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Abstract

Polycystic ovary syndrome (PCOS) is one of the most frequent endocrinopathies, affecting 5–
10% of women of reproductive age, and is characterized by the presence of ovarian cysts, oligo,

or anovulation, and clinical or biochemical hyperandrogenism. Metabolic abnormalities such as

hyperinsulinemia, insulin resistance, cardiovascular complications, dyslipidemia, and obesity are

frequently present in PCOS women. Several key pathogenic pathways overlap between these

metabolic abnormalities, notably chronic inflammation. The observation that this mechanism was

shared led to the hypothesis that a chronic inflammatory state could contribute to the pathogenesis

of PCOS. Moreover, while physiological inflammation is an essential feature of reproductive events

such as ovulation, menstruation, implantation, and labor at term, the establishment of chronic

inflammation may be a pivotal feature of the observed reproductive dysfunctions in PCOS women.

Taken together, the present work aims to review the available evidence about inflammatory

mediators and related mechanisms in women with PCOS, with an emphasis on reproductive

function.

Key words: inflammation, PCOS, infertility, ovary, uterus.

Polycystic ovary syndrome phenotypes and

relation to metabolic features and inflammation

Polycystic ovary syndrome (PCOS) is a common, multifactorial,
and complex endocrine disorder, and the heterogeneity of signs and
symptoms in women with this syndrome presents a challenge for
its diagnosis [1]. For that reason, different diagnostic criteria have
been applied in various studies and at different times and are in
continuous debate [2]. The most widely used criteria, known as
the Rotterdam criteria, involve the presence of at least two of the
following three features (after exclusion of secondary causes): (1)
oligo-ovulation leading to oligomenorrhea, or anovulation leading to
amenorrhea, (2) hyperandrogenism: clinical (hirsutism, male pattern
alopecia, acne) and/or biochemical, (3) polycystic ovarian morphol-
ogy (PCOM) on ultrasound. Furthermore, the most recent effort

in the diagnosis of PCOS came in 2012 at the National Institutes
of Health workshop [3], and there was a general consensus to
propose the following categories of PCOS: androgen excess (AE) plus
ovulatory dysfunction (OD); AE plus PCOM; OD plus PCOM; and
AE plus OD plus PCOM.

Besides these categorizations, the etiology of PCOS is largely
unknown, and genetic and environmental factors, along with pre-
natal and peripubertal life events, such as obesity and endocrine
factors, appear to exert a major role [4] (FIGURE 1). Having this in
mind, adopting a diagnostic criterion highlights the possibility that
PCOS phenotypes differ in terms of insulin resistance (IR), obesity,
and long-term metabolic and reproductive risks [1]. In this sense, a
current issue is the high number of studies not reporting/covering
specific PCOS phenotypes, thus leading to controversies in the
relationship between obesity, IR, and PCOS. Obesity is frequently
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2 L. M. Velez et al., 2021

Figure 1. Proposed mechanisms of interactions between IR, hyperandrogenism and chronic inflammation in PCOS, and relation to reproductive outcomes.

Environmental and genetic factors may predispose to obesity. These risk factors in turn favor the establishment of hyperandrogenism and IR/hyperinsulinemia.

Cross-talk between IR and hyperandrogenism may recreate a welcoming environment to chronic inflammation. Finally, the combination and cross-talk of chronic

inflammation, IR and hyperandrogenism may drive many of the pathological reproductive outcomes in PCOS.

observed in PCOS women, and Lim et al. [5] showed that obesity
significantly worsened most of metabolic and reproductive outcomes
when compared to normal weight women with PCOS. Regardless,
both obese and lean women with PCOS are at increased metabolic
risk [6]. IR seems to be a central player in this matter, and despite
it is not considered for the diagnostic criteria, the majority of lean
and overweight women with PCOS have a form of IR intrinsic to
PCOS [1]. The compensatory hyperinsulinemia in response to IR
seems to drive many of the phenotypic features of PCOS. Hyper-
insulinemia promotes ovarian hyperandrogenism, which is present
in the majority of women with PCOS [1]. And together, high insulin
and androgen levels can disrupt follicle maturation; this is followed
by menstrual irregularity, anovulatory subfertility, and accumulation
of immature follicles and subsequent ovarian polycystosis [7].

It is important to point out that PCOS is considered a low-grade
inflammatory disorder, independently of the presence of obesity [8],
although obesity can exacerbate both metabolic and reproductive
outcomes [5]. In women with PCOS, chronic inflammation can
mediate the long-term cardiometabolic complications and comor-
bidities [6]. Moreover, the fact that differential expression of inflam-
matory genes was found in nonobese women with PCOS poses new
etiological considerations for the involvement of inflammation in
the onset of PCOS [9]. Particularly, chronic inflammation and its
interaction with IR and hyperandrogenism in PCOS women continue
to be investigated. A current hypothesis is that, in women with PCOS,
the cross talk between IR, hyperandrogenism, and chronic inflam-
mation creates a pathological environment that fosters the devel-
opment of further cardiometabolic disturbances [10]. The increase
in multiple markers of inflammation such as tumor necrosis factor-
alpha (TNFA) and C-reactive protein (CRP) in addition to increased
oxidative stress and endothelial dysfunction is the evidence that

PCOS is commonly coupled with low-grade systemic inflammation
[11]. Oxidative stress and inflammation markers are also positively
correlated with androgen levels in PCOS [12], although the precise
interactions between oxidative stress, IR, and inflammation remain
to be fully elucidated in PCOS women [13]. Of particular interest
for this review is our view that there is a need of studies specifically
designed to assess the impact of inflammation on reproductive
outcomes in women with PCOS.

