of chemical modification that plays critical roles in gene regu-

lation, transposon repression and the determination of cell identity[14, 15, 16, 17].

In mammalian genomes, it occurs in both CG and non-CG contexts[18, 19, 20,

21, 22] and can be quantified at nucleotide resolution using whole-genome bisul-

fite sequencing (WGBS)[18]. In this study, we consider only the most prevalent

form of cytosine methylation (mCG). Transcription factor binding sites (TFBSs)

are generally depleted of mCG[18, 23]. Whether mCG affects binding affinity is

unclear for the majority of transcription factors (TFs), although recent studies

suggest that there can be significant alteration of binding affinity[24, 25, 26]. The

anti-correlation of mCG and TF binding is predictive in inferring TFBS[27] and

enhancers[23, 28]. These observations led us to take advantage of mCG depletion

as a high-resolution ( 1bp depending on density of CG sites) enhancer signature

which is complementary to the lower-resolution histone modification data derived

from ChIP-seq experiments (with fragment size ranged from 200bp to 600bp after

sonication)[29]. Our results indicate that by incorporating mCG data, REPTILE

achieves higher prediction accuracy and produces higher-resolution enhancer pre-

dictions than existing methods that rely solely on histone modification profiles.
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3.4 Results

3.4.1 The REPTILE algorithm.

We designed REPTILE based on three observations: 1) Active enhancers,

which are bound by TFs in certain cells and tissues, show cell/tissue-specific

hypomethylated and such anti-correlation is an informative feature in predict-

ing enhancers. It has been shown that regions that are differentially methylated

across diverse cell and tissue types (also known as differentially methylated re-

gions, DMRs) strongly overlap with enhancers[19, 20, 30]. 2) With base-resolution

mCG data, the centers and boundaries of DMRs can be accurately defined, which

may be informative in identifying the precise location of enhancers. 3) The known

enhancers[31, 32] ( 2kb) are generally much larger than TFBSs ( 10-20bp) and

likely include sequences that contribute little to enhancer activity. We used the

term query region to describe such large regions where a small fraction of the se-

quences may have a regulatory role. Query regions also refer to negative regions

(that showed no observable enhancer activity) and the genomic windows used by

enhancer prediction methods. Since a large portion of an active query region may

have little contribution to its enhancer activity, the epigenomic signature of the

whole active query region may not be an ideal approximation to the epigenomic

state of the bona fide regulatory sequences within it. To address this issue, we used

DMRs ( 500bp) to pinpoint the possible regulatory sub-regions within the query

regions and to capture informative local epigenomic signatures in both enhancer

model training and prediction generation processes (Figure 3.1A-B).

Specifically, the REPTILE algorithm involves four major steps (Figure 3.1C).



94

First, DMRs are identified by comparing the mCG profiles of the target sample (in

which enhancers will be predicted) and several different cell/tissue types (which

serve as reference) (see Methods). Next, REPTILE integrates epigenomic data

and represents each DMR or query region as a feature vector, where each element

is the value of either the intensity or the intensity deviation of an epigenetic mark

(Figure 3.1D). The intensity deviation feature captures the epigenomic variation

between cell/tissue types and is a unique aspect of REPTILE, whereas existing

methods rely on data of a single cell/tissue type (Figure 3.6A; See Methods). In

the third step, REPTILE learns a model of enhancer epigenomic signatures from

the feature values of (putative) known enhancers and negative regions as well as

the DMRs within them. This model contains two random forest[33] classifiers,

which predict enhancer activities of query regions and DMRs based on their own

epigenomic signature (see Methods). In the last step, REPTILE uses the learned

model to calculate enhancer confidence scores for DMRs and query regions, based

on which the final predictions are generated (see Methods).

3.4.2 Training computational models for human and mouse

enhancers.

To evaluate the prediction accuracy of REPTILE, we systematically com-

pared REPTILE with four widely used enhancer prediction methods, PEDLA[34],

RFECS[35], DELTA[36] and CSIANN[37] using data from a wide variety of hu-

man and mouse cells and tissues (Figure 3.6B-D; Methods). These methods all use

machine learning techniques to predict active enhancers based on histone modifica-

tion profiles, while PEDLA also considers evolutionary conservation (Supplemental



95

Methods). Unless specifically stated, six histone modifications were used in these

analyses, including H3K4me1, H3K4me2, H3K4me3, H3K27me3, H3K27ac and

H3K9ac (Methods). Notably, REPTILEs utilizes mCG information in addition to

histone marks.

For each method, we trained a model (a set of parameters) for human

enhancers using epigenomic data from H1 human embryonic stem cells and a model

for mouse enhancers using data from mouse embryonic stem cells (mESCs). During

the training process, EP300 binding sites were used as putative active enhancers

(positive instances), while promoters and randomly chosen genomic regions were

used as negative instances (Supplemental Methods). When the REPTILE human

enhancer model was trained, data of four H1 derived cell types was also included as

a reference and DMRs were called for the methylomes of H1 and these cell types.

During training of the REPTILE mouse enhancer model, data for eight mouse

tissues from E11.5 embryo was used as the reference and DMRs were called across

the methylomes of mESCs and all these tissues. In the prediction step, all samples

except the target sample were used as the reference. For example, when we applied

REPTILE to generate enhancer predictions for E11.5 forebrain, mESCs and the

remaining E11.5 tissues were used as the reference.

Unless explicitly stated, all putative enhancers in human cell types and

tissues were generated for each method using the human enhancer model, trained

using H1 data as described above. Similarly, all enhancer predictions in mouse cell

types and tissues were based on the mouse enhancer model, trained using data

from mESCs.
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3.4.3 REPTILE shows superior prediction accuracy com-

pared to existing methods.

We first used cross validation to evaluate the learned human enhancer mod-

els and mouse enhancer models in H1 and mESCs, where the models were trained.

In both cell types, REPTILE showed the best performance among all of the tested

methods (Figure 3.7A-B). In addition, we found that in H1 cells, putative en-

hancers from REPTILE and RFECS had the greatest overlaps with distal TFBSs

and/or distal open chromatin regions (DHSs), while REPTILE outperformed all

other methods in mESCs (Figure 3.2A-B; Supplemental Methods). Also, REP-

TILE showed one of the highest validation rates (fraction of predictions that are

within 1kb to distal DHSs but not in promoters) and one of the lowest misclassifi-

cation rates (fraction of predictions that are within promoters; Figure 3.8A-D). We

then tested REPTILE on the 211 experimentally validated regions in mESCs from

Yue et al.[32] and it showed superior performance compared to all other methods

(Figure 3.2C; Supplemental Methods). Furthermore, we found that REPTILE

predictions recaptured the most distal regulatory DNA elements that were identi-

fied by multiplexed editing regulatory assay (MERA), a high-throughput genome

mutation screening approach[38] (Figure 3.7C; Supplemental Methods).

Since training datasets (e.g. EP300 data) are often not available for the cells

or tissues of interest (target samples), it is extremely desirable that the enhancer

model learned on one cell/tissue also performs well on other cell/tissue types. To

assess this, we applied the models trained on human embryonic stem cell (H1) data

to four H1 derived human cell lines and the models trained on mESCs to eight tis-
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sues from E11.5 mouse embryo. In human cell types, REPTILE and DELTA show

the highest validation rate and the lowest misclassification rate compared to other

methods, while REPTILE performed the best for mouse enhancer prediction (Fig-

ure 3.2D-G; Figure 3.9 and Figure 3.10). REPTILE predictions in E11.5 mouse

tissues recapitulated several newly in vivo validated enhancers in E11.5 mouse em-

bryo (Figure 3.2H; Supplemental Table S1 and Supplemental Methods). We then

tested REPTILE on in vivo experimentally validated regions and found it achieved

the best performance for all test datasets except in E11.5 midbrain and heart where

it ranked second (Figure 3.2C). Taken together, theses results demonstrate REP-

TILEs superior prediction accuracy in both human and mouse cell/tissue types

over existing methods, when training and prediction were performed on different

samples.

3.4.4 The resolution of REPTILE predictions is better than

existing methods.

Next, to measure the resolution of enhancer prediction methods, we calcu-

lated the average distance between the center of each prediction and the nearest

distal DHS (see Methods). We found a higher percentage (82%) of REPTILE

mESCs predictions had distal DHS nearby (within 1kb) compared to all other

methods (77%; Figure 3.8E). For H1 cells, its overlap (90%) ranked second, which

is only slightly lower than RFECS predictions (91%) (Figure 3.8F). Among these

predictions, the centers of RFECS predictions are on average 36bp (H1) and 44bp

(mESCs) closer to the nearest distal DHSs than REPTILE predictions, which

ranked second (Figure 3.8G-H). The results highlight RFECSs superior prediction
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resolution in the training cell lines (H1 and mESCs), whereas REPTILEs perfor-

mance is comparable; both outperformed all other methods.

However, we found that REPTILE achieved much better prediction res-

olution than all other methods when applied to cell/tissue types different than

the training data. In H1 derived human cells, the enhancer predictions made by

REPTILE are, on average, over 24bp closer to the nearest distal DHSs compared

to other methods, including RFECS (Figure 3.3A). On average, 85% of REP-

TILE predictions are supported by nearby distal DHSs, which ranked second, only

slightly lower than DELTA (86%, Figure 3.3B). In tissues from E11.5 mouse em-

bryo, REPTILE predictions are, on average, over 58bp closer to the nearest distal

DHSs than the other methods and 92% of the REPTILE predictions are close to

distal open chromatin regions, outperforming all other methods (84%; Figure 3.3C-

D).

3.4.5 Identifying the transcription factors functionally re-

lated to each cell type using REPTILE enhancers.

Enhancers are frequently bound by TFs that are critical to the function of

cells and tissues. In H1 and H1 derived cell lineages, we found that the predicted

enhancers from REPTILE and other methods are enriched for the DNA motifs that

are bound by the TFs (or complex) known to function in these cell lines (Figure 3.4;

Supplemental Methods). Motif analysis of REPTILE enhancers recapitulated the

enrichment of TF binding motifs in 25 out of the 27 cases (92.6%). Furthermore,

in most cases (21/27, 77.8%), the TF binding motif showed stronger enrichment in

REPTILE enhancers than in the putative enhancers from other methods. Notably,
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in the trophoblast-like cell lineage (TRO), the average enrichment of the TF mo-

tifs nearly doubled in enhancers from REPTILE compared to other methods (2.5

fold versus 1.3 fold; Figure 3.4). These results indicate that REPTILE enhancer

predictions facilitate the discovery of functionally related TFs in a given cell type

by accurately pinpointing the location of their binding motifs.

3.4.6 REPTILE enhancers are enriched for non-coding

GWAS SNPs and associated with increased expres-

sion of target genes.

Non-coding disease-associated genetic variants are enriched in the regula-

tory elements of related cell types and tissues[7]. Stronger tissue-specific enrich-

ment of such variants in putative enhancers of related tissues or cell types is likely

indicative of better prediction accuracy and resolution. Therefore, we employed

enrichment as a metric for the evaluation of enhancer prediction methods.

First, we applied all methods to identify enhancers in human heart left ven-

tricle. Since data are available for only some of the epigenetic marks in this tissue,

we retrained all methods to generate the enhancer predictions (see Supplemental

Methods for more details). Then, we tested the enrichment of non-coding GWAS

SNPs in these putative enhancers. Consistent with previous findings, only SNPs

associated with traits in Cardiovascular category showed significant enrichment,

indicating that the predicted enhancers are of reasonable quality (Figure 3.11A).

However, we found that these SNPs were most enriched in REPTILE predicted en-

hancers, suggesting its better resolution and accuracy compared with other meth-
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ods (Figure 3.11A-B).

Enhancers are expected to increase the transcription of target genes. To test

this, we linked REPTILE putative enhancers to their target genes using expression

quantitative trait loci (eQTL) data of left ventricle tissue from Genotype-tissue

Expression (GTEx) Project (Supplemental Methods). We found that indeed genes

linked to REPTILE enhancers showed significantly higher expression than genes

linked to other genomic loci (Figure 3.11C).

3.4.7 REPTILE score correlates better with in vivo en-

hancer activity than open chromatin.

Although open chromatin signatures using DNase-seq[39]/ATAC-seq[40]

were used for validation in this study, we found that REPTILE score is more pre-

dictive of the in vivo activity of DNA elements from VISTA database than open

chromatin data (Figure 3.5A; Supplemental Methods). Two recent studies showed

that low CG methylation in candidates of regulatory regions is an indicator of

enhancers[41, 42]. To test this idea, we implemented an approach to predict en-

hancers based on the CG methylation level in DHSs (DHS+mCG; Supplemental

Methods). Although useful, this approach does not provide better performance

than REPTILE predictions (Figure 3.5A). We further tested other single histone

marks as well as the H3K27ac signal in DHSs and found that none of these is as

predictive as the REPTILE score (Figure 3.5A). Consistently, the enhancer pre-

dictions based on REPTILE score consistently achieved the best precision given

different score cutoffs (Figure 3.5B-E; Supplemental Methods). These results high-

light the value of a method that utilizes integrative data. At the same time, it
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suggests that open chromatin regions may not be the ideal data-type to validate

predicted enhancers.

3.5 Discussion

In this study, we describe the development of a new algorithm, REPTILE,

which is able to predict active enhancers by integrating tissue-specific histone mod-

ification data and base-resolution CG methylation (mCG) data. We found that the

overall accuracy and resolution of REPTILE predictions exceeds other methods, es-

pecially when applied to cell/tissue types different than the training data. Further

benchmarking revealed that REPTILEs performance is robust to different DMR

inputs and reference choice (Figure 3.12 and Figure 3.13; Supplemental Note 1).

In summary, by incorporating DNA methylation data produced by whole genome

bisulfite sequencing and using information of cell/tissue type specific variation of

epigenetic marks, REPTILE greatly improves upon current methods for annota-

tion of enhancers across a variety of cell and tissue types (See also Figure 3.12 and

Figure 3.14; Supplemental Note 2).

Although some methods showed better performance in a few tests, REP-

TILEs performance was superior in most tests. While we tried to evaluate the

prediction accuracy of all methods in an unbiased manner, we should point out

that these benchmarks might be further improved in several ways. First, the val-

idated regions in mESCs were originally selected based on RFECS predictions,

which introduces a potential bias. However, if this bias alters the performance of

prediction algorithms it is likely to inflate the performance of RFECS more than
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REPTILE. Second, the number of validated enhancer elements is currently limited,

although this issue may be resolved in the near future, as more elements will be

tested for in vivo function. Third, the negative data sets obtained from the VISTA

enhancer database were mostly putative enhancer elements from previous studies

and therefore may be very similar to true enhancers in many aspects, such as the

degree of evolutionary conservation[43]. As a result, the prediction accuracy on

VISTA enhancer dataset is likely to be lower than the accuracy of whole genome

prediction because many of the negatives in the VISTA database actually have

some enhancer-like characteristics, which likely makes them harder to differentiate

from true positives. While improvements are possible (such as benchmarking of

methods on genomic regions tested in high-throughput enhance assay and incor-

porating more sophisticated features in the REPTILE model), our results show

that REPTILE outperforms existing enhancer prediction methods, especially for

samples where training data is unavailable.

As epigenomic information of a larger number of cell/tissue types contin-

ues to be comprehensively profiled by the effort of Encyclopedia of DNA Elements

(ENCODE)[32, 44, 45], Roadmap Epigenomics Mapping Consortium (REMC)[46],

International Human Epigenome Consortium (IHEC) and other consortia, we en-

vision that REPTILE will be a valuable tool to generate accurate enhancer an-

notations for these datasets, facilitating better regulatory DNA predictions and

fueling new biological insights.
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3.6 Methods

3.6.1 Overview of Data Acquisition.

In order to systematically benchmark REPTILE, we collected epigenomic

data of various human and mouse cells and tissues. These epigenetic marks in-

cluded base resolution DNA methylation data (WGBS) and six histone modifica-

tions: H3K4me1, H3K4me2, H3K4me3, H3K27ac, H3K27me3 and H3K9ac (Fig-

ure 3.6B-C; Supplemental Table S2 and S3). We downloaded data of five human

cell lines from Xie et al.[47]: H1 human embryonic stem cells (H1), mesendo-

derm (MES), mesenchymal stem cells (MSC), neural progenitor cells (NPC) and

trophoblast-like cells (TRO). Human data also contains WGBS of heart left ven-

tricle from Schultz et al.[19] and histone modification data of the same tissue from

Leung et al.[48]. In addition, we included data 9 mouse samples: mouse embry-

onic stem cells (mESCs) and 8 mouse tissues from E11.5 embryo (Supplemental

Methods).

Next, to train the computational enhancer prediction methods, we obtained

EP300 binding data from mouse and human ESCs (Supplemental Methods). It has

been shown that EP300 binding is a key feature of a fraction of active enhancers

but computational approaches are able to learn the chromatin signatures of these

enhancers and predicts other active enhancers without EP300 binding[10, 11]. In

this regard, we used EP300 binding sites as putative active enhancers in training

datasets.

To validate the enhancer predictions from these methods, we collected in

vivo enhancer validation data in E11.5 embryonic mouse tissues from the VISTA
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enhancer browser[31] as well as high-throughput report assay data in mESCs from

Yue et al[32]. We also included in vivo validated embryonic heart enhancers from

Narlikar et al[49]. In total, eight test datasets were used (Supplemental Fig-

ure 3.6D). In addition, in all five human cell lines, mESCs and 5 E11.5 mouse

tissues, we downloaded publically available DNase-seq data to validate enhancer

predictions, assuming the actual location of enhancers to coincide with distal

DNase hypersensitivity sites (DHSs) in the corresponding cell/tissue types. See

also Supplemental Methods for more details.

3.6.2 REPTILE

REPTILE (Regulatory Element Prediction based on TIssue-specific Local

Epigenetic marks) is a novel algorithm, which generates high-resolution prediction

of active enhancers genome-wide by integrating mCG and histone modification

data. REPTILE uses the differentially methylated regions (DMRs) that are iden-

tified across all samples as high-resolution enhancer candidates and it is able to

capture local epigenomic signatures that may otherwise be washed out in the signal

of larger region. In addition, it takes into account the tissue-specificity of enhancers

as features to further improve its performance; REPTILE predicts enhancers based

on epigenomic data of not only the target sample (where enhancer predictions are

generated) but also additional reference samples to exploit the useful information

in variation between cells and tissues.

The overview of REPTILE workflow is shown in Figure 3.1C, which in-

cludes four major steps: 1) DMR calling: DMRs are identified by comparing the

DNA methylomes of input samples. We first called differentially methylated sites
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(DMSs). Next, we merged DMSs into blocks if they both show similar sample-

specific methylation patterns and are within 250bp. These two steps were per-

formed as previously described[19] (See also Supplemental Methods for details).

We then filtered out the blocks that contain only one DMS. The remaining blocks

were then extended 150bp from each side to include the two regions covered by first

upstream and first downstream nucleosomes respectively. These extended blocks

are defined as DMRs, which were used in later steps.

2) Data integration: Then, REPTILE integrates various types of input data

to obtain the epigenomic signatures of DMRs and query regions, in preparing for

the next two steps: enhancer model training and prediction generation. Specifi-

cally, each DMR or query region is represented as a feature vector and each variable

in the vector corresponds to the intensity or intensity deviation of one epigenetic

mark (Figure 3.1D). In this study, the intensity of each histone modification is

defined as the log2 fold change RPM relative to control and the intensity of mCG

is the CG methylation level. Note that different definitions of intensity can also

be used, such as the RPM with subtraction of control or simply RPM of ChIP-seq

itself. It makes REPTILE more flexible and allows various way of normalization

to be imposed on the input data. Intensity deviation of an epigenetic mark is

defined as the intensity in target sample subtracted by its mean intensity in ref-

erence samples (i.e. reference epigenome) and this type of feature quantifies the

tissue-specificity of the epigenetic mark (Figure 3.6A). Since the data of reference

samples is only used to calculate the mean signal value, REPTILE does not require

that all epigenetic marks are available in all reference samples, i.e. missing data

is allowed. However, the target sample, where enhancer predictions are generated,
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must contain the data of all the epigenetic marks. In this study, we used seven

epigenetic marks (DNA methylation and 6 histone modifications) and thus the

complete REPTILE model contains in total 14 features (two features, intensity

and intensity deviation, for each mark; Figure 3.14).

The input data varies according to the next step. 1) The training step re-

quires data of known/putative enhancers (such as EP300 binding sites) and known

negative regions as well as the DMR list and the epigenomic data of target sample

and reference samples. 2) Prediction generation takes the enhancer model obtained

from the training step, together with the DMRs the epigenomic data, as input. It

also requires query regions. The query regions can be 2kb sliding windows with step

size 100bp across the genome for generating genome-wide enhancer predictions (see

below). They can also be pre-defined regions, such as conserved elements in the

genome, where their enhancer activity is of interest. More details about REPTILE

input preparation are available at https://github.com/yupenghe/REPTILE/.

3) Model training: In the next step, REPTILE enhancer model are trained

by learning the epigenomic signatures of query regions, including known enhancers

and negatives, as well as the DMRs within them. Specifically, one random forest

classifier is trained to learn the epigenomic profiles of the labeled query regions,

while another random forest classifier is trained to learn epigenomic features in the

DMRs that overlap with the query regions. Both classifiers use same 14 features

but the values of these features are calculated differently. The classifier for query

regions computes feature values based on the epigenomic data of whole query

regions, whereas the classifier for DMRs is trained and applied on the data of

DMRs.
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The random forest classifier for query regions can be trained on data of

known active enhancers and negative regions. However, the classifier for DMRs

cannot be trained in such straightforward way due to the lack of labels for DMRs.

To circumvent this, we label all DMRs that are within known enhancers as active

and we label the ones that are within negative regions as inactive. Then, we use

these labels to train the random forest classifier for DMRs in a similar fashion as

in the training of classifier for query regions. The rationale behind this is that (we

assume that) DMRs within negative regions are inactive and part of the DMRs

within active enhancers can be inactive. In the training dataset where negative

regions greatly outnumber active enhancers, we expect that there are much more

DMRs labeled as inactive than active. Therefore, although the inactive DMRs

within active enhancers might be incorrectly labeled as active, they only compose

a small portion of DMRs. In this paper, the ratio of negatives to positives in the

training datasets is at least 7:1 (Supplemental Methods). The random forest model

can be successfully trained on such data with a small fraction of instances incorrect

labeled, which has been demonstrated by the better performance of REPTILE than

existing methods. The implementation of random forest model is built on the R

(version 3.2.1) package randomForest (version 4.6.12) with parameter ntree=2000,

nodesize=1.

