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ABSTRACT OF THE THESIS 

 

Designing Protein Energy Landscapes 

With Coarse-Grained Sequence-Energy Mappings 

 

by 

 

Trent Brennen Hinkle 

 

Master of Science in Chemical Engineering 

University of California, Los Angeles, 2017 

Professor Tatiana Segura, Chair 

 

We develop and implement a brand new method for protein design. Our design method 

utilizes advances in protein energy scoring, Markov state modeling, machine learning, 

distributed computing, and optimization. First we generate a Markov State Model for human 

ubiquitin. This creates 100 separate fixed backbone conformations of the protein. Next, we 

generate quick and accurate energy functions for each of the 100 separate conformations 

utilizing the Rosetta energy function, mean field energy modeling, and stochastic gradient 

descent. Finally, we use these coarse-grained sequence-energy functions to design mutant 

sequences with specified conformational dynamics through use of optimization algorithms. We 

selectively stabilize target states through maximizing Boltzmann distribution probability for 

either one state or a pair of states. We showcase that we can accurately design sequences with 

altered energy landscapes for ubiquitin mutants up to eight mutations away from wild type 

ubiquitin using our design approach.
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Introduction 

 Proteins are molecules that are capable of performing a wide array of biological 

functions. The ability to logically design a protein with specified functionality would have huge 

impacts on science and society as a whole. One could conceivably design an enzyme to increase 

its ability to catalyze a reaction or potentially design a new protein with an entirely new function 

in a biological system. Other applications include redesigning existing proteins to change their 

function or specificity. Furthermore, there are many industries that could be positively influenced 

by protein engineering including medical, agriculture, food, energy, environment, 

nanotechnology, and industrial chemistry [1].  

In recent years, the reliability of protein design has increased. Specific designs include 

the de novo designs of Top7 and Retro-Aldol Enzymes [2, 3]. However, it is important to note 

that these designed proteins/enzymes are usually substantially less efficient at their functions as 

compared with proteins and enzymes in nature [4, 5]. Therefore, establishing and implementing 

new computational tools to aid in the design of proteins could help to create better and more 

efficient proteins in the future. Aside from the De Novo design process mentioned, which is the 

process of designing a protein from scratch, other important and useful protein design methods 

include protein redesign. Protein redesign is the processes of applying mutations to an existing 

protein sequence in order to improve or change the protein’s function [6].  

Protein design is commonly posed as an inverse folding problem, where a sequence is 

optimized to fold to a singular pre-defined three dimensional structure [7]. The problem with this 

is that proteins are dynamic molecules that can go through many conformational changes over 

time. Many proteins also rely on these conformational changes to perform their functions [8, 9]. 

There are current methods that attempt to take conformational variation into consideration in the 



2 
 

protein design process. These methods include flexible backbone protein design, multi-state 

design and molecular dynamics-based filtering of fixed backbone design [10-12]. Although these 

methods have made protein design more reliable they still fail to capture relevant 

sequence/conformational degrees of freedom. If one could find a way to implement relevant 

conformational variation into the protein design problem coupled with the ability to sample large 

sections of sequence space then this could lead to more accurate solutions as the model would 

more closely follow the dynamic nature of proteins themselves.  

In this paper, we develop a new method of designing proteins that takes into 

consideration the vast conformational space that has been neglected in other methods.  

First, we must discretize a protein’s conformational space by selecting states or conformations 

that the protein is highly likely to be in. For this step we use Markov State Models (MSM’s) to 

accurately represent the conformational landscape of a protein. Secondly, we need a method to 

quickly and efficiently score the energies of a vast amount of sequences in each of the 

conformational states separately. Here, we use a method similar to Cluster Expansion (CE) in 

which we develop fast energy scoring functions using mean field theory [13]. Then we will have 

functions that map sequence to energy for all of our pre-defined conformational states. Thirdly, 

once we have a quick and reliable method to map sequence to energy we can selectively control 

the energy from state to state through sequence optimization. Through this process we show that 

we can completely and accurately redesign the conformational energy landscape of a protein. We 

apply this method to human ubiquitin because of its importance in protein degradation and 

interesting dynamic properties [14].  
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Background  