Main circulating markers of inflammation

in PCOS

An extensive body of literature has established inflammatory
molecules as biomarkers of PCOS [11]. The first description of
this relationship was put forth by Gonzalez et al. [14], who
found increased concentrations of the cytokine TNFA, a well-
known inflammatory mediator, in the serum of lean women with
PCOS. In another pivotal study, Kelly et al. [15] found PCOS
correlated with elevated serum levels of CRP, an observation that
was verified by a large-scale meta-analysis [8]. CRP is an acute-
phase protein of hepatic origin, whose circulating concentrations
rise in response to inflammation [16], and is regulated by pro-
inflammatory cytokines such as TNFA and interleukin (IL)-6 [17].
Further, in women with PCOS, the levels of CRP, TNFA, and IL-6
correlate with IR, body weight, and fatty mass [18]. Overall, the
systemic inflammatory condition in PCOS women is maintained
by the continuous release of cytokines, endothelial factors, acute
phase proteins, and adipokines (see Table 1). However, as mentioned
in the previous section, taking into account the high incidence
of obesity in PCOS women, precautions exist when trying to
dissect the systemic inflammatory profile owing to PCOS from the
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Table 1. Inflammation-related risk factors in serum of PCOS.

Inflammation-related risk factor Finding in serum of PCOS. References included

Adiponectin Decreased levels in PCOS [10], IR-PCOS [19, 20], and obese PCOS women [21] comparing to
appropriate controls

CRP Increased plasma levels in PCOS women comparing to controls [22, 23]. Increased levels in obese PCOS
women comparing to lean control patients [24]. A systematic review revealed increased plasma levels in
PCOS women [8]

E-selectin Increased plasma levels in PCOS [22], non-IR-PCOS [25], and IR-PCOS [25] comparing to appropriate
controls

IFNg Increased levels in obese nonhyperandrogenic PCOS women comparing to obese and nonobese controls
[26]

IL-1b Increased plasma levels in PCOS women comparing to appropriate controls [27]
IL-1R Increased plasma levels in PCOS women comparing to controls [28]
IL-6 Increased plasma levels in PCOS [27–30], non-IR-PCOS [25], and IR-PCOS [25] comparing to

appropriate controls [29]
IL-7 Decreased plasma levels in PCOS comparing to appropriate controls [27]
IL-8 Increased plasma levels in PCOS women comparing to controls [30]
IL-10 Decreased levels in PCOS women comparing to controls [30]
IL-17 Increased plasma levels in PCOS women comparing to appropriate controls [28, 31]. Increased levels in

obese PCOS women without hyperandrogenism, comparing to obese and nonobese controls [26]
IL-18 Increased plasma levels in PCOS [32, 33], IR-PCOS [33], and obese PCOS [33] women comparing to

appropriate controls. Increased levels in obese nonhyperandrogenic PCOS women comparing to obese
and nonobese controls [26]

Leptin Increased fasting levels in PCOS women comparing to controls [34]
MCP1 Increased levels in PCOS women comparing to normal control women [23, 35] or women with

endometriosis or unexplained infertility [36]
MIF Increased levels in PCOS women comparing to control women [24, 35]
MMP2 Increased levels in PCOS women comparing to controls [37]
MMP8 Increased levels in PCOS women comparing to controls [38]
MMP9 Increased levels in PCOS women comparing to controls [39]
MPO Increased plasma levels in IR-PCOS and non-IR-PCOS women comparing to controls [25]
ROS production Increased total and mitochondrial ROS production by leukocytes from IR-PCOS and non-IR-PCOS

versus controls [25, 30, 40]
sICAM-1 Increased plasma levels in PCOS [22], non-IR-PCOS [25], and IR-PCOS [25] comparing to appropriate

controls
sVCAM-1 Increased plasma levels in PCOS and IR-PCOS [25] comparing to appropriate controls
TIMP1 Increased levels in PCOS women comparing to controls [37]
TNFA Increased plasma levels in PCOS [27, 29, 30], non-IR-PCOS [25], and IR-PCOS [25] comparing to

appropriate controls [29]
Visfatin A systematic analysis identified increased levels of Visfatin and an association with PCOS [41]

IFNg, interferon gamma; MCP1, monocyte chemoattractant protein-1; MIF, macrophage migration inhibitory factor; MPO, myeloperoxidase; ROS, reactive oxygen species; sICAM-1,
soluble intercellular adhesion molecule-1; sVCAM-1, soluble vascular cell adhesion molecule-1; TIMP1, tissue inhibitor matrix metalloproteinase 1.

obesity-related systemic inflammation. In the following sections, we
will expand the role of inflammation in the reproductive tissues of
women with PCOS.

Physiological and PCOS-related inflammation

in the ovary

Physiological inflammation in the ovary

In the ovaries, sex steroids and gonadotropins are largely responsible
for the dynamics of changes in the ovarian follicular development,
ovulation, and corpus luteum formation. These changes involve
inflammation as an essential feature, both in folliculogenesis and
ovulation [42]. Since the 1970s, it was known that inhibition of
the synthesis of the inflammatory mediator prostaglandins (PGs)
blocked ovulation in rats [43], and the same effect was observed in
other mammals, including human [44]. Later, many of the molecules

responsible for inducing the inflammatory cascade, including PGs,
cytokines, and leukotrienes, have been found in the ovary [45]. Just
before ovulation, a rise in gonadotropins induces an acute inflam-
matory reaction [46], leading to increased protease activity in the
granulosa and theca layers of follicles and consequent degradation
of the extracellular matrix (ECM) of the connective tissue in the
ovary [47]. Cytokines such as TNFA and IL-1 might be involved
in the process, by increasing levels of inflammatory PGE and PGF2
[48], which in turn act via PG receptors to upregulate essential
genes responsible for cumulus expansion, regulation of vascular
permeability, and degradation of ECM. These result in increasingly
intrafollicular pressure, with the subsequent rupture of the ovarian
surface epithelium (OSE) and release of the cumulus–oocyte complex
from the ovary [49].

