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Abstract of the Dissertation

Essays on Return Predictability in Financial
Markets

by

Chan Rathana Mang

Doctor of Philosophy in Economics

University of California, Los Angeles, 2012

Professor Aaron Tornell, Chair

My thesis examines return predictability in government bond markets and cur-

rency markets. In Chapter 1, I take the term structure model in Cochrane and

Piazzesi (2008) and construct currency market prices. The implied currency mar-

ket prices are then counterfactually volatile and predictable, at least with respect

to commonly used predictor variables. Getting the model closer to currency mar-

ket data means reducing bond risk compensation but doing so nearly eliminates

predictability in bond markets. One way to generate sensible time-variation in

bond and currency risk-premia allows the volatility of returns to be time-varying.

In Chapter 2, I test to see if alternative forecast rules perform better than the

return-forecasting factor of Cochrane and Piazzesi (2008). I compare forecasts

assuming all historical data is available to recursively made ones that are revised

with the arrival of news. Di¤erences in the two forecast rules systematically move

with realized bond risk-premia and forecast mean yield curve levels and short-term

interest rates one year ahead not just for the U.S., but also for government bond

markets of other industrialized economies. I show that lower long-term rates rela-

tive to short-rates in 2004-2005 is consistent with an expected a decline of interest

rates by market participants. In Chapter 3, I show that cross-sectional average of

the spread in the return-forecasting factor of Cochrane and Piazzesi (2005, 2008)
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can forecast currency risk-premia. However, the return-forecasting factor spread

consistent with real-time data does not forecast currency risk-premia. I also �nd

that exchange rate changes have a predictable component that is detected by the

information gap, what I call the hidden FX market factor, between forecasts that

takes as given the full sample of data and those consistent with real-time avail-

ability. This information gap also forecasts currency risk-premia. Controlling for

large and transitory exchange rate changes using this information gap make inter-

est rate di¤erentials between the average foreign country and the U.S. positively

correlated with dollar appreciation rates, delivering the right sign predicted by

uncovered interest parity.
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CHAPTER 1

Uncertain Risk and Return in Bond Markets, I

1.1 Introduction

I take the term structure model in Cochrane and Piazzesi (2008) and construct

currency market prices to see if they are consistent with predictable returns in

bond and foreign exchange markets. I �nd that the predictable component in

currency markets using bond risk prices from their model is substantially larger

than commonly employed predictor variables imply. In doing so, I investigate

the foreign exchange market implications of linear factor models that capture a

sizable predictable component in bond risk-premia. My results suggest that linear

factor models require modi�cation before they are capable of jointly capturing

predictable bond and currency risk-premia.

I document several �ndings in this paper. After running similar regressions as

those performed in Cochrane and Piazzesi (2005), I �nd that bond risk-premia are

as predictable in industrialized countries as they are in the U.S. I then determine

whether the mentioned authors�term structure model can deliver an empirically

consistent view of exchange rates and interest rates across countries. I �nd that

it cannot. The model is unable to do so because the discount factor used to cap-

ture time-variation in bond returns lead to incredible currency market prices. I

pinpoint the underlying reasons why the model is unable to describe key features

of currency market data and highlight how the amount of return predictability

can directly be linked to variation in market risk prices. Long story short, there
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is strong circumstantial evidence that the volatility of returns is time-varying be-

cause admitting that there is not much predictability at all is inconsistent with

empirical evidence in international bond markets. Unfortunately, the model spec-

i�cation necessarily rules out time-varying volatility.

Conditionally heteroskedastic returns can generate more sensible movements

in both the pricing kernel and conditional Sharpe ratios, but it is also worth

considering the possibility that the amount of measured predictability cannot be

attributed to the risk factors in the stochastic discount factor alone. Later in

the paper, I will discuss other avenues that can generate the amount of measured

return predictability.

Amidst the diverse set of approaches, I choose the four-factor a¢ ne term struc-

ture model of Cochrane and Piazzesi (2008) as the foundation of my analysis

because it incorporates key information in forward rates that have been shown

to forecast well expected returns in bond markets. Among the industrialized

countries under study, the term structure of interest rates displays similar co-

movement. Thus, international comparisons may uncover useful results and reveal

global forces a¤ecting bond and currency risk-premia.

The results of my paper are not necessarily negative. The limitations I high-

light in the paper should not discourage us from pursuing a deeper understanding

of bond and currency prices. Rather, by acknowledging that the complex nature of

bond price movements cannot satisfactorily be approximated with a class of linear

models, I hope to direct the literature to search for deeper explanations for pre-

dictable returns in bond and currency markets and to help reveal the underlying,

macroeconomic reasons for why expected returns vary over time.
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1.2 Literature Review

My work builds directly upon the term structure model of Cochrane and Piazzesi

(2008) but also upon Fama and Bliss (1987) and Cochrane and Piazzesi (2005) who

document predictable variation in expected returns using forward interest rates.

I extend their analysis to other bond markets using only a subset of available

forward rates, similar to Tang and Xia (2007) who also document predictable

bond risk-premia in international markets under a di¤erent model speci�cation

than my own.

Similar work documenting predictable variation in bond markets within the

context of a term structure model have been done by Du¤ee (2002, 2010) and

Dai and Singleton (2002), who model returns as conditionally heteroskedastic.

Adopting the more �exible speci�cation for the market price of risk enables them

to characterize time-varying risk and in doing so, account for the failure of the

expectations hypothesis, making it a leading term structure model of interest rates

alongside the model of Cochrane and Piazzesi (2008) my paper carefully examines.

In adopting the model of Cochrane and Piazzesi (2008), I make two choices. One,

I specify that returns are conditionally homoskedastic, which is in contrast to Dai

and Singleton (2002). Two, I adopt a �exible speci�cation for the market price of

risk as does Du¤ee (2002, 2010), although I use an additional variable to do so.

Both speci�cation choices allow the model to precisely characterize risk adjusted

dynamics, and my paper examines the implications of this speci�cation choice.

Empirical research documenting predictability in currency markets dates back

further than that of bond markets. The analysis in my paper tests if we can

simultaneously capture predictability in bond and currency markets, especially

in light of new �ndings by Lustig et al. (2009, 2010) who show that there is

a large predictable component in currency markets for a portfolio of currencies.

My analysis is similar to Backus, Foresi, and Telmer (2001) who also link bond
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markets to currency markets using stochastic discount factors implied by an a¢ ne

model, and determine whether it can account for the forward premium anomaly.

Because the literature is rather deep, I will not be able to satisfactorily discuss

the numerous important �ndings. I take the convenient stance and refer the reader

to the references in this paper for further references. Given that my objective for

this paper is to critically examine our understanding of bond markets with term

structure models, I believe that the brief list of references in this paper is su¢ cient.

Section 3 covers the empirical �ndings on predictability in international bond

markets. In Section 4, I explicitly link bond markets to currency markets through

equilibrium asset pricing conditions and then outline the tension of �tting yields.

In section 5, I discuss the a¢ ne term structure model along with a description

of the implications of the model that are important for the paper. In section 6,

the results explore the currency price implications of the model. In section 7, I

discuss my �ndings in relation to the broader literature. Section 8, I conclude.

Section 9 is the appendix.

1.3 International Predictability Regressions

1.3.1 De�nitions

Let P (n)t be the price of an n-maturity bond and p(n)t be the log price. From now

on, all lowercase variables are log variables. Zero-coupon bond prices are easily

mapped into yields. The interest rate of an n-maturity bond is then y(n)t = � 1
n
p
(n)
t .

The log return to holding an n-maturity bond for one period is hpr(n)t+1 = p
(n�1)
t+1 �

p
(n)
t . The return in excess of the short rate is the risk-premia on n-maturity bonds,

rx
(n)
t+1 = hpr

(n)
t+1 � y

(1)
t .
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1.3.2 Data Description

The zero-coupon yield data are gathered from international bond markets, ranging

from January 1973 until May 2009. Only Germany and the U.S. cover this time

period. The other countries start dates are within this range and have more than

250 observations. In total, there were ten countries (The U.S., Germany, Japan,

Great Britain, Canada, Australia, New Zealand, Norway, and Switzerland, and

Sweden) although not all of the countries are highlighted in this paper. The data

are of monthly frequency on bond yields of maturities ranging from one year up

to ten years, partitioned equally twelve months apart. More simply, the panel of

bond market data are for n year-to-maturity interest rates, where n = 1; :::; 10.

The forward rates are constructed from bond yield data using the de�nition given

above. Only a subset of forward rates are used in the forecasting regressions,

namely the one year forward rate from today to one-year ahead, from year 4 to

year 5, and from year 8 to year 9. The subset of forwards is then describe by the

set � := f0! 1; 4! 5; 8! 9g. A more detailed description is relegated to the

appendix.

1.3.3 Estimation Procedure and Findings

To construct the return forecasting factor, I stay as close as possible to Cochrane

and Piazzesi (2005). To do so, I use country-speci�c forward rates extracted from

zero coupon government bond yield data, although I depart from their approach

because I only choose a subset of forward rates. Using the full set of available

forward rates generates telltale signs of multicollinearity, and thus exposing the

results to the vulnerability of how zero-coupon forward rates were interpolated

from the data. The sensitivity of the results to the set of forward rates is a

concern, but I mitigate many of the related issues by restricting the set of forwards

to ensure that the tent-shape is preserved, a similar to the approach Tang and Xia

5



(2007). There is no theoretical reason for ensuring that the tent-shape holds, but

in practice and as discussed by Singleton (2006), it reduces the possibility that

measurement error or the interpolation technique will distort results.

To be clear on notation, let rx(n)t+1;(j) be the realized term-premia for hold-

ing onto an n year-to-maturity bond for country j one year from now. Let

� = (f0! 1; 4! 5; 8! 9g) be the subset of forwards. The set of forward

rates used in the construction of the return-forecasting factor are given by ft;(j) =�
f
(0!1)
t;(j) ; f

(4!5)
t;(j) ; f

(8!9)
t;(j)

�
and the coe¢ cients 
j =

�n


(0!1)
j ; 


(4!5)
j ; 


8(!9)
j

o�
where

the index t; (j) is meant to describe the date t forward rate for country j. To actu-

ally construct the return-forecasting factor, I regress the average term-premia for

a cross-section of bonds of maturity n, on the subset of country-speci�c forward

rates:
1

N

NX
n=1

rx
(n)
t+1;(j) = rxt+1;(j) = a(j) + 


0
(j)�f t;(j) + "t+1 (1.1)

The �tted values are then used as the "local" return-forecasting factor, i.e. the

relevant information contained in forward rates given by the expression below

â(j) + 
̂
0
(j)�f t;(j) = â(j) + �� 
̂t;(j)ft;(j) := xt;(j): (1.2)

where �� denotes that I �t the forwards only for the relevant subset. I should

emphasize that I extract the return-forecasting factor using the exact same

procedure for each country. In the next step, the following time-series

regressions are run to determine if there is bond predictability from holding an

n-year maturity bond for one year for each country j

rx
(n)
t+1;(j) = �j (n) + �j (n) �

�
xt;(j)

�
+ "

(n)
t+1;(j) (1.3)

Before making international comparison, it is worth mentioning the di¤erences

in the predictable component that I �nd using a subset of forwards relative to

the benchmark case. I �nd less predictability using the subset of forward rates, a

considerable amount in relation to that found in Cochrane and Piazzesi (2005).

6



To compare the amount of predictability I �nd for the U.S. using only a subset

of forward rates to Cochrane and Piazzesi (2005, 2008) using the Fama and Bliss

forward rates, I plot the two variables along with the realized bond risk-premia

for an equally weighted portfolio of returns.

Figure 1.1: Return-Forecasting Factor Comparison
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Table 1.1: Comparing Predictable Component Using Di¤erent Return-Forecasting

Factors
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n 2
3

4 5 6 7 8 9 10

U.S. (CP)

0:17

(8:07)

0:31

0:33

(9:29)

0:35

0:47

(9:8)

0:39

0:60

(9:93)

0:41

0:73

(9:94)

0:43

0:85

(9:90)

0:43

0:97

(9:86)

0:43

1:08

(9:78)

0:44

1:19

(9:67)

0:44

U.S. (Mang)

0:24

(2:69)

0:12

0:65

(2:66)

0:13

0:65

(2:67)

0:14

1:01

(2:77)

0:16

1:01

(2:77)

0:16

1:20

(2:82)

0:17

1:54

(2:93)

0:18

1:70

(2:97)

0:18

1:70

(2:97)

0:18

The estimates are linear GMM estimates with 12 lags to account for overlapping

monthly data. The standard errors are Newey-West corrected. Each column n

represents the regression of the risk-premia of an n year-to-maturity bond on the

subset of forwards. Within each n, the �rst column displays the intercept term for the

respective regressions with t-statistics in parenthesis below. The second column

displays the slope coe¢ cients with associated t-statistics below in parenthesis. The

last column displays the R-squares of the regression.

The Fama and Bliss forward rates seem to capture more variation in the mag-

nitude changes in excess returns than just a subset of forwards I use, although for

the most part my forecasting factor seems to capture variation in the direction

of movement in excess returns. The di¤erence in the amount of predictability

captured using only a subset of forwards is a reasonable concern, however the

reduction in predictability will not materially alter the main results of my paper

primarily because it will not signi�cantly a¤ect how the market price of risk pa-

rameters are calibrated. These mentioned parameters are chosen to match the

amount of variation of returns along the cross-section of bonds, i.e. along the

time-to-maturity n dimension. Fortunately, these parameters are not that sensi-

tive to which subset of forward rates I use to extract the return-forecasting factor,

at least not when I use the subset �: That is, when I compare my estimates using

8



only a subset of forwards to that of Cochrane and Piazzesi (2008) for the U.S., I

�nd di¤erences in the key market price of risk parameter but the magnitudes are

comparable. In short, the main results in my paper are insensitive to the choice

to use only a subset of forward rates.

I use linear GMM to estimate (3) to correct for heteroskedasticity and auto-

correlation, with 12 lags to account for overlapping monthly data for annualized

returns. The displayed estimation results are from unrestricted regressions. The t-

statistics and R2 coe¢ cients are also listed in Table 1.2. Despite some di¤erences

in when bond price data are available, the estimates display strikingly similar

patterns.

Table 1.2: International Return Predictability Regressions
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n 2
3

4 5 6 7 8 9 10

country j

U.S

0:24

(2:69)

0:12

0:45

(2:66)

0:13

0:65

(2:67)

0:14

0:84

(2:71)

0:15

1:01

(2:77)

0:16

1:20

(2:82)

0:17

1:37

(2:88)

0:17

1:54

(2:93)

0:18

1:70

(2:97)

0:18

Germany

0:24

(2:38)

0:09

0:46

(2:50)

0:10

0:67

(2:58)

0:11

0:85

(2:67)

0:12

1:03

(2:77)

0:12

1:20

(2:88)

0:13

1:36

(3:00)

0:13

1:52

(3:12)

0:13

1:66

(3:23)

0:13

England

0:27

(2:36)

0:08

0:52

(2:43)

0:09

0:76

(2:50)

0:10

0:98

(2:58)

0:11

1:14

(2:66)

0:11

1:26

(2:71)

0:10

1:32

(2:67)

0:09

1:36

(2:56)

0:08

1:39

(2:39)

0:07

Switzerland

0:29

(4:06)

0:32

0:51

(4:78)

0:34

0:71

(5:59)

0:36

0:88

(6:35)

0:37

1:04

(6:83)

0:38

1:19

(6:94)

0:38

1:33

(6:80)

0:37

1:45

(6:50)

0:36

1:57

(6:15)

0::35

Japan

0:19

(3:45)

0:17

0:43

(4:35)

0:20

0:67

(5:08)

0:22

0:88

(5:52)

0:23

1:05

(5:70)

0:24

1:22

(5:71)

0:24

1:37

(5:64)

0:25

1:52

(4:78)

0:25

1:65

(4:72)

0:25

Canada

0:20

(1:45)

0:05

0:38

(1:54)

0:05

0:58

(1:71)

0:07

0:79

(1:89)

0:09

1:00

(2:04)

0:10

1:20

(2:14)

0:11

1:40

(2:23)

0:12

1:61

(2:32)

0:12

1:83

(2:40)

0:14

Australia

0:17

(1:06)

0:05

0:38

(1:37)

0:08

0:60

(1:64)

0:10

0:81

(1:88)

0:12

1:01

(2:07)

0:13

1:21

(2:24)

0:14

1:41

(2:36)

0:15

1:61

(2:46)

0:16

1:80

(2:53)

0:16

New Zealand

0:24

(5:38)

0:30

0:46

(6:60)

0:35

0:67

(7:40)

0:38

0:85

(7:73)

0:39

1:02

(7:70)

0:40

1:19

(7:44)

0:40

1:36

(7:12)

0:40

1:52

(6:80)

0:39

1:68

(6:51)

0:39
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The estimates are obtained using linear GMM. The standard errors are calculated

using 12 lags to account for overlapping monthly data and are Newey-West corrected.

Each column n represents the regression of the risk-premia of an n year-to-maturity

bond on the subset of forwards. Within each n, the �rst column displays the intercept

term for the respective regressions with t-statistics in parenthesis below. The second

column displays the slope coe¢ cients with associated t-statistics below in parenthesis.

The last column displays the R-squares of the regression.

Predictable returns implies that variation in the return-forecasting factor xt precede

or forecast movements in excess returns one year in the future. Given that the

variables are in logs, the regression coe¢ cient reveals that a one percent move-

ment in xt corresponds to expected movements in the risk-premia to holding onto

an n-year treasury by � (n) percentage points, or � (n) � 100 basis points. For

example, a one percent movement in the return-forecasting factor will on average

precede a 24 basis point movement in the risk�premium for holding a 2-year trea-

sury security in the U.S. over the time period. The empirical results also suggest

that larger movements are expected from longer maturity treasuries (e.g. 170

basis point movement in the risk-premium of holding onto 10-year treasury for

one year in the U.S. in response to a 1 percent movement in xt over the sample

period). With few exceptions, namely Canada and Australia, the estimated co-

e¢ cients are statistically signi�cant. Not only that, the large R2 suggests that a

relatively large percentage of movement in country-speci�c expected returns can

be attributed to their country-speci�c forward rates. In addition, the size of the

regression coe¢ cient tell us that even relatively small movements in xt;(j) forecast

relatively large movements in Et
h
rx

(n)
t+1;(j)

i
, particularly for long-horizon returns.

Clearly, there is evidence that suggests bond returns are predictable for this set

of industrialized countries, con�rming the results found in Cochrane and Piazzesi

(2005). One also notices the cross-country pattern of monotone increases in the

regression coe¢ cient across maturity, suggesting that the return-forecasting factor
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a¤ects bonds of all maturities in a similar fashion. This lends some support to

a key identifying restriction made in Cochrane and Piazzesi (2008) that random

walk shocks exclusively move risk-premia, one that is used to precisely pin down

the dynamics of the model. In all, predictability in bond markets appears to be a

robust, global phenomenon.

1.4 Linking Bond and Currency Markets

Before discussing the term structure model, I will make transparent the relation-

ship between bond and currency markets. If markets are complete and there are

no riskless arbitrage opportunities, then there exists a unique one-to-one trans-

formation of a domestic stochastic discount factor Mt+1 to its foreign counterpart

M�
t+1. In other words, there exists a unique conversion unit St, denominated in

foreign currency per dollar, that allows the following equilibrium asset pricing

condition to hold simultaneously across two di¤erent markets, as shown in the

following relation:

Et [Mt+1Rt+1] = Et
�
M�
t+1Rt+1

�
St+1
St

��
(1.4)

for some foreign stochastic return process such that that Rt+1
�
St+1
St

�
= R�t+1

for any state of the world and any time period. In plain English, we can then

express returns in a foreign country as a function of dollar returns using some

conversion or exchange rate. In doing so, we can derive an exact relationship

between the exchange rate and the relative discount factors for each country.

Readers are referred to a proof in Backus, Foresi, and Telmer (2001) for a more

complete argument. Under the mentioned conditions, and if exchange rate are in

units of foreign currency (Euro) per dollar, then

St+1
St

=
Mt+1

M�
t+1

(1.5)
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In logs, we have

st+1 � st = �st+1 = mt+1 �m�
t+1 (1.6)

where mt+1 and m�
t+1 is the domestic and foreign (log) stochastic discount

factor, respectively. Taking conditional expectations yields

Et [�st+1] = Et [mt+1]� Et
�
m�
t+1

�
(1.7)

In addition, we can also derive an expression for currency risk-premia using the

interest rate di¤erential. If interest rates are well-described by only its �rst two

conditional moments, then y(1)t = � logEt [exp (Mt+1)] = �Et [mt+1]� 1
2
�2t [mt+1].

The same is true for foreign interest rates, so y(1);�t = �Et
�
m�
t+1

�
� 1

2
�2t
�
m�
t+1

�
:

Combining the two expressions relates the interest rate di¤erential to the key

moments of the stochastic discount factors:

y
(1);�
t � y(1)t =

�
Et [mt+1]� Et

�
m�
t+1

��| {z }
dollar appreciation

+
1

2

�
�2t [mt+1]� �2t

�
m�
t+1

��
| {z }

risk-premium

(1.8)

Thus, the currency risk-premia can be expressed as the following expression:

Et
�
rx�t+1

�
= y

(1);�
t � y(1)t � Et�st+1 (1.9)

The exchange rate data is well-approximated by a a randomwalk, so Et�st+1 �

0, hence we can further simplify the expression for currency risk premia to be equal

to one-half the di¤erence in the conditional variance of the pricing kernel between

the U.S. and Germany:

Et
�
rx�t+1

�
=
1

2

�
�2t [mt+1]��2t

�
m�
t+1

��
(1.10)

As one can see from the following expressions, the amount of movement in

interest rate di¤erentials is due to either movement in exchange rates and/or cur-

rency risk-premia. More importantly, these expressions relate interest di¤erentials

explicitly to the �rst two conditional moments of the pricing kernels for each coun-

try. From these expressions, we can see how both moments are a¤ected by the

a¢ ne model estimation procedure.
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1.4.1 The Tension of Fitting Interest Rates

How the model trades o¤ �tting conditional means and conditional variances of

the pricing kernel will be critical for the exchange rate implications. Cochrane and

Piazzesi (2008) model variation in market risk prices an additional factor, relative

to the usual three factors used in term structure models. The model imposes that

time variation in the conditional variance of the stochastic discount factor Mt+1

is exclusively driven by the return-forecasting factor. This has implications for

how much risk compensation is required to move both bond and currency prices.

