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DISSECTING THE MONTY HALL ANOMALY

DUNCAN JAMES, DANIEL FRIEDMAN, CHRISTINA LOUIE and TAYLOR O’MEARA∗

We assess competing explanations of irrational behavior in the Monty Hall problem
by creating new variants of the problem. Some variants employ a feature that automates
the merging of probabilities, thus rendering transparent the probabilistic advantage
of the rational choice. That feature also enables systematic variation in informational
asymmetry, and in ordering of actions. Data from 77 subjects, each of whom makes
30 binary decisions, indicate that automated merging raises the fraction of rational
choices from around 40% to over 80%. Other features examined have much less impact,
indicating the importance of a Bayesian updating failure. (JEL C91, D02, D81, D83)

I. INTRODUCTION

Nature randomly chooses, with equal proba-
bility, one of three doors behind which to put a
valuable prize; there is nothing behind the other
two doors. A player initially chooses one of the
doors, say door i. Nature then opens a door j sub-
ject to two constraints: that j ≠ i and that j is not
the prize door. Due to those constraints, the prob-
ability that i is the prize door remains at 1/3. The
player now has the option to open either door i or
to open the remaining door, k ≠ i,j. Switching to
door k wins with probability 1–1/3= 2/3, and so
the rational choice is to switch.

This “Monty Hall problem” (Nalebuff 1987;
Selvin 1975; vos Savant 1990/1991) has attracted
continuing interest because in most empirical
tests the majority of humans do not switch, but
rather stick with their original choice (e.g., Fried-
man 1998; Granberg 1999; Krauss and Wang
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2003; Palacios-Huerta 2003). The reasons for this
irrational behavior remain unclear. Leading can-
didates include the illusion of control, escalation
of commitment, confirmation bias, reacting to an
informational asymmetry, improper use of Bayes
rule, and probability matching (e.g., Bazerman
1990; Camerer 1995; Camerer and Weber 1999;
Estes 1954; Friedman 1998; Wason 1960).

Much is at stake in evaluating these compet-
ing explanations. If the main cause is improper
Bayesian updating following restricted choice,
then the Monty Hall problem is a decision-
theoretic manifestation of longstanding statisti-
cal puzzles in education, psychology, and sports
science (Miller and Sanjurjo 2015) and in med-
ical decision-making (Cox et al. 2016). If it is
a more general failure of hypothetical thinking,
then we get new insight into economically impor-
tant phenomena such as the “winner’s curse” in
common value auctions and a variety of other
“cursed equilibria” (Esponda and Vespa 2014;
Eyster and Rabin 2005). On the other hand, if the
main cause is escalation of commitment, then we
may gain new insight into how to avoid disputable
investments like the Space Shuttle program, or
the Concorde supersonic passenger plane (Arkes
and Blumer 1985; Heath 1995).

Our paper assesses the competing explana-
tions by offering human subjects ten different
variants of the Monty Hall problem, each with
round-by-round feedback, and comparing the
switch (i.e., rational choice) rates. The next
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1818 ECONOMIC INQUIRY

section shows how the variants unbundle and
rearrange key features of the usual Monty Hall
problem. The following section poses the com-
peting explanations as hypotheses that can be
tested on our data, and presents the results. The
penultimate section shows how the merging-
of-probability-masses operation tested in our
experiments might be useful in the field, and
would thus be a candidate for inclusion in some
decision-making expert systems. A concluding
discussion summarizes implications and suggests
future work.

II. DESIGN

The original Monty Hall task has the following
timeline:

1. The true state is determined from among
three equally likely states (say Blue, Red, and
Yellow).

2. The subject initially nominates one of these
states (say i=Blue).

3. The conductor privately learns the true
state (this may precede step 2).

4. The conductor discloses a remaining state
k (say, Red) subject to two constraints:

1. k≠ i that is, it cannot be the state ini-
tially nominated, and

2. k is not the true state.
5. The subject is given the opportunity to

Switch her nomination from i (the state initially
nominated, here Blue) to the remaining state j
(Yellow in the current example), or to Stay with
the initial nomination.

6. The true state is revealed, and the subject
wins a valuable prize if it is her final nomina-
tion.

(a) She wins on j (here, Yellow) if and
only if she switched in step 5

(b) She wins on i (here, Blue) if and only
if she did not switch in step 5.

