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Strategic Directions for Agent-based Modeling: Avoiding the YAAWN Syndrome  

Abstract. In this short communication, we examine how agent-based modeling has become 
common in land change science and is increasingly used to develop case studies for particular 
times and places. There is a danger that the research community is missing a prime 
opportunity to learn broader lessons from ABM use, or at the very least not sharing these 
lessons more widely. How do we find the appropriate balance between empirically-rich, 
realistic models and simpler theoretically-grounded models? What are appropriate and 
effective approaches to model evaluation in light of uncertainties not only in model 
parameters, but also in model structure? How can we best explore hybrid model structures 
that enable us to better understand the dynamics of the systems under study, recognizing that 
no single approach is best suited to this task? Under what circumstances—in terms of model 
complexity, model evaluation and model structure—can ABMs be used most effectively to 
lead to new insight by stakeholders? We explore these questions in the hope of helping the 
growing community of land change scientists using models in their research to move from 
'yet another model' to doing better science with models. 
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Introduction 

Land systems science is one of many research domains in which agent-based models are 
increasingly deployed (Filatova et al. 2013; Matthews et al. 2007; Parker et al. 2003; 
Railsback, Lytinen, & Jackson, 2006). The past decade or so has seen an interesting evolution 
of the community of scientists working on agent-based systems, such that now there is a wide 
array of ABM applications that have been developed with strong empirical foundations 
(Janssen & Ostrom, 2006).  Indeed, ABM simulation models have been used as an approach 
to understand a very diverse array of socio-environmental systems of all kinds in geography, 
urban studies, anthropology, economics and related social sciences. At the same time, the 
quickly growing number of case studies and the larger questions they raise led to us and 
others to jokingly, and then more seriously, use the acronym YAAWN (Yet Another Agent-
Based Model… Whatever… Nevermind…) in discussions of where ABM are, or could be 
going, in land use modeling1. It is an attempt to inject humor into a source of frustration for 
many agent-based modelers, namely the growing sense that while the profusion of ABM 
cases is ultimately a sign of research vitality, it is not always apparent how these different 
cases add up to generalized knowledge about the systems under study.2  Here we share a 
sense of  the scope of the problem, potential solutions, and ways forward. 

While using agent-based models has become relatively routine – they are now a well-
accepted tool in the land systems toolkit judging from publication trends (Figure 1) – there is 
a danger that the research community is not learning broader lessons from their use. In the 
face of their growing adoption, it has become pertinent to ask: what is the marginal 
contribution of additional ABMs of particular social-ecological systems? And related to this 
concern: what do ABMs offer that other well-understood and powerful methods do not 
(O'Sullivan & Perry, 2013)? Many ABMs in land systems science (and other fields) are 
highly specific case studies, focused on particular places at specific times in the context of 
policy-related questions and concerns (An, Zvoleff, Liu, & Axinn, 2014; Berger & Troost, 
2014; Magliocca, Safirova, McConnell, & Walls, 2011; Manson & Evans, 2007; Murray-
Rust, Rieser, Robinson, Miličič, & Rounsevell, 2013; Walsh et al., 2013). The profusion of 
case-studies employing a new and interesting modeling methodology is exciting and 
continues a long tradition of case studies in geography and cognate disciplines.  Indeed, a 
case-study driven focus may even be inevitable given the urgent need for better 
understanding of the complex interactions among diverse decision-makers, disaggregated 
land use choices, and the knock-on effects of those decisions on phenomena ranging from the 
policy arena to the global climate system.  