The large predictable component in bond markets is directly channeled into the

conditional variance of the stochastic discount factor through the market price of

risk. Because the market price of risk moves around a lot, time-variation in the

conditional mean and the conditional variance of the stochastic discount factor

must be equally large. This key point can be made without great details about an

a¢ ne term structure model. According to the a¢ ne model, the conditional mean

and variance of the stochastic discount factor is directly related the market price

of risk in the following set of equations:

�Et (mt+1) = y
(1)
t � 1

2
��2t (1.11)

��2t (mt+1) = ��2t (1.12)

The amount of forecastability in bond markets captured by the return-forecasting

factor xt means that the conditional mean of the log pricing kernel has to �uctu-

ate wildly as a consequence of the large required risk compensation for changes in

xt. Although there is some �exibility in choosing how much risk compensation is

required over time via the ��2t term, the model estimation procedure must trade

o¤ which conditional moment to emphasize. It turns out that the conditional

mean is given priority at the expense of the conditional variance of the discount

factor. The severity of this tradeo¤ can be further examined in currency market

prices. Before I do so, let me outline the a¢ ne term structure model.
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1.5 The A¢ ne Term Structure Model

Given the amount of predictability found in bond market data, using the return-

forecasting factor may be useful for characterizing price dynamics within a term

structure model. Extracting the standard level, slope and curvature factors follows

from a principal component decomposition using the residuals after constructing

the return-forecasting Factor, and is thus done using forward rates. The com-

prehensive procedure for extracting the latent factors can be found in Cochrane

and Piazzesi (2008). For the purpose of this paper, I give considerable attention

to the predictability characteristics the model implies and what that means for

currency markets, so I refer interested readers either to the appendix of this paper

or Cochrane and Piazzesi (2008) for more speci�c details.

To ensure that prices satisfy no-arbitrage, we must ensure that the following

condition holds

P
(n)
t = Et

h
P
(n�1)
t+1 Mt+1

i
(1.13)

In words, this says that a date t bond price with time-to-maturity n is equal

to the expected price of the bond appropriately discounted by Mt+1. We must

also specify how the key risk factors evolve over time. In this model, we impose

that the set of factors Zt follows a Markovian structure, in particular a �rst-order

VAR, Zt+1|{z}
4x1

= �|{z}
4x1

+ �|{z}
4x4

�Zt+ "t+1|{z}
4x1

where "t+1 is a Gaussian error term with mean

zero and variance-covariance matrix E
�
"t+1 � "0t+1

�
= V|{z}

4x4

, and how the market

price of risk varies over time, in this case, a linear function of the latent factor,

�t|{z}
4x1

= �0|{z}
4x1

+ �1|{z}
4x4

�Zt, we can express the stochastic discount factor as a function

of both the factors and the price of risk, � log (Mt+1) = �0 + �
0
1 � Zt + 1

2
�0t �

V � �t + �0t � "t+1: We then posit an exponentially a¢ ne functional form for log

bond prices, log
�
P
(n)
t

�
= p

(n)
t = An+B

0
n�Zt; and solve the no-arbitrage conditions

for any point in time t for any maturity n. The result of doing so is equivalent to

estimating the cross-sectional loadings (An;Bn) so that the no-arbitrage pricing
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condition is satis�ed. It can be gleaned from the expression for bond prices that

for n = 1, that �p(1)t = y(1) = A1 +B
0
1�Zt = �0 + �01 � Zt is the one-year nominal

interest rate. The remaining parameters are to be estimated using some method

that mimics maximum likelihood where the parameters are chosen to minimize the

�t of the data relative to some loss function. For the model under examination,

a quadratic loss function was chosen. Alternatively, we could have solved for

forward rates since they are a function of prices, f (n)t = p
(n)
t � p(n�1)t . Once we

have parameters that well describe these prices, we can derive expressions that

precisely characterize expected returns.

1.5.1 Expected Returns and the Market Price of Risk

Linear factor models have analytically tractable expressions that can be partic-

ularly useful for both our understanding and further analysis. An equilibrium

object of interest is the one year ahead expected excess return from holding an

n-maturity bond, is a function of bond prices as de�ned previously and is given

below:

Et
�
rx

(n)
t+1

�
= covt

0B@rxt+1; "0t+1|{z}
shocks to Zt

1CA ��t � 1
2
�2
�
rx

(n)
t+1

�
(1.14)

In terms of the model parameters, expected excess returns is then

Et
�
rx

(n)
t+1

�
= B0n�1�V � �t �

1

2
B0n�1 �V �Bn�1 (1.15)

Finally, in terms of di¤erences in actual and risk-neutral dynamics and the

state variables, expected excess returns is given by the following expression:

Et
�
rx

(n)
t+1

�
= B0n�1 (�� ��) +B0n�1 (�� ��) � Zt �

1

2
B0n�1VBn�1 (1.16)

We can simplify the expression for expected returns once we adopt the iden-

ti�cation restrictions from Cochrane and Piazzesi (2008). That is, if we re-

strict that (1) expected returns only vary with the x-factor and (2) only level

16



shocks matter for risk-compensation, then risk prices are simply linear in xt; i.e.

�t = �
level
0 + �level1 � xt: Cochrane and Piazzesi (2008) �nd that the cross-sectional

�t of expected returns along the n time-to-maturity dimension was not a¤ected

by restricting returns to only depend on the level shock. I too �nd evidence docu-

mented in the previous section that level shocks play a prominent role in changing

expected returns, given that changes in country-speci�c return-forecasting factors

a¤ect returns of all maturities. This is a very useful approximation because it

reduces the amount of parameters that need to be estimated. However, given the

stylized nature of the model, it is important to recognize how the simpli�cations

made can a¤ect our understanding of the data.

We then have a simple expression for expected excess returns on n-year ma-

turity bonds:

Et
�
rx

(n)
t+1

�
=

�
Blevel0n�1 cov

�
vt; "

level
t+1

�
�level0 � 1

2
B0n�1VBn�1

�
+Blevel0n�1 V(2;2)�

level
1 � xt(1.17)

� � (n) + � (n) � xt (1.18)

This equation holds for any n-maturity bond, so we can choose any � =�
�level0 ; �level1

�
to match the predictability returns along the cross-section, i.e. for

bond returns of maturity n. Cochrane and Piazzesi choose � so that the slope

coe¢ cient is unity and the intercept term is zero. In other words, � is chosen so

that the weighted portfolio of long-maturity bonds will be related to the return-

forecasting factor. This is equivalent to a portfolio of bonds weighted by qr, the

dominant eigenvector in the principal component decomposition used to construct

the four factors in the term structure model. Implicitly, we are choosing � so

that Et
�
q0r � rx

(n)
t+1

�
= xt. Keep in mind that this portfolio of bonds will have

di¤erent predictability characteristics than the one that I discuss in section 3

because the choice of a portfolio lets an investor alter their risk exposure, and

hence the returns they can achieve. The choice to weight a portfolio of bonds

by qr therefore maximizes the �t of expected returns along year-to-maturity n
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dimension using the return-forecasting factor xt as a forecasting variable.

Table 4 in the appendix highlights the calibrated parameters for a subset of

countries where the model well-describes the cross-section of bond prices. The

estimates of the risk price parameters reveal large magnitude changes. We can

then see how some key assumptions made in the estimation procedure a¤ect these

parameter estimates. In particular, restricting that expected returns only move

with level shocks, that expected returns only move with the return-forecasting

factor, and that the volatility of expected returns are constant over time which is

implicitly assumed in the model speci�cation, are essential for identi�cation. As a

result, the Jensen�s term 1
2
B0n�1VBn�1 = �

2
�
rx

(n)
t+1

�
depend only on the length of

maturity n, but not time t. However, the problem is that the estimation procedure

is implicitly trading o¤ �tting the mean and covariance of the yields, but under

the mentioned restrictions and model assumption, the �tting procedure favors the

conditional �rst moment. The market price of risk is directly proportional to the

conditional variance of the pricing kernel, as can be seen in the following relation

�2t (mt+1) = �
0
t�V � �t (1.19)

which simpli�es to the following under the mentioned restrictions:

�2t (mt+1) = V 2(2;2)
�
�level0 + �level1 � xt

�2
= �x2t (1.20)

What remains to be seen is how variation in the market price of risk quantitatively

responds to changes in the return-forecasting factor. Choosing �1 is essential to

the identi�cation of risk-neutral dynamics �� since the mapping from risk-neutral

and actual dynamics is given by the following equation:

��= ��V � �1 (1.21)

The importance of the conditional homoskedasticity assumption becomes clear

in this expression because it allows the risk adjustment term to be independent
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of time. It also implies that identi�cation requires large movements in the market

price of risk since the relevant entries in V are small, the entries in V�1 are

large so it is necessary for identi�cation that �1= V�1 (�� � �). In other words,

identi�cation of risk-neutral dynamics requires not only that the restriction on

how risk compensation varies exclusively with the return-forecasting factor, it

also requires time-invariant conditional variance of excess returns.

The framework also links variation in the return-forecasting factor exclusively

to the expected excess bond returns and not the conditional variance. However,

it could be the case that changes in the return-forecasting factor occur during

times of large surprise changes in bond prices. The speci�cation choice renders

the model unable to account for the changes in the conditional variance of returns.

Although this simplifying approach seems innocuous given that most of the data

describes the post-1985 "Great Moderation era," where monetary regimes are rela-

tively stable, it remains to be seen what this simpli�cation means for implied asset

prices in other markets, and how the risk-return tradeo¤ varies over time. Cur-

rency markets and Hansen-Jagannathan bounds can serve as additional avenues

for robustness checks that I will employ.

1.6 Results

I choose to study the U.S. and Germany because these two countries have the

longest time series available, with data that span the time period 1 : 1973 � 5 :

2009. Another reason for choosing these two is the in-sample model �t of the

U.S. and German bond yields to the a¢ ne model are quite good, with root mean

squared errors (RMSE�s) of less than 10 basis points. I do not report them here in

this paper to focus my discusson although Litterman and Scheinkman (2001) tell

us that we only need three factors to get a pretty good understanding of the yield

curve. Nonetheless, it is comforting to know that adding an additional factor does
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not degrade the ability of the model to capture the data. The small root mean

squared errors (RMSE) can only mean that the amount of predictability of bond

risk-premia is large given that we use an additional factor to closely track time-

variation in expected returns for the given sample. More important, the model

will capture a large predictable component in their respective bond markets that

are consistent with empirical regressions.

If exchange rates are well-approximated by a random walk, then they are

essentially unforecastable. Therefore, di¤erences in the stochastic discount factors

should roughly net out on average. Although this benchmark case for currency

markets is admittedly strong, it is a useful �rst pass to ensure that the model-

implied exchange rates do not deviate too far from the data. If they do, then

exchange rates are said to excessively volatile or predictable.

After estimating the model for the U.S. and Germany, and extracting the

implied discount factors from each country, I construct the theoretically implied

exchange rate changes with them. I compare them to several benchmarks. The

�rst benchmark scenario is the random walk (-.- line), the second that allows for

a trend (.-. line). Figure 1.2 captures the comparison between the model-implied

exchange rate changes, without altering the estimates for the market price of risk

�(j) for each country. I also include the scenario in which the estimates are scaled

down by two. In total, there are two model-implied scenarios for exchange rates:

(1) one case that constructs exchange rate changes using �(j) (2) model generated

exchange rate changes with �0(j) = �(j)=2. The case where �(j) is reduced by a

factor of 2 is acknowledged by Cochrane and Piazzesi (2008) and I highlight this

case to show that even while acknowledging that there is estimation uncertainty

around this parameter, my results will still hold. As you can see, the model-

implied exchange rates deviate substantially from random walk behavior in a

rather persistent manner relative to the data. When I scale down the market price

of risk � by one half, the predictable component of exchange rates are reduced
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somewhat, but still imply sizeable, persistent deviations. The results suggest that

either the size of the predictable component in exchange rates is a lot larger than

a random walk speci�cation implies, or alternatively that the magnitude changes

in market prices and hence the return-forecasting factors do not cancel out. This

is not entirely unbelievable, but it is di¢ cult to accept such a large predictable

component without reasons for doing so.

Figure 1.2: Constructing Exchange Rates
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The � case I construct exchange rates without altering risk prices. The � /2 case I

reduce risk prices by half. The cons+trend case refers to a random walk with drift

case that I construct by estimating realized exchange rate changes on a constant and

time. The variables are in annualized percentages.

I construct currency risk-premia using the conditional variance of the pricing
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kernel between the U.S. and Germany, given by the following expression:

Et
�
rx�t+1

�
=
1

2

�
�2t [mt+1]��2t

�
m�
t+1

��
(1.22)

This will also allow me to control for the wild movements in the model-implied

exchange rates we saw in Figure 1.2. I compare this time-series with currency

risk premia to a benchmark in the data, namely the interest rate di¤erential,

rxdatat+1 � y
(1);�
t � y(1)t . This approximation is consistent with longstanding empir-

ical research on the carry trade. Given the empirical robustness of the forward

premium anomaly across a broad set of countries, it seems reasonable to check

that the model captures this feature of the data. Figure 1.3 illustrates a puz-

zlingly volatile model-implied currency risk-premia that is de�nitively too large

to be consistent with a forward premium anomaly. It is not immediately clear

why di¤erences in the conditional variance of the discount factor implied by the

model are not so smooth as interest rate di¤erentials, however the �ndings, when

taken at face value, are inconsistent with the forward premium anomaly.

Figure 1.3: Constructing Predictable Currency Risk-Premia
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Currency risk-premia is constructed by taking the di¤erence in bond risk prices. The �

case I construct exchange rates without altering risk prices. The � /2 case I reduce risk

prices by half. The benchmark rx-data case is simply the interest rate di¤erential on a

1-year treasury between the U.S. and Germany. Returns are in annualized percentages

1.6.1 Highlighting the Tradeo¤

To illustrate the consequence of this modeling procedure, we look no further than

the magnitude of �level1 , the key parameter that determines how risk compensation

changes with xt. As I mentioned earlier, variation in xt corresponds with varia-

tion in the conditional variance of the pricing kernel. But, this variable is also

important for currency risk-premia. It has been well-documented that interest

rate di¤erentials forecast currency risk-premia, a result commonly known as the

carry trade. Can the return-forecasting factor di¤erential also forecast currency

23



risk-premia?

Di¤erences in the return-forecasting factor between the U.S. and Germany

should correspond to di¤erences in the market price of currency risk. If so, xt�x�t
should signal changes in currency prices. The remaining concern about the plausi-

bility of currency prices is quantitative in nature; does the model-implied currency

risk-premia move with a benchmark measure of the predictable component in cur-

rency risk-premia? When compared to the benchmark case of the interest rate

di¤erentials, it seems that the return-forecasting factor di¤erentials is de�nitively

not consistent with the forward premium puzzle. Interestingly enough, scaling

down each country�s magnitude market price of risk (i.e. �level1 ) by a factor of 5

delivers results in line with the negative regression coe¢ cient that is consistent

with the data.

Table 1.3: Forward Premium Regressions

�st+1 = �+ �zt + "t+1

zt Data
�
y
(1);�
t � y(1)t

�
Model

�
Et
�
rx�t+1

��
Model: �=5

�

t-stat

R2

�0:85

(�1:17)

0:01

1:53

(0:87)

0:02

�0:24

(�0:21)

0:00

The column under the heading Data corresponds to estimates from regressing

exchange rate changes on actual interest rate di¤erentials. The Model column reports

estimates from regressing exchange rate changes on the implied currency risk-premia,

which is one half times the di¤erence in the conditional variance of the discount factor.

Model: �/5 corresponds to a similar regression but when the bond risk price

parameter in the conditional variance of the discount factor is reduced by a factor of 5.

The monthly data span 1.1973-5.2009.
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Figure 1.4: Implied Predictable Component in Currency Risk-Premia
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Graphically Figure 1.4 illustrates the case in which �level1 is scaled down by a

factor of 5. The di¤erence between the model and the data that is evident once

we scale down �level1 . We see that the model-implied currency risk-premia (the

red dotted line) does not co-move with predictable component in currency returns

proxied by the interest rate di¤erential y(1);�t � y(1)t from 1980-1990 by some level

factor. In addition, the model does not capture the subtler movement in the level

changes in the predictable component after 1996.

A clearer exposition can be found in time-series graphs that simultaneously

captures the tension. Figure 1.5 displays exactly this tension, namely the pre-

dictable component for U.S. and German government bond markets along with

the predictable component in their bilateral currency market.
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Figure 1.5: Simultaneous Look At Predictable Bond and Currency Risk-Premia,

I
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Now, it is clear that the size of the predictable component in currency markets

is a lot larger than the forward premium puzzle would suggest. Reducing the

magnitude size of the market price of risk delivers a result more consistent with

the forward premium in currency markets, but results in a very small predictable

component in either the U.S. or German bond market, as displayed in Figure 6.

The set of graphs given in the last two �gures illustrates precisely the main result

of my paper.

Figure 1.6: Simultaneous Look At Predictable Bond and Currency Risk-Premia,

II
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Reducing the market price of risk eliminates bond predictability

1.7 Discussion

1.7.1 Sharpe Ratio Dynamics

In this section, I discuss the underlying tension in characterizing the risk-return

tradeo¤ in bond markets without a formal model. When normalized by a proper

unit of risk, the compensation required to hold onto bonds, commonly known

as the Sharpe ratio, should vary over time within reasonable limits. The link

between predictable returns and market risk prices is very clear in linear factor

models that this paper critically evaluates. Using Hansen-Jagannathan bounds to

pin down the maximum Sharpe ratios, I come to the same conclusion that allowing
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returns to be conditional heteroskedastic is one avenue for this class of models to

capture predictable risk premia in bond and currency markets. Indirect support

for this conclusion can be found in Du¤ee (2010) who constrains the Sharpe ratio

to not exceed "reasonable" bounds when compared to equity markets or a sensible

restriction on unconditional Sharpe ratios while maintaining the time-invariance

of the shock structure.

For clarity of exposition, the Sharpe ratio is de�ned to be the ratio of the

conditional volatility of the pricing kernel and the conditional mean of the pricing

kernel. We can rewrite the conditional volatility of the pricing kernel as the

following expression:

[Sharpe Ratio] =
Et [RXt+1]
�t [RXt+1]

� �t [Mt+1]

Et [Mt+1]
(1.23)

We can achieve the maximal Sharpe ratio under some conditions usually sat-

is�ed by bonds. 1

max [Sharpe Ratio] := �t = R
f
t �t [Mt+1] (1.24)

For log-returns, I de�ne ri;t+1 = log (Ri;t+1) and rxt+1 = log (RXt+1) = [log (Rt+1)]�

log
�
Rft

�
. The expression for the Sharpe ratio for log returns is then given by:

�t =
Et [ri;t+1]� rft + 1

2
�2t [ri;t+1]

�t [ri;t+1]
(1.25)

Under some regularity conditions, we can replace Ri;t+1 with the excess return,

RXt+1:
2 I obtain the following expression for the conditional variance of the pricing

kernel, which for bond markets is the maximal Sharpe ratios that be obtained:

�t [mt+1] =
Et [rxt+1] + 1

2
�2t (rxt+1)

�t [rxt+1]
(1.26)

1The condition is satis�ed for investment strategies where the payouts to holding the security
are non-negative.

2We can take a log-linear approximation of excess returns around log (RXt+1) = 0: We also
rule out short positions on a portfolio of bonds that is typically used to maximize Sharpe ratios.
The portfolio we consider gives positive weights to each of the n year-to-maturity bonds. In all,
these conditions are satis�ed.
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The full implications of the identi�cation restriction used in Cochrane and

Piazzesi�s (2008) model are included in the appendix, but for the purpose of

this discussion, I will only give the essence of the argument. That is, in order

for bond returns to be consistent with currency market data, not to mention

sensible restrictions on conditional Sharpe ratios, it must be the case that either

the conditional volatility of excess returns moves to o¤set movement in expected

excess returns or the amount of measured movement in expected returns is an

artifact of the data, not nearly moving around as much it is measured to do.

Because risk-premia is predictable for broad set of industrialized economies�bond

markets, sensible variation in market risk prices would lead one to conclude that

the volatility of returns are time-varying.

1.7.2 A Modeling Tradeo¤

The exchange rate implications of the four-factor a¢ ne term structure model

reveal an inherent modeling tradeo¤; either we accept that there is predictability

in two separate bond markets or there is predictability in currency markets and

almost no predictability in bond markets. To be fair, the inherent issues with the

model and the identifying restrictions are natural ones given that they are broadly

consistent with a set of government bond markets. However, the problem becomes

apparent in a simple extension to currency markets using the same factors. I then

establish the �rst result that highlights a key modeling limitation in characterizing

the dynamics of risk and return across bond and currency markets.

Proposition 1 Within a four-factor a¢ ne term structure model, given that vari-

ation in risk-premia move exclusively with random walk shocks, if there is pre-

dictability in two individual bond markets, then there is a counterfactually large

amount of predictability in exchange rates and currency risk-premia. Conversely,

if the market risk prices are consistent with currency market data, then risk-premia
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in bond market are nearly unforecastable.

The intuition for this result can be gleaned from the relationship between the

risk-neutral dynamics and how the market price of risk parameters matter. Risk-

neutral dynamics are equal to the actual dynamics, less an adjustment for risk,

i.e. ��= ��V�. Reducing the magnitude change in risk prices means that the

parameter �level1 is scaled down. The result is a much smaller risk adjustment in

the risk-neutral dynamics, so that is indistinguishable from the actual dynamics,

i.e. �� � �. Based on the equation (13), Et
�
rx

(n)
t+1

�
� B0n�1 (�� ��) � Zt � 0 so

that expected excess returns are nearly unforecastable.