Following ovulation, repair of the site is necessary to form a
functional corpus luteum. Infiltrating macrophages produce TNFA,
which acts in the proliferation and repairing of OSE cells [50].
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Besides TNFA, other cytokines including IL-1 [51], IL-6, and IL-
8, nuclear factors such as nuclear factor kappa B (NF-kB) [52],
the limiting enzyme of PG synthesis cyclooxygenase 2 (COX2),
PGs, leukocytes as well as growth factors participate in these pro-
cesses [53]. Inflammatory cytokines also enhance the steroidogenic
environment in granulosa cells (GCs) and OSE cells. This, in turn,
enhances adrenal cortisol levels, which facilitate the repair and
counteract the inflammatory response [52]. Although the mecha-
nistic pathway is unknown, the ovarian inflammatory mechanisms
may be linked to systemic markers of inflammation, since it was
shown that the levels of the inflammatory mediator CRP fluctuate
in the menstrual cycle, with a peak near ovulation [54]. Elevated
serum CRP concentration was found in women with three ovarian
follicular waves rather than the more common, two follicular waves
[54]. This study suggests that systemic CRP concentrations may
trigger changes in follicular dynamics, reinforcing the hypothesis of
a possible link between ovarian inflammation and systemic inflam-
mation.

Inflammation and ovarian function in PCOS

Inflammatory dysregulations are associated with infertility diseases
and, therefore, have been shown to affect ovarian function,
oocyte quality, and endometrium receptivity [55]. In PCOS
women, a chronic pro-inflammatory state along with insulin
dysregulations might contribute to the pathogenesis of functional
AE/hyperandrogenism through upregulation of the ovarian theca
androgen synthesis [56, 57]. We mentioned before the association
between circulating CRP and ovarian function. In PCOS women,
a seminal study showed increased levels of serum CRP levels,
independent of BMI [8]. One possible pathway by which systemic
CRP may impact ovarian inflammatory pathways is via receptors
in the specific subset of phagocytes located in ovarian tissue [58],
which is increased in PCOS ovaries and regulates the reproductive
inflammatory response [59]. Particularly on ovarian function in
PCOS, most studies come from GCs of follicular fluids from
women undergoing in vitro fertilization (IVF). Thus, owing to this
limited ovarian tissue availability, the ovarian functional link in
PCOS women remains partially elusive. From these studies, it was
shown that elevated concentration of ovarian PGs, TNFA, and
IL-6 [29, 60] correlate with an abnormal pattern of IL-12 and
IL-13 [61]. Also, the upregulation of ILs, TNFA, chemokine (C-
C motif) ligand 20 (CCL20), and COX2 in GCs of women with
this syndrome was shown [57, 62]. Interestingly, Zhao et al. [63]
proposed that WNT family member 5A (WNT5a) act as a pro-
inflammatory factor since the upregulated expression of ovarian
WNT5a in PCOS increased inflammation and oxidative stress via
the phosphatidyl inositol 3-kinase/AKT/NF-kB signaling pathway,
which in turn increased ovarian cytokine gene expressions of TNFA,
IL-s, chemokines, and CRP. In a similar approach, Adams et al.
described the ovarian GC pro-inflammatory pattern in PCOS
and proposed that intrafollicular androgens and cytokines may
comprise a local regulatory pro-inflammatory loop that regulates
GC expression of cytokines, chemokines, and the presence of
immune cells, although the molecular pathways remain to be
determined. They also proposed that obese PCOS patients can be
seen as a distinct ovarian PCOS subtype, since this subtype presented
the most pronounced increases in pro-inflammatory and immune-
related factors in GCs [57]. Also, the inflammatory profile of GCs
may be different to the ovarian stroma, since Schmidt et al. [62]
described a distinct pattern of differentially expressed inflammation-
related genes in the stromal versus GCs of PCOS women. In addition,

Qu et al. showed, in a culture of GCs, that hyperandrogenism
induces epigenetic alterations of important nuclear factors, which
may act in the regulation of the inflammatory process, such as
peroxisome proliferator-activated receptor gamma (PPARG) and
nuclear co-repressor [64]. Finally, it was shown that ovaries from
PCOS women had an increased number of macrophages and
lymphocytes immersed throughout, adding more evidence to the
hypothesis of a persistent and chronic ovarian pro-inflammatory
state in these women [59]. The evidence presented here supports
the presence of a pro-inflammatory persistent condition in women
with this syndrome, which may impact on the normal ovarian
function, impairing the synthesis and release of sexual hormones,
the follicular maturation, and the subsequent ovulation. Table 2
summarizes inflammatory mediators described in PCOS women
(see also FIGURE 1).

Physiological and PCOS-related inflammation

during menstruation

Physiological inflammation and menstruation

After ovulation, the levels of luteal progesterone increases, promot-
ing a series of changes in the endometrium to prepare the tissue
for an implanting conceptus, which includes inhibition of cellular
proliferation, DNA synthesis, and cellular mitotic activity, and the
onset of cellular differentiation [80]. Early inflammatory events are
triggered by progesterone during endometrial decidualization, which
involves the infiltration of leukocytes, and subsequent modifications
of the ECM and vascular permeability. The endometrium is a steroid
hormone-dependent tissue, where the growth and remodeling of its
cellular components respond to changes in circulating hormones
in normal ovulatory cycles [81] and, when pregnancy is absent,
is subject to disintegration and remodeling every menstrual cycle.
Seven to 10 days post ovulation, the endometrium becomes receptive
to embryonic implantation, in the so-called window of implanta-
tion. It represents the height of progesterone priming, in which
progesterone-induced decidualization of endometrial stromal cells is
a key step to allow successful trophoblast invasion [82].

In the absence of conception, endometrial tissue desquama-
tion and menstruation occur [55]. Progesterone withdrawal is cen-
tral to menstruation events, and molecular inflammatory pathways
identified include those associated with NF-kB, PGs, cytokines,
chemokines and matrix metalloproteases (MMPs) [55]. Particularly,
endometrial PGs have an active role in these endometrial events [83,
84]. Endometrial PG actions result in ischemia and subsequent tissue
necrosis and shedding [85]. Endometrial PGF2A and prostacyclin
(PGI2) are highest before the onset of menstruation and induce
cyclic blood vessel vasoconstriction and vasodilation, respectively
[86]. Moreover, the levels of PGF2A and PGE2 during the men-
strual cycle are regulated by the catabolic enzyme prostaglandin-
15-dehydrogenase (PGDH), which in turn is regulated by proges-
terone [86]. Following progesterone withdrawal, PGDH expression
declines to lead to a rise in the levels of PGs peri-menstrually [87].
Progesterone withdrawal allows the translocation of NF-kB into the
nucleus of endometrial cells, which in turn activates transcription
of various cytokine genes, COX2 enzymes, and PGF2A production
[86]. This effect induces a substantial influx of inflammatory-type
leukocytes in response to chemoattractant cytokines and chemokines
[86]. Activation of this type of leucocytes favors cellular interactions,
which in turn are important for inducing MMPs expression and
matrix degradation [55]. This is further enhanced by the action of
PGE2 on the blood vessels to induce capillary leakage [86]. Thus,
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Table 2. Inflammation-related risk factors and ovarian function in PCOS.