Protein Design 

Recently, protein design has become much more reliable due to advances in algorithms 

that attempt to find optimal low energy sequences that fold to a specified 3-D structure [15]. This 

approach, denoted as the inverse protein folding problem, is concerned with finding specified 

amino acid sequences that will be energetically stable and fold into a pre-known 3-D structure 

[16]. Protein design is a complex problem given the vastness of potential sequence space coupled 

with the dynamics of a proteins topology. In regards to sequence space, information about 

relevant amino acids can be learned through implementation of multiple sequence alignments 

(MSA) [17]. MSA’s can provide sequence similarity information for protein homologs, thereby 

aiding in the design of stable as well as active proteins and enzymes [15]. The prevalent 

mutations in a MSA exist or have existed in nature and potentially will be less deleterious or 

even advantageous in regards to activity or stability as compared with simply a random mutation 

that doesn’t take into consideration any knowledge from sequence space [18]. In addition to 

sequence space, protein dynamics also provide problems in regards to design. Such protein 

dynamics include side chain orientation, complete protein structural rearrangement for 

functionality, as well as catalytic active site consideration [5, 8, 9]. Given the high number of 

degrees of freedom in such a problem, protein design becomes a difficult task to complete 

computationally while maintaining accuracy.  

Methods to design and predict protein folding of new sequences include utilization of 

computational packages such as RosettaDesign [15, 19]. According to Liu and Kuhlman, 

RosettaDesign has two main features which include a fixed backbone energy scoring function for 

evaluating free energy based on structure and sequence, as well as an optimization feature for 
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finding target low energy sequences through applying site based mutations [19]. The energy 

function consists of several features for energy optimization and minimization. First, dead-end 

elimination and Monte Carlo techniques provide energy minimization of side chains in order to 

find optimal low energy rotamer conformations [15, 20]. Other features includes utilizing a 

Lennard-Jones potential which favors amino acids that are closely packed. The Lazaridis-

Karplus implicit solvation model which favors polar surface residues and hydrophobic interior 

residues is also implemented into the energy scoring procedure [21]. Hydrogen bonding 

potentials, reference amino acid energy values for each residue type, and electrostatic 

interactions between charged residues also play a role in the energy function [19, 22]. In 

addition, RosettaDesign explicitly models every atom in the protein sequence being scored, 

including hydrogens [15]. Through all these features, RosettaDesign is able to accurately provide 

structural energy minimization and free energy scoring for a sequence threaded onto a fixed 3-D 

backbone structure. In addition to the energy scoring function, RosettaDesign also has a built in 

optimization procedure to find low energy sequences. Monte Carlo optimization coupled with 

simulated annealing is utilized for finding optimal sequences [19]. The optimization procedure 

searches for low energy sequences starting from a random sequence where rotamer switches or 

single residue mutations are applied and either accepted or rejected based on a specified criteria 

[19]. Previously, RosettaDesign has been used to successfully design low free energy sequences 

for nine different globular proteins [23]. We focus on utilizing Rosetta’s fixed backbone energy 

scoring function as well as an MSA on ubiquitin variants for our new protein design method.   