1.7.3 An Uncertainty Principle in Bond Markets

The conditional volatility of the stochastic discount factor can directly be linked

it to the return-forecasting factor in the following equation:

�t [mt+1] =
�
V(2;2)

� 1
2 �
�
�level0 + �level1 � xt

�
(1.27)

Hansen-Jagannathan bounds for log returns can also link the stochastic discount

factor to expected excess returns, accounting for Jensen�s term

�t [mt+1] =
Et [rxt+1] + 1

2
�2 (rxt+1)

� (rxt+1)
(1.28)

As I discussed in the previous section, for the Hansen-Jagannathan bounds to

be consistent with both bond and currency market data, it must be the case

that either (a) expected excess returns be conditionally heteroskedastic (i.e. the

�t [rxt+1] term moves to o¤set movements in Et [rxt+1]) or (b) the measured

amount of predictability (the Et [rxt+1] term) is too large. However, we have

evidence from global bond markets that returns are conditionally heteroskedastic.

If that is the case, then variation in the return-forecasting factor could also sig-

nal changes to either the conditional mean or the conditional variance of returns,

thereby highlighting another key proposition.
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Proposition 2 Given the mentioned restrictions on the market price of risk, vari-

ation in the return-forecasting factor cannot be exclusively attributed to expected

excess returns and can also precede movement in the conditional volatility of re-

turns. Moreover, the amount of measured predictability in bond excess returns is

too large to be consistent with empirically consistent bounds on Sharpe ratios.

The proposition suggests that the amount of variation in the return-forecasting

factor implies there is too much forecastability implied by a linear factor model. It

is possible that variation in bond risk-premia be driven by serially correlated errors

as Hamilton and Wu (2010) �nd evidence in favor of. What is clear is that the

return-forecasting factor is constructed to contain information that varies over

time with risk-premia, although it is unclear why its variation does not nearly

forecast as well as the factor model would lead you to believe. What can be

inferred from the analysis so far is that return volatility is time-varying. If so,

then, xt captures movements in both the conditional mean and variance of excess

returns, as shown in the following equation: The model estimation procedure

places primary emphasis on conditional mean of the pricing kernel, rending the

model incapable of capturing changes in the conditional variance of risk-premia.

The mapping between actual and risk-neutral dynamics is linked together by some

risk-adjustment term. If the shocks to the state variable are conditionally het-

eroskedastic, then this risk-adjustment term is no longer time-invariant. Further,

if returns are conditionally heteroskedastic, then the conditional variance of ex-

pected excess returns must be time-dependent. Thus, time-variation in market

risk prices that are directly linked to the return-forecasting factor, i.e. �t (xt),

cannot be uniquely determined to either the conditional mean of excess returns

or the conditional variance of returns since

Et
�
rx

(n)
t+1

�
+
1

2
�2t

�
rx

(n)
t+1

�
= B0n�1�V � �t (xt) (1.29)

Taken together, the results highlight a key uncertainty principle.
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Corollary 3 Given the mentioned restrictions on the market price of risk, if there

is time-varying volatility, then one cannot track expected returns on bonds without

accounting for changes in the conditional variance of excess returns.

1.7.4 Some Commentary

The results established in this paper highlight a limitation in the class of lin-

ear bond pricing models to simultaneously capture the predictable components

in bond and currency markets. More broadly, I assess the ability of a framework

to help one understand salient features of the data. In doing so, I demonstrate

that there are necessary but not entirely innocuous judgment calls that need to

be made, making our understanding of phenomena constrained by the model we

employ. Di¤erent modeling approaches may have di¤erent strengths and weak-

nesses, but their respective importance hinges upon the key insights that can be

extracted from them. After all, models are only approximations of reality. The

important thing to realize is that they give us an understanding of certain aspects

of the data and the world that is not possible with empirics alone.

Using a linear class of models to account for time-varying risk and return in

bond and currency markets is, as I have shown, asking too much of the model. An

example of a monetary model that can jointly account for time-varying risk bond

and currency markets and treats expected returns in individual bond markets as

a mean-reverting process is Alvarez, Atkeson, and Kehoe (2009). Directly linking

a stochastic discount factor to key economic risk factors in a general equilibrium

model is important for our understanding of time-varying risk, but their framework

choice requires that they be agnostic about the amount of measured predictability

in bond markets. This is neither right nor wrong, but a direct consequence of their

modeling choice. Nonetheless, it still may be useful for understanding key features

of the data.
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At the other end of the spectrum, if one does want to tell a risk-based story of

predictable returns in �nancial markets, then one must account for a large amount

of predictability in bond markets as Cochrane and Piazzesi (2005, 2008) �nd, and

in currency markets recently documented by Lustig et. al (2010). Doing so

with economic interpretability through key risk-factors in each respective market

in relation to macroeconomic aggregates (or at least, the beliefs about future

macroeconomic aggregates) would be enormously useful as a guide for thinking

and intuition, one that many would welcome.

Another possible source of statistically measured predictability that has not

been discussed very extensively in the literature is the importance of the subjective

beliefs of market participants and how they can reduce the amount of measured

predictability that a stochastic discount factor must explain. To show how sub-

jective beliefs can matter, one can decompose measured predictability of returns

according to the following expression:

bE �Ret+1� = �bE �Ret+1�� ~E �Ret+1��| {z }
(�)

�
]Covt

�
Mt+1; R

e
t+1

�
Et [Mt+1]

(1.30)

where bE is expectations from the actual statistical probability distributions and

~E is taken under the subjective beliefs of the market participants as is the covari-

ance operator]Covt (�). Of course, doing so requires that we depart from rational

expectations. Assuming rational expectations amount to setting the (�) term to

zero, but this means the candidate risk factors that make up the pricing kernel

exclusively drive variation expected excess returns. According to Piazzesi and

Schneider (2011) and Gourinchas and Tornell (2004) and as the results in this pa-

per indicate, this may be asking too much from the discount factor. One plausible

motivating reason for why agents make systematic forecast errors is because of a

signal extraction problem, distinguishing transitory disturbances from permanent

shocks. As a result, investors are necessarily are making forecasts that minimize

how wrong they are and these forecast mistakes show up as measured predictabil-
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ity. The full implications of such a departure from rational expectations can help

us explain time-series properties of returns not only for bond markets as Piazzesi

and Schneider (2011) show, but for any �nancial market, making it an interest

avenue for future research.

1.8 Conclusion and Future Directions

After documenting that predictable returns in bond markets are a global phe-

nomenon, I determine if the foreign exchange market prices implied by the term

structure model of Cochrane and Piazzesi (2008) are consistent with our current

understanding of predictable currency risk-premia. I �nd that currency market

prices are substantially more predictable than standard predictor variables sug-

gest. According to my results, even if we wanted to jointly account for the pre-

dictable component in bond and currency risk-premia, we could not; linear factor

models can account for either bond and currency return predictability, but not

both at once. This limitation of a linear class of models is in large part due to

the emphasis on �tting the conditional mean of the pricing kernel, among other

things.

The results in this paper have implications for the asset pricing implications of

dynamic economic models. Existing frameworks such as an a¢ ne term structure

model and a general equilibrium (New) Keynesian models that form the basis of

policy rules generate movement in the conditional mean of the pricing kernel. At

business cycle frequencies, changes in the policy instrument, the short-term inter-

est rate, do not correspond to changes in the conditional mean but the conditional

variance of the pricing kernel. This result is well-documented in �nance and was

recently emphasized by Alvarez, Atkeson and Kehoe (2007). By not accounting

for changes in risk, their policy response may have unintended consequences. This

criticism is especially relevant for rules that may have worked in the past but may
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have also outlived their usefulness. One immediate implication of my �ndings is

that in�ation expectations management using a Taylor rule alters risk in �nancial

markets. If this is not the intention of central banks, is there a better way to

manage expectations about prices?

Macroeconomic policy plays a critical role not only in changing �nancial risk

conditions but also in coordinating future economic activity. Key questions remain

unanswered. Does monetary policy cause changes in risk, or is time-variation in

risk-premia driven by deeper forces that are outside the direct control of central

bank o¢ cials? These questions are especially important in light of recent �ndings

that �nancial market data often move together across countries, suggesting that

global forces are at work. How will the coordination of policy a¤ect bond and

currency prices? In light of recent events, we may also bene�t from addressing

alternative methods of managing risk and maintaining �nancial market stability.

These concerns should be, if they are not already, at the frontier of research in

the future conduct of monetary policy.

In my future research, I hope to further our understanding of why returns

in �nancial markets move so much. For bond markets, this requires a more pro-

found understand of how expectations are formed by �nancial market participants.

Jointly capturing bond and currency market prices require careful treatment of

expectations formation that takes seriously �nancial market participants�concern

about structural change. Ultimately, international �nancial economists want an

integrated understanding of both bond and currency markets that may lead to

a macroeconomic understanding of asset prices. I hope this paper provides an

impetus for such an undertaking, as well as tantalizing leads for future research.
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1.9 Appendix

1.9.1 Data Description

Data on zero-coupon bond yields are taken from Jonathan H. Wright, further

details on the construction of the data using Svensson, Spline, or Nelson-Siegel ap-

proaches to extracting zero-coupon yields are found on www.econ2.jhu.edu/People/Wright/intyields.pdf.

1.9.2 Solving for Bond Market Prices

To begin, we �rst conjecture an exponentially a¢ ne function form of the bond

price given by the following

P
(n)
t = exp (An +B

0
n�Zt) (1.31)

and in logs, we get:

p
(n)
t = An +B

0
n�Zt (1.32)

y
(n)
t = � 1

n
p
(n)
t (1.33)

= �An
n
� 1

n
B0n � Zt

Written in terms of the stochastic discount factor, bond prices are then

P
(n)
t = Et

h
Mt+1P

(n�1)
t+1

i
(1.34)

= Et

"
exp

 
n�1X
j=1

mt+j

!#
(1.35)

Suppose that the evolution of the state variable can be characterized as a

�rst-order VAR:

Zt+1= �+ � � Zt+"t+1 (1.36)
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where "t+1 is a multivariate normal distribution with mean ~0 and variance-

covariance matrix E
�
"t+1"

0
t+1

�
= V. Also, suppose the (log) discount rate mt+1 is

an a¢ ne function of the state variable along with an additional stochastic term

magni�ed by the market price of risk,

mt+1 = ��0 � �01�Zt �
1

2
�0t�V � �t � �0t � "t+1 (1.37)

where the market price of risk is also a¢ ne in the state variable �t = �0 +

�1�Zt. Given that shocks to the state variable are conditionally homoskedastic,

the conversion of actual dynamics to risk-neutral dynamics involves an adjustment

for risk, given by the following relation:

�� = ��V � �0 (1.38)

�� = ��V � �1 (1.39)

To solve for no-arbitrage prices, we must ensure that the loadings (An;Bn)
N
n=1

satisfy the equilibrium prices for any t and for all n. We proceed by induction.

To ensure that p(0)t = 0, it must be that A0 = 0;B0= ~0. Now, let us solve for the

one-year bond price. Then, I assume that the condition holds for some maturity

n and then show that it holds for n+ 1. To start for n = 1,

P
(1)
t = exp (A1 +B

0
1�Zt)

The one-year price should be equal to negative the one-year interest rate, which

is given by the following expression:

y
(1)
t = logEt [exp (mt+1)]

= log

�
exp

�
Etmt+1 +

1

2
Vtmt+1

��
= (��0 � �01�Zt)

= �p(1)t = A1 +B
0
1�Zt

which is true if �0 = �A1 and �1 = �B1. Now, suppose that P (n)t =

exp (An +B
0
n�Zt) and show that P (n+1)t = exp

�
An+1 +B

0
n+1�Zt

�
by explicitly
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solving for (An+1;Bn+1). To do so,

P
(n+1)
t = Et

h
exp

�
mt+1 + p

(n)
t+1

�i
(1.40)

= Et

24exp
0@ ��0 � �01�Zt � 1

2
�0t�V � �t + �0t � "t+1

+An +B
0
n�Zt+1

1A35 (1.41)

= exp (��0 + An) Et [exp (B0n � Zt+1)]| {z }
exp(B0n(��+��Zt)+ 1

2
B0n�V�Bn)

(1.42)

=

2664exp
0BB@��0 + An +B0n��� + 12B0n�V �Bn| {z }

An+1

+(�01 +B
0
n���)| {z }

B0n+1

�Zt

1CCA
3775(1.43)

= exp
�
An+1 +B

0
n+1�Zt

�
(1.44)

where expectations are taken under the risk-neutral probability distribution.

Thus, the expression for the loading coe¢ cients given above satis�es the equilib-

rium condition. Solving for forward rates is straightforward from the following

relation

f
(n�1!n)
t = p

(n�1)
t � p(n)t (1.45)

= An�1 � An + (Bn�1�Bn)0 �Zt

= Afn +B
f 0
n �Zt (1.46)

where Afn = An�1 � An = �0 �B0n�1��� � 1
2
B0n�1 �V �Bn�1 and

Bfn = Bn�1�Bn= �01+B0n�2����01�B0n�1�� (1.47)

= (Bn�2�Bn�1)0��

= (Bn�3�Bn�2)0��2 (1.48)

::: = (B0�B1)0 ���n�1

= �01�
�(n�1) (1.49)

Numerical techniques that solve for
�
Afn;B

f
n

�N
n=1

used in Cochrane and Piazzesi

(2008) compare the �t of the model to the data with the best linear estimator
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of forward interest rates using OLS similar to a maximum likelihood estimator

with a quadratic loss function. Not only that, the OLS estimated dynamics has

a greater set of parameters to characterize the dynamics of bond prices. The �t

of the model is measured by root mean squared error (RMSE) which is sensible

given that shocks to the underlying state variable are assumed to be Gaussian

with time-invariant volatility.

1.9.3 Cross-country Estimates of the Market Price of Risk

The cross-sectional �tting procedure is critical for the estimates of the market

price of risk. The procedure is made even simpler once we only allow random

walk shocks to move risk-premia. Given this restriction, we can write the market

price of risk to be a function of only the return forecasting factor xt,

�t = �
level
0 + �level1 � xt; (1.50)

making the key parameters that govern the time-series properties of the market

price of risk only two dimensional instead of twenty if all of the four factors a¤ected

the price of risk. For a set of countries where the a¢ ne model performs relatively

well, I report the estimates of � =
�
�level0 ; �level1

�
given table below

Table 1.4: Bond Market Risk Price Estimates

� �level0 �level1

US �1:28 �143

DE �1:45 �215

JP �1:37 �441

AUS �2:13 �217

Estimates of the market price of risk for a subset of countries
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There are clearly idiosyncratic di¤erences in the parameter estimates that can

be attributed to country speci�c reasons as well as when the bond data become

available. However, a common pattern for this set of countries is the sheer mag-

nitude of the estimates for �level1 . To be sure, the size of �level1 determines how

sensitive a change in risk compensation is to the return-forecasting factor. Based

on the large magnitudes in the estimate of �1;l, small changes in xt set o¤ large

movements in risk-premia for a set of countries. The interpretation of this para-

meter estimate is that a 100 basis point increase in the return forecasting factor

generates a 143 (:01 � 143 (:01) = 1:43) basis point increase in the amount of com-

pensation required for buying a short-maturity bond.

1.9.4 Sharpe Ratios

We can derive Sharpe ratios for simple returns using the basic asset pricing mo-

ment condition

Et
�
Mt+1R

e
t+1

�
= 0 (1.51)

We can expand this expression using some key statistical relations:

Et
�
Mt+1R

e
t+1

�
= Et [Mt+1]Et

�
Ret+1

�
+ Covt

�
Mt+1; R

e
t+1

�
= Et [Mt+1]Et

�
Ret+1

�
+ Corrt

�
Mt+1; R

e
t+1

�
�t (Mt+1)�t

�
Ret+1

�
(1.52)

Rearranging, we get

�t (Mt+1)

Et [Mt+1]
= �

Et
�
Ret+1

�
�t
�
Ret+1

� 1

Corrt
�
Mt+1; Ret+1

� (1.53)

Since Corrt
�
Mt+1; R

e
t+1

�
2 [�1; 1], if we take the stochastic discount factor to

be perfectly negatively correlated with expected excess returns, then

�t (Mt+1)

Et [Mt+1]
�
Et
�
Ret+1

�
�t
�
Ret+1

� (1.54)

For any stochastic return process, these bounds hold. We can then construct

Hansen-Jagannathan bounds to understand the properties of the implied stochas-
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tic discount factor to see how much our model can explain the variability of ex-

pected excess returns.

For log-linear models, we can write down the log Sharpe ratios

sit = �Corrt (mt+1; rxt+1)�t (mt+1) (1.55)

where lowercase variables are in logs. We also know what the (log) risk-free

rate is

r
(1)
f;t = �Et [exp (mt+1)]

= �
�
Et [mt+1] +

1

2
�2t [mt+1]

�
(1.56)

For a strictly positive cum dividend value process, the log conditional Sharpe

ratio can be written as

sit =
Et [ri;t+1]� rf;t + 1

2
�2t (ri;t+1)

�t (ri;t+1)
(1.57)

�
Et [rxt+1] + 1

2
�2t (rxt+1)

�t (rxt+1)
(1.58)

for any (log) return process ri;t+1. The approximation holds for (63) for values

of rxt+1 around zero. For now, let us suppose that the unconditional mean of

rxt+1 is approximately zero. This seems to be a reasonable approximation.

For the restrictions on the market price of risk in Cochrane and Piazzesi (2008)

the choice of
�
�level0 ; �level1

�
= � is equivalent to �tting the cross-sectional regression

linking both an unconditional mean expected excess return and the time-variation

of expected returns exclusively through movements in the return-forecasting factor

(only in relation to random walk shocks). In addition, when the portfolio of bonds

is weighted by q0r, the magnitude change in expected returns as a function of

xt implies wild swings in the conditional Sharpe ratio, which in turn is linearly

related to the conditional volatility of the pricing kernel for the class of linear
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a¢ ne models. We can see this with the following linear-a¢ ne relation between

the Sharpe ratios and expected excess returns:

�t (mt+1) = s
(1)
t =

�0 + �1Et [rxt+1]
�2 (rxt+1)

(1.59)

= �0
�
�2 (rxt+1)

�1�+ �1a (1) + �1� (1)�2 (rxt+1)�1 � xt (1.60)
= 
0 + 
1 � xt (1.61)

where (�0; �1; 
0; 
1) are arbitrary constants, and Et [rxt+1] = a (1) + � (1) xt

where xt is the return-forecasting factor constructing from average term-premia

not yet weighted by any portfolio. In general, we have the following a¢ ne relation

between expected returns to the return-forecasting factor E
h
rx

(n)
t+1

i
= a (n) +

� (n) � xt. Once we weight the portfolio of bonds by q0r, we get the cross-sectional

average of returns is given by Et
h
q0r�rx

(n)
t+1

i
= ~xt, where the f(�) denotes variables

that are weighted by the portfolio qr. We can then relate the conditional volatility

of the pricing kernel �t (mt+1) to the weighted return-forecasting factor with the

following weighted regression

�t (mt+1) =
1

2
a (n)�

�
rx

(n)
t+1

�
+ � (n)

h
�
�
rx

(n)
t+1

�i�1
| {z }
weighted regression coe¢ cient

�xt

= ~a (n) + � � xt (1.62)

so for any n time-to-maturity, � (n)
h
�2
�
rx

(n)
t+1

�i�1
= �, a constant that needs

to be large to match the large amount of predictability at long horizons. For the

U.S. the weighted regression coe¢ cient is �̂ = 10:67, which implies large magnitude

changes in the term �t (mt+1) associated with variation in xt.

The identi�cation restriction allows the model to explain most of the cross-

sectional variation in expected returns, but it implies a conditional Sharpe ratio

that increases linearly with n years-to-maturity. The problem with this result

is that Sharpe ratios are inversely related to maturity as Du¤ee (2010) argue.

Intuitively, large Sharpe ratios imply a large amount of compensation per unit
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of risk. This is great for investors, but it is not clear why there needs to be so

much risk compensation in bond markets, especially the amount implied by the

return-forecasting factor in the linear factor model. Because factor models have no

economic content it is unclear what type of risk the bondholder is being exposed

to and demands compensation.
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CHAPTER 2

Uncertain Risk and Return in Bond Markets, II

2.1 Introduction

Predictable bond risk-premia warrants attention from a broad spectrum of eco-

nomic actors. Return predictability gives investors the ability to strategically

rebalance a portfolio of assets to stabilize unwanted return variability, not to

mention helps central bankers conduct policy through �nancial markets in order

to manage expectations where reputation can go a long way toward minimizing

undesirable consequences.

In my analysis, I am motivated by the following questions: Are predictable

bond excess returns exploitable in real-time? Is variation in predictable risk-

premia perfectly captured by a linear combination of forward rates? In order to

address these questions, I take the viewpoint of a real-time forecaster who only

knows as much as an econometrician at any given point in time.

Taking a di¤erent vantage point by placing restrictions on the information

set of investors allows us to determine if the size of the predictable component

described by Cochrane and Piazzesi (2008) is consistent with real-time data avail-

ability. I start with a benchmark forecast nearly identical to Cochrane and Piazzesi

(2005; 2008) using forward interest rates to pick up a stable predictable compo-

nent of bond excess returns using the full-sample of data. I then compare it to

forecasts that are consistent with real-time information. Namely, I use recursively

updated forecasts that are revised as data becomes available. These forecasts are
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constrained by the amount of information available but are �exible in how they are

revised with the arrival of news. In taking this approach, I combine the analysis

of predictable bond risk-premia by Cochrane and Piazzesi (2005; 2008) with the

learning process of an econometrician described by Du¤ee (2011) using recursive

least squares to approximate real-time forecaster behavior.

Ensuring that agents only have information available at the given time period

when decisions are made can inform us on the di¢ culties that real investors face.

Parameter uncertainty can play a pivotal role in forecasts of bond risk-premia if

the relationship between the predictor and predicted variable have changed, or if

there is some omitted term that may not be fully accounted for by the predictor

variables. Because agents know that they do not know it all, they behave in ways

to guard against the worst thing that can happen. This fear of the unknown

forces them to guard against large and persistent declines in asset returns in real-

time. In turn, this dynamic forecasting problem can generate forecast di¤erences,

relative to forecasts made with the full set of historical data, that make returns

predictable in historical data. Therefore, under the mentioned conditions, the

exploitability of predictable patterns in risk-premia may not be perceived to be

advantageous by real-time forecasters.

