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ABSTRACT

Recent advancements in detector technology have significantly increased the size and complexity of
experimental data, and high-performance computing (HPC) provides a path towards more efficient
and timely data processing. However, movement of large data sets from acquisition systems to
HPC centers introduces bottlenecks owing to storage I/O at both ends. This manuscript introduces
a streaming workflow designed for an high data rate electron detector that streams data directly to
compute node memory at the National Energy Research Scientific Computing Center (NERSC),
thereby avoiding storage I/O. The new workflow deploys ZeroMQ-based services for data production,
aggregation, and distribution for on-the-fly processing, all coordinated through a distributed key-
value store. The system is integrated with the detector’s science gateway and utilizes the NERSC
Superfacility API to initiate streaming jobs through a web-based frontend. Our approach achieves up
to a 14-fold increase in data throughput and enhances predictability and reliability compared to a
I/O-heavy file-based transfer workflow. Our work highlights the transformative potential of streaming
workflows to expedite data analysis for time-sensitive experiments.
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1 Introduction

The transition from analog to digital data acquisitions and processing has greatly accelerated scientific discovery, but it
also introduced the challenge of managing, processing, and interpreting an ever-expanding volume of data. In recent
years, this challenge has intensified, with modern microscope detectors now achieving data generation rates five orders
of magnitude greater than in the 1920s.1,2

The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory
(LBNL) responded to these challenges with the Superfacility Project.3,4 The project was designed to integrate experi-
mental and observational science (EOS) facilities, many of which are incorporating high framerate detectors into their
instruments, with state-of-the-art high-performance computing (HPC) resources. One of its notable achievements was
a semi-automated file transfer and data reduction workflow developed for users of the National Center for Electron
Microscopy (NCEM) facility of The Molecular Foundry (TMF), also at LBNL. Powered by NERSC’s Superfacility
API3,4 and the Distiller web application,5 this workflow enables microscopists at NCEM to offload and process data
from the 4D Camera6—–an advanced detector that generates data at 480 Gb/s—–on NERSC compute nodes. Compared
to processing at the edge on a single node, the NERSC workflow improved throughput by a factor of two.

Despite its impact, this workflow suffers from a large file I/O bottleneck. For example, a 695 GB dataset (~1 million
detector frames) transferred by bbcp7 from NCEM’s local NFS buffer to NERSC scratch incurs delays of six or more
minutes. These delays impact the microscopists’ ability to make timely experimental decisions and impede real-time
data analysis, highlighting the need for enhanced data management strategies that can support the high throughput
demands of fast detectors.

This manuscript presents an approach to circumvent traditional file-based operations through data streaming. Utilizing
ZeroMQ, our new workflow facilitates direct data transfer from NCEM server RAM to NERSC compute node RAM
for on-the-fly processing. This solution involves deploying several services to facilitate the transfer, including a data
production service on the detector’s data receiving servers, a data aggregation and fair-queuing distribution service
at NCEM, and data consumption services at NERSC. We developed a ZeroMQ-based distributed key-value store to
connect and coordinate these services. Finally, to facilitate adoption of this new workflow, we extended enabled the
creation of streaming sessions (compute jobs) from a web frontend.

2 Background

TMF is a shared experimental facility that attracts researchers from many scientific disciplines to fabricate and analyze
nanomaterials with state-of-the-art tools. The NCEM facility houses several advanced electron microscopes. Among
these is the TEAM 0.5,6 a scanning transmission electron microscope (STEM) outfitted with the 4D Camera (Fig. 1b)
designed to rapidly capture large numbers of electron diffraction patterns. During data acquisition, a focused electron
probe rasters across a sample in a 2D grid, pausing at each grid point for a predefined interval, the dwell time, to generate
electron scattering events from the probe-sample interactions. The 4D Camera captures these events at 87 kHz on a
576 by 576 pixel array,6 resulting in a 4D dataset consisting of two sample (x, y) and two detector coordinates(qx, qy)
leading to the name 4D-STEM. These complex datasets enable analytical methods like electron ptychography, which
has gained traction in recent years for its ability to image atomic structure of a sample with high resolution.8,9