4) Prediction generation: Lastly, we apply the enhancer model learned in

the training step to generate enhancer predictions. Specifically, for every query re-

gion or DMR, the corresponding random forest classifier will generate an enhancer

confidence score, which is defined as the fraction of decision trees in the random

forest model that vote in favor of the active enhancer class.
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Given a set of regions of interest, REPTILE is able to predict their enhancer

activity. First, REPTILE generates one enhancer confidence score based on the

epigenomic signature of certain query region and also multiple scores based on the

data of DMRs within it. Then, the maximum is assigned as the final score for

this region. In this design, data of DMRs are used to complement the prediction

based on query regions. We found that, with correct enhancer model, even if the

DMRs were not correctly identified, the prediction performance did not decrease

much (See REPTILE w/ shuf DMR in Figure 3.12). It is because the incorrect

DMRs are not likely to show enhancer-like epigenomic signatures and low enhancer

confidence scores will be assigned to them. In this case, the prediction will be

dominated by the enhancer confidence score calculated based on the data of whole

query regions (See REPTILE w/o DMR in Figure 3.12).

REPTILE can also generate enhancer predictions across the genome. In

this study, we used REPTILE to first calculate enhancer scores for all DMRs in

the genome as well as all 2kb sliding windows with 100bp step size across the whole

genome. The empirical choices of window size 2kb and step size 100bp are based on

the benchmark results from previous study[35, 50]. Then, DMRs with score higher

than a given cutoff (0.5 is used in this study) are predicted to be enhancers (termed

enhancer-like DMRs). In order to generate non-overlapping enhancer predictions,

overlapping enhancer-like DMRs are merged into single prediction and it score is

the highest score of all enhancer-like DMRs that are merged to form this prediction.

Next, to capture the enhancers with no detectable mCG variation, REPTILE calls

peaks of the enhancer scores across the sliding windows that pass the given score

cutoff using the below procedure: 1.All sliding windows that pass the cutoff are
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labeled as enhancer candidates. Candidates that are within 1kb to each other are

grouped into clusters. 2.For each cluster, the candidate with maximum score is

set as a peak. If multiple candidates share the highest score, we randomly select

one of them as the peak. 3.For each cluster, the peak and all candidates that are

within 1kb of the peak are excluded from the candidate list. 4.Step 2 and 3 are

repeated until the candidate list in each cluster is empty. After this process, all

sliding windows that have score greater than threshold are either peaks or within

1kb to peaks. The rationale behind this is that the sliding windows adjacent to

a peak are part of the peak. Lastly, the final predictions are the union of the

enhancer-like DMRs and the sliding windows that are called as peaks but have no

overlap with any enhancer-like DMRs. Similar to the prediction on given regions,

this procedure is robust to incorrect DMRs because the enhancers that can be

identified using the epigenomic mark of sliding windows will still be called.

3.6.3 Software availability

The REPTILE software is published under the BSD 2-Clause License. It

was written in R and python. The R code was submitted as an independent R

package, called REPTILE, in the Comprehensive R Archive Network (CRAN). The

source code, supplemental dataset, pre-trained enhancer models, usage and further

details of the complete pipeline are available in https://github.com/yupenghe/

REPTILE.

https://github.com/yupenghe/REPTILE
https://github.com/yupenghe/REPTILE
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3.10 Supplemental Notes

3.10.1 Performance of REPTILE is robust to choice of ref-

erence and suboptimal DMR calling.

Compared with other methods, REPTILE utilizes DMRs to improve pre-

diction resolution. However, there is no consensus DMR definition and different

algorithms may identify different regions as DMRs[51]. We test the robustness

of REPTILE to DMR input using mouse data because experimentally validated

enhancers are available in mouse samples (Figure 3.6D). First, we shuffled the
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genomic location of DMRs and used these shuffled DMRs in the prediction step,

whereas the enhancer model was learned using unshuffled DMRs (REPTILE w/

shuf DMR) (see Supplemental Methods). We found that the prediction accuracy

remained superior to existing methods in 4 out of the 8 test datasets (Figure 3.12A).

As expected, without meaningful DMRs, this method has worse prediction reso-

lution than REPTILE with complete input set (Figure 3.12B and D). We also

found that fewer predictions were near distal DHS compared to REPTILE with

full inputs (Figure 3.12C and E). However, the REPTILE w/ shuf DMR predictions

remain comparable with existing methods, indicating that REPTILEs performance

is robust to suboptimal DMR input given a correctly pre-trained enhancer model.

Inspired by these results, we provide pre-trained enhancer models along with the

software to facilitate the use of REPTILE. This robust performance is likely due

because REPTILE generates good enhancer prediction solely based on epigenomic

signatures of the query regions (REPTILE w/o DMR) and the DMR input simply

improves upon an already relatively accurate prediction.

Next, we asked whether the performance of REPTILE is robust to the choice

of reference samples. To test this, we ran REPTILE with a different strategy of

choosing the reference (Figure 3.13). Instead of using all non-target samples as the

reference, we only used mESCs, E11.5 Craniofacial and E11.5 Liver as reference

in the prediction step REPTILE alt Ref). We then evaluated this strategy using

mouse data. Specifically, we ran REPTILE to predict the enhancer activity of

elements from VISTA enhancer browser in six E11.5 tissues (Figure 3.13A). For

each target sample, we only used data of the target sample, mESCs, E11.5 Cran-

iofacial and E11.5 Liver. We trained an enhancer model for each target sample
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on data of mESCs with the target sample, E11.5 Craniofacial and E11.5 Liver as

reference (Supplemental Methods). In the prediction step, mESCs, E11.5 Cran-

iofacial and E11.5 Liver were used as the reference (Supplemental Methods). For

each target sample, DMRs were called across methylomes of the four samples. We

found that even if we changed the reference, REPTILE (REPTILE alt Ref) showed

performance as good as the previous setup (REPTILE; Figure 3.13). We further

used DHS data to validate the enhancer predictions from these two setups and

they showed similar prediction accuracy and resolution. Collectively, these results

demonstrate that REPTILEs performance is robust to different reference choice.

3.10.2 Epigenomic variation information improves

enhancer prediction resolution and accuracy.

Use of the random forest algorithm allowed us to identify key epigenetic fea-

tures in the enhancer prediction model (Figure 3.14; Supplemental Methods). In

the mouse enhancer model, we found that mCG was the most informative feature

for predicting enhancer activities of DMRs, while H3K27ac was the most predictive

mark for query regions. This is likely due to the fact that hypomethylation tends

to be restricted within DMRs, and thus becomes less predictive in larger query

regions where hypomethylation pattern is washed out. In the human enhancer

model trained on H1 cells, H3K4me2 is the most informative feature in both clas-

sifiers. We also found several other high-ranking features including intensity devi-

ation features, such as H3K4me2-dev and H3K27me3-dev, indicating the necessity

to capture the tissue-specificity of epigenetic marks for enhancer prediction (Fig-

ure 3.14). When the intensity deviation features were removed (REPTILE w/o
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Ref), REPTILE prediction accuracy decreased, even though the results remained

comparable or superior to other methods (Figure 3.12).

Next, to understand the contribution of DMRs, we tested REPTILE with-

out DMR input (REPTILE w/o DMR). We found that the midpoint genomic

locations of these predictions were 30-40bp further from the closest distal DHS

compared to the predictions made by REPTILE with DMR input (Figure 3.12B

and D). Also, the percentage of DHS-supported predictions slightly decreases (Fig-

ure 3.12C and E). However, in the enhancer validation datasets, the prediction

accuracy without DMR input remains as good as the REPTILE method will all

inputs (Figure 3.12A). These results indicate that the inclusion of tissue-specificity

information improves prediction accuracy while DMRs are necessary for more re-

fined prediction of enhancer locations.

3.11 Supplemental Methods

3.11.1 Whole-genome Bisulfite Sequencing Data

The raw reads of MethylC-seq or whole-genome bisulfite sequencing (WGBS)

data of eight mouse tissues from E11.5 embryo were downloaded from the EN-

CODE website (https://www.encodeproject.org/). Mouse embryonic stem cells

(mESCs) WGBS data was obtained from Gene Expression Omnibus (GEO). The

accession numbers of the two mESCs replicates are GSM1162043 and GSM1162044.

The paired-end data (GSM1162045) of the second replicate was not included to

avoid potential bias due to different data type (paired-end versus single-end).

WGBS raw reads of human cell lines, H1 human embryonic stem cells (H1),

https://www.encodeproject.org/
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mesendoderm (MES), mesenchymal stem cells (MSC), neural progenitor cells

(NPC) and trophoblast-like cells (TRO), were obtained from SRA (accession

SRP000941). For MSC, whose methylome had been sequenced in paired-end, we

mapped the first read in each pair to avoid problems in processing overlapping

reads similar to Schultz et al.[19]. WGBS data of human heart left ventricle was

downloaded from GEO (GSM983650). The sources of all the WGBS data can be

found in Supplemental Table S2.

WGBS data were processed as previously described[52], using mm10 ref-

erence for mouse data and hg19 reference for human data. Only autosomes, sex

chromosomes, mitochondrial chromosomes and the genome sequence of lambda

phage (as control) are included in the reference genome. The sequences were down-

loaded from UCSC genome browser[53]. For each sample, if biological replicates

were available, the data of replicates were combined. To quantify the methylation

landscape, we divided the genome into 100bp bins and calculated the (weighted)

methylation level[54] for each bin. Weighted methylation level is also called as the

CG methylation (mCG) intensity and it is defined as the ratio of the sum of methy-

lated basecall counts over the sum of both methylated and unmethylated basecall

counts across all CG sites in a given region[54]. For each sample, these values

were used to generate a file (in bigWig format) to store the methylation levels of

all bins (see also https://genome.ucsc.edu/goldenpath/help/bigWig.html for more

about bigWig format). In all the analyses in this paper, the methylation levels of

any region was obtained from these bigwig files using the bigWigAverageOverBed

executable from UCSC genome browser[53].

https://genome.ucsc.edu/goldenpath/help/bigWig.html
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3.11.2 Identification of Differentially Methylated Region

(DMRs)

DMR calling was done using very similar procedure as Schultz et al.[19].

We included (and rephrased) its the entire description here and highlighted the

modifications we made. In the procedure, we considered bisulfite sequencing as

a binomial process and defined a stochastic model in which at each position, the

observed number of reads supporting methylated cytosine in each sample is drawn

from a binomial distribution. The true fraction of methylated alleles in the pop-

ulation in given sample at given cytosine in CG context, xin, is the parameter of

the binomial distribution, where i denotes the position of cytosine and n denotes

the sample. The null hypothesis is that the methylation level (xin) at this position

is equal across all samples: xin = xi for all n.

Our procedure is designed to test whether the observed data are consistent

with the null hypothesis, or alternatively if there is a significant deviation from

equal methylation levels. To do this, we compute a goodness-of-fit statistic, s, in-

troduced by Perkins et al[55]. We arrange the observed data in an Nx2 table, with

each row for each of the N samples and the two columns for the number of reads

supporting methylated and unmethylated cytosines respectively. The number of

observed reads in sample n at position i is oinj, where j = 1 for methylated reads

and j = 2 for unmethylated reads. The expected number of reads in sample n

with methylation state j under the null hypothesis is einj:

einj = (
N∑

m=1

oimj)(
2∑

k=1

oink)/M i (3.1)
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where M i =
∑N

n=1

∑2
k=1 o

i
nk is the total number of reads in all samples. The

statistic for the goodness of fit is

si =

√√√√ 1

2N

N∑
n=1

2∑
j=1

(oinj − einj)2 (3.2)

Next, we simulated read count data under our stochastic model assuming the null

hypothesis in the following way:

• Set all cell counts in the table to zero

• Randomly select a cell in the table with probability equal to the expected

counts divided by the total number of counts in the table (
einj

M i ). Increment

the value in this cell by one.

• Repeat this procedure M i times.

• Finally, calculate the value of the statistic, sishuff , for the randomly generated

table.

This randomization procedure was repeated until we observed 100 iterations with

a value of sishuff that was at least as extreme as that of the observed data, s, up

to a maximum of 3,000 iterations. The p-value at position i was then computed

as:

pi =
Ri + 1

T i
(3.3)

Where Ri is the number of randomization where a statistic greater than or equal to

the original tables statistic was observed. T i is the total number of randomizations
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that were conducted. Our adaptive permutation procedure ensures that any sites

which we may potentially identify as significantly differentially methylated with

pi < 0.01 will be sampled 3,000 times. At other sites, we have observed an appre-

ciable number (100) of permutations more extreme than our original test statistic

(s ≥ sshuff ) and the p-value for these sites will be p ≥ (100 + 1)/3000 = 0.034;

these sites will therefore not be called as differentially methylated.

To control the false discovery rate (FDR) at our desired rate of 1%, we used

a procedure designed for permutation-derived p-values[56]. First we generated a

histogram of the p-values across all cytosines in CG context as described before.

Next, we calculated the expected number of p-values to fall in a particular bin

under the null hypothesis. This expected count is computed by multiplying the

width of the bin by the current estimate for the number of true null hypotheses

(m0), which is initialized to the number of tests performed. We then identified

the first bin (starting from the most significant bin) where the expected number

of p-values is greater than or equal to the observed value. The differences between

the expected and observed counts in all the bins up to this point are summed,

and a new estimate of m0 is generated by subtracting this sum from the current

total number of tests. This procedure was iterated until convergence, which we

defined as a change in the m0 estimate less than or equal to 0.01. With this m0

estimate, we were able to estimate the FDR corresponding to a given p-value cutoff

by multiplying the p-value by the m0 estimate (the expected number of positives

at that cutoff under the null hypothesis) and dividing that product by the total

number of significant tests we detected at that p-value cutoff. We chose the largest

p-value cutoff that still satisfied our FDR requirement.
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Next, we combined significant sites (differentially methylated sites or DMSs)

into blocks if they were within 250bp and showed methylation changes in the same

direction (e.g. sample A was hypermethylated and sample B was hypomethylated

at both sites). A sample was considered hypo- or hyper-methylated if the deviation

of observed counts from the expected counts was in the top or bottom 1% of

deviations. These residuals were calculated for a position i using the following

formula for a given cell in row n and column j of the table:

oinj − einj√
einj ∗ (1−

∑N
m=1

eimj

M i ) ∗ (1−
∑2

k=1

eink

M i )

(3.4)

The distinction between hypermethylation and hypomethylation was made based

on the sign of the residuals. For example, if the residual for the methylated read

count of sample A was positive, it was counted as hypermethylation. Furthermore,

blocks that contained fewer than 2 DMSs were discarded. Instead of the 10 DMS

cutoff used in original procedure, we used a more lenient 2 DMS cutoff to get a

more comprehensive list of DMRs (enhancer candidates) to feed REPTILE. As an

additional step to the original procedure, we next extended the remaining blocks by

150bp from both side and defined them as DMRs. The purpose of this extra step

is to include regions where the histone modifications generally occur the upstream

and downstream nucleosomes flanking putative enhancers (typically nucleosome-

free regions).
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3.11.3 Applying the DMR calling algorithm on human and

mouse cells and tissues

To obtain DMRs for mouse samples, we applied the above calling algorithm

on the mCG profiles of mESCs and eight E11.5 mouse tissues. In total, 542,139

DMRs were identified, with average length 484bp and covering over 262Mb or

10% of the genome. We found that 97% of the experimentally validated enhancers

(246 out of 253) in VISTA enhancer browser[31] overlap with DMRs. By contrast,

out of the 45 elements in VISTA enhancer browser that did not overlap with any

DMRs, 38 (86%) did not show any enhancer activity, implying that differential

methylation is a significant enhancer signature.

We applied the same procedure to call DMRs across the mCG profiles of all

human cell lines. We identified 159,474 DMRs and their average length is 439bp.

These DMRs covered 2% of the genome.

3.11.4 Chromatin and Transcription Factor ChIP-seq Data

For the eight E11.5 mouse tissues, we downloaded the ChIP-seq data of

six previously identified enhancer-related histone marks (H3K4me1, H3K4me2,

H3K4me3, H3K27ac, H3K27me3 and H3K9ac) and the corresponding control from

the ENCODE project website (https://www.encodeproject.org/). For mESCs,

ChIP-seq data of the same histone modifications and the corresponding controls

were downloaded from GEO (Supplemental Table S3). In addition, ChIP-seq data

of EP300 and its corresponding control data were downloaded from GEO (Supple-

mental Table S3). We also downloaded ChIP-seq data of 12 transcription factors

https://www.encodeproject.org/
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in mESCs from GEO (Supplemental Table S3).

All mouse ChIP-seq data were processed using the ENCODE uniform pro-

cessing pipeline for ChIP-seq: First, reads were mapped to the mm10 reference

using bwa[57] (version 0.7.10) with parameters -q 5 -l 32 -k 2. The mm10 ref-

erence only contains autosomes, sex chromosomes and mitochondrial sequences.

It is also called as mm10-minimal in the ENCODE website. Then, Picard tool

(http://broadinstitute.github.io/picard/, version 1.92) was used to remove PCR

duplicates using parameter REMOVE DUPLICATES=true.

For chromatin ChIP-seq data of human cell lines and heart left ventri-

cle tissue, we directly downloaded the alignment files (labeled as Unconsolidated

Epigenomes (Uniform mappability)) from the data portal of the NIH Roadmap

Epigenomics Mapping Consortium (http://egg2.wustl.edu/roadmap/web portal/

index.html). We obtained ChIP-seq data of H3K4me1, H3K4me2, H3K4me3,

H3K27ac, H3K27me3, H3K9ac and corresponding control for all five human cell

lines. For heart left ventricle, we downloaded H3K4me1, H3K4me3, H3K27ac,

H3K27me3 and control since other histone marks were not available.

For each histone modification mark in human and mouse samples, we repre-

sented it as continuous enrichment values of 100bp bins across the genome. Specif-

ically, we first extended reads to 300bp (expected fragment length) using the -r

option (along with -s and -l 0 options) in slopBed from bedtools[58]. We then

divided the mouse genome into 100bp bins and for each bin, we calculated log2

fold RPM relative to control. RPM for control experiment in each bin is smoothed

by averaging it over the RPMs of 2 bins upstream and 2 bins downstream. RPM

(Reads Per Million mapped reads) for a given bin is defined as the number of

http://broadinstitute.github.io/picard/
http://egg2.wustl.edu/roadmap/web_portal/index.html
http://egg2.wustl.edu/roadmap/web_portal/index.html
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mapped reads that overlap (1bp) with the bin divided by the total number (in

million reads) of the uniquely mapped reads in the genome.

For the ChIP-seq data of TFs and EP300 in mESCs, we used MACS[59]

(1.4.2) to call peaks with default parameters. The reported TF peaks were filtered

out if they are within 1kb to any transcription start sites (TSSs) of genes in mouse

GENCODE[60] annotation (M2).

3.11.5 EP300 and Transcription Factor Binding Sites in

H1

We downloaded the binding sites of DNA-binding proteins in H1 from EN-

CODE data portal in the UCSC genome browser (http://hgdownload.cse.ucsc.edu/

goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/

wgEncodeRegTfbsClusteredWithCellsV3.bed.gz). The binding sites of EP300 were

used as positive instances (i.e. putative active enhancers) in the training of en-

hancer prediction methods. The distal binding sites of remaining DNA-binding

proteins, excluding CTCF, were used to validate the prediction in H1 in Fig-

ure 3.2A (See later section for details). The reason to exclude CTCF was that

CTCF played a major role in shaping the chromatin architecture and its binding

sites included insulators[61]. Distal binding sites are at least 1kb away from any

TSSs in the human GENCODE annotation (release 19).

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/wgEncodeRegTfbsClusteredWithCellsV3.bed.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/wgEncodeRegTfbsClusteredWithCellsV3.bed.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/wgEncodeRegTfbsClusteredWithCellsV3.bed.gz
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3.11.6 Enhancer Validation Data

In order to evaluate the enhancer prediction accuracy, we collected pub-

licly available data of experimentally validated enhancers and negative sequences

(sequences that showed no detectable enhancer activity) from three sources (Fig-

ure 3.6D). The in vivo and in vitro data were used to construct the 8 test datasets

used in benchmark (Figure 3.6D).

• From Yue et al.[32], we downloaded 212 regions that were tested for in vitro

enhancer activity by luciferase reporter assay in mESCs. The original co-

ordinates of these regions were in mm9 reference and they were liftover to

mm10 using liftOver utility from UCSC genome browser[53]. One region

was filtered out in this process. Out of the remaining 211 tested regions, 131

showed enhancer activity in mESCs and were labeled as positive, while the

rest were labeled as negative.

• In addition, we obtained in vivo enhancer validation data from VISTA en-

hancer browser[31] (Oct 24th, 2015). In total 546 mouse sequences were

tested for in vivo enhancer activity in E11.5 mouse embryo using transgenic

reporter assay. Their mm9 coordinates were liftover to mm10 and one region

was removed. In the eight E11.5 mouse tissues where epigenomic data is

available, six of them had reasonable number (¿=30) of validated enhancers.

We used the data of these tissues (forebrain, midbrain, hindbrain, heart,

limb and neural tube) to build six test datasets (Figure 3.6D). In this study,

we only included the mouse sequences in VISTA database and excluded all

human sequences. The rationale is that the in vivo enhancer activity of hu-
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man sequences may be different from the activity of their mouse counterparts

(orthologs), preventing them from being good validations.

• We also included 36 in vivo validated sequences that were tested in vivo in the

heart of zebrafish embryo from Narlikar et al[49]. The enhancer activity in the

embryonic heart of zebrafish was shown to be conserved in mouse embryo[49].

Based on this, we used these regions as approximation of enhancers in E11.5

mouse heart. The original dataset included 46 regions with coordinates in

hg18 human reference genome. The hg18 coordinates were first liftover to

hg19, which were then converted to mm10. In this process, 10 regions were

eliminated and the remaining 36 were included in later analysis.

3.11.7 DNase-seq Data

The DNase Hypersensitivity Sites (DHSs) identified based on DNase-seq

data were used to validate enhancer predictions. DHS calls of all five human cell

lines were obtained from the NIH Roadmap Epigenomics Mapping Consortium

(http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/

narrowPeak/). We downloaded the narrow DHS peaks from MACS2[59] (files

whose names ended with -DNase.macs2.narrowPeak.gz).

DHS calls of mESCs were downloaded from UCSC genome browser

(http://hgdownload.cse.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeUwDgf/

wgEncodeUwDgfEscj7129s1ME0PkRep1.narrowPeak.gz). The coordinates of these

elements (mm9) were liftover onto mm10. DNase-seq data and DHSs in E11.5

mouse tissues was downloaded from the ENCODE project website (https://www.

encodeproject.org/). We found that the DNase-seq data were available for five

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/
http://hgdownload.cse.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeUwDgf/wgEncodeUwDgfEscj7129s1ME0PkRep1.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeUwDgf/wgEncodeUwDgfEscj7129s1ME0PkRep1.narrowPeak.gz
https://www.encodeproject.org/
https://www.encodeproject.org/
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E11.5 tissues. The tissues and the corresponding accessions in the ENCODE

project website are E11.5 craniofacial (ENCSR196VDE), E11.5 neural tube

(ENCSR312QVY), E11.5 midbrain (ENCSR292QBA), E11.5 hindbrain

(ENCSR358ESL) and E11.5 limb (ENCSR661HDP). Narrow peak files were down-

loaded and each peak call was defined as one DHS.