If agents have concern that the relationship between risk-premia and the vari-

ables that proxy for risk may have changed and if surprise changes cannot be

determined to be transitory or long-lived, then real-time forecasters tend to have

biased forecasts of bond risk-premia relative to those made with the full set of his-

torical data. The biased forecasts persist and is systematically related to changes

to business cycle conditions. I �nd support of this phenomenon. That is, there

is evidence for a cross-section of industrialized economies that realized bond risk-

premia tend to move with di¤erences in forecasts between the full-sample return-

forecasting factor and its recursively updated counterpart.

Improvements in forecast performance that emphasize more recent data sug-
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gest that forecasters are in some ways better o¤ not trusting their model. The

lack of trust in the forecasting model means that bond risk-premia must include

additional compensation for investors to hold onto a portfolio of bonds. A hid-

den factor similar to the one described by Du¤ee (2011) found in the di¤erence

between forecasts assuming all historical data is available and those made recur-

sively have predictive power for future short-term interest rates and the mean

level of the yield curve. These results are broadly consistent across a cross-section

of industrialized government bond markets.

Using this hidden factor as a proxy for the market�s expectation of the level

of interest rates, I o¤er an auxiliary hypothesis for the decline in long-term bond

yields and the inversion of the yield curve: the market behaved as if it expected

a decline in the level of interest rates from 2004� 2005. I also �nd support of the

claim that the conundrum is consistent with a decline in business cycle related

risk as suggested by Cochrane and Piazzesi (2008) albeit under less restrictive

information restrictions.

The intuition for the results can be gleaned from the perspective of an investor.

If information contained in the return forecasting factor exceeds that of yield

spreads, it is possibly related to the long-run average in which interest rates will

eventually settle. If that is the case, then it contains turning points, or times where

the rates will change direction. The source of movement in long-horizon predictor

variables that forecast risk-premia can be linked to market participants� long-

horizon expectations of returns that are driven by changes in the level of the yield

curve. The crucial issue is whether the turning points are predictable. For one,

an investor has di¢ culties telling apart persistent shocks from transitory ones.

Sometimes, the expectations of these mentioned factors change abruptly. This

problem is even more pronounced if we acknowledge that the investors are afraid

that their model may not generate the optimal forecast. Based on how market

participants behave, it is di¢ cult to identify time-variation in bond risk-premia
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with the return-forecasting factor because it seems that real-time forecasters must

be ready to revise their forecasts so that their portfolio of bonds is minimally

impacted by unexpected changes in interest rates.

2.2 Literature Review

My work builds on Cochrane and Piazzesi (2005; 2008) in understanding pre-

dictable variation in bond risk-premia. I propose a more �exible framework than

theirs that highlights incomplete information on the part of a forecaster. In re-

lation to the inverted yield curve of 2004 � 2005, Cochrane and Piazzesi (2008)

suggest that a decline in business cycle related risk explains the inversion of the

yield curve, taking a stance that such an episode is no conundrum at all but is

characteristic of an economic expansion when risk-compensation is normally low.

Rudebusch, Swanson, and Wu (2006) empirically examine and o¤er several can-

didate explanations for the inverted yield curve, lending support to the decline in

long-term bond yield volatility although they acknowledge that it can only explain

a relatively small fraction of the conundrum. I complement existing explanations

by providing evidence market participants expected the short-term and level of

interest rates will decline during the time. I also discuss reasons for the decline

using the central bank decision rule to tie my analysis to key economic aggregates.

I posit that a fear of a lower level of interest rates, either due to fears of de�a-

tion or a belief that future growth prospects are dim, is also consistent with the

inversion of the yield curve.

This paper is similar in spirit to work on robust control, which was given

textbook treatment by Hansen and Sargent (2007). Similar in premise to the mo-

tivation behind robust control, I allow the forecaster to have doubts about their

model and to revise forecasts to guard against being wrong, investigating a set of

forecasting models that changes how past data is weighted into updated forecasts.
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My analysis speci�cally highlights a rule that converges to a perfect foresight fore-

cast. In addition, my work is similar to Gourinchas and Tornell (2004) who study

how investor�s misperception of the short-lived changes in interest rate di¤erentials

can explain key features in foreign exchange markets. Although I also highlight

the signal extraction problem faced by investors, I look particularly at forecasting

risk-premia in government bond markets for a set of industrialized countries and

show that statistically measured predictability can be partly explained by sys-

tematic forecast di¤erences among di¤erent rules. Piazzesi and Schneider (2011)

also study the importance of subjective beliefs using survey data and decompose

risk-premia in bond markets into frequency components. I also highlight the role

of subjective beliefs on asset prices by approximating adaptive expectations fore-

casts using recursive least squares. Because I use forecasting rules to approximate

subjective expectations formation, I can study a broader set of countries. I also

use di¤erences in forecasts to forecast future short-term interest rates and average

yield curve levels.

2.3 Forecast Performance

I quantitatively measure the size of the predictable component in bond risk-premia

and examine the forecast ability of predictor variables constructed from forward

interest rates. In addition to the benchmark forecasting factor of Cochrane and

Piazzesi (2005; 2008) I highlight rules that are (a) consistent with real-time avail-

ability as well as those that (b) emphasize more recent data in forecasts of the

future.

2.3.0.1 Preliminaries

To be clear with notation, let En

h
rx

(n)
t+1

i
:= (N � 1)�1�Nn=2rx

(n)
t+1 be the average

risk-premia taken over the set years to maturity n, zt is the predictor variable
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that captures a forecastable component in returns, and "(n)t+1 is some idiosyncratic,

unforecastable component. The cross-section of bond risk-premia for a set of long

bonds will be denoted by n. One-year ahead forecasts are written as Et [rxt+1] with

a subscript t denoting expectations formed at date t. In this paper, I often forecast

one-year ahead bond risk-premia for a portfolio of long bonds. The notation

Et [E [nrxt+1]] to mean the described object is too cumbersome, so I write it as

Ent [rxt+1] instead. The predictor variable used for this paper are a subset of

forward rates emphasized in Mang (2012), i.e. zt =
�
f
(0!1)
t ; f

(4!5)
t ; f

(8!9)
t

�
where

forwards are chosen to capture most of the time-variation of bond risk-premia

albeit with less ability to capture the magnitude changes. I will adhere to the

choice of these subsets of forward rates in this paper as well.

Predictable returns in bond markets can be characterized by the following

estimation equation

En [rxt+1] = �+ �
0�zt + "t+1 (2.1)

where unpredictable returns coincide with � = ~0, implying that forecasting

variables provide no information about future excess returns. However, my analy-

sis along with a plethora of empirical evidence suggests otherwise; one-year ahead

excess returns in bond markets have a predictable component.

The more interesting question is the size of the predictable component in bond

excess returns. The return-forecasting factor of Cochrane and Piazzesi (2008)

captures a predictable component in bond risk-premia that has been proven to

be useful for forecasting. They �nd as much as 44% of the variability in bond

excess returns can be captured by using the term structure of (Fama and Bliss)

forwards. A subset of forward rates delivers captures about 14�17% of variability

in 12-month ahead bond excess returns in the U.S. The estimates of Cochrane

and Piazzesi (2008) and Mang (2012) are similar in the amount of time-variation
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in returns that is captured, but the magnitude changes of bond excess returns

using the predictor variables highlighted in Cochrane and Piazzesi (2005) deliver

superior forecasts. However, for the purpose of this paper I will use only a subset

of forwards. I do this to reduce the problems associated with multicollinearity

in regressions. A discussion of this problem for forecasting bond risk-premia is

found in Mang (2012). In the following sections, I describe the benchmark case

and outline alternatives and proceed to compare them.

2.3.1 Benchmark Case

De�nition 1 A full-sample forecast rule uses a predictor variable zt and all avail-

able data to make a forecast about bond risk-premia. This is equivalent to con-

structing a predictor variable zt that captures a predictable component in returns

using all available information. First, they construct the predictor variable using

forward rates by running the following regression:

En [rxt+1] = �+ �
0�zt + "t+1 (2.2)

thereby estimating (�;�) = �. The resulting forecasting factor can be written as

En
t [rxt+1] = ~�+ �̂

0�zt := xt (2.3)

For the remainder of the paper, I will describe this forecasting factor as the

x-factor.

In the case of bond markets, Cochrane and Piazzesi (2005) outline the process

of constructing the return-forecasting factor. The estimated forecast using the

full sample of data only requires running the regression once to �nd �̂. By using

the estimation equation (2), one implicitly assumes that parameter estimates are

stable over time and that the dynamics describing the time-variation in bond risk-

premia is stable across subsamples. The approach also assumes that forecasting
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agents information set is larger than that of an econometrician. The time-invariant

parameters describing the time dynamics of bond risk-premia highlight a lack of

concern on the part of the forecaster that the model is the optimal one. The degree

of certainty in the model speci�cation avoids unnecessary complication and allows

for a straightforward construction of a stable, predictable forecasting factor. This

more or less describes the construction of the return-forecasting factor highlighted

in Cochrane and Piazzesi (2005)

I am also intersted in the real-time exploitability of predictable bond risk-

premia. Ensuring real-time exploitability requires relaxing the implicit assump-

tions made to construct the return-forecasting factor. In doing so, I introduce

a class of rules that are available to forecasters who have concerns related not

only about real-time exploitability of returns, but also about whether they have

the correct model. plicit assumptions and see how the forecast performance of

doing so changes. In doing so, I introduce a wider class of forecasting models

that is available to forecasters that are also consistent with real-time availability

considerations.

2.3.2 Alternative Forecast Rules

The benchmark forecasting rule can potentially be improved upon in several ways

by relaxing some of the implicit assumptions. First, constraining the information

set of the forecaster and determining the forecast performance relative to the

benchmark case. The corresponding estimation equation is given by

En [rxt+1] = �t + �
0
t�zt + "t+1 (2.4)

Notice that the parameters of the forecasting equation now depend on time,

distinguishing it from the full-sample forecasts. Recursively estimating the model

by incorporating newly released data involves solving for a set of parameters that

minimize the errors of the forecasts using a criteria on how to weight the losses.
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The equivalent problem of estimating the model requires solving for the set of

parameters implicit in running an ordinary least squares regression where the

loss function is taken to be the sum of squared errors. In this paper, I high-

light a forecast that recursively updates parameter estimates over time as news

becomes available where past forecasts are not discounted and new data receive

equal weight in forecasts. This alternative return-forecasting factor will be ex-

tensively analyzed in this paper along with and in relation to the full-sample

return-forecasting factor. The set of parameters
n
�̂t

oT
t=T̂

describes the sequence

of forecast revisions where T̂ = 30 denotes the number of observations used to es-

timate the initial forecast. The recursively updated forecasts can then be written

as the following:

De�nition 2 The recursive return-forecasting factor (henceforth, the rx-factor)

characterizes a forecasting rule in which real-time data are used to revise over time

estimates of �t = (�t; �t).

~En
t [rxt+1] = ~�t + �̂

0
t�zt := ~xt (2.5)

This forecast rule coincides with the gain parameter t�1 where new data a¤ect

parameter estimates, but the importance of new data decline as the forecasts reach

the end of the sample period.

2.3.3 Results

I display the relative forecasting rules used to predict one-year ahead average

risk-premia of an equally weighted portfolio of long bonds. I compare full-sample

forecasts with a forecasting rule that either (a) weight all data equally (recursive)

(b) to weight recent observations more heavily, with a discount factor of � =

0:9995, (c) a forecast rule with discount factor � = 0:9994, and (d) a rolling

regression estimate, which looks only at the latest T̂ = 30 observations. I include
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the average realized risk-premia (grey line) to visually compare the accuracy of

the forecasts. Forecasts that heavily discount past data have the lowest root

mean squared errors (RMSE) and root mean absolute errors (RMAE), making

the rolling regressions the most accurate. I also determine how realized risk-

premia co-vary with di¤erences in the alternative forecast rules relative to the

full-sample forecasts. I do so by regressing the average realized bond risk-premia

on the forecast di¤erences. The percentage of co-variation is simply the R2 from

the regression. In �gure 2:1, I compare some alternative forecast rules to that

which assumes the full-sample of data is available when making forecasts.

Table 2.1: Forecast Performance under Alternatives

Rule full-

sample

� = 1 � = 0:9995 � = 0:9994 rolling

U.S

12.1971-5.2009

RMSE

RMAE

*

640

499

0

643

468

63:9

621

469

61:4

619

470

60:4

481

353

34:9

* percentage of co-variation of forecast errors with realized risk-premia

Comparing forecasting rules with the forecast made with the full-sample of data. The

�rst two rows of the table displays root mean squared errors (RMSE) and mean

absolute errors (MAE) in basis points (100 basis points = 1 percentage point) for a set

of forecasting rules. The third row is the amount of co-variation the forecast

di¤erences, between the full-sample return-forecasting factor and the recursively

updated forecasts, have with realized risk-premia, which were calculated by running an

GMM estimates of the realized risk-premia on the forecast di¤erences between the

associated forecast di¤erences. The standard error estimates include 12 lags to

account for overlapping monthly data and are Newey-West corrected.
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Figure 2.1: Graphical Illustration of Forecast Performance
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Comparing forecasts with those made with the full-sample of data. The light grey line

is the realized bond risk-premia for an equally weighted portfolio of long bonds. The

solid dark line is the forecast from the full-sample of data. The (.-.-) line is the

recursively made forecasts. The (- - -) line is the rolling regressions. The data are

monthly frequency and spans from end-of-month November, 1974 to June, 2008.

Risk-premia are in annualized percentages.

Figure 2.2: Graphical Illustration of Forecast Errors
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Realized risk-premia and forecast errors. The light grey line is the realized bond

risk-premia for an equally weighted portfolio of long bonds. The solid dark line is the

average forecast error made with the full-sample of data. The (.-.-) line is the

recursively made forecasts. The (- - -) line is the rolling regressions. The data are

monthly frequency and spans from end-of-month November, 1974 to June, 2008.

Risk-premia are in annualized percentages.

2.4 Comparing Return-Forecasting Factors

The full-sample return-forecasting factor uses all historically available data to

captures changes over time in the required risk compensation to hold onto bonds.

A real-time forecaster uses forward rates in a similar fashion and re-estimates

their forecast as new data arrive. Recursive forecasts acknowledge that their
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model is only approximately capturing reality and in updating they are express-

ing some doubt that they possess the right one. Di¤erences between forecasts,

full-sample versus recursive, are apparent in how estimated parameters vary over

time. Through parameter variation, recursive forecasts capture changes in real-

time expectations about future bond excess returns. Consequently, comparing

return-forecasting factors can inform us on sources of disturbances that are hard

to anticipate in real-time but are implicitly guarded against. I compare the per-

fect foresight forecasts with a recursively updated forecast that converge to the

benchmark case.

In the �gure below, I plot the loadings on �t when executing this recursive re-

gression approach as a time series, including 95% con�dence intervals around the

point estimates. The variation in the regression coe¢ cients and the rx-factor may

reveal information about real-time forecasts in ways that a full-sample estimation

cannot. Interesting dynamics arise in the parameters in comparison to the bench-

mark constant coe¢ cients case, given by the dash-dot line obtained by using the

full-sample of data to come up with a point estimate. There are several notewor-

thy patterns. The estimates suggest that average risk-premia negatively depends

on short-run and long-run changes in forward rates and positively on medium-

term forwards. In addition, At every point in time that recursive forecasts are

re-estimated, there is a tent-shape in the regression coe¢ cients that characterize

the same common factor in pricing bond risk-premia for all maturities, We also see

that the regression coe¢ cients �uctuated wildly in the 1980�s but have stabilized

somewhat after the 1990�s.

Figure 2.3: Time-Varying Coe¢ cients on Forward Interest Rates
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Time-variation in the regression coe¢ cients on forwards. The top panel plots the

time-variation in the regression coe¢ cient/loading on the forward rate from year 0 to

year 1. The middle plots the time-variation in the coe¢ cient on the forward rate from

year 4 to year 5, and the bottom panel plots the loading in the long-horizing forward

rate, from years 8 to year 9. The (- - -) line around the time-series is the 95 con�dence

intervale are also Newey-West adjusted for serial correlation The (.-.-.-) line plots the

constant coe¢ cient from the full-sample forecasts. The data are monthly frequency and

span from November 1974 to June 2008.

There are potential objections to my approach. Updating forecasts every time

period with new data and not discounting past data while increasing the sample

size means that new data a¤ect estimated parameters late in the sample period

less over time so that the �nal parameter estimates in the recursively updated

forecasts converging to the estimates obtained using the full set of information.

This approximates a forecasters�concern about their model speci�cation, but as

we approach the end of the sample of data, forecasts are made as if uncertainty
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about the model speci�cation becomes less important. Therefore, adaptive expec-

tations made by recursively estimating the model highlights a real-time forecaster

who has incomplete information about the future but believes that the model is

approximately correct and that the relationship between the predictor and pre-

dicted variable is indeed stabilizing over time. This allows for a direct comparison

between the forecast rules to focus primarily on the arrival of news and its impact

on forecasts under di¤erent information restrictions.

The di¤erence in the two forecasting factors is unobservable in real-time, but

relate to the variation in the parameter estimates. I compare the recursive return-

forecasting rx-factor, the full-sample forecasting x-factor graphically in Figure 2:4:

Figure 2.4: Graphical Comparison of Key Return-Forecasting Factors
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A comparison between the x-factor and the rx-factor. The (-.-.-.) line is the

recursively updated return-forecasting factor. The solid (blue) line is the full-sample

return-forecasting factor. The latter display nearly identical time-variation as in

Cochrane and Piazzesi (2005, 2008) with less predictability captured of magnitude

changes in realized risk-premia than theirs. See Mang (2012) for more details.

The recursively updated return-forecasting factor, or rx-factor, strongly co-

moves with the full-sample return-forecasting factor, or x-factor. The forecasting

factors are positively correlated and countercyclical. While under less restrictive

information assumptions, information contained in the term structure of forward

rates is indeed capturing how risk compensation varies along the business-cycle.

It is also interesting to note that although the two factors move together, they

occasionally di¤er. Notice that the recursive forecasting factor usually reaches the

trough of risk-premia before the full-sample forecasting factor and is slow to adjust
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upward. The essential reason for di¤erences in forecasts is how news is treated by

recursive forecasts. Adaptive forecasts display additional persistence relative to

full-sample forecasts of bond risk-premia since large adjustments to the current

forecast pass directly to parameter estimates. Real-time forecasters are unsure if

new data changing their estimates are altering the slope of their regression or the

intercept term. As a result, the additional persistence is then passed through to

the intercept term.

Allowing parameter estimates to vary over time complicates things be-

cause the dynamics of the state need not be stationary. For instance, if one were

to model the dynamics of bond risk-premia, a standard impulse response for the

reaction to the forecasts to a one standard deviation disturbance will likely lead

to similar persistence. However, the forecasts have peculiarities that di¤erentiate

themselves from one another. For one, recursively updated forecasts have a time-

varying intercept term so it is not appropriate to say that the dynamics of bond

risk-premia are well-described by a mean zero time-series model. Second, the full-

sample forecasting factor has a constant but nonzero mean. Incorporating these

features will generate impulse responses that have a more meaningful comparison

in how it captures their di¤erences of the bond risk-premia dynamics, one that

acknowledges the di¤erences in how the two forecasts are generated.

Figure 2.5: Impulse Responses for Bond Risk-Premia
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Impulse responses of a dynamic system describing the return-forecasting factors. The top

panel is generated by estimating each return-forecasting factor as a �rst order

autoregressive process with zero mean. The bottom panel adjusts for di¤erences to the

mean of the factors: the x-factor has a constant but non-zero mean, whereas the rx-factor

has a time-varying mean whose dynamics are approximated as an autoregressive process.

For the rx-factor, a time-varying mean adds persistence to the dynamics of the rx-factor,

which generates a hump-shaped impulse response

2.4.1 Forecasts of Future Interest Rates

The wedge between perfect foresight forecasts and recursively updated forecasts

reveal market participant beliefs about the average level of the yield curve. By

simply taking the di¤erence between the x-factor and the rx-factor, we will see

information captured by the full-sample estimation procedure that is not observ-
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able to a real-time forecaster. The wedge between the x-factor and the rx-factor

seems to vary over time. This series (the -. line) appears to also contain idio-

syncratic movements. To mitigate the noise, I take a 12-month moving average

to isolate a slow-moving, low-frequency component. The result is a (smooth red)

time-series that seems high in the late 1970�s and early 1980�s, dips below zero

from 1980� 1985 and then slowly moves within a range of 1� 4%. One can also

speculate that the series captures a latent component of risk that is important in

bond markets, particularly the market participant�s subjective beliefs about where

short-term interest rates will eventually settle. This low-frequency component of

risk that is important in bond markets can be seen in the graph below:

Figure 2.6: The Di¤erence in Forecasts
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Unobservable component of the return-forecasting factor. The (.-.-.-) line captures the

di¤erence in the full-sample and recursively made forecasts of the risk-premia of an

equally weighted portfolio of long bonds. The solid (blue) line looks at the 12-month

moving average of the di¤erence. Taking a moving average corrects for the

re-estimation procedure updating monthly as opposed to re-estimating every

12-months. Data are monthly frequency and span from November, 1974 to June, 2008.

The y-axis measures annualized risk-premia in percentages

To my knowledge, the procedure that I use to tease out this unobservable risk

factor has not been documented in the literature although Du¤ee (2011) relates

a hidden factor to both risk-premia and expected future interest rates that can

be extracted using a Kalman smoother. In contrast, I use recursive least squares

to mimic forecasts of real-time market participants to uncover their beliefs about

future interest rates. The wedge between forecasts, full-sample less recursive, is

precisely the "fear factor," or the component of yields that real-time forecasters

�nd di¢ cult to anticipate and thus implicitly guard against. This wedge also
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captures the di¤erence in opinion between forecasts made with the full-sample of

data and recursive forecasts reveals that market participants forecasted a decline

in the level of interest rate.