Markov State Models 

 Proteins are flexible and dynamic molecules that can undergo large conformational 

domain changes over time [24]. In order to model this conformational space one needs to 
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discretize this infinite domain into a discrete number of states. A Markov State Model (MSM) is 

essentially a simplified representation of a proteins conformational landscape through geometric 

and kinetic clustering of states found in molecular 

dynamics simulations [25]. Through MSM’s one 

can learn about and inspect the dynamics of a 

proteins conformational space. In Figure 1, we 

present a simplified picture of an MSM taken from 

a paper by Bowman, Beauchamp, Boxer, and 

Pande [25]. We utilize MSM methodology to 

coarse-grain the conformational space of human 

ubiquitin as a first step in our design method. An 

MSM takes a proteins infinite conformational 

space and discretizes this space down to a discrete 

number of conformational states. The states 

represented in an MSM consist of the most 

probable states a protein tends to be in and is 

constructed through molecular dynamics simulations [25]. According to Bowman, Beauchamp, 

Boxer, and Pande, the first step to building an MSM is to cluster all of the conformations that are 

discovered by the molecular dynamics simulations based on geometric structure utilizing a k-

means or k-centers algorithm. This initially geometric clustering can create many microstates 

from anywhere between 10,000 and 100,000 separate states [26]. Conformations that fall within 

the same microstate tend to have root-mean-square-deviations of less than 2 or 3 angstroms [26, 

27]. The next step of constructing the MSM is to kinetically cluster these microstates through 

Figure 1: Markov State Model of the folding of 

NTL9. 

The Figure shows highlights of some of the most 

likely conformations of NTL9  
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construction of a microstate transition matrix [25]. According to Bowman, Beauchamp, Boxer, 

and Pande; this matrix is first constructed by assigning each structure from the MD trajectory to 

one of the geometrically clustered microstates. Essentially, each structure from the MD 

trajectories will have one microstate that it is most closely related to geometrically. When this 

microstate is found the structure from the MD simulation is assigned to that specified microstate 

[25]. After this, the microstate trajectories are used to count transitions between pairs of 

microstates i and j  for a specified lag time 10t ns . A count matrix  ijC  can then 

constructed by counting the number of transitions a trajectory transitions from state i  at time 0t  

to state j  at time 1t  [25]. Next, probabilities of transitioning between microstates i and j  can 

be calculated through comparing counts of transitions from i to j  with counts of transitions 

from i  and all other possible states [25]. A probability matrix  ijP  can then be constructed in 

this fashion. With this microstate transition matrix, microstates can then be further clustered by 

their kinetic similarity through setting a threshold on probability. Essentially microstate pairs that 

have high probabilities of transitioning between each other can be clustered kinetically. These 

MSM’s can then be coarse-grained and simplified further by restricting the microstate transition 

matrix into a smaller number of states by looking at larger timescales for lag time 100t ns . 

These larger timescales coarse-grain the MSM because each MD trajectory will be able to 

kinetically reach more microstates over the increased time thus lowering the number of 

kinetically independent states [25]. More complex methods of coarse-graining MSM’s to fewer 

relevant states include the Bayesian agglomerative clustering engine (BACE) which can coarse-

grain MSM’s down to tens or hundreds of states [28]. 
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Cluster Expansion  

Cluster Expansion (CE), developed by Amy Keating’s Lab, provides a method of quickly 

and accurately mapping sequence to energy [13]. We utilize a simplified version of CE to 

develop fast energy scoring functions. The (CE) model development involves taking a mean field 

approach to approximating the sequence-energy mapping [29]. The sequence-energy mapping of 

a protein can be represented by various energetic interactions between the different amino acids 

present in the protein. Different energetic interactions between different residues can be selected 

from an n-body system and we can approximate the entire n-body system energy with  

lower order interactions between residues [29]. 

 

Figure 2: Mean Field Energy Decomposition 

Picture representation of energy function decomposition. The energy of an n-body system can be 

decomposed into lower order interaction parameters. Pictured are one-body, two-body, and n-body terms. 

Many of the higher order terms have negligible magnitudes and systems can often be accurately 

approximated with lower order terms.  