Subjects may misconstrue step 4 as reallo-
cating the 1/3 prior probability of the disclosed
state k equally to the remaining state j and to
the initially nominated state i, and so believe
that the posterior probabilities are .50:.50. But
actually the probability of the initially nominated
state (1/3) does not change, since constraint 4a
sequesters that state from the updating process.
In effect, then, step 4 just shifts the prior 1/3 prob-
ability from the disclosed state k to the remaining
state j, boosting its posterior probability to 2/3.

There is a more transparent way to present
the apportionment of probability mass implied

by step 4. Instead of disclosing k, the conductor
can tell the subject that if she chooses to Switch
from i, then she wins the prize if the true state is
either of the two states not nominated initially. In
the example where the initial nomination is Blue,
a subject who chooses Switch would win if the
true state is either Red or Yellow, while a subject
who chooses Stay would win only if the true
state is Blue. We refer to this alternative to step
4 as “Merge probabilities of states not initially
nominated,” or Merge for short. It tells subjects
quite directly that the step 5 decision Stay will
win the prize if i was the true state all along, but
otherwise Switch will win.

Merge frees up the ordering of actions within
the timeline: resolution of the true state in step 1
can now take place as late as between steps 5 and
6, and the conductor no longer has to know the
true state before the subject does. Exploiting that
freedom, Table 1 below defines ten treatments,
which systematically switch on (indicated by a
✓) or off (−) key features of the original Monty
Hall problem.

Treatment T7 in Table 1 is the original Monty
Hall task, preserving the timeline above. Adja-
cent treatments in the Table differ in only one
feature; for example, T6 uses Merge but other-
wise is as in the original task. Not all feature
combinations are implementable; for example,
without Merge, the conductor must know the true
state before offering the standard switch oppor-
tunity, and thus that state must be determined
before the switch opportunity is offered. Hence,
the last three rows in T7–T10 are necessarily
identical, while the first two features are varied
independently. Merge is used in T1–T6, enabling
many combinations of the features in the first
four rows of Table 1.

This set of treatments isolates the effect of
each listed feature of the Monty Hall problem.
For instance, comparing T4 versus T5 switch
rates isolates the effect of determining the true
state before the subject nominates an initial state.
In like manner, competing explanations of behav-
ior in the Monty Hall problem can be mapped to
testable implications on how switch rates will dif-
fer across treatments. A manifest of our hypothe-
ses is as follows.

A. Illusion of Control and Escalation of
Commitment

As noted in the introduction, psychologists
offer two different explanations of why sub-
jects might feel attached to their initial nomi-
nation: either because they feel that they have
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TABLE 1
Mapping of Features to Treatments

Treatments

Features T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Subject makes initial nomination (vs. Random) ✓ - - - - ✓ ✓ - - ✓
True state determined before initial nomination - - - - ✓ ✓ ✓ ✓ - -
Conductor knows true state before switch opportunity - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓
True state determined before switch opportunity - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Merge probabilities of states not initially nominated ✓ ✓ ✓ ✓ ✓ ✓ - - - -

some ability to guess (or influence) the true state,
or because they feel a sense of ownership and
are reluctant to abandon their initial nomination.
In either case (we cannot distinguish between
them), attachment would be weaker when the ini-
tial nomination is random. Hence, we obtain the
hypothesis,

H1: The switch rate is higher with random
assignment than when subjects make the ini-
tial nomination.

Our data support this hypothesis if we can
reject the null hypothesis of no difference in
switch rates in the direction H1 specifies (e.g.,
there is a significantly higher switch rate associ-
ated with random assignment of the initial nom-
ination). The next several hypotheses will be
tested in a similar manner.

B. Asymmetric Information

Often it is rational to refuse to trade with a
better informed individual, and subjects might
inappropriately apply that rule of thumb when the
conductor offers the option to Switch (Friedman
1998). Hence, we obtain the hypothesis,

H2: The switch rate is higher when the conduc-
tor does not know the true state before offering
the opportunity to switch.

C. Erroneous Updating

As noted earlier, it may be that subjects incor-
rectly assess .50:.50 posterior probabilities over
the remaining states, rather than 2/3:1/3 win prob-
abilities for Switch versus Stay, and that our
Merge treatment will help overcome that updat-
ing error. Thus, we obtain the hypothesis,
H3: The switch rate is higher with the Merge
feature in place than with the information deliv-
ery used in the original Monty Hall procedure.

