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ABSTRACT OF THE DISSERTATION  

 
 

The Influence of Landscape Position on Soil Respiration and Urban Microclimate 
 
 

by 
 
 

Steven M Crum 
 

Doctor of Philosophy, Graduate Program in Ecology, Evolution & Organismal Biology 
University of California, Riverside, June 2017 

Dr. G. Darrel Jenerette, Chairperson 
 

 Linking variation in ecosystem functioning to landscape drivers has become an 

important research need for understanding ecosystem responses to global change. Due to 

extensive land use and land cover changes many regions have variable distributions of 

landscape drivers and ecosystem processes. Furthermore, changes in local- to regional-

scale climate may impact ecosystem variation and sensitivity to physiological drivers. 

This dissertation investigates how contrasting scale-dependent drivers of soil 

temperature, moisture and substrate levels influence soil respiration (Rs), a key ecosystem 

process, using in-situ landscape surveys and experimental subsidies of water and labile 

carbon. Furthermore, to improve understanding of scale-dependent sources of variation of 

urban microclimate this dissertation investigates how land cover and vegetation 

influences local distributions of air temperature (Ta), land surface temperature (LST), and 

relative humidity (RH), using intensive and widely distributed networks of microclimate 

sensors. Finally, vital in estimates of urban warming, this dissertation examines the 

relationships between Ta and LST among common urban land covers.  
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 I found Rs in intensively managed urban land uses has increased rates, decreased 

spatial variation, and decreased sensitivity to environmental conditions. Furthermore, 

among common urban land uses spatial variation in Rs was positively correlated with soil 

temperature, and negatively correlated with soil moisture and substrate. Landscape 

position, or land use and climate distributions, influenced Rs by altering both levels and 

Rs sensitivity of physiological drivers. Next, in my first microclimate study I found 

negative Ta and positive RH correlations with vegetation intensity. Vegetation cooling 

effects were greater in more arid climates and in the evening hours. Furthermore, 

increasing city-scale mean Ta was associated with higher spatial variation of Ta in coastal 

cities, and lower variation in more arid cities. In my final study I observed vertical 

height-dependent Ta-LST relationships associated with land cover composition. 

Furthermore, I observed decreased nighttime Ta-LST differences among land covers. 

These findings can help city planners identify potential heat risk reductions strategies 

associated with urban vegetation and land cover composition. Together, these systematic 

evaluations of landscape effects on Rs and microclimate provide a framework of 

understanding the effects of interactive global change drivers on urban ecosystem 

processes.    
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Introduction 

 

 Metropolitan regions contain a mosaic of distinct land uses, and consequently 

have highly variable ecosystem functioning and structure (Kaye et al. 2005, Jenerette et 

al. 2006). Patterns in land use, land cover, and vegetation are directly linked to 

microenvironmental conditions and biogeochemical cycles (Kaye et al. 2005, Brazel et al. 

2007, Tayyebi and Jenerette 2016). Additionally, changes in meso- and regional-scale 

climate can lead to large differences in ecosystem functioning and structure (Groffman et 

al. 2009). Identifying the different and interactive effects of landscape position, which 

includes land use and climate distributions, on urban ecosystems has become a pressing 

need for understanding responses to multiple global change drivers. In addressing these 

challenges, a multiple scale perspective is necessary. At fine scales, ecosystem 

functioning is regulated by organismal responses to microenvironmental conditions 

including temperature, moisture, and substrate levels (Xu and Qi 2001, Davidson et al. 

2012). While at regional scales variation in land cover and mesoclimate may regulate 

ecosystem processes (Kaye et al. 2005, Chatterjee and Jenerette 2011, Zhang et al. 2012). 

Bridging fine- and regional-scale drivers of ecosystem functioning are needed to improve 

understanding of ecosystem responses to rapidly changing environmental conditions 

(Jenerette et al. 2006, Zhang et al. 2012). The objective of this dissertation is to explore 

the effects of interactive global change drivers on urban ecosystem processes of soil 

respiration (Rs) and vegetation cooling of urban microclimate.   
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 Rs is an important process describing ecosystem functioning and is a critical 

component of the carbon cycle within ecosystems and globally (Canadell et al. 2000). Rs 

is an integrative variable of ecosystem metabolism, representing interactions between 

plant and microbial dynamics (Ryan and Law 2005). From an ecosystem or physiological 

scale, Rs is primarily regulated by soil temperature, moisture, and substrate levels. 

Temperature is a fundamental ecosystem property driving chemical, physical and 

biological processes (Davidson et al. 2006). However, Rs temperature sensitivity depends 

on enzymatic processes that are also regulated by soil moisture and substrate availability. 

At low levels, soil moisture regulates Rs directly by limiting biological activity or 

indirectly by limiting diffusion of substrates, while high soil moisture levels constrain Rs 

by limiting soil oxygen diffusion (Xu and Qi 2001, Davidson et al. 2012, Oikawa et al. 

2014). Regional-scale patterns in land use and climate may also have direct influences on 

soil temperature, moisture, and substrate levels (Raich and Schlesinger 1992, Zhou et al. 

2009). Rs in urban and agricultural systems is often decoupled with seasonal precipitation 

patterns and instead respond more to warming (Kaye et al. 2005). In contrast, arid and 

semi-arid wildland ecosystems experience Rs pulses several orders of magnitude higher 

than baseline levels following precipitation (Jarvis et al. 2007, Sponseller 2007). While 

much effort has been directed towards understanding physiological regulation of Rs (e.g. 

Davidson et al. 2006, Oikawa et al. 2014), landscape heterogeneity in Rs dynamics is 

noted as a major uncertainty (Koerner and Klopatek 2009, Riveros-Iregui et al. 2012, 

Zhang et al. 2012, Du et al. 2015).  
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 Landscape heterogeneity in urban land cover and vegetation distributions is also 

directly linked to patterns in air temperature (Ta), land surface temperature (LST), and 

relative humidity (RH, Brazel et al. 2007, Jenerette et al. 2016, Hall et al. 2016). Since 

the mid-20th century, large cities in the United States are warming twice as fast as 

surrounding rural areas (Stone et al. 2012), especially in the southwestern United States 

(Brazel et al. 2000). Urban warming is created by increasing impervious surfaces and 

decreasing vegetation cover, which warms temperatures in the urban core (Oke 1973, 

Santamouris 2015). Regionally, the magnitude of vegetation cooling is influenced by 

patterns in climate, where, particularly in dryland regions, urbanization may increase 

vegetation intensity compared to rural and wildland areas. However, locally the 

distribution of urban vegetation and built surfaces may magnify temperature inequities 

within a city, resulting in unequal vegetation cooling benefits and health consequences 

for residents (Jenerette et al. 2016). Potentially offsetting cooling benefits, increases in 

RH associated with highly-vegetated residential areas of arid and semi-arid regions may 

increase human-perceived temperatures (Steadman 1979, Hall et al. 2016). Vegetation 

moderation of microclimate may also depend on mesoclimate and meteorological 

conditions (Zhao et al. 2014).  Mesoclimates, or city-scale climates, with relatively high 

mean daily temperatures may enhance vegetation cooling by increasing the effects of 

shading and potential transpiration rates (Jenerette et al. 2016, Tayyebi and Jenerette 

2016, Ramamurthy and Bou-Zeid 2017). The negative feedback of vegetation cooling 

may result in greater Ta spatial variation in cities with warmer climates. Countering mean 

temperature effects within cities, wind and precipitation may reduce the negative 
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feedback of vegetation cooling due to increases in air convection and reductions in 

surface heating (Imhoff 2010, Zhao et al. 2014, Chow et al. 2014). Characterizing how 

vegetated and built land covers influence microclimate—including Ta, LST, and RH—

and their interrelationships is an important research challenge for reducing and predicting 

the impacts of urban warming. 

 To improve understanding of scale-dependent sources of variation and sensitivity 

of Rs, in chapter 1 I evaluate the roles of soil temperature, moisture, and substrate levels 

in three land use types and at three climate positions along the coastal to desert gradient 

in southern California, USA. I find, from a combination of surveys and manipulative 

experiments, that interactive physiological, landscape, and seasonal factors are drivers of 

Rs. Furthermore, at the interface between landscape and physiological regulation of Rs, I 

find regional-scale coordination between physiological drivers and meter-scale spatial 

variability in Rs. This evaluation of physiological and landscape level effects on Rs 

expands understanding of the impacts of interactive global change drivers on urban 

ecosystem processes.     

To improve understanding of the sources of variation in urban microclimate, for 

chapter 2 I evaluated the roles of vegetation, mesoclimate, and meteorology on 

spatiotemporal patterns of summertime Ta and RH. I found, using a widely distributed 

observational network of Ta and RH sensors across a coastal to desert climate gradient, 

increasing local-scale cooling effects positively correlated with levels of vegetation 

intensity. Furthermore, I observed increased spatial variation with increasing mean city-

wide temperature in coastal cities, however, there was a gradient toward decreased 
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variation with increased mean temperature across the gradient, likely the result of 

patterns in wind velocity. Expanding upon this question, for chapter 3 I evaluated the 

importance of land cover in shaping microscale spatial distributions of Ta, LST, and RH 

and their interactions. Through the use of thermal imagery and micrometeorological 

measures I find land cover specific Ta-LST relationships that may help improve estimates 

of urban Ta using LST, important in predicting atmospheric urban warming effects using 

remote sensing techniques that capture land surface warming. Understanding the scale-

dependent drivers of microclimate across urban landscapes could help city planners better 

identify land cover and vegetation impacts on urban cooling and heat vulnerabilities.  
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Chapter 1: Landscape position influences soil respiration variability and sensitivity 

to physiological drivers in mixed-use lands of southern California, USA 

 

Abstract 

 

 

 Linking variation in ecosystem functioning to physiological and landscape drivers 

has become an important research need for understanding ecosystem responses to global 

changes. I investigate how these contrasting scale dependent ecosystem drivers influence 

soil respiration (Rs), a key ecosystem process, using in-situ landscape surveys and 

experimental subsidies of water and labile carbon. Surveys and experiments were 

conducted in summer and winter seasons and were distributed along a coastal to desert 

climate gradient and among the dominant land use classes in southern California, USA.  I 

found Rs decreased from lawn to agricultural and wildland land uses for both seasons and 

along the climate gradient in the summer while increasing along the climate gradient in 

the winter. Rs variation was positively correlated with soil temperature, and negatively to 

soil moisture and substrate. Water additions increased Rs in wildland land uses, while 

urban land uses responded little or negatively. However, most land uses exhibited carbon 

limitation, with wildlands experiencing largest responses to labile carbon additions. 

These findings show intensively managed land uses have increased rates, decreased 

spatial variation, and decreased sensitivity to environmental conditions in Rs compared to 

wild lands while increasing aridity has the opposite effect. In linking scales, physiological 

drivers were correlated with Rs but landscape position influenced Rs by altering both the 

physiological drivers and the sensitivity to the drivers. Systematic evaluation of 
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physiological and landscape variation provides a framework for understanding the effects 

of interactive global change drivers to ecosystem metabolism across multiple scales. 

 

Introduction 

 

 Because of extensive land use changes, many regions include a mosaic of urban, 

agriculture and wild land uses, and consequently have highly variable rates of ecosystem 

functioning and structure (Kaye et al. 2005, Jenerette et al. 2006). Similarly, increases in 

aridity, both within and among regions, can also lead to large differences in ecosystem 

functioning and structure (Groffman et al. 2009). Identifying the different and interactive 

effects of land use and climate on ecosystems has become a pressing need for 

understanding ecosystem responses to multiple global change drivers. In addressing this 

challenge, a multiple scale perspective is necessary. At fine scales, ecosystem functioning 

is regulated by plant and soil physiological responses to local environmental conditions 

including moisture, temperature, and substrate availability (Vargas et al. 2011, Davidson 

et al. 2012). While at regional scales, variation in land use and climate may regulate rates 

of ecosystem functioning (Kaye et al. 2005, Chatterjee and Jenerette 2011, Zhang et al. 

2012). Reconciling and linking the variation in ecosystem functioning due to 

physiological and landscape level drivers has become a valuable research approach 

(Riveros-Iregui et al. 2012). Bridging fine and regional-scale drivers of ecosystem 

functioning are needed to improve understanding of ecosystem dynamics and prediction 
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of ecosystem responses to rapidly changing environmental conditions (Jenerette et al. 

2006, Zhang et al. 2012).   

   Soil respiration (Rs), commonly measured as CO2 efflux, is an important process 

describing ecosystem functioning and is a critical component of the carbon (C) cycle 

within ecosystems and globally (Canadell et al. 2000). Rs is an integrative variable of 

ecosystem metabolism, representing interactions between plant and microbial dynamics 

and sensitivities to above and belowground biophysical conditions, and varies both within 

and among ecosystems by several orders of magnitude (Ryan and Law 2005, Vargas et 

al. 2011). While much effort has been directed towards understanding physiological 

regulation of Rs (Davidson et al. 2006), landscape heterogeneity is noted as a major 

uncertainty for this flux (Koerner and Klopatek 2009, Riveros-Iregui et al. 2012, Zhang et 

al. 2012, Du et al. 2015). Spatial variation in soil biogeochemical processes are 

frequently explained using "hotspot" theory, where spatial variation in ecosystem 

processes are dominated by patches of high reaction rates (McClain et al. 2003, 

Chatterjee and Jenerette 2011, Kuzyakov and Blagodatskya 2015). These patches vary in 

size from field-scale microsites to regional-scale land use types. Along with hot spots, hot 

moments are periods of time that have relatively higher biogeochemical reaction rates 

(McClain et al. 2003). Similar to hot spots, hot moments influence temporal variability, 

as well as temporally dependent spatial variability, highlighting the importance for 

seasonal assessments of biogeochemical processes (Jenerette and Chatterjee 2012). An 

understanding of the terrestrial C cycle that can better account for these non-linear 
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ecosystem dynamics requires measures of how soil physiological drivers, landscape 

position, and season shape patterns in Rs.    

  From a soil physiological hypothesis, which encompasses responses in both 

heterotrophic and autotrophic communities, Rs is primarily regulated by soil temperature, 

soil moisture, and substrate availability (Table 1.1). One attempt to describe the 

interactions among these individual hypotheses has been the Dual Arrhenius Michaelis 

Menten (DAMM) model (Davidson et al. 2012, Oikawa et al. 2014). Temperature is a 

fundamental ecosystem property driving chemical, physical and biological processes 

(Davidson et al. 2006). However, Rs temperature sensitivity depends on enzymatic 

processes that are also regulated by soil volumetric water content (VWC) and substrate 

availability. Soil moisture regulates Rs at low VWC directly by limiting microbial and 

root activity or indirectly by limiting diffusion of substrates, while high VWC limits soil 

oxygen concentration thereby constraining Rs. Peak rates of Rs levels typically occur at 

intermediate VWC (Skopp et al. 1990, Xu and Qi 2001, Austin et al. 2004, Davidson et 

al. 2012, Oikawa et al. 2014). The relationships of Rs with substrate availability have 

been described with models using Michaelis-Menten enzyme kinetics that express Rs as a 

saturating function of substrate concentration (Davidson et al. 2006, Oikawa et al. 2014, 

Eberwein et al. 2015). The biogeochemical explanations of these physiological drivers 

predict that sites with higher soil temperature and substrate availability and intermediate 

soil moisture levels, will have higher rates of Rs (Xu and Qi 2001, Larionova et al. 2007, 

Davidson et al. 2012). However, substrate diffusion covaries with temperature and VWC 

to create a dynamic environment where each driver can cancel or work synergistically 
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with the effects of other drivers (Davidson et al. 1998). Furthermore, while the activation 

energy of enzymatic reactions is always positive, at low VWC temperature becomes 

virtually irrelevant in predicting fluxes (Davidson et al. 2012). These effects have 

consequences on biogeochemical hotspots. At the local ecosystem scale, increasing 

availability of soil moisture and substrate may lead to reduced importance of hotspots 

while increasing temperature positively influence hotspot distributions (Jenerette et al. 

2006, Chatterjee and Jenerette 2011).  These relationships are further complicated by 

higher level controls such as climate and land use.  

   Landscape position, which includes climate and land use distributions (Zhang et 

al. 2012, Lewis et al. 2014), also influences Rs variation (Table 1.1). Landscape 

regulation of Rs, which includes a mixture of climate and land use processes, occurs 

through a direct influence to the physiological drivers of Rs and may also have indirect 

effects by influencing the sensitivity of Rs to the physiological drivers (Jenerette and 

Chatterjee 2012). Regional scale climate patterns have direct influence on soil 

temperature and moisture conditions and are further associated with variation in soil 

organic matter (SOM) distributions (Raich and Schlesinger 1992, Zhou et al. 2009). Land 

use, and urbanization in particular, also has a major influence on Rs and soil C pools 

(Kaye et al. 2005, Pouyat and Carreiro 2006, Jenerette et al. 2006). Land cover and land 

use can influence physiological drivers through processes such as irrigation, resource 

amendments, and modification of local temperatures (Kaye et al. 2005, Hall et al. 2011, 

Jenerette et al. 2012). Additionally, long-term variation in soil environmental conditions 

associated with landscape patterns can alter sensitivities to environmental drivers, 



 14

through temperature acclimation (Luo et al. 2001), altered wetting sensitivity (Jarvis et al. 

2007, Jenerette and Chatterjee 2012), or altered carbon use efficiency (Manzoni et al. 

2012, Eberwein et al. 2015).  