4D Camera acquisitions produce relatively large data volumes—approximately 695 GB for an acquisition of ~1 million
frames—in the same time as compared to traditional STEM imaging (megabytes per image). The data can be considered
sparse, comprised of individual electron strike events, and can be compressed by an order of magnitude using a
thresholding and peak finding algorithm (called "electron counting"). stempy10 implements a highly parallelized version
of this algorithm; however, the NCEM 10-core edge compute processing machine necessitates 10-12 minutes for a full
dataset. During this time, new scans cannot be taken, thus imposing a 10-12 minute interval between acquisitions.
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Figure 1. Schematic of the conventional file transfer workflow at The Molecular Foundry (TMF). A microscopist (a)
takes an acquisition on the TEAM 0.5 microscope (b) with the 4D Camera (c). The data is read out from the detector by
FPGAs (d) and sent upstream over UDP to data receiver servers (e) at 120 Gb/s per link. The receivers descramble the
UDP packets and write files to a network file system (NFS) buffer. The microscopist can then interact with Distiller (g)
to transfer this data to NERSC for data reduction (h). Distiller runs on Spin, NERSC’s cloud-inspired infrastructure (i).

These wait times led to the development of a file transfer workflow (Fig. 1) that offloads the processing onto NERSC
compute nodes. In this workflow, a microscopist (Fig. 1a) initiates an acquisition (Fig. 1b) and the 4D Camera collects
the scattered electrons (Fig. 1c). During data capture, FPGAs (Fig. 1d) facilitate readout from the detector, transmitting
the data at 120 Gb/s per FPGA (480 Gb/s aggregate) to four data receiving servers (Fig. 1e) utilizing the User Datagram
Protocol (UDP). On these servers, a process is deployed that preallocates a significant fraction (~85%) of the server’s
256 GB RAM with an array of data structures. These structures contain both header information and a 144×576
uint16 array representing pixels from a single detector sector. Each detector frame is therefore initially dispersed
across the four data receiving servers and can not be processed until they are recombined. The arrays are then flushed to
multiple binary files on an 8 TB network file system (NFS) flash buffer (Fig. 1f).

The microscopist tracks the write operation via the Distiller5 web interface (Fig. 1g), hosted on NERSC’s Spin11

infrastructure (Fig. 1i). Distiller’s backend, leveraging FastAPI,12 Apache Kafka,13 and a postgreSQL database,14

processes acquisition metadata in real time. Concurrently with data writing, a JSON file detailing the scan’s ID and
offload progress is used to update a FastAPI database with a new scan record. Upon completion, users can launch
data transfer and reduction jobs from the Distiller frontend ("count" in Fig. 1g). Orchestrated by FastAPI, Kafka, and
an event-triggered job worker, this action will create a Slurm15 batch script using Jinja16 templates and submit it to
NERSC’s realtime queue using the Superfacility API.4 The job moves the raw files to NERSC scratch storage over a 100
Gb/s connection and sparsifies them according to the electron counting algorithm with stempy10 (see also Section 3.1.3).