These interactions can stem from one body interactions to pairwise interactions between residues 

even up to n-body interactions between n residues. The Mean Field Model set up is briefly 

presented below taken from papers by Amy Keating’s lab [13, 30, 31]. First, they let  E   be 

the minimized energy of a sequence   in a specified conformation determined using a standard 

free energy scoring function (i.e. Rosetta). They then define a sequence  1,..., N    where 

i is a representation of the i’th position of the sequence being modeled. Next, they let M be the 
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number of possible amino acids at each of the N positions. Then each position i  of the protein 

can be any of the M amino acids, 0... 1i M    or the entire sequence can be represented as 

follows  1 0... 1,..., 0... 1NM M       . Each index of M then corresponds with a 

different allowable amino acid per position and an index of zero refers to a reference amino acid 

present in the wild type sequence per position. The energy of any sequence can then be 

represented as a series of deviations from the reference sequence. The cluster expansion then 

takes the following form, showing up to two-body interactions:  

           
1 1 1 1

,

0 ,

1 1 1 1 1

, , , , ..., 1
N M N N M M

i i j

a a b

a i a b a i j

E J J a i J a i b j a b    
   

     

          

Where  ,a i  is the basis function of the mean field energy expansion.  ,a i  is defined to take 

on a value of 1 if amino acid i  is present at position a  (excluding reference sequence amino 

acids) and takes on a value of zero otherwise. Essentially, sequences are encoded using binary 

indicator variables in vector space. A 1 present at a specified position in the vector indicates the 

presence of the specified interaction and a 0 represents the absence of an interaction.  ,a b is a 

function to decide which clusters to include in the model. Finally, the J values (mean field energy 

parameters) can be learned through statistical fitting algorithms such as multivariate linear 

regression with enough energy and sequence data. In the CE method, deciding where to truncate 

the expansion is arbitrary. However, deciding which J’s to keep is done systematically through 

cross validation (CV) [13]. Essentially, if J values increase the CV score through numerical noise 

then they are excluded. When a J value improves fitting, the clusters are included in the final 

model. Models developed by Amy Keating’s lab show good prediction accuracy for a coiled-coil 

backbone as well as a globular zinc-finger backbone [13]. We implement a simplified version of 
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this CE method where instead of optimizing for certain J values or clusters, we simply select 

parameter values to include based on a geometric constraint  ,a b . 

Methods 

Markov State Model Generation 

 The first step in this new design method is the coarse graining of conformational space to 

create a select number of conformations to base our models on. This was done largely through 

collaboration with Dr. Greg R. Bowman’s lab at Washington University in St. Louis. Running of 

the molecular dynamics simulations as well as construction of the MSM was done through 

methods similar to those in the following paper from the Bowman lab [32]. Briefly, twenty 500 

ns simulations were run from the starting conformation using Gromacs as well as the Amber03 

force field [33]. TIP3P water was applied as the solvent for each of the simulations [34]. Next, 

using the steepest descent algorithm the energy of the system was minimized until maximum 

force values fell below1000
min

Kj
mol 

with a step size of 0.01nm. Other parameters for the 

simulations were identical to those ran in the Hart paper [32]. Upon initiation of the simulations, 

snapshots were stored every 10 ps. After simulations were completed the MSM was constructed 

using MSMBuilder [35]. Similarly to the simulations, the construction of the MSM was based 

upon methods from the same paper by Kathryn Hart and the Bowman Lab. Briefly, clustering of 

the data for the MSM was done through using a k-centers algorithm based on the root mean 

square deviation (RMSD) between all backbone heavy atoms and C beta atoms. A threshold of 1 

Angstrom for RMSD was used between clusters. Next the clusters were centered to the densest 

parts of conformational space using a k-medoids update. Finally, the ending structures were 

kinetically clustered into macrostates utilizing a microstate transition matrix to produce 100 
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separate conformations of ubiquitin [32]. Each conformation was output as a PDB file for ease of 

use in applying energy functions to the structures. 

