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Abstract

Gas phase trace chemical detection techniques such as ion mobility spectrometry (IMS) and 

differential mobility spectrometry (DMS) can be used in many settings, such as evaluating 

the health condition of patients or detecting explosives at airports. These devices separate 

chemical compounds in a mixture and provide information to identify specific chemical species 

of interest. Further, these types of devices operate well in both controlled lab environments and 

in field applications. Frequently, the commercial versions of these devices are highly tailored for 

niche applications (e.g. explosives detection) because of the difficulty involved in reconfiguring 

instrumentation hardware and data analysis software algorithms. In order for researchers to 

quickly adapt these tools for new purposes and broader panels of chemical targets, it is critical 

to develop new algorithms and methods for generating libraries of these sensor responses. 

Microelectromechanical system (MEMS) technology has been used to fabricate DMS devices that 

miniaturize the platforms for easier deployment; however, concurrent advances in advanced data 

analytics are lagging. DMS generates complex three-dimensional dispersion plots for both positive 

and negative ions in a mixture. While simple spectra of single chemicals are straightforward to 

interpret (both visually and via algorithms), it is exceedingly challenging to interpret dispersion 

plots from complex mixtures with many chemical constituents. This study uses image processing 
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and computer vision steps to automatically identify features from DMS dispersion plots. We used 

the bag-of-words (BoW) approach adapted from natural language processing and information 

retrieval to cluster and organize these features. Finally, a support vector machine (SVM) learning 

algorithm was trained using these features in order to detect and classify specific compounds in 

these represented conceptualized data outputs. Using this approach, we successfully maintain a 

high level of correct chemical identification, even when a gas mixture increases in complexity with 

interfering chemicals present.

Graphical Abstract

Keywords

differential mobility spectrometry (DMS); dispersion plot; machine learning; machine vision; field 
asymmetric ion mobility spectrometry (FAIMS)

INTRODUCTION

The growth and development of gas-phase chemical analysis has potential to spark 

innovation across multiple industries. Mass spectrometry and other gold standard chemical 

analysis measures have proven to be highly accurate, sensitive, and selective. However, 

these platforms are often bulky, expensive, and require resource-intensive laboratory 

conditions1, 2. Research advancements in real-time and mobile platforms for chemical 

sensing and detection have the potential to impact many areas, such as non-invasive health 

diagnostics3, 4, agriculture monitoring5, security applications6–8, and air quality monitoring9. 

Many of these new mobile technologies have major issues with reliability, calibration, and 

robust operation in field conditions. Commercially, ion mobility spectrometry10, 11 (IMS), 

differential mobility spectrometry12, 13 (DMS) and metal oxide sensors14, 15 have so far 

proven to be some of the most robust technologies, although other sensor technologies 

continue to gain traction with performance improvements.

Differential mobility spectrometry16–18 (DMS) differentiates chemicals via ion mobility 

characteristics and offers some critical features advantageous to a portable system. 

First, devices operate under normal atmospheric conditions (~1 atm) and at relatively 

low temperatures (50–100 °C). Second, positive and negative ions can be detected 

simultaneously, opening options for sophisticated data analysis and chemical prediction 

methods. Third, the nature of the ion mobility in DMS provides a mechanism to allow 
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select ions to be detected per scan. This creates a means to increase chemical selectivity and 

overall chemical identification.

Most DMS systems, including commercial devices, are typically limited in automated data 

analysis with a fixed range of chemical prediction. In the past, DMS has focused on 

single chemical identification for specific applications19, 20. Additionally, there are limited 

automated methods for developing effective predictive models21, 22. Data obtained from 

DMS devices is represented as a dispersion plot, a 2-dimensional surface plot of charged 

ion signal intensities (z axis) representing ion mobility in an increasing electric field (y 

axis) under increasing compensation voltages (x axis). It is exceptionally difficult to identify 

specific chemicals when mixtures of chemicals are analyzed in a single sample, because 

differing ions “overlap” in the dispersion plot space, and sometimes complex clusters 

of ions result from chemical reactions as a sample traverses the device. Traditionally, a 

trained chemist will visually inspect a dispersion plot or calculate the alpha functions23 

of the intensity peak ions in order to differentiate one or two chemicals. However, these 

solutions are time consuming and unrealistic for in-field, real-time portable DMS sensors. 