While the workflow depicted in Fig. 1 effectively offloads data processing to NERSC and offers a user-friendly frontend
for initiating data transfers, it incurs a notable performance cost due to four file I/O operations: initial writing to NFS at
NCEM, reading and transferring data to NERSC, writing to NERSC’s scratch system, and loading data from scratch
into batch nodes. Our streaming workflow, detailed in the following section, completely bypasses this I/O bottleneck
and significantly reduces the processing time.
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Figure 2. Schematic representation of the ZeroMQ pipeline from NCEM to NERSC. (a) A 4D camera is partitioned
into four 144×576 sectors, each connected to a dedicated receiving server via FPGAs. (b) During data acquisition,
the RAM of the data receiving servers is populated with sector data. The Producer objects on these servers push this
data to a central aggregator service at NCEM. (c) Aggregators, denoted by varying colors, manage incoming messages
by sequentially receiving them, extracting frame numbers from message headers, and forwarding the messages to
the correct NodeGroup at NERSC. (d) On the compute nodes at NERSC, each node is subdivided into one or more
NodeGroups (four per node depicted here). Each NodeGroup receives data from all NCEM Aggregators and forwards
this data over the inproc protocol to stempy consumer threads. (e) The data is processed and aggregated using stempy’s
electron counting methods with Message Passing Interface (MPI), consolidating the events in an HDF5 file.

3 Methods

Our streaming workflow extends the tooling discussed in Section 2 by integrating ZeroMQ sockets over a wide-area-
network (WAN) that facilitates data streaming from NCEM to NERSC. This setup employs two ZeroMQ patterns: (1)
the pipeline pattern, a work queue pattern where messages are fair-queued to downstream connections distributing
messages evenly across workers, and (2) the clone pattern, which enables effective communication of system state
through a distributed key-value store across the nodes. Additionally, we have extended Distiller to provide NCEM users
with access to the streaming workflow.

3.1 Pipeline pattern

Described in Chapter 2 of the ZeroMQ guide,17 the pipeline pattern fairly distributes messages from a push socket
to all connected pull sockets. Microscope data is sensitive to dropped messages (i.e., data loss), and push sockets
block instead of dropping messages when they reach their high water mark (HWM). This also ensures equitable data
distribution across NERSC compute nodes. In our pipeline, the Data Receiving Servers use push sockets to send
messages to an aggregator at NCEM (Fig. 3b-c). The aggregator then relays these messages to the appropriate NERSC
node (Fig. 3d) for frame assembly and data reduction, Fig. 3e. The pipeline includes two distinct messaging channels:
the info channel informs downstream processes about the number of messages they can expect to receive and the data
channel transmits the detector data. Color coding in Fig. 2 signifies the origin and route of data from specific detector
sectors to NERSC.

4
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3.1.1 Producers: Data Receiving Servers

As mentioned in our description of the file transfer workflow (Section 2), identical services running on each of the four
data receiving servers ingest UDP packets from the detector (Fig. 3a-b) and then flush data to disk. In our streaming
workflow, the servers run similar application logic up until the data flushing stage. Each thread now uses push sockets
to send data downstream to a central aggregator at NCEM (Fig. 3b-c).

The threads first extract unique identifiers (UIDs) of the NodeGroups (Section 3.1.3) from the distributed key-value
store (Section 3.2) and create a map of UID 7→ n_expected_messages. For example, if a thread receives 100 sectors
from the FPGA and ten NodeGroups are available, it apportions ten sectors to each UID. This map, sent through the
info channel, informs downstream processes of expected message volume.

The threads then continuously send two-part messages to the central server on the data channel. Each message is
composed of a MsgPack18-serialized header (part 1) and a 144×576 uint16 data array (part 2), representing a single
frame sector. It is important to note that ZeroMQ guarantees that all parts of a multi-part message are received,
preventing message interleaving.