 The interactions between land use and physiological regulation may further vary 

in response to changes in climate. Aridity may increase differences in soil temperature, 

VWC, and SOM between managed and wildland land uses (Table 1.1). As a 

consequence, in arid climates extensive irrigation may increase rates of Rs while in more 

mesic climates irrigation may reduce rates of Rs in urban sites compared to associated 

non-urban sites (Raich and Potter 1995, Chen et al. 2013, Lewis et al. 2014). Seasonal 

differences may further influence how variation in land use and climate affect Rs. Rs in 

urban and agricultural ecosystems is often decoupled with seasonal precipitation patterns 

and instead respond more to warming of the soil environment (Kaye et al. 2005). In 

contrast, arid and semi-arid wildland ecosystems experience Rs several orders of 

magnitude higher than baseline following precipitation (Jarvis et al. 2007, Sponseller 

2007).  Counteracting the reduced precipitation sensitivities in urban and agricultural 

systems, resource amendments, including top soil and fertilizers, may increase both 

recalcitrant and labile carbon availability (Jenerette et al. 2006, Lewis et al. 2014), which 

generally increases Rs in response to water amendments (Kaye et al. 2005, Hall et al. 

2011). However, agricultural and urban land uses may decrease summer soil 

temperatures in arid systems (Kaye et al. 2004), which can then decrease Rs under 

optimal moisture and substrate conditions (Davidson et al. 2012).      
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  While extensive work has been directed to evaluating the influence of 

physiological factors and landscape factors independently on ecosystem functioning, 

linking these two sources of ecosystem variation operating at greatly different scales 

remains an important need. To improve understanding of scale-dependent sources of 

variation and dynamics of Rs, I asked: what regulates the sensitivity of Rs among 

different land uses throughout the coastal to desert climate gradient of southern 

California, USA? In answering this question I evaluated the roles of soil temperature, 

moisture, and substrate availability in three land use types, lawn, agriculture, and 

wildland, and at three climate positions along the coastal to desert gradient (Figure 1.1). 

Climate position encompasses direct changes in soil temperature and moisture and has 

corresponding indirect effects to substrate availability and plant community composition. 

My study did not specifically evaluate any one climate factor on Rs, instead I evaluated 

overall climate gradient effects on physiological drivers and their sensitivities to Rs.  The 

effects of physiological and landscape drivers on Rs were assessed using both landscape 

surveys and experimental additions of water and C substrates. At the physiological scale, 

the DAMM model framework predicts wetter, warmer, and higher substrate availabilities 

will have interactive nonlinear influences on Rs. At the landscape scale, the land use 

hypothesis predicts greater fluxes and lower variability in lawn and agricultural land uses 

where irrigation provides a consistent water source. Similarly, the climate hypothesis 

predicts greater fluxes with more water availability at coastal regions and higher 

variability in the hot and dry desert regions. Across scales, the landscape and 

physiological hypotheses suggests that landscape position influences the magnitude of the 
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physiological driver and the sensitivity of Rs to these drivers. Thus, while the 

physiological drivers remain important within all sites, I expect landscape regulation of 

the drivers and sensitivities to have a predominant influence on the magnitude of Rs 

fluxes and their heterogeneity throughout the region.  

 

Methods 

 

Study Sites  

  The study region is situated in the Los Angeles megacity of 18 million residents 

within southern California, USA. The area is characterized by a Mediterranean climate 

with hot-dry summers and cool-wet winters. A network of nine observational and 

experimental sites was established consisting of the three most common land use types in 

the greater Los Angeles area: lawn, agriculture, and wildland. These nine sites were 

distributed across an approximately 150 km transect from coastal Irvine to desert Palm 

Desert that encompassed a mild coastal to hot desert climate gradient (Figure 1.1). Given 

the large spatial extent of the study and extensive number of measurements full 

replication of this transect was not performed. Furthermore, unlike the lawn and 

agricultural sites, the wildland sites have dissimilar plant communities. Wildland sites in 

the coastal and inland sub-regions are characterized by coastal sage scrub communities 

dominated by Eriogonum fasciculatm, while the desert site is characterized as a desert 

scrub community dominated by Larrea tridentata (Table 1.2).  Mean annual precipitation 

(MAP) varies between 300 mm at the coast and 103 mm in the desert; mean annual 
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temperature (MAT) varies between 17.0 °C at the coastal wildland site and 23.9 °C in the 

desert [http://cimis.water.ca.gov/WSNReportCriteria.aspx Accessed Jul/10/2015]. The 

climate gradient is more pronounced in summer when average maximum temperatures in 

August at the coastal wildland site are 28.4 °C, and 41.2 °C in the desert.  

   The 2012 to 2013 study period was unusually dry for southern California. 

Precipitation for the 2011 to 2012 hydrological year at the coastal wildland site was 184 

mm, and 99 mm in the desert. For the 2012 to 2013 hydrological year precipitation at the 

coastal wildland site was 150 mm, and 45 mm in the desert. Air temperature remained 

within normal ranges. MAT at the coastal wildland site was 16.3 °C and 17.5 °C, and in 

the desert 23.5 °C and 22.9 °C for 2012 and 2013, respectively. 

 

Landscape Surveys 

 To quantify fine-scale ecosystem variation within each site Rs, VWC, 

temperature, and SOM were measured at 2 m intervals replicated along three 50 m linear 

transects for a summer and winter sampling period (Figure 1.1). This sample size is 

consistent with previous work that found a sample size between 7 and 27 was needed to 

estimate the mean Rs within 20% and 10% accuracy, respectively, at a ponderosa pine 

plantation (Xu and Qi 2001). Each transect was a spatially independent replicate, 

separated by greater than 50 m. Sampling did not occur within 48 hours of rainfall, this 

precaution was important during the winter since most precipitation falls between the 

months of November through April. All measurements at each site were completed 

within 2.5 h and were collected between 11:00 to 16:00 local time. Consistent temporal 
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sampling is important because Rs measurements can change considerably throughout the 

day (Xu and Qi 2001). 

 Rs was measured using a 10 cm diameter surface sampling chamber attached to a 

CO2 sensor (LI-8100, Li-Cor Biosciences, Lincoln, Nebraska, USA). Each sample was 

measured by calculating the slope of CO2 accumulation in the chamber measured at 1 hz 

with an infra-red gas analyzer over an interval of one minute and a between measurement 

purge time of 45 s. The survey measurements include both autotrophic and heterotrophic 

components, and similar to many previous surveys I was not able to partition these 

different sources of Rs.  Soil temperature and VWC were measured at 5 cm depth for 

each sample using hand-held probes (51II Thermometer, Fluke Corporation, Everett, 

Washington, USA and CS-620, Campbell Scientific, Logan, Utah, USA, respectively). 

Soil samples were collected at 5 cm depth and SOM content was measured by mass loss 

on ignition at 550 °C for 4 h in a muffle furnace.  

  Spatial heterogeneity of Rs was quantified with two measures of spatial 

variability. First, the mean of Rs was used to evaluate land use and climate differences in 

Rs among sites at regional scales. Second, the coefficient of variation (CV) was used as a 

measure of variation within patches, land uses and climates. The CV is a dimensionless 

quantity of variation standardized by the sample mean and commonly expressed as a 

whole-number percent.  

   Regression analysis was used to examine how variation in Rs is influenced by 

hypothesized physiological drivers of soil temperature, moisture, and organic matter. 

Relationships between spatial variability in Rs, measured by CV, and each physiological 
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driver were used to examine how spatial variability is functionally related to the 

hypothesized drivers. For both mean and CV in Rs I used the jackknife method to assess 

the significance of the relationships (Efron and Stein 1981). This method evaluates 

statistical significance by repeatedly selecting a subset of n-1 samples from the data. Rs 

data were log-transformed to meet homogeneity of variance requirements before analysis 

using a fixed-effect model ANOVA. Comparisons between unlike land uses among sub-

regions were not included the post-hoc analysis. Alternatively, Tukey post-hoc 

comparisons within individual sub-regions and among land uses, and within individual 

land uses and across the climate gradient were included in the text for relevant 

comparisons.   

 

 Landscape Experiments 

  While my survey looks for correlations between land use and physiological 

variables, they do not provide direct evidence of causation. One goal of the growing field 

of experimental landscape ecology is to identify process variation within landscapes 

using networks of widely distributed experiments (Jenerette and Shen, 2012).  Following 

such approaches, I also measured Rs following experimentally manipulated soil moisture 

and substrate levels by means of water additions and dextrose plus water additions, 

respectively. At each sub-region, sites were located on lawn, agriculture, and wildland 

land uses, for a total of nine locations throughout the study region. Rs measurements were 

performed using the same chamber based Rs system used for soil surveys. Soil 

temperature and VWC were measured adjacent to every Rs measurement at 5cm depth 
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using hand-held probes. Soil samples were collected at each experiment for analysis of 

SOM. At each site, fifteen 10 cm diameter polyvinyl chloride (PVC) collars, in five 

groups of three, were inserted in the soil to a depth of 5 cm, exposing the additional 5 cm 

aboveground. The groups of collars were installed at random locations in the lawn sites, 

and at random locations under the dominant plant species in the agriculture and wildland 

sites (see Table 1.2 for dominant plant species). The collars were inserted into the soil at 

least two weeks before measurements for conditioning. Vegetation within the collars was 

removed to exclude above ground autotrophic respiration.  Approximately one hour 

before measurements, at five locations per site, 20 mL of deionized water was added to 

the water treatment collars, and 20 mL of a 60 g/L solution of dextrose and deionized 

water was added to the substrate treatment collars. All measurements were acquired 

between 11:00 and 15:00 local time. The experimental amendments allow more clear 

evaluation of heterotrophic responses independent of autotrophic emissions at the time 

scale investigated.  These measurements were timed to quantify the maximum pulse 

response as assessed in previous arid environment pulse studies (Rey et al. 2005, 

Jenerette and Chatterjee 2012, Oikawa et al. 2014). Each site had two measurement dates, 

one in the summer, between July to September 2013, and one in the winter between 

November to December 2012. While this excludes many temporal aspects of Rs pulse 

dynamics, my goal was to evaluate potential differences between contrasting seasons. For 

standardization, experiments were performed at least 48 h after measurable precipitation.  

  For testing the effects of water and dextrose on Rs, I performed a two-way 

analysis of variance (ANOVA). The data were analyzed using a response ratio, calculated 
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as the treatment divided by the control (water / control and [dextrose + water] / water) 

commonly used in meta-analyses that evaluate multiple experiments (Elser et al. 2007). 

The control for the water treatment was no treatment and the control for the dextrose plus 

water treatment was the water treatment. This isolates the effects of dextrose outside the 

influence of the water addition. The response data were displayed using a log scale to 

represent the pulse effect as pulse magnitudes varied by several orders of magnitude. A 

log response ratio of zero indicates no treatment effect, and significance was evaluated 

using Student's t-test. 

 

Results 

 

Surveys: Physiological Drivers  

  Climate, land use, season, and their interactions had significant correlations with 

soil temperature, VWC, and SOM (p < 0.001, three-way ANOVA, Table 1.3). Season 

had the strongest effects on temperature, followed by land use and climate (F2,1323  =  

13265.66, F1,1323  =  1058.71, and F2,1323  =  173.08, respectively). Land use had the 

strongest effects on VWC, followed by season and climate (F2,1323  =  1044.92, F1,1323  =  

355.47, and F2,1323  =  71.41, respectively, Figure 1.2). Land use was correlated with SOM 

more strongly than climate (F1,1323  =  164.18 and F2,1323  =  94.34, respectively). 

Likewise, for both seasons, soil VWC was positively related to SOM. VWC was 

negatively correlated with temperature (R2 = 0.18; p < 0.0001), and positively correlated 
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with SOM (R2 = 0.13; p < 0.0001). SOM and temperature showed little correlation (R2 = 

0.02; p < 0.0001).  

  During the summer, soil temperatures increased from lawn to agricultural to 

wildland land uses in the coastal sub-region, while in the inland and desert sub-regions 

temperature increased from agricultural to lawn to wildland land uses (Table 1.2). For 

both lawn and agricultural land uses soil temperatures were the highest in the desert sub-

region, while the inland sub-region had higher wildland temperatures (Table 1.2). During 

the winter, in all climates soil temperatures increased from lawn to agriculture to 

wildland land uses (Table 2). For both seasons, VWC increased from wildland to 

agriculture to lawn land uses. VWC decreased from coastal to desert during the winter for 

all land uses, but had no clear climate pattern during the summer (Table 1.2). SOM 

decreased from coastal to desert sub-regions in the wildlands, but had no clear climate 

pattern for the other land uses (Table 1.2).  

 

Surveys: Soil Rs Sensitivity to Physiological Drivers 

 Across the study region, soil temperature was negatively correlated with Rs for 

both summer (R2 = 0.34; p < 0.0001) and winter (R2 = 0.13; p < 0.0001) measurement 

dates, with the summer exhibiting a higher magnitude and range of both Rs and 

temperature (Figure 1.3a). Generally, Soil VWC was positively related to Rs for both 

summer (R2 = 0.30; p < 0.001) and winter (R2 = 0.20; p < 0.001). Percent SOM was 

positively correlated with Rs for both summer and winter (Figure 1.3b; R2 = 0.14, p < 
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0.001, and R2 = 0.28; p < 0.001). Correlations were reported as log(Rs) to accommodate 

the wide range of flux rates.   

 The relative levels of soil physiological drivers were correlated with spatial 

variation of Rs (p < 0.02). The mean CV in Rs for each transect (Figure 1.4a) was 

positively linearly related to soil temperature for both seasons (R2 = 0.48 and R2 = 0.46, 

respectively). The CV in Rs (Figure 1.4b) was non-linearly negatively related to percent 

VWC for both seasons (R2 = 0.21 and R2 = 0.56, respectively). Percent SOM for both 

seasons (Figure 1.4c) was non-linearly negatively related to the CV in Rs (R2 = 0.48 and 

R2 = 0.53, respectively).  

 

Surveys: Soil Rs Sensitivity to Landscape Influences 

 Climate, land use, season, and their interactions had significant correlations with 

Rs (Table 1.3; p < 0.05; three-way ANOVA); and was marginally significant for the 

interactive effects of all four factors and Rs (p = 0.051). Land use had the strongest effects 

on Rs, followed by season and climate (F2,1323  =  466.56, F1,1323  =  267.37, and F2,1323  =  

3.20, respectively). Within each sub-region in the summer there was a decreasing Rs from 

lawn to agriculture and wildland land use types (Figure 1.5a; p < 0.001), with 14.26 µmol 

m-2 s-1 or 53 times higher fluxes in lawn compared to wildland land uses when averaged 

over the region (Figure 1.5c). During the winter the differences were less pronounced 

with lower Rs in the agriculture than the lawn land use type (Figure 1.5a and c; p < 

0.001). Additionally, wildland land use types showed a clear downward trend in Rs from 

coastal to inland to desert sub-regions (Figure 1.5a; p < 0.001). Rs decreased from 
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summer to winter for all sub-regions (Figure 1.5b; p < 0.001). For land use effects, 

wildland sites had fluxes 12 times higher in the winter than the summer, contrasting that 

of lawn and agricultural land uses that had decreased fluxes from summer to winter 

(Figure 1.5c; p < 0.001).  

 Both landscape factors and seasonality had effects on the spatial variation of Rs (p 

< 0.001; three-way ANOVA), measured as the CV; land use had the strongest effects on 

variation, followed by season and climate when assessed using the jackknife method 

(F2,1323  =  812.03, F1,1323  =  503.30, and F2,1323  =  15.08, respectively). The coastal sub-

region in summer had decreasing variation in Rs from lawn to agricultural to wildland 

land use types, while in inland and desert sub-regions the opposite trend was observed 

(Figure 1.6a; p < 0.001). The coastal and inland sub-regions in the winter had decreasing 

variation in Rs from agricultural to wildland to lawn land use types, while the desert sub-

region had a similar trend to summer variation (Figure 1.6a; p < 0.001). Sub-region and 

land use variation in Rs decreased from summer to winter, except for the desert sub-

region and two out of three agricultural sites (Figure 1.6b and c; p < 0.001). Overall 

during the summer, variation decreased from coastal to inland and desert sub-regions, 

with 115% more spatial variation in the coastal than the desert sub-region (Figure 1.6b). 

The opposite trend was observed in the winter sampling period with increasing variation 

from coastal to inland and desert sub-regions, with 144% more spatial variation in the 

desert than the coastal sub-region (Figure 1.6b). Variation in each land use was highest in 

the summer sampling period, with increasing variation from lawn to agricultural and 

wildland land use types, with 128% more spatial variation in the wildland than the lawn 
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land uses (Figure 1.6c). In the winter the most variation was found in agricultural land 

use types, with 229% more spatial variation than the lawn (Figure 1.6c). Variation in Rs 

did not correlate with variation in soil temperature, VWC, and SOM for both summer and 

winter samples (p > 0.05; regression analysis).  

  

Landscape Experiments  

 Both water and substrate additions induced changes to Rs, although the response 

magnitude and direction were affected by landscape position and seasonality. For water 

and substrate treatments, summer land use had the strongest effects (Table 1.4; F2,35 = 

23.61, F2,35 = 20.53, respectively; p < 0.001). For substrate treatments, summer 

interactive effects did not influence Rs (Table 1.4). All wildland sites positively 

responded to water additions in the summer, with 21.0 to 33.4 times higher flux than no 

treatment (Figure 1.7a and b); there were reduced positive water response for the winter 

(Figure 1.7a and b). Wildland land use types responded more to water additions than to 

substrate additions in summer, with marginally significant substrate responses over water 

(p < 0.1), while winter substrate response ranged from 2.0 to 3.0 times higher flux than 

water alone (Figure 1.7b). In summer, the coastal and inland lawn and desert agricultural 

land use patches had negative responses to water additions (p < 0.05), with 27 and 53% 

decreased fluxes than controls, respectively (Figure 1.7b). The inland agriculture and 

desert lawn responded to dextrose additions in summer (p < 0.05), all other managed sites 

except desert agriculture were marginally significant (Figure 1.7b). Furthermore, 

response ratios across sites were negatively non-linearly related to antecedent VWC for 
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both summer and winter (Figure 1.8, R2 = 0.74, p < 0.01, R2 = 0.74, p < 0.01, 

respectively).      

