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ABSTRACT 

A modified version of Gutzwiller's periodic orbit theory 

of semiclassical eigenvalues is presented which eliminates 

some of the principal shortcomings of the original result. 

In particular, for a non-separable system with N degrees of 

freedom the new quantum condition characterizes the eigen­

values by N quantum numbers (rather than just one), and it 

also reduces to the currect result in the limit that the 

system is a separable set of harmonic oscillators (whereas 

the original quantum condition does not). This new periodic 

orbit quantum condition is seen to bear an interesting 

relation to Marcus' recent theory of semiclassical eigen­

values which involves manifolds of quasi-periodic trajectories. 
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I. INTRODUCTION 

The possibility of generalizing the WKB, or Bohr-Sommerfeld 

quantum condition
1 

for one-dimensional potential wells, 

-1 J 
tr :f dx p(x,E) 

p(x,E) J2m[E- V(x)] (1.1) 

to multidimensionable non-separable systems has intrigued 

h . f E" . 2 h f" k t eor1sts or many years. 1nste1n was t e 1rst to rna e 

significant progress on the problem, and important contri-

3 4 
butions have also been made by Keller and Maslov. 

More recently Gutzwiller,
5 

using an analysis based on 

the semiclassical approximation to the quantum~propagator, 

made an important advance by showing that the semiclassical 

quantum condition is intimately related to the periodic classi-

cal trajectories, or periodic orbits of the system. The 

connection between periodic classical trajectories and quantum 

mechanical eigenvalues is appealing on physically intuitive 

grounds, but the specific quantum condition obtained by Gutzwiller 

has a number of d~ficiencies, not the least of which is that it 

does not give the correct result in the limit that the system 

becomes separable. This and other shortcomings have been dis-

6 
cussed by J;>echukas in his approach to constructing a more 

satisfactory quantum condition. 
7 

Marcus has also recently made 

important advances, and his theory, based on phase space manifolds 

generated by quasi-periodic trajectories, is most closely related 
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to the present work; Section IV discusses this relation in more 

detail. 

This paper pursues the periodic orbit theory of Gutzwiller, 5 

but introduces an important modification of the analysis leading 

to the quantum condition itself. This modification, though simple 

and fairly obvious (in retrospect), leads to.:a significantly 

different semiclassical quantum condition which eliminates some 

of the flagrant deficiencies of the original result. For a system 

of N-degrees of freedom, for example, the new quantum condition 

labels the energy levels within N quantum numbers, whereas the 

original result provided only one quantum number. The new quantum 

condition, too, gives the correct result in the limit that the 

system is a set of separable harmonic oscillators; 
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II. BASIC THEORY 

There is no need to re-do most of Gutzwiller's derivation, 5 

but it is worthwhile to recall the way in which periodic orbits 

arise. The density of states per unit energy, p(E), is defined 

by 

p(E) tr[o(E- H)) 

and it is clear that this is given quantum mechanically by 

p(E) 

where {E } are the eigenvalues of the Hamiltonian; p(E), there­
n 

fore, has delta function singularities when E is equal to an 

eigenvalue. Since 

o (E ~ H) 
1 

2nh 

Eq. (2.1) is equivalent to 

iEt/h 
e 

-iHt/h 
e 

p(E) 
iEt/h ( -iHt/h) tr e e 

One now introduces the semiclassical approximation for matrix 

8 
elements of the propagator, 

(2.1) 

(2.2) 

(2. 3) 

(2.4) 
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< I -iHt/h I > ~ 
~2 e ~1 

where ¢(3 2 ,~ 1 ) is the action integral along the classical 

trajectory connecting ~l and ~ 2 in time interval (O,t), and 

the integral over q in Eq. (2.4) is evaluated by the stationary 

h 
. . 9 . 10 p ase approx1mat1on; s1nce 

where r2 and rr are the values of the classical momenta at time 

t and time 0, respectively, the stationary phase condition for 

the integral over coordinates in Eq. (2.4) is 

0 
a 
aq ¢(q,q) + 

(2.5) 

(2.6a) 

(2.6b) 

(2. 7) 

i.e., q(O) =' q(t) and p(O) = p(t), so that the values of q which 

contribute in a stationary phase sense to the integral in Eq. (2.4) 

must lie on a periodic trajectory. Periodic orbits arise, there-

fore, because the stationary phase approximation is used to carry 

out the trace of the propagator. 