Figure 2.7: The Di¤erence in Forecasts and The Mean Level of the Yield Curve
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Market expectations about the average level of the yield curve. The solid

(blue line is the interest rate level, taken to be the equally weighted average

of interest rates ranging from maturities of 1 year up to 10 years. The (- -

-) green line is the adjusted, smoothed di¤erence between the full-sample

and recursively updated forecasts of bond risk-premia. The adjustment is

equal to the estimated intercept when regressing interest rate levels on the

di¤erences in forecasts to make the level of the graphs comparable. Data

are monthly and range from 11.1974-6.2008. Both y-axes are in annualized

percentages.
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Table 2.2: Di¤erence in Forecasts and Future Interest Rates

intercept slope R2

level
6:23

(6:45)

0:49

(1:72)
13%

short-rate
6:03

(6:24)

0:52

(1:84)
14:5%

Market forecasts using the di¤erence between the return-forecasting factors to forecast

interest rate levels. The estimates describe the regression of interest rates, both the

level and the short-rate, on the di¤erence between the full-sample and recursively

made forecasts. The estimates are linear GMM estimates with 12 lags to account for

overlapping monthly data. The standard errors are Newey-West corrected. The �rst

column displays the intercept term for the respective regressions with t-statistics in

parentheses below. The second column displays the slope coe¢ cients with associated

t-statistics below in parenthesis. The last column displays the R-squares of the

regression.

Economic expansions are generally characterized by negative risk-premia eco-

nomic expansion, but also by a high average level of the yield curve. Throughout

the 1990�s, with the exception of a mild recession early in the decade, investors

tend to accept lower risk-premia for holding onto a portfolio of bonds that coin-

cide with the market�s expectations of high interest rate levels. In other words,

they tend to bid away the risk-premium and are zealous about accepting low

risk-adjusted returns because they perceive the level of interest rates will persist

for some time. In 2004-2005, market investors accepted less risk-adjusted returns

than fully rational investors, but they did not bid down bond risk-premia with

as much zeal as in previous cycles. Thus, the di¤erence in forecasts reveal that

market participants behaved as if they expected future short-term interest rates

and average interest rate levels to decline.
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This result could be driven by the convergence of adaptive forecasts to perfect

foresight forecasts, but the error bands is informative in this case. Large error

bands coincide with high average levels of the yield curve precisely because large

bands means that there is a large degree of parameter uncertainty in the forecasts.

The bands do tighten precisely when the level of interest rates is expected to be

low, but they are large enough so that the range of possibilities is within the

average level over the sample.

2.4.2 Evidence from Industrialized Government Bond Markets

Extending my analysis to international bond markets reveal interestingly simi-

lar patterns to the U.S. experience. Comparing recursively made forecasts with

forecasts made with the full-sample of available data reveal the following stylized

facts:

1. Forecast performances that discount past data improve upon forecasts made

with the full-sample of data.

2. Di¤erences in the forecast are positively correlated with realized bond risk-

premia for a portfolio of long bonds.

3. The di¤erence in the mentioned forecasts tends to track 12-month ahead

interest rates, both the short-rate and the average level of the yield curve.

The strength of these �ndings in terms of its statistical signi�cance will vary

due to idiosyncratic experiences across countries and to the limited availability of

data. Moreover, it is striking to see that the overall level of the yield curve has

declined for all the major industrialized economies studied in this paper, notably

Japan. Short-term interest rates in Japan has been approximately zero since at

least 2001.
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The forecasting factors for German bond markets closely resemble the U.S.

Issues related to data availability should only a¤ect estimates early the sample, so

the general patterns through the entire sample are largely consistent across time.

Similar interest rate forecasts hold not only for the U.S., Germany, and Japan, but

also Australia, Canada, and England. The experiences of New Zealand, Switzer-

land, and Sweden are similar with respect to the interest rates forecasted to be

low, but limited data availability means that the standard errors of the estimates

are large. Error bands are especially large for Norway where data availability is

most limited.

2.5 Commentary

In this section, I will discuss my analysis in relation to central bank policy often

summarized using the Taylor rule to relate time-varying risk, risk perceptions,

and bond excess returns to key aggregate economic data.

2.5.1 Relation to Key Economic Aggregates

The analysis in this paper is relevant for equilibrium models that inform us about

the macroeconomic factors that determine asset prices. Forecasts of 12-month

ahead bond risk-premia can be improved upon if they discount past data, mean-

ing real-time concerns about changes to the data generating process matter for

forecasts about future asset prices. My estimates inform me that the di¤erence in

the full-sample and recursively made forecasts not only positively co-move with

realized risk-premia but they also forecast future short-term interest rates and

the average level of the yield curve. These �ndings suggest that unobservable fac-

tors compel forecasters to react to real-time changes in bond prices tied to future

interest rate movements. Interest rates are a key instrument at the disposal of

central banks around the world in achieving objectives regarding output growth
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and in�ation in the aggregate economy. Central bank policy and views about

future economic activity is thus a key non-diversi�able risk factor in government

bond markets.

In light of my �ndings, it is possible to interpret the views of a forecaster

and how it relates to my analysis on predictable returns in government bond mar-

kets. Based on my results, one possible interpretation relates a forecasters�concern

about their model speci�cation to economic aggregates: Asset prices re�ect expec-

tations about future economic aggregates and because this factor is unobservable,

forecasting using available data is the best that they can do. In that regard, the

agents are acting rationally. Moreover, because the problem implies that model

uncertainty never disappears, forecasters never completely trusts her model. The

permanence of uncertainty could be due to the fear of unanticipated changes in

monetary policy, the fear of changes in the growth rate of the aggregate economy,

i.e. admitting a stochastic trend in economic growth, or the relative contribution

of both. The answer likely depends on feedbacks and linkages between both fac-

tors, as central bank authorities interpret the data on macroeconomic aggregates

using their own model and make adjustments to policy accordingly. At the same

time, general worldwide events are sometimes di¢ cult to incorporate into a par-

simonious model. Often, model approximations leave out features that are only

later incorporated into analysis. In any case, the next section outlines key histor-

ical events that I explain using my framework for analysis that takes seriously the

perspective of market participants.

2.5.2 Monetary Policy and Future Economic Activity

Parameter uncertainty in the recursively updated forecasts reveal information

about the wedge between full-sample and recursive forecasts of bond risk-premia.

Large di¤erences re�ect large disagreements in future short-term and average level

of the yield curve, evident in the large error bands around the level of this term. If
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so, this term re�ects not only the market�s expectations about the average level of

the yield curve, but also the ability of central bank authorities to keep them under

control. Therefore, uncertainty in a forecaster�s estimates of bond risk-premia will

require additional compensation.

If the average level of the yield curve is linked to a central banker�s decision

rule in the determination of an equilibrium, then it can be said that bond market

participants require additional compensation for holding onto bonds if long-run

expectations about in�ation particularly for bond markets are not well-de�ned.

In other words, if expectations about interest rates can be held reasonably under

control by central bankers, then the market will not demand additional compen-

sation for larger interest rate levels. The stochastic properties of the market�s

expectations of interest rate levels also reveals to us that this uncertainty, while

subdued at times especially of late, does not disappear. It is precisely the per-

sistent nature of this term that drives a wedge between full-sample forecasts and

those made recursively.

Evidence of changes in monetary policy can be found in my analysis. Time-

variation in the regression coe¢ cients in the recursively updated forecasts tells a

story of structural breaks in the data generating process. For instance, during the

early to mid 1980�s the regression coe¢ cients on short, medium, and long-horizon

forward rates display erratic �uctuations consistent with my interpretation of a

change in monetary policy regimes. Fed Chairman Paul Volcker decided to tighten

the money supply, by raising interest rates and by narrowing the de�nition of

money, to curtail the high in�ationary expectations during that time. In fact, the

di¤erence between the full-sample and recursively made forecasts were particularly

large during the tail end of the Great In�ation in the early 1980�s right around

the time disin�ationary policy was implemented.

The importance of medium-term business cycle risk can be seen in Figure 2:3.

Notice that the regression coe¢ cient on f (4!5)t , the medium-term forward rate
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used in forecasting excess returns has stabilized since the early to mid 1990�s.

One interpretation of the stabilization of the regression coe¢ cients is interest

rate targeting successfully anchored nominal interest rate movements. Under this

scenario, we can interpret the stabilization of �uctuations in the estimated regres-

sion parameters as the resolution of uncertainty about medium-term frequency

risk usually attributed to the yield spread or the slope factor usually attributed

to monetary policy. One can then argue that this is driven by monetary pol-

icy credibility building as a result of Volcker disin�ation in the early 1980�s. The

stabilization of regression coe¢ cients after 1990, particularly for medium-term for-

wards hint that the relationship between risk-premia and its co-movement with

predictor variables have stabilized as well.

My analysis can also help shed light on a puzzling time period in history where

the yield curve inverted after expansionary monetary policy lowered short-term

interest rates from 2004 � 2005. First, both forecasts point to the same conclu-

sion: there was a decline in business cycle required risk compensation around

2004 � 2005. Second, as I have highlighted in the previous section, the di¤er-

ences in the forecast rules highlighted in this paper, full-sample versus recursive,

have predictive power for future interest rates. Forecast di¤erences �uctuate from

2003 � 2004, get very close to zero in 2004 � 2005 and tend to be below its un-

conditional average of about two percent from 2005 � 2006. During this time

period, �nancial market participants were willing to accept low returns on a long

position of an equally weighted portfolio of long-term bonds. Thus, during the

time period 2004�2005, the di¤erence between the recursive and full-sample fore-

casts declined, suggesting that market participants behaved as if they expected a

decline in short-term interest rates.

I can pair my analysis with a central banker�s decision rule to link short-term

interest rates and the level of the yield curve to economic aggregates. Interest rate

targeting by the U.S. central bank can be described using the Taylor rule where
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nominal short-term interest rates react more than one-for-one with surprise in�a-

tion and less than one-for-one with output surprises relative to their respective

in�ation and output growth targets. The relevant issue then is how changes in

short-term interest rates a¤ect bond risk-premia. From the central bank�s deci-

sion rule, this can be interpreted as a negative surprise to in�ation and/or output

growth. The expected decline in the average level of the yield curve agree with

the assessment that the inversion of the yield curve not only re�ects a decline in

business cycle risk, but also an increase in long-run risk, either due to de�ationary

expectations and/or a decrease in the growth rate relative to trend. Because the

distinction between the two cannot be made in my empirical analysis alone how-

ever since I have not speci�ed an equilibrium model, I also pair my analysis with

relevant research using survey data and macroeconomic data by Wright (2011)

suggests that in�ation uncertainty has declined and that in�ation expectations

are well-anchored around the uno¢ cial target rate of two percent. If so, then

the decline in the long end of the yield curve relative to the short end re�ects a

decline in future output growth prospects. Despite the fact that the di¤erence in

forecasts loses explanatory power for future interest rates towards the end of the

sample given their convergence, my analysis highlights the inherent di¢ culty in

determining the time-variation in expected returns during uncertain times.

2.6 Conclusion

In this paper, I depart from implicit assumptions made in the construction of the

return-forecasting factor by Cochrane and Piazzesi (2005; 2008). I compare it to

recursively updated forecasts that are constrained by real-time information but

�exible in that they are revised with the arrival of news. The hidden factor that

is simply the di¤erence in forecasts that assume all historical data is available to

those that are recursively updated forecasts future interest rates and in doing so,
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suggests that market participants expected a decline in the mean level of the yield

curve 2004 � 2005, which may explain why the yield curve inverted during this

time. I also �nd support for a decline in business cycle related risk as Cochrane and

Piazzesi (2008) o¤er using an alternative approach that generalizes theirs while

also allowing risk perceptions to vary over time. By taking a di¤erent perspective,

I �nd that a decline in business cycle risk partly explains the inversion of the yield

curve and is robust to the information restrictions I place on the forecaster. I �nd

that the return-forecasting factor can capture what the market expects short-term

interest rate will eventually settle. In all, my analysis lends support to the claim

that the inversion of the yield curve in 2004 � 2005 is likely related to a decline

in future growth prospects if expectations about in�ation are well-anchored.

In this paper, I posit an explanation of why risk-premia in bond markets can

move, sometimes abruptly. Distrust of the forecasting model can be linked to

changes in prices that are hard to anticipate. For bond markets, it seems that

the interplay between central bankers and �nancial market participants reveal

interesting insights about their respective roles in bond price dynamics. Because

of the inherent signal extraction problem that investors face under the modeled

information restrictions, policy that generates unanticipated movements in asset

prices may unintentionally change risk perceptions. Transparence over the path

of future interest rates can thus improve the transmission of monetary policy in

coordinating future economic activity through �nancial markets.

A model that jointly captures both central bank policy and macroeconomic

dynamics in a general equilibrium framework can help sort out the relative im-

portance of beliefs about the future and how central bankers a¤ect changes in

risk and return in �nancial markets. In addition, there is ample evidence that

suggests that bond markets are driven by common forces. How will these global

forces a¤ect the coordination of policy for leading industrialized nations? These

are issues of theoretical and practical relevance, not to mention fruitful areas of
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future research.

2.7 Appendix

2.7.1 Data Description

Data on zero-coupon bond yields are taken from Jonathan H. Wright, further

details on the construction of the data using Svensson, Spline, or Nelson-Siegel ap-

proaches to extracting zero-coupon yields are found on www.econ2.jhu.edu/People/Wright/intyields.pdf.

2.7.2 Alternative Forecast Rules in Detail

The problem of �nding the optimal parameters can be de�ned by the following

objective:

min
f
t;�tg

Et [v (En [rxt+1]� �0t�zt)] (2.6)

where v (rx; z;�) is the quadratic loss function (rxt+1 � �0�z)2. The solution

to the posited problem can be described by the following set of equations

�t+1 = �t + �t�
�1
t � zt (En [rxt+1]� �0t�zt) (2.7)

�t = (1� �t) �t�1 + �t
�
z0t�1�zt�1

�
(2.8)

is then equivalent to �t being described by recursive least squares to re-estimate

their parameters and �t is the covariance matrix that controls the direction of

comovement between key variables.

The parameter �t characterizes how recent data is weighted in forecasts. In

that regard, it can be viewed as a Kalman gain parameter. It is a free parame-

ter in that it is exogenously chosen. The choice will a¤ect how variables move
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together, or the speed of the drift movement in the relationship between key vari-

ables. Notice that the full-sample forecast is a special case of the model where the

parameters of the model are constant, (
t; �t;�t) = (
; 0;�). In the special case,

there is no need to update since all historical data is available. Alternatively, a

recursively updated forecast is akin to using recursive least-squares. As for the

parameter controlling how past data is discounted, I choose the parameter his-

tory discounting factor �t = (1=t) so that only data available at time period t is

used and all data points are equally weighted, thus new data are given decreasing

weights relative to the already realized data. I also let (
t;�t) vary over time. This

characterization is isomorphic to exponentially discounted observations where the

set of regressors is discounted by the following

~zt = �
t
j=0�

t�jzj (2.9)

so choosing � = 1 is equivalent to choosing �t = t
�1. How heavily past data

is discounted coincides with � < 1 where �0t > t
�1 = �t. The mapping between �

and �t is one-to-one but non-linear. Intuitively, it is a weight that is placed upon

the arrival of news. If agents are reasonably certain that there is no structural

breaks, then new observations are given less weight over time.

The analysis in this paper will investigate forecasts for � = 1; � = 0:9995 and

� = 0:9994 for comparative purposes.I will also incorporate an extreme case is

when agents only use recent data and perform rolling regressions forecasts. This

accounts for forecasts that discount past observations quite considerably.

For this paper, I focus on the recursively updated forecasts that weights all

new data equally that corresponds to � = 1.

2.7.3 Results for International Bond Markets

Table 2.3: International Forecast Performance
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Rule full-sample � = 1 � = 0:9995 � = 0:9994 rolling

U.S.

12:1971�5:2009

RMSE

RMAE

*

640

499

0

643

468

63:9

621

469

61:4

619

470

60:4

481

353

34:9

Germany

1:1973�5:2009

520

407

0

530

372

68:5

484

370

73:2

480

370

72:9

375

283

33:2

Japan

1:1985�5:2009

368

264

0

363

258

60:7

324

242

50:0

319

239

46:7

258

193

22:6

England

1:1979�5:2009

545

416

0

570

394

64:2

529

388

67:1

523

387

66:9

395

292

33:5

England

1:1986�5:2009

468

337

0

478

317

71:0

420

299

74:0

414

298

73:0

349

268

40:4

* percentage of co-variation of forecast errors with realized risk-premia

Root mean squared errors (RMSE) and root mean absolute errors (RMAE) using

di¤erent forecasting rules. The �rst two rows of the table displays root mean squared

errors and mean absolute errors in basis points (100 basis points = 1 percentage point)

for a set of forecasting rules. The third row is the amount of co-variation the forecast

di¤erences, between the full-sample return-forecasting factor and the recursively

updated forecasts, have with realized risk-premia, which were calculated by running an

GMM estimates of the realized risk-premia on the forecast di¤erences between the

associated forecast di¤erences. The standard error estimates include 12 lags to

account for overlapping monthly data and are Newey-West corrected.
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Table 2.4: International Forecast Performance, Continued

Rule full-sample � = 1 � = 0:9995 � = 0:9994 rolling

U.S.

12:1971�5:2009

RMSE

RMAE

*

640

499

0

643

468

63:9

621

469

61:4

619

470

60:4

481

353

34:9

Australia

2:1987�5:2009

592

433

0

621

448

74:9

599

443

72:7

597

442

72:1

421

320

30:2

Switzerland

1:1988�5:2009

353

277

0

379

257

27:4

330

262

34:7

325

263

33:7

257

207

50:1

New Zealand

12:1992�5:2009

453

338

0

443

301

68:7

418

304

77:8

415

304

78:6

368

281

44:0

Sweden

12:1992�5:2009

405

331

0

576

414

61:3

541

403

57:2

536

401

56:2

438

277

25:1

Norway

1:1998�5:2009

390

309

0

404

320

65:2

406

334

61:2

408

337

60:3

338

270

40:0

Table 2.5: Di¤erences in Forecasts and Future Interest Rates - International
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intercept slope R2 (%)

U.S.

12:1971�5:2009

level

t�stat

short-rate

t-stat

6:23

(6:45)

6:03

(6:24)

0:49

(1:72)

0:52

(1:84)

13

14:5

Germany

1:1973�5:2009

4:81

(7:74)

4:56

(7:57)

0:58

(3:88)

0:61

(4:08)

27:5

29:8

Japan

1:1985�5:2009

2:80

(3:63)

2:71

(3:5)

�0:09

(�0:42)

�0:12

(�0:52)

0:8

1:4

England

1:1979�5:2009

6:73

(4:99)

6:66

(4:99)

0:52

(1:37)

0:53

1:38

19:9

20:2

Canada

1:1986�5:2009

6:37

(5:52)

6:29

(5:23)

�0:021

(�0:07)

�0:06

(�0:151)

0

0

Using the di¤erences in forecasts of bond risk-premia to forecast interest rates. The

estimates describe the regression of interest rates, both the level and the short-rate, on

the di¤erence between the full-sample and recursively made forecasts. The estimates

are linear GMM estimates with 12 lags to account for overlapping monthly data. The

standard errors are Newey-West corrected. The �rst column displays the intercept

term for the respective regressions with t-statistics in parenthesis below. The second
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column displays the slope coe¢ cients with associated t-statistics below in parenthesis.

The last column displays the R-squares of the regression.

Table 2.6: Di¤erences in Forecasts and Future Interest Rates - International,

continued

Australia

2:1987�5:2009

level

t�stat

short-rate

t-stat

6:63

(8:86)

6:50

(9:09)

0:46

(1:31)

0:47

(1:40)

13:5

14:1

Switzerland

1:1988�5:2009

3:92

(5:05)

3:86

(4:57)

�0:28

(�1:13)

(�0:29)

(�1:09)

6:3

6:2

New Zealand

12:1992�5:2009

6:04

(22:82)

6:00

(23:60)

0:31

(3:21)

0:33

(3:49)

39

42

Sweden

12:1992�5:2009

4:60

(9:02)

4:46

(8:55)

0:22

(2:62)

0:19

(2:21)

14

12

Norway

1:1998�5:2009

4:73

(29:34)

4:61

(22:58)

0:51

(�38:75)

0:58

(53:95)

65:9

68:5

Using the di¤erence in forecasts of bond risk-premia to forecast interest rates

continued... The estimates describe the regression of interest rates, both the level and
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the short-rate, on the di¤erence between the full-sample and recursively made

forecasts. The estimates are linear GMM estimates with 12 lags to account for

overlapping monthly data. The standard errors are Newey-West corrected. The �rst

column displays the intercept term for the respective regressions with t-statistics in

parenthesis below. The second column displays the slope coe¢ cients with associated

t-statistics below in parenthesis. The last column displays the R-squares of the

regression.
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CHAPTER 3

On Forecasting Risk-Premia in Currency

Markets

3.1 Introduction

Foreign exchange market price movements are puzzling. Short-term interest rate

di¤erentials forecast currency risk-premia, moving in the opposite direction that it

is expected to move according to basic no arbitrage relations. Exchange rate �uc-

tuations are large, transitory and notoriously hard to forecast. In light of puzzling

empirical �ndings over the years, this paper aims to integrate our understanding

of currency market prices by analyzing key features of the data in relation to bond

market prices.

For this paper, I build on Mang (2012) to quantitatively measure the size

of the predictable component in currency markets for a portfolio of industrialized

currencies. I speci�cally use predictor variables constructed from bond market

prices. I start by examining the predictive content of interest rate di¤erentials,

the di¤erence between a foreign country�s yield on a zero-coupon government bond

and the U.S., the dollar carry trade. I then incorporate the return-forecasting fac-

tor spread to determine if it can improve forecasts relative to the carry trade. As

Cochrane and Piazzesi (2005; 2008) and Mang (2012) demonstrate, the return-

forecasting factor spread picks up a sizable portion of predictable variation in

bond risk-premia. Variables that generate movement in risk-premia can be linked

to movement in risk-prices for either bond or currency markets and hopefully
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both, making the return-forecasting factor spreads a candidate predictor variable.

I �nd that they forecast currency risk-premia up to twelve months ahead. I also

use recursively updated return-forecasting factors and �nd that, puzzlingly, it

does not seem to forecast currency risk-premia. Some variables forecast currency

risk-premia but not exchange rate changes, while some forecast both. The di¤er-

ent size in the predictable component captured with each variable is interesting

and may help us understand certain anomalies in the data. Further, the analysis

highlighted in this paper documents �ndings relevant for simultaneously under-

standing predictable variation in bond and currency risk-premia, namely that the

amount of predictability depends on information used to make forecasts.

