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Abstract 

To investigate the interaction of new information with deeply 
entrenched knowledge, we introduced participants to 
hyperbolic geometry, a form of non-Euclidean geometry. We 
trained participants through two different but mathematically 
equivalent forms: lines or figures. Participants who were 
trained on closed figures showed greater transfer than 
participants who were trained on lines. We gave participants 
different kinds of reminders at test to facilitate transfer.  
Explicit requests to apply training information to test items 
yielded no improvement, but presenting participants with 
relevant principles (but without information on how to apply 
those principles) greatly improved performance.  
 
Keywords: Conceptual change; mathematics; non-Euclidean 
geometry. 

Introduction 
People don’t learn a new domain of knowledge from 
scratch. Instead they have to integrate new information with 
their pre-existing beliefs, some of which may be false or 
inconsistent with the new knowledge. What happens when 
people confront information that conflicts with facts they 
hold true, especially when those facts are deeply 
entrenched?  

This is the issue explored by research on conceptual 
change: the restructuring and perhaps abandonment of 
knowledge rather than the simple addition of new facts to a 
knowledge base. Most empirical work on conceptual change 
has focused on change in people’s beliefs about scientific 
matters, such as children’s concepts of animacy, models of 
the earth, and force (e.g., Carey, 1985; Vosniadou & 
Brewer, 1992; Ioannides & Vosniadou, 2001). Only recently 
have investigators pursued conceptual change in 
mathematics, including the development of the concept of 
fractions (Stafylidou & Vosniadou, 2004), rational numbers 
(Merenluoto & Lehtinen, 2004), negative numbers (Vlassis, 
2004), and the illusion of linearity in geometry (Van Dooren 
et al., 2004). 

Vosniadou and Verschaffel (1994) review several reasons 
why researchers and philosophers may have been reluctant 
to apply conceptual change theories to mathematics. One 
reason is that mathematics proceeds by deductive rather 
than empirical methods. Unlike explanatory models in 
physics or biology, which are developed and refined with 
the discovery of new data, coherent mathematical systems 
often do not depend on physical experience. While some 
mathematical concepts may be facilitated by sensory 

information, such as the relationship between Euclidean 
geometry and the observable world, other concepts are 
outside our experience (e.g., inaccessible cardinal numbers) 
or are even inconsistent with previously acquired 
knowledge (e.g., hyperbolic geometry). In addition, 
successive theories in math are not necessarily 
irreconcilable. In fact, as Corry (1993) points out, a new 
development in mathematics often does not lead to the 
rejection of the older theory but to a more generalized 
approach. 

These factors make radical change in mathematics less 
salient than in science. Nevertheless, precisely because 
students expect mathematical knowledge to be unchanging, 
it can be especially difficult for them to encounter advanced 
math topics that force them to reconceive existing 
knowledge. This makes conceptual change in mathematics a 
particularly interesting area for study and a potential source 
of insight into how deeply entrenched knowledge interacts 
with new information.    

Geometry lends itself well to this investigation. 
Hyperbolic geometry, a form of non-Euclidean geometry, is 
an interesting target for the study of conceptual change 
because of its conceptual similarities and dissimilarities to 
Euclidean geometry. In fact, the axioms of the two are 
identical, with one major exception: the replacement of the 
parallel postulate with the hyperbolic postulate. While in 
Euclidean geometry a line and an external point define a 
unique pair of non-intersecting lines, in hyperbolic 
geometry the two objects define an infinite set of non-
intersecting pairs of lines. That is, given a line l and a point 
P not on that line, there are an infinite number of lines 
through P that do not intersect line l (rather than just one, as 
in the case of Euclidean geometry), as shown on the 
pseudosphere model in Figure 1. 
 

Figure 1.  Hyperbolic parallel lines. 

30



This property has important consequences for the 
mathematical objects and theorems in hyperbolic geometry 
and, indeed, for the very plane in which the geometry lies. 
While many geometric theorems are true in both Euclidean 
and hyperbolic geometries, others change dramatically. For 
example, in hyperbolic geometry, the interior angles of a 
triangle must add to less than 180°. Similarly, hyperbolic 
rectangles (quadrilaterals with four right angles) do not 
exist.  