 

Discussion 

 

 My findings, from a combination of observational surveys and manipulative 

experiments, show interactive physiological, landscape, and seasonal factors are 

important drivers of Rs, an ecosystem process central to terrestrial C cycling and 

metabolism. At regional scales, landscape position has important contributions to Rs 

rates, their physiological drivers, local variability, and sensitivities to environmental 

changes. Landscape position, reflecting a combination of land use and climate influences, 

lead to differences in both the direction and magnitude of responses to physiological 

drivers, with contrasting inhibition and pulsed Rs responses to water additions and 

varying responses to substrate addition. At the interface between landscape and 

physiological regulation of Rs, I found regional-scale coordination between physiological 

drivers and variability in Rs — higher temperatures, lower moisture, and lower organic 

matter all increased local variability. Together, these findings improve understanding of 

how interactions between landscape and physiological levels regulate ecosystem 

functioning — at regional scales climate, land use, and season alter biophysical drivers of 

Rs and sensitivities to these drivers. Furthermore, regional variability was consistent with 

an urban homogenization hypothesis (Groffman et al. 2014), as lawns had considerably 

less Rs variation than wildland land uses across all climates. Surprisingly, variation in soil 



 27

temperature, VWC, and SOM did not correlate with variation in Rs. Instead, I attribute 

these differences to biogeochemical hot spots. Sites with higher fluxes and lower pulse 

responses had lower spatial variation in Rs, consistent with the hypothesis that urban sites 

are less sensitive to changes in soil conditions. With increasing efforts directed to 

modeling ecosystem functioning and C fluxes in mixed land use regions that include 

urbanization (Churkina 2008, Zhang et al. 2012, Zhang et al. 2013), incorporating both 

the changes in physiological drivers and ecosystem sensitivities will become increasingly 

valuable. 

 

 Soil Physiological Drivers of Regional Rs 

 Using the DAMM model framework (Davidson et al. 2012) to evaluate 

hypotheses of soil physiological regulation of soil respiration, I observed interactive 

effects of soil temperature, moisture and substrate influences that are broadly consistent 

with physiological predictions of the interaction between drivers. While at the global 

scale soil temperature is the best predictor and positively correlated with Rs (Raich and 

Schlesinger 1992, Raich and Potter 1995), I found soil temperature to be negatively 

correlated with Rs. I interpret this finding as the confounding effect of soil moisture 

(Davidson et al. 1998), which was negatively correlated with temperature. This negative 

relationship was primarily influenced by wildland sites which were strongly limited by 

VWC. In contrast, irrigated sites were generally not limited by VWC and notably Rs 

increased in the summer in six of the nine sites, indicating positive temperature 

responses. The negative temperature – Rs relationships do not imply a negative activation 
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energy but rather that the activation energy becomes irrelevant at low VWC (Davidson et 

al. 2006) and the inhibition of Rs by low VWC was much stronger than the direct 

temperature effects.  These interactions are consistent with Rs patterns in other arid and 

semiarid ecosystems and predictions from the DAMM model (Rey et al. 2002, Janssens 

and Pilegaard 2003, Davidson et al. 2006, Oikawa et al. 2014).  

 The confounding interactions of soil temperature, moisture, and substrate 

highlight the location and season specific importance of physiological regulation. All 

wildland locations were sensitive to experimental wetting in summer with strong pulse 

responses, consistent with findings in other unmanaged dryland ecosystems (Cable et al. 

2008, Jenerette and Chatterjee 2012). However, in highly managed ecosystems this 

sensitivity to moisture addition was absent or resulted in Rs inhibition. The wetting 

induced inhibition is consistent with an oxygen (O2) limitation hypothesis (Linn and 

Doran 1984, Davidson et al. 2012, Riveros-Iregui et al. 2012, Oikawa et al. 2014), where 

wetting of moist soils can inhibit diffusion of O2 to sites of microbial and root activity 

and reduce Rs rates. The negative responses to water additions in lawn ecosystems 

suggest water saturation of the soil environment and subsequent anoxic soil conditions 

following wetting. Although these inhibitions were likely dominated by heterotrophic 

processes at the time scale investigated, a limitation to these experiments and most pulse 

studies in general, is the difficultly in partitioning autotrophic and heterotrophic 

contributions. In contrast to water availability, almost all ecosystems were substrate 

limited, also consistent with previous findings in diverse unmanaged and managed 

dryland ecosystems (Jenerette and Chatterjee 2012, Eberwein et al. 2015). The magnitude 
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of substrate amendment sensitivity varies throughout the region, however, in the highly 

managed lawn and agricultural land uses the substrate sensitivities are similar. These 

findings suggest that in highly managed sites, where moisture limitation has been 

overcome, substrate availability still imposes limits on Rs. New physiological models that 

account for interactions between C and O2 as influenced by water and temperature, could 

be useful for reconciling the large variation in Rs responses to wetting (Oikawa et al. 

2014). These findings are important for improving ecosystem models used at regional 

scales that increasingly rely on complex soil microbial and biophysical schemes (Zhang 

et al. 2012, Zhang et al. 2014).   

 

 Landscape Drivers of Regional Rs 

   Landscape variation in both land use and climate is an important factor 

influencing Rs. Landscape effects arise from an interaction between changes in the 

physiological drivers and changes in sensitivities to the physiological drivers (Davidson 

et al. 2006, Lewis et al. 2006, Lewis et al. 2014, Jenerette and Chatterjee 2012). These 

differences result from the combined changes in land use and climate, which lead to 

altered soil chemical and physical structure and soil trace gas fluxes (Jenerette et al. 2006, 

Hall et al. 2009, Lewis et al. 2014). My use of a climate gradient analysis is similar to 

much more widely used elevation gradients, which generally include large changes in 

community composition and do not solely represent the direct effects of changing 

temperature and precipitation on Rs (e.g. Conant et al. 2000, Smith et al. 2002, Groffman 

et al. 2009, Anderson-Teixeira et al. 2011, Lybrand and Rasmussen 2014). In these 
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studies climate is compounded with landscape position, or changes in ecosystem structure 

or land use. I extend the findings from such elevation gradients by using a different, 

though related, climate gradient. Furthermore, while there are studies investigating land 

use (Kaye et al. 2005, Koerner et al. 2009) and climate effects on Rs (e.g. Conant et al. 

2000, Anderson-Teixeira et al. 2011), to my knowledge there are no studies that have 

investigated the interactive effects of land use and climate on Rs variation.  

 Consistent with previous studies, I found much higher soil VWC and SOM in 

highly managed land uses contrasting with wildland land use types (Jenerette et al. 2006, 

Hall et al. 2009). In the summer there was no difference among sub-regions for the 

wildland land use, while during the winter there was a clear gradient with higher fluxes 

towards the coast, likely a consequence of higher precipitation and reduced evaporative 

demand at the coast. The wildland land use in the summer for all sub-regions had very 

low fluxes, a consequence of near zero soil VWC. Irrigation for both lawn and 

agricultural land uses increased the differences between land uses, and I expect was more 

important for accounting for differences than the temperature variation between sub-

regions. In the experimental study, substrate solubilization and microbial resurrection 

from dormancy likely accounted for larger seasonal effects in the wildland sites, where 

water additions induced a larger Rs response in the summer period when the soil was the 

driest (Fierer and Schimel 2003, Davidson et al. 2006, Jarvis et al. 2007, Jenerette and 

Chatterjee 2012). During the winter, seasonal precipitation inputs likely muted Rs 

sensitivity to further wetting events.   
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 Changes in the sensitivity to physiological drivers creates considerably more 

complexity in understanding the sources of regional variation in ecosystem functioning. 

Notably, I found a decoupling of Rs from further moisture additions in highly managed 

land uses, and more sensitivity to changes in substrate. Conversely, Rs in drier soils was 

less sensitive to changes in substrate, and more sensitive to levels of soil moisture 

(Davidson et al. 2012). Differences in water and substrate response between managed and 

wildland ecosystems are predicted to result in alternate regulations of Rs. The 

management induced decoupling of dryland urban ecosystem functioning from 

precipitation has previously been observed from remotely sensed analyses (Buyantuyev 

and Wu 2009, Jenerette et al. 2013) and models (Zhang et al. 2013) and I provide a first 

experimental assessment of these ecosystem effects.   

 

Toward a Synthesis of Physiological and Landscape Regulation of Ecosystem Processes 

in Mixed-use Regions 

   Variation in physiological drivers provides key information for linking patch and 

regional-scale patterns of Rs. Soil metabolic rates respond non-linearly to changes in 

drivers, which results in higher variability when conditions in general reduce flux rates. 

The importance of changing soil moisture and substrate levels is magnified in water and 

substrate scarce environments. In resource scarce environments biogeochemical hot spots 

create greater resource discontinuity and spatial variation in Rs. Conversely, fluxes in 

sites with saturated water and substrate levels are less sensitive to changes in resources. 

Additionally, fluxes in warmer environments have greater responses to spatial and 
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temporal changes in water and substrate, as resource availability regulates temperature 

sensitivity (Davidson et al. 2006). The variation in landscape induced sensitivities to 

water and C substrate addition highlight the differences in how physiological drivers 

influence Rs and how landscape variation modifies these sensitivities. Ecosystems with 

the highest responses to water and substrate additions also have the greatest spatial 

variability in surveyed Rs. This trend is particularly noticeable in the wildland sites, 

where flux responses to water additions are orders of magnitude higher than that of other 

locations.  The physiological underpinnings of Rs variability have extensive nonlinear 

interactions. My data do not determine if landscape position changes the activation 

energy of enzymatic reactions, or the shape of the Rs response curve to VWC. Instead 

sensitivity is likely determined through where the sites fall within different positions of 

the non-linear Michaelis-Menton and substrate diffusion functions.         

 My findings, that variation in Rs is driven not only by landscape position but is a 

function of the absolute levels of soil physiological drivers, are consistent with previous 

findings where ecosystems with low VWC and SOM are also those that have more 

resource heterogeneity (Austin et al. 2004). However, my results suggest the connection 

between environmental variability and Rs variability is indirect.  Fine-scale variation in 

soil physiological drivers did not correlate with variation or absolute levels of Rs. 

Alternatively, sites with mean VWC and SOM high enough to be on the flat part of the 

physiological saturating response functions, Rs will be less spatially variable, regardless 

of microsite variation in these drivers. In contrast, when substrates are low enough to fall 

within the dynamic ranges of the response functions, then microsite differences become 
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important in determining flux rates. This evidence supports a hypothesis that Rs spatial 

variability is a consequence of limitations in soil moisture or substrate supply. Xu and Qi 

(2001) found that in a ponderosa pine plantation spatial variation in Rs was the highest 

during the non-growing season (August to April) when soil moisture was the lowest. In 

these conditions, small changes in soil moisture may have large consequences on the 

sensitivity of Rs to other physiological drivers. Localized areas within these patches that 

have elevated levels of soil moisture and substrate represent biogeochemical hotspots. 

 Together both survey and experimental findings support an inverse-metabolic 

pulses hypothesis (Huxman et al. 2004), where ecosystems with higher fluxes before 

wetting are associated with reduced pulse sensitivities. The variation among patches in 

flux rates and local variability show an enhanced sensitivity to environmental conditions 

during unfavorable periods for plants and soil microbes. Some of the highest fluxes were 

observed in wildland plots that received water additions, despite having the lowest SOM. 

This is likely the result of labile soil C accumulation, a consequence of extensively 

reduced heterotrophic metabolism. Other studies show that relatively small rain events, as 

low as 2 mm (Austin et al. 2004, Huxman et al. 2004), can induce soil metabolic pulses, 

and that subsequent rain events have reduced pulse rates, likely resulting from of labile C 

depletion (Oikawa et al. 2014). While the inverse-metabolic pulse process has been 

observed in semiarid and arid wildland ecosystems (Reynolds et al. 2004, Huxman et al. 

2004, Jenerette and Chatterjee 2012), these are the first results that extends such 

frameworks across mixed land use regions including urban and agricultural uses.  
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   At regional scales, Rs variation is the consequence of both physiological and 

landscape patterns. These drivers are interrelated, as temperature, and inputs of water and 

substrate depend on landscape position. A key aspect of landscape effects is a 

combination of changes to both the physiological drivers and the ecosystem sensitivity to 

these drivers. Across scales these variables are coupled, as soil physiological drivers 

consistently influence the local variability in Rs. Strong interactions between land use and 

climate influence patterns of Rs at multiple scales through complex direct and indirect 

effects on physiological dynamics. Systematic evaluation of physiological and landscape 

variation provides a key framework for understanding the effects of interactive global 

change drivers to ecosystem metabolism. 
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 Table 1.1 Soil physiological and landscape level hypotheses  
  for patterns in soil respiration 
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(1)Temperature 
sensitivity  

 
Activation energy requirements of 

enzymatic reactions are temperature 

sensitive 

 
(2)  Water 
availability 

 
Microbial functioning requires 

moisture and indirectly moisture 

influences substrate (C and O2) 

diffusion 

 
(3)  Substrate 
availability  

 
Substrate  availability and quality 
influences Rs as a primary limiting 
resource 
 

  
(4) Climate Climate regulates Rs by altering soil 

temperature, substrate, and water 

availability 

 
(5) Land use 

 
Land use regulates Rs by altering 
physical, chemical, and biological 
processes. Including  soil 
temperature, substrate, and water 
availability   
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Table 1.2 Site descriptions including geographic location, soil conditions and properties of the coastal 
to desert study region in southern California, USA  

Site  Location  Elev. 
(m) 

Soil  
T 

(°C)a

b 

Soil 
VWC 

(%)ab 

Soil 
texturea 

SOM 
(%)a 

Soil 
pHa  

Dominant 
vegetation  

Coastal 
Lawn  

33.6492,  
-117.8499  

36  28.6/ 
11.6  

14.8/
37.7  

Sandy loam 6.5   7.53 Cynodon 

dactylon  

Coastal 
agriculture  

33.6937, 
-117.7217  

122  31.0/ 
12.1 

9.7/ 
17.1  

Loam  4.4  8.76  Varieties of 
Citrus 

Coastal 
wildland 

33.6342, 
 -117.8462 

85  33.7/ 
15.0 

0.8/ 
9.2 

Clay loam  11.6  5.85  Eriogonum 

fasciculatm  

Inland 
lawn  

33.9735, 
-117.3262  

329  29.7/ 
12.0 

24.4/3
2.1  

Sandy 
loam  

16.5  7.06  Cynodon 

dactylon  

Inland 
agriculture 

33.9615, 
-117.3352  

305  27.8/ 
15.5 

5.4/ 
6.2  

Loam  5.2  7.25  Varieties of 
Citrus 

Inland 
wildland  

33.9667, 
-117.3219 

390  51.4/ 
15.9 

0.8/ 
8.4  

Sandy 
loam  

3.7  7.30 Eriogonum 

fasciculatm  

Desert 
lawn  

33.7732, 
-116.3539 

73  33.2/ 
10.7 

15.7/2
4.3 

Sandy 
loam  

7.5  6.72  Cynodon 

dactylon  

Desert 
agriculture 

33.5220, 
-116.1503  

12  32.0/ 
11.7 

4.3/ 
5.5 

Sand  3.4  8.57  Varieties of 
Citrus 

Desert 
wildland  

33.6708, 
-116.3721  

243  47.8/ 
20.1 

1.4/ 
3.3 

Sand  1.6  7.79  Larrea 

tridentata  

a Measurements and samples collected at 5 cm depth 
b Summer and winter values, respectively  
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Table 1.4  Effects of climate and land use on soil respiration for both 
treatments of water and dextrose and water in a coastal to desert 
climate gradient in southern California, USA.  Reported as ANOVA 

F-statistic and level of significance. 
 Water Dextrose and Water  

 Summer  Winter  Summer  Winter  
Climate  2.96/ 

0.064  
3.88/ 
0.030  

4.32/ 
0.021  

11.30/ 
<0.001  

Land use  23.61/ 
<0.001  

12.20/ 
<0.001  

20.53/ 
<0.001  

6.89/ 
0.003  

Climate X Land use  1.55/ 
0.209  

2.49/ 
0.060  

1.35/ 
0.272  

4.25/ 
0.006  
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Figure 1.1 Diagram of the design used for this study. Both in-situ observational and 
experimental studies measured soil respiration within three land use types, spanning a 
coastal to desert regional climate gradient that encompasses three sub-regions. Spatially 
independent replicates were used for both observational (3 transects) and experimental 
studies (5 treatment triplets).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 46

 
Figure 1.2 Box plots showing VWC for each site during the summer and winter months 
in 2012 to 2013 (n = 1323). Climate  (F2,1323  =  71.41), land use (F2,1323  =  1044.92), and 
season (F1,1323  =  355.47) were significant (p < 0.05) in a three-way fixed-effect 
ANOVA. 
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Figure 1.3 Over the entire study region, (a) Rs is negatively related to soil temperature (5 
cm depth) and positively related to (b) percent SOM (5 cm depth) for both summer (dash 
line, R2 = 0.31, p <0.0001, and R2 = 0.14, p <0.0001, respectively) and winter (solid line, 
R2 = 0.13, p <0.0001, and R2 = 0.28, p<0.0001, respectively). Percent VWC (5 cm 
depth) is plotted using the color scale to the right. VWC is negatively correlated with 
temperature (R2 = 0.18; p < 0.0001), and positively correlated with SOM (R2 = 0.13; p < 
0.0001). Each point represents a single chamber flux measurement. 
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Figure 1.4 The mean coefficient of variation (CV) in Rs for each transect was positively 
related to (a) soil temperature (5 cm depth) for both summer (solid line, R2 = 0.48, p 

<0.001) and winter (dash line, R2 = 0.46, p <0.001). While the mean CV in Rs was 
negatively related to (b) percent VWC (5 cm depth) and (c) SOM (5 cm depth) for both 
summer (R2 = 0.21, p <0.03, R2 = 0.48, p <0.01, respectively) and winter (R2 = 0.56, p 

<0.02, R2 = 0.53, p <0.001, respectively). 
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Figure 1.5  Box plots showing (a) Rs for each site during the summer and winter months 
in 2012 to 2013 (n=1323). (b) Mean Rs (±SE) deceased from summer to winter for all 
sub-regions. Wildland sites (c) experience the highest fluxes in the winter, contrasting 
that of lawn and agricultural land uses. The mean was measured using the jackknife 
method to assess the significance of the data. Climate (F2,1323 = 3.20), land use (F2,1323 = 
466.56), and season (F1,1323 = 267.37) were significant (p < 0.05) in a three-way fixed-
effect ANOVA. There were significant effects (p < 0.001) between each land use within 
each sub-region, and between each sub-region within each land use for both seasons for 
Tukey post-hoc comparisons. 
 