D. Confirmation Bias

It may be that subjects mistakenly regard the
disclosure that state k is not the true state as

confirming the initial nomination i as the correct
identification of an already resolved true state.
That effect might weaken when the true state is
not determined prior to the initial nomination.

H4: The switch rate is higher when the true state
is not determined before the initial nomination, in
those treatments where the conductor discloses a
nonwinning, non-nominated state.

E. Timing the Resolution of Uncertainty

The confirmation bias hypothesis above is not
the only possible way that the time that uncer-
tainty is resolved could affect the switch rate.
Subjects might regard even an undisclosed res-
olution of the true state as an updating oppor-
tunity, or at least a cue that they should update.
If the roll resolving the true state takes place
after the initial nomination, the subjects may con-
sider switching their nomination, realizing that
something has changed. By contrast, if the res-
olution takes place before the initial nomination,
this may fool the subjects into thinking—despite
the mass reapportionment that takes place after
the initial nomination, by different means, in all
treatments—that nothing changes between their
initial nomination and the switch opportunity,
and thus that no updating is called for. Lumping
together these (and perhaps other) conjectures,
we obtain our next hypothesis.

H5: The switch rate is higher when the true state
is not determined before the initial nomination.

Of course, resolving the true state after the
final switch opportunity should completely elim-
inate these sorts of biases, hence, we obtain the
hypothesis,

H6: The switch rate is higher when the true state
is not determined until after the subject’s final
decision to switch or stay.

F. Probability Matching

Probability matching is a benchmark choice
model from psychology (Estes 1954) in which
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subjects’ choice rates match the objective prob-
abilities. With correct (or erroneous) assessments
of the win probabilities, we have the two-part
hypothesis:

H7: Up to sampling error, the switch rate is
66.7% (consistent with correct subjective proba-
bilities but suboptimal choice) or 50% (consistent
with incorrect subjective probabilities and subop-
timal choice).

G. Experiential and Transfer Learning

Do subjects learn from experience within a
given treatment? Are they able to transfer lessons
learned in one treatment to another?

We address the first question by constructing
and including in our econometric analysis the
explanatory variable Switchbonus, introduced in
Friedman (1998). This variable—defined as the
cumulative, across rounds, tally of “Switch pay-
off minus Stay payoff, in a round”—captures the
subject’s exposure to accumulating evidence that
Switch offers a better chance than Stay of win-
ning the prize. Depending on the sequence of
observed dice rolls, that evidence can be strong,
weak, or even misleading.

H8: The switch rate is increasing
in Switchbonus.

Transfer learning might be captured by
sequences in which Original Monty (T7) is
used in Segment 2 following a Merge treatment
(T1–T6) in Segment 1, and by sequences in
which T7 is used in Segment 3 following a
Merge treatment in Segment 2. The hypothesis is

H9: Switch rates are higher in Original Monty
(T7) segments that follow a segment with treat-
ment (T1–T6) using the Merge feature.

H. Asymptotic Rationality

Do subjects eventually get it right? Our last
hypothesis is

H10: Switch rates are asymptotically 100%.

We implement our design using a phys-
ical randomization device. The true state is
determined by rolling (under an opaque cup) a
six-sided die with face pairs colored Blue, Red,
and Yellow, and, in treatments with the first
feature set to Random (viz., T2–T5, T8, and T9),
the initial nomination is similarly determined
using another similarly colored die. All rolls
are made in the presence of the subject, and

disclosed to the subject by the end of the round in
all treatments; thus, feedback on all realizations,
payoffs, and opportunity costs is made each
round in a credible and salient manner. Subjects
keep track of the feedback events using a record
sheet, as in Friedman (1998).

Each subject in our experiment completes
three segments of ten rounds, for a total of 30
rounds. The first and last segment always use the
same treatment, while the middle segment uses a
different treatment, in ABA fashion (Treatment
A—Treatment B—Treatment A, a standard
treatment sequencing when there is a possibility
of learning or other nonstationarity in behavior).
The bottom part of Table 1 shows the number of
observations of each treatment in each segment
collected from our 77 subjects recruited from the
Learning and Experimental Economcs Projects
lab subject pool (University of California at Santa
Cruz undergraduates from a wide set of majors).
See Appendix S2, Supporting Information, for
the full set of treatment sequences. Appendix S1
is a complete copy of instructions to subjects.