                                                
1 This communication originates in a session at the annual meeting of the Association of American Geographers 
(AAG), see the acknowledgements for information. 
2 The phrase, “whatever... nevermind” is from Nirvana's 1991 hit “Smells Like Teen Spirit”, a song emblematic 
both of teenage ennui, and ironically, also of the intense but brief ascendancy of Nirvana’s musical influence.  
The modeling community's contemporary love for ABMs is intense enough that any hint of an early demise may 
seem overstated.  However, it is plausible (and perhaps wise) to anticipate unintended side effects from ‘ABM 
fatigue.’  To take the metaphor further still (further than was originally intended), the song’s characterization of 
a fickle entertainment-seeking public also reflects concerns that ABMs may be seen as novelties rather than as 
serious scientific instruments. 
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Figure 1. Number of manuscripts by year involving land and ABM (ISI Web of Science search on the terms 
agent-based and model and land). 

A key drawback to the preponderance of cases studies that use ABM is that each model 
usually brings its own and often unique structures and processes to bear on questions of 
interest, making cumulative learning challenging. Is there a risk of fatigue with ABMs and to 
what degree does research using ABMs as a tool position itself as offering methodological 
contributions versus topical or domain science contributions? We do not mean to suggest that 
all ABM research should strive to simultaneously satisfy methodological, conceptual, and 
policy goals, in part because ABMs are now widely accepted as an appropriate tool for land 
systems science. At the same time, just as statistical analyses of case studies within land 
systems science came to prominence in the last two decades, we can take advantage of the 
fact that ABMs are now commonly used to reflect on strategic opportunities for 
methodological and theoretical advances. There is a good deal of unrealized potential that 
could arise from more purposeful situation of case studies that use agent-based modeling as a 
basis for comparison, a call that has been made but only partially satisfied (Rindfuss et al. 
2003, Parker et al. 2008).  

Moving Forward ABMs of Land Change 

Here we offer a brief summary of four broad issues on ABMs in land change science, and 
also on potentially fruitful future research directions that complement those considered in 
other recent overviews of agent based models (Filatova, Verburg, Parker, & Stannard, 2013; 
Heppenstall, Crooks, See, & Batty, 2012). 

Agent-Based Models and Theoretical Development 

Initial applications of ABMs to land systems emphasized theoretical dimensions and were 
largely abstract (Janssen & Ostrom, 2006). We are fortunate now to have a large library of 
ABM applications that demonstrates the broad utility of this approach. But there has been a 
drift away from using ABMs to engage with theory, whether to explore the implications of 
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different theoretical frameworks, or to develop new theories.  Instead, an increased focus on 
applications has directed attention to more ad hoc efforts attempting to build realistic models 
of particular systems. This is not necessarily a criticism, but simply an acceptance of a key 
corollary of the natural evolution of a new methodology. Whereas initially it was necessary to 
demonstrate that the novel ABM approach was capable of strengthening analysis and theory, 
its demonstrated utility has now made it ‘safe’ to use ABM to explore many applications 
across diverse systems. The natural outcome is a growing library of ABM case studies in land 
systems science. 

This trend is driven in part by the increasingly powerful computers and development 
platforms available to model builders (Railsback, Lytinen, & Jackson, 2006).  Creating 
ABMs offers a range of design challenges, but there are no longer any serious technical 
limitations preventing researchers from adding detail to models when it is attractive to 
potential end-users in the policy and governance spheres.  Arguably, data limitations impose 
a more significant challenge than computational power at this point. There may also be 
difficulties in some longer-term projects where it seems that the simulation model ‘product’ 
becomes more complicated and detailed as it evolves. In some cases, Douglas Lee’s (1973) 
perils of ‘large scale models’ may once again be upon us, in the form of the disutility of 
highly complicated and data intensive models that become opaque to their users in 
comparison to simpler, more abstract models.  Also problematic is that while the latter may 
be easier to learn from, what we learn may be of only limited applicability to real systems.   