Carrying out this stationary phase integration over q, and 

also over t, gives the equivalent of Gutzwiller's Eq. (36), 
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p(E) 

in(¢ - A.!!:) 
00 2 

Re 
T L: e 

n11 n=l 2 . . (nv) 1 s1n T 

where ¢ - <l>(E) is the action integral, in units of h, 

along ·the periodic trajectory with energy E, T = T(E) is 

the period of this trajectory, and v = v(E) its stability 

parameter. Eq. (2.8) is written explicitly for the case 

of two degrees of freedom; the extension to N degrees 

of freedom is trivial and will be discussed below. ·A in 

Eq. (2.8) is the number of turning points encountered along 

the periodic trajectory; Gutzwiller assumes A = 0, but we 

shall see in Section III that this need not be the case. 

[Gutzwiller's Eq. (36) actually gives the trace of the 

Green's function 

tr[G(E)] 

but since 

Im G(E) 

-T 
h 

00 
in(¢ - A.!!:) 

2 
e -----

. nv 
n=l 2 sm(2) 

- mS (E - H) 

Eq. (2.8) follows directly from Eq. (2.10).] Since 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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sin[n(<P- ¥)] 
2 sin (~v) 

and since the period T(E) is related to the energy derivative 

of the classical action, 

' T(E) h¢ (E) 

Eq. (2.8) is equivalent to 

p(E) 
' <P (E) 
21T 

in[<P(E) -";1 
e 

1 ' 2i sin[~w(E)<P (E)] 

where the stability frequency w(E) is defined by 

w(E) v(E)/T(E) = v(E) 
h <P (E) 

Eq. (2 .13) is essentially Gutzwiller'; Eq. (36) 

and it is obtained with no approximation other than·use of 

the semiclassical limit of the propagator and the stationary 

phase approximation for evaluating the integrals in Eq. (2.4); 

h b h . d . h 10 h. . as as een emp as1ze 1n ot er contexts, t e stat1onary 

(2.12) 

(2.13) 

phase approximation is the fundamental semiclassical approximation, 

and in the classical limit, h ~ 0, it becomes exact. 

The sum over n in Eq. (2.13) is a sum over the 

infinite number of multiple passes about the periodic orbit, 

and it is the interference of these amplitudes which1leads to 

quantization. 
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It is now that the essential departure from Gutzwiller's5 

analysis is made. Gutzwiller introduces an approximation to 

the denominator of the summand in Eq. (2.13), but this is not 

necessary and actually losses certain important features. More 

accurately, one notes that 

1 

2i sin(~) -ix 
1 - e 

00 

= L: 
-i (m + t>x 

(2 .14) e 
m=O 

so that Eq. (2.13) becomes 

p(E) 
I 

<t_ill Re 
2n 

00 

L: 
00 

exp{in[¢(E) - A1T -
2 

m=O n=-oo 
(m + t)tlw(E)¢

1 

(E)J} 

(2.15) 

11 The Poisson ~;tt:ll formula, 

00 00 

inx 
2n L 

n=-oo n=-oo 

then converts Eq. (2.15) into 

00 00 

p(E) q/ (E) L L 
m=O n=O 

o(x- 2nn) 

An 
o[¢(E) -

2 

1- I 

(m + 2)hul(E)¢ (E) 

- 2nn] 

(2.16) 

(2 .17) 
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Upon comparing Eq. (2.17) with Eq. (2.2), one·identifies the 

quantum condition as 

<P(E) 
1 I 

(m + 2)hw(E)<P (E) 

n and m 0,1,2, •.• 

2n(n + ~) 
4 

I 

If one sets A = 0 and m = 0 and recalls that hw(E)<P (E) 

the stability parameter, then Eq. (2.18) is identical to 

Gutzwiller' s 5 quantum condition, his Eq. (39). 

v(E), 

The approximation introduced by Gutzwiller5 tci obtain the 

quantum condition from Eq. (2.13) thus misses the possibility 

of a non-zero value of the quantum number min Eq. (2.18). The 

above more correct procedure thus obtains a quantum condition 

characterized by two quantum numbers; i.e., the eigenvalue E n,m 

is determined implicitly by Eq. (2.18) in terms of the quantum 

numbers n and m. 