DNase-seq data was available for two biological replicates of each mouse

E11.5 tissue. The DHSs of two biological replicates were combined using bedops

(http://bedops.readthedocs.io/en/latest/content/usage-examples/

master-list.html)[62]. Below is the procedure description adapted from the text in

the bedops webpage. The procedure starts with the union of DHSs called in both

replicates (i.e. original elements) and an empty master list, which stores the final

result.

1. Original elements not yet in the master list are merged into non-overlapping

intervals (using bedops -m).

2. For each merged interval, the original element of highest score within the

interval is selected to go into the master list.

3. Any original elements that overlap the selected element are thrown out.

4. Repeat the step 1, 2 and 3 until no original element is left. Then the master

list is reported as the final DHS list.

3.11.8 Existing Enhancer Prediction Approaches

To evaluate the performance of REPTILE, it was compared to four publicly

available methods, PEDLA[34], RFECS[35], DELTA[36] and CSIANN[37]. All of

http://bedops.readthedocs.io/en/latest/content/usage-examples/master-list.html
http://bedops.readthedocs.io/en/latest/content/usage-examples/master-list.html
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these methods are supervised approaches, meaning that they learned the profiles

of enhancers from data with labels and then classify regions with no labels. Specif-

ically, they first represent genomic regions using histone modification data (and

maybe other data types). Then, machine learning technique is used to learn the

histone modification signatures of (putative) enhancers and background regions.

Last, the trained computational model is used to classify unknown regions into

enhancers or negative regions.

Their differences lie in the distinct strategy used to represent genomic re-

gions and their different underlying machine learning framework.

• PEDLA used the histone modification signals and evolutionary conservation

score as low-level features and it is capable of incorporating additional data

types. Then, PEDLA applies Deep Neural Network (DNN), in an unsu-

pervised fashion, to extract high-level features from these low-level features

in all 200bp non-overlapping bins across the genome. Lastly, the DNN is

used to learn the feature signatures of enhancers and background sequencers

(supervisedly) and then makes predictions.

• RFECS represents the shape and intensity of each histone modification (ChIP-

seq) signal in each 2kb genomic window using a feature vector of length

20. Specifically, RFECS divides the 2kb window equally into 20 100bp non-

overlapping bins and the values in the feature vector correspond to the signal

values in the 20 100bp bins. Next, a random forest classifier[33] with some

modification on the node separator is trained on this type of data on putative

enhancers and background sequences. This model is then used to delineate
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enhancer-like chromatin signatures from genomic background.

• DELTA defines four shape features to describe the histone modification

(ChIP-seq) signature and then uses AdaBoost algorithm[63] to distinguish

enhancers from negative regions based on this representation schema.

• CSIANN was built on neural network framework and it makes predictions

based on the histone modification signals of 2kb non-overlapping genome

windows.

3.11.9 Running REPTILE and Existing Enhancer Predic-

tion Methods

REPTILE and the four existing methods were trained in mESCs (for mouse

enhancer prediction) or in H1 (for human enhancer prediction) by learning the

epigenomic signatures of known/putative enhancers (EP300 binding sites) and

negative regions (promoters and genomic background). The promoters are defined

as 2kb regions around TSSs and the TSSs were based on GENCODE annotation

(mouse - M2; human - release 19). The enhancer predictions are provided as part

of Supplemental Data.

• REPTILE: The training dataset for REPTILE was constructed using a sim-

ilar strategy used for training RFECS previously[35]. The training dataset

for mouse enhancer prediction is composed of 5,000 positive instances (en-

hancers) and 35,000 negatives (negative regions). Positives were the +/- 1kb

regions around the summits of top 5,000 EP300 peaks in mESCs. Negatives

included 5,000 randomly selected promoter regions and 30,000 (6 times than
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number of positives) randomly chosen 2kb bins. The 2kb bins have no over-

lap with promoters, top 5,000 EP300 binding regions or any regions in the

mESCs test dataset. The training dataset for human enhancer prediction

was constructed similarly. It includes 5,476 distal EP300 binding sites in H1

as positives and equal number of randomly chosen promoters and 32,856 (6

times than number of positives) 2kb bins. Score cutoff 0.5 was used to gen-

erate genome-wide enhancer predictions for both human and mouse samples.

• PEDLA: The training dataset for PEDLA were constructed similarly as

REPTILE. The only difference is that the number of 2kb bins is 9 times of

the number of positives to be consistent with how PEDLA was trained[34].

We benchmarked various parameters of PEDLA and found that single layer

with 500 neurons performed well in both human and mouse data (data not

shown). This setting was used for running PEDLA. In the current imple-

mentation of PEDLA, hidden markov model (HMM) is used to generate

the final enhancer prediction based on the scores from the artificial neural

network model. Score is defined as the observatory probability conditioned

on enhancer state divided by prior probability of enhancer state (i.e. base

rate). However, its performance was not as good as other methods (labeled

as PEDLA (HMM) in Figure 3.7A-B). Therefore, we implemented an al-

ternative enhancer calling approach by applying the peak-calling algorithm

used by REPTILE on the scores model. We called this approach PEDLA

in this study. It showed better performance than the current PEDLA im-

plementation (Figure 3.7A-B). Score cutoff 5 was used to generate enhancer

calls.
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• RFECS: RFECS were trained on the same dataset as REPTILE. The default

cutoff 0.5 was used to generate genome-wide enhancer predictions in mESCs

and all human cell types. In E11.5 tissues, we used cutoff 0.2 to ensure

that the number of putative enhancers was practically useful and enough

(¿10,000) for validation.

• DELTA: For mouse enhancer prediction, the training dataset for DELTA

were composed of the top 5,000 EP300 binding sites in mESCs and all

promoters in mouse genome. For human enhancer prediction, the train-

ing dataset includes the 5,476 EP300 binding sites in H1 and all promoters

in human genome. In the step of generating genome-wide predictions, we

switched to the peak-calling algorithm used by REPTILE. It is because the

default peak-calling algorithm in DELTA does not consider the spacing be-

tween peaks and thus generates a large number of predictions within 100bp

to each other, which is not desirable in practice. Score cutoffs 0.1 in mESCs

and human samples, whereas 0.05 in E11.5 tissues were used to generate

enough genome-wide predictions for validation.

• CSIANN: For mouse enhancer prediction, top 500 EP300 binding sites in

mESCs and gene annotation from GENCODE (M2) were used as input for

CSIANN training. Similarly, for human enhancer prediction, top 500 EP300

binding sites in H1 and gene annotation (human GENCODE release 19)

were used for training. The small number of positives in the input was due

to the fact that current CSIANN implementation imposed a size limit on

the training data. Default settings were used for both model training and
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prediction generation.

3.11.10 Evaluating the Performance of Methods using

Cross Validation

In mESCs and H1, we used cross validation to evaluate the performance of

each method similar to Liu et al.[34]. Results are shown in Figure 3.7A-B. The

training data for PEDLA was used since it contains the most regions. We used 5-

fold stratified cross validation, in which the ratio of positives to negatives was main-

tained in each round. Note that the current implementation of RFECS, DELTA

and CSIANN did not allow users to specify the negative regions for training. There-

fore, we just changed the positives for training RFECS and DELTA in cross vali-

dation, whereas we used the top 500 positives to training CSIANN due to its limit

in current implementation. In addition to these methods, we also included the

chromatin states of mESCs and H1 (if available). The chromatin state of H1 were

downloaded from the ENCODE portal at UCSC genome browser. The chromatin

state of mESCs was downloaded from github (https://github.com/gireeshkbogu/

chromatin states chromHMM mm9/blob/master/). Strong enhancers in the chro-

matin state map were regarded as enhancer predictions.

To ensure a fair comparison, we selected equal number of predictions from

each method (if possible) and then resized them to 2kb regions while maintaining

their center. Predictions from REPTILE, PEDLA, RFECS, DELTA and CSIANN

were ranked and the top ones were selected. Since the enhancer predictions from

ChromHMM[64] and Segway[65] cannot be ranked, we randomly chosen the same

number of putative strong enhancers from their annotations.

https://github.com/gireeshkbogu/chromatin_states_chromHMM_mm9/blob/master/
https://github.com/gireeshkbogu/chromatin_states_chromHMM_mm9/blob/master/
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To evaluate the prediction results, we first defined: True positives (TP) are

positives that are overlapped with predicted enhancers. False positives (FP) are

negatives that are overlapped with predicted enhancers. True negatives (TN) are

negatives that do not overlap any enhancer predictions. The remaining are false

negatives (FN), which are positives that are not predicted as enhancers. Next, we

calculated the below metrics for the predictions from each methods:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Precision = TP / (TP + FP)

Recall/Sensitivity = TP / (TP + FN)

Specificity = TN / (TN + FP)

GM (geometric mean) = sqrt(Sensitivity * Specificity) where sqrt is square

root.

F1-score = 2 / (1 / Precision + 1 / Recall)

DHS is the fraction of enhancer predictions that are overlapped with DHS

but not any TSSs.

TFBS is the fraction of enhancer predictions that are overlapped with distal

TFBSs but not any TSSs.

Misclassification is the fraction of enhancer predictions that are overlapped

with any TSSs.

3.11.11 Evaluating the Prediction Accuracy on Data of

Validated Enhancers

We also validated the predictions using experimentally validated regions;

we applied all the methods to predict the enhancer activity of tested regions in
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the eight test datasets, which contain validated enhancers, and negative regions

(Figure 3.6D): First, we ran all methods to generate scores for 2kb sliding windows

in the genome. Then, the score of each tested region is assigned as the score of the

sliding window whose center is the closest to the center of the tested region. If the

centers of two sliding windows are equally close to the center of one tested region,

the maximum score is used.

The reason behind this procedure is that RFECS, DELTA and CSIANN

were designed to predict the enhancer activity of 2kb sliding windows in the genome

and their current implementations were unable to calculate scores for pre-defined

regions. The strategy of test PEDLA was different because it made predictions

based on the chromatin profiles of 200bp bins, which is much smaller than 2kb.

To address this issue, for each 2kb sliding window, we used the maximum PEDLA

score among scores of overlapping 200bp bins as the score of the 2kb window. Also,

to ensure the prediction results from all methods are comparable, we chose to run

REPTILE to predict enhancer activity of 2kb sliding windows in the genome as

well: REPTILE will first generate multiple enhancer confidence scores for each 2kb

sliding window based on the epigenomic signature of the whole region as well as

that of the DMRs within the region and then the highest is assigned as the final

score for the window.

Then, the Area Under the Precision-Recall curve (AUPR) was used to mea-

sure the performance of each method in the test datasets. Precision is defined as

the fraction of predictions that are real enhancers, i.e. (True positives) / (True

positives + False positives). Recall is defined as the percentage of real enhancers

that are predicted as positive, i.e. (True positives) / (True positives + False neg-
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atives). Precision-Recall curve can be drawn by changing the score cutoff. AUPR

is defined as the (area) integral between the curve and two axes. R package flux

(0.3.0) was used to implement the calculation of AUPR.

3.11.12 Validating Enhancer Prediction with distal TFBSs

and distal DHSs

We overlapped the mESCs and H1 predictions with the distal DHSs and

the distal transcription factors binding sites (TFBSs). We calculated the distance

between the center of each prediction and the closest distal DHS (or the closest

distal TFBSs). If the distance is no greater than 1kb, we see it as an overlap.

Similar analysis was done to measure the overlaps with TSSs. If the center of

certain prediction is within 1kb to any TSSs, it was counted as overlapping. Based

on the overlap patterns, we divided the mESCs predictions into 5 categories: TSS

proximal (overlap with TSSs), DHS (overlap with distal DHS only), TFBS (overlap

with distal TFBS only), TFBS+DHS (overlap with both distal DHS and distal

TFBS) and Unknown (none of the above). If a prediction is within 1kb to any

TSSs, it will be consider as TSS proximal regardless of its distance to DHSs or

TFBSs. TFBS, DHS and TFBS+DHS are considered as true positives, whereas

TSS proximal is considered as false positive.
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3.11.13 Validating Enhancer Prediction using MERA iden-

tified regulatory elements

To validate the enhancer predictions using various source of evidence, we

also acquired the data of regulatory elements identified by a genome mutation

screening approach, MERA (multiplexed editing regulatory assay)[38]. Briefly,

GFP was knocked in to a selected gene and then CRISPR-Cas9 system was used

to disrupt regions that are likely to have regulatory function on the selected gene.

Next, the targeted regions of the guide RNA (gRNA) that significantly reduced

the GFP signal were identified as regulatory elements. We downloaded the data

from previous publication[38], where MERA assay was conducted in mESCs on

four genes, Tdgf1, Zfp4, Nanog and Rpp25, separately. We used the same proce-

dure as in the publication[38] to select gRNAs that were statistically significantly

overexpressed in GFP-negative cells. Only the gRNAs that showed significance

in all replicates were considered. Next, we merged the targeted regions of these

gRNAs if they were within 100bp and we then filtered out the merged elements

that were within 1kb to any TSSs. Then, we overlapped the (top 35k) mESCs

enhancer predictions from each method with these distal merged elements. Last,

we calculated the percentage of the distal merged elements that were within 500

bp to the center of any enhance predictions (Figure 3.7C). The final distal merged

elements are available in Supplemental Data.
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3.11.14 Evaluation of Genome-wide Enhancer Predictions

We evaluated the quality of genome-wide enhancer predictions by measur-

ing the fraction of predictions that show evidence of distal open chromatin, how

close the predictions are to nearest distal open chromatin regions (DHSs) and the

percentage of predictions that are more likely to be (misclassified as) promoters.

Before calculating these metrics, we selected the same number of predictions from

each method to ensure a fair comparison. In human cell lines, the top 20,000 pre-

dictions were considered, which is similar to the strategy used in a recent study[34].

In mESCs, the top 35,000 putative enhancers were selected. In E11.5 tissues, the

top 10,000 were selected because generally fewer predictions were generated in

these samples than in mESCs. In total, three metrics were calculated.

• First, we measured the fraction of predictions whose centers were within 1kb

to distal DHSs (1kb from any TSSs) and were at least 1kb away from any

TSS. We called this metric as validation rate.

• In addition to the validation rate, we calculate a metric misclassification rate

as the fraction of predictions that are within 1kb to TSS. These predictions

are likely to be promoters and thus are misclassified.

• Furthermore, we measured the average distance between the centers of pre-

dictions and distal DHSs if the distance is no greater than 1kb. We intend to

use this metric to measure the resolution of predictions and the ability of the

method to accurately locate enhancer regions with little influence by false

positives. Therefore, the predictions whose centers are 1kb away from DHS

were not included in the calculation as they are considered as false positives.
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3.11.15 Transgenic mouse experiments

Enhancer names (mm and hs numbers) are the unique names used in

the VISTA Enhancer Browser (http://enhancer.lbl.gov/)[31]. Enhancer sequences

were amplified from human (hs numbers) or mouse (mm numbers) genomic DNA

and cloned into an hsp68-lacZ expression vector[66]. Genome coordinates and

primer sequences for all elements are listed in Supplemental Table S1. Transgenic

mouse assays were performed as previously described[66, 67] in Mus musculus FVB

strain mice. All animal work was reviewed and approved by the Lawrence Berkeley

National Laboratory Animal Welfare and Research Committee.

We then overlapped these newly validated VISTA enhancers with REP-

TILE predictions in E11.5 tissues. The murine VISTA elements (mm9) were lifted

to mm10 using minMatch=0.95 using liftOver, while the human ones (hg19) were

lifted to mm10 using minMatch=0.10. The resulting mm10 coordinates were in-

tersected with the REPTILE predictions in E11.5 tissues and elements that were

overlapped by at least 1bp were reported.

3.11.16 TF-binding-site motif enrichment analysis on pre-

dicted enhancers of H1 and H1 derived cell liens

To test whether the higher resolution of REPTILE enhancers improves TF-

binding-site motif discovery, we conducted motif analysis on the REPTILE en-

hancer predictions in each human cell lineage. Homer (v4.8.3)[68] was used to

identify the TF-binding-site motifs that were enriched in predicted enhancers in

each human cell lineage. For each cell line, predicted enhancers were used as

http://enhancer.lbl.gov/
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foreground (target) sequencers and Homer automatically selected the background

sequencers (i.e. the default option). mm10 was used as the reference genome and

we included the -nomotif option such that Homer only considered known motifs.

In the next step, we selected motifs with q-values less than or equal to 0.05 as

significantly enriched motifs. For each motif and predicted enhancers in each cell

type, we calculated the degree of enrichment, which was defined as:

Enrichmentfoldchange =
%ofTargetSequenceswithMotif

%ofBackgroundSequenceswithMotif
(3.5)

where Target Sequences refer to predicted enhancers and Background Sequencers

are background regions automatically selected by Homer.

We asked whether this analysis could recapture motifs of the TFs known to

function in that cell type. We downloaded the list of known transcription regulators

for each human cell line from Xie et al.[47]. The mapping between TF names in the

list and the motif names is available in Supplemental Table S4. We also conducted

this analysis on the top 20,000 enhancer predictions from REPTILE and other

existing methods in each human cell lineage. The results are shown in Figure 3.4.

Note that the lengths of enhancer predictions are different. As described

in previous section, REPTILE enhancers have various lengths they have either

the size of a DMR or 2kb (the length of sliding windows) depending how each

of them was called as enhancer. Enhancer predictions from RFECS, DELTA and

CSIANN are 2kb regions centered on the predicted enhancer centers. PEDLA

made prediction on 200bp bins such that the size of PEDLA enhancers is 200bp.
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3.11.17 Enhancer Prediction By Single Data type

To understand how informative single data type is, we used single epigenetic

mark or only the open chromatin signature to predict the enhancer activity of

regions in the test datasets (Figure 3.5A). We first calculated the enrichment score

of an active mark (including open chromatin) or the depletion score of a repressive

mark (mCG or H3K27me3) in tested regions. Then, we rank regions by their score

and use AUPR to measure the how well the ranking distinguish active enhancers

from negative regions. One common combination, DHS and H3K27ac, was also

tested. The details of each approach are:

• DHS: The score of a tested region is the highest score of DHSs that overlap

with it. If no overlapping DHS is found, its score is set to be negative infinity.

The score of DHS corresponds to the signal value in the narrow peak format

(https://genome.ucsc.edu/FAQ/FAQformat.html#format12).

• DHS+H3K27ac: The score of a tested region is the highest H3K27ac en-

richment score in the DHSs that overlap with the tested region. If no DHS

overlap is found, its score is set to be negative infinity. H3K27ac signal is

the log2 RPM fold enrichment relative to control.

• DNase-seq signal: RPM of DNase-seq data for the tested region. The

mean of values from replicates was used.

• H3K27ac: Average H3K27ac log2 RPM fold enrichment relative to control

• mCG: (1) x methylation level of tested region

https://genome.ucsc.edu/FAQ/FAQformat.html#format12
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• DHS+mCG: The score of a tested region is the largest negative CG meth-

ylation level in the DHSs that overlap with the tested region. If no DHS

overlap is found, its score is set to be minus infinity.

• H3K4me1: H3K4me1 log2 RPM fold enrichment relative to control

• H3K4me2: H3K4me2 log2 RPM fold enrichment relative to control

• H3K4me3: H3K4me3 log2 RPM fold enrichment relative to control

• H3K27me3: (-1) x H3K27me3 log2 RPM fold enrichment relative to control

• H3K9ac: H3K9ac log2 RPM fold enrichment relative to control

3.11.18 Calling enhancers in human heart left ventricle

We specifically trained a human enhancer model for each method to gen-

erate enhancer prediction for human heart left ventricle because not all six previ-

ously used histone modifications are available in this tissue,. For PEDLA, DELTA,

RFECS and CSIANN, this (re)training is almost identical to the previous train-

ing procedure but we limited the histone modifications to H3K4me1, H3K4me3,

H3K27ac and H3K27me3, the histone marks that are available in both H1 and

left ventricle. PEDLA also incorporated evolutionary conservation. The new en-

hancer models were retrained on the data of H1. REPTILE was trained on mCG

data and histone modification data of H1, while left ventricle and H1 derived cells

were used as reference. The DMR input for REPTILE was obtained by comparing

the methylomes of left ventricle, H1 and H1 derived cells. In the prediction step,

REPTILE used H1 and H1 derived cells as reference. Lastly, we applied these
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methods to generate enhancer predictions for left ventricle and the top 50,000

putative enhancers from each method were selected for later analyses.

3.11.19 Enrichment of disease-associated genetic variants

in putative enhancers

To test for the enrichment of disease-associated SNPs in putative enhancers,

we first downloaded the data of 5,654 non-coding GWAS SNPs from Maurano et

al.[7]. The 5,654 SNPs were originally grouped into 15 categories based on the

associated traits/diseases. We applied one-tail hypergeometric test to test the

enrichment of SNPs from each category in the putative enhancers of left ventricle.

Specifically, for category c, the total number of SNPs in c is denoted as nc

and the total number of SNPs is N =
∑

c nc = 5, 654. Given a list of putative

enhancers, the observed number of overlapped SNPs in category c is qc and total

observed number of overlapped SNPs is Q =
∑

c qc . The p-value for SNPs in c is

calculated as:

P (Kgeqqc|N, nc, Q, qc) =

Q∑
x=qc

(
nc

x

)(
N−nc

Q−x

)(
N
Q

) (3.6)

where K is a random variable representing the number of SNPs that are in category

c and overlapped with putative enhancers. The fold enrichment of SNPs from

category c in putative enhancers is calculated as qc/Q
nc/N

.

Using the statistical test described above, for SNPs in each category, we

tested for their enrichment in putative enhancers. We then used Benjamini-

Hochberg approach to adjust p-values for multiple testing. P-value cutoff given 1%
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false discovery rate (FDR) was used to call significant enrichment. This procedure

was conducted separately for the putative enhancers from each method.

3.11.20 Linking REPTILE enhancers to target genes in left

ventricle

To identify the target genes of REPTILE enhancers in left ventricle, we

downloaded expression quantitative trait loci (eQTL) data of left ventricle from

Genotype-Tissue Expression (GTEx) Project (version: v6p; file:

Heart Left Ventricle Analysis.v6p.signif snpgene pairs.txt.gz from

GTEx Analysis v6p eQTL.tar). The eQTLs that are within 2kb to any TSSs were

filtered out. Then, we overlapped the REPTILE enhancers in left ventricle with

the remaining eQTLs and assigned each putative enhancer to the gene linked to

overlapping eQTL (if any). If multiple eQTLs are within one putative enhancer,

the putative enhancer is assigned to all the genes linked to all eQTLs.