 
 
 



 50

 
Figure 1.6  Box plots showing (a) coefficient of variation (CV) measured using the 
jackknife method to assess the significance of the data. Mean (± SE) CV in Rs for three 
(b) sub-regions and (c) land use types in summer and winter 2012 to 2013 showing 
climate and land use regulation (n = 1323). Climate (F2,1323 = 15.08), land use (F2,1323 = 
812.01), and season (F1,1323 = 503.30)  were significant (p < 0.001) in a three-way fixed-
effect ANOVA. There were significant effects (p < 0.001) between each land use within 
each sub-region, and between each sub-region within each land use for both seasons for 
Tukey post-hoc comparisons. 
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Figure 1.7 Mean Rs (±SE) (a) for each site and treatment during summer 2013 and winter 
2012 (n = 270). Response ratios (b) were calculated using Rs for water divided by the 
control value, and Rs for the dextrose + water divided by the water value for each 
treatment. A log response ratio of zero indicates no treatment effect. * denotes treatment 
response p-value level of significance using Student's t-test, where **<0.05<***<0.01. 
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Figure 1.8 The mean response ratio of Rs for each transect was negatively related to 
antecedent soil VWC (5 cm depth) for both summer (solid line, R2 = 0.74, p < 0.01) and 
winter (dash line, R2 = 0.70, p < 0.01). Response ratios were calculated using Rs for 
water divided by the control value. 
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Chapter 2: The influence of vegetation, mesoclimate and meteorology on urban 

atmospheric microclimates across a coastal to desert climate gradient 

 

Abstract 

 Many cities are increasing vegetation in part due to  the potential microclimate 

cooling. However, the magnitude of vegetation cooling and sensitivity to mesoclimate 

and meteorology are uncertain. To improve understanding of the variation in vegetation’s 

influence on urban microclimates I asked: how do meso- and regional-scale drivers 

influence the magnitude and timing of vegetation-based moderation on summertime air 

temperature (Ta), relative humidity (RH) and heat index (HI) across dryland cities? To 

answer this question I deployed a network of 180 temperature sensors in summer 2015 

over 30 high- and 30 low-vegetated plots in three cities across a coastal to inland to desert 

climate gradient in southern California, USA. In a followup study, I deployed a network 

of temperature and humidity sensors in the inland city. I found negative Ta and HI and 

positive RH correlations with vegetation intensity. Furthermore, vegetation effects were 

highest in evening hours, increasing across the climate gradient, with reductions in Ta and 

increases in RH in low-vegetated plots. Vegetation increased temporal variability of Ta, 

which correspondes with increased nighttime cooling. Increasing mean Ta was associated 

with higher spatial variation in Ta in coastal cities and lower variation in inland and desert 

cities, suggesting a climate dependent switch in vegetation sensitivity. These results show 

that urban vegetation increases spatiotemporal patterns of microclimate with greater 

cooling in warmer environments and during nighttime hours. Understanding urban 
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microclimate variation will help city planners identify potential risk reductions associated 

with vegetation and target at-risk populations and develop effective strategies 

ameliorating urban microclimate.  

 

Introduction 

 

 Metropolitan areas contain a mosaic of land covers that include contrasting 

patches of high- and low-vegetation intensity, and consequently have highly variable 

ecosystem structures and functions (Grimm et al. 2000). Patterns in vegetation intensity 

are directly linked to urbanization and mesoclimate distributions (Brazel et al. 2007, 

Jenerette et al. 2007). Since the mid-20th century, large cities in the United States are 

warming twice as fast as surrounding rural and wildland areas (Stone et al. 2012), 

especially in the dry southwestern United States (Brazel et al. 2000).  Regional urban 

warming, commonly described as the urban heat island (UHI), is created by increasing 

impervious surfaces and decreasing vegetation cover, which warms temperatures in the 

urban core compared to surrounding rural and wildland areas (Oke 1973, Santamouris 

2015). However, at finer scales vegetation may create heterogeneous cool refugia within 

cityscapes (Jenerette et al. 2011, Imhoff et al. 2010, Davis et al. 2016). Vegetation 

increases latent heat flux via transpiration and decreases sensible heat flux via shading, 

which cools local microclimates (Yang et al. 2011, Jenerette et al. 2011, Chakraborty et 

al. 2015). Regionally, the magnitude of vegetation cooling is influenced by climate 
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patterns, where, particularly in dryland regions, urbanization may increase vegetation 

intensity compared to rural and wildland areas. In these regions higher vegetation 

intensity creates an "oasis effect" and, as a result, reduces summer temperatures within 

some neighborhoods (Brazel et al. 2000, Jenerette et al. 2007, Buyantuyev and Wu 2010, 

Imhoff et al. 2010, Lazzarini et al. 2013, Jenerette et al. 2013). Locally, the distribution of 

urban vegetation may magnify temperature inequities within a city, resulting in unequal 

benefits and health consequences for residents (Jenerette et al. 2016). Within cities 

vegetation cooling is strongest in neighborhoods that are near parks or have high-

vegetation cover and water consumption (Shashua-Bar and Hoffman 2000, Harlan et al. 

2009, Cao et al. 2010, Jenerette et al. 2011, Declet-Barreto et al. 2013). Increases in 

relative humidity (RH) associated with highly-vegetated residential ecosystems of arid 

and semi-arid regions may counter this cooling effect through increases in human-

perceived temperatures, or heat index (HI, Steadman 1979, Hall et al. 2016).  HIs are 

used to combine Ta and RH into a single model that approximates human-perceived 

equivalent temperature in shaded areas (Rothfusz 1990). The spatiotemporal distributions 

of temperature and humidity create an "urban heat riskscape" where microclimates create 

varying levels of human exposure to heat hazards (Jenerette et al. 2011). Characterizing 

interactions between vegetation and Ta and RH in urban ecosystems may be used to 

predict urban responses to future climate change scenarios.   

Patterns and influences of vegetation and landscape factors on fine-scale urban air 

temperature (Ta) within cities have been primarily analyzed using limited weather station 

data (e.g. Davis et al. 2016), with a small number of studies utilizing a distributed 
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network of sensors (e.g. Feyisa et al. 2014, Hall et al. 2016, Shiflett et al. 2017). These 

studies have found the greatest Ta differences are typically observed at night and morning 

hours (Landsberg 1981, Coseo and Larson 2014). Increased nighttime Ta  variation likely 

arises as a consequence of differences in heat flux from urban covers. Impervious 

surfaces have high heat storage capacity, and thus absorb heat during the day and release 

it at night, creating contrasting responses in air and surface temperatures (Roth et al. 

1989, Gallo et al. 1993, Grimmond 2007, Chakraborty et al. 2015, Hall et al. 2016, Davis 

et al. 2016). Some studies indicate that urban vegetation at the block or neighborhood 

scale (<250 m) may be highly influencial on Ta (Skelhorn et al. 2014, Feyisa et al. 2014), 

greater than a comparible volume of built cover (Davis et al. 2016). If local vegetation 

patterns modulate daily changes in Ta, then the greatest difference between high- and 

low-vegetated locations should occur at night, because vegetation reduces heat storage 

and sensible heat flux from urban land covers (Chow et al. 2011). This reduced heat flux 

is predicted to result in a greater range and temporal variation in Ta for highly vegetated 

locations. Alternatively, urban vegetation may increase nighttime Ta by providing 

insulation from high wind velocities (Gillner et al. 2015). Investigations into how urban 

landscapes affect Ta is essential to uncovering sources of inequities in cooling benefits 

and developing urban management policies for reducing heat vulnerabilities. 

 Important drivers of the influence of vegetation on Ta may be distributions of 

mesoclimate and meteorological conditions (Zhao et al. 2014). Mesoclimates, or city-

scale climates, with high mean daily temperatures, or heat wave conditions in moderate 

climates may enhance vegetation cooling and UHI effects by increasing the effect of 
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shading and increasing potential transpiration rates (Jenerette et al. 2011, Jenerette et al. 

2016, Tayyebi and Jenerette 2016, Ramamurthy and Bou-Zeid 2017).  The negative 

feedback of vegetation cooling leads to a mean temperature-temperature variability 

hypothesis (the T�a -Ta variability hypothesis), that predicts warmer mesoclimates and 

warmer meteorology will lead to greater Ta spatial variation. Countering mean 

temperature effects within cities, there is some evidence that precipitation reduces urban 

heating effects on variation due to increases in air convection and reductions in surface 

heating (Imhoff 2010, Zhao et al. 2014, Chow et al. 2014). Wind is also predicted to 

minimize vegetation microenvironment effects through increased air mixing that reduces 

plant canopy insulating effects and temperature inequities (Grimmond 2007).  

  To assess the role of hypothesized drivers of variation in urban Ta, I asked: (1) 

what are the spatiotemporal patterns of summertime vegetation Ta cooling in dryland 

urban landscapes and (2) if patterns in vegetation intensity are correlated to spatial and 

temporal variation in Ta, how are these variables related to mesoclimate drivers of mean 

daily temperature, wind,  and precipitation? I then expanded this question of 

microclimate climate variation by asking: how does vegetation distribution within a 

dryland city influence the spatiotemporal patterns of summertime RH and HI? To address 

these questions of variation in vegetation induced microclimate effects, I analyzed the 

patterns of Ta and RH in response to vegetation, climate, and meteorological sources of 

variation at three cities along a coastal to inland to desert climate gradient in urban 

landscapes of the greater Los Angeles metropolitan region of southern Califonia, USA. 

The combination of a prominent climate gradient of increasing Ta and airdity and 
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generally similar pattern of urbanizatzion provide a unique opportunity to study the 

effects of mesoclimate on urban microclimate. Understanding spatial and temporal 

variations in Ta and RH across urban landscapes will expand the urban heat "riskscape" 

concept to include micro-, meso- and regional-scale dynamics of urban microclimates, 

allowing city planners to better identify effectiveness of vegetation for urban cooling and 

reduce heat vulnerabilities, especially in areas of high heat risk.  

 

 

Methods 

 

Study sites and design  

 My study region is situated in the Los Angeles megacity of 18 million residents 

within southern California, USA, an area characterized by a Mediterranean climate with 

hot-dry summers and cool-wet winters. I distributed an Ta sensor network in mature 

street-side trees in three cities within this region along an approximately 150 km transect 

from mild coastal Irvine to inland Riverside to hot desert Palm Desert. These cities were 

selected to test hypotheses of mesoclimate effects on microclimate. Elevation of sensor 

plots ranged from 4 to 60 m in Irvine, 238 to 331 m in Riverside, and 0 to 144 m in Palm 

Desert. The surrounding native vegetation community for Irvine and Riverside is Coastal 

Sage Scrub and Sonoran Desert Scrub for Palm Desert. Across sites, mean annual 

precipitation (MAP) varies between 300 mm at the coast to 103 mm in the desert. Mean 

annual temperature (MAT) varies between 17.0 °C at the coast and 23.9 °C in the desert. 
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The climate gradient is more pronounced in summer, when average maximum 

temperatures in August are 28.4 °C and 41.2 °C in the coastal and desert cities, 

respectively.   

In each of the three cities I established a network of twenty observational pairs, 

consisting of ten high and ten low vegetation density plots (Figure 2.1). Each high- and 

low-vegetation paired plot was positioned 1 to 1.5 km apart to quantify local-scale effects 

of vegetation while accounting for large-scale gradients in Ta related to geography and 

topography.  Sites were selected using initial selection from high resolution imagery and 

later confirmed on the ground. I subsequently quantified vegetation differences as 

differences in the Normalized Difference Vegetation Index (NDVI, Tucker 1979, Turner 

et al. 1999), a proxy for vegetation patterns and readily obtained from remotely sensed 

imagery (van Leeuwen et al. 2006) commonly used for characterizing urban vegetation 

(Gallo et al. 1993, Shiflett et al. 2017). I chose NDVI over other indices because of the 

global availability and high repeat frequency of these data and its association with LST 

and Ta in prior studies (Jenerette et al. 2016, Shiflett et al. 2017). Average paired-plot 

level difference in NDVI between all paired high- and low-vegetated plots  was 

0.22±0.08, 0.31±0.12, and 0.28±0.12 at Coastal, Inland, and Desert cities, respectively 

(Student’s t-test P<0.05; Figure 2.1e).  

Using this design, the average changes in microclimate across paired-plots and 

correlations of NDVI with microclimate were quantified. All temperature measurements 

were collected in a 61-day time period in 2015 from July 18th to September 16th 

(corresponding to Julian day of year (DOY) 199 and 259), encompassing the warmest 
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months of the year. Subsequently, the following summer, relative humidity 

measurements were collected in the inland city in a 17-day time period from August 17th 

to September 13th 2016 (DOY 230 to 257) using the same sampling locations as the Ta 

measurements.   

 

Micrometeorlogical sensors 

 Ten high- and ten low-vegetated plots consisted of three replicate temperature 

sensors (iButton Thermocron DS1922L, Maxim Integrated Products, Inc., San Jose, 

California, USA) with an accuracy of ±0.5°C and range from -10 to 65°C mounted on the 

trunks of three neighboring trees within 10 m of each other 2 m from the ground (n=180). 

To explore RH effects, in a follow-up study in 2016 one temperature and humidity sensor 

(iButton Hydrocron DS1923, Maxim Integrated Products, Inc., San Jose, California, 

USA) with a temperature accuracy of ±0.5°C from -10 to 65°C and RH accuracy of 

±0.5% from 0 to 100% was mounted on the same trees 2 m from the ground at each plot 

in the inland city (n=20). The added cost of these temperature and humidity sensors 

limited this addition to one replicate per plot in the inland city. The iButton sensors are 

small, self-contained units with onboard memory, measuring 15 mm in diameter and 5 

mm high. Readings were collected hourly throughout the study period. To shield each 

sensor from direct solar radiation, they were housed in custom polystyrene cylindrical 

white cups. Additionally, each sensor was mounted on the north side of the trees to avoid 

any remaining direct effects of solar radiation.  
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Since these sensors are mounted under the tree canopies, Ta and RH may be 

different than that of open spaces. Prior studies have found that individual tree canopies 

may increase (Gillner et al. 2015), decrease (Streiling and Matarakis 2003, Lin and Lin 

2010), or have no effect on Ta (Armson et al. 2013). Furthermore, both increases and 

decreases in canopy level RH have been observed (Souch and Souch 1993, Gillner 2015). 

While these effects may influence my results, trees were generally pruned, which may 

minimize their effects at my sensor heights, and my design is a practical solution for 

embedding sensors within a populated urban environment.  To test the accuracy of the 

custom made radiation shield systems I hung three sensors less than a meter away from a 

research-grade temperature sensor (HMP-60, Viasala, Helsinki, Finland) housed in a non-

aspirated gilled radiation shield underneath an orange tree at the University of California 

Riverside's Agricultural Operations facility for seven days. Temperature differences 

between the iButton and the HMP-60 sensors were not observed (2-sample t-test, 

P=0.64). Furthermore, most iButton measurements fell within two standard deviations of 

the mean difference (SD=0.42 °C), with only 2% of measurements below and 2% above 

this indicator, with no outliers (SD≥3, Osborne and Overbay 2004).  

 Reference Ta, wind velocity, and precipitation data were obtained from California 

Irrigation Management Information System (CIMIS) using stations at University of 

California Irvine's South Coast Research and Extension Center, University of California 

Riverside's Agricultural Experiment Station, and the Shadow Hills Golf Club in Indio, 

California (http://cimis.water.ca.gov/WSNReportCriteria.aspx Accessed Feb/4/2016). 

These stations were 10.6 to 26.4, 0.6 to 11.3, and 4.9 to 27 km away from iButton plots in 
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Irvine, Riverside, and Palm Desert, respectively. During the study period the average 

diurnal range in Ta was 10.96±3.52, 13.32±2.95, and 13.64±2.48 °C at Coastal, Inland, 

and Desert cities, respectively. Furthermore, the average diurnal range during sustained 

wind periods was 2.40±0.32, 3.71±0.58, and 2.83±0.58 m s-1 at Coastal, Inland, and 

Desert cities, respectively. Although wintertime precipitation was predominant, the 

summer 2015 study period was unusually wet for coastal and inland regions, following 

three years of drought. Precipitation from July to September was 65 and 57 mm at the 

coastal and inland cities, respectively. There were unseasonable rain events at the 

beginning (DOY 199 to 201) and end (DOY 259) of the study period. For comparison, 

the average precipitation from July to September is 13 and 10 mm at the coastal and 

inland cities, respectively. The desert city did not experience above average precipitation 

with 10 mm of rain, 6 mm below average. Characteristic of summer in this region, no 

precipitation occurred during the 2016 sampling period.   