Additionally, these solutions are laborious when a significant number of samples are needed 

as well as when samples consist of complex chemical mixtures, such as biological samples 

which might be comprised of several hundreds of compounds.

Several emerging topics in the area of “big data analytics” can potentially be applied 

to automated dispersion plot analysis to streamline chemical detection in both simple 

and complex mixtures. Generally, there are algorithm approaches for major steps in data 

processing, such as: removing noise, feature extraction from the signal space, machine 

learning to build a model against the features of the data, and finally prediction of unknowns 

using the model. Specifically, we are interested in using existing computer vision techniques 

to extract features and apply machine learning to generate prediction models.

This paper outlines the development of a data analysis methodology as well as the software 

and algorithm application for generating chemical prediction models for portable DMS 

devices. We apply image processing techniques to the DMS data followed by computer 

vision feature extraction methods and the generation of a representation model from natural 

language processing in order to finally build predictive models for use in portable DMS 

devices. Specifically, we start with a grayscale DMS dispersion plot24 allowing a computer 

vision algorithm to identify features such as peak ions, corners, and points-of-interest. Phase 

symmetry25, 26, phase congruency27, and morphological erosion28–30 are used to detect the 

peak ions from the DMS dispersion plot. Features from accelerated segment test31 (FAST) 

and speeded up robust features32–34 (SURF) algorithms were used to detect corners and 

points-of-interest. To find similarities between the features, hierarchical clustering was used 

to generate the bag-of-words model for each sample. Support vector machine35–37 (SVM) 

was used on the bag-of-words to find a relationship between the samples, and subsequent 

detection accuracies were generated from each sample to show the robustness of our 

methodology. SVM models are built for each compound. We tested the prediction methods 

in the presence of other interfering chemicals that frequently confound dispersion plot 

analysis. The methodology is useful because it is a more comprehensive method utilizing 

wide range of compensation voltage and RF voltage to develop machine learning models. 

Yeap et al. Page 3

Anal Chem. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These models provide a quantitative approach to detect the presence of a compound in a 

mixture. In practice, this methodology can be used to alert people of dangerous chemicals 

in close proximity such as explosives or gas leaks. For explosive detection, common 

compounds found in the airport environment and explosive compounds would be mixed 

together. Using computer vision and machine learning, models would be built to identify 

the presence of different explosive chemicals in the mixture. These models can be used 

to create a virtual library of models that can be used to detect explosive compounds in 

an actual airport environment by using the same computer vision methodology and trained 

SVM models to provide predictions.

EXPERIMENTAL

Gas Sample Preparation.

Individual samples were prepared by injecting desired liquid volumes of 2-butanone, 2-

hexanone, ethyl acetate and 4-methyl-2-pentanone (Sigma Aldrich, St Louis, MO) into each 

sample bag (SKC Tedlar® Sample bag, SKC Inc., Eighty Four, PA) filled with 3 L of ultra 

high purity nitrogen (Airgas, Radnor, PA). These bags were maintained for more than 10 

min at room temperature to equilibrate analytes into the gas phase to achieve the stock 

concentrations (1000 ppm). Serial dilution was performed from the stock concentration to 

achieve 100 ppm concentration of each chemical. Each gas phase chemical was sampled 

into a gas tight 1 mL glass syringe (Hamilton Co., Reno, NV) from the final concentration 

(100 ppm) and introduced separately into the inlet of the differential mobility spectrometer 

using a syringe pump with a dilution nitrogen gas flow. The final concentration of each 

chemical at the DMS cell inlet was 500 ppb. The bags with chemical mixtures were prepared 

by adding each new chemical to the bag followed by serial dilution. Therefore, the final 

concentration of each chemical in a mixture was ~ 500 ppb.

Instrumentation.

A MicroAnalyser™ differential mobility spectrometer (Sionex Corp., Bedford, MA) with a 

5 mCi, 63Ni ionization source was used in this study. The drift cell was operated with at 80 

°C for all data collection. To avoid chemical memory effects between analyses, the drift cell 

was purged with ultra-pure nitrogen while heating at 100 °C. Sample lines, made of PTFE 

tubing, were purged with ultra-pure nitrogen during this cleaning cycle and background 

reactant ion peak (RIP) dispersion data were recorded prior each sample injection to verify 

the drift cell was free of memory effects from previous chemicals. Ultra-pure nitrogen (Air 

gas, Radnor, PA) was used as the carrier gas (300 mL min−1) and sample gas (20 mL min−1). 