By highlighting forecasts that are made recursively relative to those made

with the full-sample of available data, I focus on the information sets of forecasters.

Because recursive forecast rules emphasize the signal extraction problem and the

subsequent revisions to expectations, real-time projections may di¤er from those

made with the full-sample of data. As in bond markets, one source of predictable

variation in currency risk-premia is the forecast revisions using factors from bond

markets to news about bond risk-premia, whose reactions to incoming data rela-

tive to forecasts made with the full-sample of data can generate counter-cyclical

�uctuations in risk-premia. I provide suggestive evidence that di¤erences in cur-

rency market forecast rules derived from bond market risk factors can explain the

tendency for high interest rate currencies to appreciate.

The reason why information matters for tracking predictable currency risk-

premia is the following: Cross-sectional spreads of the full-sample return-forecasting

factor treat transitory shocks in currency markets appropriately. That is, exchange

rate changes and currency risk-premia using the full-sample return-forecasting

factor are forecasted to be large but transitory. On the other hand, expectations

made with the recursively updated return-forecasting factor spreads tend to be

less volatile and more persistent since recursively updated return-forecasting fac-
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tors tend to adjust slowly to shocks to bond risk-premia. As a result, the implied

forecasts of currency risk-premia adjust slowly to changes in currency risk-premia

and exchange rate changes. The di¤erence between the forecasts made with the

full-sample of data and those made recursively with available data removes the

persistence in adaptive forecasts. The remaining component is transitory and

large. As a result, the di¤erence in the two mentioned forecasts, the FX forecast

di¤erence, forecast exchange rate changes. Not only that, adaptive forecasts also

move closely with interest rate di¤erentials and do not capture a predictable com-

ponent in currency risk-premia. In real-time, spreads in the recursively updated

return-forecasting factor move with interest rate di¤erentials with a lag, leaving

only a small predictable component that is hard to detect. Therefore, currency

risk-premia is predictable, but it would be di¢ cult to extract the right signal using

information in the return-forecasting factor spread to make risk-adjusted pro�ts

in real-time because the currency prices contain a large but transitory component

that by nature is hard to forecast.

3.2 Relevant Literature

I study the properties of currency risk-premia and exchange rate changes for

a basket of currencies in a similar vein to Lustig et. al (2010) who �nd forecastable

currency risk-premia with the cross-sectional forward discount rate or short-term

interest rate di¤erentials. I determine if variation in the di¤erence in the level

of interest rates, above and beyond information in the short-term interest rate

di¤erential is informative about currency risk-premia. To do so, I include a novel

predictor variable proven to capture a predictable component in government bond

markets and only study a set of industrialized countries where detailed information

on zero-coupon yields are available. Ang and Chen (2010) also use additional

information in the term structure of interest rates to forecast currency risk-premia.
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They examine the returns on a portfolio of currencies using cross-sectional factors

that price bonds to see if it can outperform carry trade portfolios made using

short-term interest rate di¤erentials as the predictor variable. My work is similar

to theirs given that I also try to forecast predictable currency risk-premia for a

portfolio of countries, but I speci�cally investigate time-series predictability for a

smaller set of industrialized countries.

This paper also investigates how adaptively made forecasts a¤ect the extent

to which predictable currency risk-premia are exploitable in real-time. I take the

return-forecasting factor of Cochrane and Piazzesi (2005; 2008) that captures a

predictable component in bond markets to see if it can forecast currency risk-

premia. I also examine how real-time data availability constraints and how re-

visions to risk-premia forecasts in bond markets a¤ect the size of predictability

in currency markets. This approach highlights a departure from forecasts made

with the full-sample of data and the investigation of subjective beliefs is also the

focus of Froot and Frankel (1989) who use survey data to decompose the forward

premium anomaly into a bias in exchange rate forecasts and into a risk-premium

component. I perform a similar exercise that highlights di¤erences in expectations

formation using least squares estimation procedures that approximate them. This

allows me to sidestep the di¢ culties of �nding survey data on exchange rate fore-

casts. My �ndings are comparable to Bansal and Dahlquist (2000), who cannot

attribute time-varying risk-premia as compensation for systematic risk in their

analysis of industrialized economies. In contrast to their results, I �nd that the

forward premium anomaly is consistent with time-varying risk well-proxied by

interest rate di¤erentials, but the existence of a second factor complicates things

for real-time forecasters. The failure of uncovered interest parity then crucially

depends on the information assumptions made in forecasting using information

in the term structure of interest rates. High interest rate currencies do tend to

appreciate for a cross-section of industrialized economies. However, forecasts of
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currency risk-premia using recursive forecasting factors in bond markets imply

that high interest currencies tend to have high interest rate levels that coincide

with large but transitory exchange rate �uctuations. That is, real-time forecast-

ers have a hard time forecasting using proxies for risk factors in such a random

environment under adaptive expectations formation. Bacchhetta, Mertons, and

van Wincoop (2009) use survey data and �nd that expectational errors coincide

with predictable returns in bond, currency and equity markets. To simultaneously

capture predictability in bond and currency markets, I take factors that capture

predictable variation in bond markets to assess its predictive ability in currency

markets. The inherent di¢ culty in extracting variation in the level and the spread

of interest rates can mean agents must react in ways that forecasts made with the

full-sample of data would not. Comparisons between adaptive learning forecasts

and full-sample information forecasts can shed light on what type of shocks these

agents react to. In using recursive least squares to approximate adaptive expecta-

tions, I show that jointly accounting for predictable returns in bond and currency

markets is possible if a portion of statistically measured predictability is driven

by forecast di¤erences. That is, a sizable fraction of predictable variation in bond

and currency risk-premia can be attributed to di¤erences in forecasts using fully

rational estimates and adaptively made ones.

Research that highlights a departure from full rationality is Gourinchas

and Tornell (2004). In their formulation, investors optimally learn about the

persistent factor to guard against large losses due to the possibility that their

model is misspeci�ed. As a result, adaptive agents are slow to react to changes in

interest rates. The departure from full-rationality can explain anomalous features

of foreign exchange market data if the size of the amount of learning done by the

agent is su¢ ciently large. For a set of industrialized economies�currencies, the

forward premium anomaly may not require large revisions to beliefs. Exchange

rate changes and currency risk-premia forecasts made with the full-sample suggest
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large and transitory movements. However, recursively made forecasts are more

persistent and slow-moving and as Gourinchas and Tornell (2004) the delayed

adjustment tends to move with interest rate di¤erentials.

The use of bond market factors to understand both bond and currency

markets is reminiscent of Backus, Foresi, and Telmer (2001). In line with more

recent �ndings in bond and currency markets, I make adjustments to the linear

factors that allow for time-varying parameters to account for adaptively made

forecasts of bond risk-premia. I do so by employing tractable, ordinary least

squares regressions to approximate forecasts under di¤erent information restric-

tions. Finally, I integrate the insights from risk-based explanations with those

that investigate departures from full-rationality to understand puzzling features

of currency market data. My central contribution in this paper is to provide evi-

dence that accounting for the forward premium anomaly requires accounting for a

large and transitory component in exchange rates that tend to average to zero in

a longer horizon. One of many explanations for this component is that it re�ects

forecast di¤erences that depend on the speci�ed information set of investors.

3.3 De�nition and Data

Let y(k=12)t be k-month domestic interest rates and y(k=12)i;t be the k-month foreign

interest rates, both of which are denominated in nominal units. Interest rates, as

is any variable of interest this paper, are expressed in annualized percentages. Let

sj;t be the log spot exchange rate between country j and the domestic country and

is denominated in units of foreign currency per unit of domestic currency. For the

rest of the paper, I will let the U.S. be the domestic currency. The excess return

on buying a foreign currency in country j in a forward market and selling it in

the spot market k-months from t will be written as:

rxj;t+k = fj;t � sj;t+k (3.1)
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The expression for the k-month ahead currency excess return can be written

in another way

rxj;t+k = f
(k=12)
j;t � sj;t � sj;t+k + sj;t (3.2)

= y
(k=12)
j;t � y(k=12)t ��sj;t+k (3.3)

where f (k)t is a k-period forward contract and �sj;t+k is the exchange rate

change between date t and date t+k and under the condition that covered interest

parity holds in the data, f (k=12)j;t � sj;t � y(k=12)j;t � y(k=12)t . Expected currency excess

returns k-months from now can be described by taking conditional expectations

Et (�):

Et (rxj;t+k) = y(k=12)j;t � y(k=12)t � Et (�sj;t+k) (3.4)

Notice that if unconditional interest parity held, then high interest currencies

will depreciate relative to low interest currencies so that Et (rxj;t+1) = 0. However,

among industrialized economies, the opposite tends to hold; high interest rate cur-

rencies tend to appreciate in value relative to its low interest rate counterparts,

so the regression �sj;t+k = � + � (k) �
�
y
(k=12)
j;t � y(k=12)t

�
+ "t+k yields negative

estimates of � (k). One possibility for the deviation from UIP is that high inter-

est rate currencies are riskier, hence investors are compensated for exposure to

the relevant risk factor. Notice that the only stochastic term on the right hand

side is the expected dollar appreciation term Et (�sj;t+k). In my analysis, I will

investigate k = 1; 2; 3; 6; and 12-month ahead currency risk-premia and expected

dollar appreciation rates for a basket of currencies to examine if certain anomalies

in foreign exchange markets still remain if I control for short-term distortions or

idiosyncratic currency movements. To facilitate analysis, I will introduce the no-

tation for the cross-sectional average to be written as Ej (zt) := J�1�Jj=1zj;t that

will be convenient for writing an expression for an average basket of currencies.

For example, to describe the currency risk-premia for a basket of currencies, the

expected currency risk-premia k-months from now is expressed as Et [Ej (rxt+k)].
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However, because this notation is a bit cumbersome, the expression Et [Ej (zt+k)]

will be written as Ejt (zt+k).

3.3.1 Data Description

I use a combination of bond and currency market data in my empirical analysis.

Forward exchange rates monthly frequency from 1:1988-5:2009 at the 1, 2, 3, 6-

month and 12-month horizon. I also use spot exchange rate data covering the

same time-span. From bond markets, I take information from the term-structure

of interest rates for zero-coupon data from 1:1988-5:2009, ranging from one year

to ten year time-to-maturity split by 12-months. The data are monthly frequency.

The industrialized countries in which both bond and currency market data overlap

are the United States, Canada, Japan, England, Sweden, New Zealand, Norway,

and Australia. Though the cross-section of countries is admittedly small, this is

primarily due to the limited availability of data on zero-coupon bond yields that

are required to construct return-forecasting factors. In any case, I am particularly

interested in leading industrialized economies because their tendency to violate

uncovered interest parity is pronounced relative to countries with higher in�ation

rates, as Bansal and Dahlquist (2000) �nd. In that regard, understanding the

experience of industrialized economies will isolate the countries where anomalies

in foreign exchange markets are most apparent.

3.3.2 Constructing the Predictor Variables

3.3.2.1 Interest Rate Di¤erentials vs. Return-Forecasting Factor Dif-

ferentials

In this section, I outline the details of the construction of predictor variables

that I use in forecasting in this paper. To summarize this section, I construct

predictor variables from bond market prices and use them to forecast in foreign
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exchange markets. I start with a commonly used variable, the short-term interest

rate di¤erential, and then proceed to use information in longer maturity bonds

to construct additional predictor variables. In total, I will use four: interest rate

di¤erentials, the full-sample return-forecasting factor spread (x-factor spread),

the spread in the recursively updated return-forecasting factors (rx-factor spread)

and the di¤erence between the full-sample return-forecasting factor spread and its

recursive counterpart. I denote the last forecaster variable the hidden FX market

factor.

Comparing the quantitative size of the predictable component in foreign ex-

change markets begin with the benchmark case of the interest rate di¤erential. In

line with Lustig et. al (2010), I use the cross-sectional average forward discount

or interest rate di¤erential that have proven to capture time-series predictability

in currency risk-premia. I write it as the following expression:

Ej
h
f
(k=12)
t � st

i
:= J�1�Jj=1

�
f
(k=12)
j;t � sj;t

�
(3.5)

Next, I use a factor that captures a predictable component in bond risk-premia.

Let us begin by de�ning each country speci�c return-forecasting factor as xj;t. I

construct the return-forecasting factor taking as given the full sample of data by

�tting the estimated coe¢ cients of the average bond risk-premia for a set of matu-

rities on a set of forward rates. The variable derives from the following expression:

xj;t := Ent
�
\
rx

(n)
j;t+1

�
= �̂j + 
̂

0
j � fj;t. I then use the collection of country-speci�c

return-forecasting factors fxj;tgJj=1 to construct a cross-sectional average of the dif-

ference in the return-forecasting factor Ej [� (xt)] := J�1�Jj=1 (xt � xj;t). Notice

the switch in the sign. This is because compensation for risk-exposure is positive

during recessions when risk is high and negative when risk is low, consistent with

empirical �ndings of countercyclical risk-premia. The two time-series of predictor

variables are positively correlated, although the return-forecasting factor tends to

have greater variance. The additional variation in the return-forecasting factor
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di¤erentials above and beyond the cross-sectional average forward discount rates

suggests that the return-forecasting factor has the potential to capture additional,

predictable variation in risk prices in currency markets. I graphically display the

comparison of the constructed predictor variables below:

Figure 3.1: Comparing Predictor Variables
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Cross-sectional average interest rate and return-forecasting factor di¤erentials.

The solid (line) is the cross-sectional average, full-sample return-forecasting

factor spread whose construction is described in the previous section. The (-.-.)

line is the cross-sectional average interest rate di¤erential. The interest rate

di¤erential is noticeably smoother than the x-factor spread. The data span

1:1989-5:2009, less the �rst 30 months of observations used to construct the

return-forecasting factor spreads. The variables are expressed in annualized

percentage returns

Embedded in the full-sample return-forecasting factor is some �exibility in

which information about the future a¤ects forecasts in the past. Recall that the

return-forecasting factor involves using a full-sample of data to pin down parame-

ter estimates used to construct the x-factor for the individual bond markets for
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each country. An alternative variable that is consistent with real-time availabil-

ity is the spreads between the recursively updated return-forecasting factors. I

construct them using the technique from Mang (2012) where the risk-premia on

a portfolio of long bonds are regressed on a subset of forward rates. In essence,

the procedure for doing is nearly identical to the construction of the full-sample

return-forecasting factor with the exception that the estimates are revised recur-

sively, thereby generating time-variation in the parameter estimates. The recur-

sive return-forecasting factor is then ~xj;t := Ent
�
\
rx

(n)
j;t+1

�
= �̂j;t + 
̂

0
j;t � fj;t where�

�j;t; 
j
�
are now indexed by time.

I can also examine if the di¤erence in the mentioned forecasting factor spreads

have predictive power. I do so by comparing the spreads in the x-factor, de-

noted as �(x)-factor with its recursive return-forecasting factor spread, �(~xt) :=

(~xt � ~xj;t). I will also take the cross-sectional average of �(x) de�ned to be

Ej [� (xt)] := Ej (xt � xj;t) = J�1�Jj=1 (xt � xj;t) and similarly for�(~x) : Ej [� (~xt)] :=

Ej (~xt � ~xj;t) = J�1�Jj=1 (~xt � ~xj;t). One point of emphasis is that this term is un-

observable in real-time because it requires comparison with an object that takes

as given the full-sample of data. Let us de�ne this component to be labeled ~� (xt)

given by the following expression:

Ej
h
~� (xt)

i
:= Ej [(xt � ~xt � (xj;t � ~xj;t))] (3.6)

Henceforth, this variable shall be named the hidden FX market factor.

Notice that the hidden FX market factor is simply the di¤erence between the full-

sample x-factor spread Ej [� (xt)] and the recursively updated rx-factor spread

Ej [� (~xt)] by the additivity property of expectations. Evidence that this relation

holds is given in the appendix.

The four predictor variables tend to move together although the full-sample

return-forecasting factor spread although the hidden FX market factor tend to

97



moves closest with it. The two exhibit large variance relative to the recursive

return-forecasting factor spread and the interest rate di¤erential. Despite this,

the additional variation in the return-forecasting factor di¤erentials above and

beyond the cross-sectional average forward discount rates suggests that the return-

forecasting factor has the potential to capture additional, predictable variation

in risk prices in currency markets. I graphically display the comparison of the

constructed predictor variables below:

Figure 3.2: Comparing Predictor Variables, All
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Comparing predictor variables. The thick solid (yellow) line is the

cross-sectional average full-sample return-forecasting factor spread, the

thick (- - -) line represents the di¤erence in the cross-sectional average

x-factor spread and the rx-factor spread. The thin solid (dark) line

represents the rx-factor spread. The (.-.-.-) line represents the forward

discount rate. The data are monthly frequency and all variables are

expressed in annualized percentages.

To summarize, I will investigate predictable returns in currency risk-premia

for a cross-section of industrialized economies using the combination of the fol-

lowing (cross-sectional) predictor variables: the interest rate di¤erential (or the

forward discount rate), the full-sample return-forecasting factor spread, the recur-

sive return-forecasting factor spread, and the di¤erence between the full-sample

and recursive return-forecasting factor. Respectively, these predictor variables are
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the interest di¤erential, the return-forecasting factor spread that takes the full-

sample of data as given, the return-forecasting factor spread that is consistent

with real-time data availability, and the di¤erence in the return-forecasting factor

spreads, full-sample less recursive, or simply the hidden FX market factor. In

all, these four time-series will be used to examine the predictable component in

currency market data. The four series are depicted in �gure 3 displayed below for

the purpose of comparison. Notice that the currency market forecast di¤erence

and the return-forecasting x-factor spread move closely together and share a large

variance. Forward discount rates are the smoothest series of the four.

3.3.3 Motivating Empirical Regressions

Linking bond risk prices to empirical regressions that inform us about the pre-

dictable component in foreign exchange markets require some motivation. The

idea is to posit a stochastic discount factor for a set of treasury securities that

should also price foreign exchange asset prices with no-arbitrage arguments. Get-

ting the right bond risk factors to price currency risk requires the use of factors in

bond markets that capture a predictable component in risk-premia. Currency risk

prices then should simply be the di¤erence of the bond factors across countries.

We can construct currency risk prices using bond risk prices, particularly variables

constructed in the previous section. We start with asset pricing conditions that

are satis�ed in both countries, given by the following:

Et [Mt+1Rt+1] = Et [Mj;t+1Rj;t+1] = 1 (3.7)

Suppose that there exists a stochastic process, in units of foreign currency per

domestic currency, that transforms returns in a domestic country to returns in a

foreign country:St+1
St
Rt+1 = Rj;t+1. Plugging this expression into the asset pricing

condition delivers

Et [Mt+1Rt+1] = Et
�
Mj;t+1

Sj;t+1
Sj;t

Rt+1

�
(3.8)
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If there are a complete set of contingent claims, we can take the expression out

of the conditional mean operator. The remaining expression is

Mt+1 =Mj;t+1
Sj;t+1
Sj;t

(3.9)

Taking logs and rearranging, we get the following expression:

mt+1 �mj;t+1 = sj;t+1 � sj;t = �sj;t+1

Suppose that a (log) stochastic discount factor is given by the following ex-

pression:

�mj;t+1 = y
(k=12)
t � 1

2
�2t
�
�2" + �

2
�

�
+ �t �

�
"t+1 + �t+1

�
(3.10)

For a foreign country j, the (log) stochastic discount factor is given by a similar

expression:

�mj;t+1 = y
(k=12)
t � 1

2
�2j;t
�
�2j;" + �

2
�

�
+ �j;t �

�
"j;t+1 + �t+1

�
(3.11)

where "t+1 is the domestic, country-speci�c shock, "j;t+1 is a country-speci�c

shock and �t+1 is a global shock, all assumed to be i:i:d: and normally distributed

with variance �2"; �
2
j;e; and �

2
�; respectively. The stochastic discount factor should

price assets of any class, especially bond and currency prices. In a linear a¢ ne

model, bond market price of risk varies with factors that forecast bond risk-premia,

namely the return-forecasting factors of Cochrane and Piazzesi (2005, 2008). Let

zt be a relevant predictor variable in bond markets. Bond risk prices can be

represented as a linear function of these variables:

�zt = �z0 + �
z
1 � zt (3.12)

�zj;t = �zj;0 + �
z
j;1 � zj;t (3.13)

The model also implies a link between bond risk prices and the conditional variance

of the pricing kernel of the domestic and foreign country, respectively given by
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the following expressions:

�2t (mt+1) = �2t �
�
�2" + �

2
�

�
(3.14)

�2t (mj;t+1) = �2j;t �
�
�2j;" + �

2
�

�
(3.15)

The di¤erence between any factor that prices risk in bond markets should

price risk in currency markets. The expression for the excess return in currency

markets is then Et [rxj;t+1] = 1
2

�
�2j;t
�
�2j;" + �

2
�

�
� �2t

�
�2" + �

2
�

��
: Keep in mind

that currency risk-premia and exchange rate forecasts made with other predic-

tor variables can be constructed in a similar fashion but specify that risk prices

will depend on the relevant predictor variable. Details will be relegated to the

appendix. For expected exchange rate movements, Et�sj;t+1; we require the dif-

ference in the conditional mean of the stochastic discount factor (sdf), for which

expressions are given by the following:

�Et [mt+1] = y
(k=12)
t � 1

2
�2t �

�
�2" + �

2
�

�
�Et [mj;t+1] = y

(k=12)
j;t � 1

2
�2j;t �

�
�2j;" + �

2
�

�
After the dust settles and the derivation of relevant expressions are complete,

we can write the excess return in currency markets and exchange rate changes as

the di¤erence in the bond yields and bond risk prices.