Eqs. (2.13)-(2.19) are generalized in a rather obvious way 

to the case of N degrees of freedom. Eq. (2.13) is modified by 

the replacement 

N-1 
2i sin[~w(E)<I>' (E)] 7 TT 2i sin[~wi(E)<P 1 

(E)] 
i=l 

where {w.(E)} are the N-1 stability frequencies which are 
1 ' 

defined in terms of the stability parameters {v.(E)} by 
1 

w. (E) 
1 

v. (E) /T(E) 
1 

v. (E) 
1 

h<P' (E) 

(2.18) 

(2.19) 

(2.20) 
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An expansion like Eq. (2.14) is made for each of the N-1 

sine functions in Eq. (2.19), and the generalization of 

Eq. (2.15) is 

00 00 I 

p(E) _<P (E) Re. L L exp{in[<P(E) 
ATT 

where 

00 

L --
m=O 

00 

L 
m =0 

1 

2TT 

00 

L 
m =0 

2 

N-1 

L 
i=l 

m=O n=-oo 

(m. 
1. + ~)hwi(E)<P 1 

(E)]} 

00 

L 
m__ =0 

N-1 

2 

Use of the Poisson sum formula, Eq. (2.16), in the same manner 

then leads to the following quantum condition: 

N-1 
"" 1 ' <P(E) - L.., (m. + -

2
)hw. (E)<P (E) 

i=l 1. 1. 
2n(n + ~) 

4 

which determines E implicitly in terms of the N quantum numbers 

{m.}, i = 1,2, ... , N-1, and n. Eq. (2.18) is clearly the two-
1. 

dimensional version of Eq. (2.22). 

In concluding this Section it is interesting to consider 

a modification of Eq. (2.22) analogous to one that has been 

f d f 1 . 1. . 12· f . .1 1 . h oun use u 1.n an app 1.cat1.on o a s1.m1. ar ana ys1.s to t e 

semiclassical limit of quantum mechanical transition state 

13 
theory. One recognizes that the left hand side of Eq. (2.22) 

(2.21) 

(2.22) 
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looks like the first two terms of a Taylor series expansion 

<l>(E - E) ' = ¢(E) - E ¢ (E)+~ .. 

where one identifies 

N-1 l 
£ 2: (m. + z-)hw. (E) 

i=l 1 1 

Since£ is proportional to h, it is clear that to lowest order 

in h Eq. (2.22) is also equivalent t,o 

N-1 
<!>(E- L 1 

(m. + -
2

)hw. (E)) 
1 1 

A 
2rr(n + 4> 

i=l 

. -1 
If<!> [ •.. ] is the inverse function of <!>(E), then Eq. (2.23) 

can be written as 

E 
-1 A N-l 1 

<!> [2rr(n +t;)l+ .E. (mi +z-)hwi(E) 
i=l 

(2. 23) 

(2.24) 

which we refer to as the modified periodic orbit quantum condition. 

Eq. (2.24) is still not an explicit expression for the eigenvalues 

E , however, because the stability frequencies are 
n,ml ... mN-1 

functions of energy; it would thus be necessary to solve Eq. (2.24) 

iteratively. 