DMS dispersion plots were recorded for each sample by scanning the compensation voltage 

(CV) from +10 to −30 V range (step size = 100; step duration = 10 msec; step settle time = 

3 msec) and scanning the RF voltage from 500 to 1490 V in 10 V increments (RF voltage 

steps = 100). Each sample was repeated n=12 times. Both positive and negative polarity 

DMS dispersion data were used in the study.

Data Analysis.

To visualize raw data, AnalyzeIMS (AIMS)21 v1.301 was used. AIMS was developed using 

MATLAB 2017 and has been made available for open source for research and non-profit 
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personal use (please see access information in software section below), and the original 

version did not require specific toolboxes. The old version of AIMS from a paper in 2016 

has the capabilities of plotting and visualizing raw DMS data and performing some noise 

reduction and baseline correction on the raw data. It is also written with an older version 

of Matlab 2014. The new version published along with this paper has been upgraded to 

a more recent version of Matlab 2017. All the computer vision and machine learning 

methodologies such as peak ion, corner, points-of-interest and SVM outlined in this paper 

are also implemented in the new version. This current release utilizes the standard statistics 

and machine learning and computer vision toolboxes provided by MATLAB. Using these 

tools, each data sample in the present work was visualized to ensure data quality and 

reproducibility.

The dispersion plot analysis algorithms developed herein were written in MATLAB 

2017. The Matlab platform allows for computer vision techniques to be applied directly 

to DMS output data for feature characterization, or “bag-of-words” compilation, for 

different compounds. Once the bag-of-words model was extracted, a one-versus-all multiple 

classification support vector machine (SVM) classifier was trained to build a robust model to 

detect the presence of chemical compounds. The purpose of chemical mixtures in this study 

is to determine if SVM can accurately discern a single compound from a mixture.

RESULTS AND DISCUSSION

DMS Dispersion Plots.

A dispersion plot of the DMS background in positive polarity (no analytes present) is shown 

(Figure 1A). The reactant ion peak (RIP), hydrated protons appears dominant with a low 

intense peak left to the RIP likely due to some very low abundance impurities.

Positive polarity DMS dispersion plots were obtained for individual chemicals: 2-butanone, 

2-hexanone, ethyl acetate and 4-methyl-2-pentanone (Figure 1B–E). The individual 

chemicals show clear evidence of monomer and dimer ion formations that are named as 

“m” for monomer ion and “d” for dimer ion in each plot. Ethyl acetate shows an intense ion 

peak “f1” (Figure 1D) at higher RF voltages while 4-methyl-2-pentanone shows low intense 

peak “f2” additionally to the monomer and dimer ions (Figure 1E). These new ion peaks 

may have occurred due to the fragmentation of parent ions by the RF field heating inside 

the drift cell, as observed by previous researchers38. The trace impurity peak presence in the 

background spectra can be visually observed in all the individual plots except in 2-butanone 

(Figure 1B). The high intensity of the 2-butanone monomer ion peak may have occurred 

by overlapping the impurity peak with 2-butanone monomer peak, a possible reason for the 

disappearance of the impurity peak in 2-butanone spectrum.

We also show the DMS dispersion plots for the chemical mixtures (Figure 2), and the 

dimer ions “D” for all chemicals in the mixtures are well overlapped, appearing around 0 

V compensation voltage. The mixture of two ketones, 2-butanone and 2-hexanone clearly 

show the two monomer ions “m1” and “m2” (Figure 2A). The addition of ethyl acetate 

to the mixture of two ketones: 2-butanone and 2-hexanone (Figure 2B). Additional peaks 

of m3, monomer ion peak of ethyl acetate and f1, fragment ion peak from ethyl acetate 
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are visible (Figure 2B) other than the dominant monomer peaks “m1 and m2” of the two 

ketones. Addition of the third ketone, 4-methyl-2-pentanone into this mixture alters the peak 

intensities, specifically the low ion intensity of the monomer ion peak of ethyl acetate. 

However, the characteristic peaks for each chemical are visible at different strengths that 

include the monomer ion peaks of 2-butanone, 2-hexanone “m1, m2” and possible fragment 

ions from ethyl acetate “f1” and from 4-methyl-2-pentanone “f2”. The monomer ion of 

4-methyl-2-butanone may have overlapped with the monomer ion of 2-hexanone (Figure 

2C).