Next, based on the enhancer-gene assignment, we separated the genes that

are linked to eQTLs into two groups. The first group consists of genes that are

linked to at least one REPTILE enhancers, while the second group contains genes

that are only linked to eQTLs outside of REPTILE enhancers. We then compared

the expression levels of genes from these two groups. The gene expression data of

left ventricle (from donor STL003) was obtained from Schultz et al.[19] and the

expression level is represented in FPKM (fragments per kilobase of transcript per

million mapped reads). Two-tailed Mann-Whitney test was conducted to test for

the significance of difference in median expression levels of two groups of genes.
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3.11.21 Testing the robustness of REPTILE given various

input data

To test how sensitive REPTILEs performance is to various inputs, we ran

REPTILE without DMRs (REPTILE w/o DMR), without reference epigenome

(REPTILE w/o Ref) and with shuffled DMRs (REPTILE w/ shuf DMR) respec-

tively. Since enhancer validation data is available for mouse samples, this test was

done using mouse data. REPTILE w/o DMR performed prediction solely based

on the epigenomic signature of query regions (e.g. 2kb sliding windows across the

genome). REPTILE w/o Ref only uses the data of target sample (where prediction

is generated) and does not calculate intensity deviation to describe tissue-specificity

of epigenetic marks. Its enhancer model only uses the intensity of 7 marks as fea-

tures. REPTILE w/ shuf DMR takes shuffled DMRs as input but its enhancer

model is learned using unshuffled DMRs. We obtained the shuffled DMRs by shuf-

fling the coordinates of DMRs within the genome while maintaining their lengths,

which was done by using shuffleBed in bedtools[58].

REPTILE includes data of reference samples to capture the information in

cell/tissue-specific epigenomic variation. However, it is unclear how the choice of

reference would affect the prediction performance. To address this question, we

implemented and benchmarked a different strategy of choosing reference. The new

setup is called REPTILE alt Ref. In the new strategy, REPTILE always used

mESCs, E11.5 Craniofacial and E11.5 Liver as reference samples for generating

prediction. It is different from the original setup, which all mouse samples except

target sample was used as reference. We applied this new setup to predict en-
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hancers in E11.5 forebrain, midbrain, hindbrain, heart, limb and neural tube. For

each target sample, the enhancer model was trained on data of mESCs using target

sample, E11.5 Craniofacial and E11.5 Liver as reference, which corresponds to a

scenario that only the data of the target sample and reference samples is available.

The analysis of the prediction results is identical to the evaluation of the results

from original setup.
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3.12 Figures

Figure 3.1: REPTILE improves enhancer identification by incorporat-
ing tissue-specific DNA methylation data. (A) Differentially methylated
regions (DMRs), typically smaller than query regions, serve as high-resolution en-
hancer candidates in overlapped query regions. (B) Example of a region (chr12:
29,660,800-29,668,600) where REPTILE uses base-resolution DNA methylation
data to improve the resolution of enhancer prediction. Diagram of the gene model
(GENCODE M2) in this region is shown at the top (Gene). DNA methylation dis-
plays mCG data of mESCs and eight E11.5 mouse tissues, where ticks represent
methylated CG sites and their heights indicate the methylation level. Ticks on the
forward strand are projected upward and ticks on the reverse strand are projected
downward. Last track shows differentially methylated regions (DMRs) across these
samples. Histone modification shows the log2 fold change of histone modification
ChIP-seq data relative to input. Predictions from four computational methods
are visualized in Enhancer prediction. Predictions from REPTILE best recapitu-
late the open chromatin data shown in DNase-seq. Light red rectangles mark the
REPTILE putative enhancers, while the genomic locations of the midpoints (i.e.
centers) are highlighted in red. (C) Workflow of REPTILE, including four major
steps. 1) DMRs are identified by comparing the CG methylation profiles of tar-
get sample and the reference samples. 2) REPTILE integrates data in input files
and represents query regions and DMRs as feature vectors (D). Yellow text on the
top right corner shows the format for each input data type. 3) REPTILE trains
an enhancer model based on the epigenomic signatures of known enhancers and
negative sequences as well as the DMRs within them (red arrows). 4) Predictions
are generated based on the enhancer model, DMR, query regions and epigenomic
data (blue arrows). (D) Representation of one DMR or query region as a feature
vector of intensity or intensity deviation of epigenetic marks. The 14 features used
by REPTILE for the benchmark in this paper are shown. The -dev features in the
vector are the intensity deviation features
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Figure 3.2: REPTILE shows better enhancer prediction accuracy than
existing methods. (A-B) In H1 (A) and mESCs (B), the fractions of enhancers
with their centers within 1kb to TFBS+DHS (dark red, both distal TFBSs and
distal DHSs), TFBS (red, only distal TFBSs), DHS (orange, only distal DHSs),
TSS proximal (overriding all other categories) or none of the above (grey, labeled
as Unknown). Distal TFBS (DHSs) are defined as TFBSs (DHSs) that are at least
1kb away from any TSSs. TFBS, DHS and TFBS+DHS are considered as true pos-
itives, whereas TSS proximal is considered as false positive and misclassification.
(C) Performances of all methods in eight test datasets that contain experimentally
validated enhancers. Performances are measured by the area under precision-recall
curve (AUPR). Best results in each test dataset are highlighted in red and second
best results are marked in orange. The enhancer models used to make predictions
in all samples were trained on data of mESCs. The baselines (AUPRs achieved us-
ing random guessing) for these datasets are shown in grey. Note that the AUPRs in
different datasets cannot be compared because the fractions of validated enhancers
are different. See Supplemental Fig. S1D for basic statistics of each dataset. (D-E)
The validation rate of each method in human cell lines derived from H1 (D) and
mouse tissues from E11.5 embryo (E), at different numbers of predictions. Valida-
tion rate is defined as the fraction of predictions whose centers are within 1kb from
distal DHSs and are at least 1kb away from TSSs. (F-G) The misclassification rate
of each method in human cell lines derived from H1 (F) and mouse tissues from
E11.5 embryo (G). Misclassification rate is the fraction of predictions whose centers
are within 1kb to TSSs. Vertical dash lines show the cutoffs used to get the final
putative enhancer sets. (H) Examples of newly validated enhancers recapitulated
by REPTILE enhancer predictions. Candidate enhancers were tested in transgenic
mouse assays at E11.5. The enhancer name (mm or hs number), a representative
transgenic embryo, and the tissues showing reproducible reporter gene expression
(blue staining) are shown for each enhancer. mESCs - mouse embryonic stem cells;
TFBS - transcription factor binding site; DHS - DNase hypersensitivity sites; TSS
- transcription start site. See also Supplemental Methods for details.
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Figure 3.3: The resolution of REPTILE predictions exceeds existing
methods. (A) Average distance between the centers of predictions and the closest
distal DHSs in four human cell types derived from H1. Predictions whose centers
are beyond 1kb away from the nearest distal DHS were considered as lack of support
from open chromatin data and were not included in the calculation. Distal DHSs
are at least 1kb away from any TSSs. (B) Average percentage of predictions whose
centers are within 1kb to the closest distal DHS, in human cells derived from H1.
(C) Average distance between the centers of predictions and the closest distal
DHSs in mouse tissues from E11.5 embryo. (D) Average percentage of predictions
whose centers are within 1kb to the closest distal DHS, in mouse tissues from E11.5
embryo. The metric value in each individual cell/tissue is shown as a point in the
bar chart. MES - mesendoderm (MES); MSC - mesenchymal stem cells; NPC -
neural progenitor cells; TRO - trophoblast-like cells; DHS - DNase hypersensitivity
sites; TSS - transcription start site. See also Supplemental Methods for details.
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Figure 3.4: REPTILE enhancers improve the detection of known tran-
scriptional regulators for each cell type. Enrichment of transcription-factor-
binding-site motifs in the putative enhancers in H1 and H1 derived cells, respec-
tively. Motif enrichments in each cell type were calculated on the predicted en-
hancers in matched cell type. Enrichment fold change is the fraction of predicted
enhancers (target sequences) that contain a certain motif divided by the fraction
of background sequences that contain the same motif. Highest enrichment of each
motif in each cell type is marked in bold. Not significant enrichment (q-value ¿
0.05) is shown in grey. The transcription factors (complex) listed under each cell
type are known to function in that cell type, which were based on the list from Xie
et al.[47]. See Supplemental Methods for details. H1 - H1 human embryonic stem
cells; MES - mesendoderm (MES); MSC - mesenchymal stem cells; NPC - neural
progenitor cells; TRO - trophoblast-like cells.
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Figure 3.5: REPTILE enhancer confidence score is more predictive of
enhancer activity than open chromatin or any single epigenetic mark.
(A) Performance of REPTILE and several enhancer prediction methods that are
based on open chromatin, single epigenetic mark or the H3K27ac signal in open
chromatin regions. The benchmark was done in four test datasets, where DNase-
seq data is available in the corresponding samples. Performance is measured by
the Area under Precision-Recall curve (AUPR). For each test dataset, the best
performance(s) are highlighted in red and the second best are marked in orange.
REPTILE generated scores on elements based on the enhancer model trained on
data of mouse embryonic stem cells. DHS method assigned score to each element
as the maximum normalized DNase-seq read count across all (1bp) overlapping
DHSs. The score is 0 if the region contains no overlapping DHS. DHS+H3K27ac
and DHS+mCG are similar to DHS but instead of DHS signal, it uses H3K27ac
fold enrichment or CG methylation level as signal. The rest of the methods ex-
cept mCG, DHS+mCG and H3K27me3 methods use the fold enrichment in whole
elements as score. In contrast, mCG, DHS+mCG and H3K27me3 methods uses
the signal values with reversed sign (i.e. depletion) because mCG and H3K27me3
are known to be repressive. (B-E) Precision of predicted enhancers that is based
on the scores from REPTILE (red), DHS (orange), DHS+H3K27ac (light blue),
DNase signal (grey) and H3K27ac (green) in E11.5 midbrain (B), hindbrain (C),
neural tube (D) and limb (E). Precision is defined as the percentage of enhancer
predictions that showed enhancer activity in vivo. DHS - DNase hypersensitivity
sites; See also Supplemental Methods for details.
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Figure 3.6: Intensity deviation calculation and the enhancer validation
and epigenomic data of various samples. (A) An example of calculating in-
tensity deviation. Given one epigenetic mark, the intensity in target sample (where
predictions will be generated) is subtracted by the average intensity across reference
samples. The result is the intensity deviation, which quantifies how the intensity
in target sample is deviated from the default intensity (i.e. average value across
reference samples). This feature captures the tissue/cell-specificity of epigenetic
mark on a given region. (B-C) Human(B) and mouse (C) epigenomic data used
in this paper, which includes all epigenetic marks (left) in all the samples (right).
(D) Information about the eight enhancer validation datasets. The datasets were
collected from Yue et al[32], VISTA enhancer browser[31] and Narlikar et al[49]. It
also shows the basic statistics related to each dataset, including the total number
of tested elements (Total), number of elements that showed evidence of enhancer
activity (Positives) and its percentage out of all elements in the dataset (Posi-
tive%).
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Tissues Source Experiment Total Positives Positive%
mESCs Yue et al. High-throughput reporter assay 211 131 62%

E11.5 Heart VISTA Transgenic reporter assay 545 110 20%
E11.5 Limb VISTA Transgenic reporter assay 545 72 13%

E11.5 Forebrain VISTA Transgenic reporter assay 545 70 13%
E11.5 Midbrain VISTA Transgenic reporter assay 545 59 11%
E11.5 Hindbrain VISTA Transgenic reporter assay 545 40 7%

E11.5 Neural tube VISTA Transgenic reporter assay 545 30 6%
Heart Narlikar et al. Transgenic reporter assay 36 14 39%
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Figure 3.7: Cross validation results and the evaluation of enhancer pre-
dictions by MERA data. (A-B) 5-fold cross validation results on data of H1
(A) and mESCs (B). In each round of cross validation, we calculated a number
of metrics to evaluate the performance of each method. These metrics include
Accuracy, Precision, Recall (i.e. sensitivity), GM (geometric mean), F1 score, val-
idation rate(s) and misclassification rate. For each method, the average rank is
the mean of ranks in all metrics. Best rank is highlighted in red. (C) Percent-
age of MERA identified distal regulatory DNA elements that were recaptured by
computational predictions. Bar chart shows the average percentage across all four
MERA experiments for each method, while each circle shows the percentage in
each MERA experiment. See also Supplemental Methods for details.



157

5-fold cross validation results on data in H1
REPTILE PEDLA PEDLA (HMM) RFECS DELTA CSIANN ChromHMM Segway

20000 20000 20000 20000 20000 20000 20000 20000
94.4% 94.0% 92.7% 94.3% 93.3% 92.7% 93.0% 90.6%
74.1% 72.4% 63.6% 72.8% 68.7% 63.1% 72.1% 43.5%
58.9% 55.7% 45.0% 59.6% 48.2% 47.2% 36.8% 12.2%
97.9% 97.9% 97.5% 97.8% 97.8% 97.2% 98.6% 98.4%
75.9% 73.8% 66.2% 76.4% 68.7% 67.8% 60.2% 34.6%
65.6% 63.0% 52.7% 65.6% 56.7% 54.0% 48.7% 19.0%

DHS 87.4% 84.4% 72.5% 89.4% 74.2% 68.5% 83.5% 74.6%
TFBS 71.5% 67.3% 53.9% 70.1% 53.6% 59.6% 69.7% 53.2%
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5-fold cross validation results on data in mESCs
REPTILE PEDLA PEDLA (HMM) RFECS DELTA CSIANN ChromHMM
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78.2% 78.3% 56.5% 77.8% 75.3% 69.1% 47.8%

DHS 79.9% 74.9% 65.2% 71.6% 65.3% 63.8% 67.9%
TFBS 71.8% 67.6% 57.2% 62.4% 58.6% 54.7% 60.5%
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Figure 3.8: Prediction accuracy and resolution in cells where the models
were trained. (A) The validation rate of each method in mESCs at different
numbers of predictions. Validation rate is defined as the fraction of predictions
whose centers are within 1kb from distal DHSs and are at least 1kb away from
TSSs. (B) The misclassification rate of each method in mESCs. Misclassification
rate is the fraction of predictions whose centers are within 1kb to TSSs. (C)
The validation rate of each method in H1. (D) The misclassification rate of each
method in H1. (E) Average distance between the centers of predictions and the
closest distal DHSs in mESCs. Predictions whose centers are beyond 1kb away from
the nearest distal DHS were considered as lack of support from open chromatin
data and were not included in the calculation. Distal DHSs are at least 1kb away
from any TSSs. (F) Average percentage of predictions whose centers are within
1kb to the closest distal DHS, in mESCs. (C) Average distance between the
centers of predictions and the closest distal DHSs in H1. (D) Average percentage
of predictions whose centers are within 1kb to the closest distal DHS, in mESCs.
The metric value in each individual cell/tissue is shown as a point in the bar chart.
mESC - mouse embryonic stem cell; DHS - DNase hypersensitivity sites; TSS -
transcription start site. See also Supplemental Methods for details.
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Figure 3.9: Validation rate of enhancer predictions in human and mouse
samples. The validation rate of each method in different human and mouse cells
and tissues at different numbers of predictions. Validation rate is defined as the
fraction of predictions whose centers are within 1kb from distal DHSs and are at
least 1kb away from TSSs. DHS - DNase hypersensitivity sites; TSS - transcription
start site. See also Supplemental Methods for details.
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Figure 3.10: Misclassification rate of enhancer predictions in human and
mouse samples. The misclassification rate of each method in different human
and mouse cells and tissues at different numbers of predictions. Misclassification
rate is the fraction of predictions whose centers are within 1kb to transcription
start sites (TSSs). See also Supplemental Methods for details.
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Figure 3.11: REPTILE enhancers are enriched for non-coding GWAS
SNPs and associated with increased expression of target genes. (A) En-
richment of non-coding GWAS SNPs in putative enhancers of human heart left
ventricle. Non-coding GWAS SNPs were categorized based the associated traits.
One-tail hypergeometric test was used to test for significance. Benjamini-Hochberg
approach was then used for multiple testing corrections. Non-coding GWAS SNPs
and trait categories are from Maurano et al. [3]. See Supplemental Methods for
more details. (B) Fold enrichment of the non-coding GWAS SNPs associated with
Cardiovascular category in the left ventricle putative enhancers given different
length parameters. The fold enrichment was calculated using putative enhancers
that are defined as genomic regions of given length and centered at the predicted
enhancer centers from each method. Red cross indicates the data point of REP-
TILE enhancers whose enhancer boundary is determined using DMR information.
(C) In human heart left ventricle, genes associated with REPTILE enhancers show
significantly higher expression than genes associated with other genomic loci. Ex-
pression quantitative trait loci (eQTLs) data was used to link REPTILE enhancers
to the target genes. eQTLs that within 2kb to any transcription start sites were ex-
cluded for this analysis. Gene expression level is represented in FPKM (fragments
per kilobase of transcript per million mapped reads).
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Figure 3.12: REPTILEs performance is robust to various subsets of in-
put data. (A) Performance of REPTILE models with various inputs and the four
published methods in all test datasets. REPTILE w/o DMR has no DMR input.
REPTILE w/o Ref makes predictions only based on the epigenomic data of target
sample and thus does not include the intensity deviation features. REPTILE w/
shuf DMRs takes shuffled DMRs as input and makes prediction based on an en-
hancer model pre-trained in mESCs with DMRs before shuffling. For all methods,
prediction results were generated by enhancer model trained in mouse embryonic
stem cells. Model performance is measured by the Area under Precision-Recall
curve (AUPR). For each test dataset, the best performance(s) are highlighted in
red. The baselines are the AUPRs from random guessing for these datasets and
are shown in grey. Note that the AUPRs in different datasets cannot be compared
because the fractions of validated enhancers are different. See Supplemental Fig.
S1D for the fraction in each dataset. (B-C) Bar charts showing the average distance
from the center of mESCs enhancer predictions to nearest distal DHSs (B) and
the fraction of predictions whose centers are within 1kb to distal DHSs (C). (D)
Average distance between the centers of predictions and the nearest distal DHS.
Predictions whose centers are beyond 1kb away from the nearest distal DHS were
considered as lacking support from open chromatin data and were not included in
the calculation. (E) Average percentage of predictions whose centers are within
1kb to the closest distal DHS. The results shown (E-F) are based on the enhancer
predictions in E11.5 midbrain (red), hindbrain (green), limb (orange), neural tube
(blue) and craniofacial (dark grey), where DNase-seq data was available. DHS -
DNase hypersensitivity sites; See Supplemental Methods for details.
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Figure 3.13: REPTILEs performance is robust to the choice of refer-
ence. (A) Performance of REPTILE models with different references and the
four published methods in all test datasets. REPTILE alt Ref uses mESCs, E11.5
Craniofacial and E11.5 Liver as the reference in generating enhancer predictions.
REPTILE w/o Ref does not use any reference. Model performance is measured by
the Area under Precision-Recall curve (AUPR). The baselines are the AUPRs from
random guessing for these datasets and are shown in grey. Note that the AUPRs
in different datasets cannot be compared because the fractions of validated en-
hancers are different. (B) Average distance between the centers of predictions and
the nearest distal DHS. Predictions whose centers are beyond 1kb away from the
nearest distal DHS were considered as lacking support from open chromatin data
and were not included in the calculation. (C) Average percentage of predictions
whose centers are within 1kb to the closest distal DHS. The results shown (B-C)
are based on the enhancer predictions in E11.5 midbrain (red), hindbrain (green),
limb (orange) and neural tube (blue). DHS - DNase hypersensitivity sites; See
Supplemental Methods for details.
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Figure 3.14: Importance of features in the REPTILE enhancer model
trained on mESCs. (A-B) In the mouse REPTILE enhancer model, impor-
tance of features in the random forest classifiers for differentially methylated re-
gion (DMR) (A) and query regions (B). (C-D) In the human REPTILE enhancer
model, importance of features in the random forest classifiers for (DMR) (C) and
query regions (D). The importance is measured by the average decrease of Gini
impurity index (meanDecreaseGini) from the randomForest R package[69].
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Chapter 4

Dynamic methylome remodeling

throughout mammalian fetal

development

4.1 Abstract

Genetic studies have revealed an essential role for cytosine DNA methyla-

tion in gene regulation. However, its spatiotemporal distribution in the developing

embryo remains obscure. Here, we describe analysis of 144 deep-coverage, base-

resolution DNA methylomes from profiling of 12 mouse tissues/organs each day

from embryonic day 10.5 to birth. We identify 1,808,810 differentially CG methyla-

tion regions (CG-DMRs) of which 487,367 show enhancer-like chromatin signatures

that are significantly enriched for tissue-related genetic risk factors of human dis-

eases. Strikingly, CG-DMRs predominantly lose CG methylation (mCG) during
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fetal development, whereas mCG levels dramatically rise at fetal enhancers after

birth. Interestingly, 13%-15% of CG-DMRs are repressed by H3K27me3 during

fetal stages, escape postnatal remethylation and store a memory of this fetal reg-

ulatory activity in adult tissue epigenomes. Finally, non-CG methylation (mCH)

accumulates in the genes bodies of key transcription factors essential for early

tissue/organ development, coinciding with their transcriptional repression during

late stage fetal development.

4.2 Introduction

Mammalian embryonic development involves spatiotemporal transcriptional

regulation, which is mediated by sophisticated orchestration of epigenetic modifica-

tions and transcription factor (TF) binding of regulatory DNA elements, primarily

enhancers. The accessibility of TFs to regulatory DNA is closely related to both

covalent modifications of chromatin and DNA[1, 2, 3, 4, 5].

Cytosine DNA methylation (mC) is an epigenetic modification that plays

a critical role in gene regulation[6]. In the mammalian genome, mC occurs pre-

dominantly on cytosine followed by guanine (mCG), which is dynamic at regu-

latory elements in different tissues and cell types[7, 8, 9, 10, 11]. In fact, mCG

is able to directly affect the DNA binding affinity of a variety of transcription

factors[1, 2, 12, 13, 14] and targeted removal/addition of mCG in promoters is

concomitant with increases/decreases in gene transcription[15]. Non-CG methyl-

ation (mCH; H = A, C or T) is also present at an appreciable level in embryonic

stem cells, oocytes as well as brain, heart, skeletal muscle and a variety of adult
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tissues[7, 8, 9, 16, 17, 18, 19]. Although its precise function(s) are unknown, mCH

abundance directly affects DNA binding of MeCP2, the methyl-binding protein

responsible for Rett Syndrome[19, 20, 21, 22].

mC is actively regulated during mammalian development[23, 24]. However,

in contrast to pre-implantation embryogenesis[24, 25, 26], data are lacking for the

later stages of fetal development, during which anatomical features of the major

organ systems are more evident and human birth defects are manifested[27]. To

fill this knowledge gap, we used the experimentally tractable mouse embryo as a

model system to profile DNA methylation variation. Deep whole-genome bisulfite

sequencing[7] was performed to comprehensively profile cytosine DNA methylation

in 12 tissue types (in replicate) for 8 development stages starting from embryonic

day 10.5 (E10.5) to birth (postnatal day 0, P0; Fig. 1A). The temporal mouse fetal

tissue/organ epigenomes (Supplemental Table S1) describe here should inform our

understanding the similar cascade of regulatory events occurring during normal

human fetal progression as well as developmental disorders. These comprehen-

sive datasets are publically accessible at https://www.encodeproject.org/search/

?searchTerm=ecker&type=Experiment&award.rfa=ENCODE3 and

http://neomorph.salk.edu/ENCODE mouse fetal tissues.

https://www.encodeproject.org/search/?searchTerm=ecker&type=Experiment&award.rfa=ENCODE3
https://www.encodeproject.org/search/?searchTerm=ecker&type=Experiment&award.rfa=ENCODE3
http://neomorph.salk.edu/ENCODE_mouse_fetal_tissues
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4.3 Results

4.3.1 Global and local CG methylation dynamics in fetal

tissues/organs.