3.1.2 Aggregator: Central NCEM Server

The central aggregator server at NCEM runs four threads as depicted by the colored blocks in Fig. 2c. Each thread
receives messages from all producer threads running on an individual Data Receiving Server (Fig. 2b-c) through the
info channel. The threads then forward these messages to NodeGroups (see Section 3.1.3) based on each received
sector’s frame number. This approach ensures that the Aggregator threads divide the sector data evenly amongst the
NodeGroups, and that all four sectors of a single frame will end up on the same NodeGroup. Each thread executes
the following procedure: First, it receives a UID 7→ n_expected_messages map for each connected producer thread
and combines them. If a Data Receiving Server process has five threads each with UID 7→ n_expected_messages,
for example, we expect five maps to be received and the combined map to be UID 7→ 5*n_expected_messages.
After combining, the thread pushes a message containing n_expected_messages to the appropriate downstream
NodeGroup based on its UID. The thread then enters a tight pull-deserialize-push loop, illustrated in Fig. 2c. During
each iteration, it receives two-part header/data message and deserializes the header to identify the sector’s frame number.
A push socket is selected based on the value of frame_number modulo n_NodeGroups, and the two-part message is
forwarded on this socket. These push sockets are connected one-to-one to downstream NodeGroups, which we have
illustrated in Fig. 2c-d.

3.1.3 Consumers: NERSC Nodes

At NERSC, NodeGroups receive the messages routed to them by Aggregator threads. Each NodeGroup contains of
four threads, as depicted by the four colored squares in Fig. 2d, that are connected one-to-one to an Aggregator thread.
Each of these threads receives an info message to inform it of the expected message volume. Then, it enters a pull-push
loop to receive header/data messages and send them over inproc to stempy consumer threads.

We extended a stempy Reader class, which normally reads from disk, to read from ZeroMQ messages. As consumer
threads pull two-part header/data messages from the NodeGroups, the header is deserialized to extract the frame number
and sector number, and data is stored in a map of frame number 7→ sector number 7→ data. Once the outer frame
number map entry is populated with four sectors, the frame is complete and data reduction on that frame begins.

The electron counting algorithm employed for data reduction comprises several steps.19 First, a subset of frames is
chosen to establish thresholds for X-ray and background levels, utilizing binning techniques and Gaussian distribution
fitting to the histogram generated from these samples. The Gaussian fit’s initial parameters are derived from the sample
mean and standard deviation. Specifically, the x-ray threshold is calculated as (mean +M × stddev), where M = 10,
while the background threshold is given by mean +N × stddev, where N is a tunable parameter (usually 4 or 4.5) set
at runtime. After threshold determination, each frame undergoes a series of transformations. This includes subtracting a
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Figure 3. Network clients (producers, routers, and consumers) relay state updates through the central server, as
schematized in (a). These updates include client-specific details like ID, sequence number, expected message count,
scan number, and status (streaming, idle, etc.), as shown in (b). These updates are processed by the central server to
adjust the network state and broadcast to all other clients.

dark reference frame, if available, and applying the established X-ray and background thresholds. Following threshold
application, local maxima are identified in relation to the nearest neighboring pixels; these maxima are interpreted as
electron strike events.

As discussed in Section 3.1.1, data transmission in our pipeline begins with UDP-based communication from the
FPGAs, a method that lacks guaranteed packet delivery. For very large scans, approximately 0.1% of sectors are lost
before the data enters our ZeroMQ pipeline. To account for this, we only count complete frames until all expected
messages are received and then count any incomplete frames. Eventually, all counted data is gathered on the first MPI
rank. This aggregated dataset is then stored as a single HDF5 file on NERSC’s scratch filesystem and asynchronously
transferred to a long-term storage filesystem for later analysis.

3.2 Clone

Alongside the pipeline, we use the Clone messaging pattern, a reliable publish-subscribe architecture detailed in Chapter
5 of the ZeroMQ Guide.17 This pattern enables state synchronization across network nodes through a distributed
key-value store. This pattern pushes the network state to a central server, which then disseminates these updates
network-wide (Fig. 3). Our adaptation introduces shared state objects to bridge client and pipeline threads, capturing
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and broadcasting essential details such as message count expectations, current scan numbers, and operational status
(idle or streaming), as illustrated in Fig. 3b. Further, we serialize the shared state objects with MsgPack18 for efficient
transmission.