Inflammation-related risk factor Ovarian function finding in PCOS. References included

CCL-2/MCP1 Decreased gene expression in ovaries from PCOS women [62]. Aberrant ovarian expression in a prenatal
PCOS-model [65]

CCL-20 Increased gene expression in GCs of lean and obese PCOS women [57, 66]
CD45/PTPRC Decreased expression in ovarian stroma of PCOS women [62]. Increased expression in GCs from PCOS

women [57]
COX2 Increased gene expression in GCs of PCOS women [62]. Aberrant expression in a culture of GCs derived

from nonobese PCOS women comparing to controls [67]
CXCL-1 Increased gene expression in GCs from obese and normal weight PCOS women [57, 65] versus controls.

Differential GC expression associated with oocyte maturation and embryo quality in PCOS women [68]
G-CSF Decreased protein levels in FFs from PCOS women associated with poor embryo quality [69]
HDAC3 Increased gene expression in GCs from hyperandrogenic PCOS women comparing to

nonhyperandrogenic PCOS, and increased expression associated with failed pregnancy [64]
IL-12 Decreased protein levels in FFs from PCOS women, and protein expression correlated with T lymphocyte

numbers in FFs [61]
IL-13 Decreased protein levels in FFs from PCOS women, and protein expression correlated with T lymphocyte

numbers in FFs [61]
IL-1B Increased gene expression in GCs of PCOS women [62]. Ovarian expression associated with ovarian

function and pathophysiology in PCOS women and models [70]
IL-1R1 Decreased gene expression in ovaries from PCOS women [62]. Ovarian expression associated with

ovarian function and pathophysiology in PCOS women and models [70]
IL-6 Increased protein levels [29, 71] and gene [57] expression in FFs of PCOS women
IL-8 Increased gene expression in GCs of PCOS women [57, 62] Decreased expression in ovaries from PCOS

women [62]
IL-10 Increased protein levels in FFs of PCOS women [71]
LIF Decreased protein levels in FFs of PCOS women [72]. LIF levels in FFs may predict IVF outcome [72].

Increased gene expression in GCs of PCOS women [62]
MMP-2 Increased protein levels in FFs and GCs from PCOS women comparing to controls [73]
MMP-9 Increased protein levels in FFs and GCs from PCOS women comparing to controls [73]
NCOR1 Increased gene expression in GCs from hyperandrogenic PCOS women comparing to

nonhyperandrogenic PCOS, and increased expression associated with failed pregnancy [64]
NOS2 Decreased expression in ovaries from PCOS women [62]. Increased gene expression in GCs of PCOS

women [62]
PGE2 Increased levels and release from FFs of nonobese PCOS women comparing to control [60, 67, 74]
PGF2 Increased levels and release from FFs of nonobese PCOS women comparing to controls [67]
15-d-delta 12,14-PGJ2 Increased levels and release from FFs of nonobese PCOS women comparing to control [67]
PPARG Decreased gene expression in GCs from hyperandrogenic PCOS women comparing to

nonhyperandrogenic PCOS, and decreased expression associated with failed pregnancy [64]. Aberrant
expression in GCs from PCOS women and PCOS models [75, 76]

RUNX2 Aberrant expression in FFs and GCs may predict IVF outcome in PCOS women [68, 77]. Decreased gene
expression in ovarian stroma from PCOS women [62]

TIMP1 Decreased expression in FFs from PCOS women compared to controls [78]. Decreased gene expression in
ovarian stroma from PCOS women [62]

TNFA Increased gene expression in GCs [57] and protein levels in FFs of PCOS women [29, 71]. Increased FFs
levels associated with IVF outcome in PCOS women [69, 79]

WNT5A Increased gene expression in GCs of PCOS women. WNT5A upregulation in GCs increased
inflammation-related genes and ROS species [63]

CCL-2/MCP1, chemokine (C-C motif) ligand 2/monocyte chemoattractant protein 1; CCL-20, chemokine (C-C motif) ligand 20; CD45/PTPRC, cluster of differentiation 45 antigen/protein
tyrosine phosphatase, receptor type, C; COX2, cyclooxygenase 2; CXCL-1, chemokine (C-X-C motif) ligand 1; GC, granulosa cell; G-CSF, granulocyte colony-stimulating factor; FF,
follicular fluid; HDAC3, histone deacetylase 3; NCOR1, nuclear receptor co-repressor 1; NOS2, nitric oxide synthase 2; PGE2, prostaglandin E2; PGF2, prostaglandin F2; PGJ2,
prostaglandin J2; ROS, reactive oxygen species; RUNX2, Runt-related TF 2; TIMP1, tissue inhibitor matrix metalloproteinase 1; WNT5A, Wnt family member 5A.

when pregnancy is absent, the endometrium is cyclically exposed to
an inflammatory-like mechanism [88].