To assess the cytosine DNA methylation landscape in the developing mouse

embryo, 144 high-quality tissue methylomes were produced that cover most of the

major organ systems and tissue types derived from the three germ layers. To ob-

tain an overview of these tissue methylomes over development, we first calculated

the global mCG level in each tissue/organ at each stage of development (Fig-

ure 4.1a-b; Methods). With the notable exception of fetal liver, the genomes of

all samples were heavily CG methylated (70% to 82%; liver 60% to 74%). Tissues

primarily derived from ectoderm (forebrain, FB; midbrain, MB; hindbrain, HB;

neural tube, NT) showed higher mCG levels than other tissue types (heart, HT;

craniofacial, CF; limb, LM; kidney, KD; lung, LG; stomach, ST; intestine, IT;

liver, LV). Interestingly, large partially methylated domains (PMDs), a genomic

feature previously observed in only human cultured cell lines[7, 28], pancreas[8],

placenta[29] and cancer samples[30, 31] were found exclusively in mouse fetal liver;

PMD formation and dissolution precisely coincided with fetal liver hematopoiesis

(Supplemental Note; Figure 4.6).

Despite similar global mCG levels in fetal tissues, massive local mCG dif-

ferences were observed (Figure 4.1c). We systematically identified 1,808,810 CG

differentially methylated regions (CG-DMRs), which are on average 339bp long and

cover 22.5% (614 Mb) of the mouse genome (Methods). Comprehensive CG-DMR

annotation of all fetal tissues/organs captured 96%(n=272,858) of all previously
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reported adult mouse tissue CG-DMRs, while adding over 1.5 million new ones

(Figure 4.1d). Surprisingly only a minority (8.5% or 153,019) of CG-DMRs over-

lapped with promoters (+/- 2.5 kb around transcription start sites, TSSs), CpG

islands (CGIs) or CGI shores (Figure 4.1e-f; Figure 4.7a-c). The vast majority of

CG-DMRs ( 92.5% or 1,655,791) were located distal to annotated promoters and

their underlying DNA sequences showed a high degree of evolutionary conservation

(Figure 4.1f-g).

4.3.2 Annotation of methylation variable regulatory DNA

To further classify fetal CG-DMRs, we delineated those genomic regions

likely associated with enhancer activity using the REPTILE[32] algorithm which

allows enhancer prediction by integration of the fetal tissue mCG data and histone

modification data (Gorkin et al companion paper, this issue; Supplemental Table

S2). Considering all fetal tissues, except liver, we identified 487,367 CG-DMRs

as fetal enhancer-linked CG-DMRs or feDMRs, 85% (415,227) of which are distal

to known promoters (Fig. 1f; Methods). feDMRs are evolutionarily conserved

and show enhancer-like chromatin signatures including the depletion of mCG and

H3K27me3, and the enrichment of H3K4me1 and H3K27ac[7, 33, 34, 35] (Fig-

ure 4.1g; Figure 4.7d). Many (106,016) of these enhancers were not previously

reported in adult mouse tissues[36] (Figure 4.8a). More than 60% of the DNA ele-

ments from VISTA enhancer browser[37] that overlap with feDMRs showed in vivo

enhancer activity in the predicted tissue or other tissues at E11.5 mouse embryos,

and this percentage increased for higher scoring feDMRs (Figure 4.8b). Moreover,

tissue-specific feDMRs are enriched for TF binding motifs related to specific tissue
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function(s) and are near genes in specific tissue-related pathways (Figure 4.8c; Sup-

plemental Table S3).We found that the human orthologs of feDMRs significantly

overlapped with the disease/trait-associated single nucleotide polymorphisms iden-

tified from genome-wide association studies and showed tissue-specificity (Fig-

ure 4.1h; Supplemental Table. S4; Methods). For example, the genetic variants

associated with cleft lip are only significantly enriched in craniofacial feDMRs.

These tissue-specific enrichments suggest the possibility of generating mouse mod-

els of human diseases by introducing the specific disease alleles into feDMRs using

genomic editing techniques.

We also identified 221,960 CG-DMRs flanking (within 1kb) the feDMRs

but were not predicted as enhancers (Figure 4.1g). We called them flanking dis-

tal feDMRs (fd-feDMRs). They are much less conserved than feDMRs and the

mCG level of fd-feDMRs is moderately correlated with nearby feDMRs, suggest-

ing that a fraction of them may be the by-products of demethylation in adjacent

feDMRs (mean Pearson correlation coefficient = 0.41; Methods). Alternatively,

the fd-feDMRs may be bound by pioneer TF(s) which allow opening of chromatin

of adjacent feDMRs[38, 39], which is supported by the enrichment of the bind-

ing motifs of several known pioneer TFs38 such as FOXA2, GATA3 and PBX1

at fd-DMRs (Supplemental Table S5). Interestingly, the binding motifs of insu-

lator protein CTCF and several transcriptional repressors (e.g. CUX1[40]) are

enriched also at fd-feDMRs, indicating a third possibility that fd-feDMRs consist

of insulators and silencers (Supplemental Table S5).

Besides the above CG-DMR classes, another type of distal CG-DMR (n

= 149,610) is primed distal feDMRs (pd-feDMRs); these display strong CG hy-
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pomethylation in at least one tissue sample and are linked to primed fetal en-

hancers (mCG difference 0.3; Figure 4.9a; Methods). In the tissues where they

are hypomethylated, pd-feDMRs showed chromatin signatures resembling primed

enhancers[41] (enrichment of H3K4me1 while lacking H3K27ac and H3K27me3;

Figure 4.9b). Like feDMRs, pd-feDMRs are also evolutionary conserved (Fig-

ure 4.1g). Consistent with their putative role as enhancers, they shared signifi-

cantly similar TF-binding motif signatures as feDMRs in 9 out of the 12 tissue

types (Figure 4.9c; Supplemental Table S6).

The remaining unclassified distal CG-DMRs (868,994) only show subtle

CG hypomethylation patterns, indicating that they are likely specific to a small

fraction of cells within these complex tissues (mCG difference ¡ 0.3; Methods).

Since a functional role cannot yet be assigned, we named this group unexplained

CG-DMRs (unxDMR). unxDMRs significantly overlapped with transposable ele-

ments (TEs; 58.6%, p-value ¡ 0.001; Methods). Inspired by this observation, we

divided unxDMRs into two subgroups: unxDMRs that overlapped with TE (te-

unxDMRs) and ones not overlapping (nte-unxDMRs) (Figure 4.1f; Figure 4.9d-e).

te-unxDMRs were less evolutionarily conserved compared to flanking regions but

they may be a source of novel regulatory elements[42]. Different from te-unxDMRs,

genomic sequences underling nte-unxDMRs are as conserved as feDMRs, imply-

ing that they may be functional. Indeed, comparing nte-unxDMRs with previ-

ously identified mouse regulatory elements, we observed that 10%-45% of the nte-

unxDMRs showed open chromatin in purified neurons[43] and/or a variety of mouse

cell lines and tissues[44] (p-value ¡ 1e-3; permutation test; Methods). Therefore,

nte-unxDMRs are likely regulatory elements active only in rare cell types and their
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weak hypomethylation profiles are due to the tissue heterogeneity, highlighting the

future necessity of cell type-specific or single-cell epigenomic studies.

4.3.3 Distinct temporal mCG dynamics before and after

birth

The dominant methylation pattern that emerged during fetal progression

was a continuous loss-of-mCG at tissue-specific CG-DMRs, which strongly overlap

with predicted enhancers (Figure 4.2a; Figure 4.10a-b; Methods). In striking con-

trast, the gain-of-mCG methylation at these CG-DMRs mainly occurred after birth

(Figure 4.2a; Figure 4.10a). To quantify these changes for each stage interval, we

counted loss-of-mCG (mCG decreasing by at least 0.1 in one CG-DMR) and gain-

of-mCG events (mCG increasing by at least 0.1 in one CG-DMR) (Figure 4.2b;

Methods). During the period from E10.5 to P0, 77% to 95% of the mCG changes

involved loss-of-mCG. More than 70% of the loss-of-mCG events occurred between

E10.5 to E13.5 in all tissues except in heart (44%; Figure 4.2a; Figure 4.10c).

The predominant loss of mCG is likely a shared trend in the majority of cells

within these tissues. The mCG level of 44-84% tissue-specific CG-DMRs dropped

to below 50% at E14.5, compared to only 31% at E10.5. Since allele-specific meth-

ylation is relatively rare[8], the observed methylation dynamics suggest that after

E14.5, most of the tissue-specific CG-DMRs are unmethylated in more than half

of the cells in a tissue, which may be associated with fluctuations in progenitor

cell populations during embryogenesis.

Compared to the loss of mCG, the vast majority (57%-86%) of gain-of-

mCG events happened after birth (Figure 4.10d). As a result, 27%-56% of the
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tissue-specific CG-DMRs become highly methylated in adult tissues (at least 4

weeks old), while the number is 0.3%-15% at birth (P0), reflecting the silencing

of fetal regulatory elements (mCG level ¿ 0.6; Figure 4.11a). The lack of gain-

of-mCG events during fetal development may be a result of limited de novo CG

methylation and/or excessive demethylation activity.

The observed mCG dynamics cannot be explained by the absence of expres-

sion cytosines methytransferases Dnmt1 and Dnmt3a, which are highly expressed

between E10.5 and E13.5 when major the loss-of-mCG events occur (Figure 4.11b).

Furthermore, we also did not find increased expression of Tet methylcytosine dioxy-

genases, involved methylation removal, during the same period. Interestingly, Tet3

expression is lower in heart, coinciding with its less dynamic mCG during embryo-

genesis. Absence of gain-of-methylation events until the postnatal period may

involve translational or posttranslational regulation of these enzymes or the ab-

sence of cofactors or proteins that target them or possibly other unknown control

mechanisms.

4.3.4 Dynamic CG methylation is associated with the re-

modeling of enhancer-related chromatin states

To further pinpoint the timing of CG-DMR remethylation and its rela-

tionship with enhancer activity, we included methylation data from adult frontal

cortex[9] as well as H3K27ac data adult forebrain[45] (Supplemental Table S2). We

then clustered forebrain-specific CG-DMRs into 8 groups based on the mCG and

H3K27ac dynamics across both fetal and adult stages (Figure 4.2e; Figure 4.11c;

Methods). CG-DMRs in each group were located nearby genes related to distinct
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brain related processes (Figure 4.11d). Despite the fact that frontal cortex is only

part of forebrain, the CG-DMRs hypomethylated in P0 forebrain were also hy-

pomethylated in frontal cortex at the first postnatal week (P1wk; Figure 4.2E).

Between postnatal 1 and 2 weeks, methylation of forebrain-specific CG-DMRs in-

creased dramatically and become even further methylated as the tissue matures

(Figure 4.10e). Using these additional datasets, we were able to refine the timing

of remethylation in the frontal cortex.

We then asked how the mCG dynamics at tissue-specific CG-DMRs were

associated with their enhancer activity (approximated by H3K27ac abundance)

during development. Interestingly, although the temporal depletion of mCG was

not necessarily related to high H3K27ac enrichment (e.g. C3, C5 and C6), high

methylation level is indicative of low H3K27ac (Figure 4.2e-f). Across all tissues

except liver, the tissue-specific CG-DMRs that are highly CG methylated (mCG

level ¿ 0.6) are less frequent to show strong enrichment of H3K27ac compared to

ones that are lowly or moderately CG methylated (Figure 4.2f). This trend is inde-

pendent of development stages. Collectively, these results suggest that depletion of

mCG in regulatory elements associated with enhancer activity and the decreasing

methylation level at CG-DMRs during development may prime flexible regulation

of enhancer activity.

4.3.5 Correlation between methylation dynamics and gene

co-expression networks

We investigated the association between differential mCG and the transcrip-

tion of genes in different pathways, using the RNA-seq data from matched samples
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(Wold et al. see companion paper, this issue). By applying an unsupervised,

weighted correlation network analysis (WGCNA)[46] method, we identified 33 co-

expressed gene clusters (co-expression modules, CEMs) and we calculated eigen-

genes to summarize the expression profile of genes within modules (Figure 4.3a-b;

Figure 4.12a-b; Methods). Genes sharing similar expression profiles are likely regu-

lated by a common mechanism and/or involved in the same pathway. For example,

CEM12 contains genes that are highly expressed in early developmental stages but

are down regulated as tissues mature (Figure 4.3c; Figure 4.12b). Genes in CEM12

are significantly related to cell cycle, matching our knowledge that cells become

post-mitotic in mature tissues. Similarly, genes in CEM3 are related to chromatin

modification and are lowly expressed in heart, which showed less mCG dynamics

relative to other tissues (Figure 4.3b-c; Figure 4.12c). Overall, genes in CEMs

are associated with different pathways and/or biological processes (Figure 4.12d;

Supplemental Table S7).

To understand how mCG profiles and enhancer activity of regulatory el-

ements (feDMRs) are associated with the expression of genes in CEMs, we first

inferred feDMRs target genes based on genomic distance and linked each feDMR

to its neighboring gene (Methods). Next, for each CEM, we correlated its eigen-

gene expression with the average mCG and enhancer activity of the feDMRs that

were linked to the genes in that CEM (Methods). We used enhancer scores to

approximate enhancer acitivity because higher scoring feDMRs are more likely to

display in vivo enhancer activity (Figure 4.8b).

To tease out the effect of tissue type and development, we calculated the cor-

relations separately for tissue-specific expression and temporal expression (Meth-
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ods). Given a developmental stage, a higher level of mCG at feDMRs was nega-

tively correlated with the tissue-specific eigengene expression, consistent with its

known repressive role (Figure 4.3d-e). In contrast, the enhancer score of feDMRs

was positively correlated with tissue-specific transcription, implying that enhancers

are likely the drive of tissue-specific expression and this score provides a good ap-

proximation of enhancer activity (Figure 4.3e-e). For example, genes related to

synaptic transmission (CEM32) are highly expressed in neuronal tissues, while

their neighboring feDMRs are depleted of mCG and show high enhancer scores

(Figure 4.3d; Figure 4.12d). Such trends hold when we calculated the correlations

for all modules (Figure 4.3e; Methods).

Next, for a given tissue type, we calculated the correlation across devel-

opment. Because CG methylation generally decreased at feDMRs in fetal tissues

over, mCG only showed marginally better anticorrelation with temporal transcrip-

tion than that by chance (Figure 4.2a; Figure 4.3f-g). In contrast, the enhancer

score remains positively correlated with the temporal expression, implying that

enhancer activity is the driver of temporal gene expression (Figure 4.3f-g).

4.3.6 Epigenetic memory of the fetal enhancers in adult

tissues

Although the majority of CG-DMRs gain methylation after birth, not all

of them become hypermethylated in adult tissues (Figure 4.11a). The regions hy-

pomethylated in adult tissues have been termed either adult vestigial enhancers

(AD-V enhancers) or adult active enhancer (AD-A enhancers)[11]: Compared to

AD-A enhancers, AD-V enhancers are depleted of enhancer-like chromatin marks
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and enriched for H3K27me3. However, both types are CG hypomethylated, evolu-

tionarily conserved and enriched for TF binding motifs[11]. Also, AD-V enhancers

were able to drive gene transcription in vivo in fetal tissues[11], indicating that they

are likely a remnant of fetal enhancers in adult tissues. However, this hypothesis

has never been systematically investigated.

Taking advantage of the temporal dimension of our dataset, we traced the

epigenetic signatures of the AD-V and AD-A enhancers identified in adult heart,

intestine and kidney from a previous study[11] (Methods). Although examples of

AD-V and AD-A enhancers exist that are enriched for enhancer-like chromatin

signatures and show enhancer activity at fetal stages, only 4%-14% of AD-V en-

hancers overlapped with feDMRs compared to 70%-84% for AD-A enhancers (Fig-

ure 4.4a-b; Figure 4.13a). To further interrogate this, we narrowed our scope to

CG-DMRs that overlapped AD-V (AD-V CG-DMRs) or AD-A enhancers (AD-A

CG-DMRs) and found that, consistently, 19%-32% of the AD-V CG-DMRs are

enriched for H3K27ac and predicted as enhancers (AD-V feDMRs), fewer than

AD-A CG-DMRs (68%-81%; Figure 4.13b). Such differences may be a result of

the transient fetal activity of AD-V enhancers, which is not evident in the sampled

stages. Indeed, the enhancer score of the AD-V feDMRs is more dynamic than

AD-A feDMRs (Figure 4.13c; p-value ¡ 0.01, Mann-Whitney test). Furthermore,

AD-V feDMR target genes expressed more dynamically (Figure 4.13d; p-value ¡

0.01, Mann-Whitney test). In addition, AD-V feDMRs showed lower enhancer

scores and the expression levels of their target genes was also lower than AD-A

feDMRs (Figure 4.13e-f). These observations indicate that the fetal activity of

AD-V enhancers is more dynamic and is more difficult to detect.
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To understand the regulation of AD-V enhancers, we studied the epigenetic

marks likely responsible for AD-V non-feDMR repression throughout fetal develop-

ment. On average, only 44% of the AD-V non-feDMRs were heavily CG methylated

(mCG level ¿ 0.6) on fetal stages, lower than AD-A non-feDMRs (68%; Figure 4.4c-

d; Figure 4.14a-c). In contrast, AD-V non-feDMRs showed stronger H3K27me3

enrichment compared to AD-A non-feDMRs (Figure 4.14d). As H3K27me3 and

mCG are complementary gene silencing mechanisms[47], the lowly methylated AD-

V non-feDMRs may be repressed by H3K27me3. Indeed, lowly methylated AD-V

non-feDMRs (mCG level ¡ 0.6) showed stronger H3K27me3 enrichment than highly

methylated ones (mCG level ¿= 0.6; Figure 4.14e). Enrichment of H3K27me3

at AD-V non-feDMRs may result in the formation of vestigial enhancer signa-

tures by preventing CG remethylation. Expanding the analysis on all fetal tissue-

specific CG-DMRs, we found that 13%-15% (10,757-13,948) of them are repressed

by H3K27me3 at fetal stages and show vestigial epigenomic state in adult tissue

(Methods). Our results support a model in which H3K27me3 and mCG may each

repress distinct subsets of AD-V non-feDMRs, whereas mCG is the primary mech-

anism for silencing AD-A non-feDMRs, which undergo dramatic demethylation

after birth and become active in the adult.

4.3.7 Intragenic non-CG methylation is associated with

gene repression

Non-CG methylation, a less well understood form of cytosine DNA meth-

ylation in mammals, is present in most adult tissues and is the dominant form of

cytosine methylation in human neurons[17]. No mechanism is known to actively
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remove mCH, although passive dilution can occur during cell replication[17]. Sur-

prisingly, we found that mCH accumulates to detectable levels in nearly all fetal

tissues during their developmental trajectories (Figure 4.5a). Interestingly, the

timing of mCH accumulation varies in different tissues (Figure 4.5a). Heart tissue

showed traceable mCH at as early as E10.5, when mCH was not observable in other

tissues. Three brain tissues, forebrain, midbrain and hindbrain, also showed differ-

ent rates of mCH accumulation. Previous studies revealed that mCH is preferen-

tially deposited at 5-CAG-3 context in embryonic stem cells and 5-CAC-3 context

in brain, heart, skeletal muscle and a variety of adult tissues[7, 8, 9, 16, 17, 18]. In

all fetal tissues mCH was found in the CAC context and the significance of this 3

base specificity increased as tissues mature, implying a similar pathway (Dnmt3A)

as is responsible for mCH in adult tissues[17] (Figure 4.15a).

mCH was not uniformly distributed across the genome but preferentially

accumulated in genomic loci that we termed as mCH domains, genomic regions

that showed higher mCH level than flanking sequences (Figure 4.5b). We system-

atically identified 384 mCH domains that averaged 255kb in length, encompassing

98Mb in total (Methods). Strikingly, 92% (355 out of 384) of the mCH domains

and 61% of bases overlapped with annotated gene bodies (p-value ¡ 0.001; Meth-

ods). A highly significant fraction (22%) of these mCH domain genes (e.g. Pax3 )

encode transcription factors (Figure 4.5b; 128 out of the 581 genes, p-value ¡ 0.001;

Methods).

To explore the tissue and temporal specificity of mCH accumulation, we

used k-means clustering to group mCH domains into 5 clusters based on methyla-

tion dynamics (Figure 4.5b-c; Figure 4.15b; Methods). mCH domains in clusters 1
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and 3 acquire mCH in all tissues and are enriched for genes related to embryo de-

velopment (Figure 4.5c-e; Figure 4.15b; Supplemental Table S8). mCH domains in

cluster 4, also accumulate in all tissues but are more dramatic than clusters 1 and

3, and are significantly enriched for genes with neuron differentiation functions. In

contrast to these ubiquitous mCH domains, cluster 2 gains mCH most evidently in

heart where as those in cluster 5 show brain-specific mCH accumulation, overlap-

ping genes that are enriched for functions related to axon guidance (Supplemental

Table S8). Since distinct mCH landscapes have been found in different cell types in

brain[9, 43], the observed fetal tissue-specific mCH dynamics may indicate that in

different tissues, mCH likely accumulates in distinct (combinations of) cell types.

We then asked how the mCH accumulation is associated with gene expres-

sion as mCAC in the gene body was found anticorrelated with gene expression[17].

Indeed, as methylation accumulates in mCH domains, the genes within tend to be

repressed compared to genes outside mCH domains in late developmental stages,

especially at P0 (Figure 4.5f; Figure 4.15c). Since mCH domains are enriched for

TFs and other genes related to tissue/organ or embryo development, our data sug-

gests that mCH may be associated with silencing pathways of early development.

Interestingly, mCH domains are enriched for feDMRs compared to flanking

regions in a tissue-specific manner (Figure 4.5g). mCH domains that showed ubiq-

uitous mCH accumulation (C1 and C3) are enriched for feDMRs of all tissue types.

For mCH domains in tissue-specific clusters, the feDMR enrichment is found only

for heart (C2) and brain-related tissues (C5) (Figure 4.5g). For cluster C4, feDMRs

enrichment was observed in all tissues but it is most evident for feDMRs in brain-

related tissues. feDMRs in mCH domains exhibit a decreasing trend of enhancer
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activity as development proceeds (Figure 4.15d). Moreover, these feDMRs tend

to become hypermethylated in late stages compare with feDMRs that lie outside

mCH domains (Figure 4.15e). These observations indicate that mCH accumula-

tion predicts the future silencing of regulatory elements, consistent with recently

reported findings for human cerebral organoids[48]. Collectively, we found mutual

associations between several mCH domains features including: mCH accumula-

tion, enrichment for genes related to the tissues that acquire mCH, enrichment of

feDMRs, down-regulation of gene transcription, as well as decreasing enhancer ac-

tivity. Delineating the mechanism(s) that drive these associations will provide new

insights into mCH regulation and the potential involvement of non-CG methylation

in transcriptional regulation.