A key feature of the Clone pattern is dynamic network membership, enabling nodes to seamlessly join or exit. This
flexibility is crucial for managing the lifecycle of streaming jobs at NERSC. Specifically, when we initiate a streaming
job through Distiller, the Producers and Aggregators are informed that new nodes have been added to the network,
and consequently, they can begin to stream data to NERSC. When a job concludes, the Producers and Aggregators
recognize that there are no available nodes, prompting a switch back to disk-based raw data storage.

This dynamic model serves several purposes: (1) It eliminates the necessity for an external notification system to inform
Producers and Aggregators about node availability for streaming, thus removing the need for users to manually toggle
between streaming and disk writing modes through a signaling mechanism. (2) It enables flexible node allocation for
streaming jobs, ensuring the network can smoothly adjust to varying job sizes, whether they involve 2, 4, or more nodes.
(3) It improves resiliency by defaulting to traditional disk writing as a reliable backup method when streaming nodes
are not available.

3.3 Initiating Consumers at NERSC through Distiller

In developing the components in Section 3.1 and Section 3.2, we recognized the necessity to accommodate end-users
(the microsopists) who might not be familiar with high-performance computing (HPC) systems. Integrating the
streaming workflow into an application familiar to the end-user is critical for adoption, so we upgraded Distiller to
include a streaming session manager. Initiating a session in many ways mirrors the user action event flow described in
Section 2, but now the event-triggered job worker can create Slurm scripts that launch consumer services (Section 3.1.3).
Once available (as detailed in Section Section 3.2), microscope acquisitions stream into Consumers. After an acquisition
is transferred to long-term storage, MPI rank 0 sends an asynchronous request to Distiller’s FastAPI to update its
location and session association in the database. The user is informed in Distiller’s frontend when this acquisition is
ready.

4 Results

The streaming workflow demonstrates a faster and more consistent distribution of data transfer and processing times
when compared to the file transfer approach based on our comparative analysis described below. This has two
critical implications: (1) Acceleration. The streaming pipeline significantly enhances data throughput, demonstrating
approximately 14-fold and 5-fold increases for smaller and larger datasets, respectively. For larger datasets (i.e.,
1024×1024), data transfer and processing occur more quickly than the initial file write operation from RAM to disk in
the traditional file transfer method — the file-writing performance is approximately 4.6 GB/s, whereas the streaming
pipeline achieves 7.2 GB/s. (2) Reliability. The narrower time distribution indicates a more reliable and predictable
system. This robustness is particularly advantageous for scheduling time-sensitive experiments and paves the way for
future integration with automated systems. For example, the 695 GB streaming transfer has a standard deviation of ±
4.9 seconds (σs) compared to the file transfer method with ± 53.5 seconds (σft).

We assessed the performance metrics for both pipelines on four standard real-space pixel dimensions (i.e., 2D array of
probe positions) commonly used at NCEM: 128×128 (10 GB), 256×256 (43 GB), 512×512 (173 GB), and 1024×1024
(695 GB). To measure the streaming performance, we triggered the 4D Camera to send data at regular intervals while
the electron beam was not active, so that the data collected did not contain electron events. Consequently, the metrics
outlined here represent the optimal throughput for the current streaming architecture, as there is overhead on the NERSC
consumer processes when events are present in the data. As we show in the accompanying repository, this overhead
comes primarily from the only file I/O operation in the streaming pipeline — the disk write operation of counted data at
NERSC. This non-parallelized write operation occurs at around 340 MB/s. Both the sample area and pixel dimensions

7
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Figure 4. Histograms demonstrating superior performance of streaming (blue) compared with file transfer (red). (a-d)
correspond to real space data dimensions 128×128, 256×256, 512×512, and 1024×1024, respectively. It is evident
that the distribution of streaming times is both much narrower, and much faster than the distribution of file transfer
times.
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Figure 5. Histogram of duration between job submission and start times (the queue time) for the file transfer workflow.
This overhead contributes to the discrepancy in enhancement factor we see between small and large datasets.