An understanding of both Euclidean and non-Euclidean 
geometry produces a different perspective on geometry as a 
whole. Hyperbolic geometry triggered a major change in 
philosophy, mathematics, and science in the nineteenth 
century. Following the realization that Euclidean geometry 
was not the only logically consistent geometry, mathematics 
evolved into an exploration of formal, logically consistent 
systems rather than systems that directly served the needs of 
science. It is therefore a real-world example of conceptual 
change in mathematics, a change that succeeded despite the 
counterintuitive nature of its conclusions. The question of 
how people manage to understand such a system seems 
especially pressing in view of evidence that basic geometric 
concepts are universal. Recent work by Dehaene, Izard, Pica 
& Spelke (2006) with an indigenous Amazonian group 
suggests that geometric concepts, such as points, lines, and 
parallelism, are core geometric intuitions available to all 
humans, regardless of formal instruction, accessibility of 
geometric terms in language, or experience with maps. 

In the current studies, we were interested in how well 
people who had been exposed to Euclidean geometry 
through formal instruction in secondary school learned 
information about hyperbolic geometry. Developmental 
research has shown that children tolerate contradictory 
information as they learn (e.g., to integrate information that 
the Earth is round and their experience that is it flat, 
children construct a model of the Earth as a hollow sphere 
in which we live; Vosniadou & Brewer, 1992). But such 
inconsistent representations would render a mathematical 
system useless. 

One might think that, since both Euclidean and hyperbolic 
geometries share most of the same postulates, the transfer 
between them would go fairly smoothly. However, small 
changes in core principles can also lead to interference 
between the systems, slowing down students’ progress.  

The present studies compare ways of conveying non-
Euclidean information to see which methods facilitate or 
impede conceptual change. 

Experiment 1: Figure vs. Line Training 
We designed the first study to investigate whether 
emphasizing the holistic properties of the system or local 
building blocks better facilitated an understanding of 
hyperbolic geometry. While holistic information about the 
system may allow an individual to understand the 
relationships between different elements, it is also likely to 
interfere with previously acquired knowledge. On the other 
hand, although learning basic, more elemental information 

may provide a stronger foundation with less overall 
interference, it also has fewer explicit connections to other 
elements. Although the brief training participants receive is 
probably not sufficient to produce full-blown conceptual 
change, it can nevertheless provide an indication of the 
nature of the obstacles to such change. 

In Study 1, participants learned hyperbolic information 
using either information about lines or closed figures. We 
wanted to see which type of information would lead to 
better generalization and transfer to hyperbolic objects not 
seen in training. Given that closed figures are composed of 
lines, it might be reasonable to expect that participants who 
receive hyperbolic training on figures would be better able 
to apply that information to lines than vice versa. If the 
closed figures provide information about their constituent 
elements, including lines, and make the relationships 
between the elements more accessible, then figure-trained 
participants solving line problems should outperform line-
trained participants on figure problems. This is much like 
Larkin & Simon’s (1987) conclusion that a diagram groups 
information in a way that facilitates processing and 
problem-solving. Similarly, closed figures (as compared to 
lines) may group conceptual information in a way that 
enhances accessibility and abstraction. 

In contrast, lines can be seen as building blocks for closed 
figures. If the figure training condition requires participants 
to break down the analysis into lines and then synthesize it 
back into figures, we would expect the line condition to 
promote generalization more easily.  

The hyperbolic postulate—the postulate which differs 
from the parallel postulate in Euclidean geometry—can be 
instantiated in a variety of mathematically equivalent forms, 
as seen in Table 1. 

 
Table 1.  Hyperbolic postulate equivalents. 

 
Line instantiations 

Given a line L and a point A not on that line, there are an 
infinite number of lines through point A that do not 
intersect line L. 
If two non-intersecting lines are cut by a transversal, the 
alternate interior angles formed are unequal. 

Closed figure instantiations 
The interior angles of a triangle must add to less than 180 
degrees. 
If a quadrilateral has at least three right angles, the 
diagonals cannot bisect one another. 
 
The top two postulates in the table refer to properties and 

relationships among lines, while the bottom two speak to 
properties of closed figures. We were able to use these 
mathematical equivalencies to construct two sets of training 
information: one about the properties of hyperbolic lines 
and a second about properties of hyperbolic closed figures 
(quadrilaterals and triangles).  
 
Procedure In this computer-based task, participants first 
reviewed geometry terminology (e.g., alternate interior 
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angles, congruent) that they would later see during training. 
After a pretest consisting of true/false questions to establish 
baseline Euclidean geometry knowledge, participants read 
one of two sets of hyperbolic training information, based on 
different but mathematically equivalent statements of the 
hyperbolic postulate, as in Table 1. In the line training 
condition, information was presented in terms of lines, 
while in the figure training condition, participants learned 
information about closed figures (e.g., triangles and 
quadrilaterals). The training information contained 
appropriate diagrams that had been constructed using a 
Poincaré disk, a model that represents hyperbolic geometry 
such that angle congruence has the usual Euclidean meaning 
(Greenberg, 1993). To control for the complexity of the 
diagrams, line-trained participants viewed diagrams in 
which the relevant lines appeared within closed figures, but 
these lines were highlighted on the screen. 