 

Remote sensing of vegetation 

NDVI was derived from the Airborne Visible / Infrared Imaging Spectrometer 

(AVIRIS) data from the August, 2014 Hyperspectral Infrared Imager (HyspIRI) 

preparatory mission on a cloud free day. These data were obtained prior to my 2015 and 

2016 study periods but provide a recent and relative consistency was confirmed visually.  

In a subsequent study in Riverside, California, reductions in NDVI between 2014 and 

2015 were identified but these changes were proportional to 2014 values (Liang et al. In 

Revisions).  The AVIRIS data collection consists of calibrated images with spectral 
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radiance in 224 10 nm contiguous spectral bands with wavelengths from 400 to 2500 nm 

(Roberts et al. 2015). Using a scanning mirror, AVIRIS produces 677 pixels for each of 

the 224 bands on each scan and at the altitude of data collection resulted in a spatial 

resolution of 20 m pixels. Level 2B post-processed data were used for analysis, which 

included atmospheric correction using Atmospheric CORection Now (ACORN) software 

(Roberts et al. 2015). We processed AVIRIS data to obtain NDVI using Eq. 1, where B29 

and B51 correspond to AVIRIS spectral channels 29 and 51 with wavelengths 0.64 µm 

and 0.83 µm.  

 

NDVI = B29-B51/B29+B51         (1) 

 

NDVI was analyzed at each sample plot in post processing using a single pixel and 90 m 

radius circular buffer.  

 

Analysis  

 Ta, RH, and HI spatial heterogeneity and vegetation effects were quantified with 

four measures that compared variation in sensor measurements to local land cover 

distributions. In a preliminary comparison of the individual pixel and 90 m radius buffers, 

the land cover signal was more pronounced at the 90 m scale, likely in part due to noise 

at the individual pixel scale, and I chose the 90 m scale for subsequent analyses. My 

choice of buffer size agrees with prior research that has found urban microclimate 

vegetation effects on Ta strongest at scales of 50 to 500 m (Sashua-Bar and Hoffman 
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2000, Feyisa et al. 2014, Davis et al. 2016, Shiflett et al. 2017). First, as a direct measure 

of vegetation intensity on microclimate, the slope of the linear regression between NDVI 

and Ta was calculated hourly within each city. Additionally, the slope of the linear 

regression between NDVI, and RH and HI was calculated hourly within the inland city 

for 2016. HI was calculated using the Rothfusz (1990) model (EQ 2), which has been 

adopted by the United States National Weather Service (Steadman 1979).    

 

HI=-42.379+2.049(Ta)+10.143(RH)-0.225(Ta)(RH)-0.007(Ta)(Ta)-0.055(RH)(RH) 

+0.001(Ta)(Ta)(RH)+0.0008(Ta)(RH)(RH)-0.000002(Ta)(Ta)(RH)(RH)                         (2) 

 

HI is a subjective index of human perceived temperatures and contains assumptions about 

human physiology, clothing, solar radiation exposure, and wind velocity (Rothfusz 1990).  

Second, the difference between low- and high-vegetated paired plots, expressed as ΔTa 

and ΔRH, was used to evaluate vegetation effects on Ta and RH, respectively. These 

measures capture the mean Ta and RH difference between paired plots, while accounting 

for regional sources of climate variation. To obtain plot-level Ta an average was 

calculated using all three replicates from the 2015 study. Third, the mean Ta and RH 

difference between high- and low-vegetated plots was expressed as the mean percent 

change in Ta and RH, calculated by dividing ΔTa and ΔRH by mean Ta and RH and 

expressed as a whole number percent, to show a normalized average. Fourth, the 

coefficient of variation (CV) was used to quantify spatial and temporal variations. The 

CV is a dimensionless quantity of variation normalized by the sample mean; commonly 
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expressed as a whole number percent frequently used to assess spatiotemporal landscape 

variation (Crum et al. 2016). Temporal heterogeneity in vegetation effects on Ta was 

analyzed at both daily and seasonal scales using correlation between NDVI and temporal 

CV of Ta. Daily-scale spatial averages were analyzed using the slope of correlation in 

NDVI and Ta, percent change in Ta, and the slope of correlation in mean Ta and spatial 

CV of Ta. Daily scale temporal variation is the average hourly data using all days of the 

study period. Seasonal variation includes data from all days of the study period, from 

DOY 199 to 259.  

 

Results 

 

Daily patterns in cooling intensity  

 Vegetation cooling effects, measured as the slope of NDVI and Ta, had a strong 

daily pattern throughout the climate gradient (Figure 2.2). Slopes were generally 

negative; increases in NDVI tended to decrease Ta, although during mid-day hours slopes 

approached zero or were not significant (P>0.05). Furthermore, slopes decreased along 

the climate gradient, with hourly average slopes ranging from -0.25 to -3.83 and -1.82 to 

-6.79, at the coastal and desert cities, respectively. Despite steeper relationships in the 

desert at night, there were fewer significant correlations compared to coastal and inland 

cities (P<0.05). Daily changes in the strength of the relationship, measured using the 

Pearson correlation coefficient, mirrored that of the slope, with the exception of the 

desert city where I observed weaker nighttime correlations than the other cities (Figure 
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2.3). Correlations decreased in the daytime more at the coast than the desert, with r-

values reducing 0.67 at the coast and 0.33 at the desert.  

       In my follow-up study, vegetation effects on RH, measured as the slope of 

NDVI and RH, had a strong daily pattern in the inland city (Figure 2.4).  Slopes were all 

positive with mean values ranging from 7.41 to 23.93, indicating that increases in NDVI 

consistently increased RH, with much lower slopes during the mid-day hours. During the 

evening the effects were driven by large differences in only some pairs.  Two paired plots 

had unusually high nighttime ΔRH, with two hourly values greater than two standard 

deviations of the mean hourly difference (Figure 2.5). Unlike correlations found between 

temperature and NDVI, there was a less noticeable daily pattern in percentage of 

insignificant correlations for RH (P>0.05). Similar to 2015, slope of NDVI and Ta had a 

strong daily pattern in the inland city (Figure 2.4). This cooling effect was slightly 

reduced during the day where there were no significant correlations between 12:00 and 

18:00 when factoring in heat index values (Figure 2.4).  

 The strength of vegetation effects varied throughout the study period, but 

generally vegetation cooling effects were greater at night for ΔTa, the average of the local 

scale temperature change from low- to high-vegetated plots (Figure 2.6). ΔTa was mostly 

positive with values as high as 4.07°C. There were some exceptions where there was a 

reversal in temperature differences, mostly in the daytime hours, with values as low as -

0.14°C. When comparing ΔTa during the rainiest day (DOY 259) with the hottest (DOY 

252 at the coast and DOY 227 at the inland and desert cities) there are ΔTa reductions 

(P<0.001) of 43% in coastal, 71% in inland, and 32% in desert cities. Along with reduced 
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vegetation effects, the coastal city had 20% reductions in spatial variation between local 

pairs, while there was increased variation between inland (132%) and desert (32%) cities. 

Daily averages of local scale vegetation cooling effects from the entire study period were 

measured as the average ΔTa divided by mean Ta or percent change in Ta (Figure 2.7). A 

strong "U-shaped" daily pattern emerged throughout the climate gradient ranging from 

1.12% to 8.11%. Furthermore, daily range in vegetation Ta effects increased along the 

climate gradient, with average percent change in Ta ranging from 1.12 to 4.82% and 1.43 

to 8.11%, at the coastal and desert cities, respectively. Supporting findings from 2015, 

ΔTa for the 2016 campaign for the inland city was the same (Figure 2.8, P>0.05, Student's 

t-test). There was no daily pattern in ΔRH in the inland city, but RH of low vegetated 

plots decreased by 4.93% ± 4.36 (P<0.01).  

 

Vegetation and climate effects on air temperature variability  

 Temporal variation in Ta increased with NDVI at the 90 m radius scale in the 

coastal, inland, and desert cities, with consistent relationships along the climate gradient 

(Figure 2.9). These relationships have similar slopes across the climate gradient for both 

seasonal (Slope=5.3, 3.0, and 4.9, respectively) and daily (Slope=5.8, 4.2, and 6.0, 

respectively) scales, with differences in overall variation. For both temporal scales, there 

was higher overall variation in the inland city, with lower variation in the desert and 

coastal cities. Seasonal variation was higher than daily variation. The strength of these 

relationships was fairly consistent across the climate gradient at both seasonal (R2=0.26, 
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0.25, and 0.21, respectively) and daily (R2=0.29, 0.37, and 0.24, respectively) scales 

(P<0.05). There were no significant correlations at the individual pixel scale (P>0.05).     

 Spatial variation of air temperature (CV of Ta) is positively correlated to mean Ta 

for the coastal city, while negatively correlated in the inland and desert cities (Figure 

2.10a, Slope=0.10, -0.07, and -0.26, respectively). Additionally, the strength of these 

relationships increased across the climate gradient (R2=0.07, 0.09, and 0.40, respectively, 

P<0.05). These relationships were not consistent throughout the day, with large daily 

changes (Figure 2.10b). The coastal city had 12 significant positive relationships between 

Ta and CV of Ta from 9:00 to 21:00, with three negative relationships between 5:00 and 

7:00. The inland city had both positive and negative relationships. There were five 

significant negative relationships between 12:00 to 18:00, and 12 positive relationships 

between 16:00 to 10:00. The desert city had mostly negative relationships with six 

between 13:00 to 19:00, with one positive relationship at 23:00. There was a strong daily 

pattern in slopes ranging from -0.35 to 1.99, -5.16 to 3.50, and -3.14 to 0.74 from coastal 

to inland to desert cities, respectively. Daily changes in the strength of the relationship 

mirrored that of the slope, with r-values ranging from -0.32 to 0.60, -0.52 to 0.66, and -

0.59 to 0.34 from coastal to inland to desert cities, respectively.  
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Discussion 

 

I found that vegetation reduces summer Ta primarily at night, or around the period 

when daily minimum temperatures occur. This finding supports the hypothesis that urban 

vegetation reduces Ta through reductions in heat fluxes from impervious surfaces that had 

been shaded during the daytime period. Importantly, this finding is in contrast with 

remotely sensed LST measurements, that show vegetation cooling of urban surfaces is 

largest during the daytime period (Buyantuyev and Wu 2010, Myint et al. 2013, Jenerette 

et al. 2016).  During the daytime, urban vegetated surfaces may be directly cooled 

through increased evapotranspiration with large LST effects and relatively less Ta 

cooling. Consistent with the evapotranspiration hypothesis, I observed consistent 

increases in RH in more vegetated areas. Evapotranspiration is not a likely mechanism 

explaining the effects on nighttime microclimate variation, also consistent with limited 

nighttime LST cooling by vegetation, because it primarily occurs during active 

photosynthesis. However, relationships between vegetation and RH at night were 

stronger than the daytime, which could be attributed to nighttime irrigation associated 

with urban vegetation. Nevertheless, this finding has important implications for urban 

microclimates in that an increasing RH may counteract the human health benefits of 

vegetated Ta cooling at the local scale.  

Across the coastal to desert climate gradient I found increasing local scale cooling 

effects (ΔTa) positively correlated with NDVI, confirming studies that have found 

increased vegetation cooling intensity in hot arid regions, contributing to a negative 
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climate feedback effect (Imhoff et al. 2010, Tayyebi and Jenerette 2016). As the result of 

greater nighttime cooling effects, higher NDVI is associated with increased Ta temporal 

variability. This effect is reflected in seasonal scale variability, where changes in weather 

patterns, like heat waves, wind, and precipitation contribute to variation in addition to 

land cover drivers. Furthermore, supporting the T�a -Ta variability hypothesis I observed 

increased spatial variation with increasing mean temperature at the coast, however, wind 

may have played a larger role in inland and desert cities where there was a gradient 

toward decreased variation with increased mean temperature.  

 

Mesoclimate and Meteorological influences on microclimate variation: mean 

temperature, wind, and precipitation 

 I found large differences in the T�a -Ta variability relationships among cities 

suggesting that mesoclimate may drive vegetation microclimate cooling effects. Mean Ta 

was positively correlated to variation of Ta at the coastal city, supporting the T�a -Ta 

variability hypothesis. Counter to this hypothesis, however, inland and desert cities 

exhibited reduced Ta variation with increased mean Ta at the city scale. These seemingly 

contradictory findings can be better understood by examining changes in the T�a -Ta 

variability relationship throughout the day. Negative relationships in inland and desert 

cities are consistent with daily patterns that show stronger negative correlations during 

the day, with an opposite pattern in the coastal city. Spatial variation in Ta was higher 

during warm summer nights and weakest during warm summer days for inland and desert 

cities, while the opposite daily trend occurred in the coastal city. Warm nights are more 
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variable in inland and desert cities resulting in increased nighttime Ta inequity between 

high- and low-vegetated neighborhood plots. This increased Ta variation on hot nights 

supports the T�a -Ta variability hypothesis, as urban surfaces re-emit absorbed heat in the 

evening (Roth et al. 1989).  

 There are two findings that do not support the T�a -Ta variability hypothesis. First, 

T�a -Ta variability relationships during the day for inland and desert cities were negative. 

Second, although both inland and desert cities exhibited positive nighttime slopes, 

relationships were stronger in the inland city than in the desert city, even though the 

desert city is hotter. These results were partially explained by examining patterns of wind 

and precipitation.   

 While wind may have little effect on patterns of surface heat storage and fluxes, 

Ta is influenced by air convection and mixing (Landsberg 1981, Imhoff 2010, Zhao et al. 

2014). At whole city scales, temperature differences between rural and urban areas are 

driven by daily weather conditions and are reduced during windy days (Landsberg 1981, 

Gallo et al. 1993). Using a representative meteorological station for each city, I found the 

inverted daily relationships of mean Ta and spatial variation in inland and desert cities are 

partially explained by wind velocity. Wind velocity at each plot location would clarify 

relationships on the local dynamics of Ta and wind. Here, the lack of safe mounting 

locations and the cost associated with installing anemometers on street-side trees at each 

plot (n=60)  precluded their deployment in my study – microclimate wind distributions 

remain an important research need (Vahmani and Ban-Weiss 2016). Among cities, wind 

velocity is highest during the day for coastal and inland cities, and warmer days are often 
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windier (R2=0.51, P<0.001, Figure 2.11).  Air mixing with increased wind velocity on 

warm days can result in lower Ta spatial variation. Furthermore, wind velocity is often 

reduced at night and there are weaker relationships between mean Ta and wind velocity 

(R2=0.39, P<0.001, Figure 2.11). Thus at night, when wind velocity is lower, surface heat 

flux may more strongly drive spatial variation in Ta. Coastal regions, on the other hand, 

have different wind patterns, likely resulting in distinct diel T�a -Ta variability 

relationships. Coastal regions receive onshore wind in the daytime hours, since the land 

heats up faster than the neighboring ocean, which can interact with urban land cover 

influences on local climate (Ramamurthy and Bou-Zeid 2017). These onshore winds 

reduce Ta, thus the warmest days are often the least windy days. This unique coastal wind 

pattern would generate the least air mixing during warm days, which in combination with 

existing surface heat flux, would generate greater daytime Ta spatial variation.  

For an initial evaluation of these predictions I compared the slope of wind 

velocity and variation of Ta (CV of Ta). Correlation was found for 8hrs of the day at the 

coastal city and 5 hrs of the day for the inland and desert cities (Figure 2.12).  The inland 

city has faster winds in the day (2.37 m s-1 from 6:00 to 20:00) than at night (0.95 m s-1 

from 20:00 to 6:00), while the desert city has similar average wind velocities both day 

(2.20 m s-1) and night (2.26 m s-1) over the entire study period. Greater daytime wind 

velocity in the inland city could help explain the larger daily range of correlations 

between wind velocity and CV of Ta, where higher daytime wind velocities were 

correlated with decreased spatial variation between 7:00 and 15:00 (Figure 2.12). 

Furthermore, similar average day and night wind velocities in the desert may help explain 
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the relatively consistent statistically significant correlations between NDVI and Ta in the 

daytime. Other weather events, particularly precipitation, may further drive daily 

patterns.     

 Like wind, rain also reduced vegetation effects along the climate gradient likely 

through reduced tree shading effects, direct cooling of impervious land surfaces, and 

homogenization of evapotranspiration (Landsberg 1981, Imhoff 2010, Zhao et al. 2014). 

Some rainy days had greater reductions in vegetation effects, which are a likely result of 

precipitation magnitude, timing, and duration. The largest reductions in ΔTa were on the 

wettest day (DOY 259). Contrary to reduced vegetation effects, there were increases in 

spatial variation of Ta during rainy days for inland and desert cities. These increases in 

variation were less predictable since they were not correlated with increased vegetation 

effects.  Examination of individual weather events on urban microclimate remains an 

important future research area.   