Table 1. Comparison of file transfer and streaming times for various data dimensions.

Data Dimension Data Size (GB) File Transfer (s)
(µft ± σft)

Streaming (s)
(µs ± σs)

Enhancement
(µft/µs)

128 x 128 x 576 x 576 10 GB 52.0± 30.6 4.0± 0.0 13.0
256 x 256 x 576 x 576 43 GB 92.3± 38.6 6.8± 0.6 13.6
512 x 512 x 576 x 576 173 GB 138.5± 28.2 25.1± 1.3 5.5

1024 x 1024 x 576 x 576 695 GB 442.6± 53.5 97.2± 4.1 4.6

influence the number of events, and therefore the write time can be variable. For instance, for the sample used in
the accompanying repository, the overhead for saving data from a 128×128 acquisition is roughly 0.25 seconds, and
extends to about 16 seconds for a 1024×1024 acquisition covering the same sample area.

Metrics for the file transfer pipeline were sourced from the Distiller database, which stores acquisition metadata and
facilitates cross-referencing information with Slurm such as queue time (the duration between job submission and
job start times) and elapsed time (the time required for job execution). Aside from transfer and count times, another
bottleneck in the file transfer workflow is the file write time (RAM to disk) at NCEM. To quantify this, we executed a
series of ‘offload time’ experiments for different common dataset sizes. 30 datasets were acquired for each configuration,
and the average interval between initial file creation and final modification timestamps were calculated. These averages
were added to the Slurm elapsed times to encompass all steps of the file transfer pipeline. Finally, we take into account
the overhead from writing the counted data at NERSC, discussed in the preceding paragraph. Since this overhead
is variable, we conservatively subtract double the average write time for each data dimension (see accompanying
repository for details) from the file transfer times. Metrics for the streaming pipeline were obtained through a similar
analysis of timestamps, derived from NCEM logs and last modification times at NERSC.

Outliers were identified and removed in accordance with standard practices before summarizing the data in Table 1.
Specifically, outliers were defined as observations that fall beyond 1.5 × IQR (interquartile range), where IQR =

Q3 − Q1, and Q3 and Q1 represent the third and first quartiles, respectively. Such outliers usually indicate a file
transfer workflow initiation failure.

Data were then compiled into histograms and categorized by size for comparative analysis (Fig. 4, Table 1). The
enhancement factor, calculated as the average file transfer time divided by the average streaming time (µft/µs), shows
significant improvements in transfer and count time across all sizes. Notably, the enhancement factor differs markedly
between smaller (10 and 43 GB) and larger datasets (173 and 695 GB). This discrepancy is attributed firstly to the
file-transfer workflow’s job queue times, a right-tailed distribution (average 2 s) (Fig. 5). These queue times are absent
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in the streaming workflow, save for the initial session queue time. Secondly, we hypothesize that bursty production of
huge data volumes cause network congestion and more thread context switching on the Aggregator. Future work will
explore this issue to a greater extent.

Alongside this manuscript, we have incorporated a repository containing all data analyses to adhere to FAIR (Findable,
Accessible, Interoperable, and Reusable) data principles.20

5 Related Work

Our literature review reveals multiple instances of software packages leveraging message queues and network data
transfer within Data Acquisition (DAQ) systems. Common components across these systems typically include local
RAM buffers for temporary data storage from detectors, a push/pull or publish/subscribe mechanism via sockets, and
plugins for real-time data processing.

• PvaPy: Recent efforts by Veseli et al.21 established a connection between the Advanced Photon Source
(APS) and the Argonne Leadership Computing Facility (ALCF) using a streaming model derived from the
Experimental Physics and Industrial Control System (EPICS).22 Utilizing PvaPy23, a Python interface for
EPICS’ pvAccess, a multi-producer, multi-consumer publish/subscribe network was constructed. This network
achieved streaming rates exceeding 14 GB/s by employing multiple interconnected consumers. This work
shows strong potential for integration with HPC centers, as it demonstrates high network throughput and uses
a widely-adopted control system framework at beamlines across user facilities.