Thus, the first challenge raised by our discussion is: how do we strike an appropriate balance 
between empirically-rich models and simpler theoretically-grounded models, and how can we 
learn from such ‘mid-level’ models? By mid-level models we mean models that are realistic 
enough to represent the salient dynamics in a particular system, but do not incorporate so 
many elements or dynamics that the ability of the modeler or stakeholder to interpret how the 
model operates is seriously reduced. Indeed, finding this ‘goldilocks zone’ (Larsen, Thomas, 
Eppinga, & Coulthard, 2014) is relevant to all models, but ABMs perhaps face a particular 
challenge because even a relatively simple model with a small number of agents can yield a 
dizzying array of agent interactions. Furthermore, there are often challenges in acquiring 
sufficient empirical data to validate those agent-interactions (An et al., 2014; Evans, 
Phanvilay, Fox, & Vogler, 2011; Janssen & Ostrom, 2006; Kelley & Evans, 2011). 

Evaluation and Sensitivity Analysis with Agent-Based Models 

Closely related to issues of theory development for ABMs are the challenges involved in 
model evaluation, which encompasses calibration, verification, and validation (Manson 
2007).  Interesting and constructive developments in model evaluation methods in other 
fields, particularly spatial ecology research using agent-based approaches3, that explore topics 
including model evaluation at all stages (calibration, verification, and validation), linking 
pattern to process, and describing models in standard ways to facilitate peer review (Grimm 
& Railsback, 2013; Grimm et al., 2005). Beyond these engagements, model evaluation 
remains a challenge, particularly the need for methods that can distinguish between 
contingent and general effects.  Contingent effects are those that depend heavily on the 
specific geographical and historical development of a particular system, or even an individual 
model run.  General effects are those that we might expect to see in other models of similar 
systems. 

                                                
3 Note that agent-based models in ecology are often referred to as individual-based models. 



 

 6 

There have been developments in evaluation for models of complex systems (Brown, Page, 
Riolo, Zellner, & Rand, 2005; Messina et al., 2008) but they are not widely used (Filatova et 
al., 2013). An increasingly common approach in the model evaluation toolbox for ABM is 
classic sensitivity analysis, which globally or sequentially tests each model parameter to 
measure its impact on model outcomes (used variously during calibration, verification, and 
validation) along with methods to capture sensitivity to interactions between parameters 
(Ligmann-Zielinska & Sun, 2010; Lilburne & Tarantola, 2009). Beyond sensitivity testing, 
also highly relevant to model evaluation is the need for methods to assess the structural 
validity of models, addressing questions such as, ‘does the model represent appropriate 
system elements in the most appropriate ways?’ This is a larger scale issue that lies at the 
intersection of calibration, verification, and validation (Manson, 2003).  This work stands in 
contrast to more commonplace efforts to identify the best-fit calibration of an already 
preferred model structure.  What methods and approaches should the research community 
employ to determine whether or not an ABM appropriately represents salient system 
dynamics and interactions, both in terms of underlying concepts and external reality?  Here 
we can paraphrase Occam’s razor, where all else equal, simple explanations are generally 
favored over more complicated ones; or perhaps better still, Einstein’s razor, where the model 
should be as simple as possible but no simpler. It is difficult to boil down this wide-ranging 
set of concerns, but we might summarize it as: what are appropriate and effective approaches 
to model evaluation in light of uncertainties not only in model parameterization, but also in 
model structure? 

Hybrid Approaches for Agent-based Modeling 

Another avenue for further investigation in ABM examines the issue of model structure not 
from the direction of post hoc evaluation, but from the outset.  We ought to be exploring 
more thoroughly the potential for hybrid forms of modeling, or more broadly, developing 
competing and complementary modeling approaches that enable iterative approaches to 
scientific inquiry (Filatova et al., 2013; Robinson et al., 2013).  We advocate ‘hybrid forms’ 
in various senses. First, in the degree to which models are integrated, ranging from direct 
comparisons of different and separate modeling methods applied to the same domain. 
Second, to settings where different models are coupled or integrated with one another. Third, 
situations where truly hybrid models are created by tightly integrating or combining two or 
more approaches. The argument for hybridity is straightforward: ABMs are just one kind of 
computational model.  Cellular automata are a closely related alternative, but many other 
different types of models can capture complicated patterns and processes.  System dynamics 
models with their rich history of use in diverse fields, and their expressive, readily understood 
building blocks and associated graphical representation seem particularly suited to the 
challenges presented by scaling in ABM models of a range of land systems (Feola, Sattler, & 
Saysel, 2012; Luo et al. 2010). 