Subjects earned one point in every round in
which their final choice was the true state. On
average, they earned 17.08 points out of the max-
imum 30. (Optimal play, always Switch, would
earn 20 points on average, while always Stay
would average 10 points.) At the end of the exper-
iment, subjects were paid $0.70 per point plus a
show-up payment, typically $7.

III. RESULTS

Table 2 collects summary statistics, of interest
in their own right as well as providing preliminary
evidence regarding hypotheses.

While the lower portion of Table 2 permits
direct inspection of the data by treatment and
by segment, our formal statistical results are
presented in Table 3. Table 3 reports results from
a specification regressing switching (yes (1)
or no (0) as a limited dependent variable) on:
binary treatment variables, each indicating the
presence or absence of each of the five design
features (as listed in Table 1 or the upper portion
of Table 2); a time trend; interactions between
the five design feature binary variables and the
time trend; either a constant (when the model is
estimated as logit) or subject fixed effects (when
the model is estimated as a linear probability
model [LPM]); variables indicating whether
implementation of the original Monty Hall prob-
lem followed implementation of other treatments
using the Merge feature (“Segment 2 is Original
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binary variables allow capture of transfer of
learning); and variables measuring feedback
information useful in reinforcement learning
(Switchwon and Switchbonus).

A. Illusion of Control and Escalation of
Commitment

H1: The switch rate is higher with Random
assignment than when subjects make the ini-
tial nomination.

H1 predicts positive switch rate differences
T2−T1 and T5−T6 (with Merge present), as well
as positive differences T8−T7 and T9−T10 (with
Merge absent). The switch rates reported in the
bottom of Table 1 are consistent with this predic-
tion in Segment 2 for T2−T1, and for Segments 1
and 3 for T9−T10, but otherwise the differences
go the wrong way.

In Table 3, the effect of the feature “Subject
makes initial nomination” is not significant in
either a stable or a time varying way, as evi-
denced by its insignificant (intercept or level)
dummy variable and the insignificant interaction
term between the preceding and time, respec-
tively; this is true using either estimator (LPM
or logit). We conclude that, despite their a pri-
ori appeal, we find no evidence that Illusion of
Control or Escalation of Commitment provoke
irrational choices in our Monty Hall data.

B. Asymmetric Information

H2: The switch rate is higher when the conduc-
tor does not know the true state before offering
the opportunity to switch.

H2 implies that switch rate difference T3−T4
should be positive in Table 2. This prediction
fails: the rates are essentially the same for the
middle segment, but in the other segments (and
overall) the switch rate is noticeably higher in T4.
The regression estimates in Table 3 for level and
slope for the relevant feature dummy are insignif-
icant, with the possible exception (p= .09) of a
positive slope in the logit regression. Again, a
plausible explanation for irrationality finds no
substantial support in our data.

C. Erroneous Updating

H3: The switch rate is higher with the
Merge feature than with the original infor-
mation procedure.
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TABLE 3

Dependent Variable: SW(=1 if Switch Chosen)
Linear Probability

Model Logit Model

Explanatory Variables:
Coefficient
(Standard Error)

Marginal
Effect

Constant — −1.0923**

(0.4893)
—

Time 0.0033
(0.0056)

0.0096
(0.0339)

0.0021

Subject makes initial nomination 0.0537
(0.0506)

0.4371
(0.2714)

0.0960

True state determined before initial nomination 0.0178
(0.0526)

−0.0389
(0.2699)

−0.0085

Conductor knows true state before switch −0.0993
(0.0676)

0.2479
(0.3833)

0.0545

True state determined before switch opportunity 0.1394*

(0.0814)
0.3156
(0.4268)

0.0693

Merge probabilities 0.4403***

(0.0587)
2.0208***

(0.3293)
0.4439

Segment 2 is Original Monty −0.0462
(0.1323)

−0.6142
(0.7064)

−0.1349

Segment 3 is Original Monty −0.0692
(0.2433)

−0.2714
(1.3319)

−0.0596

Time × Subjects make initial nomination −0.0010
(0.0024)

−0.0008
(0.0154)

−0.0002

Time × State determined before initial nomination −0.0050**

(0.0024)
−0.0307**

(0.0153)
−0.0068

Time × Conductor knows state before subject 0.0042
(0.0032)