Participants proceeded through the training information at 
their own pace, pressing the space bar to advance. After 
reading the training material, the participants received a test 
on the material, consisting of ten true/false questions. 
Although they received no feedback on the individual items, 
participants who missed one or more of the questions had to 
re-read the training materials. Training was repeated until 
they obtained a perfect score.  

At posttest, all participants responded to the same forced-
choice test items that they had seen in the pretest, 
concerning properties and relations of both lines and closed 
figures. 
 
Materials The pre- and post-test items were identical in the 
two conditions and consisted of 45 true/false statements. 
Twenty of the statements referred to lines, twenty referred 
to closed figures.  The remainder were filler items that 
referred to angles. The line and figure statements were 
constructed similarly and phrased such that half the 
statements of each type were true. For both types of 
statements, one half were absolute items—statements that 
had same truth value in hyperbolic and in Euclidean 
geometry (e.g., Through any one point there exists an 
infinite number of lines that pass through the point). The 
test items were presented on the screen as text statements. 
No diagrams were included with the test items. Absolute 
items were basic geometric principles that participants 
would have learned in secondary school geometry class. We 
could not expect that the undergraduate participants would 
come to the task free from all geometric knowledge, and 
both the question of interest and the practical considerations 
of the experiment required that the new information 
“piggyback” on the previously acquired geometric 
knowledge.  

One half the test questions were relative items. That is, 
the truth values were different in the two geometries (e.g., If 
lines A and B are a pair of non-intersecting lines, then any 
line which intersects A must also intersect B). Both the 
relative items and the absolute items were phrased in such a 
way that the answers would be true for half the items in 

either geometry. In addition, some of the items were 
paraphrases of the training material or very closely related 
to it, while other items (hereafter, transfer items) required a 
number of inferences from the training information. While it 
was possible to construct proofs justifying the figure 
information from the line information (and vice versa), 
these proofs were not provided to participants, and they may 
sometimes be nontrivial (see the Appendix for an example).  
 
Participants Sixty-seven Northwestern University 
undergraduates participated in the experiment, 34 in the 
line-training condition and 33 in the figure-training 
condition. The participants received partial course credit for 
an introductory psychology class.  

Results and Discussion 
To measure learning of the new hyperbolic information, we 
looked at performance on the transfer items. Not 
surprisingly, when participants were tested on their new 
hyperbolic knowledge, they did not perform as well as they 
did on the Euclidean pretest. Overall, posttest scores fell by 
28 percentage points from pretest to posttest. In addition, 
participants performed best on the object type on which they 
had been trained. Participants in the figure condition were 
correct on 75% of figure items, but only 55% of line items. 
Participants in the line condition were correct on 68% of 
line items, but on 60% of figure items. Because the accuracy 
data are binary (either correct or incorrect), we performed a 
logistic regression to assess the effects of the independent 
variables, and we report the Wald test (Qw) for these effects 
(Hosmer & Lemeshow, 1989). The interaction between 
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Figure 2.  Posttest accuracy on hyperbolic transfer items, 
Experiment 1. 
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training condition and type of test item was significant in 
this analysis: Qw(1) =  18.41, p < .001. 

The key issue in this experiment is whether figure training 
or line training was more successful in conveying 
knowledge of hyperbolic geometry. Figure 2 shows the 
relevant data for the posttest items and indicates that 
participants in the figure-training condition performed better 
overall at posttest than did those in the line-training 
condition. The difference between training conditions is 
significant (Qw(1) = 4.29, p = .03), as is the interaction 
between condition and test item (Qw(1) = 29.07, p < .001). 
Accuracy for both groups was greater for the items on 
which they were trained. However, performance by the line-
trained participants dropped to a below-chance score on the 
figure items, t(135) = 4.57, p < .001. This likely reflects a 
tendency to respond on the basis of prior Euclidean 
knowledge rather than the new hyperbolic information. 

One interpretation of these results is that participants in 
the line-training condition were simply not learning the 
training information as well as those in the figure-training 
condition. Perhaps the line training was more difficult or 
confusing. However, participants in the two conditions 
achieved the same criterion-level performance during 
training and were about equally accurate during the posttest 
on the types of items for which they had been trained (line 
trainees on line items and figure trainees on figure items; 
see Figure 2). This makes it unlikely that participants in the 
line condition learned their training lesson less well than 
those in the figure condition.  Another possibility is that the 
line information was more quickly forgotten, but since the 
test items immediately followed the final criterion test, this 
also appears unlikely.  