Et [rxj;t+1] = � � zt � �j � zj;t (3.16)

Et [�st+1] = Et [mt+1]� Et [mj;t+1]

= y
(k=12)
j;t � y(k=12)t � � � zt � �j � zj;t (3.17)

To reduce the amount of noise by idiosyncratic factors in pricing bonds in each

country, I take an equal-weighted cross-sectional average to isolate the common

component. Doing so for expected dollar appreciation and currency risk-premia
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delivers the following expressions:

Ej [Et [rxj;t+1]] : = Ejt [rxt+1]

= J�1�Jj=1 (� � zt � �j � zj;t)

= � � zt � J�1�Jj=1�j � zj;t

� � � Ej [zt � zj;t] . (3.18)

For a su¢ ciently large cross-section, � = limJ!1 J
�1�Jj=1�j that will make (26)

an exact relation. Exchange rate changes for a basket of currencies is given by

the following expression

Ejt [�st+1] = Ej
h
y
(k=12)
j;t � y(k=12)t

i
� � � Ej [zt � zj;t] . (3.19)

Expressions are similar for k-period ahead forecasts, with the exception that

interest rate di¤erentials are appropriately adjusted for the horizon of the forecast.

For instance, a 3-month ahead forecast of the dollar appreciation rate for a basket

of currencies is then Ejt [�st+3] = E
j
t

h
y
(3=12)
j;t � y(3=12)t

i
where y(3=12)j;t are 3-month or

90-day interest rates on zero-coupon default-free Treasury securities. This ensures

that covered interest parity holds for all horizons k, i.e.

f
(k=12)
j;t � st � y(k=12)j;t � y(k=12)t (3.20)

for k = 1; 2; 3; 6; 12 months ahead. The resulting coe¢ cients describing the

size of the predictable component now will be indicated by a k. For instance,

the expected currency risk-premia using the x-factor spread can be written as

Ejt [rxt+k] = � (k) � Ej [xt � xj;t].

For further details on the construction of the cross-sectional average predictor

variables I have outlined, please see the details that have been relegated to the

appendix.

In the next section, I will test to see if these factors are important for capturing

predictable currency risk-premia.
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3.4 Time-Series Predictability

3.4.1 Currency Risk-Premia

I now use the predictor variables to empirically measure the size of the predictable

component in currency risk-premia. To do so, I regress k-month ahead currency

risk-premia on each individual predictor variable, described in the following esti-

mation equation:

Ejt [rxt+k] = � (k) + � (k) � Ej [zt] + "t+k (3.21)

Estimated coe¢ cients can be interpreted as elasticities: a percentage (100 basis

point) increase in the predictor variable is consistent with a � (k) percentage

point increase in the forecasted variable over the sample. For 3-month ahead

forecasts for nearly all regressions yield abnormally large statistical signi�cance

and coe¢ cients that di¤er from those of any other horizon k. This is a concern, but

e¤orts to correct them using traditional computational checks have not resolved

the issue.

Beginning with the interest rate di¤erential, the empirical estimates suggest

that a 100 basis point increase in the cross-sectional average forward discount

rate precedes movement in the cross-sectional average currency risk-premia 12-

months from now by about 97 basis points, capturing about 27% of the variation

in currency risk-premia for the given sample. Pro�ting from these patterns in the

data requires that investors borrow treasury securities from abroad for a set of

industrialized countries and go long on the U.S. dollar using the proceeds, holding

the portfolio for 12-months then unwinding your position. If these patterns in the

data are robust, it is needless to say that it would not be di¢ cult to construct

portfolios to take advantage of these predictable patterns in the data.

As for the full-sample return-forecasting factor spread which constructs the

predictable component in bond risk-premia taking the full-sample of data as given,
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as the results in table (1) suggest a smaller predictable component relative to the

interest rate di¤erential, particularly for 12-month ahead forecasts. For the the

di¤erence in the x-factor spread, there is robust evidence of predictive power

for currency risk-premia. The di¤erence between the x-factor spread and the rx-

factor spread also forecasts risk-premia in currency markets. This is not surprising

given that the di¤erence tends to move with the full-sample return-forecasting

factor spread as �gure (2) suggests. The estimates suggest some predictability

for 2-month ahead forecasts and similar patterns of predictability for 6-month

and 12-month ahead forecasts when compared to the unobservable component

~� (xt).there is the recursive return-forecasting factor spread �(~xt) provides little

evidence of predictive power. There is also a positive and signi�cant intercepts in

the regressions for 12-month ahead forecasts, hinting that an omitted level that

is not explained by the time-variation in the rx-factor spread is important for

capturing variation in currency risk-premia. This omitted term does not engender

trust in the forecasting relationship since the intercept term is signi�cant.

Despite evidence of predictable currency risk-premia, the three predictor vari-

ables tell di¤erent stories about the extent to which currency risk-premia are

predictable. Because the x-factor spread moves closely with the di¤erence be-

tween the full-sample return-forecasting factor spread and the recursive return-

forecasting factor spread, or the hidden FX market factor, they capture a quan-

titatively similar size of the predictable component in currency risk-premia. This

suggests that movement in currency risk-premia depend on the relative size of

the persistent and transitory components of the predictor variable. Both the

full-sample return-forecasting x-factor spread and the hidden FX market factor

contain a large and transitory component useful for capturing variation in cur-

rency risk-premia. The recursive return-forecasting rx-factor spread has smaller

variance and is more persistent and does not capture predictable variation in cur-

rency risk-premia primarily because it does not vary enough. This point becomes
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more clear when we compare the results to the rx-factor spread, where positive

� intercept term suggest that an omitted variable is contributing to the amount

of predictability not captured by the rx-factor spread. In other words, the recur-

sively revised forecasts largely reacts to persistent changes in currency risk-premia

but does not seem to precede movements in it. Further analysis using multivariate

regressions will demonstrate some reasons for the failure of the rx-factor spread

to forecast in currency risk-premia.

Table 3.1: Predictable Currency Risk-Premia Estimates, Univariate

k 1 2 3 6 12

Ej
�
f
(k=12)
t �st

�
interest di¤erent�l

� (k)

t-stat

R2 (%)

0:51

(0:13)

0:00

0:97��

(3:54)

5:85

1:66

(5:74)

47:4

0:94

(1: 10)

4:12

0:97��

(3:55)

27:1

Ej(�(xt))

x-factor spread

0:02

( 0:38)

0:00

0:06��

(3:11)

6:10

0:07

(0:74)

0:00

0:16

(1:51)

3:82

0:19��

(2:23)

12:4

Ej( ~�(xt))

FX forecast di¤erence

0:07

(0:65)

0:00

0:09

(0:16)

6:06

0:14

(0:94)

1:22

0:27�

(1:93)

5:9

0:31��

(2:67)

17:0

Ej�(~xt)

rx-factor spread

:

� (k)

t-stat

� (k)

t-stat

R2 (%)

0:0029

(0:28)

0:035

(0:11)

0:00

0:0023��

(1:99)

0:14��

(2:29)

3:35

0:0064

(0:48)

0:25

(0:57)

0:85

0:0081

(0:73)

0:25

(0:62)

1:0

0:0085�

(1:88�)

0:32

(1:02)

3:6

Predictability regressions using the cross-sectional average predictor variables. Each

row with three quoted statistics represent the following from top to bottom: the

regression coe¢ cient, the t-statistic and the R-squares of each regression. Standard

errors are corrected for conditional heteroskedasticity with k-lags to account for
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overlapping monthly data from k=1,2,3,6, and 12 month horizons. The 5 columns

represent numbers corresponding to forecasts of k-month ahead risk-premia,. The data

span from 6:1991-5:2009 and are at a monthly frequency.

To see if parameter uncertainty is important for measuring the size of the pre-

dictable component using interest rate di¤erentials, I recursively regress 6-month

ahead currency risk-premia on interest rate di¤erentials, increasing the informa-

tion set of the forecast each time-period. The results suggest that estimation

uncertainty is not important for the results in the predictability regressions given

that parameter estimates, while variable, are fairly close to the constant coe¢ cient

estimation implied by the use of the full-sample of data. Forecasts of currency

risk-premia using variable and constant coe¢ cients tend to agree as well. I plot

the regression coe¢ cient over time in the top panel and the forecasts in the bottom

panel of the �gure below:

Figure 3.3: Parameter Constancy
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Accounting for estimation uncertainty. The top panel plots the time-variation

in the regression coe¢ cient using recursive least squares. The solid line

represents the time-varying coe¢ cients, while the (- - -) line represent the

constant coe¢ cient from estimating 6-month ahead currency risk-premia using

the forward discount rate. The bottom panel plots the realized risk-premia

(solid line) with forecasts of currency risk-premia using the recursive forecasts

as well as the forecasts derived from the full-sample of data. The data span

from 6:1991-5:2009 and are monthly frequency. Risk-premia are expressed in

annualized percentages.

Figure 3.4: Currency Risk-Premia Forecasts
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Forecasting Currency Risk-Premia. The solid grey line depicts the realized

currency risk-premia for 6-month holding periods. The (.-.-.-) line represents

the interest rate di¤erential, while the (- - -) line represent the x-factor spread.

Finally, the dark solid line depicts the rx-factor spread. The data span from

6:1991-5:2009 and are monthly frequency. Risk-premia are expressed in

annualized percentages.

The forward discount rate forecasts currency risk-premia, capturing the coun-

tercyclical patterns that are consistent with business-cycle related risk. I now see

if forecastability is strengthened when additional variables are used together. I

do so by running the following regressions, always using the forward discount rate

Ej
�
f
(k=12)
t � st

�
and using an additional predictor variable in conjunction with

it, either the spread in the x-factor, the spread in the rx-factor, or the currency
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market forecast di¤erence. I obtain the following estimates.

Ejt (rxt+k) = � (k) + � (k) � Ej
�
f
(k=12)
t � st

�
+ �A (k) � Ej (At) + "t+k (3.22)

Table 3.2: Predictable Currency Risk-Premia Estimates, Multivariate

k 1 2 3 6 12

Ej
�
f
(k=12)
t �st

�
interest di¤erent�l

:
� (k)

t-stats

�1:07

(�0:18)

0:42

(0:94)

1:79

(5:80)

0:31

(0:10)

0:57

(1:56)

Ej(�(xt))

x-factor spread

0:05

(0:41)

0:04��

(1:96)

0:02

(0:26)

0:14

(1:10)

0:57

(0:74)

R2 (%) 0:00 0:067 49:55 3:9 17:73

p-value 0:95 0:02�� 0:00 0:33 0:025��

Ej
�
f
(k=12)
t �st

�
interest di¤erent�l

:
� (k)

t-stats

�0:50

(�0:09)

0:72

(1:42)

1:83

(5:88)

0:60

(0:45)

0:80��

(2:32)

Ej�(~xt)

rx-factor spread

0:06

(0:15)

0:077

(0:91)

�0:16

(�0:44)

0:10

(0:18)

�0:04

(�0:09)

R2 (%) 0:00 0:05 49:81 2:0 15:91

p-value 0:46 0:02�� 0:00 0:072� 0:012��

Ej
�
f
(k=12)
t �st

�
interest di¤erent�l

:
� (k)

t-stats

�1:50

(0:10)

0:47

(1:16)

1:78

(5:79)

�0:01

(�0:01)

0:48

(1:43)

Ej( ~�(xt))

FX forecast di¤erence

0:10

0:59

0:065�

1:91

0:09

0:82

0:27�

1:63

0:21

1:44

R2 (%) 0:01 0:068 49:97 5:91 20:99

p-value 0:96 0:06� 0:00 0:68 0:013��

Multivariate predictability regressions using the cross-sectional average predictor

variables. Each row has four statistics and represent the following from top to bottom:
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the regression coe¢ cient, the t-statistic, the R-squares of each regression, and the

p-values testing for joint signi�cance predictors. Standard errors are corrected for

conditional heteroskedasticity with 12 lags to account for overlapping monthly data.

The 5 columns represent numbers corresponding to forecasts of k-month ahead

risk-premia, fromk=1,2,3,6, and 12. The data span from 6:1991-5:2009 and are at a

monthly frequency.

Positive correlation between the predictor variables reduces the signi�cance

when multivariate regressions are run. In fact, the omission of the forward discount

rate in the univariate case explains why there are positive � intercept term when

the rx-factor spreads are used. The improvement in predictability jumps from

3:6% to almost 21% as a result of the inclusion of the forward discount rate

variable. In addition, the inclusion of the full-sample and unobservable factors

along with the forward discount rate attenuates the signi�cance when compared

to the univariate case. Despite the reduction in statistical signi�cance, the large

variability of currency risk-premia captured with the set of forecasting variables

suggest that the magnitude and direction that returns are heading are captured

by these relevant variables.

3.4.2 Exchange Rate Predictability

In this section, I examine if the same predictor variables can forecast exchange rate

changes. To begin, I run the following univariate regressions using the same set

of predictor variables, the full-sample return-forecasting (x-)factor spread, the rx-

factor spread, and the hidden FX market factor. The exchange rate estimation

equation is given by the following:

Ejt [�st+k] = � (k) + � (k) � Ej [zt] + "t+k (3.23)
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Table 3.3: Exchange Rate Forecasts, Univariate

k 1 2 3 6 12

Ej
�
f
(k=12)
t �st

�
interest di¤erent�l

:

� (k)

t-stats

R2 (%)

0:12

(1:34)

0:00

�0:00

(0:01)

0:00

�0:08

(�1:81)

1:03

�0:054

(�0:20)

0:00

�0:01

(�0:03)

0:00

Ej(�(xt))

x-factor spread

�0:01

(1:02)

0:00

�0:03

(�1:47)

1:51

�0:05�

(�1:81)

2:77

�0:07

(�1:26)

3:45

�0:03

(�0:27)

0:00

Ej�(~xt)

rx-factor spread

�0:02

(�0:61)

0:00

�0:05

(�0:80)

0:5

�0:09

(�0:93)

1:0

�0:08

(�0:38)

0:44

�0:11

(�0:31)

0:05

Ej( ~�(xt))

FX forecast di¤erence

�0:01

(�1:14)

0:00

�0:05�

(�1:75)

1:87

�0:08

(�2:22)

3:45

�0:13�

(�1:89)

5:54

�0:11

(�0:79)

2:35

Exchange rate predictability regressions using the cross-sectional average predictor

variables. Each row with three quoted statistics represent the following from top to

bottom: the regression coe¢ cient, the t-statistic and the R-squares of each regression.

Standard errors are corrected for conditional heteroskedasticity with 12 lags to

account for overlapping monthly data. The 5 columns represent numbers

corresponding to forecasts of k-month ahead risk-premia, from k=1,2,3,6, and 12. The

data span from 6:1991-5:2009 and are at a monthly frequency.

There is great disagreement on the size of the predictable component of ex-

change rates using these variables, ranging from essentially unpredictable to a

small but marginally signi�cant predictable component. For an equally weighted

basket of industrialized currencies, the forward discount rate does not forecast fu-

ture exchange rate changes. In fact, the results suggest that even after averaging

out the idiosyncratic noise by constructing a basket of currencies, the empirical
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estimates captures the tendency high interest currencies appreciate in the short-

term. The x-factor spread and the di¤erence in the x-factor spread and the

rx-factor spread does provide evidence of short-to-medium horizon predictability

with signi�cant regression coe¢ cients for 2-month, 3-month and 6-month ahead

exchange rate changes. Although the amount of variation explained is rather

modest, with no more than 7% of exchange rate �uctuations explained, the sig-

ni�cance cannot be ignored. Figure 5 graphically demonstrates the co-movement

between realized values and the predictor variables for for 6-month ahead fore-

cast of exchange rate changes. Surprisingly, the x-factor spread that captures a

predictable component in exchange rates has greater variance than the variable it

is supposed to forecast! Similar results are obtained with the hidden FX market

factor, though given that the two series move closely together, I choose to omit

the time-series in the �gure, displayed below:

Figure 3.5: Forecasting Exchange Rates
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Exchange Rate Forecasts. The (.-.-.-) line represent the realized currency

risk-premia, the (- - -) represent the forward discount rate, the solid,

volatile time-series represent the full-sample return-forecasting factor

spread. The solid, less volatile line represents the recursive

return-forecasting factor spread. The time-series are in annualized

percentages, span 6:1991-5:2009.

In all, the empirical results provide evidence that exchange rate changes and cur-

rency risk-premia can be linked to bond market risk factors. Interest rate factors

extracted from the term structure bond data suggests that there is additional

information in the term structure of interest rates that is useful for forecasting

currency risk-premia and exchange rates. Large spreads in the x-factor coin-

cide with di¤erences between the x-factor spread and the rx-factor spread. The

problem of over�tting with the x-factor likely carries over from bond markets.
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As Mang (2012) �nds, the x-factor overstates the amount of bond market pre-

dictability and as a result of the large time-variation in risk-premia captured,

likely overstates the amount of real-time predictability in currency markets pre-

cisely because it correctly assesses when exchange rate �uctuations are transitory.

The recursive return-forecasting (rx)-factor spreads move around less because they

are constructed using bond market factors that react to persistent changes and

as a consequence, are not susceptible to the same concerns about using ex-post

information in its forecasts. The results suggest that understanding the tradeo¤

between risk and return in currency markets, the size of the predictable compo-

nent implied by the studied factors depends critically on the information set of

forecasters in their projections of currency risk-premia.

As in forecasts of currency risk-premia, I extend my analysis to multivari-

ate regressions of exchange rate changes. The degree of predictability in exchange

rates using real-time information is small with at best weak statistical signi�cance

for certain horizons.The fact that exchange rate and currency risk-premia are fore-

casted by these factors extracted from the term structure data suggests that there

is information in the yield curve that is useful for forecasting currency risk-premia

and exchange rates, hence in understanding the tradeo¤ between risk and return

in currency markets.

Ejt (�st+k) = � (k) + � (k) � Ej
�
f
(k=12)
t � st

�
+ �A (k) � Ej (At) :::+ "t+k (3.24)

Table 3.4: Exchange Rate Forecasts, Multivariate
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k 1 2 3 6 12

Ej
�
f
(k=12)
t �st

�
interest di¤erent�l

:

� (k)

t-stats

R2 (%)

0:12

(1:34)

0:00

�0:00

(0:01)

0:00

�0:08

(�1:81)

1:03

�0:054

(�0:20)

0:00

�0:01

(�0:03)

0:00

Ej
�
f
(k=12)
t �st

�
interest di¤erent�l

:
� (k)

t-stats

0:48

(1:21)

0:53

(1:38)

�0:10

(�1:37)

0:48

(0:99)

0:38

(0:91)

Ej(�(xt))

x-factor spread

�0:02

(�1:26)

�0:05

(�1:59)

�0:05�

(�1:76)

�0:12�

(�1:69)

�0:10

(�0:79)

R2 (%) 1:00 2:44 4:1 5:64 3:22

p-value 0:62 0:33 0:13 0:23 0:54

Ej
�
f
(k=12)
t �st

�
interest di¤erent�l

:
� (k)

t-stats

0:27

(1:21)

0:22

(1:38)

�0:10

(�1:37)

0:12

(0:99)

0:14

(0:91)

Ej�(~xt)

rx-factor spread

�0:04

(�1:26)

�0:07

(�1:59)

�0:07�

(�1:76)

�0:11�

(�1:69)

�0:05

(�0:79)

R2 (%) 0:03 0:01 2:2 0:01 1:00

p-value 0:70 0:68 0:31 0:90 0:80

Ej
�
f
(k=12)
t �st

�
interest di¤erent�l

:
� (k)

t-stats

0:43

(1:47)

0:48

(1:42)

�0:10

(�1:81)

0:50

(1:12)

0:48

(1:28)

Ej( ~�(xt))

FX forecast di¤erence

�0:02

(�1:40)

�0:07�

(�1:72)

�0:39

(�2:59)

�0:19��

(�2:11)

�0:21

(�1:50)

R2 (%) 1:03 2:73 4:84 8:20 7:3

p-value 0:39 0:23 0:082 0:099� 0:24

Forecasting exchange rates with two variables. Each column represents k-month ahead

forecasts using the two variables, with the forward discount rate being common in all

forecasts. Each row associated with a predictor variable and a k-period ahead forecast

is contains four numbers, in descending order, the estimated regression coe¢ cient, the
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associated t-statistic corrected for serial correlation using the Newey-West procedure,

and the R-squared term, and the p-value testing for joint signi�cance. * - indicates

signi�cance at the 10 percent level, ** �indicates signi�cance at the 5 percent level.

Once we use x-factor spread and the hidden FX market factor, we �nd that the

degree of predictability is relatively large. Exchange rates are well approximated

by a random walk at short-horizons, but looking several months ahead, we see that

the subtle predictability components is captured by additional information in the

x-factor spread and the hidden FX market factor, i.e. the di¤erence in the x-factor

and rx-factor spread. The negative coe¢ cient estimates on the unobservable

component suggests that exchange rates (in units of foreign currency per dollar)

captures a factor that negatively moves with the dollar, coinciding with dollar

appreciation k-months into the future.

The loading coe¢ cients on the forward discount rate are all positive for each

multivariate regression but insigni�cant. The sign is consistent the tendency for

high interest rate currencies tend to depreciate if we control for the FX market

forecast di¤erence, consistent with Engel (2011) who suggests that at least two

risk factors are required to explain patterns of delayed overshooting found in

currency markets. In fact, given the cross-section of countries, there is evidence

unconditional interest parity for a longer horizon. Looking at the unconditional

average dollar appreciation rates relative to an unconditional average interest rate

di¤erential for each individual country, I �nd a slope coe¢ cient of about 0:5 for

the cross-section of industrialized economies under study, strikingly close to the

estimated regression coe¢ cient of k-month ahead dollar appreciation rates on the

interest rate di¤erential once we control for the large and transitory component

of exchange rates proxied for by either the x-factor spread or the di¤erence in

the x-factor spread and the rx-factor spread. Figure 6 displays the tendency for

uncovered interest parity to hold in the long-run.
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Figure 3.6: Long-Run Exchange Rates and Interest Rate Di¤erentials Along the

Cross-Section
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Unconditional UIP. The �gure displays the unconditional average dollar

appreciation rate (12-months) for each foreign currency relative to its

unconditional average interest rate di¤erential for holdong onto a one-year

government treasury security. Variables are in units of annualized returns. The

data span from 1.1989-10.2010. AUD = Australia, NZL = New Zealand, NOK =

Norway, SWE = Sweden, CAD = Canada, GBP = England, JPY = Japan

To summarize the paper so far, I �nd that di¤erences in the factors that

are useful for forecasting bond risk-premia are also useful for forecasting in cur-

rency markets. Forward discount rates forecast currency as does the full-sample
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return-forecasting factor spread as well as the di¤erence in the x-factor spread and

rx-factor spread. At best, these predictor variables can also forecast currency risk-

premia and can deliver an R2 of up to 27%. I also �nd that there is predictability

in exchange rates with the di¤erence in the x-factor spread and rx-factor spread.