Energy Scoring 

To generate the data to learn the mean field energy parameters (J values) we apply 

random mutations to the wild type ubiquitin and we use Rosetta to score the protein energy, thus 

generating lists of mutated sequences and minimized energies [36, 37]. Utilizing Rosetta we start 

by generating the random mutant via Python followed by threading it onto one of the one-

hundred selected backbone conformations. Next we minimize the system energy over side-chain 

rotameric states (Coarse-Grain rotamers). The structure is then relaxed using fixed-backbone 

descent and then the energy of the minimized configuration is recorded in Rosetta Energy Units 

(REU) [36]. This process is then repeated thousands of times for all 100 conformational states 

separately until enough data is generated to achieve accurate models. 

Parameter Estimation 

Statistical Modeling of the Mean Field Approximation 

 Upon successful generation of sequences and energies we can then use this data to train 

statistical models to generate our sequence-energy mappings. First, we need to select where to 

truncate our mean field energy model. We select to truncate our models at either single or pair 

level interactions. For single interactions, we include all possible amino acids at all possible 

positions. For pair level interactions we implement a geometric constraint  ,a b that takes on a 

value of 1 if the constraint is met or a value of zero if the constraint is not met. This geometric 

constraint is a way to include certain pairs of amino acids that are geometrically close together 

and to cut out others that are spatially farther apart. Our constraint for pair level interactions is 

defined as follows. We take the minimum distance between every pair of amino acids and select 
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pairs that have a minimum distance of d or closer between each other (taking into consideration 

the closest atoms in each residue). Therefore, when we utilize pair interactions the geometric 

constraint is a way of singling out seemingly important pair interactions and neglecting less 

important pair interactions due to a relative distance. Next, to learn the mean field 

approximations or effective energy parameters we start with a simple multivariate linear 

regression approach [38]. We can reduce the cluster expansion model (mean field model) as 

follows: 

         

         

1 1 1 1
,

0 ,

1 1 1 1 1

,

0 ,

, , , ,

, , , 1

N M N N M M
i i j

a a b

a i a b a i j

i i j

a a b

E J J a i J a i b j a b

E J J a i J a i b j

    

   

   

     

      

     

 
 

 0 2E J J X    

E  Is simply the training set of all energies and X  is the corresponding training set of the binary 

encoded sequences using the CE/mean field method and J is our effective interaction parameter 

vector which we will try to learn through fitting. Solving the previous equation for J  results in: 

   
1

3T TJ X X X E


    

We could then use our sequence and energy data to solve for our parameter vector J . However, 

there are various problems with this approach given the size and complexity of the problem. 

First, we will be implementing this using human ubiquitin which has 76 amino acids in its chain. 

If we allow all 20 amino acids per position and only take into consideration single body 

interactions then we will be looking at parameter vectors equal to a size of 1445   76*19 1 . 

If we take into consideration all one body and two body terms then our parameter vector would 

grow to a size of 1030295. Essentially, these vectors and corresponding design matrices for our 
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system will potentially be too large to fit into system memory as we could need upwards of 

1000000 training sets to see all interactions. Furthermore, we wish to have this framework be 

scalable to much larger protein systems. Therefore, we need to use algorithms that can iteratively 

train our models so that the data is manageable for processing. With all this in mind, we select to 

take an online machine learning approach to learning the mean field energy approximation 

utilizing stochastic gradient descent (SGD). Stochastic gradient descent is a logical choice for 

this large-scale learning problem as we are able to iteratively train our models which avoids the 

memory errors associated with the large design matrices of regular multivariate linear regression 

[39]. 

Below we apply the stochastic gradient descent algorithm to our learning problem taken 

from several papers by Leon Bottou [39, 40]. First, they start with the simplified SGD algorithm 

below. 

          1
4

i i i i

j j jw w Q w

    

They say that j  is the size of the parameter vector and encoded binary sequence depending on 

which terms we include from the mean field approximation and i  is the training set iteration. 

Then
  i

jQ w is the cost function; in this case the sum of squared errors (SSE), 
 i  is the 

learning rate (hyper parameter), and 
   1

,
i i

j jw w


 are our parameter vectors (with length j ) at 

training set 1,i i . Now we define the cost function as the sum of squared errors (SSE) as follows 

[41]. 
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Next we take the gradient of
  i

jQ w : 
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Now substitute the gradient into equation (4). 