0.0374*

(0.0221)
0.0082

Time × State determined before switch opportunity −0.0056
(0.0036)

−0.04417*

(0.0252)
−0.0097

Time × Merge probabilities 0.0009
(0.0045)

0.0197
(0.0254)

0.0043

Time × Segment 2 is Original Monty 0.0196**

(0.0087)
0.0826*

(0.0478)
0.0182

Time × Segment 3 is Original Monty 0.0052
(0.0100)

0.0209
(0.0543)

0.0046

Switchwona −0.0245
(0.0177)

−0.1142
(0.1125)

−0.0251

Switchbonusb 0.0069
(0.0044)

0.0589***

(0.0165)
0.0130

Adjusted R2 0.12714 —
N obsc 2,223 2,223
F-statistic 19.1705 —
Mean fixed effect 0.3022 —

aSwitchwon= 1 if Switch won in previous period.
bSwitchbonus= cumulative earnings for Switch minus Stay.
cWith 30 rounds and 77 subjects, we have 77 × (30–1)– 10= 2,223 observations; the −10 reflects observations lost due to a

recording error (for one subject in Segment 2), and the 77 × (−1) is due to a lagged variable.
*p< .10; **p< .05; ***p< .01.

The evidence for this hypothesis is very
strong. Switch rates in all segments of all
treatments with the Merge feature are at least as
high as any switch rate in any segment without
Merge. The direct comparison T6−T7 is an
impressive 91.7–44.6= 47.1%. Table 3 corrobo-
rates, showing a huge level effect in the LPM (or
marginal effect in the logit model) of 44 percent-
age points, with miniscule p values. Slope effects
are not significant. We conclude that erroneous

probability updating accounts for the lion’s
share of observed irrationality, and that Merge
enables subjects to understand right away (with
no gradual adjustment) the advantages of Switch.

D. Confirmation Bias

H4: The switch rate is higher when the true state
is not determined before the initial nomination, in
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those treatments where the conductor discloses a
nonwinning, non-nominated state.

T7 and T10 differ only in whether or not
resolution of the true state takes place before or
after the initial nomination; the same is true of
T8 and T9. Thus one possible test of H4 takes
each switch decision as a unit of observation, and
compares switch rates across treatments. The chi-
squared test rejects the null hypothesis of equal
switch rates for T7 and T10 (p= .02), and for T8
and T9 (p= .0002), in the direction predicted by
H4. A conservative approach is to take individual
subject switch rate in each segment as the unit
of observation, and test for differences across
treatments using a rank-sum test. Pooling T7 and
T10 on one hand, and T8 and T9 on the other, one
fails to reject the null of no difference in central
tendency (p= .12).

E. Timing the Resolution of Uncertainty

H5: The switch rate is higher when the true state
is not determined before the initial nomination
(over all treatments).

As reported in Table 2, the difference in mean
switch rates for T10−T7, T9−T8, and T4−T5 is
positive for all three comparisons, consistent with
the prediction. More formally, we see that while
the level coefficient for “true state determined
before initial nomination” is insignificant in both
LPM and logit, the slope (time interaction) coef-
ficient is significant (p< .05) in both regressions.
Thus, there is some evidence that earlier res-
olution of the true state does lower switching,
via suppression of adjustment toward the optimal
strategy.

H6: The switch rate is higher when the true state
is not determined until after the subject’s final
decision to switch or stay.

Table 2 shows that the relevant treatments are
T2 and T3, and that the prediction is simply that
the difference T2−T3 in switch rates is positive.
This prediction is correct in two out of three seg-
ments. (It would be desirable to make a similar
comparison with the Merge feature turned off, but
that is not logically possible.) In Table 3, how-
ever, none of the level or slope coefficients for
“true state determined before switch” are signif-
icant at usual levels. There does not appear to
be a clear role for behaviors relating to resolu-
tion of the true state beyond that already cap-
tured by relative positioning of initial nomination
and state resolution (as in H5). Put another way,

rendering the problem as a hypothetical statis-
tics problem—with no resolving roll until after
all reasoning and responses are completed—does
not significantly boost or suppress the switch rate.

F. Probability Matching

H7: Up to sampling error, the switch rate is
66.7% (consistent with correct subjective proba-
bilities but suboptimal choice) or 50% (consistent
with incorrect subjective probabilities and subop-
timal choice).