Inflammation and menstruation in PCOS women

PCOS is one of the most common causes of menstrual irregular-
ities, and it can present with amenorrhea and dysfunctional uter-
ine bleeding [89]. Since anovulatory or oligo-anovulatory PCOS
women present chronic estrogen exposure or an abnormal capacity
to synthesize progesterone, they are in a state of chronic unopposed

estrogen action and do not undergo regular progesterone withdrawal
endometrial bleeding [80]. The lack of progesterone cyclicity may
play an important role, not only in menstrual irregularities but also
in gonadotropin and androgen secretion in these women [80]. In
that sense, elevated endometrial AR expression was found in women
with PCOS [90]. In these women, there is a relatively constant
circulating level of estradiol (E2) similar to the early follicular phase,
due in part to increased peripheral conversion of androstenedione to
estrone and insulin downregulation of sex hormone-binding globulin
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[80]. As a result, systemic free E2 and testosterone are elevated.
Chronic estrogen exposure leads to a thickening of the endometrium
with irregular, unpredictable shedding, and bleeding [80]. More-
over, there is evidence of the existence of progesterone resistance
(decreased responsiveness of target tissues to bioavailable proges-
terone) in PCOS endometrium, which alters the expression of several
progesterone-regulated genes [91]. This, in turn, could explain the
lack of progesterone-induced changes in the endometrium in these
women. Further evidence of the causal hypotheses comes from
endometriosis, in which there is a loss of progesterone signaling in
eutopic and ectopic endometrial tissues [92]. Maternal and neonatal
“preconditioning” was postulated, where progesterone resistance is
established in the newborn [93]. Another hypothesis points out the
link between progesterone resistance and inflammation. Increased
levels of pro-inflammatory cytokines, and particularly increased NF-
kB expression, downregulate progesterone receptor (PR) expression
and progesterone action, thereby establishing a chronic endometrial
pro-inflammatory state [93]. In PCOS women, the lack of pro-
gesterone withdrawal alters menstrual inflammatory mechanisms
through cytokine and PGs production, with the consequent absence
of the influx of leukocytes into the endometrium and altering the
production of chemokines and MMPs, disrupting the physiological
tissue degradation [81]. In that sense, Piltonen et al. showed that
different endometrial cell populations in PCOS women present
different levels of inflammatory genes, with dysregulation of some
inflammatory genes such as chemokine ligand 2 (CCL2), IL-6,
and TNFA-induced protein 6 (TNAIFP6) in epithelial endometrial
cells. Conversely, they found upregulation of inflammatory genes
CCL2, intercellular adhesion molecule (ICAM1), and TNFA-induced
protein 3 (TNFAIP3) in endometrial stromal fibroblasts [94]. Dys-
regulations in the physiological and timely secretion of inflam-
matory cytokines, prostanoids, and angiogenic/permeability factors
may exert key roles in menstrual dysfunctions observed in PCOS
women. This hypothesis is reinforced considering that menstrual
dysfunction disorders were associated with the deregulation of local
inflammatory mediators [81]. See Table 3 for a summary of uterine
PCOS (also see FIGURE 1).

Physiological and PCOS-related inflammation

in the implantation process

Physiological implantation and placentation

There is a controlled balance between pro- and anti-inflammatory
mechanisms in the establishment of a receptive endometrium (“win-
dow of implantation”) and embryo-endometrium communication;
any deviation of this balance is detrimental to the successful
implantation and pregnancy outcome [112]. During this receptive
period, the human endometrium is primed for blastocyst attachment,
as it has reached a particular morphological and functional state
[112]. If implantation occurs, the decidualization of endometrial
cells begins during the secretory phase and increases throughout the
endometrium [82]. An increased number of molecular mediators
have been identified so far, which are involved in the initiation
of early fetal-maternal interactions, including adhesion molecules,
immune cells, cytokines, and growth and transcription factors [113].

IL-6 family members (including leukemia inhibitory factor (LIF),
IL-11, and IL-6), IL-1, and TNFA, in particular, have emerged
as candidate genes responsible for activation and regulation of
the pro-inflammatory cascade at the fetal-maternal interface
[114]. Receptors for these cytokines are localized at endometrial

implantation sites and expressed by several cell types [114]. These
early pro-inflammatory cytokines activate the expression of other
cytokines, as well as chemokines, COX enzymes, and PGs [115],
and may play important roles regulating implantation efficiency
[116]. Chemokines such as CCL4, CCL7, and CCL13 recruit
distinct leukocyte subpopulations such as macrophages, T cells,
and uterine natural killer cells present in the decidua, especially at
the sites of trophoblast invasion, which interact with the allogeneic
placenta [114]. Particularly, T cell-derived cytokines may act in the
regulation of fetal allograft survival. Th1-type cytokines promote
allograft rejection, whereas the production at the fetal-maternal
interface of Th2-type cytokines such as IL4 and IL10 inhibits the
Th1 responses and improves fetal survival [117]. Progesterone may
play a major role in regulating (Th1/Th2)-type cytokine balance
[118], through the progesterone-induced blocking factor (PIBF), a
mediator that exerts substantial anti-abortive activities [119]. PIBF
inhibits arachidonic acid liberation—that is converted into PGs by
COX enzymes—and modulates the profile of cytokine secretion
resulting in an increase in the production of noninflammatory
ILs associated with Th2 responses (e.g., IL-3, IL-4, and IL-10)
and a reduction in the production of inflammatory cytokines
associated with Th1 responses (e.g., interferon-δ, TNFA, and IL-
2) [119]. PGs also have an important role during implantation of the
blastocyst and decidualization [120], influencing the luteal function
(luteotrophic/antiluteolytic signals) [83]. PGs are elevated in areas
of increased endometrial vascular permeability associated with the
initiation of implantation [121]. Pharmacological inhibition of PGs
delays or inhibits the localized increase in vascular permeability and
implantation [122], and mice with COX2 ablated have multiple
reproduction abnormalities including retarded decidualization
[123]. Although the type(s) and roles of PGs and receptors involved
in human embryo implantation are not fully understood [120],
PGF2A may act as a pro-inflammatory and vasoconstrictor uterine
PG that initiates the luteolytic process [124] in the absence of
pregnancy, whereas PGE2 exerts luteotrophic action [49] leading
to maintenance of corpus luteum function.