Another straightforward explanation for poor 
performance is that participants in the line training condition 
simply didn’t realize that the line information was relevant 
to the posttest figure items. In fact, we were struck by the 
number of participants who responded to our open-ended 
questions at the end of the experiment by saying that they 
hadn’t been taught anything about figures or didn’t realize 
that the line information was applicable. They may have 
learned the material well, but suffered from a kind of 
fixedness in the way they thought about the different types 
of objects (e.g., Duncker, 1945). That is, it is possible that—
unless we are engaged in intentionally constructing 
geometric closed figures from lines—lines and figures 
appear to be completely different animals. Because figures 
may highlight relationships among their constituent entities, 
figure-trained participants may be less susceptible to this 
“objectification” of the items. If all that participants need is 
the insight that the line information should be applied to the 
closed-figure items, then an explicit reminder to apply 
hyperbolic line information to the figure items should 
produce improved transfer. 

An alternative explanation is that, although participants in 
the line condition may have perceived the relevance of lines 
to figures, they weren’t in a position to identify which line 
facts were appropriate when solving the figure problems. 

The figures themselves may have suggested irrelevant 
Euclidean information from prior knowledge of geometry.  
As we noted earlier, these participants’ below-chance scores 
on figure items suggests this type of interference. For 
example, participants may understand the description 
quadrilateral formed by two pairs of non-intersecting lines 
simply as parallelogram, without thinking more deeply 
about the lines in the figure. Under these circumstances, we 
might expect that participants would have difficulty 
integrating the hyperbolic information into their knowledge 
of figures and would respond incorrectly with Euclidean 
answers. In contrast to line training, figure training may 
guide transfer of the abstract geometric information from 
figures to lines, allowing participants to apply the relevant 
relations to the test items.  Just as it is easier to take apart a 
complex device into its components than to reconstruct it 
from those components, it may be easier to decompose 
knowledge of figures into knowledge of its component lines 
than to apply the reverse transformation.  Decomposition 
may be a simple consequence of inherent part-whole 
relations; construction may require additional, explicit 
guidance. 

If it is inherently more difficult to identify the relevant 
geometry information after hyperbolic line training, then 
simply reminding participants to use this information may 
not be enough. Instead, it may be necessary to provide 
explicitly the training information relevant to each figure 
item in order to make the connections between line and 
figure. This should facilitate use of the appropriate abstract 
geometric information and improve performance on the 
figure items at posttest.  

By providing participants with different strengths of hints, 
Experiment 2 attempts to diagnose the difficulties with 
transfer from facts about hyperbolic lines. 

Experiment 2: Hints during Test 
Previous work in knowledge transfer has demonstrated that 
explicit reminders to use prior information may improve 
transfer, although with varying levels of success (e.g., Gick 
& Holyoak, 1980; Ross, 1984). To investigate the extent of 
the reminding necessary to improve generalization of line 
training to figure items, we decided to train participants on 
facts about hyperbolic lines and vary the instructions at 
posttest. In Experiment 1, we told participants to use the 
information they had just learned to answer the posttest 
items. In the current experiment, we tested what information 
would facilitate transfer.  

If participants in the line-training condition simply didn’t 
realize that the line information they had just learned could 
also be applied to the figure items—as many of them 
claimed—then a hint to relate the figures to the lines should 
improve performance at posttest. If, on the other hand, the 
difficulty lay in identifying or selecting the appropriate 
hyperbolic line-training information from what they had 
learned, then a mere hint to use the line information should 
not lead to transfer. However, explicitly reminding 
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participants that a specific piece of line-training information 
is relevant may improve transfer to figure items.  
 
Procedure and Materials The procedure and materials in 
Experiment 2 were similar to Experiment 1 with the 
following exceptions: 1) all participants saw hyperbolic line 
training materials and 2) participants saw one of three kinds 
of instructions immediately before the posttest items. The 
control group received the same instructions as participants 
in Experiment 1: They were told to respond to the items 
based on the geometry information they had just studied and 
the logical inferences from that information. The hint group 
received instructions emphasizing that, although they had 
not learned about figures, they should think about how 
figures were constructed from lines and, therefore, how the 
properties of hyperbolic lines would affect hyperbolic 
closed figures. The specific reminder group was presented 
with the same instructions as the hint group before posttest, 
but also saw 2−4 relevant statements from line training 
along with the relative test items. They were told that the 
information was relevant to the problem, but were not given 
any additional direction about how they should apply the 
line information. These “reminders” from the training 
information were statements that they had previously 
learned in order to pass criterion during training.  
 