Peak Ion, Corner, and Points-of-Interest Detection of Dispersion Plot.

In order to identify and capture the peak ions (Figure 3A) of each DMS sample, a series 

of computer vision algorithm were used: phase symmetry, phase congruency, morphological 

erosion, and flood-and-fill. The peak ions are outlined as red curves (Figure 3A). For 

completeness of this process, the Supporting Information provides from more detail. This 

method of peak ion detection generates a single pixel width of all peak ions within the 

sample.

Corners are another important structure in computer vision that can be used to generate 

robust features vectors to differentiate images. We implemented this in our method, by using 

Feature from Accelerated Segment Test (FAST), an algorithm that iteratively checks every 

pixel in a DMS dispersion plot to detect a corner, represented as green crosses (Figure 3B). 

FAST determines if a pixel is a corner by first drawing a three pixel radius circle around 

any particular pixel of interest. This circle is composed of 16 pixels, labeled 1–16 in a 

clockwise manner starting from the top. If the intensity of the center of pixel is greater 

than three out of four pixels mentioned earlier then the center pixel is deemed a corner. 

This process is repeated for all pixels in the image. The advantage to using FAST is that it 

is computationally quick compared to other similar algorithms, such as the scale-invariant 

feature transform32, because it does not need to check the intensities of all 16 pixels. FAST 

only generates the locations of all the corners.

Points-of-interests is another important feature detection approach that can be used to 

describe an image. These are specific pixels in an image that are important and can be 

accurately found even if the image were zoomed in or rotated. The algorithm we used to 

find points-of-interest is the Speed Up Robust Feature (SURF). SURF identifies key points 

which allows the algorithm to compute the key points more quickly compared to other key 

points algorithms such as Scale Invariant Feature Transform. SURF is used on the grayscale 

DMS dispersion plot, and the key points are represented as green crosses (Figure 3C). These 

points-of-interest are themselves scale invariant, meaning a zoomed version of the same 

image will produce similar if not the same results. The green circles represent the scale of 

the key points; a larger circle means that the key point is more scale invariant. SURF only 

generates the location of all points of interest.

Feature Vectors Extraction.

The previous section outlined how to detect peak ions; however, feature vectors must be 

generated from these peak ions. Peak Ion feature vectors are always a fixed length of size 
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14 where each feature describes the numerous features such as perimeter and area of peak 

ions. The features are generated by drawing a bounding box over each ridge. The bounding 

box is the smallest rectangle that encompasses the peak ion. The area of the peak ion, its 

perimeter and centroid are approximated by using that of the bounding box. The eccentricity 

and the orientation of the peak ion are generated by drawing the smallest ellipse that can 

encompass the peak ion. This ellipse’s eccentricity describes the curvature of the ellipse and 

the ellipse’s orientation describes the tilt with respect to the major axis and x axis which in 

turn describes the peak ion’s eccentricity and orientation.

The feature vectors for the corners and point of interest are generated in the same fashion. 

The previous section outlined the method used to generate the locations of corners and 

points-of-interest. In order to generate feature vectors, a SURF descriptor algorithm39 is 

used to generate a fixed size of 64. A descriptor is used to help find relationships between 

the corners and points-of-interest. The advantage with a SURF descriptor is that it generates 

feature vectors that are robust to rotations and scale.

Bag-of-words (BoW) Representation Model.

At this point, a series of algorithms refine a DMS dispersion plot into three descriptors: peak 

ions (Figure 3A), corners (Figure 3B) and points-of-interest (Figure 3C). The next step is 

to compress these three descriptors into a single new representation of the DMS sample; 

this is performed using a bag-of-words technique. Words are generated by using clustering 

algorithms on the peak ion, corner, and points-of-interest feature vectors. All features have 

scalar values. The size of features generated by peak ions is always size 14 and the size 

of corners and points-of-interest is always size 64. As a result, two separate clustering 

algorithms are used to generate words for feature vectors of length 14 and 64.

The peak ion words are generated by using k-mean clustering where k is selected as the max 

number of peak ions found amongst all the samples. The inputs of k-mean clustering are all 

the peak ions feature vectors in the samples and the output is an assignment of which cluster 

the peak ion belongs to. Peak ion features that are similar perimeter, area, eccentricity, etc 

will be put in the same cluster or word.