Inflammation dysfunction during implantation

and early pregnancy in PCOS women

Proliferation, migration, and invasion of trophoblastic cells into
the maternal endometrium are essential steps, and failure of
any of these due to endometrial dysfunction in women with
PCOS may contribute to fertility dysfunction [94, 95]. Infertility
in PCOS women mostly derives from chronic anovulation and
implantation failure, leading to complications in achieving preg-
nancy in women with this disorder [80]. Ovulation is generally
successful after medical induction, but the implantation rate
remains lower and the early pregnancy loss rate is augmented
in PCOS women [125]. The abnormal endometrial milieu in
PCOS women may contribute to adverse pregnancy outcomes
through hormonal, metabolic, and inflammatory mechanisms
[125]. The endometrium of PCOS women presents an altered pro-
inflammatory cytokine profile, chemokine, and MMPs compared
to healthy women [80, 95]. In this sense, increased TNFA levels
in the follicular fluids of women with PCOS correlated with
poor quality oocytes and reduced rates of fertilization, embryonic
development, and pregnancy outcome [69]. Elevated IL-6 is
frequently found in altered cytokine profile characteristics of
unexplained infertility, recurrent miscarriage, preeclampsia, and
preterm delivery [126]. Piltonen [95] et al. also found, in isolated
endometrial stromal fibroblasts from PCOS women, altered levels of
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Table 3. Inflammation-related risk factors in uterus/endometrium of PCOS.

Inflammation-related risk
factor

Uterine/endometrial finding in PCOS. References included

CCL2/MCP1 Increased secretion by endometrial fibroblasts was associated with abnormal decidualization [95]. Aberrant
expression in the endometrium of a combined PCOS+Insulin model [96]. Increased expression in different cell
populations from proliferative-phase endometrium of obese PCOS women, versus obese controls [96]

CCL5 Increased secretion by endometrial fibroblasts was associated with abnormal decidualization [95]. Aberrant
expression in the endometrium of a combined PCOS+Insulin model [96]

COX2 Reduced expression in endometrium from patients with recurrent implantation failure (including PCOS patients)
[84]. Aberrant expression in the uterus at implantation sites, in PCOS models [97, 98]

cPLA2a Reduced expression of cPLA2a in endometrium from patients with recurrent implantation failure (including
PCOS patients) [84]

E-Cadherin Increased expression in secretory-phase endometrium of PCOS, versus control patients [99]
GM-CSF Increased secretion by endometrial fibroblasts was associated with abnormal decidualization [95]
Hif1A Decreased gene and protein expression in endometrium of PCOS women, comparing to control patients [100]
HOXA-10 Decreased expression in midsecretory or proliferative-phase endometrium of PCOS women, versus control

[101–103]. Increased endometrial expression in PCOS women after laparoscopic ovarian drilling [103]
HOXA-11 Decreased expression in midsecretory or proliferative-phase endometrium of PCOS women, versus control [1042,

103]. Increased endometrial expression in PCOS women after laparoscopic ovarian drilling [103]
HSPB1 Identified as possible proteomic biomarkers for PTB in PCOS [104, 105]
ICAM-1 Lower expression in proliferative-phase endometrium of PCOS women versus control patients [99]. Increased

expression in different cell populations from proliferative-phase endometrium of obese PCOS women, versus
obese controls [94]

IL-6 Increased secretion by endometrial fibroblasts was associated with abnormal decidualization [95]. Increased
expression in different cell populations from proliferative-phase endometrium of obese PCOS women, versus
obese controls [94]. Increased uterine gene expression in a PCOS-model [106]

IL-8 Increased expression in different cell populations from proliferative-phase endometrium of obese PCOS women,
versus obese controls [94]. Increased secretions by endometrial fibroblasts were associated with abnormal
decidualization [94, 95]

LIF Decreased expression in midsecretory or proliferative-phase endometrium of PCOS women, versus control [102].
Lower expression in PCOS secretory endometrium versus control patients, from a DNA microarray analysis [91]

L-Selectin Lower immunoexpression in secretory-phase endometrium of PCOS women, versus control patients [99].
Increased immunoexpression in endometrium of women with PCOS or endometriosis [107]

MMP2 Increased secretion in endometrial fibroblasts associated with abnormal decidualization [95]. Increased uterine
gene expression in a PCOS model [106]

MMP3 Increased secretion in endometrial fibroblasts associated with abnormal decidualization [95]. Increased uterine
gene expression in a PCOS model [106]

NF-kB Increased expression in endometrium of obese PCOS women [108]
PGE2 Decreased uterine secretion in PCOS model [109]
PGF2 Increased uterine secretion in a PCOS-model [98, 110]
PIBF Decreased expression in the uterus at implantation sites, in a PCOS model [98]
S100P Lower expression in PCOS secretory endometrium versus control patients, from a DNA microarray analysis [91].

Lower expression in the endometrium of obese PCOS women with no luteal phase [111]
sPLA2a Increased expression in endometrium from patients with recurrent implantation failure (including PCOS patients)

[84]
TNFA Increased uterine gene expression in a PCOS model [106]. Increased expression in endometrium of obese PCOS

women [108]
TNFR Aberrant expression in endometrium of obese and normal weight PCOS women [108]
TNFAIP3 Increased expression in different cell populations from proliferative-phase endometrium of obese PCOS women,

versus obese controls [94]. Increased uterine gene expression in a PCOS model [106]
TNFAIP6 Increased expression in different cell populations from proliferative-phase endometrium of obese PCOS women,

versus obese controls [94]
Transferrin Identified as possible proteomic biomarkers for PTB in PCOS [104]
VEGF Lower gene and protein expression in endometrium of PCOS women, comparing to control patients [100]
Vimentin Identified as possible proteomic biomarkers for PTB in PCOS [104]. Increased expression in proliferative-phase

endometrium of PCOS women [105]