 

Building on the "urban heat riskscape" 

 Understanding the spatiotemporal variation and drivers of vegetative cooling is 

important for reducing heat vulnerability (Demuzere et al. 2014, Vargo et al. 2016). I 

found at the local paired plot-scale (1 to 1.5 km) low vegetated areas have higher mean Ta 

and lower temporal variation in Ta primarily as a result of reduced nighttime vegetation 

cooling effects. Increases in temperatures that result from regional and global climate 

changes may reduce citywide Ta variation in arid and semi-arid cities. Although, urban 

environments typically have more intricate arrangements of land covers, so factors such 
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as changes in height-to-width ratio of the street, anthropogenic heat sources, surface 

albedo, tree canopy density, tree species, below tree ground cover, and tree age and 

vitality will likely add complexity to my findings (Taha 1997, Sashua-Bar and Hoffman 

2000, Middle et al. 2014, Gillner et al. 2015). Furthermore, future work on the effects of 

buffer size when computing NDVI could refine vegetation effects on microclimate 

variation. My findings are in contrast with LST studies that have shown warming 

conditions may lead to greater urban vegetation cooling effects (Jenerette et al 2011, 

Jenerette et al. 2016, Tayyebi and Jenerette 2016). Nighttime vegetation cooling effects, 

important for mitigating urban warming, are driven by divergent processes across the 

region. While hotter nights are associated with increased spatial variation only in the 

inland city, exacerbating city-wide temperature inequities, there are reduced spatial 

effects of hotter nights in coastal and desert cities. Such regional climate considerations 

are important for designing geographically specific mitigation strategies.     

  Increasing urban vegetation is one strategy for mitigating urban warming (Larsen 

2015), but there are confounding impediments. These include economic and resources 

costs associated with purchasing, planting and maintaining vegetation over its entire life 

cycle (Jenerette et al. 2011, Pataki et al. 2011, McPherson and Kendall 2014, Demuzere 

et al. 2014). Increasing vegetation offers greater nighttime cooling effects in inland and 

desert cities but may do little to reduce daytime Ta, especially on hotter days associated 

with higher wind velocity. Regardless, trees may decrease daytime human perceived 

temperatures through shading (Klemm et al. 2015, Taleghani et al. 2016). Furthermore, 

with increased irrigation and decreased wind velocity high-vegetated areas increase RH, 
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subsequently increasing the HI, potentially countering Ta cooling benefits (Potchter et al. 

2006). Nevertheless, I found increases in HI are minimal compared to cooling benefits. 

More humid environments may be affected differently as high Ta was often associated 

with low RH in my study system. There are a wide range of mitigation strategies to 

reduce the effects of urban warming besides increasing urban vegetation; some of these 

include increasing albedo of building surfaces and spacing between buildings, and 

constructing a variety of different green infrastructures to increase evaporative cooling 

(Grimmond 2007, Demuzere et al. 2014, Wong and Jim 2015, Taleghani et al. 2016). 

Any mitigation strategy should consider trade-offs between geographic and temporally 

specific urban cooling benefits, and economic and resource costs.   

 

Conclusions 

 

 I found the greatest vegetation cooling effects and Ta reductions in the evening 

hours, with minimal effects observed during midday. This effect increased in strength 

from coastal to desert cities. This "U-shaped" daily Ta vegetation cooling effect resulted 

in more daily and seasonal variation in high-vegetated areas which had a broader range of 

temperatures. Vegetation also increased RH and HI in the inland city, although these 

effects were limited. Furthermore, in the coastal city hotter days were correlated with 

increases in spatial variation in Ta while in inland and desert cities hotter days were 

correlated with reductions in spatial variation, and consequently areas of temperature 

refuge. Nighttime spatial variation in microclimate also differed among cities. In the 
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inland city, hotter nights were associated with increases in spatial variation in Ta, which 

likely increase inequities in urban temperatures. These patterns were partially explained 

by differences in wind velocity. Higher wind velocity was associated with reductions in 

spatial variation most in the inland areas, but this effect was not consistent across the 

climate gradient. Together these findings show that urban vegetation had consistent 

microclimate atmospheric cooling effects that primarily occur during the evening and are 

influenced by mesoclimate distributions and meteorological conditions. 
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Figure 2.1 Site description for summer 2015 and 2016 study periods. (a) Coastal to 
desert transect in southern California including the three study cities Irvine, Riverside, 
and Palm Desert. (b,c,d) NDVI of each city with iButton air temperature sensor locations. 
Relative humidity and air temperature iButton sensors were placed in the same locations 
in Riverside during the 2016 study period. All sensors were mounted in street side trees. 
(e) Boxplot of NDVI in high- and low-vegetated locations at 90m radius resolution along 
the climate gradient. In all cases high-vegetated sites had greater NDVI than low-
vegetated sites using Student's t-test (P<0.05).  
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Figure 2.2 Daily changes in slope of NDVI at 90m radius resolution and air temperature 
(±SD), with frequency of P<0.05 along the climate gradient in 2015.  
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Figure 2.3  Daily changes in the Pearson correlation coefficient (r) of NDVI at 90m 
radius resolution and air temperature (±SD), with frequency of P<0.05 along the climate 
gradient. Equivalent relationships were found at 30m radius resolution. 
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Figure 2.4 Daily changes in slope of NDVI at 90m radius resolution and relative 
humidity, air temperature, and heat index (±SD) with frequency of P<0.05 in the inland 
city in 2016. Plots were in the same locations as the 2015 study (n=20).  
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Figure 2.5 Percent change in relative humidity (ΔRH) for four representative paired plots 
in the inland city for 2016 (DOY 230). Some paired plots diverged radically in nighttime 
hours (solid lines), while others had consistent relationships throughout the day (dash 
lines). Two paired plots had unusually high nighttime ΔRH, with two hourly values 
greater than two standard deviations of the mean hourly difference. This indicates that the 
strong relationships between NDVI and RH at night may be driven by irrigation, which 
occurs primarily during the evening.    
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Figure 2.6 Heat map of the local vegetation temperature effects throughout the study 
period, low-vegetated minus high-vegetated cover (ΔTa), with spatial standard deviation 
along the climate gradient. Black boxes indicate days with measurable precipitation.   
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Figure 2.7 Normalized daily temperature effects (ΔTa), or the percent change in air 
temperature between high- and low-vegetated plots (±SD), along the climate gradient. 
Low- and high-vegetated locations have little temperature difference in the day and 
greater difference at night. The effect is increased from coastal to desert cities.   
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Figure 2.8 Normalized daily temperature effects (ΔTa), or percent change in air 
temperature (±SD), for 2015 and 2016 campaigns in the inland city. Low- and high-
vegetated locations have little temperature difference in the day and greater difference at 
night. ΔTa was the same for both sampling periods (P>0.05, Student's t-test).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 91

 

Figure 2.9 Temporal coefficient of variation of Ta is positively correlated to NDVI at 
90m radius scale in the coastal, inland, and desert cities at both seasonal (R2=0.26,0.25, 
and 0.21, respectively) and daily (R2=0.29,0.37, and 0.24, respectively) scales (P<0.05). 
The relationships have similar slopes for both seasonal (Slope=5.3, 3.0, and 4.9, 
respectively) and daily (Slope=5.8, 4.2, and 6.0, respectively) scales across the climate 
gradient, with differences in overall variation. There are no significant correlations at 30 
m radius scale. 
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Figure 2.10 (a) Spatial variation of air temperature (CV of Ta) is positively correlated to 
mean air temperature (Ta) for the coastal city, while negatively correlated in the inland 
and desert cities. (b) In the day CV of Ta is positively correlated to Ta for the coastal city, 
while negatively correlated in the inland and desert cities, with reversed patterns at night. 
Each data point corresponds to the slope of the linear regression between citywide mean 
Ta and CV of Ta calculated hourly (n=60 per hour). 
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Figure 2.11 Mean air temperature is positively correlated to mean wind speed during 
both day and night in the inland city. Mean wind speed is generally higher during the day.  
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Figure 2.12 (a) Spatial variation of air temperature (CV of Ta) is positively correlated to 
mean air temperature (Ta) for the coastal city during the day, while negatively correlated 
in the inland and desert cities. (b) The correlations of CV of Ta and mean wind velocity 
explain some relationships found in the first panel. Each data point corresponds to the 
slope of the linear regression between citywide mean Ta and wind, and CV of Ta 
calculated hourly (n=60 per hour). 
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Chapter 3: Microclimate variation among urban land covers: The importance of 

vertical and horizontal structure in air and land surface temperature relationships 

 

Abstract 

 

 Air and land surface warming effects from urbanization are of increasing concern 

due to expanding heat-related human health impacts in cities. While many studies have 

investigated land cover effects on air temperature (Ta) or land surface temperature (LST) 

individually, relatively few studies have examined the spatiotemporal relationships 

between these two heat indicators and other metrological variables. Here I asked: how 

does land cover influence local distributions of LST, Ta, and relative humidity (RH) and 

their interactions? I deployed a network of 30 air temperature and humidity sensors at 

two heights above the ground (0.1 and 1.5 m), along with a thermal camera and 

anemometer, during July 2016 over five common urban land covers—asphalt, bare 

surface, turf grass, short trees, and tall trees. Stronger Ta-LST relationships were 

observed at 0.1 m for asphalt (b=0.59), bare surface (b=0.63), and grass (b=1.08) land 

covers and, 1.5 m for short and tall tree covers (b=0.72, 0.89, respectively). Excluding the 

grass land cover, I found greater daytime than nighttime Ta-LST differences. Adding 

complexity to Ta-LST relationships, I found increasing spatial variation in LST during the 

day for short and tall tree land covers. Furthermore, both wind velocity and LST were 

correlated with Ta lapse rates. Finally, I found increased RH, and decreased LST, Ta, and 

VPD in vegetated covers. Through the use of thermal imagery and meteorological 
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measures I found that land cover affects patterns in microclimate, and that estimates of 

urban Ta using LST may improve with the use of land cover specific relationships. 

 

Introduction 

 

Urban microclimates are highly variable and respond in uncertain ways to 

characteristics of local land cover composition. Land cover may influence horizontal and 

vertical distributions of land surface temperature (LST), air temperature (Ta), and relative 

humidity (RH). Each of these microclimate components can impact human health and 

energy demand (Taha 1997, Harlan et al. 2006, Parris and Hazell 2005, Barreca and 

Schimshack 2012).  At "human" scales of 1 to 100 meters vegetated and built land covers 

create heterogeneous patterns in air and land surface temperature that lead to cool refugia 

and warming hot spots within cities (Jenerette et al. 2016, Imhoff et al. 2010, Coseo and 

Larson 2014, Davis et al. 2016, Shiflett et al. 2017). Characterizing how vegetated and 

built land covers influence each of these microclimate components and their 

interrelationships remains an important research challenge.   

  Ta and LST are two distinct and complementary metrics of urban temperatures.  

Intraurban variation in Ta, associated with urban warming and cooling effects, is often 

greatest at night as surfaces re-emit heat at different rates and wind velocity is low 

(Oswald et al. 2012, Shiflett et al. 2017).  However, LST variation is greatest during the 

day due to dynamic inputs in solar radiation (Buyantuyev and Wu 2010, Myint et al. 

2013, Jenerette et al. 2016).  Furthermore, maximum intraurban variation in Ta is 
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considerably less (e.g., 8 °C, Stabler et al. 2005) than that of LST (e.g., 25 °C, Jenerette 

et al. 2011). Thus, both the difference in timing and magnitude of variation contributes to 

a disconnect between Ta and LST. While land surfaces affect LST at micro-scales less 

than 10 m (Jenerette et al. 2016), land cover effects on Ta are frequently observed at 

larger scales of 20 to 500 m (Sashua-Bar and Hoffman 2000, Feyisa et al. 2014, Davis et 

al. 2016, Shiflett et al. 2017).  These scaling differences in part are associated with lack 

of straightforward relationships between Ta and LST reflecting the complexities in the 

vertical and horizontal structure of urban land covers and its interaction with the local 

atmosphere (Hartz et al. 2006).  

However, if relationships between Ta and LST can be identified, thermal imagery 

could then be used to model Ta—the standard metric of both regional and global climate 

warming. LST is typically measured from a relatively course spatial resolution, at 90m or 

larger scales (e.g., Roth et al. 1989, Imhoff et al. 2010, Zhao et al. 2014), a single time of 

day, and at varying heights both within and among pixels spanning tree canopies or roof 

tops to the ground. In contrast, most Ta measurements are recorded continuously at one 

height above the ground and over standardized land cover types—negating vertical and 

land cover variation in Ta. While fine-scale spatiotemporal variation in LST has begun to 

be studied in natural and built environments (Hartz et al. 2006, Tonolla et al. 2010, 

Gillner et al. 2015), little is known about land cover effects on fine-scale spatiotemporal 

variation of LST. Due to these potential sources of uncertainty, the Ta-LST linkage is 

rarely made and remains an important research challenge (Hartz et al. 2006, Schwarz et 

al. 2012). In support of this direction, some studies have identified significant 
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correlations between Ta and LST (e.g., Unger et al. 2009, Klock et al. 2012). When 

identified, the linkage between these two temperature metrics may vary throughout the 

day, with stronger relationships often observed at night (Kawashima et al. 2000, Schwarz 

et al. 2012, Shiflett et al. 2017). Stronger nighttime relationships between Ta and LST 

may potentially be due to lower wind velocities and reduced active heating of surfaces at 

night (Shiflett et al. 2017). While wind may have minimal effects on patterns of surface 

heat fluxes, Ta is influenced by air convection and mixing (Landsberg 1981, Imhoff 2010, 

Zhao et al. 2014, Stantamouris 2015). Thus, using LST to represent local atmospheric 

conditions can lead to uncertainties in cooling effectiveness of different urban 

management strategies.    

 In moderating urban heat, vegetation is frequently highlighted as a valuable urban 

management strategy. However, the effects of vegetation on microclimate are not well 

characterized at fine scales of human experience. Vegetation can decrease Ta and LST by 

increasing latent heat flux via evapotranspiration, increasing surface albedo relative to 

built surfaces, and decreasing sensible heat flux via shading (Yang et al. 2011, Jenerette 

et al. 2011, Chakraborty et al. 2015). Alternatively, vegetation may increase nighttime 

temperatures by providing insulation from high wind velocities which reduces the 

dissipation of surface radiation to the surrounding environment (Gillner et al. 2015). 

These microclimate effects may vary with the extent of canopy cover and vegetation 

type. Individual large tree canopies can reduce Ta from 1 to 2.5 °C (Streiling and 

Matarakis 2003, Lin and Lin 2010, Lee et al. 2013), while small-isolated tree canopies 
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may have no effect on Ta (Armson et al. 2013). Likewise, turf grass land cover may 

reduce both Ta (Chang et al. 2008) and LST (Jenerette et al. 2016) in urban areas.  

In addition to influencing LST and Ta, vegetated land covers in arid and semi-arid 

environments are also associated with higher rates of evapotranspiration and lower wind 

velocity which may lead to higher RH (Souch and Souch 1993, Potchter et al. 2006, 

Gillner et al. 2015). Higher humidity associated with vegetation may counter the direct 

cooling benefits through greater human-perceived temperatures (Steadman 1979; Hall et 

al. 2016), heat related mortality (Barreca and Schimshack 2012), and incidents of 

respiratory system diseases (Gao et al. 2014). Increasing RH will also lower vapor 

pressure deficits (VPD, Chen et al. 2012, Litvak et al. 2013, Hall et al. 2016)—an 

important variable determining aridity and tree physiological performance (Chen et al. 

2012). The changes in RH and VPD associated with vegetation may vary with height 

above the ground due to moisture inputs from crown-level transpiration and ground-level 

irrigation.  

 To address the uncertainties in the relationships among measures of microclimate 

and the influence of built and vegetated land covers on these relationships, I asked: how 

does land cover influence microscale distributions of LST, Ta, and RH and their 

interactions? To address these questions, I analyzed patterns of Ta and RH lapse rates 

using sensors at two heights (0.1 and 1.5 m) at five common urban land cover types—

asphalt, bare surface, turf grass, small tree, and tall tree—in Riverside, California, USA. 

To investigate air and surface temperature linkages, I measured LST at each land cover 

using tower-mounted high resolution thermal imagery over a 24 hour period. I further 
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explored the potential role of wind velocity on Ta and RH lapse rates. At vegetated land 

covers I predicted lower Ta and higher RH at the height of transpiring vegetation. 

Furthermore, I predicted higher Ta and lower RH at 0.1 m at asphalt and bare surfaces, 

due to increased surface temperatures and heat fluxes. Reflecting the vertical height of 

sun exposed surfaces, stronger Ta-LST relationships were predicted at 0.1 m at asphalt, 

bare surface, and grass land covers, and 1.5 m at short and tall canopies land covers. Ta-

LST differences and Ta lapse rates were predicted to be larger during the day due to 

increased evaporative cooling effects and surface heat fluxes. Finally, I predicted that 

intra-land cover variation in LST would increase in the morning hours due to differential 

heating of surfaces. Understanding these land cover drivers of microclimate is a 

necessary step in predicting and mitigating urban warming effects (Oswald et al. 2012, 

Coseo and Larson 2014, Gillner et al. 2015, Davis et al. 2016). 

   

Methods 

 

Study site  

 My study site is located at the Agricultural Experiment Station (33.965, -117.338) 

at the University of California Riverside, USA. Riverside is a part of the Los Angeles 

metropolitan region of 18 million residents. The region is characterized by a 

Mediterranean climate with hot-dry summers and cool-wet winters, and spans a semi-arid 

coastal to arid desert climate gradient. Riverside is situated at an intermediate position of 

this climate gradient, with mean annual precipitation of 262 mm and mean annual 
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temperature of 19.6 °C.  Average maximum summer temperatures are warm at 35.0 °C in 

July.  At neighborhood scales, vegetation in this region can have a prominent effect on 

both Ta and LST (Tayyebi and Jenerette 2016, Shiflett et al. 2017). Characteristic of 

summer in this region, there was no precipitation during the sampling period.  