Each peak ion in the sample are placed into a cluster and one cluster denotes a word in the 

bag-of-words techniques.

The corner and points-of-interest feature vectors yield a list of highly dimensional feature 

vectors for each chemical sample. In order to find similarities between these feature 

vectors, a hierarchical clustering technique called agglomerative clustering40. Agglomerative 

clustering is a bottom-up empirical clustering algorithm that creates clusters until all corners, 

and points-of-interest in the sample have been assigned to a cluster. As the features are 

being clustered, the algorithm ensures that all clusters are similar size to prevent one cluster 

from getting too large and grouping features that are not similar together. The purpose of 

clustering is to capture any relationship between the different corners and points-of-interest 

in the sample, thus every cluster represents this relationship.
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At this point, peak ion, corner, and points-of-interest clusters have been assigned to 

every feature vector. These clusters comprised together create the dictionary of words for 

the samples. A frequency graph of the number of features in each cluster is generated 

creating what is commonly called the bag-of-words (Figure 4). The frequency plot is one 

representation of bag of words model for each pure compound. The number of clusters 

is different across all chemicals and can be attributed to the relationships between image 

feature vectors when clustered. Clustering is performed on all samples in training set. In this 

case most of the cluster size were about 60 because only the pure compounds were used in 

the training set. However, when mixtures are added to the training set there can be different 

number of clusters due to the different sets of features vectors generated.

Bag-of-words models (or frequency graphs) are unique for every sample collected. 

Dispersion plots of the same chemical should produce similar frequency graphs, with 

slight differences caused by inherent noise from the DMS detector. As shown visually, 

representation models appear quite different for spectra of four different analytes (Figure 4).

The next step is to build classification algorithms to distinguish the bag-of-words models 

between the four analyte, creating a library of each chemical species to be used later for 

chemical identification of “unknown” samples.

Support Vector Machine (SVM) Learning and Classification.

With the bag-of-words model completed for every dispersion plot, the next step is to 

identify a relationship between the different bag-of-words models for all samples of the 

same chemical. This algorithm would seek a common pattern that define a specific chemical, 

analogous to way a mass-to-charge m/z fragmentation pattern is unique for chemical 

identification on mass spectrometers. We use a machine learning algorithm termed Support 

Vector Machine35–37 (SVM) to achieve this, and the SVM outputs a model that can be used 

for chemical prediction of unknown samples in the future.

SVM is a binary supervised machine learning algorithm that uses a technique called labeling 

to facilitate learning. This means each bag-of-words must be labelled, 0 or 1, indicating 

whether or not the pure compound is present. With all the bag-of-words labelled, SVM will 

find the best hyperplane to abstractly bisect the data such that one side will dictate the pure 

compound is present. This will be the basis for generating the different models for each pure 

compound. The training of SVM is performed by using the data clustered from k-means 

and agglomerative clustering. The input of SVM are all the samples’ bag-of-word models 

or clusters and the chemical labels that indicate presence of the pure compound of interest. 

How the data is split is described in the following sections. This method allows SVM use 

the knowledge of the labels to find relationship between the words and distinguish between 

chemicals.

Before applying machine learning the data must be split into proper sets for: training data 

to go into the SVM and generate multiple models for consideration; validation data that 

can test SVM models to choose the best one to move forward; and data not in either 

prior step that is blinded testing data for prediction accuracy. The training data uses the 

bag-of-words for a given number of samples to find a relationship between the samples. 

Yeap et al. Page 8

Anal Chem. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Once the SVM is trained, the validation data set is used to determine how well the algorithm 

has learned from the training bag-of-words data based on an accuracy rate of 0–100%, 

where a higher percentage means that the algorithm has successfully identified the presence 

of the compound in the samples. If the accuracy rate is low, it means that the algorithm is 

not suitable with the dataset and a different algorithm must be used. Once a sufficiently high 

accuracy rate is found for the validation set, the algorithm will build a single model using 

the training and validation data. This model is then tested for prediction accuracy using the 

last “blinded” portion of the data that the model has never seen. The prediction accuracies 

tell us how robust the model is for chemical identification. This prediction accuracy rate is 

often thought to be the most realistic representation of how the algorithm will perform under 

real-world field conditions.

SVM Models and Prediction Accuracies.