                 1

0 0

6
m m

i i i i i i i

j j j j j

i i

w w w x y x


 

 
   

 
   

Equation (6) can be further simplified by taking the gradient with one training set at a time, 

essentially updating 
 1i

jw


 one iteration of i at a time. Equation (6) simplifies to the following: 

                  1
7

T
i i i i i i i

j j j j jw w w x y x

    

Equation (7) is the final form of our learning algorithm where ( )i

jx  is a random encoded 

sequence, ( )iy  is the corresponding minimized energy of sequence  i  and 
 i
jw  is our effective 

energy parameter vector at learning step  i . The stochastic gradient descent algorithm can then 

be implemented as shown below in Figure 3: 
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Figure 3: Loop Procedure for Model Training  

For model training we set the initial parameter vector to the zero vector in j space. We then run a loop 

from i=0 to m (where m is the maximum allowable number of training sets) updating the SGD algorithm 

with one encoded sequence and its corresponding minimized energy at a time.  

For computational implementation of the SGD model we select to write our own SGD 

algorithm using Python [42, 43] with various modules including NumPy for our calculations 

[44]. We used NumPy to do matrix calculations for updating the model and also used the 

modules built in correlation coefficient (CC) and mean absolute deviation (MAD) calculations 

for model validation. We also used Matplotlib in generation of all relevant plots for our model 

results [45]. Given the design of our framework we can apply this algorithm using each of the 

100 different conformations separately. We apply the different conformational state during the 

free energy scoring aspect before model training. This results in 100 different effective energetic 

parameter vectors corresponding with each of the 100 conformational states after model training 

is finished.  

Online Learning Approach for Model Training 

 To train each of our 100 energy models for each conformational state we choose to take 

an online learning approach. We select this approach out of necessity for multiple reasons. First, 

we do not readily know how much data a model would need to generate an accurate and 

converged result. Secondly, during initial model training we ran into memory errors with the 

linear regression design matrix. Due to these factors an online learning approach makes sense as 
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it makes the computation of our models possible and more efficient. To implement our SGD 

algorithms we take the following approach. Given that our approach treats each conformation 

independently for model training, we are able to distribute our algorithms across high-

performance computer clusters. We utilize a computer cluster through the University of 

Wisconsin-Madison called HTCondor (High-Throughput Computing) [46]. Through HTCondor 

we are able to distribute all 100 of our algorithms to different nodes. Ensuring that we parallelize 

our algorithms we can then train all 100 of our energy models corresponding with all 100 

individual conformational states simultaneously. We are able to update our models and also 

check model accuracy in real time. When a specific threshold for mean absolute deviation 

(MAD) is reached we can tell our algorithms to stop running and return our learned energetic 

parameter vectors in the form of line delimited text files. For Rosetta energy trained models we 

select a MAD value of 2 REU for the threshold error value (stopping criteria). This is a great 

aspect and benefit of our approach as we will not over-sample data so long as models train to an 

error of lower than 2 REU.  



16 
 

 

 

Figure 4: Online Machine Learning Model Flow Chart  

The training cycle starts by generating a list of 100 sequences and another list of 100 corresponding 

energies denoted as the ‘Testing Lists’ in Python. After the lists are 100 in length a new sequence and 

energy are sampled and appended to the end of the lists and the earliest sequence and energy sampled in 

the past is used to update the model. Both the sequence and energy are then removed from their respective 

lists once they are used for model training. The 100 most recently sampled sequences/energies are then 

used to test the model. With this method, we ensure that sequences/energies are always used for testing 

the model before training the model. Once a sequence/energy combination is used to train the model the 

pair is then discarded and is no longer under consideration for model accuracy testing. Correlation 

coefficient values (CC) and mean absolute deviation values (MAD) are calculated at each iteration with 

all 100 sets of sequences/energies in the testing lists. This model training process continues until a 

predefined low threshold for MAD is met for a certain number of consecutive iterations or until a 

specified time has elapsed. After this criteria is met for each conformational model individually the 

algorithms stop and HTCondor returns our energy parameter vectors in the form of text files. 

