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NEWS AND VIEWS
Fig. 1 Catadromous adult eels undergo long spawning migra-

tions from coastal streams to oceanic realms, whereas anadro-

mous adult salmon do quite the reverse, as summarized in this

limerick by JCA:

For an eel, the ideal strategy

Is to grow in a stream, mate at sea.

But a salmon’s sweet dream

Is to spawn up a stream,

Using reverse psychology!
P E R S P E C T I V E

Catadromous eels continue to be
slippery research subjects

JOHN C. AVISE
Department of Ecology and Evolutionary Biology, University of

California, Irvine, CA 92697, USA

As adults, Atlantic eels (Anguilla rostrata in the Americas

and Anguilla anguilla in Europe) are tubular slime-

covered fish that spend most of their catadromous life

cycle in coastal environs before swimming far out to sea

to reproduce, as part of an intergenerational migratory

circuit that provides an interesting reversal of the pattern

displayed by adult anadromous salmon that live mostly

in the ocean but then migrate long distances to spawn in

freshwater streams. Earlier genetic findings on Atlantic

eels involved specimens collected across their broad con-

tinental ranges and generally indicated that conspecifics

probably engage in panmictic or quasi-panmictic spawn-

ing, from which arise leaf-shaped leptocephaus larvae

that then disperse back to coastal locations more or less

at random with respect to the widespread geographical

origins of the parental genes they carry. In this issue, Als

et al. (2011) add exciting information about this peculiar

life-history pattern of catadromous Atlantic eels by

extending the genetic analyses to eel larvae collected

from the Sargasso Sea, the oceanic area where both spe-

cies spawn. Results help to confirm standard textbook

wisdom that these catadromous eels are nearly unique in

the biological world by having both broad geographical

distributions and yet displaying intraspecific near-

panmixia.
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History of indirect mating evidence from continental

samples

The history of research on reproduction by catadromous

Atlantic eels has been a history of inferences and deduc-

tions based mostly on indirect evidence (Aida et al., 2003;

Avise, 2003), because no one has ever actually observed eel

spawning in nature. Indeed, no one has even seen adult
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eels within thousands of kilometres of their spawning site

in the Sargasso Sea, an expansive region in the tropical

western Atlantic Ocean (Fig. 1). So, how do researchers

know about this spawning location and about the mating

behaviours of the eels within it?

The story begins in the 1920s with the efforts of Johannes

Schmidt (1922, 1923, 1924) who trawled plankton nets

across the North Atlantic in search of the tiny leptocepha-

lus eel larvae (Fig. 2) that would be the signatures of

recent spawning events. Schmidt and many other research-

ers that followed his lead (e.g. Boëtius 1980; McCleave
Fig. 2 Leptocephalus eel larva collected in the Sargasso Sea

(photograph: Peter Munk).
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et al. 1987) mapped the highest densities of the smallest

and youngest eel larvae to particular regions of the

Sargasso Sea, and thereby deduced where spawning must

take place in each of the two North Atlantic species (whose

larvae differ morphotypically in numbers of vertebral

myomeres).

The research saga entered an entirely new phase in the

1970s with the introduction of molecular markers (allo-

zymes, initially) to eel population biology (Koehn 1972;

Koehn & Williams (1978). For example, George Williams

and Richard Koehn (1984) and their colleagues found only

weak spatial genetic structure among widespread geo-

graphical populations of Anguilla rostrata in North America

(Williams et al. 1973), as did other researchers for

adult populations of A. anguilla in Europe (de Ligny &

Pantelouris 1973; Rodino & Comparini 1978). Such results

generally were interpreted as consistent with genetic

panmixia within each species followed by the random

dispersal of larvae back to various sites on their respective

continental mainlands.

In the mid-1980s, my colleagues and I added mitochon-

drial (mt) DNA to the emerging story by surveying adult

eels from sites spanning Maine to Louisiana (Avise et al.

1986). Given our prior experience in documenting dramatic

mtDNA population structure in various fishes (e.g., Ber-

mingham & Avise 1986) and many other vertebrate and

invertebrate animals (early reviews in Avise 1986; Avise

et al. 1987), we fully expected to find strong genetic differ-

entiation among populations of A. rostrata as well, and

thereby become rich and famous by demolishing the stan-

dard dogma about eel panmixia. So, we were both sur-

prised and somewhat chagrined when even our powerful

mitochondrial markers uncovered little or no spatial

genetic heterogeneity in A. rostrata. Later, similar paucities

of geographical variation in mtDNA (Lintas et al. 1998),

and to a considerable extent in polymorphic nuclear micro-

satellites (Daemen et al. 1997; Wirth & Bernatchez 2001;

Mank & Avise 2003), likewise were documented for many

populations of A. anguilla in Europe, although Wirth &

Bernatchez (2001) observed geographical patterns inter-

preted as evidence against panmixia (but not confirmed in

the present study by Als et al.). In contrast to the spatial

genetic uniformity within each eel species, all of these as

well as several other classes of molecular markers (Salva-

dori et al. 1997; Nieddu et al. 1998; Lehmann et al. 2000)

proved to distinguish A. rostrata from A. anguilla readily,

thus confirming earlier suspicions based on morphology

that two mostly separate gene pools of eels co-reside in the

North Atlantic Basin.
Towards more direct mating evidence from the

spawning grounds

Although the current study by Als et al. (2011) is not the

first to extend genetic analyses to larval eels from the oce-

anic spawning arena (see Comparini & Rodino 1980), it is

by far the most ambitious such molecular survey to date.

The new genetic data not only confirm quite directly that
two gene pools coexist in the Sargasso Sea, but they also

refine our understanding of how those separate gene pools

are spatio-temporally arranged at the key reproductive

phase of the eel life cycle.

The authors’ findings are noteworthy in some other

regards as well. It has long been suspected from genetic

and other evidence that Anguilla rostrata and Anguilla

anguilla hybridize at least occasionally and, incredibly, that

some of the adult hybrids end up in Iceland (Williams

et al. 1984; Avise et al. 1990; Albert et al. 2006), an island

about halfway between North America and Europe.

Exactly how this comes about remains an enduring mys-

tery, but the current genetic survey by Als et al. (2011)

adds at least two important pieces of information. First, the

authors genetically document one larval F1 hybrid, thereby

providing direct confirmation of interspecific spawning in

the Sargasso Sea. Second, the new microsatellite data over-

all appear to diminish the possibility that hybridization

and introgression are extremely common phenomena

across the broad geographical zone of overlap between the

oceanic spawning regions of these two species.
Looking forward

Many questions remain to be answered before we can

fully claim to understand the ecology and evolution of the

marvellous life cycles of catadromous eels. Personally, I

think that some of the most intriguing open issues have

to do with mechanistic intersections between the mating

and migratory behaviours themselves. For example, how

and how often do genetically intermediate specimens (i.e.,

F1 and perhaps backcross or later-generation hybrids)

come to occupy geographically intermediate locations

(e.g., Iceland)? Eventually, eel researchers will have to

come to grips with this and many other such slippery

issues.
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