4.4 Conclusion

In this study we describe the generation and analysis of a comprehensive

collection of base-resolution, genome-wide maps of cytosine methylation for 12 fetal

tissue types from 8 developmental stages of mouse embryogenesis. By integrating

DNA methylation, histone modification and RNA sequencing data from the same

tissue samples, we annotated millions of methylation variable elements including

prediction of fetal enhancers and sets of transcription factors that bind them.

Because of the temporal nature of these data, we uncovered surprisingly simple

mCG dynamics at predicted DNA regulatory regions where during early stages of

fetal development methylation decreases in all tissues until birth at which time

methylation at predicted fetal regulatory elements dramatically rises. In spite of



202

the tissue heterogeneity, such dynamics suggest a plausible regulatory principal

whereby stable repressive mCG is removed to enable a mode of more flexible tran-

scriptional regulation (e.g. histone modifications). In addition, we reveal that the

formation of previously identified adult vestigial enhancers[11] is likely due to the

antagonistic interaction between H3K27me3 and mCG, as an example of crosstalk

between epigenetic modifications during development. Also, our findings extend

current knowledge of methylation in a non-CG context, an understudied type of

DNA methylation. We observed that during fetal development there is preferential

accumulation of mCH at genomic locations each hundreds of kilobases in size, a

novel genomic feature we termed mCH domains. Genes that lie in mCH domains

tend to become down regulated as mCH accumulates in the later stages of fetal

development . Though its function remains debatable, in vivo and in vitro studies

indicated that mCH directly increases the binding affinity of MeCP2[20, 21, 22],

mutation of which leads to Rett Syndrome. Gene-rich mCH domains are likely

enriched for MeCP2 binding which may be involved in the observed transcrip-

tional repression. Our study highlights the power of temporal tissue epigenome

maps to uncover regulatory element dynamics in fetal tissues during in utero de-

velopment. These datasets provide a valuable resource for studies of fundamental

questions about gene regulation during mammalian tissue/organ development as

well as knowledge about the possible origins of human developmental diseases.
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4.6 Supplemental Note - mCG landscape remod-

eling in fetal liver

Distinct from the hypermethylated genome of all other tissues, the liver

genome underwent drastic global demethylation from E11.5 to E14.5, and remained

hypomethylated till E16.5, after which it returned to hypermethylated state at P0

(Figure 4.1B). The hypomethylated liver genome, present during E12.5 to E16.5,

displayed a partially methylated domains (PMDs) signature, a methylation fea-

ture previously observed in human cultured cell lines[7, 28], pancreaspancreas[8],

placenta[29] and cancer samples[30, 31]. PMDs are large genomic regions (typically

greater than 100kb) that are lowly CG methylated (Figure 4.6A). We systemati-

cally identified PMDs in liver samples from all stages (Methods). Strikingly, from

E14.5 to E16.5, PMDs covered more than half of the genome and the coverage

shrunk dramatically afterwards (Figure 4.6B). We found that PMDs identified in

E15.5 displayed hypomethylation in all liver samples and covered almost all PMDs

from other stages (Figure 4.6C-D). These results indicate that the PMDs identified

at different fetal stages are essentially identical and the different PMDs calls were

due to various signal-to-noise ratios. Therefore, we defined the PMDs identified in

E15.5 liver as liver PMDs (n = 4,578; average size = 338kb).

Mouse liver PMDs share all molecular signatures of the PMDs identified in

human fibroblast cell lines, normal and cancer tissues[7, 8, 30, 31]: First, mouse

PMDs are enriched for H3K9me3 and H3K27me3 and are depleted of H3K27ac

(Figure 4.6E). Second, mouse PMDs tend to be replicated during the later stages

of the cell cycle and strongly overlap with lamina-associated domains (Figure 4.6F;
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p-value ¡ 0.001; permutation test; Methods). Furthermore, we found that genes

overlapping with mouse PMDs tend to have lower expression compared to genes

outside PMDs, which was also reported by Schultz et al for human pancreas[8].

These shared properties indicate that human and mouse PMDs are likely identical

genome feature and their presence may be due to similar mechanism, likely the

failure of mCG maintenance in rapidly dividing cells[30].

The presence of PMDs in fetal liver coincides with hematopoiesis[49, 50].

Hematopoiesis initiates at E11.5, while liver genome remains hypermethylated

(Figure 4.1B). Then, hematopoietic expansion occurs between E12.5 and E14.5,

during which the liver genome underwent demethylation and PMDs became evi-

dent (Figure 4.1B; Figure 4.6B and D). The increasing number of rapidly dividing

cells during this expansion period may explain the formation of PMDs. After

E15.5, the hematopoiesis starts to disappear although the liver tissue genome is

not fully remethylated until P0 (Figure 4.6B).

4.7 Methods

4.7.1 Data Availability

All whole-genome bisulfite sequencing (WGBS) data of embryonic tissues

are available in ENCODE portal (https://www.encodeproject.org/) and most of

them can be accessed from GEO (Supplemental Table 1). All other data used

in this study, including chromatin immunoprecipitation with massively parallel

DNA sequencing (ChIP-seq), RNA-seq and additional WGBS data, are available

in ENCODE portal and/or GEO (Supplemental Table 2).

https://www.encodeproject.org/
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4.7.2 Abbreviations

• AD: adult

• CEM: co-expression module

• mC: cytosine DNA methylation

• mCG: CG methylation

• mCH: non-CG methylation

• TF: transcription factor

• H3K4me1: Histone 3 lysine 4 monomethylation

• H3K4me3: Histone 3 lysine 4 trimethylation)

• H3K27me3: Histone 3 lysine 27 trimethylation

• H3K27ac: Histone 3 lysine 27 acetylation

• WGBS: whole-genome bisulfite sequencing

• REPTILE: Regulatory Element Prediction based on TIssue-specific Local

Epigenetic marks

• GWAS: genome-wide association study

• SNP: single nucleotide polymorphism

• TPM: transcripts per million

• WGCNA: weighted gene co-expression network analysis
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• RPKM: Reads Per Kilobase per Million mapped reads

Genomic features

• CG-DMR: differentially CG methylation region

• feDMR: fetal enhancer linked CG-DMR

• fd-feDMR: flanking distal feDMR

• pd-feDMR: poised distal feDMR

• unxDMR: unexplained CG-DMR

• te-unxDMR: transposable element overlapping unxDMR

• nte-unxDMR: non transposable element overlapping unxDMR

• TSS: transcription start sites

• CGI: CpG island

• PMD: partially methylated domain

• AD-A enhancer: adult active enhancer

• AD-V enhancer: adult vestigial enhancer

Tissues/organs

• FB: forebrain

• MB: midbrain
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• HB: hindbrain

• NT: neural tube

• HT: heart

• CF: craniofacial

• LM: limb

• KD: kidney

• LG: lung

• ST: stomach

• IT: intestine

• LV: liver

4.7.3 Tissue Collection And Fixation

See Supplemental File 1-2 for details.

4.7.4 MethylC-seq Library Construction

MethyC-seq library was constructed as described previously[8] and the de-

tailed protocol can be found in Urich et al[51]. Illumina HiSeq 2500 was used to

sequence the libraries and generate 100 or 130 bases single-ended reads.
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4.7.5 Mouse Reference Genome Construction

For all analyses in this study, we used mm10 as reference genome, which

includes 19 autosomes and two sex chromosomes (corresponding to the mm10-

minimal reference in ENCODE portal, https://www.encodeproject.org/). The

fasta files of mm10 were downloaded from UCSC genome browser (Jun 9 2013)[52].

4.7.6 WGBS Data Processing

All WGBS data were processed on mm10 mouse reference genome ex-

actly as previously described[53]. The reference for WGBS processing also in-

cluded lambda genome as control to estimate sodium bisulfite non-conversion rate.

The pipeline, methylpy, is available on github (https://github.com/yupenghe/

methylpy). Briefly, cytosines on WGBS reads were first converted to thymines.

The converted reads were then aligned by bowtie (1.0.0) onto the forward strand

of C-T converted reference genome and the reversed strand of G-A converted ref-

erence genome, separately. We filtered out reads that were not uniquely mapped

or were mapped to both converted genomes. Next, PCR duplicates were also

removed. Last, methylpy counted the methylated basecalls (cytosines) and un-

methylated basecalls (thymines) at each cytosine.

4.7.7 Calculation Of Methylation Level

Methylation level was computed to measure the intensity and degree of

DNA methylation of single cytosine or genomic region. Methylation level is de-

fined as the ratio of the sum of methylated basecall counts over the sum of both

https://www.encodeproject.org/
https://github.com/yupenghe/methylpy
https://github.com/yupenghe/methylpy
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methylated and unmethylated basecall counts at one cytosine or across sites in

a given region[54] subtracting sodium bisulfite non-conversion rate. The sodium

bisulfite non-conversion rate is defined as the methylation level of the lambda

genome. We calculated this metric for cytosines on CG context and CH context

(H=A, C or T). The former is called CG methylation (mCG) level or mCG level.

Similarly, the latter is called CH methylation (mCH) level or mCH level.

4.7.8 ChIP-seq Data Processing

ChIP-seq data were processed using the ENCODE uniform processing pipeline

for ChIP-seq: briefly, reads were first mapped to the mm10 reference using bwa[55]

(version 0.7.10) with parameters -q 5 -l 32 -k 2. Next, Picard tool

(http://broadinstitute.github.io/picard/, version 1.92) removed PCR duplicates

with parameters REMOVE DUPLICATES=true. For each histone modification

mark, we represented it as continuous enrichment values of 100bp bins across the

genome. The enrichment was defined as the RPKM (Reads Per Kilobase per Mil-

lion mapped reads) of ChIP subtracting input. The enrichment across the genome

was calculated using bamCompare in Deeptools2[56] with options –binSize 100 –

normalizeUsingRPKM –extendReads 300 –ratio subtract. For the ChIP-seq data

of EP300, we used MACS[57] (1.4.2) to call peaks given default parameters.

4.7.9 RNA-seq Data

Processed RNA-seq data of all fetal tissues from all stages was downloaded

from ENCODE portal (https://www.encodeproject.org/; Supplemental Table S2).

To further validate the finding regarding transcriptome, we generated additional

http://broadinstitute.github.io/picard/
https://www.encodeproject.org/
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RNA-seq data for forebrain, midbrain, hindbrain and liver. We first extracted total

RNA using RNeasy Lipid tissue mini kit from Qiagen (cat no.#74804). Then, we

used Truseq Stranded mRNA LT kit (Illumina, RS-122-2101 and RS-122-2102)

to constructed stranded RNA-seq libraries on 4ug of the extracted total RNA.

Illumina HiSeq 2500 were used to sequence the libraries and generate 100 bases

single-ended reads.

4.7.10 RNA-seq Data Processing And Gene Expression

Quantification

The RNA-seq data was processed using ENCODE RNA-seq uniform pro-

cessing pipeline. Briefly, RNA-seq reads were mapped to mm10 mouse reference

using STAR[58] aligner (version 2.4.0k) with Gencode M4 annotation[59]. We

quantified the gene expression levels using RSEM (version 1.2.23)[60], expressed

as transcripts per million (TPM). For all downstream analysis, we filtered out non-

expressed genes and only retain only the genes that showed non-zero TPM in at

least 10% of samples.

4.7.11 Genomic Features of Mouse Reference Genome

We used GENCODE M4 gene annotation[59] in this study, which is used

by ENCODE for mouse data. CG island (CGI) annotation was downloaded from

UCSC genome browser (Sep 5, 2016)[52]. CGI shores are defined as the upstream

2kb and downstream 2kb regions along CGIs. Promoters are defined as regions

from - 2.5kb to +2.5kb around transcription start sites (TSSs). CGI promoters
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are one with any overlap with CGIs and the remaining promoters are non-CGI

promoters. We also obtained a list of mappable transposable elements (TEs) us-

ing the below procedure. RepeatMasker annotation of mm10 mouse genome was

downloaded from UCSC genome browser (Sep 12, 2016)[52]. The annotation in-

cludes 5,138,231 repeats. We acquired the transposon annotation by selecting only

the repeats belong to one the below repeat classes (repClass): DNA, SINE, LTR or

LINE. Then, we excluded any repeat elements with question mark in their name

(repName), class (repClass) or family (repFamily). In the remaining 3,643,962

transposons, we further filtered out elements that contained less than 2 CG sites

or less than 60

4.7.12 CG Differentially Methylated Region (CG-DMRs)

We identified CG-DMRs using methylpy (https://github.com/yupenghe/

methylpy) as previously described[53]. Briefly, we first called CG differentially

methylated sites (CG-DMSs) and then merged them into blocks if they both show

similar sample-specific methylation patterns and are within 250bp. Last, we fil-

tered out the blocks that contain less than three CG-DMSs. In this procedure,

we combined the data of the biological replicates for each tissue and we only con-

sidered the data of non-liver tissues due to the global hypomethylation in liver

genome. We overlapped the CG-DMRs with CG-DMRs identified in Hon et al[11]

using intersectBed from bedtools[61]. The mm9 coordinates of the CG-DMRs from

Hon et al. were first, mapped to mm10 using liftOver3 with default parameters.

An overlap in one CG-DMR list is defined as a CG-DMR with at least one base

with any CG-DMRs in the other list. The result is shown in Figure 4.1d.

https://github.com/yupenghe/methylpy
https://github.com/yupenghe/methylpy
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4.7.13 Identification of tissue-specific CG-DMRs

For each tissue type, we defined tissue-specific CG-DMRs as the CG-DMRs

that showed hypomethylation in the tissue samples from any stages between E10.5

to P0. Hypomethylation is only meaningful with a baseline. Inspired by how

baseline was defined in an outlier detection algorithm[62], we defined baseline

mCG level of each CG-DMR across tissue samples as the mean of the bulk, which

is defined as the values in the narrowest mCG level interval that includes at least

half of the samples. Specifically, xis is the mCG level of CG-DMR i(i = 1, ,M)

in tissue sample s(s = 1, , N). Assuming the samples are ordered such that xi1 ≤

xi2 ≤ xis ≤ xiN , the baseline is defined as the bi =
∑a+dN/2e

s=a xis , where a is the

sample index such that xia+dN/2e−xia is minimized, i.e. a = argmint(x
i
t+dN/2e−xit).

dN/2e is defined as the smallest integer that is greater than N/2. Last, we defined

hypomethylated samples as the samples in which the mCG level at CG-DMR i

is at least 0.3 smaller than baseline bi, i.e. s|(xis − bi) ≤ −0.3. Then, CG-DMR

i is specific to these tissues. Liver data was not included in this analysis and we

excluded any CG-DMRs that had zero coverage in any of the non-liver samples.

In total, 402 ( 0.02%) CG-DMRs were filtered out.

4.7.14 Linking CG-DMRs To Genes

We linked CG-DMRs to their target genes based on genomic distance. First,

we only considered expressed genes, which showed non-zero TPM in at least 10%

of all fetal tissue samples. Next, we obtained the TSSs of the expressed genes and

paired each CG-DMR with the closest TSS using closestBed from bedtools[61]. In

this way, we inferred the target gene of each CG-DMR and this map was used in
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all the analyses in this study.

4.7.15 Predicting Fetal Enhancer-linked CG-DMRs

REPTILE[32] algorithm was used to identify the CG-DMRs that showed

enhancer-like chromatin signature and were likely to act like enhancers. We called

them fetal enhancer-like CG-DMRs or feDMRs. REPTILE uses random forest clas-

sifiers to learn and then distinguish the epigenomic signatures of enhancers and

genomic background. One unique feature of REPTILE is that by incorporating the

data of additional samples (as outgroup/reference), REPTILE is able to employ

epigenomic variation information to improve enhancer prediction. In this analysis,

we ran REPTILE using the data of CG methylation (mCG) and six histone marks

(H3K4me1, H3K4me2, H3K4me3, H3K27ac, H3K27me3 and H3K9ac). REPTILE

enhancer model was trained as previously described[32]. Briefly, CG-DMRs were

called across the methylomes of mouse embryonic stem cells (mESCs) and all eight

E11.5 mouse tissues. CG-DMRs were required to contain at least 2 CG-DMSs and

they were extended 150bp from each direction. The REPTILE model was trained

on the mESC data using E11.5 mouse tissues as outgroup. Data of mCG and six

histone modifications are available for these samples. The training dataset consists

of 5000 positive instances (putative known enhancers) binding and 35,000 negative

instances. Positives were 2kb regions centered at the summits of top 5,000 EP300

peaks in mESCs. Negatives include randomly chosen 5,000 promoters and 30,000

2kb genomic bins. The bins have no overlapped with any positives or promot-

ers. REPTILE learned the chromatin signatures of these positive and negative in-

stances, based on which it identified the CG-DMRs that are likely to be enhancers.
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Next, using this model, we applied the REPTILE to delineate feDMRs from the

1,808,810 CG-DMRs identified across all non-liver tissues. The feDMRs were pre-

dicted for each sample based on the data of mCG and six histone marks, while the

remaining non-liver samples were used as outgroup. In REPTILE, the random for-

est classifier for CG-DMR assigns a confidence score ranging from 0.0 to 1.0 to each

CG-DMR in each sample. The score corresponds to the fraction of decision trees

in the random forest model that vote in favor of the CG-DMR to be an enhancer.

Previous benchmark showed that higher the score, more likely the CG-DMR shows

enhancer activity[32]. We named the confidence score as putative enhancer activity

(PEA). In each tissue sample, feDMRs are the CG-DMRs with PEA greater than

0.3. feDMRs were also defined for each tissue type as the CG-DMRs that were iden-

tified as feDMR in at least one tissue sample of that tissue type. For example, if a

CG-DMR was predicted as feDMR only in E14.5 forebrain, it is a forebrain-specific

feDMR. We overlapped the feDMRs with putative enhancers from Yue et al[36].

We downloaded the center of putative enhancers in each of the tissues and cell types

from http://yuelab.org/mouseENCODE/predicted enhancer mouse.tar.gz. Then,

we defined putative enhancers as +/- 1kb regions around the centers. Putative

enhancers from different tissues and cells types were combined and merged if they

were overlapped. The merged putative enhancers (mm9) were mapped to mm10

reference using liftOver[52]. Finally, intersectBed from bedtools[61] were used to

overlap feDMRs with these putative enhancers.

http://yuelab.org/mouseENCODE/predicted_enhancer_mouse.tar.gz
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4.7.16 Enhancer score and in vivo enhancer activity

To estimate the likelihood that a feDMR with certain enhancer score ac-

tually displays enhancer activity in vivo, we downloaded enhancer validation data

from VISTA enhancer browser[37] and validated feDMRs with DNA elements

(VISTA elements) that were experimentally tested for enhancer activity in E11.5

embryo. We used this dataset to validate feDMRs predicted in six E11.5 tissues

(forebrain, midbrain, hindbrain, heart, limb and neural tube), where at least 30

validated VISTA elements (enhancers) are available. To do this, in each E11.5

tissue, we first overlapped feDMRs predicted in that tissue with VISTA elements

and picked out VISTA elements that fully contained at least one feDMR. Then,

we calculated the fraction of feDMR overlapping VISTA elements that displayed

enhancer activity in the predicted tissue, any tissue(s) or nowhere. The results are

shown in Figure 4.7A.

4.7.17 Enriched transcription factor (TF) binding motifs

in tissue-specific feDMRs

To identify TF motifs enriched in feDMRs, we scanned the genome to delin-

eate TF motif occurrences as previously described[43]. Briefly, we downloaded TF

binding position weight matrices (PWMs) from the MEME motif database (v11,

2014 Jan 23. motif sets chen2008, hallikas2006, homeodomain,

JASPAR CORE 2014 vertebrates, jolma2010, jolma2013, macisaac theme.v1,

uniprobe mouse, wei2010 mouse mw, wei2010 mouse pbm, zhao2011). Then,

FIMO[63] was used to scanned the genome to identify TF motif occurrences using
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options –output-pthresh 1E-5 –max-stored-scores 500000. Next, we performed hy-

pergeometric test to identify significant motif enrichments. For each tissue type, we

calculated the motif enrichment in the feDMRs of that tissue (foreground) against

the feDMRs of other tissues that were not overlapped with foreground. In this anal-

ysis, we extended the average size of both foreground and background to 400bp

to avoid bias due to size difference. For a given tissue t, the total number of fore-

ground and background feDMRs is Nf,t and Nb,t, respectively, and Nt = Nf,t +Nb,t

is the total number of feDMRs. For a given TF binding motif m, TF motif occur-

rences are overlapped with nf,t,m foreground and nb,t,m background feDMRs, while

nt,m = nf,t,m + nb,t,m is the total number of overlapping feDMRs. The probability

of observing nf,t,m or more overlapping foreground feDMRs (p-value) is defined as:

P (Xnf,t,m|Nf,t, nf,t,m, Nb,t, nb,t,m) =

nt,m∑
x=nf,t,m

(
Nf,t

x

)(
Nb,t

nt,m−x

)(
Nt

nt,m

) (4.1)

For each tissue type, we performed this test for all motifs (n=532). Then,

the p-values of each tissue were adjusted using Benjamini-Hochberg method and

the motifs were called as significant if they passed 1% FDR cutoff. Last, we

excluded any TF-binding motifs whose TF expression level was less than 10 TPM.

4.7.18 Enrichment of GWAS SNPs in feDMRs

Genome-wide association study (GWAS) SNPs were first downloaded from

GWAS Catalog[64] (gwas catalog v1.0-associations e86 r2016-11-28.tsv). We then

filtered out the SNPs with missing coordinate or missing p-value information as
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well as ones whose p-value is greater than 5x10-8, ending up with 13,470 SNPs.

Next, we used liftOver from UCSC genome browser[52] to convert their coordinates

from hg38 human reference genome to hg19, after which 4 SNPs were excluded.

We further selected the SNPs that could be lifted over to mm10 mouse reference

genome. In the end, 7,052 GWAS SNPs that are conserved between human and

mouse were included in following analysis. Next, to obtain the human orthologs

of CG-DMRs, we used liftOver to map CG-DMRs (mm10) to hg19, requiring that

at least 50% of the bases in CG-DMR can be mapped to hg19 (using option -

minMatch=0.5). In total, 1,034,801 out of 1880810 DMRs (55%) left. Finally, we

overlapped the human orthologs of feDMRs of each tissue/organ with the GWAS

SNPs and tested for enrichment using one-tailed hypergeometric test. Specifically,

for each tissue/organ, we overlapped the GWAS SNPs with the human orthologs

of distal feDMRs in that tissue/organ (foreground) and the human orthologs of

the remaining CG-DMRs (background), separately. We observed qc SNPs asso-

ciated with trait c are overlapped with distal feDMRs and the total number of

SNPs overlapped with foreground is Q =
∑

c qc . Similarly, B =
∑

c bc SNPs are

overlapped with background and bc of them are the associated with trait c. For

each trait c, the null hypothesis is that qc follows a hypergeometric distribution,

with population size N = Q + B, nc = qc + bc are the number of successes (here

the number of SNPs related to c that are overlapped with either foreground or

background) and sampling number Q. Let X be a random variable representing

the observed number of SNPs that are related to trait c and overlapped with fore-

ground. Thus, the probability of observing X is equal to or greater than qc (i.e.
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p-value) is calculated as:

P (Xqc|N, qc + bc, Q, c) =

Q∑
x=qc

(
nc

x

)(
N−nc

Q−x

)(
N
Q

) (4.2)

Using this statistical approach, for SNPs associated with each trait, we tested

for their enrichment in the human orthologs of distal feDMRs compared to back-

ground. We then used Benjamini-Hochberg approach to adjust the p-values for

multiple testing. P-value cutoff given 5% false discovery rate (FDR) was used to

call significant enrichment. This procedure was conducted separately for the distal

feDMRs of each tissue/organ.