To start the analysis outlined the previous section the data must be split into training/

validation and test set using the pure compounds of butanone, hexanone, ethyl acetate, and 

4-methyl-2-pentanone and their respective mixtures. In our previous work using PLS-DA 

classification, we found the inclusion of mixtures can improve the prediction accuracies 

because mixtures will provide different features compared to only using repeated samples of 

pure compounds22. A total of 150 samples for each compound was used a 70/30 split was 

implemented. In other words, 70% of the data was used for the training/validation set and 

30% of the data was set aside for the test set.

The training/validation set of 105 butanone samples comprised of the following: 26 samples 

of pure butanone and the 2–4 mixtures (Figure 2), 26 samples of hexanone and 2–4 

mixtures, 26 samples of ethyl acetate and the 2–4 mixtures, and 26 samples of 4-methyl-2-

pentanone and the 2–4 mixtures. Butanone and its 2–4 mixtures are labelled as “butanone” 

and the other pure compounds and its 2–4 mixtures are labelled as “other”. The test set is 

divided and labelled the same fashion except 12 samples of each pure compound and 2–4 

mixtures are used.

A SVM was used, which outputs a binary decision, 0 or 1, indicating whether or not a pure 

compound is present in the sample once SVM is trained using the training data. In SVM, 

the hyperparameters needed are C and the kernel. C denotes the amount of regularization. 

The kernel denotes the type of kernel used in SVM which can be linear or non-linear 

kernels. In this study, we tried different kernels and regularization to find which parameters 

produced the best accuracies. The optimal parameters found were a linear kernel and a C 

value of 1. The supporting information gives more detail on how C was chosen. We used 

a standard 5-fold cross validation41 to provide a reliable overall accuracy. Briefly, a 5-fold 

cross validation combines the sample of the training and validation set and randomly divides 

the combined dataset into 5 equal partitions. Four of the partitions will be used for to train 

SVM and the last partition will be used in the validation set. Each partition takes turns acting 

as the validation set, generating 5 different accuracies. The average of all 5 accuracies is 

then reported (Figure 5, blue histograms for each pure chemical). Thus, there is only one 

accuracy shown in the figure. Observing the accuracies, it can be seen that most of the 
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accuracies are above 90% suggesting that SVM is a good algorithm that can be used to 

detect the presence of a compound within a mixture.

A final test to show that SVM is a robust model utilized the test set to observe how a truly 

blind dataset would look like. The training and validation set were combined to train the 

SVM model and the test was used to observe how well SVM could detect the presence of 

a particular compound. When testing new samples, the same methodology outlined in this 

paper is used with the exception of cluster assignment. Since there is already a bag-of-words 

model built, the feature vectors will use the clusters and be assigned the cluster that is 

closest to the feature vector. This way no bag-of-words will be skipped and will always be 

assigned a cluster that in the trained model. The accuracies (Figure 5, red histograms for 

each pure chemical) of butanone dropped 5% compared to the pure compound analysis but 

the accuracies of the other compounds improved by 10–20%. All the accuracies were above 

85% and all the test set accuracies were approximately 5–10% lower than the validation set 

accuracies. The accuracies are sufficient enough to suggest that SVM is a robust algorithm 

in being able to detect the presence of a specific compound in an unknown sample.

In order to show that the methodology can used with many confounding compounds, a 

mixture of seven chemicals was also used to evaluate how well the models perform. In 

addition, different chemicals such as toluene and heptane were used to show that it can be 

applied to other compounds not just the four previously mentioned. The accuracies (Figure 

6) show similar results when compared with that of four compound accuracies (Figure 5). 

Some possible applications of this are discussed in the application portion of this paper.

It is important to acknowledge that at this point, our dispersion plot analysis method is 

only binary. It will report a “yes” or “no” presence of a target chemical in mixtures 

when a query is performed. However, in the future, it is possible to expand our method 

to also report approximate quantities of chemicals present. Future work can address 

this by modeling the dispersion plot changes that occur when concentrations of discrete 

chemicals increase/decrease in mixtures. It is also important to continue to increase the 

accuracies of the chemical matches in the dispersion plots. Traditionally trained chemists 

will note the analogous visual similarity of the bag-of-words (BoW) models (Figure 4) 

to mass spectrometry mass-to-charge ratio (m/z) plots. Although the physical mechanisms 

to generate these plots are very different, the mass spectrometry field has witnessed great 

advances in deconvolution and chemical identification via m/z library matching algorithms. 