Hybridity at its simplest would imply either comparing separate models in the same research 
domain or coupling different models to examine a single domain. Actually implementing 
either case is more difficult than it sounds, because it requires developing a conceptual 
framework and a dataset amenable to instantiating more than one form of model. Once these 
concepts and data are in place, it becomes possible to compare multiple approaches to the 
same problem, either as a form of model-to-model evaluation or as a way to give more 
insight into the problem (e.g., as seen in the growing amount of research contrasting 
statistical and ABM approaches to understanding human decisions that give rise to land 
change). More complete hybridity goes beyond this comparison to actually couple ABM to 
other kinds of models. There have been a number of methodological accomplishments in this 
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arena including ABMs linked to ecosystem models (Polhill, Gimona, & Aspinall, 2011; 
Yadav, Del Grosso, Parton, & Malanson, 2008), ABMs coupled to metacommunity models 
(Gimona & Polhill, 2011), and ABMs coupled with emissions models (Bakam, Pajot, & 
Matthews, 2012; Heckbert, 2011). 

Hybridity can go beyond comparison or coupling to actually integrate modeling approaches.  
The ability to computationally combine individually separate and discrete agents with 
continuous dynamics, for example, promises versatility that enables specification of 
appropriate dynamics at their proper scales, although this flexibility of functional form puts 
the onus of design choice on the modeler much in the same way it does for ABM (Metcalf et 
al., 2013; Rahmandad & Sterman, 2008).  Since many spatial scientists are already using such 
models, there are many opportunities for hybrid models to combine two or more different 
types of component models. These models can go beyond giving agents static decision rules 
derived from regression models, for example, to having agents do regression in a dynamic 
manner on their own as a proxy to decision making. This form of hybridity uses ABM as a 
container for, and integrator of, different methods. The goal of such efforts should not be 
model hybridity for its own sake, but a practical recognition that the most appropriate model 
in any particular situation is not solely a function of the system being represented, but of the 
purpose for which the model is being developed. 

We can sum up this issue as a call for fuller exploration of hybrid model structures that 
enable us to better understand the systems under study, recognizing that no single approach is 
best suited to this task. At the same time, for all its potential advantages, hybridity and 
integration of disparate model types comes with the challenges of reconciling the advantages 
of one modeling approach with the limitations of another. For example, system dynamics 
models are highly effective for overcoming the limitations of distinct time-steps (e.g. the 
commonly used annual or monthly time-step in land-change ABM models) and representing 
different types of flows in a system (Metcalf et al., 2013; Rahmandad & Sterman, 2008). 
Some ABMs can accommodate multiple timescales but most ABMs are designed with a 
particular time-step in mind which poses design limitations. For example, a modeler may 
make a decision with an ABM of agricultural production to use a one-year interval for a 
model designed to measure crop production over 20 or 30 years. But this means that the 
model necessarily aggregates the many complex within-year decisions that a farmer makes. 
Perhaps these within-year decisions can safely be aggregated to annual time-steps without 
jeopardizing the ability of the model to produce plausible model outcomes. If this model were 
then coupled with a system dynamics model of groundwater hydrology, there is something of 
a design disconnect and it may not be the case that simply by putting these two models 
together that the coupled model necessarily ‘benefits’ from the systems dynamic capabilities 
of the groundwater model. Nevertheless, there is certainly tremendous potential in hybrid 
modeling approaches (McNamara & Keeler, 2013).  