The modified quantum condition, Eq. (2.24), has a strikingly 

simple form. As has been discussed before,
13 

the stability frequencies 

{wi} are the dynamical generalization of normal mode frequencies; 

they are the normal mode frequencies for harmonic perturbations 



0 0 0 0 

-11-

about the periodic orbit. The total energy E, therefore, is a 

sum of contributions: The first term in Eq. (2.24) is the energy 

of n quanta in motion along the periodic orbit, and the ith term 

in the sum of N-1 terms is the energy of m. quanta in the ith 
1 

normal mode of deviation about the periodic orbit. 
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III. SEPARABLE LIMIT 

It is easy to show that the quantum condition obtained in 

Section II is correct in the separable limit if the separate 

potential functions are harmonic. For simplicity, consider 

the case of two degrees of freedom: The potential function 

is 

V(x,y) = 
2 

X + 
2 

y 

where ~ is the mass, and w1 and w2 are the two harmonic frequencies. 

The question of whether or not w1 and w2 are commensurable, i.e., 

whether or not w
1

;w2 is a rational number, does not enter in the 

treatment below. 

The relevant periodic trajectory is the one with all the energy 

E in the x-mode, say, and thus no energy -in the y-mode; it is clear 

that A, the number of turning points along the periodic trajectory, 

is then 2. It is easy to show that in this case the action integral 

¢(E) is 

¢(E) 2rrE 
hw

1 

It is also easy to show13 that the stability frequency w(E) is 

simply the frequency of they-mode; i.e., 

w(E) 

(3 .1) 

(3. 2) 

With Eqs. (3.1) and (3.2), and A= 2, the periodic orbit quantum 

condition, Eq. (2.18), gives 
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E (3. 3) 

I' 

\ 
the correct result. Since ¢(E) in Eq. (3.1) is a linear function 

of E, the modified quantum condition, Eq. (2.24), also leads to 

Eq. (3.3). It is also clear that one obtains the same result by 

considering the periodic trajectory with all the energy in the 

y-mode. 

Unfortunately, however, one can see that Eq. (2.18) will not 

give the correct eigenvalues for the separable case if the two 

one-dimensional potential functions are not harmonic. The modified 

quantum condition, Eq. (2.24), gives the correct result if only 

one of the potential functions in anharmonic and the periodic orbit 

is with all energy along this direction, but it also fails if both 

periodic functions are anharmonic. 
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IV. CONCLUDING REMARKS 

The analysis presented in Section II eliminates some of the 

most glaring deficiencies of the periodic orbit approach to semi-

classical quantization of non-separable systems. In particular, 

the new quantum condition characterizes the energy levels of an 

N-dimensional system by N quantum numbers, and it reduces to the 

correct result in the limit that the system is N independent 

harmonic oscillators. 

The new quantum condition, however, is not entirely satisfactory. 

The correct separable limit is not obtained if the potential functions 

for coordinates orthogonal to the periodic orbit are not harmonic. 

This shortcoming stems directly from the stationary phase approximation 

for evaluating the integral over coordinates in Eq. (2.4); in this 
•, 

approximation only small quadratic deviations about the periodic orbit 

are considered in computing the trace of the propagator, and thus 
. ' 

only a harmonic approximation is obtained for the modes describing 

displacements away from the periodic orbit. Because the stationary 

phase approximation is such a fundamental element of semiclassical 

mechanics, it is not clear how one can remedy this defect within 

the present formalism. 

In conclusion, it is interesting to note the resemblance of the 

. ,7 
present version of periodic orbit theory to Marcus recent work 

involving manifolds of quasi-periodic trajectories. A periodic orbit 

plus all harmonic deviations about it is clearly an approximate repre-

sentation of a quasi-periodic manifold; i.e., a slightly perturbed 

periodic trajectory, which is stable, will be quasi-periodic, its , 
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stability frequencies being the normal mode of oscillation about 

the periodic orbit. Because of the stationary phase approximation, 

however, periodic orbit theory is only able to include deviations 

about the periodic trajectory within a harmonic approximation, 

whereas Marcus' approach is not limited in this way. For the case 

of a separable or a near separable system, therefore, it seems 

clear that the present version of periodic orbit theory is an 

approximation to Marcus's quasi-periodic theory. Whether this is 

also true for strongly coupled systems is difficult to say 

since the nature, or even the existence, or periodic orbits and 

quasi-periodic manifolds is not well understood in such cases. 
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