4.7.19 Categorizing CG-DMRs

To understand the potential function of CG-DMRs, we grouped them into

various categories based on their genomic location and chromatin signatures. First,

we overlapped CG-DMRs with promoters, CGIs and CGI shores and define the

overlapping CG-DMRs as proximal CG-DMRs. Out of the 153,019 proximal CG-

DMRs, 46,692, 90,831, 1,710 and 13,786 are overlapped with CGI promoters, non-

CGI promoters, CGIs and CGI shores, respectively. We avoided assigning proxi-

mal CG-DMRs into multiple categories by prioritizing the four genomic features

as CGI promoter, non-CGI promoter, CGI and CGI shores (decreasing priority).

CG-DMRs were assigned to the category with highest priority. The remaining

1,655,791 CG-DMRs (termed distal CG-DMRs) were further grouped. 415,227 of

them were predicted as feDMRs and we called them distal feDMRs. Please note

that proximal CG-DMRs also contain feDMRs. (1) Next, we found 221,960 CG-
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DMR are on the flanking regions of distal feDMRs and we called them flanking dis-

tal feDMRs or fd-feDMRs. fd-feDMRs have no overlap with proximal CG-DMRs or

feDMRs. (2) Out of the remaining unclassified CG-DMRs, 194,610 showed strong

tissue-specific hypoemethylation pattern and could be assigned to tissue types

(tissue-specific CG-DMRs). We called these CG-DMRs as primed distal feDMRs

because they showed enrichment of H3K4me1 but not other profiled histone marks

in the tissue where they are hypomethylated. (3) The remaining CG-DMRs were

defined as unexplained CG-DMRs (unxDMRs). We further divided unxDMRs into

two classes by overlapping them with transposable elements: te-unxDMR (trans-

posable element overlapping unxDMRs) and nte-unxDMR (transposable element

non-overlapping unxDMRs).

4.7.20 Evolutionary Conservation of CG-DMRs

The evolutionary conservation of CG-DMRs were measured using phyloP

score[65]. We first downloaded phyloP score from UCSC genome browser[52]

(http://hgdownload.cse.ucsc.edu/goldenpath/mm10/phyloP60way/

mm10.60way.phyloP60way.bw). Next, Deeptools[56] was used to generate the pro-

file of evolutionary conservation of the CG-DMR centers and +/- 5kb flanking

regions using options reference-point –referencePoint=center -a 5000 -b 5000.

http://hgdownload.cse.ucsc.edu/goldenpath/mm10/phyloP60way/mm10.60way.phyloP60way.bw
http://hgdownload.cse.ucsc.edu/goldenpath/mm10/phyloP60way/mm10.60way.phyloP60way.bw
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4.7.21 Finding TF-binding motif enriched in flanking distal

feDMRs

To identify the TF-binding motifs enriched in fd-feDMRs relative to feDMRs,

we performed motif analysis using the former as foreground and the latter as back-

ground. Specifically, for each tissue, the tissue-specific feDMRs were used as back-

ground, while the fd-feDMRs that were within 1kb to these tissue-specific feDMRs

were used as foreground. Both foreground and background were extended from

both sides such that both had mean size 400bp to avoid potential bias residing in

different size distribution. Next, hypergeometric test was performed to find TF-

binding motifs that were significantly enriched in foreground. The test is the same

as the test used in the identification of TF-binding motifs in feDMRs.

4.7.22 TF-binding motif enrichment analysis on primed

distal feDMRs

We also performed motif analysis to find TF-binding motifs enriched in pd-

feDMRs. The procedure is similar to the motif enrichment analysis on feDMRs.

For each tissue, the pd-feDMRs hypomethylated in that tissue were foreground

while the remaining pd-feDMRs were background. Then, hypergeometric test was

performed to identify significant motif enrichment. Next, for each tissue type, we

compared the TF-binding motifs enriched in pd-feDMRs and the tissue-specific

feDMRs. Hypergeometric test was used to test the significance of overlap the

chance of getting the observed overlap if the two lists were based on random sam-

pling (without replacement) from the TF-binding motifs with TF expression level
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greater than 10 TPM.

4.7.23 Permutation test to check the overlap between

unxDMR and TEs

To estimate the significance of overlap between unxDMRs and TEs, we

shuffled the location of unxDMRs using shuffleBed tool from bedtools[61] with

default setting and recalculated the overlaps. After repeating this step for 1,000

times, we got an empirical estimate of the overlap if unxDMRs were randomly

distributed in the genome. Let the observed number of TE overlapping unxDMRs

be xobs and the number of TE overlapping shuffled unxDMRs in permutation i be

xpermut
i . Lastly, we calculated p-values as

p =
(
∑1000

i=1 I(xobs ≤ xpermut
i )) + 1

1000 + 1
(4.3)

where I(x) =


1 x is true

0 x is false

.

4.7.24 Quantification of the mCG dynamics in

tissue-specific CG-DMRs

To quantify the mCG dynamics, we defined and counted loss-of-mCG and

gain-of-mCG events. A loss-of-mCG (Gain-of-mCG) event is a decrease (increase)

of mCG level by at least 0.1 in one CG-DMR in one stage interval. For example,

if the mCG level of one CG-DMR at E11.5 and E12.5 is 0.8 and 0.7 in heart
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respectively, it is a loss-of-mCG event occurred on the stage interval E11.5-E12.5.

Stage interval is defined as the transition between two sampled adjacent stages,

e.g. E15.5 and E16.5.

4.7.25 Clustering Forebrain-specific CG-DMRs based on

mCG and H3K27ac dynamics

We used k-means clustering to identify subgroups of forebrain-specific CG-

DMR based on mCG and H3K27ac dynamics. First, for each forebrain-specific CG-

DMR, we calculated the mCG level and H3K27ac enrichment in forebrain samples

from E10.5 to adult stages. Here, we used the methylome data of postnatal 1, 2

and 6 week frontal cortex from Lister et al[9] to approximate the DNA methylation

landscape of adult forebrain. We also incorporated the H3K27ac data of postnatal

1, 3 and 7 week forebrain samples. Next, to make the range H3K27ac enrichment

values comparable to that of mCH levels, for each forebrain-specific CG-DMR, the

negative H3K27ac enrichment values were thresholded as zero and we then divided

each value by the maximum. If the maximum was zero for some forebrain-specific

CG-DMRs, we set all values to be zero. Last, k-means clustering was used to

group forebrain-specific CG-DMRs into 8 subgroups. We tried to identify more

subgroups but no new patterns were found. Lastly, we used GREAT[66] with

Single nearest gene association strategy to find the enriched gene ontology terms

of genes near CG-DMRs in each subgroup.
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4.7.26 Association between mCG level and H3K27ac en-

richment

To investigate the association between mCG and H3K27ac, for each tis-

sue and each developmental stage, we first divided tissue-specific CG-DMRs into

three categories: H (highly CG methylated; mCG level ¿ 0.6), M (moderately CG

methylated; 0.2 ¡ mCG level ≤ 0.6) and L (lowly CG methylated; mCG level ≤

0.2). Then, we checked the distribution of H3K27ac enrichment in different groups

of CG-DMRs. To do that, we counted the number of CG-DMRs showing each of

the four levels of H3K27ac: [0, 2], (2, 4], (4, 6] and (6,∞).

4.7.27 Weighted correlation network analysis (WGCNA)

We used weighted correlation network analysis (WGCNA)[46], an unsu-

pervised method, to detect sets of genes with similar expression profiles across

samples (R package, WGCNA version 1.51). Briefly, TPM values were First log2

transformed (with pseudo count 1e-5). Then, the TPM values of every gene across

all samples were compared against the expression profile of all other genes and a

correlation matrix is obtained. To obtain connection strengths between any two

genes, we transformed this matrix to an adjacency matrix using a power adja-

cency function. To choose the parameter (soft threshold) of the power adjacency

function, we used the scale-free topology (SFT) criterion, where the constructed

network is required to at least approximate scale-free topology. The SFT criterion

recommends use of the first threshold parameter value where model-fit saturation

is reached as long as it is above 0.8. In this study, the threshold was reached for
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a power of 5. Next, the adjacency matrix is further transformed to a topological

overlap matrix (TOM) that finds neighborhoods of every gene iteratively, based

on the connection strengths. The TOM was calculated based on the adjacency

matrix derived using the signed hybrid network type, biweight mid correlation and

signed TOMtype parameters of the TOMsimilarityFromExpr module in WGCNA.

Hierarchical clustering of the TOM was done using the flashClust module using

the average method. Then, We used the cutreeDynamic module with the hybrid

method, deepSplit = 3 and minClusterSize = 30 parameters to identify modules

that have at least 30 genes. A summarized module-specific expression profile is

created using the expression of genes within the given module, represented by the

eigengene. The eigengene is defined as the first principal component of the log2

transformed TPM values of all genes in a module. In other words, this is a virtual

gene that represents the expression profile of all genes in a given module. Next,

very similar modules are merged after a hierarchical clustering of the eigengenes

of all modules applying a distance threshold of 0.15. Last, the eigengenes are

recalculated for all modules after merging.

4.7.28 Gene Ontology Analysis of Genes in each co-expression

module (CEM)

To understand the biological meaning of genes in each CEM, we used

Enrichr[67, 68] (http://amp.pharm.mssm.edu/Enrichr/) to identify the enriched

gene ontology terms in the GO Biological Process 2015 category.

http://amp.pharm.mssm.edu/Enrichr/
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4.7.29 Correlating eigengene expression with mCG and en-

hancer score of feDMRs

We investigated the association between gene expression and epigenomic

signatures of regulatory elements in CEMs. First, for each CEM, we used the

eigengene expression to summarize the transcription patterns of all genes in the

module. Then, we calculated the normalized average enhancer score and normal-

ized average mCG level of all feDMRs that were linked to the genes in the CEM.

Specifically, to reduce the potential batch effect, for each tissue and each stage, we

normalized the enhancer score of each feDMR by the mean enhancer score of all

feDMRs. mCG levels of feDMRs were normalized in similar way except that the

data of all DMRs was used to calculate the mean mCG level for each tissue and

each stage. Next, for each CEM, the TPM of eigengene, the normalized average en-

hancer score and mCG level of linked feDMRs were, respectively, further converted

to z-scores across stages for each tissue type (in analysis for tissue-specific expres-

sion) or across tissue types for each development stage (in analysis for temporal

expression). Lastly, for each CEM, we calculated pearson correlation coefficient

(R 3.3.1) between the z-score of eigengene expression and the z-score of normal-

ized enhancer score (or mCG level) for each module. The correlation coefficients

were calculated in two different settings: 1) for each tissue type, the correlation

was computed on z-score of normalized eigengene expression values and enhancer

scores (or mCG levels) across different development stages or 2) for each devel-

opmental stage, the correlation was computed across different tissue types. The

coefficients from former analysis indicate how well temporal gene expression is cor-
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related with enhancer score or mCG level of regulatory elements, while the latter

measure the association for tissue-specific gene expression. We then test whether

the correlation we observed was significant by comparing it with the correlation

based on shuffle data. In the analysis for tissue-specific expression, given a tissue

type, we mapped the eigengene expression of one CEM to the enhancer score (or

mCG level) of feDMRs linked to the genes in a randomly chosen CEM. For ex-

ample, in the shuffle setting, when given tissue type was heart, we calculated the

correlation between the eigengene expression of CEM14 and the enhancer score of

the feDMRs linked to genes in CEM6. In the analysis for temporal expression,

given a developmental stage, we performed similar permutation. Next, we calcu-

lated the pearson correlation coefficients on this permutation setting. Lastly, using

a two-tailed Mann-Whitney test, we compared the median of observed correlation

coefficients and the median of those based on shuffled data.

4.7.30 Adult vestigial enhancers and adult active enhancers

The list of adult vestigial enhancer (AD-V enhancer) and adult active en-

hancer (AD-A enhancers) calls was downloaded from the Supplemental Table 3 in

Hon et al[11]. The mm9 coordinates of AD-V and AD-A enhancers were mapped to

mm10 reference using liftOver[52] (using default parameters). Only the AD-V and

AD-A enhancer calls of heart, intestine and kidney were included because in our

dataset, only these three adult tissue samples had matched fetal tissue samples. To

trace the enhancer activity of AD-V and AD-A enhancers in fetal tissues, we over-

lapped AD-V enhancers and AD-A enhancers, respectively, with the tissue-specific

feDMRs of the matched tissue type (e.g. we overlapped heart AD-V enhancers
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with heart-specific feDMRs). intersectBed in bedtools[61] was used to accomplish

this analysis and we considered one AD-V/AD-A enhancer to be overlapped with

feDMRs if it had at least 1bp within tissue-specific feDMRs.

4.7.31 Dynamic epigenetic modifications in AD-V and AD-

A CG-DMRs

To trace the epigenomic changes in AD-V/AD-A enhancers, we first over-

lapped them with CG-DMRs, which were smaller genomic units for epigenomic

changes. CG-DMRs that were overlapped (by at least 1bp) with AD-V (AD-A)

enhancers were defined as AD-V (AD-A) CG-DMRs. In each tissue type, the AD-

V (AD-A) CG-DMRs that were predicted as tissue-specific feDMRs were AD-V

(AD-A) feDMRs whereas the rest were AD-V (AD-A) non-feDMRs.

We calculated the entropy for each AD-V/AD-A feDMR to evaluate the

degree of dynamics of enhancer activity of AD-V and AD-A feDMRs as well as the

expression of their inferred target genes. Specifically, for tissue type s, we defined

xi,s as the value of a metric of feDMRs on developmental stage i, while the metric

could be the enhancer score of the feDMR or the log10(TPM + 1) value of gene

linked to the feDMR. Then, we calculated entropy across developmental stages as

entropy = −
∑
i

pi,s ∗ ln(pi,s) (4.4)

where pi,s =
xi,s∑
t xt,s

.
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4.7.32 Identification of CG-DMRs that are marked by

H3K27me3 in fetal stages and become AD-V en-

hancers

In heart, intestine and kidney tissues, we quantified the fraction of tissue-

specific CG-DMRs that are enriched for H3K27me3 in fetal stages and show adult

vestigial enhancer like epigenomic state (i.e. they escape the remethylation in adult

stage and are depleted of H3K4me1 and H3K27ac in adult tissue). Specifically, for

each of the three tissues, we selected tissue-specific CG-DMRs whose 1) H3K27me3

signal (normalized RPKM) is greater than 0.5 in at least one fetal stage(s), 2) both

H3K4me1 and H3K27ac signals (normalized RPKM) are less than 0.5 in adult

stage, and 3) mCG level in adult stage increase by less than 0.1 compared to mCG

level in P0. We identified 13,948, 10,757 and 11,268 such CG-DMRs in heart,

intestine and kidney respectively

4.7.33 Partially methylated domain (PMD) identification

PMDs were identified as previously described[8]. Briefly, we trained a ran-

dom forest classifier. To get data used to train the classifier, we first visually

selected regions on chromosome 19 that we felt were strong candidates as PMDs

or non-PMDs in E14.5 liver sample. We picked 5 PMDs (chr19:46110000-46240000,

chr19:45820000-45960000, chr19:47140000-47340000 and chr19:48060000-52910000)

and 7 Non-PMD regions (chr19:4713800-4928700, chr19:7420700-7541100,

chr19:8738100-8967000, chr19:18633300-18713800, chr19:53315500-53390000,

chr19:55256600-55633900 and chr19:59281600-59329200).
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Next, these regions were divided into 10kb non-overlapping bins and we

calculated the percentiles of the methylation levels at the CG sites within each

bin. CG sites that are within CGIs, DMVs[69] or any of four Hox loci (see be-

low) were excluded because they are typically hypomethylated and may result in

incorrect PMD calling. Sites with less than 5 reads covered were not considered

either. We trained the random forest classifier using data in E14.5 liver (with

data of two replicates combined) and we then used it to predict whether a 10kb

bin is PMD or non-PMD in all liver samples (with replicates separated). We

chose a large bin size (10 kb) to reduce the effect of methylation variations in

smaller scale (such as DMRs) as PMDs were first discovered as large (mean length

= 153kb, PMID: 19829295) regions with intermediate methylation level (¡ 70%,

PMID: 19829295). Furthermore, the features (methylation level distribution of

CG sites) used in the classifier required enough CG sites within each bin to ro-

bustly estimate the distribution, which necessitated a relatively large bin. Also,

we excluded any 10kb bins containing less than 10 CG sites due to the same rea-

son. These percentiles were used as features for the random forest. The random

forest implement was from scikit-learn (version 0.17.1)[70] python module and the

following arguments were supplied to the Python function RandomForestClassi-

fier from scikit-learn: n estimators = 10000, max features=None, oob score=True,

compute importances=True.

Lastly, we merged consecutive 10kb bins that were predicted as PMD into

blocks and filtered out blocks smaller than 100kb. We further excluded blocks

that were overlapped with gaps in mm10 genome (downloaded from UCSC genome

browser, Sep 21, 2013). To get the PMDs that were reproducible in both replicates,
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we only considered the genomic regions that were larger than 100kb and were

covered by PMD calls in both replicates. These regions were the final PMDs used

for later analyses. Because there is only one replicated for adult liver, we skipped

this step.

PMDs were originally called without excluding CG sites in Hox regions.

We found that four PMDs turned out to be four Hox loci in the mouse genome.

Because the Hox loci are more likely to be large DMVs[69], we removed any PMDs

that overlap with these four Hox loci (chr11:96257739-96358516, chr15:102896908-

103038064, chr2:74648392-74748841 and chr6:52146273-52277140).

4.7.34 Overlapping PMDs with LADs

We downloaded the lamina associated domains (LADs) of normal mouse

liver cells (AML12 hepatocyte) from the Table S2 of Fu et al[71]. The mm9

coordinate of LADs was converted to mm10 using liftOver with default settings.

We used permutation to test the significance of overlap between PMDs and LADs.

Similar to the procedure for checking the overlap between TEs and unxDMRs,

we permutated the genomic locations of PMDs for 1,000 times and recorded the

number of overlapping bases (xshufi for permutation i) between shuffled PMDs and

LADs. Then, we compared xshufi with the observed numbers of overlapping bases

(xobs) between PMDs and LADs and computed p-values as:

p =
(
∑1000

i=1 I(xobs ≤ xshufi )) + 1

1000 + 1
(4.5)
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where I(x) =


1 x is true

0 x is false

.

4.7.35 Replication Timing Data

Replication timing data (build mm10) of three mouse cell types was down-

loaded from ReplicationDomain[72]. The cell types used for the analysis are

mESC (id: 1967902&4177902 TT2ESMockCGHRT), neural progenitor cells (id:

4180202&4181802 TT2NSMockCGHRT) and mouse embryonic fibroblasts

(id: 304067-1 Tc1A).

4.7.36 Gene Transcription in PMDs

We obtained PMD overlapping protein-coding genes using intersectBed.

Similar approach was used to get the protein-coding genes overlapped with PMD

flanking regions (upstream 100kb and downstream 100kb of PMDs) and genes

overlapped with PMDs were removed from this list. Lastly, we compared the ex-

pression of PMD-overlappign genes (n=5,748) and the genes (n=2,555) overlapped

with flanking regions.

4.7.37 Sequence preference of mCH

To interrogate the sequence preference of mCH, as previous described[8],

we first identified CH sites that showed significantly higher methylation level than

noise due to sodium bisulfite non-conversion. For a CH site, we counted the num-

ber of reads that supported methylation and the number of reads that did not.
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Next, we performed a binomial test with the success probability equal to the

sodium bisulfite non-conversion rate. FDR (1%) was controlled using benjamini-

hochberg approach and this analysis was done for each three nucleotide context

independently (e.g., a pvalue cutoff was calculated for CAG cytosines). Last, we

counted sequence motif occurrence of +/-5bp around the tri-nucleotide context of

methylated mCH sites and visualized the sequence preference using seqLogo[73]

4.7.38 mCH domain calling

We used an iterative process to call mCH domains, which are genomic

regions that are enriched for mCH compared to flanking regions. First, we selected

a set of samples that showed no evidence of mCH. Data of these samples were used

in following steps to filter out genomic regions that are prone to misalignment and

showed suspicious abundant mCH. Analysis on global mCH level and mCH motif

revealed that E10.5 and E11.5 samples excluding heart samples have extremely low

mCH and the significantly methylated non-CG sites showed little CA preference.

Therefore, we assumed they contain no mCH domain and any mCH domains called

by algorithm are likely artifacts. We will show that by filtering out the domains

called in the control samples, we were able to exclude the genomic regions that

were prone to mapping error or avoid other potential drawbacks in the processing

pipeline.

We applied change point detection algorithm on mCH level of 5kb non-

overlapping bins across the genome to identify loci where sharp change in mCH

levels occurred. We only included bins that contain at a minimum 500 CH sites

and at least 50% of CH sites were covered by 10 or more reads. The identified
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loci are boundaries that separate mCH domains from genomic regions showing

background level mCH. We implemented this step using function cpt.mean in R

package changepoint, with options method=”PELT”, pen.value=0.05, penalty=

”Asymptotic” and minseglen=2. To match the range of , we scaled up mCH levels

by a factor of 1,000.

The iterative procedure was run as follow: 1) Create an empty list of ex-

cluded regions. 2) For each control sample, apply change point detection algorithm

to the scaled mCH levels of 5kb non-overlapping bins. Bins overlapped with ex-

cluded regions were ignored. 3) Segment genome into chunks based on identified

change points. 4) Calculate the mCH level of each chunk as the mean mCH level

of the overlapping 5kb bins that were not overlapped with excluded regions. 5)

Identify mCH domains as chunks whose mCH level was at least 50% greater than

the mCH level of both upstream and downstream chunks. Pseudo mCH level 0.001

was used to avoid dividing zero. 6) Add mCH domains to the list of excluded re-

gions. 7) Repeat step 2 to 6 until the list of excluded regions stop expanding. 8)

Apply step 2-5 to all samples. 9) For each tissue/organ, only retain the regions

that are identified as (part of) mCH domain in both replicates and filter out any

that are less than 15kb in length they need to span at least three bins. These are

the mCH domains of that tissue/organ. 10) Merge the mCH domains in all tissues

and organs to get a list of combined mCH domains.