 Five plots located within 650 m of each other, representing common land 

covers—asphalt parking lot, bare soil surface, turf grass (Festuca arundinacea and Poa 

pratensis mixture), short Valencia orange orchard (Citrus x sinensis), and tall Valencia 

orange orchard—were selected. The bare surface cover was unvegetated loam soil with 

low gravimetric water content (0.22±0.1% at 5 cm, n=3). Both tree height and canopy 

cover were greater at the tall (4 m and 62.5%, respectively) compared to the short orchard 

(3 m and 50%, respectively). Interspace widths were the same for both short and tall 

orchards (3 m), with different tree widths (3 and 5 m, respectively). Interspace soil 

gravimetric water content was similar for both short and tall orchard covers (3.4±2.5% 

and 2.8±2.9% at 5 cm, respectively, n=3). The land cover plots were similar in size, 

ranging from approximately 6000 to 8500 m2. All temperature and humidity 

measurements were collected in a 17-day time period from July 15th to July 31st 2016 

(corresponding to Julian day of year (DOY) 197 and 213), during the warmest period of 

the year. Sunrise, solar noon, and sunset mid-way through the study (DOY 204) were at 

5:55, 12:56, and 19:57 Pacific Daylight Time (PDT; UTC -7 h), respectively. 

Simultaneous with temperature and humidity measurements infrared imagery and wind 

velocity were recorded for a 24 hr period at each land cover.  
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Data acquisition 

 In order to test the effect of land cover on Ta at each of the five plots, three 

replicate temperature sensors separated by approximately four meters (iButton 

Thermocron DS1922L, Maxim Integrated Products, Inc., San Jose, California, USA) with 

an accuracy of ±0.5 °C from -10 to 65 °C were mounted at two heights (0.1 and 1.5 m) 

from the ground on white PVC pipes near the center of each plot (n=30). To explore RH 

effects, in each plot one temperature and humidity sensor (iButton Hydrocron DS1923, 

Maxim Integrated Products, Inc., San Jose, California, USA) with a temperature accuracy 

of ±0.5 °C from -10 to 65 °C and RH accuracy of ±0.5% from 0 to 100% was mounted at 

two heights (0.1 and 1.5 m) from the ground (n=10). These sensors are small, self-

contained units with onboard memory, measuring 15 mm in diameter and 5 mm high.  

Readings were collected every hour throughout the study period. To shield each sensor 

from direct solar radiation, they were housed in custom 0.2 mm thick rigid polystyrene 

cylindrical white cups measuring 47 mm in diameter and 30 mm high. The bottoms of the 

shields were exposed to air, allowing adequate ventilation, with an additional radiation 

shield hanging 20 mm below the sensor to preclude direct surface long-wave radiation. 

To test the accuracy of the custom made radiation shield systems I hung three iButton 

sensors less than a meter away from a research-grade temperature sensor (HMP-60, 

Viasala, Helsinki, Finland) housed in a non-aspirated gilled radiation shield at the 

Agricultural Experiment Station for seven days. Temperature differences between the 

iButton and the HMP-60 sensors were not observed (2-sample t-test, P=0.64). 

Furthermore, most iButton measurements fell within two standard deviations of the mean 
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difference (SD=0.42 °C), with only 2% of measurements below and 2% above this 

indicator (Altman and Bland 1983), with no outliers (SD≥3, Osborne and Overbay 2004), 

and good linear fit (R2=0.995, b=0.993 P<0.001, RMSE=0.20 °C).  

 Alongside Ta and RH observations, tower mounted LST thermal imagery in the 

7.5 to 13 μm spectral range (SC660, FLIR, Inc., Nashua, New Hampshire, USA) with an 

accuracy of ±1.0 °C from -40 to 1500 °C was recorded every 15 min for a 24 hr period at 

each land cover. All five 24 hr sequences were recorded in succession on cloud-free days 

with average maximum solar irradiance of 861.00±6.26 W/m2 

(http://cimis.water.ca.gov/WSNReportCriteria.aspx Accessed Dec/7/2016) from July 16th 

to July 21st 2016. The thermal camera was mounted on a mobile tower 6 m above each 

surface at a 55° angle capturing approximately 20 x 15 m of surface area. This was the 

highest allowable angle at this height since steeper angles capture the platform of the 

mobile tower. Each 640 x 480 pixel thermal image was corrected for surface emissivity, 

distance of camera to surface, atmospheric temperature and humidity, and estimated 

camera temperature (Figure 3.1). Surface emissivity was estimated using values from 

prior studies (Lo and Quattrochi 2003, Chen 2015, Gao et al. 2015). I used emissivity 

values of 0.95 for asphalt, and short and tall trees, 0.93 for bare surface, and 0.97 for 

grass. Continuous thermal imaging of urban (e.g., Gillner et al. 2015) and natural (e.g., 

Tonolla et al. 2010) surfaces is a recent development. The methods I used to measure 

LST have been demonstrated to correlate well with, generally-reliable, thermocouple-

measured surface temperature (Aubrecht et al. 2016). Furthermore, wind velocity effects 

on microclimate lapse rate were measured using an anemometer (Anemometer #3002, 
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Young, Inc., Traverse city, Michigan, USA) with an accuracy of ±0.5 ms-1 from 0 to 50 

ms-1, data were recorded every 15 min for a 24 hr period at each land cover. The 

anemometer was mounted on a leveled tripod 2 m above the ground.  

  

Analysis 

 Ta, RH, VPD, LST land cover effects were quantified using several measures. 

Lapse rates in Ta, RH, and VPD were quantified at each land cover using the average 

difference between high (1.5 m) and low (0.1 m) sensors over the change in vertical 

height. 

 

Lapse rate = (value at 1.5m - value at 0.1 m)/(ΔHeight) (Eq. 1) 

 

Daily variation in land cover effects on lapse rates and the slope of the linear regression 

between Ta and RH were calculated using hourly averages from the entire study period. 

Steep hourly slopes from Ta and RH relationships indicate that warmer periods have a 

larger effect on RH. To quantify wind and LST effects on lapse rates of Ta and RH, linear 

regressions between Ta lapse rate and wind velocity, Ta lapse rate and LST, and RH lapse 

rate and wind velocity were analyzed. To quantify air and surface temperature 

relationships linear regressions between mean Ta at two heights and mean LST were 

calculated. Furthermore, differences between Ta and LST (ΔT) were calculated using 

hourly averages among Ta replicates over one representative 24 hr period. Finally, the 

coefficient of variation (CV) was used to quantify spatial variations in LST. The CV is a 
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dimensionless quantity of variation normalized by the sample mean; commonly 

expressed as a whole number percent, frequently used to assess spatiotemporal landscape 

variation (Crum et al. 2016). Unstandardized measures of variation (e.g., standard 

deviation) would not be suitable for this study since values change with the sample mean, 

obscuring relative changes in variation.  

 

Results 

 

 There were differing land cover effects on microclimate, with greater cooling, 

RH, and lower VPD at vegetated compared to unvegetated land covers (Table 3.1). The 

cooling effect was largest between asphalt and grass land covers at 0.1 m with a mean Ta 

reduction of 5.54±2.97 °C. The largest mean Ta difference at 1.5 m was between asphalt 

and short tree land covers with a mean Ta reduction of 2.17±1.59 °C. RH varied among 

land covers, with the largest effect between grass and asphalt land covers with a mean 

reduction of 31.98±10.64 and 6.40±4.53 % at 0.1 and 1.5 m, respectively. Likewise, the 

largest land cover effect on mean VPD was between grass and asphalt with a mean 

increase of 1.21±0.55 and 0.23±0.14 kPa at 0.1 and 1.5 m, respectively. Correlations 

between Ta and RH at both heights over all land cover types were stronger during the 

night than the day, with weaker relationships at 0.1 m (Figure 3.2). There were no 

distinguishable changes in this relationship among land covers.     
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Microclimate lapse rates  

 Ta lapse rate, measured as the difference between Ta at 1.5 and 0.1 m over the 

change in vertical height, had strong daily patterns among land cover types (Figure 3.3). 

Lapse rates were generally negative for asphalt and bare surface land covers during the 

day (minimum lapse rate = -2.29±0.41 and -3.38±0.30 °C m-1 at 11:00 and 10:00, 

respectively) with values approaching zero at night. In contrast, lapse rates were 

generally positive for short and tall tree land covers during the day (maximum lapse rate 

= 2.52±1.57 and 1.47±0.42 °C m-1 at 14:00 and 13:00, respectively) with values 

approaching zero at night. The grass land cover had a different pattern, with positive 

lapse rates at night (maximum lapse rate = 3.02±0.91 °C m-1 at 21:00) and rapidly 

decreasing lapse rates during the day (minimum lapse rate = -1.92±1.40 °C m-1 at 10:00). 

Approximately one hour after sunrise (7:00) at the asphalt land cover there was an outlier 

in lapse rate. This outlier was >3 SD from the daily mean (-1.18±0.80 °C m-1), and 6:00 

and 8:00 values (-0.70±0.20 and -0.75±0.54 °C m-1, respectively). After re-inspection of 

the site, solar reflection from nearby surfaces likely caused this unexpected value.  

 RH lapse rate had less noticeable daily patterns among land cover types than Ta 

lapse rates (Figure 3.3). RH lapse rates varied from positive (asphalt and bare surface) to 

negative (grass, and short and tall trees). There was a steep increase in lapse rates at 8:00 

for both asphalt and bare surface land covers (maximum lapse rate = 6.57±2.37 and 

7.74±3.92 % m-1 at 8:00 and 10:00, respectively), while grass had a steady decline 

starting at 11:00 (minimum lapse rate = -20.24±4.04 % m-1 at 14:00). There were 
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considerable differences in the range of lapse rates among land cover types from 2.47 % 

m-1 at the tall tree land cover to 13.38 % m-1 at the grass land cover.  

 VPD, which is derived from both Ta and RH data, had strong daily changes in 

lapse rate among land cover types that, excluding the grass land cover, reflected patterns 

in Ta lapse rate (Figure 3.4). Lapse rates were generally negative for asphalt and bare 

surface land covers during the day (minimum lapse rate = -0.95±0.17 and -1.40±0.15 kPa 

m-1 at 11:00 and 12:00, respectively) with values approaching zero at night. In contrast, 

lapse rates were generally positive for short and tall tree land covers during the day 

(maximum lapse rate = 1.02±0.73 and 0.65±0.37 kPa m-1 at 15:00 and 14:00, 

respectively) with values approaching zero at night. The grass land cover had a different 

pattern, with positive and increasing lapse rates during the day (maximum lapse rate = 

1.70±0.67 kPa m-1 at 14:00).  

 For asphalt and bare surface land covers I observed a negative relationship 

between Ta lapse rate and wind velocity, with a stronger correlation at the asphalt land 

cover (Figure 3.5; R2=0.41, P<0.001 and R2=0.32, P<0.01, respectively). The counter-

clockwise hysteresis-like effect at the bare surface plot may explain its weaker 

correlation. For short and tall tree land covers, I observed a positive relationship between 

Ta lapse rate and wind velocity, with a stronger correlation at the short tree land cover 

(R2=0.71, P<0.001 and R2=0.32, P<0.01, respectively). Conversely, I observed a negative 

relationship between RH lapse rate and wind velocity, with a stronger correlation at the 

short tree land cover (Figure 3.6; R2=0.54, P<0.001 and R2=0.52, P<0.001, respectively).    
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Land surface temperature variability  

 Land cover effects on LST differed in magnitude, variation, and timing (Figure 

3.7a). The time of maximum LST varied between 12:00 and 14:00. The average 

maximum LST was at 13:00, near solar noon (12:55). The highest range in LST among 

land covers was 29.98 °C during the day at 14:00, and the lowest range was 7.77 °C 

before sunrise at 5:00. Asphalt was consistently the warmest surface throughout the day, 

while grass, and short and tall tree land covers were the coolest at different times.     

 Spatial CV of LST varied throughout the day among land covers (Figure 3.7b). 

There was increasing variation in both short and tall tree land covers during the day, with 

maximum values of 24.4 and 20.98 at 13:30 and 13:00, respectively. These increasing 

trends began shortly after sunrise around 6:30 and returned to nighttime levels shortly 

after sunset around 21:00. Asphalt, bare surface, and grass land covers have less 

noticeable patterns in variation of LST. Variation in the asphalt land cover was consistent 

throughout the day, except for a dip in variation shortly after sunrise and a spike in 

variation at 8:30. Variation of LST in the grass land cover was highest at night, before 

decreasing around sunrise with a steady increase in variation until topping out at 13:00. 

Furthermore, relative to bare and asphalt covers, vegetated covers had elevated variation 

at night.      
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Air and land surface temperature linkage  

 There were divergent Ta-LST relationships among land covers and heights (Table 

3.2). The strongest correlation was between Ta at 0.1 m and LST in the asphalt land cover 

(R2=0.97), while the weakest correlation was at 1.5 m in the grass land cover (R2=0.84). 

For asphalt, bare surface, and grass land covers there were higher correlations at 0.1 m 

(R2=0.97, 0.94, and 0.93, respectively) than 1.5 m (R2=0.96, 0.92, and 0.84, 

respectively). Likewise, there were steeper slopes at 0.1 m (0.59, 0.63, and 1.08, 

respectively) than 1.5 m (0.53, 0.49, and 0.88, respectively). Conversely, for short and 

tall tree land covers there were higher correlations at 1.5 m (R2=0.94 and 0.96, 

respectively) than 0.1 m (R2=0.92 for both). Likewise, there were steeper slopes at 1.5 m 

(0.72 and 0.89, respectively) than 0.1 m (0.61 and 0.74, respectively).  

 Daily changes in the difference between Ta and LST (ΔT) at 1.5 and 0.1 m over 

five land covers show divergent relationships (Figure 3.8). While asphalt and bare surface 

land covers have the greatest ΔT at 1.5 m during the day (-24.82±0.34 and -18.74±0.60 

°C at 13:00 and 12:00, respectively), grass, and short and tall tree land covers have the 

greatest ΔT at 0.1 m (11.19±0.94, -9.6±0.66, and -5.1±1.44 °C at 18:00, 12:00, and 12:00 

respectively). ΔT was smallest for asphalt, grass, bare surface, and short and tall tree land 

covers during the night, morning, or late afternoon hours (-4.70±0.10, -0.5±0.28, and 

0.39±0.45, 0.20±0.24, and -0.06±1.34 °C at 4:00, 4:00, 23:00, 7:00 and 17:00 

respectively). Differences in ΔT between 1.5 and 0.1 m was greatest during the day for 

all land covers (3.64, 4.29, 5.31, 2.63, and 0.76 °C at 12:00, 13:00, 20:00, 13:00, and 

14:00, respectively).   
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 For asphalt, bare surface, and grass land covers I observed a negative relationship 

between Ta lapse rate and LST, with the strongest correlation at the bare surface land 

cover (Figure 3.9; R2=0.65, 0.81, and 0.51 P<0.001, respectively). For short and tall tree 

land covers, I observed a positive relationship between Ta lapse rate and LST, with a 

stronger correlation at the short tree land cover (R2=0.93 and 0.90, P<0.001, 

respectively).  

 

Discussion 

 

 Important for human health and tree physiology (Jenerette et al. 2011, Barreca 

and Schimshack 2012, Litvak et al. 2013), I found vegetated land covers increased 

canopy level RH and decreased LST, Ta, and VPD. I further found relationships among 

wind velocity and micrometeorlogical lapse rates across contrasting land cover types. The 

resulting vertical profiles in micrometeorology were influenced by land cover specific 

LST relationships. The differences in surface and atmosphere temperatures among 

relatively homogeneous land covers likely explains the frequent uncertainties associated 

with LST data at coarse scales (<90 m) that include mixtures of land covers. Identifying 

how urban land covers differ in their surface-atmosphere temperature coupling has been 

noted as an important research challenge for predicting and reducing urban warming 

effects (Hartz et al. 2006, Schwarz et al. 2012, Shiflett et al. 2017) and this is the first 

study to quantify relationships between vertical Ta gradients and LST among common 

urban land covers. My single-patch evaluation provides direction for subsequent study of 
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Ta-LST relationships and other microclimate evaluations in more complex land cover 

configurations.  

    

Relationships between vertical Ta gradients and Ta-LST relationships  

 I found that Ta lapse rates were coupled to Ta-LST relationships. Variation in 

lapse rates among land covers account in part for poor relationships between Ta and LST 

found previously in the literature where standard meteorological measurements generally 

do not characterize land cover effects on the vertical structure of Ta. In plots that have 

little three-dimensional structure, LST predominantly measures the ground surface. 

Supporting this hypothesis, in asphalt, bare surface, and grass plots I found stronger Ta-

LST relationships at 0.1 m. While asphalt and bare surface land covers had higher Ta at 

0.1 m, the grass land cover had lower temperatures at 0.1 m, indicating near-surface 

evaporative cooling by grass. Conversely, in plots that had greater three-dimensional 

structure, LST measures varying heights above ground level from the ground surface to 

the top of the canopy. Consistent with greater three-dimensional structure, at short and 

tall tree plots I found stronger Ta-LST relationships at 1.5 m. Additionally, positive Ta 

lapse rates at short and tall tree plots indicate canopy level warming or surface shading 

effects. Furthermore, indicating canopy size effects, I found stronger Ta-LST 

relationships at 1.5 m in the tall tree cover. Other micrometeorological factors, including 

wind velocity, may add complexity to the Ta-LST relationship. 