Participants Thirty-one Northwestern University 
undergraduates participated in the experiment in order to 
receive partial course credit in introductory psychology. 
There were 10 participants in the control condition, 10 in 
the hint condition, and 11 in the specific-reminder 
condition.  None had participated in Experiment 1. 

Results and Discussion 
As in Experiment 1, participants’ accuracy decreased from 
pretest to posttest, in this case by an average of 24 
percentage points, Qw(1) = 40.76, p < .001. Because all 
participants were trained on lines in this experiment, the 
decrease in performance was more pronounced for figure 
items than for line items, Qw(1) = 25.03, p < .001.   

The main point of interest is the effect of the reminders, 
and Figure 3 shows the relevant accuracy rates for the three 
groups of participants during the posttest.  Participants who 
received specific reminders were about equally accurate on 
figure items as on lines, and they were the only group to 
achieve above-chance accuracy on figure items. This 
performance contrasts with that from the hint and the 
control groups, who were more accurate on lines than on 
figures.  These groups apparently failed to transfer line 
knowledge to figure items.  This difference between 
conditions produced a reliable interaction between hint type 
and item type, Qw(2) = 9.81, p = .007. The control group’s 
scores in the posttest were comparable to performance of the 
line-training group in Experiment 1 (compare the line-
training condition in Figure 2). The hint group showed a 
trend toward improved performance on figure items, but this 
was not significant in our analysis, Qw(1) = 1.49, p = .22. 

The results from Experiment 2 suggest, then, that 
participants trained on hyperbolic line items need more than 
just a hint in order to apply the line information to the figure 
items. When participants are reminded of relevant line 
information in the context of the figure items, they appear 
better able to access and apply the relevant relationships 
between lines and figures. As we noted earlier, the 
inferences that participants needed to use this information 
were not necessarily easy.  It is therefore of interest that 
simply naming the appropriate premises improved 
performance on figure items by about 40 percentage points, 
as Figure 3 shows. 
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Figure 3.  Posttest scores on transfer items, Experiment 2. 

General Discussion 
Everything we learn must be integrated into our existing 
knowledge. How this integration proceeds is a central 
question in the fields of concepts and problem solving. 

In the current experiments, we looked at knowledge 
change in learning non-Euclidean geometry. We found that 
participants who received geometry training in terms of 
lines showed less transfer of knowledge than did 
participants who learned the information in terms of closed 
figures. We suggest that the figure training may have 
provided holistic information about line relationships, 
leading to advantages in applying geometric relations from 
figures to lines. In turn, this resulted in asymmetric transfer 
for the two training conditions in Experiment 1.  

Even though some participants in the line-training 
condition reported they simply “hadn’t realized” that they 
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should apply the line information to figures, explicit 
instructions to do so in a follow-up experiment did not 
reliably improve transfer. Presenting participants with 
relevant training information at posttest, however, did 
significantly improve transfer from lines to figures.  This 
further supports the idea that differences in the ease with 
which people can identify relevant information may be 
underlying the performance differences that we found in the 
first experiment.  

The current studies reveal intriguing patterns in the way 
people incorporate new, possibly counterintuitive, 
mathematical information into their existing knowledge. 
Despite the additional complexity and processing 
requirements of hyperbolic geometric figures, participants 
seem to benefit more from encoding the new information in 
the form of figures than in the form of simple lines. For 
these purposes, more structured, holistic input seemed to be 
superior to training that focused on more specific building 
blocks. Although the highlighting of relational information 
seems a promising avenue for explaining these effects, 
future research should explore these issues more deeply. For 
example, both the extent of processing at the point of 
problem solving, as well as differences in Euclidean 
interferences would be candidate phenomena for study.  
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Appendix. Example of informal proof 
If we know information only about hyperbolic lines but 
need to determine how many right angles may be present in 
a hyperbolic quadrilateral, we  may start with the fact that 
there can be at most one common perpendicular between 
any two nonintersecting lines. We can then form a closed 
figure by using the two nonintersecting lines as the base and 
summit of the quadrilateral, the common perpendicular as 
one side, and then drawing a second line segment between 
the two nonintersecting lines. However, the last segment 
may be constructed at a right angle to only one of the 
original non-intersecting lines, or the two non-intersecting 
lines will have more than one perpendicular in. common. As 
a result, the hyperbolic quadrilateral may have at most three 
right angles. 
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