CCL-2/MCP1, chemokine (C-C motif) ligand 2/monocyte chemoattractant protein 1; CCL5, chemokine (C-C motif) ligand 5; COX2, cyclooxygenase 2; cPLA2a, cytosolic phospholipase
A2; GM-CSF, granulocyte-colony stimulating factor; Hif1A, hypoxia-inducible factor 1-alpha; HOXA10, Homeobox A10; HOXA11, Homeobox A11; HSPB1, heat shock protein b 1;
ICAM-1, intercellular adhesion molecule 1; PGE2, prostaglandin E2; PGF2, prostaglandin F2; PIBF, progesterone-induced blocking factor 1; PTB, preterm birth; S100P, S100 calcium-
binding protein P; sPLA2a, secretory phospholipase A2; TNFR, tumor necrosis factor receptor; TNAIFP3, TNFA-induced protein 3; TNFAIP6, TNFA-induced protein 6; VEGF, vascular
endothelial growth factor.
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inflammatory markers such as IL-6 and 8, monocyte chemoat-
tractant protein-1, and granulocyte-macrophage colony-stimulating
factor. Further evidence comes from a murine PCOS model in which
endometrial tissue presented an altered immune, oxidative, and
apoptotic state [98]. There was a lack of expression of the known
immunological mediator of progesterone, PIBF, together with an
increase in COX2 expression, both on implantation sites [98].
Moreover, low serum and uterine PIBF concentrations of pregnant
women suggest a risk for spontaneous pregnancy termination
[127], and blocking PIBF during implantation in mice impaired
the inflammatory profile along with increased resorption rates in
later pregnancy [128]. Defective expression of COX enzymes and
PG production may contribute to poor endometrial receptivity for
embryo implantation. This is, in part, attributed to endometrial
PG synthesis being altered in women with several pathologies who
have experienced repeated IVF failure, including PCOS women [84].
In that sense, Li et al. [129] found in follicular fluids of PCOS
women, altered levels of several arachidonic acid metabolites, and
derived prostanoids, including PGE2 and PGF2A. Also, increased
endometrial levels of PGF2A and decreased levels of PGE2 were
found in a PCOS murine model [109]. In addition, the endometrium
of PCOS women presents an altered expression of homeobox genes,
particularly HOXA-10 [81, 101], a gene essential for endometrial
receptivity [101]. HOXA-10 has been identified as a mediator of
progesterone-controlled expression of the PG receptors E-series
prostanoid (EP)3 and EP4 [130]. In that sense, mice lacking HOXA-
10 gene presented abnormal regulation of progesterone-regulated
genes, i.e., progesterone resistance [130]. In women with PCOS,
elevated endometrial concentrations of androgens may prevent or
delay the timing of HOXA-10 gene activation [101]. Interestingly, the
ovarian drilling employing laparoscopy increases the expression of
HOXA-10 and HOXA-11 and improves the endometrial receptivity
in PCOS women [103]. It has been shown that cytokines such
as IL-1B and coagulation factors such as thrombin regulate the
endometrial HOXA-10 expression [131].

Another important cytokine involved in the implantation pro-
cess is LIF [121]. In the endometrium of PCOS women, Savaris
et al. [91] found an association between progesterone resistance
and downregulation of LIF expression. Deregulation of endome-
trial LIF expression has been proposed as a possible marker of
unexplained infertility and repetitive failures of implantation [132].
Moreover, in PCOS and control women, increased levels of LIF
were associated with increased rates of successful implantation after
IVF [72]. Altogether, aberrant expression of cytokines, LIF, HOX
genes, particularly HOXA-10, and progesterone dysfunction (i.e.,
progesterone resistance and PIBF expression), might be implicated
in the pathological endometrial alterations and implantation failure
in PCOS women. Table 3 provides a summary of inflammatory
mediators in PCOS (see also FIGURE 1).

Physiological inflammation in parturition

and preterm birth in PCOS

Physiological inflammation in parturition

and preterm birth

During physiological parturition, there is a massive neutrophil
and macrophage influx into the myometrium and cervix, which
along with fetal membranes, all release pro-inflammatory cytokines
[133]. Although the signals that drive the inflammatory mechanism
before parturition are largely unknown, a “functional” progesterone

withdrawal before parturition has been proposed, which is initiated
by an inflammation-induced trans-repression of PR by nuclear
factor NF-kB [134]. Another possible mechanism explaining the
apparent loss of progesterone sensitivity at term is the catabolism
of progesterone in the uterus into inactive compounds along with
alterations of PR levels [134]. The release of progesterone dominance
allows for increased E2 sensitivity within the uterus, which in turn
increases the expression of contractility-associated genes, such as
COX2, connexin-43, and release of pro-inflammatory cytokines that
may play a major role via stimulation of myometrium contractions
[134]. The inflammatory mechanism leading to parturition might
involve the initiation of stimuli signaling via Toll-like receptors,
which results in PG and MMP production in addition to leukocyte
invasion into reproductive tissues, and culminating in myometrial
contractility, rupture of membranes, and cervical ripening, followed
by parturition [55]. Cytokines like IL-1B might have an important
role in these mechanisms, since IL-1B administration induces preterm
labor in mouse models [135] via stimulation of MMPs and is likely
involved in the process of collagen breakdown during cervical
ripening and in the early phases of parturition [136]. Progesterone
withdrawal may also affect the levels of PIBF, which have been
found to modulate cytokine production from women with recurrent
miscarriage or preterm birth (PTB), inducing a Th1–Th2 cytokine
profile shift [137].

Inflammation in parturition and preterm birth in PCOS

Women with PCOS have increased risk of PTB and other pregnancy
and neonatal complications [138, 139], and the presence of hyper-
androgenism, inflammation, obesity, and IR may contribute to the
higher risk of obstetric and neonatal complications in these women.
In that sense, Palomba et al. [138] showed that PCOS women present
a systemic chronic low-grade inflammatory state during pregnancy,
comparing to healthy controls, and this finding was significantly
associated with a higher risk of adverse obstetric/neonatal outcomes.
In a systematic review study, Galazis et al. [104] identified some
protein biomarkers of PTB in PCOS women, including Transferrin,
Vimentin, and heat shock protein B1, and these biomarkers were
highly associated with oxidative and pro-inflammatory mechanisms
in these women. To gain insight into the understanding of PTB,
Schatz et al. [82] have examined endometrial tissues from women
in preterm labor. In that sense, cellular and molecular derangements
in the decidualized endometrium have been associated with PTB
[82]. Adverse pregnancy outcomes may be related to a pathological
decidual hemorrhage, consequence of an excess of local thrombin
production. The excess of thrombin generation may enhance decid-
ual cell MMPs, neutrophil infiltration, and downregulation of PR
expression, which are mirrored by TNFA and to a lesser extent by
IL-1, linking inflammatory conditions to preeclampsia, promoting
the so-called Preterm Premature Rupture of Membranes and/or PTB
[82]. Regardless, the etiology of PTB and pregnancy complications in
PCOS women is largely unknown, and a need for studies exploring
etiologies and strategies to improve pregnancy outcomes in these
women is evident. Table 3 summarizes the inflammatory mediators
and risk factors identified in uterine tissue in PCOS women and/or
animal models (see also FIGURE 1).