Applying an exact binomial test to each sub-
ject’s data, we are able for each subject to make
an assessment of whether or not their behavior
over the 30 rounds could be consistent with prob-
ability matching either at 66.7% or 50%. For 28
of 77 subjects, we can reject probability match-
ing at either benchmark. These rejections are due
to switch rates well in excess of 66.7%. The pic-
ture is less distinct for other subjects—including
28 for whom we cannot reject either matching
at 50% or matching at 66.7%. However, subject
choice in this range could be generated during
dynamic adjustment toward higher switch rates
(see below). We conclude that probability match-
ing does little to explain our data.

G. Experiential and Transfer Learning

H8: The switch rate is increasing in
Switchbonus.

Table 2 has some favorable preliminary evi-
dence. With the exception of T7, the Segment
3 switch rates are always at least as high as
in Segment 1 for every treatment. Of course,
this may be partly due to transfer learning (see
below), so we look to Table 3 for sharper evi-
dence. Both Switchbonus coefficient estimates
have the predicted (positive) sign; the estimate
is not significant in the LPM (p= .11), but it is
highly significant (p< .001) in the logit model.

In passing, we note that Switchwon, also intro-
duced by Friedman (1998), is the indicator for
whether switching would have won the prize in
the immediately preceding period. The coeffi-
cient estimates reported in Table 3 are not sig-
nificant (and negative in sign) in contrast to the
significant, positively signed estimates in Fried-
man (1998).

H9: Switch rates are higher in T7 segments that
follow a segment using the Merge feature.
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Table 2 contains evidence that supports that
prediction. T7 switch rates are below 40% in Seg-
ments 1 and 3, but are nearly 60% in Segment
2, which is always sandwiched by Merge treat-
ments (see line 7 in the online Appendix Table
S1). Again, Table 3 yields sharper tests; the rele-
vance of variable “Segment 2 is Original Monty”
was just noted, and “Segment 3 is Original Mon-
ty” is also very relevant because (see column 7 of
Table S1) T7 only sandwiches Merge treatments.
Both variables have insignificant level effects, but
positive slope estimates. The Segment 2 slope
estimate is significant at p< .0256 in the LPM
and is borderline significant (p= .084) in the logit
model. Thus, between H8 and H9, we have evi-
dence consistent with experiential learning and
transfer learning, respectively.

H. Asymptotic Rationality

H10: Switch rates are asymptotically 100% for
a typical subject.

The evidence from Table 2 (higher switch
rates in Segment 3 than in Segment 1 for almost
all treatments) is encouraging but inconclusive.
Table 3 considers linear time trends (or linear
effects in Switchbonus), which are not especially
well suited for the question at hand. As an alterna-
tive, we adapt a technique introduced in Noussair,
Plott, and Riezman (1995) and estimate the coef-
ficients BInit and BAsymp in the equation

Absolute Deviation from Switchit =BInit,i(1/t)
+BAsymp,i ((t−1)/t)+ϵit,

using data from the final segment for each indi-
vidual subject i. Here, t= 1, 2, … , 10 is the
period (round) number in that segment. The coef-
ficients BInit and BAsymp, respectively, represent
the initial value and constant asymptote of the
hyperbola that best fits the ten observations. Of
course, there is considerable sampling error and
heterogeneity across individual subjects, but the
medians by treatment are of interest. For treat-
ments T1 through T6 (all treatments with the
Merge feature), the median BAsymp estimate is 0,
implying a 100% switch rate, as H10 predicts.
For treatments T7–T10 (all treatments without
the Merge feature), the median estimated BAsymp
is 0.1703, implying an 83% switch rate. Among
subjects in T7 (the original Monty Hall), the
median BAsymp estimate is 0.4988, implying a
50% switch rate. Under the model, subjects with
a positive asymptote, such as the median subjects

in the non-Merge treatments, would never attain
100% switching.

IV. APPLICATION TO FIELD SITUATIONS

Abstract statistical reasoning can be diffi-
cult in the calmest of circumstances, and can
be impractical when it is most needed, in fast-
moving, stressful environments such as armed
combat (a new blip appears on the screen—is
it friend or foe?) or medical diagnosis. For such
applications, simplification (e.g., Gigerenzer and
Todd 1999) and automated Bayesian tools (e.g.,
Cox et al. 2016) may help prevent fallible humans
from making serious errors.