Multivariate regressions reveal that exchange rates are forecastable using the aver-

age forward discount rate if we control for large and transitory changes in exchange

rates that either the x-factor spread or the di¤erence in the x-factor spread and

rx-factor spread proxy for. Controlling for large and transitory �uctuations, I �nd

evidence that exchange rates are consistent with uncovered interest parity, at least

in terms of having the right sign.

3.4.3 Discussion

In this section, I discuss my �ndings in relation to the broader literature on return

predictability in foreign exchange markets. The essence of this section is that if

you take seriously the role of expectations formation by real-time forecasters who

intermittently update their forecasts, then the information gap between those who

know the future and those who do not can forecast returns in foreign exchange

markets. This information gap is consistent with many phenomena, one of which

is the learning dynamics of market participants; uncertainty about future returns

are positively correlated with this information gap.

So far, I have documented various results on the size of the predictable compo-

nent in currency markets using predictor variables constructed using bond market

prices. The results are statistically signi�cant, providing evidence of predictable

returns in currency markets. However, I have yet to discuss my �ndings with

respect to the broader literature on currency markets. For this section, I will take

seriously the role of information in asset prices. I do so by highlighting forecasts

that make restrictions on information to be consistent with real-time data and

compare them to forecasts made assuming all historical data is available.
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To begin, the positive correlation between predictor variables confound

their statistical signi�cance. Although Engel (2011) provides evidence that there

are at least two factors pricing currency market returns, for the period under

study, from 1:1989�5:2009, the correlation between interest rate di¤erentials and

the full-sample return-forecasting factor spreads is around 0:57. Another worry is

that the return-forecasting (x-)factor spread and the FXmarket forecast di¤erence

have large variance. Persistent predictor variables weaken statistical signi�cance

in forecasting as Stambaugh (1999) points out, but one that is more variable

than the predicted variable leaves one with signi�cance suspicions. Despite their

shortcomings, the (x-)factor spread and the hidden FX market factor contain

information about the turning points in foreign exchange markets that is essential

for understanding the changes in currency market risk conditions because foreign

exchange markets are especially volatile. This is where the two predictor variables

may have an advantage over the interest di¤erentials.

If these predictor variables are indeed useful for investment strategies, an

analysis of the risk return dynamics will provide information about the real-time

exploitability of these forecasting relationships. Quantitatively, full-sample fore-

casts capture a large predictable component in exchange rate changes as does the

hidden FX market factor. However, the large, predictable but transitory changes

in currency risk-premia and exchange rate changes imply volatile Sharpe ratios

as Du¤ee (2010) and Mang (2012) has emphasized, likely violating sensible re-

strictions on Sharpe ratios found in the data. Thus, the size of the predictable

component is likely not as large as these predictor variables would suggest.

An interpretation of the recursive return-forecasting (rx-)factor spread is that

it mimics the expectations formation of agents who have the same information set

as an econometrician. Adaptively made forecasts of exchange rate changes, cap-

tured by the rx-factor spread do not move as much as its full-sample counterpart,

the x-factor spreads. Adjusting for real-time data availability as the rx-factor

120



spreads do, the size of the predictable component becomes small and insigni�cant.

The heart of the matter is that real-time forecasters have di¢ culty disentangling

persistent shocks in risk-premia from transitory ones in currency markets. Real-

time forecasts react to persistent changes in returns, but often delay adjustment

in their forecasts because of the degree of randomness in returns. The reason for

the inertia in forecasts is that the recursive return-forecasting, rx-factor spread

only reacts to persistent changes in bond risk-premia.

In fact, comparisons of real-time forecasts for currency risk-premia relative to

its full-sample counterpart are precisely what the hidden FX market factor cap-

tures. As for exchange rates, short-horizon predictability exists using the hidden

FX market factor, but not with contemporaneous variables such as the (rx-)factor

spread not the interest di¤erentials. As Mang (2012) and the current paper �nd,

the di¤erence in the adaptive forecasts and the full-sample forecasts then repre-

sent an information gap that contains predictive ability in both bond and currency

markets. It turns out that the hidden FX market factor is precisely the informa-

tion that predicts exchange rate changes. Accounting for this term delivers the

right sign that is consistent with the uncovered interest parity condition. Over

long horizons these forecast di¤erences average out.

The results are relevant for the long standing debate about the origin of the

forward premium anomaly. For a set of industrialized economies during the time

period under study, we �nd evidence of not only a stable predictable component in

currency risk-premia but also evidence that exchange rate changes are forecastable

using factors that capture forecast di¤erences using bond risk factors. There is

no clear cut resolution to the puzzle because the answer critically depends on

the information set that is endowed to the investor. Forecasts that take the full-

sample of data as given treat transitory and persistent shocks appropriately, but

adaptive forecasts under-react to transitory changes in exchange rates precisely

when the interest rate di¤erential widen, consistent with Gourinchas and Tornell
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(2004) and Froot and Frankel (1989). This behavior is consistent with the slug-

gish adjustment of forecasts of changes in bond risk-premia highlighted in Mang

(2012). Therefore, the large implied predictable component in bond and currency

markets using the full-sample return-forecasting factors is consistent with the lack

of information restrictions imposed. With those information restrictions, adaptive

forecasts imply a sizably smaller predictable component in real-time.

3.5 Conclusions

In this paper, I document the quantitative size of the predictable component in

currency markets using variables constructed from bond market prices. From

about 1989 � 2009 for an average over a broad set of industrialized economies

currencies interest rate di¤erentials precede movement in currency risk-premia as

does the spread in the return-forecasting (x-)factor. Di¤erences in the full-sample

return-forecasting (x-)factor spread and the recursive return-forecasting rx-factor

spread, the hidden FX market factor, not only forecasts currency risk-premia but

also exchange rates. On the other hand, spreads in the recursive return-forecasting

rx-factor forecast neither risk-premia or exchange rate changes.

The results from this paper, along with those found in Mang (2012) and

Mang (2012), seem to suggest that the quantitative size of the predictable compo-

nent captured by the predictor variables that take the full-sample of data as given

likely overstates the amount of actual predictability in real-time because large

risk-premia in both bond and currency markets coincide with forecast di¤erences

that ex-post turn out to vary with realized values of risk-premia in each market. A

plausible reason for these forecast di¤erences is adaptive learners who have model

speci�cation uncertainty guard against the worst possible realization and in so

doing, make sophisticated "mistakes." Adaptive agents overstate the amount of

risk an investor is exposed to because they require additional compensation for
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model uncertainty. This additional compensation can be considerably large and

move rapidly if agents are concerned that past data does not serve as a useful

guide for the future.

In relation to the broader literature, particularly linear factor models often

employed in �nance, large market price of risk spreads between countries can re-

�ect either time-varying risk or perceptions of risk. In real-time, it is di¢ cult to

disentangle the relative contributions of the two. It would be interesting to see

if perceptions of risk are more pronounced for emerging market government bond

markets where investor con�dence in central bankers is low relative to industri-

alized economies. Concern for structural change will likely be even greater for

these countries. For this paper, I have only investigated how real-time revisions

to expectations in relation to full-sample forecasts and have not posed the prob-

lem for agents to have this concern for structural change. Doing so may give us

a better understanding of how actual forecasters behave during tumultuous times

in rapidly emerging markets, making it a worthwhile topic for future research.

3.6 Appendix

3.6.1 List of Variables

I describe the relevant list of variables utilized in this paper. This portion should

serve as a reference for the notation used in the paper. Notice that the variables

without a j-subscript are domestic, U.S. variables.

Table 3.5: List of Relevant Variables
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Variable Description

y
(k=12)
j;t k-month interest rate on a zero-coupon bond for country j

f
(k=12)
j;t � st k-month forward discount rate for country j

rx
j;t+k k-period currency risk-premia

�sj;t+k k-period ahead dollar appreciation rate

xj;t full-sample (FS) return-forecasting factor of country j

~x
j;t recursive return-forecasting factor of country j

xt � xj;t
bilateral return-forecasting factor spread

"x-factor spread"

~xt � ~xj;t
bilateral recursive x-factor spread

"rx-factor spread"

xt � xj;t � (~xt � ~xj;t)
di¤erence in di¤erence of x and rx-factor spread

"hidden FX market factor"

Table 6: List of relevant variables

3.6.2 Constructing Predictor Variables in Detail

Let zt be a relevant predictor variable in bond markets. Risk prices can be repre-

sented as a linear function of these variables:

�zt = �z0 + �
z
1 � zt (3.25)

�zj;t = �zj;0 + �
z
j;1 � zj;t (3.26)

Deriving currency risk prices from bond risk factors amounts to taking the di¤er-

ence in the bond risk factors and, to mitigate the e¤ect of idiosyncratic noise, take

the average over the cross-section of countries. A common empirical �nding is that

asset price movements tend to be correlated, hinting of a global risk factor. An al-

ternate formulation will have the market price of risk to be linearly related to both
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a country-speci�c and a global factor of the form �zj;t = �
z
0;j + �1;j � zj:t+ �G � xG;t.

Constructing cross-sectional averages, or a portfolio of currencies will work to iso-

late the common factor since the market price of risk for a portfolio of currencies

is Ej
�
�zj;t
�
= J�1�Jj=1

�
�z0;j + �

z
1;j � zj:t + �G;j � xG;t

�
= Ej [�z0] + Ej

�
�z1;j � zj;t

�
+

Ej [�G;j] � xG;t: Taking the di¤erence between the market price of risk of the do-

mestic currency and the cross-sectional average of foreign currencies delivers

Ej
�
�zj;t � �zt

�
= �z0�Ej [�z0]+�z1 �zt�Ej

�
�z1;j � zj;t

�
+
�
�G � Ej [�G;j]

�
�xG;t: (3.27)

If �G = limJ!1 J
�1�Jj=1�G;j, �

z
0 = limJ!1 J

�1�Jj=1�
z
0;j then Ej

�
�zj;t � �zt

�
�

� � Ejt [zt � zj;t] since �1; �1;j < 0 provided �z1 = limJ!1 J
�1�Jj=1�

z
1;j,: That is,

time-variation in the market price of risk spreads are equal to the cross-sectional

average spread of zt relative to zj;t if (a) the domestic currency and the portfolio

of foreign currencies has equal exposure to global shocks and if (b) the portfolio

of currencies eliminates idiosyncratic risk unrelated to the domestic risk factor.

Thus, we can proceed as if the market price of risk depends only on country-

speci�c factors with the idea in mind that the portfolio approximately satis�es

(a) and (b). For this paper, I proceed under the assumption that (a) and (b)

approximately holds.

Exchange rate changes can then be written as

�sj;t+1 (3.28)

= mt+1 �mj;t+1

= y
(k=12)
j;t � y(k=12)t +

1

2

��
�2j;" + �

2
�

�
�2j;t �

�
�2" + �

2
�

�
�2t
�

(3.29)

+(�j;t"j;t+1 � �t"t+1) + (�j;t � �t) �t+1 (3.30)
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Expected exchange rate changes (dollar appreciation rate) is then

Et [�sj;t+1] = y
(k=12)
j;t � y(k=12)t +

1

2

��
�2j;" + �

2
�

�
�2j;t �

�
�2" + �

2
�

�
�2t
�

= y
(k=12)
j;t � y(k=12)t �1

2

�
�2t (mt+1)� �2t (mj;t+1)

�
| {z }

E[rxj;t+1]

(3.31)

The term Et [rxj;t+1] is the currency risk-premia. The link between bond and

currency markets is clear with expression (22) because the interest rate di¤erential

can be decomposed into an expected dollar appreciation term and a risk-premium

component.

In terms of the bond market risk prices, the expression is then

Et [rxj;t+1] =
1

2

�
�2j;t
�
�2j;" + �

2
�

�
� �2t

�
�2" + �

2
�

��
(3.32)

=
1

2

24 (�j;0 + �j;1 � zj;t)2 ��2j;" + �2��
� (�0 + �1 � zt)2

�
�2" + �

2
�

�
35 (3.33)

� � � zt � �j � zj;t (3.34)

since �0; �1; �0;j; �1;j < 0 where the previous line relies on a �rst-order Taylor

approximation of a quadratic expression around xt = 0.

�2t
�
�2" + �

2
�

�
=

�
�2" + �

2
�

�
(�0 + �1 � zt)2

�
�
�2" + �

2
�

�
(�0 + 2�1 � zt)

= ��0 � 2� � zt

where �0 = �
�
�2j;" + �

2
�

�
�0 > 0 and � = �

�
�2" + �

2
�

�
�1 > 0: For the foreign

country, the approximation around xj;t = 0 delivers the following expression:

�2j;t
�
�2";j + �

2
�

�
=

�
�2j;" + �

2
�

�
(�j;0 + �j;1 � xj;t)2

�
�
�2j;" + �

2
�

�
(�j;0 + 2�j;1 � xj;t)

� ��j;0 � 2�j � xj;t

where �j;0 = �
�
�2j;" + �

2
�

�
�j;0 > 0 and �j = �

�
�2j;" + �

2
�

�
�j;1 > 0. The

di¤erence between the market price of risk �2t
�
�2" + �

2
�

�
� �2t

�
�2";j + �

2
�

�
; then is
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�0+2� �zt��j;0+2�j �zj;t, but given the comparable level factors across countries,

�j;0 � �0 and exposure to global shocks, i.e. a common �2�, the constant term in

the market risk prices are roughly the same, i.e. �j;0 � �0. As a result, equation

(25) describes currency risk-premia as a function of the bond risk-factor (to a

�rst-order approximation). Besides, the intercept term will not materially a¤ect

our understanding of the topic chosen to be the focus of this the paper, namely

characterizing the factors that explain the time-variation in currency risk-premia.

Further, the expression for the expected dollar appreciation rate is given by:

Et [�sj;t+1] = y(1)j;t � y
(1)
t � (� � zt � �j � zj;t) : (3.35)

An often used predictor for currency risk-premia is the interest rate di¤erential

y
(1)
t � y(1)j;t . The expression for currency risk-premia is then Et [rxj;t+1] = � � y

(1)
t �

�j �y(1)j;t . From the perspective of a linear factor model, this occurs if the di¤erence

in the bond market price of risk �2t
�
�2" + �

2
�

�
��2j;t

�
�2j;" + �

2
�

�
is su¢ ciently large,

which coincides with large spreads in bond market risk factors. Taking a cross-

sectional average mitigates the importance of idiosyncratic bond market factors

and isolates the common component. Doing so for expected dollar appreciation

and currency risk-premia delivers the following expressions:

Ej [Et [rxj;t+1]] : = Ejt [rxt+1]

= J�1�Jj=1 (� � zt � �j � zj;t)

= � � zt � J�1�Jj=1�j � zj;t

� � � Ej [zt � zj;t] (3.36)

For a su¢ ciently large cross-section, � = limJ!1 J
�1�Jj=1�j that will make (26)

an exact relation. Exchange rate changes for a basket of currencies is given by

the following expression

Ejt [�st+1] = Ej
h
y
(k=12)
j;t � y(k=12)t

i
� � � Ej [zt � zj;t]
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3.6.2.1 Other Predictor Variables

Cochrane and Piazzesi (2005, 2008) look speci�cally at the return-forecasting

factor as does Mang (2012). In their speci�cation, all variation in the market

price of risk is driven by variation in the return-forecasting factor.

�t = �0 + �1 � xt (3.37)

�j;t = �j;0 + �j;1 � xj;t (3.38)

where xt := Ent
�
[
rx

(n)
t+1

�
= �̂ + 
̂0 � ft and xj;t := Ent

�
\
rx

(n)
j;t+1

�
= �̂j + 
̂

0
j � fj;t

obtained by �tting the estimated coe¢ cients of the average bond risk-premia for

a set of maturities on a set of forward rates.

For the interest rate di¤erential, let risk prices be speci�ed as:

�yt = �0 + �1 � yt (3.39)

�yj;t = �~xj;0 + �
~x
j;1 � yj;t (3.40)

currency risk-premia is given by the following expression

Ejt [rxt+1] = � � y(k=12)t � J�1�Jj=1�j � y
(k=12)
j;t

� � � Ej
h
y
(k=12)
t � y(k=12)j;t

i

Ejt [�st+1] � Ej
h
y
(k=12)
j;t � y(k=12)t

i
� � � Ej

h
y
(k=12)
t � y(k=12)j;t

i
� � � Ej

h
y
(k=12)
j;t � y(k=12)t

i
where � = 1 + �

I want to investigate not only the full-sample return-forecasting factor spreads,

or more succinctly the x-factor spread, and the interest rate di¤erential for cap-

turing a predictable component in currency markets, but also the recursive return-

forecasting factor spread, the rx-factor spread, as well as the di¤erence between

the x-factor spread and the rx-factor spread. The market price of risk expressions
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for the rx-factor is then

�~xt = �0 + �1 � ~xt (3.41)

�~xj;t = �~xj;0 + �
~x
j;1 � ~xj;t (3.42)

where ~xt := eEnt �[rxt+1� = �t + 

0
t � ft and corresponding expression for the

currency risk-premia is then

Et [rxj;t+1] = �~x � ~xt � �~xj � ~xj;t (3.43)

For an equally weighted basket of currencies, the expression would then be

Ejt [rxt+1] � �~x � Ejt (~xt � ~xj;t) (3.44)

if �~x � J�1�Jj=1�~xj : The expected dollar appreciation rate is then

Ejt [�st+1] = Ej
h
y
(k=12)
j;t � y(k=12)t

i
� �~x � Ej (~xt � ~xj;t)

Finally, the expression for the market price of risk for the di¤erence in the

x-factor and rx-factor spread

��t = ��0 + �
�
1 � (xt � ~xt) (3.45)

��j;t = ��j;0 + �
�
1;j � (xj;t � ~xj;t) (3.46)

The corresponding expression for currency risk-premia is then

Et [rxj;t+1] = �� � (xt � ~xt)� ��j � (xj;t � ~xj;t) (3.47)

and for an equally weighted basket of currencies

Ejt [rxt+1] � �� � Ej [(xt � ~xt)� (xj;t � ~xj;t)] (3.48)

The expected dollar appreciation rate for this factor is then

Ejt [�st+1] = E
j
t

h
y
(k=12)
j;t � y(k=12)t

i
� �� � Ej [(xt � ~xt)� (xj;t � ~xj;t)]
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3.6.3 Cross-Sectional Exposure to Risk

To see if the constructed variables capture the relevant risk-factors in currency

markets, I look at the cross-sectional loadings to see if the compensation for ex-

posure to the proxied for risk factors increases with exposure to the mentioned

risk factor. Since Lustig et al (2011) �nd evidence of a risk factor that is well-

proxied by interest rate di¤erentials, I use the forward discount rate along with

the other constructed risk factor. In a similar vein, I perform a cross-sectional

regression of average currency risk-premia on a set of sorted currencies, from high

interest rate di¤erentials to low interest rate di¤erentials relative to the U.S. For

instance, the interest rate di¤erential tends to be largest between the U.S. and

Japan since Japanese currencies have relative low yields. On the other hand, New

Zealand tends to o¤er higher yields relative to the U.S. so they have negative

di¤erentials. Below is a comparison of the cross-sectional loadings for six indus-

trialized countries where international bond market data are available in conjunc-

tion with currency market data for the sample period under study (1988-2009);

New Zealand, Norway, Sweden, Canada, Great Britain, and Japan. The cross-

sectional pattern suggests that the constructed variables capture the same pattern

of risk-exposure as the interest rate di¤erential. Despite the non-monotonic re-

lation, which is to be expected because interest rate di¤erential reversals occur

and also due to the small set of currencies that comprise the cross-section of

industrial economies, there is evidence to support to the notion that the predic-

tor variables are capturing at least one systematic risk factor. The �gure below

gives loadings on countries for each predictor variable when I regress Ej [rxt+6] onh
y
(6=12)
t � y(6=12)NZL;t; :::; y

(6=12)
t � y(6=12)JPY;t

i
.

Figure 3.7: Cross-Sectional Risk Exposure
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Cross-sectional loadings on six sorted industrialized countries. The two-stage least

squares regression is performed to determine the cross-sectional loadings: Average

currency risk-premia is regressed on each individual interest rate di¤erential sorted on

the magnintiude change in interest rate di¤erential. I do so for all relevant predictor

variables, the forward discount rate (.-.-.-), the rx-factor spread (- - -), the x-spread

and the di¤erence in the rx-factor spread and the x-factor spread. NZL = New

Zealand, NOK = Norway, SWE = Sweden, CAD = Canada, GBP = England, JPY =

Japan.

3.6.4 Equivalence Between Return-Forecasting Factor Spreads

The cross-sectional average of the di¤erence between the full-sample forecasting

factor spread and the recursive return-forecasting factor spread is approximately

equal to the di¤erence in the cross-sectional average full-sample return-forecasting
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factor spread and the cross-sectional average recursive return-forecasting factor

spread. More simply, in math:

Ej
h
~� (xt)

i
: = Ej

�
xt � xjt � (~xt � ~xj;t)

�
= J�1�Jj=1 [(xt � ~xt)� (xj;t � xj;t)]

= J�1�Jj=1 [xt � xj;t]� J�1�Jj=1 (~xt � ~xj;t)

� Ej [� (x)]� Ej [� (~x)]

We can verify this property of the forecastor variables in the �gure below.

Figure 3.8: Equivalence between Hidden FX Factor and the Di¤erence in Ful-

l-Sample and Recursive Return-Forecasting Factor Spread
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Figure 8: Graphical proof that the cross-sectional average of the di¤erence

in the x-factor spread and the rx-factor spread is approximately equal to

the cross-sectional average x-factor spread and the cross-sectional average

rx-factor spread

Ej
h
~� (xt)

i
� Ej [� (x)]� Ej [� (~x)]

Deviations could be driven by the small sample of industrialized countries

where yield curve data are available and span a su¢ ciently long time horizon. As

the cross-sectional size increases, the two terms should become equal.
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