• DUNE-DAQ: The Deep Underground Neutrino Experiment (DUNE) generates neutrinos at Fermilab and
detects them 800 miles away at Sanford Underground Research Facility to explore why the universe is made of
matter. Their DAQ system employs ZeroMQ wrappers and shared memory queues for bulk data transmission
from detectors, event processing, and offloading to data writer processes.24

• ALFA: Developed collaboratively by the Facility for Antiproton and Ion Research (FAIR) and A Large Ion
Collider Experiment (ALICE) at CERN, the ALFA framework utilizes FairMQ for its transport layer.25,26

This layer consists of wrappers around ZeroMQ sockets, called Devices, which are state machines that can be
arranged in various topoligies to create communication channels. ALFA also incorporates a processing layer
with support for Apache Arrow and ROOT.27

• ADARA: The Accelerating Data Acquisition, Reduction, and Analysis (ADARA) system, built at Oak Ridge
National Laboratory (ORNL), is another publish/subscribe system developed for real-time processing and
visualization of Spallation Neutron Source (SNS) data.28 The system uses a custom protocol on POSIX sockets
to publish data, and supports both live and archived (persisted to disk) data streaming. The subscribers, which
include the real-time visualization software Mantid and statistics/monitoring services, ingest the published
data. While this system appears to be in use today,29 we cannot say for sure what the current state of the
project is and if the custom protocol can handle the high data rates of modern detectors.

Although this list is not comprehensive, it underscores the diversity of existing solutions to similar challenges. Since
these tools are designed with a specific DAQ system in mind (e.g., EPICS for PvaPy), using and retooling them for
NCEM’s DAQ would have posed a challenge. An ideal future tool would combine the best features of these systems
and facilitate seamless integration with HPC centers with minimal application code changes.

6 Conclusions and Outlook

In response to the input/output (I/O) bottlenecks posed by conventional file transfer methods, this work introduced a
ZeroMQ-based pipeline to directly transfer large experimental datasets from the NCEM facility of TMF to compute
nodes at NERSC. This approach effectively bypasses large disk storage operations at both ends, facilitating on-the-fly
data processing.

10
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Our results demonstrate a significant improvement in data throughput and system predictability, achieving up to a
14-fold increase in data transfer speed compared to NCEM’s file transfer workflow. Further, we upgraded NCEM’s
user-facing web app, Distiller, to enable microscopists to initiate and manage realtime jobs at NERSC from a web-based
interface. These improvements reduce the turnaround time for microscopists and provides access to the new workflow
without significant training overhead.

While our results confirm that streaming significantly reduces both processing delays and dependency on NERSC’s
shared file systems, the current implementation should be seen as a preliminary model. Its integration is tightly bound
to NCEM-specific data formats and processing packages, indicating a necessity for a more universally adaptable tool
that simplifies streaming to HPC facilities with minimal need for bespoke adjustments.

A more broadly applicable version of this tool should consider several key features, including but not limited to:

• Semi-automated network management. In our prototype implementation, the connection of various ZeroMQ
sockets is manually configured through specific IP addresses and port numbers within a configuration file. This
procedure could be streamlined by leveraging a distributed key-value store as a dynamic IP address registry.
Such an approach would automate the service discovery and connection process within the wide-area network
(WAN), enabling new clients to register their IP addresses and identify connection partners.

• Decoupling of services from application code. The current implementation also tightly binds services to
NCEM-specific functionalities by subclassing the producers and consumers from our earlier file-transfer
workflow. A future tool should aim for a decoupled architecture, where producer and consumer processes
operate independently in separate memory spaces on the same machine. This separation would not only lower
the technical threshold for adoption but also improve flexibility, allowing messages to be routed to several
consumer processes for varying types of analysis.
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