4.7.39 Clustering mCH Domains

We applied k-means clustering to group the 384 mCH domains into 5 clus-

ters based on the normalized mCH accumulation profile of each mCH domain and
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corresponding flanking regions (100kb upstream and 100kb downstream). Specifi-

cally, 1) in each tissue sample, the mCH accumulation profile of one mCH domain

was represented as a vector of length 50: the mCH level of 20 5kb bins upstream

mCH domain, 10 bins that equally divided mCH domain and 20 5kb bins down-

stream. 2) Then, we normalized all values by the average mCH level of bins of

flanking regions (the 20 5kb bins upstream and 20 5kb bins downstream of mCH

domain). 3) We computed the profile in samples of 6 tissue types (midbrain, hind-

brain, heart, intestine, stomach and kidney) that showed the most evident mCH

accumulation in fetal development. 4) Using the profile in these tissue samples,

k-means (R v3.3.1) was used to clustered mCH domains with k = 5. We also tried

higher cluster numbers (e.g. 6) but found not new pattern. Even in current setting

(k=5), the mCH domains in cluster 1 (C1) and cluster 3 (C3) shared similar mCH

accumulation pattern.

4.7.40 Genes in mCH domains

We obtained the overlapping genes of mCH domains by overlapping gene

bodies with mCH domains using intersectBed in bedtools[61]. Only protein coding

genes were considered and we further filtered out any genes with names starting

with Rik or Gm[0-9], where [0-9] represents a single digit. For the overlapping

genes of each mCH domain cluster, we used EnrichR[67, 68] to find the enriched

gene ontology terms (GO Biological Process 2015).

Next we asked whether the overlapping genes were enriched for TF encoding

genes. List of mouse TFs was downloaded from AnimalTFDB[74] (Feb 27, 2017).

Then, we performed permutation test to estimate the significance. Specifically,
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xobs is the number of TF encoding genes in all overlapping genes. We randomly

selected the same number of genes for 1000 times and in the ith time, xpermut
i of

the randomly selected genes encoded TF. Last, p-values was calculated as

p =
(
∑1000

i=1 I(xobs ≤ xpermu
i )) + 1

1000 + 1
(4.6)

where I(x) =


1 x is true

0 x is false

.

4.7.41 mCH accumulation indicates gene repression

To evaluate the association between mCH abundance and gene transcrip-

tion, we traced the expression dynamics of genes inside mCH domains. For mCH

domains in each cluster, we first calculated the TPM z-score for each of the over-

lapping genes. Specifically, for each tissue type and each overlapping gene, we

normalized TPM values in the samples of that tissue type to z-scores. The z-scores

showed the trajectory of dynamic expression, in which the aptitude information

of expression was removed. If the gene was not expressed, we did not perform the

normalization. Next, we calculated the z-scores for all genes that have no over-

lapped with any mCH domains. Lastly, we subtracted the z-scores of overlapping

genes by the z-scores of all genes outside mCH domains. The resulting values indi-

cated how genes in mCH domains were regulated differently relative to genes not

in mCH domains.
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4.7.42 feDMRs in mCH domains

To evaluate whether feDMRs were enriched in mCH domains, we calculated

the percentage of bases within mCH domains that were also within tissue-specific

feDMRs. Specifically, we first divided the genome into non-overlapping 100bp bins

and then, for each tissue, we calculated the percentage of bases in each bin that

were overlapped with tissue-specific feDMRs. Next, we plotted the percentages

across mCH domains (each was equally divided into 10 non-overlapping bins) and

flanking regions (10kb upstream and 10kb downstream; each contained 10 1kb

bins). For the feDMRs that were overlapped with mCH domains, we then traced

their mCG level changed over development. For each tissue type and each de-

velopmental stage, we calculated the percentage of tissue-specific feDMRs whose

mCG level was in each range: [0 − 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8) and [0.8, 1].

For each tissue and each developmental stage, the percentages were calculated for

tissue-specific feDMRs in mCH domains and also for all tissue-specific feDMRs.

Last, the ratio of the former to the later was defined as the enrichment of feDMRs

(with certain mCG level) in mCH domains, which was then transformed to log2

ratio.
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4.8 Figures
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Figure 4.1: Annotation of methylation variable regulatory elements in
developing mouse tissues. a, Tissue samples (green) profiled in this study.
Grey cells mark the tissues and stages that were not sampled because either the
tissue is not yet formed or it was not possible to obtain enough material for ex-
periment, or the tissue-type was heterogeneous to obtain informative data. b,
Genome-wide CG methylation (mCG) levels of each tissue across their develop-
mental trajectories. The data point of adult forebrain (postnatal 6 week frontal
cortex) is from Lister et al[9]. c, An example of a CG differentially methylated
region (CG-DMR) in the body of Satb2 gene. Top two tracks show the gene anno-
tation and the locations of CG islands (CGIs), which are followed by mCG tracks
and one CG-DMR track. Gold ticks represent methylated CG sites and their
heights indicate the mCG level, ranging from 0 to 1. Ticks on the forward DNA
strand are projected upward and ticks on the reverse DNA strand are projected
downward. d, Fetal CG-DMRs identified in this study cover majority of the adults
CG-DMRs from a previous study of adult tissues[36]. The numbers related to fetal
CG-DMR in this study are shown without parenthesis, whereas the numbers in
parenthesis are related to adult tissue CG-DMRs. e, Distance of CG-DMRs to
the nearest transcription start sites (TSSs). f, Categorization of CG-DMRs. prox-
imal CG-DMRs are CG-DMRs that are overlapped with promoters, CG islands
(CGIs) or CGI shores. The remaining CG-DMRs are defined as distal CG-DMRs.
fetal enhancer-linked CG-DMRs (feDMRs) are those predicted to show enhancer
activity using REPTILE algorithm[32], which contain 415,227 distal feDMRs and
72,140 proximal feDMRs. CG-DMRs within 1kb to distal feDMRs are flanking
distal CG-DMRs. Of the remaining distal CG-DMRs, we defined primed distal
feDMRs as those showing primed enhancer-like chromatin signatures. The remain-
ing CG-DMRs are unexplained distal CG-DMRs (unxDMRs), whose functions are
unknown. unxDMRs are further stratified based on their overlap with transposons:
transposal element overlapping unxDMRs (te-unxDMRs) and transposal element
non-overlapping unxDMRs (nte-unxDMRs). The number of CG-DMRs assigned
to each group is shown in the parentheses. See Methods for details. g, Conserva-
tion (phyloP) score of promoters and different categories of distal CG-DMRs. h,
Tissue-specific feDMRs are enriched in GWAS SNPs associated with tissue/organ
specific functions and tissue-related disease states.
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Figure 4.2: Tissue-specific CG-DMRs undergo continuous demethyla-
tion during embryogenesis and remethylation after birth. a, CG methyl-
ation (mCG) level of tissue-specific CG-DMRs. The number under each heatmap
indicates the number of tissue-specific CG-DMRs. mCG data from adult (AD)
forebrain was approximated using data from postnatal 6 week frontal cortex from
Lister et al9. b, The numbers of loss-of-mCG events (blue) and gain-of-mCG
events (red) in tissue-specific CG-DMRs for each fetal stage interval. We de-
fined one loss-of-mCG (gain-of-mCG) event as the decrease (increase) of at least
0.1 in mCG level of one CG-DMR for one fetal stage interval. c-d, Fraction of
tissue-specific CG-DMRs that undergo lost-of-mCG (blue) and gain-of-mCG (red)
during development. The blue (loss-of-mCG) or red (gain-of-mCG) line shows
the aggregated values over all non-liver tissues, whereas grey lines show the data
for each tissue type. e, mCG and H3K27ac dynamics of forebrain-specific CG-
DMRs. Frontal cortex methylomes from postnatal 1, 2, 4, 6 weeks (P1w to P6w)
were compared with data from adult forebrain. Forebrain-specific CG-DMRs were
clustered into 8 groups (see Methods for details). f, Relationship between mCG
level and enrichment of H3K27ac in tissue-specific CG-DMRs. For each tissue
type, tissue-specific CG-DMRs were first grouped into three categories (L: low; M:
median; H: high) based on their mCG level. Then, the fraction of tissue-specific
CG-DMRs from each category that showed different levels of H3K27ac enrichment
was quantified. This panel shows the results of all non-liver tissues.
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Figure 4.3: The methylomes and transcriptomes of human tissues. a,
Expression of the 2,500 most variable genes in all tissue samples. Tissue sam-
ples were grouped using hierarchical clustering. Gene expression is measured by
log10 (TPM+1) (transcripts per million) z-score. Black box highlights a group
of co-expressed genes that are highly expressed in neuronal tissues. b, 33 CEMs
identified in WGCNA and their eigengene expression. The CEMs related to the
next panel (c) are bolded. c, The most enriched gene ontology (Biological Process)
terms of genes in four representative modules. d, Correlation of the tissue-specific
eigengene expression (orange) for each developmental stage with the average mCG
level (blue) and the average enhancer score (red) for feDMRs linked to the genes
in the CEM32. The mCG levels (enhancer score) of each feDMR was normal-
ized by dividing the genome-wide average mCG level (enhancer score) and then
transformed to z-scores (See Methods for details). Pearson correlation coefficient
(r) was calculated. e, Pearson correlation coefficients of mCG (blue) or enhancer
score (red) of neighboring feDMRs with tissue-specific eigengene expression across
all 33 CEMs on all stages. P-values were obtained by testing the median of the
Pearson correlation coefficients against the median of the shuffled (grey) using two-
tailed Mann-Whitney test. f-g, Similar to (d), correlation of temporal eigengene
expression for CEM29 (f) and CEM12 (g) with the average mCG level and the
average enhancer score of neighboring feDMRs. h, Similar to (e), Pearson correla-
tion coefficients of mCG and enhancer score with temporal epigengene expression
across all CEMs and all tissue types, excluding liver. See Methods for details.
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Figure 4.4: Dynamic epigenetic signatures of adult vestigial enhancers.
a, A VISTA enhancer browser[37] image showing an example of an adult ves-
tigial enhancer (AD-V enhancer) overlapping an experimentally validated heart
enhancers in E11.5 embryo. b, Fractions of AD-V and AD-A enhancers overlap-
ping feDMRs. c, Dynamic epigenetic signatures of heart AD-V CG-DMRs (top)
and AD-A CG-DMRs (bottom). Leftmost bars, (red label) show CG-DMRs that
were predicted as feDMR. For each category, four heatmaps are displayed (from
left to right) and show the enhancer score, mCG level, H3K27ac enrichment and
H3K27me3 enrichment for each CG-DMR. d, Number of heart AD-V non-feDMRs.
Red indicates heavily CG methylated AD-V non-feDMRs (mCG level ¿ 0.6). e,
Enrichment of H3K27me3 in heart AD-V non-feDMRs. Those that are heavily CG
methylated (red; mCG level ¿ 0.6) verses less methylated CG-DMRs (grey; mCG
level ¡= 0.6).
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Figure 4.5: mCH accumulation indicates transcriptional repression. a,
Genome-wide non-CG methylation (mCH) levels for each tissue across their de-
velopmental trajectories. The adult (AD) forebrain data (postnatal 6 week frontal
cortex) is from Lister et al[9]. b, An example of a mCH domain. Enriched for
mCH accumulation determined by comparison to flanking regions. c, K-means
clustering identification of 384 mCH domains clustered into 5 groups based on
the tissue-specific mCH accumulation. Heatmap showing the methylation profil-
ing of mCH domains and flanking genomic regions (100kb upstream and 100kb
downstream). d, Number of genes overlapping mCH domains in each of 5 groups.
Dark blue bars indicate the number of genes encode transcription factors in mCH
domains. Examples of genes located within mCH domains are listed on the right.
e, The most enriched gene ontology (Biological Process) terms for genes that lie
within mCH domains for each cluster. f, Expression dynamics of genes within
mCH domains relative to the other genes. Z-scores were calculated for each gene
across development and each line shows the mean value of mCH overlapping genes
for each cluster. g, Tissue-specific enrichment of feDMRs in mCH domains. Each
mCH domain was divided into 10 bins and its flanking regions included ten 10kb
upstream bins and ten 10kb downstream bins. Line plots show the fraction of
bases in each bin that are overlapped with tissue-specific feDMRs. A list of tissues
in each plot indicates wthere feDMRs are enriched in mCH domains compared to
flanking regions (from the most enriched to the least enriched).
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Figure 4.6: Global hypomethylation in fetal liver. a, Example of a partially
methylated domain (PMDs) in developing mouse fetal liver. The PMD location is
marked by a red bar. b, The total bases that PMDs encompass in liver at different
developmental stages. c, Percentage of bases in the PMDs identified in each of the
liver samples (E12.5 liver, E13.5 liver etc) that are also within the PMDs identified
in E15.5 liver sample. d, Average mCG level (mCG/CG) of PMDs and flanking
regions (+/-100kb) in liver samples from different developmental stages. e, His-
tone modification profiles for H3K9me3 (top), H3K27me3 (middle) and H3K27ac
(bottom) within PMDs and flanking regions (+/-100kb) in liver samples from dif-
ferent developmental stages. f, Replication timing profiling of PMDs and flanking
regions (+/-100kb). The values indicate the tendency to be replicated at an ear-
lier stage in the cell cycle. g, Expression of genes overlapping PMDs and flanking
regions (+/-100kb) (left) compared with those with no PMD overlap (right). Two
plots on the bottom show the data from a validation dataset, containing RNA-seq
data generated using different protocol on the matched tissues.
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Figure 4.7: Categorization of CG-DMRs. a, Genomic distribution of proxi-
mal CG-DMRs. b, Evolutionary conservation of proximal CG-DMRs overlapping
with: CG islands (CGI), CGI shores, CGI promoters and non-CGI promoters.
phyloP score was used to measure the degree of conservation. c, Chromatin sig-
natures of fetal enhancer-linked CG-DMRs in E11.5 heart. The aggregate line
plots show the average histone modification and mCG profiles of +/- 5kb regions
centered at CG-DMR centers. d, Table summarizing the definition and number
of various CG-DMR categories. Note that categories in the table are mutually
exclusive.
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Figure 4.8: fetal-enhancer-linked CG-DMRs (feDMRs). a, The overlap
between feDMRs identified in this study and the enhancers predicted in Yue et
al[36]. Numbers in parenthesis indicate the counts of enhancers from Yue et al,
whereas the remaining numbers denote the counts of feDMRs. b, Experimen-
tal validation results of the feDMR-overlapping elements from VISTA enhancer
browser37. Different enhancer score thresholds were used for calling feDMRs for
each tissue at fetal stage E11.5. Each pie shows the fraction of elements that were
experimentally validated as active enhancers in matched tissue (red) or any tissue
(orange) or as inactive enhancers (white) at fetal state E11.5. c, Enrichment of
transcription factor binding motifs in feDMRs of different tissue types.
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Figure 4.9: Characterization of primed distal feDMRs and unxDMRs. a,
CG methylation (mCG) level of all primed distal fetal enhancer-linked CG-DMRs
(feDMRs) in all non-liver tissues. Each row in the heatmap is one tissue sample
and each column corresponds to one primed distal feDMR. Both rows and columns
were clustered using hierarchical clustering. Colors bars indicate the tissue types
and developmental stages of samples, respectively. b, mCG (left) and histone
modification (right) signatures of primed distal feDMRs (blue) and feDMRs (red).
Boxplots show the median and quantiles of the values in all non-liver tissues. c,
Number of enriched transcription factor binding motifs only in feDMRs (red),
only in primed distal feDMRs (orange), both (dark red) and none (grey). Only
the motifs linked to expressed transcription factors (transcripts per million, TPM
¿= 10) were included. d-e, Similar to (a), heatmaps showing the mCG levels of
unexplained CG-DMRs, including te-unxDMRs (d) and nte-unxDMRs (e).
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Figure 4.10: mCG dynamics of tissue-specific CG-DMRs. a, Fraction of
tissue-specific CG-DMRs showing loss-of-mCG (blue) or gain-of-mCG (red) for
each fetal stage. Loss-of-mCG (gain-of-mCG) event is defined as an increase (de-
crease) of mCG of at least 0.1. b, Composition of tissue-specific CG-DMRs. c,
Percentage of loss-of-mCG events for each fetal stage. d, Percentage of gain-of-
mCG events for each fetal stage.
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Figure 4.11: Link between methylation dynamics and histone modifica-
tions at tissue-specific CG-DMRs. a, Fraction of tissue-specific CG-DMRs
that are heavily CG methylated (mCG level ¿ 0.6). b, RNA abundance of genes in-
volved in DNA methylation pathways, measured by transcripts per million (TPM).
c, Normalized H3K27ac signals in different clusters. d, Top enriched ontology
terms from GREAT[66] analysis for forebrain-specific CG-DMRs in different clus-
ters. e, Dynamic mCG level of forebrain-specific CG-DMRs. Grey lines show the
mean methylation levels of CG-DMRs in different clusters. Blue line is the mean
of all clusters (grey lines).
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Figure 4.12: WGCNA identification of co-expression modules. a, The
scale free topology model fit (R2) (top) and the mean connectivity of the coex-
pression network (bottom) given different soft-thresholding powers. These two
plots show how thresholds were chosen for weighted gene co-expression network
analysis (WGCNA). Blue horizontal line indicates the model fit cutoff (R2 = 0.8).
A soft threshold = 5 was chosen to construct the co-expression network because it
is first threshold value where the model fit is greater than 0.8. b-c, Expression of
genes in CEM12 (b) and CEM32 (c). Each row is a gene in certain module and
the transcripts per million (TPM) z-scores were calculated along each row. d, Top
enriched ontology terms of genes in co-expression modules.
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Figure 4.13: Characterization of adult vestigial enhancers. a, VISTA en-
hancer browser37 example of adult active enhancer (AD-A enhancer), overlapping
an experimentally validated heart enhancers in the E11.5 embryo. b, Enhancer
score entropy for feDMRs that overlap with AD-V enhancer (blue) and AD-A en-
hancer (red). Entropy was calculated for each CG-DMR across development. c,
Entropy of expression (log10(TPM+1)) of genes that are nearby AD-V (blue) or
AD-A feDMRs (red). The neighboring genes were linked to feDMRs. d, Enhancer
score of AD-V (red) and AD-A feDMRs (blue). The solid lines show the average
z-scores, which were calculated for stage across both AD-V and AD-A feDMRs.
Grey areas surrounding solid lines indicate the standard error of the mean. e, Ex-
pression of genes linked to AD-V (red) and AD-A feDMRs (blue). The solid lines
show the average TPM. Grey areas surrounding solid lines indicate the standard
error of the mean. f, Fraction of AD-V CG-DMRs and AD-A CG-DMRs that were
predicted as feDMRs.
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Figure 4.14: Complementary modes of gene silencing by mCG and
H3K27me3 silence at adult vestigial enhancers. a-b, Dynamic epigenetic
signatures of AD-V (top) and AD-A CG-DMRs (bottom) in intestine (a) and kid-
ney (b). For leftmost bars, red indicates CG-DMRs that were predicted as feDMR.
For each CG-DMR list, the four heatmaps display (from left to right) the enhancer
score, mCG level, H3K27ac signal and H3K27me3 enrichment. c, Barplot shows
the number of AD-V non-feDMRs (top) and AD-A non-feDMRs (bottom) that
are heavily CG methylated (red; mCG level ¿ 0.6), while those shown in grey are
below this threshold. Numbers indicate the fractions of heavily CG methylated
CG-DMRs. d, H3K27me3 signal at AD-V (red) and AD-A non-feDMRs (blue).
Solid lines show the average TPM. Grey areas surrounding solid lines indicate the
standard error of the mean. e, Enrichment of H3K27me3 at AD-V non-feDMRs
that are heavily CG methylated (red; mCG level ¿ 0.6) and the rest (grey; mCG
level ¡= 0.6).
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Figure 4.15: Non-CG methylation accumulation in fetal tissues. a, Se-
quence context preference for non-CG methylation (mCH). b, Grouping mCH
domains into 5 clusters based on the dynamics of methylation accumulation. The
heatmap shows normalized methylation levels of mCH domains and flanking ge-
nomic regions (up to 100kb upstream and 100kb downstream). mCH in the adult
(AD) forebrain was approximated using data of frontal cortex from 6-week-old
mice. c, Average enhancer score dynamics of feDMRs within mCH domains. Z-
scores were calculated for each feDMR across development and each line shows
the mean value of the mCH domains overlapping feDMRs for each cluster. d, En-
richment of tissue-specific feDMRs that showed different CG methylation levels in
mCH domains. Colors (from blue to red) denote the stages where the mCG level
was calculated. f, The expression of genes in mCH domains at P0 relative to the
expression dynamics of genes outside mCH domains. Each circle corresponds to
the value given one mCH domain cluster and one tissue. Red horizontal line indi-
cates the median, which was tested against 0 using one-sided wilcoxon signed-rank
test.
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Chapter 5

Conclusion

In my thesis works, I describe the efforts to profile the DNA methylation

landscape of a variety of human and mouse tissues, develop new computational tool

for interpreting the DNA methylation data. I and my colleagues studied the tissue-

specific DNA methylation on the context of fetal development and characterized

the dynamic DNA methylation regulation. Also, I developed a computational

algorithm, REPTILE, which integrates DNA methylation and histone modification

data and generates accurate, high-resolution enhancer predictions. These projects

led to several concrete deliverables:

1. The genome-wide, base-resolution DNA methylation profiling of human and

mouse tissues, along with the data generated in other studies[1, 2, 3, 4], lies

the foundation of interrogating this epigenetic modification across a variety

of cell types and tissues. These comprehensive maps serve as the methylome

baseline of normal tissues, fetal development etc, which can be valuable for

studying DNA methylation changes related to diseases. Specifically, as shown

281
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in Chapter 4, the methylomes of developing mouse fetal tissues will be useful

for studying human birth defects.

2. In-depth analysis of the human and mouse methylomes reveals principles

of DNA methylation regulation in different tissues and at different develop-

ment stages. Similar to the results from Ziller et al[1] and Hon et al[5], we

found that the genomic regions showing tissue-specific DNA methylation are

strongly enriched for regulatory elements, especially enhancers. During fe-

tal development stages, these enhancer regions undergo major demethylation

whereas the trend is reversed after birth.

3. The results of REPTILE algorithm demonstrate that DNA methylation can

be combined with histone modifications to generate accurate enhancer pre-

dictions. We expected this tool to be useful for interpreting the current

epigenomic datasets and generating high-resolution enhancer annotations for

a variety of tissues and cell types.

4. We applied REPTILE to identify enhancers for developing mouse fetal tis-

sues. Some of the enhancers can be validated by in vivo experiments. Fur-

thermore, the human orthologs of these enhancers are enriched for genetic

risk factors associated with human diseases. Such spatiotemporal enhancer

annotation of mouse embryo will be useful for studying mammalian develop-

ment and also birth defects.

5. Lastly, our studies reveal that the previously understudied non-CG methyla-

tion are present in human and mouse tissues that were not known to contain

non-CG methylation[6]. Non-CG methylation accumulates tissue-specifically
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in the bodies of genes that encode transcription factors and is associated with

the repression of these genes, which may be related to the binding of MeCP2

on non-CG methylated DNA[7, 8, 9, 10].
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