Anti-inflammatory markers and mediators

in PCOS

We mentioned previously that, given the cyclic nature of repro-
duction, anti-inflammatory mechanisms regulate and resolute
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physiological reproductive inflammation and are also targeted
in the treatment of chronic inflammatory disease. Besides pro-
ducing inflammatory PGs, COX enzymes also produce several
other prostanoids, including PGD2 and 15-Deoxy-delta-12_14-
prostaglandin-J2 (15d-PGJ2), which might play an active role in the
resolution of physiological inflammation [140]. PGD2 suppresses
pro-inflammatory cytokine production and, in the placenta, inhibits
IL-6 and IL-8 production [141]. In addition, 15d-PGJ2 inhibits
NF-kB signaling and downregulates COX2 and TNFA expression
in cultured trophoblasts [142] and in LPS-stimulated amnion,
choriodecidual, and placental cells in vitro [143]. Conversely,
recent evidence from Li et al. showed increased levels of 15d-
PGJ2 and PGD2 in follicular fluids of PCOS women, so there
is a need for further studies accounting for the precise role of
these PGs during reproductive events in PCOS women [129]. 15d-
PGJ2 also serves as a natural ligand for peroxisome proliferator-
activated receptors (PPARs) [144], especially the gamma isoform
(PPARG), which is extensively expressed in gestational tissues [145].
PPARG might play key roles in both the regulation of metabolic
pathways (carbohydrate, lipid, protein) and the pathophysiology
of inflammatory responses [146]. Activation of PPARs inhibits
inflammatory response genes (including COX2, IL-2, IL-6, IL-8,
TNFA, and MMPs) by repressing NF-kB signaling pathways [147].
In the ovary, PPAR gamma is downregulated in response to LH
stimulation in physiological conditions, further implicating this
transcription factor as an anti-inflammatory receptor mediator
[148]. In this regard, in PCOS women and animal models, it was
shown that synthetic PPARs activators reduce circulating levels of
pro-inflammatory mediators such as CRP, along with a reduction in
ovarian/adrenal androgen levels [149, 150]. The use of synthetic
PPARG agonists in adult women with PCOS indeed improves
metabolic and reproductive profiles, although there are serious
concerns that the overall risks of these drugs exceed their benefits
[151].

Natural activators of PPARs are found in nutrients and bioactive
compounds that are ingested with diet, such as polyunsaturated fatty
acids (PUFAs), which exert anti-inflammatory actions by binding
PPARs and also by acting as competitive inhibitors of inflammatory
PGs [152]. PUFAs, particularly those of the n-3 and n-6 families, are
perhaps the most potent fatty acid regulators of metabolic function
and are implicated in a diverse range of processes in vivo [153].
The current evidence establishes that omega-3 PUFAs promote the
generation of the 3-series PGs (such as PGE3 and PGF3A), which
are categorized as anti-inflammatory, while omega-6 PUFAs are
precursors to pro-inflammatory PGs [154]. Recently, Chiu et al.
[155] showed that higher serum long-chain omega-3-PUFA levels
may improve reproductive outcomes in women undergoing infertility
treatment. Furthermore, in PCOS women, dietary consumption of
PUFAs, particularly those of the n-3 series, has beneficial effects
lowering androgens, lipid levels, and inflammatory markers [156].
Moreover, Wathes et al. found that PUFA-induced anti-inflammatory
effects in the ovary may be mediated in part by an increase in
the production of PGE1, a competitive inhibitor of PGE2 synthesis
[157]. Also, it was shown that PUFAs may exert some of their anti-
inflammatory effects via PPARG activation [158].

Finally, there are endogenous protein hormones with known anti-
inflammatory effects. In line with this, the adipocytokine adiponectin
regulates insulin sensitivity and may be an important predictor of the
metabolic syndrome in PCOS women [159], and it has been shown
to exert anti-inflammatory effects [160]. Receptors for adiponectin
are expressed in the epithelial and stromal cells of the endometrium

with expression levels of the receptors peaking during the window
of implantation [161]. In this regard, adiponectin has been shown
to inhibit endometrial IL-1B-induced expression of IL-6 and IL-8,
suggesting that adiponectin signaling plays a role in regulating pro-
inflammatory pathways during implantation [161]. Accordingly,
PCOS women present low levels of circulating adiponectin, even
when adjusted by BMI [159].

Conclusions

The present work is intended to provide current evidence avail-
able regarding inflammatory mediators and risk factors in PCOS
women, with special emphasis on reproductive function. This is a
complex and multifactorial endocrine disorder, and women with
PCOS frequently present reproductive abnormalities along with IR,
cardiovascular complications, dyslipidemia, and obesity. Notably,
chronic inflammation overlaps these comorbidities in these women
(see FIGURE 1). Although we were not intended to discuss in detail
the inflammatory setting as a cause or consequence of PCOS, data
presented here showed that PCOS women present a permanent
and altered profile of inflammatory markers in circulation and
reproductive tissues, impairing follicular maturation, and subsequent
ovulation. Even if ovulation succeeds, there is a high rate of implan-
tation failures, early pregnancy loss, and pregnancy complications in
PCOS women, and the establishment of a chronic pro-inflammatory
profile might have a pivotal role in these reproductive derangements.
On the other hand, there is a need for a better understanding of the
inflammatory alterations in women with PCOS, to dissect physiolog-
ical versus pathological inflammatory mechanisms in reproductive
functions, which could have implications in the pharmacological and
therapeutic approach in women with this syndrome. Ongoing and
future studies in human and animal models are expected to shed light
on the reproductive dysfunctions of women with PCOS, thus helping
to develop tools to improve reproductive health in these patients.
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