Participatory Agent-based Models 

Considering the purpose of models brings us naturally to the last major issue raised, the 
question of how ABMs (or simulation models more generally) can be used to connect with 
land-change stakeholders beyond the scientific community (Voinov & Bousquet, 2010).  
ABMs are often considered as being especially suited to participatory and stakeholder-driven 
processes with their graphical interfaces and intuitive mapping onto real world concepts 
(Barreteau, Le Page, & D'Aquino, 2003; Van Berkel & Verburg, 2012).  This issue ties back 
to each of the three previous ones.  Some end-users prefer simpler and more abstract models 
and lose interest as models become more elaborated and harder to fully comprehend.  ABMs 
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perhaps have a tendency towards complexity but “a simple model that can be well 
communicated and explained is more useful than a complex model that has narrow 
applicability, high costs of data, and more uncertainly” (Voinov & Bousquet, 2010). But 
certainly some users prefer to engage with highly complex models because of a desire for 
greater ‘realism’ and a wish to not leave system elements out of a model. For example, 
Millington et al. (2011) found that users wanted more explicit representation of subsidies and 
land prices when presented with an ABM of land-use change and fire regimes. How models 
are evaluated, particularly model and parameter uncertainties, is a key concern in engaging 
with model stakeholders.  And while model builders may consider the particular model 
structures adopted to be fascinating (whether for ABM, system dynamics, or others), they are 
often irrelevant to the purposes for which models are used.  Perhaps this issue can be most 
conveniently summarized by asking: under what circumstances—in terms of model 
complexity, model evaluation and model structure—can ABMs be used most effectively to 
lead to new insights for stakeholders? 

Brief Survey and Concluding Thoughts 

Where does current work on ABMs of land systems stand in regard to these issues? Here we 
provide a targeted presentation of just a subset of ABM literature by examining the ABM 
implementations published in the Journal of Land Use Science since inception. We 
acknowledge that this is a biased sample and not representative of the larger body of work on 
ABMs of land systems. For example, manuscripts published in Environmental Modeling and 
Software, another journal that commonly publishes ABM research, may have a more 
methodological orientation than manuscripts in JLUS. Nevertheless, we present this overview 
simply as a way to reflect on one particular community of modelers writing to the aims and 
scope of one particular journal that acts as the standard-bearer for land change science. We 
note that there are several ABM oriented manuscripts published in JLUS that are overviews, 
commentaries or methodological observations in the ABM literature (Luus, Robinson, & 
Deadman, 2013; Messina et al., 2008; Schreinemachers & Berger, 2006) and we excluded 
those from the tabular presentation and evaluation we present here. 

Based on this limited review of ABM applications in JLUS it appears that the emphasis tends 
to be towards models that are not designed for participatory modeling. There are important 
exceptions, among them (Millington et al., 2011), and we emphasize that ABM models of 
course need not be participatory to be of value. But the question remains whether land use 
modelers using ABM approaches are more or less likely to develop participatory models 
compared to those using other modeling approaches.  Another observation is that few 
manuscripts explicitly performed a sensitivity analysis, although again there are exceptions 
(Ligmann-Zielinska & Sun, 2010; Tang, Bennett, & Wang, 2011). We also note that there are 
varying types of sensitivity analysis deployed, including explicit evaluation of parameter 
sensitivity as well as expert-informant evaluation which may perhaps be considered a flavor 
of sensitivity analysis (Dumrongrojwatthana, Le Page, Gajaseni, & Trébuil, 2011). This is 
based on a review of the manuscript content and it is possible that the model developers did 
perform a sensitivity analysis not reported in the JLUS manuscript itself. But even in that 
case, it suggests that modelers do not routinely describe the sensitivity of their models to 
various parameters, which may warrant some reflection within the community. A challenging 
dimension to evaluate is the degree of model engagement with theory. Our evaluation is 
necessarily subjective but we have attempted to infer the intention of the authors in orienting 
the content of the manuscript towards description or application of a model as opposed to 
aiming for insight into specific theoretical issues and questions. There is a clear difference 
between a manuscript designed to compare decision-making approaches (Schreinemachers & 
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Berger, 2006) versus a model designed to demonstrate the potential for parallel-computing 
advances (Tang et al., 2011) or the utility of provenance in ABMs (Bennett, Tang, & Wang, 
2011). Lastly, we evaluated whether models were conceptual in design or built on empirical 
data that was used in the design, calibration or validation of the model. Here we found a 
broad mix. While the ABM field has its roots in conceptual or ‘toy’ models, the field has 
quickly evolved to ABMs that embraced empirical data especially for purposes (Janssen & 
Ostrom, 2006). Despite this evolution, we found the articles we reviewed still include many 
that are more conceptually-based than built on empirical data. On the other hand, it is clear 
that many models were published to communicate a particular technical challenge (Tang et 
al., 2011) and the authors may well have published subsequent or related manuscripts in other 
journals using the same model that did utilize empirical data in some aspect of a larger 
project. We also found there are diverse approaches to leveraging empirical data, although 
they are often used to establish statistical relationships derived from household survey data to 
inform decision-making dynamics in the model (Entwisle, Malanson, Rindfuss, & Walsh, 
2008). 