We expect equivalent advances in matching our BoW models can also improve dispersion 

plot analysis.

Application.

One possible application for this methodology is to detect a specific compound of interest 

from a mixture on real-time mobile devices. To do this, the machine learning portion of 

developing SVM models can be trained on a more powerful machine such as a desktop. The 

models can be put onto a mobile device such as a tablet and data from a portable DMS 

can be fed to the tablet. The tablet can then be used to detect if chemicals of interest are 

present in an environment. Our results include several chemicals such as heptane and toluene 

to show the application importance. Heptane is an important paraffin in fossil fuel industry 
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and detection of heptane during combustion is necessary to improve the efficiency of current 

combustors and reduce the environmental polluting species42.Toluene represents aromatic 

group VOCs that include chemicals such as Benzene and Xylene. These are widely used 

organic solvents for paints, adhesives, detergents, dyes, and preservatives. Trace detection of 

these chemicals are vital as they are some of the most hazardous chemicals to the human 

health and pollutants to the environment43. These applications can improve the quality of 

human life by informing people about possible hazardous chemicals in the ambient air. In 

terms of software run time, the longest runtime on the real-time device would be the feature 

detection and extraction. This run time of this is around 8.39 seconds for approximately 

50 samples. Once the features vectors are extracted then the centroids from clustering 

algorithms will be used to generate the bag of words for each sample. Then SVM will be 

used to detect if the compound is present.

CONCLUSION

This paper uses specific advances in computer vision, natural language processing and 

machine learning to detect the presence of specific chemicals from a dispersion plot of 

a complex mixture. Computer vision was used to identify important features such peak 

ions, corners, and points-of-interests in DMS dispersion plots. Clustering was used to group 

similar features together to generate the bag-of-words model for each sample. Support 

vector machine was used to find a relationship between the bag-of-words model, and we 

found that SVM is a robust algorithm in predicting the presence of a specific compound. It is 

worth noting that any supervised machine learning (i.e. classification) model can be applied 

at this step. SVM is a known, reliable classification method commonly used within computer 

vision and bag-of-words classification, making it a good choice for initial tests. Future work 

might include comparing different supervised machine learning algorithms at this step, and 

assessing the various methods for improved accuracies. Another future topic to explore is 

feature engineering, where standardizing features are artificially imposed and/or selected 

from the dispersion plots using chemistry knowledge. This can help to improve accuracies, 

although great care has to be taken to ensure the models of the data are not over trained.

Overall, our method of using computer vision and machine learning can be applied to any 

data collected by DMS and is applicable in many areas of research. The computer vision 

and machine learning algorithms used are also computationally fast and have the potential of 

being applied to portable platforms in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example DMS dispersion plot of pure compounds: (A) RIP alone, (B) 2-butanone, (C) 

2-hexanone, (D) ethyl acetate, (E) 4-methyl 2-pentanone. In each image, the monomer (m) 

and dimer (d) are noted. Fragment ion peaks are also noted (f1 and f2).
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Figure 2. 
DMS dispersion plot of chemical mixture of the following: (A) 2-butanone and 2-hexanone; 

(B) 2-butanone, 2-hexanone, and ethyl acetate; (C) 2-butanone, 2-hexanone, ethyl acetate, 

and 4-methyl 2-pentanone. Monomers are as follows: m1 (2-butanone), m2 (2-hexanone), 

m3 (ethyl acetate), m2 (4-methyl 2-pentanone overlaps with 2-hexanone).
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Figure 3. 
Computer vision algorithms are used to detect the following: (A) peak ion detection outlined 

by red curve, (B) corner detection outlined by green crosses, and (C) points of interest 

outlined by green crosses and circles.
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Figure 4. 
The bag-of-visual-words models are shown for example dispersion plots of the following 

pure compounds: (A) 2-butanone, (B) 2-hexanone, (C) ethyl acetate, (D) 4-methyl 2-

pentanone.
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Figure 5. 
Accuracy for validation and test sets when the pure compounds and respective mixtures are 

included in the training, validation, and test sets.

Yeap et al. Page 19

Anal Chem. Author manuscript; available in PMC 2023 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Accuracy for validation and test sets when the pure compounds and seven mixtures are 

included in the training, validation, and test sets.
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