   While wind may have minimal effects on patterns of LST, Ta is strongly 

influenced by air convection and mixing (Landsberg 1981, Imhoff 2010, Zhao et al. 
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2014). At whole city scales, Ta differences between rural and urban areas are reduced 

during windy days (Landsberg 1981, Gallo et al. 1993, Santamouris 2015). 

Microadvection in the canopy layer, which mixes surface sensible and latent heat fluxes 

to the wider environment, is noted as a potential driver of Ta lapse rates and Ta-LST 

linkages (Roth et al. 1989, Schwarz et al. 2012, Shiflett et al. 2017). Using wind velocity 

data at each land cover plot, I found that as wind velocity approached zero so did Ta lapse 

rates for several land covers. Tree canopy sheltering effects from high daytime wind 

velocity are consistent with higher Ta lapse rates. Likewise, stronger nighttime Ta-LST 

linkages may have been driven by decreased nighttime wind velocity, creating less 

microadvection and a more direct connection between surface heat flux and Ta (Voogt 

and Oke 2003). Although, the three-dimensional structure of land cover surfaces, and 

associated canopy level warming or surface shading effects, may have been a stronger 

driver of Ta lapse rates and Ta-LST linkages (Kawashima et al. 2000, Schwarz et al. 2012, 

Shiflett et al. 2017). Both wind velocity and LST have similar daily patterns, while I did 

not find hysteresis, or lags, in their relationships with Ta lapse rate, isolating their 

individual effects remains an important research challenge. Investigating scaling effects 

on Ta lapse rate, and Ta-LST linkages, may further refine the role of wind velocity and 

LST drivers.        

 

Implications of small-scale spatial variation in Ta and LST on their linkages 

 Due to differences in surface thermal properties and shading effects, there is 

typically greater daytime variability in LST between surfaces than within (Urger et al. 
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2009, Armson et al. 2012, Gillner et al. 2015). The short and tall tree land covers contain 

a mixture of surfaces, both canopy and bare soil interspace, and greater three-dimensional 

structure relative to the other land covers. Increased canopy shading effects and daytime 

differences in LST between canopy and interspace likely contributed to greater spatial 

variation I observed at short and tall tree land covers. The largest inter-land cover 

temperature range was observed at 14:00, near the time of highest intra-land cover spatial 

variation for short and tall trees. Also, there were lower levels of daytime LST variation 

in the tall tree land cover, likely due to the reduction of interspace area and increased 

ground level shading. These trends in variation may impact Ta-LST relationships, since 

land cover will contribute differently to near surface Ta (Oke 1982, Roth et al. 1989). 

Surfaces with higher daytime LST than Ta re-emit heat during the night as sensible heat 

flux (Landsberg 1981, Roth et al. 1989). Consistent with other urban warming studies, I 

found effects of small-scale surface thermal properties on LST, and cumulative-three 

dimensional thermal property and wind velocity effects on Ta (Voogt and Oke 2003, Lo 

and Quattrochi 2003, Stathopoulou and Cartalis 2007). In conjunction with resolving land 

cover effects on Ta and LST relationships, an important next step to my findings is a 

determination of the effects of spatial resolution on this linkage.   

When quantifying land cover temperature effects, I further found important 

distinctions between LST and vertical gradients in Ta. As this study shows, LST does not 

have a consistent relationship with Ta across land cover types. Land use and land cover 

patches have irregular boundaries, contributing to mixed pixel error and poor Ta-LST 

linkage when using relatively course and spatially uniform units (Stone and Norman 
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2006, Schwarz et al. 2012). Furthermore, I found that vertical height and wind velocity 

impacted Ta-LST linkages. Slopes between Ta and LST among land covers at 1.5 m 

ranged from 0.49 to 0.89, consistent with prior estimates of urban Ta at 70% of LST 

warming (Klock et al. 2012).  These findings suggest remote sensing studies that quantify 

urban warming effects through surface temperatures may over estimate (e.g., asphalt, 

bare surface, and tree land covers) or underestimate (e.g., grass land cover) the extent of 

Ta warming.  Instead, a land cover specific approach of estimating urban Ta spatial 

variation using remotely sensed LST will likely be more useful especially for pixels with 

mixed land uses as typically acquired from satellite platforms. 

 

Vegetation feedbacks to humidity and vapor pressure deficit  

 My results of higher canopy level RH at short and tall tree compared to asphalt 

land covers (6.2 and 6.1 %, respectively) were consistent with other studies that saw 0.5 

to 6.4% (Gillner et al. 2015) and 9.0 to 20.0% (Souch and Souch 1993) increases beneath 

trees. I also observed higher RH in turf grass compared to other land covers (6.4 and 4.7 

% increase over asphalt and bare surface, respectively). This finding, along with observed 

decreases in Ta at the grass land cover, is important since standardized weather 

measurements are typically made at 1.5 m over turf grass (WMO, 2008), thus studies that 

analyze urban microclimate using standardized meteorological stations may not capture 

upper range of Ta and lower range of RH in semi-arid environments. While I observed 

higher RH at short and tall tree land covers, there was not an increase in crown level (1.5 

m) RH associated with transpiration compared to near surface (0.1 m) RH. This is 
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consistent with other studies that have found no effects, or a decrease, in crown level RH 

in urban trees, particularly at night when canopies provide shelter from dew (Gillner et al. 

2015).  Instead, I found increasing wind velocity minimizes RH lapse rates, indicating 

that wind may have larger effects on the upper canopy boundary layer. Despite no canopy 

level increases in RH, consistent with evapotranspiration feedbacks to reduced plant 

stress responses (Chen et al. 2012, Litvak et al. 2013) and increased irrigation effects on 

microclimate, I found both higher RH and lower VPD over vegetated land covers. This 

effect was most clear in the grass land cover where there were positive and increasing 

daytime VPD lapse rates despite a decreasing trend in Ta lapse rates.     

 

Synthesis 

 I empirically evaluated vertical microscale atmospheric profiles and explicitly 

connected these to remotely sensed surface temperatures and show how land surface 

characteristics, from relatively simple bare surfaces to complex shading from trees, differ 

in their microclimate distributions. These findings empirically show that vertical 

variation can be as large as the differences between land covers as predicted from 

modeling studies (Taleghani et al. 2016). The large variation among land cover types in 

their vertical microclimate distributions is coupled to surface characteristics and is also 

influenced by larger scale meteorological variation. My findings help develop better 

assessments of urban heat risk and vulnerability that consider both surface and air 

characteristics. With the rapidly expanding use of surface temperature measurements to 

assess heat vulnerability (Jenerette et al. 2016), my results show how this remotely 
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sensed heat metric is connected to air temperature through land cover specific vertical 

functions. The vertical temperature profiles within the first 2 meters from the surface can 

have a strong influence on heat vulnerability, especially for children whose body core is 

closer to the ground (Vanos 2015, Vanos et al. 2016). Policy assessments of heat 

mitigation strategies that evaluate altered urban land cover patterns to reduce heat 

vulnerability currently do not factor the vertical temperature variation (Georgescu et al. 

2014, Vahmani and Ban-Weiss 2016). Research directed to evaluating microclimate lapse 

rates and Ta-LST relationships in mixed urban land covers are important future directions 

to minimize potential urban heat vulnerability. 
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Table 3.1 Mean (±SD) for  land surface temperature (LST) over 24-hr 
study period and air temperature (Ta), relative humidity (RH), and 
vapor pressure deficit (VPD) at two heights above the ground over a 
17-day study period for five land covers  

 LST (°C) Ta (°C) RH (%) VPD (kPa) 
     
Asphalt  
    0.1 m 
    1.5 m 

39.24±13.92 
 
 

 
31.81±8.32  
30.10±7.59 

 
36.08±21.64 
40.09±22.38  

 
3.75±2.62 
2.53±1.66 

Bare surface  
     0.1 m 
     1.5 m 

31.98±13.70 
 
 

 
30.92±9.17 
29.25±7.53 

 
38.02±23.98 
41.75±23.25 

 
3.64±2.77 
2.48±1.66 

Grass  
     0.1 m 
     1.5 m 
Short trees 
     0.1 m 
     1.5 m 
Tall trees 
     0.1 m 
     1.5 m 

22.31±7.74 
 
  

25.33±8.88 
 
 

24.39±6.96 
 
 

 
26.27±7.89 
28.48±7.25 

 
26.46±5.83 
27.94±6.80 

 
27.13±6.15 
28.10±6.91  

 
68.06±22.86 
46.49±23.96 

 
53.75±20.37 
46.33±22.18 

 
49.74±21.46 
46.19±22.28 

 
1.53±1.42 
2.30±1.62 

 
1.91±1.39 
2.30±1.60 

 
2.18±1.57 
2.31±1.62 
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Table 3.2 Linear regression statistics between air 
temperature at two heights above ground level 
and land surface temperature for five land 
covers. P<0.001 for all regressions. 

 R2 F-value Slope Intercept 
Asphalt  
    0.1 m 
    1.5 m 

 
0.97  
0.96 

 
618.56  
539.08 

 
0.59 
0.53  

 
5.79 
6.11 

Bare surface  
     0.1 m 
     1.5 m 

 
0.94 
0.92 

 
339.00 
267.61 

 
0.63 
0.49 

 
8.63 
11.09 

Grass  
     0.1 m 
     1.5 m 
Short trees 
     0.1 m 
     1.5 m 
Tall trees 
     0.1 m 
     1.5 m 

 
0.93 
0.84 

 
0.92 
0.94 

 
0.92 
0.96  

 
294.12 
118.80  

 
257.54 
325.07 

 
244.83 
487.16 

 
1.08 
0.88  

 
0.61 
0.72 

 
0.74 
0.89 

 
0.48 
7.81 

 
8.36 
6.21 

 
5.51 
2.70 
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Figure 3.1 Representative infrared images from asphalt, bare surface, grass, short tree, 
and tall tree land covers at midnight used to assess land surface temperature (LST) 
relationships.  
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Figure 3.2 Daily changes in slope of air temperature (Ta) and relative humidity (RH) at 
1.5 and 0.1 m over five land cover types (±SD) were stronger during the night than the 
day, with weaker relationships at 0.1 m. Each data point corresponds to the slope of the 
linear regression between mean Ta and RH (P<0.05) calculated hourly (n=17 per hour). 
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Figure 3.3 Divergent daily changes in air temperature lapse rate (ΔTa / Δsensor height, 
±SD) over five land cover types varied from decreasing daytime lapse rates to increasing 
daytime lapse rates. Relative humidity lapse rate (ΔRH / Δsensor height, ±SD) over five 
land cover types varied from positive lapse rates (asphalt and bare surface) to negative 
lapse rates (grass, and short and tall trees) with little daily trends. Gray bars indicate 
approximate nighttime hours after sunset and before sunrise. 
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Firgure 3.4 Divergent daily changes in vapor pressure deficit lapse rate (ΔVPD/ Δsensor 
height, ±SD) over five land cover types varied from decreasing daytime lapse rates 
(asphalt and bare surface) to increasing daytime lapse rates (grass, and short and tall 
trees). Land cover effects on lapse rate were significant (F=2141.24, P<0.001) in a one-
way ANOVA. 
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Figure 3.5 Air temperature lapse rate (ΔTa / Δsensor height) is negatively correlated to 
wind velocity for asphalt (R2=0.41, P<0.001) and bare surface (R2=0.32, P<0.01) land 
cover types, and positively related to wind velocity in short (R2=0.71, P<0.001) and tall 
(R2=0.64, P<0.001) tree land covers. There was not a significant relationship (P>0.05) for 
grass cover. Wind velocity was measured for a 24 hr period at each land cover (n=24). 
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Figure 3.6 Relative humidity lapse rate (ΔRH / Δsensor height) is negatively correlated 
to wind velocity for short (R2=0.54, P<0.001) and tall (R2=0.52, P<0.001) tree land 
covers. There were no significant relationships (P>0.05) for asphalt, bare surface, and 
grass covers. Wind velocity was measured for a 24 hr period at each land cover (n=24). 
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Figure 3.7 (a) Land surface temperature (LST) varied between land cover types, with the 
highest range in temperatures during mid-day. (b) Spatial coefficient of variation of land 
surface temperature (CV of LST) increased during the day for short and tall tree land 
covers, with relatively consistent levels for asphalt, bare surface, and grass land cover 
types.   
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Figure 3.8 Daily changes in the difference between air and land surface temperature (ΔT, 
Ta-LST) at 1.5 and 0.1 m over five land cover types (±SD) show different relationships 
among land cover types. While asphalt and bare surfaces have the greatest ΔT at 1.5 m 
during the day, grass, and short and tall tree land covers have the greatest ΔT at 0.1 m.  
Each data point corresponds to the average difference between mean Ta and LST 
calculated hourly for one day. The asterisk denotes significant differences (P<0.05) 
between 1.5 and 0.1 m ΔT values using a paired Student's t-test. 
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Figure 3.9 Air temperature lapse rate (ΔTa / Δsensor height) is negatively related to land 
surface temperature (LST) for asphalt (R2=0.65, P<0.001), bare surface (R2=0.81, 
P<0.001), and grass (R2=0.51, P<0.001) land cover types, and positively related to LST 
in short (R2=0.93, P<0.001) and tall (R2=0.90, P<0.001) tree land cover. LST was 
measured for a 24-hr period at each land cover (n=24).    
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Conclusions 

 

 The research presented in this dissertation found land use, land cover, vegetation 

composition and climate to be directly linked to biogeochemical cycles and 

microenvironmental conditions. At fine-scales I found Rs, an important measure of 

ecosystem functioning, was regulated by land use and seasonally specific organismal 

responses to microenvironmental conditions including temperature, moisture, and 

substrate levels. While at regional-scales, landscape position strongly regulated Rs. 

Bridging fine and regional-scale drivers of ecosystem functioning I found that 

heterogeneity in urban land cover drove patterns in vegetation cooling. Using a multi-

scale approach this dissertation explored the effects of interactive global change drivers 

on urban ecosystem processes.  

 In chapter 1 I found, from a combination of observational surveys and 

manipulative experiments, variation in physiological drivers linked to meter- and 

regional-scale patterns of Rs. I further found Rs responded non-linearly to changes in 

drivers, which resulted in higher variability when conditions in general reduced rates. The 

importance of soil moisture and substrate levels was magnified in water and substrate 

limited environments. In resource scarce environments the greater relative importance of 

biogeochemical hot spots may have created greater resource discontinuity and spatial 

variation in Rs. Ecosystems with the highest responses to water and substrate additions 

also had the greatest spatial variability in surveyed Rs. Fine-scale spatial variation in soil 

physiological drivers did not correlate with variation or absolute levels of Rs. Instead, 
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sites with mean VWC and SOM high enough to be on the flat part of physiological 

saturating response functions had less variable Rs, regardless of microsite variation in 

these drivers. In contrast, when soil water and substrates are low enough to fall within the 

dynamic ranges of the response functions, then microsite differences become important in 

determining Rs. In these conditions, small changes in soil moisture and substrate levels 

may have large consequences on the sensitivity of Rs to other physiological drivers. This 

evidence supports the hypothesis that Rs spatial variability is a consequence of limitations 

in soil moisture or substrate supply (Xu and Qi 2001). This systematic evaluation of 

physiological and landscape variation provides a key framework for understanding the 

effects of interactive global change drivers of land use and climate to ecosystem 

metabolism. 

 In chapter 2 I found, from an extensive observational network of microclimate 

sensors imbedded in urban environments, the greatest vegetation Ta cooling effects in the 

evening hours and in warmer cities. Additionally, vegetation cooling effects resulted in 

more daily and seasonal variation in high-vegetated areas which had a broader range of 

temperatures. Potentially offsetting cooling benefits, vegetation also increased RH and 

HI, although these effects were limited. Furthermore, in the coastal city hotter days were 

correlated with increases in spatial variation in Ta, supporting a T�a -Ta variability 

hypothesis, while in inland and desert cities spatial variation was likely regulated by wind 

velocity. Nighttime spatial variation in microclimate also differed among cities. In the 

inland city, hotter nights were associated with increases in spatial variation in Ta, 

exacerbating inequities in urban temperatures and potentially human heat-risks (Vargo et 



 136

al. 2016). Together these findings show that urban vegetation had consistent 

microclimate atmospheric cooling effects that primarily occur during the evening and are 

influenced by mesoclimate distributions and meteorological conditions. 

 In chapter 3 I evaluated vertical micro-scale atmospheric profiles and 

explicitly connected these to remotely sensed LST. I found land surface characteristics, 

from relatively simple bare surfaces to complex shading from trees, differ in their 

microclimate distributions and interactions. These findings empirically show that vertical 

variation can be as large as the differences between land covers as predicted from 

modeling studies (Taleghani et al. 2016). The large variation among land cover types in 

their vertical microclimate distributions is coupled to surface characteristics and is 

influenced by larger scale meteorological variation. My findings help develop better 

assessments of urban heat risk that consider both surface and air characteristics. With the 

rapidly expanding use of surface temperature measurements to assess heat vulnerability 

(Jenerette et al. 2016), my results show how remotely sensed temperature is connected to 

Ta through land cover specific vertical functions.  

 This dissertation explored the effects of interactive global change drivers of 

climate and land cover on urban ecosystem processes. The research I presented in chapter 

1 is important for improving biogeochemical models used at regional scales that 

increasingly rely on complex soil microbial and biophysical schemes (Zhang et al. 2012, 

Zhang et al. 2014). Furthermore, the research I presented in chapters 2 and 3 may be 

incorporated into policy assessments of heat vulnerabilities and mitigation strategies that 
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currently do not factor meteorological drivers of vegetation cooling, vertical Ta variation, 

and Ta-LST discrepancies (Georgescu et al. 2014, Vahmani and Ban-Weiss 2016). 
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