To see the connection to our experiment,
consider the following special but not unrealis-
tic medical diagnosis situation. There are three
mutually exclusive possible causes of a patient’s
aliment, and a priori all three are equally likely.
The insurance company (or perhaps the current
state of knowledge) will permit tests for only
two of the possible causes. A negative result for
either test would definitively and quickly reject
that associated cause. Thus in the class of scenar-
ios we consider here, the first test received back
will necessarily be a negative one. Both possible
tests are performed.

Next, the first test result comes in—it is,
of course, negative for one of the two testable
causes. What now is the updated probability that
the true cause is the one for which a test is not
permitted? We confidently conjecture that most
people (and likely most medical professionals)
would say 50%. The correct answer, of course,
is that the prior probability of 1/3 remains valid,
because that cause was “sequestered” in exactly
the same way as the initial choice in the orig-
inal Monty Hall problem. Knowing the correct
answer—or having it enforced by means of an
expert system that not only requests and stores
information on testing of individual states but
also automatically reallocates probability mass
across states in real time in the manner tested by
our Merge feature—could help prevent bad deci-
sions when immediate action is required. Note:
Eventually the second test result will arrive, and
in general it will change the Bayesian posterior
probability of the sequestered cause. The point is
that action may be required in the meantime.

The example generalizes. Suppose there are
n> 3 possible causes, k< n of them testable, with
negative results received before positive results.
Contrary to most people’s intuition, the prior on
a nontestable cause would be unaffected after
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receipt of j< k negative results. Our experiment
thus underlines the need for automated Bayesian
tools in medical diagnosis (as in Cox et al. 2016)
and in a variety of other field situations ranging
from angel investment (in startup companies) to
warfare. Expert systems can easily be augmented
to allow a branching that establishes whether a
particular state is (not) sequestered from updat-
ing; this step shapes the kind of updating that
takes place across the states not sequestered, but
also not contemporaneously revealed.

V. DISCUSSION

Our laboratory dissection of the Monty Hall
puzzle suggests that the root problem is a fail-
ure in Bayesian updating—specifically, a fail-
ure to merge correctly the probability masses
of the states not initially nominated. Most sub-
jects not exposed to the transparent merging-of-
probability-mass design feature (Merge) do not
learn to switch consistently by the end of the
experiment. On the other hand, most subjects do
switch consistently (i.e., behave rationally) while
exposed to Merge. Switching is also elevated to
some degree among subjects in Original Monty
Hall who have previously experienced a treat-
ment employing Merge.

Other conjectured explanations for failure to
switch have much smaller impact in the data.
Of those explanations, only confirmation bias (or
some other forms of sensitivity to when uncer-
tainty is resolved) might receive any support, with
some indication of operation via suppression of
learning. Our data overall suggest that experi-
ential learning and transfer learning do increase
switch rates, though the effect sizes are dwarfed
by those of Merge.

Taken together with the cross-species results
of Herbranson and Schroeder (2010), one might
conclude from our results that, compared to
pigeons, humans are relatively bad at learning
from experience. A more generous interpreta-
tion is that human choice is more responsive
to insight. We are more likely to persist in
suboptimal behavior driven by an incorrect belief
(misconstrued win probabilities for switching),
but we are faster to respond to new insight.

There are important practical implications of
our results. It is an unfortunate reality in medicine
that failure to correctly exploit Bayesian updat-
ing opportunities on the part of medical profes-
sionals can result in sickness or death on the
part of patients (Cox et al. 2016). Anything that
can be done to ease the correct implementation

of Bayesian reasoning—such as the engineering
of information displays and information provi-
sion so as to promote correct Bayesian reason-
ing (Gigerenzer and Hoffrage 1995), or providing
econometric decision aids (Cox et al. 2016)—is
potentially of the greatest value. Our findings,
particularly as related to the Merge design fea-
ture, suggest a specific improvement that (med-
ical diagnostic and other) decision aids might
incorporate. That is the identification and seques-
tration of states that cannot be the object of updat-
ing. Explicitly introducing and accounting for
this step early on in updating procedures, which
facilitates the calculation of conditional proba-
bilities, would constitute a simple and practical
transfer of our findings to real-world decision-
making.
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