Overall, the papers in aggregate highlight the importance of pursuing the four above-noted 
research areas. 

• Sensitivity analysis and model verification. Judging from these papers, there is a 
continued need for sensitivity analysis, especially in forms tailored specifically to 
ABM and not just standard measures such as Kappa that are may be more suited to 
static comparison and linear models. Related to this, we see a slow but growing 
movement towards better model verification in general as ABM increasingly include 
in-depth explanation of model design either in the manuscript itself (Walsh et al., 
2013) or as an appendix (Magliocca, Brown, & Ellis, 2013). There are also 
repositories for ABMs to facilitate sharing of code such as OpenABM 
(http://www.openabm.org). This trend towards deep description and availability of 
code repositories has long been called for in the modeling community and promises to 
accelerate the development of ABMs. 

• Participatory modeling. Most models are not participatory; this is not a problem in the 
sense that many papers do not claim to have a participatory bent, but the suitability of 
ABM for this form of model calibration, evaluation, and translation to policy is both 
promising and under-explored. Particularly interesting is the linking of models in 
laboratory and experimental settings (Evans, Sun, & Kelley, 2006) in addition to more 
traditional forms of modeling with explicit engagement with a given community of 
stakeholders (Voinov & Bousquet, 2010). 

• Hybrid modeling. There is definite progress with hybrid models, particularly those 
that seek to create model ensembles (i.e., linking the model to existing models, such 
as an ABM of human behavior tied to an established carbon model) and link to 
complementary approaches like statistical regression (Luus et al., 2013). This work is 
also focused on leveraging models of ecological of physical systems (Yadav et al., 
2008). 

• Theoretical engagement. There is growing engagement with theory but more work is 
necessary to increase the modeling community’s understanding of how to make 
theoretical connections from ABM to diverse concepts across fields. A larger issue 
here is the relatively unsettled state of theorization in land-change science, but at the 
same time, there has been new work to outline conceptual ABMs that can serve as 
platforms for others. These include applications related to domains such as land 
markets (Parker & Filatova, 2008) and agricultural change (Murray-Rust et al. 2014). 
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These issues are by no means a comprehensive set of possible directions for researchers to 
explore with ABMs. The dimensions we have identified are not intended to delineate ‘best 
practices’ for ABM research but rather a reflection on possible directions for ABM work, to 
avoid the potential for the field to devolve into one case study after another. Perhaps there is 
simply a need for case studies to more fully articulate how they contribute to theoretical 
and/or methodological debates and concerns. Looking ahead, we hope that the research 
community will more directly target the broad issues we have outlined: the place of mid-level 
models; new approaches to model evaluation; the need for hybrid models; and the challenges 
of successful model-user engagement.  By highlighting these challenges we can perhaps 
mobilize the community of spatial scientists using models in their research to move from ‘yet 
another model’ to doing better science with models. 
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