Figure 4 is a picture representation of the approach we take to implementing our algorithms. This 

approach ensures that we do not over-sample data. HTCondor also limits the time our algorithms 

are allowed to run to 72 hours. Therefore, if our models do not hit the MAD threshold because 
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they are no longer improving or have not been trained with enough data our parameter vectors 

will be returned at this point. Models can also be resubmitted for training if needed with the 

starting point vector being the last learned parameter vector as opposed to the zero vector in J 

space.  

We selected to take this online learning approach not only out of necessity but also 

because it makes our method scalable to much larger model systems. This method could 

definitely be expanded to proteins much larger in length so long as accurate models can still be 

generated. This is because larger protein systems would need more parameters and likely more 

training sets to generate accurate models. In our approach using stochastic gradient descent we 

iteratively train our models with one training set at a time. Therefore, we do not run into any 

memory errors associated with the linear regression design matrix. This inherently makes our 

method scalable to proteins larger in size. The main issue expanding to larger protein systems 

would be to make the SGD models accurate enough for optimization purposes. Next, in regards 

to conformational space we only took into consideration 100 separate conformations while this 

method is easily scalable to a thousand or even ten thousand separate conformations depending 

on the service used for algorithm distribution. Essentially, a much larger conformational space 

can be optimized over if desired. Furthermore, when using a larger number of conformations it is 

not as important to get every single conformational model to be accurate. Those models that are 

inaccurate can simply be thrown out if the conformation is not deemed important. Essentially, as 

long as one can generate models that are accurate enough for optimization purposes then this 

method can easily be scaled up in terms of sequence length/space as well as conformational 

space. 
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Sequence Design 

Reduction of Sequence Space 

Before designing sequences we wish to limit the number of possible random mutations 

per sequence we score for our trained models. There are several reasons to setting this limit. 

First, if we allow mutations at all possible positions for all possible amino acids then that would 

be 76^20 possible sequences. This is such a vast space and the majority of these sequences with 

high numbers of mutations from the wild type sequence will likely not be optimal for our design 

objectives. The reason for this is that as we apply more mutations to the wild type ubiquitin it is 

likely to raise the energy score of the sequence and we are interested in low energy sequences 

especially for design purposes. Preliminary testing has shown that allowing mutations at all 

positions generates sequences with high energies relative to sequences with low numbers of 

allowable mutations. For our design purposes we are interested in our models being extremely 

accurate at low energies. Much of the high mutation - high energy sequence space is not 

important to us and can essentially be ignored. Thus, training our models using sequences with a 

low number of mutations is ideal for our design objectives while still covering a large portion of 

optimal sequences. For our sequence generation we allow wild type ubiquitin to be mutated at 

four random positions. We then select to further reduce sequence space by running a multiple 

sequence alignment of over 1000 ubiquitin variants and then selecting the top 4 most observed 

amino acids per position. The multiple sequence alignment was run using the MUSCLE 

algorithm [47] and ubiquitin variants were found using the NCBI Protein Database [48]. 

1 MILF 11 KREN 21 DENY 31 QEAH 41 QHRL 51 EDAK 61 IVLT 71 LIVF 

2 QHKR 12 TESI 22 TSNR 32 DEAG 42 RHCK 52 DNEG 62 QERS 72 RHAK 

3 IVLT 13 IVLF 23 IVTL 33 KREQ 43 LIMF 53 GDSE 63 KNGR 73 LVFI 

4 FYKS 14 TAEI 24 EDAK 34 EKVD 44 IVLF 54 RKCH 64 EGDK 74 RCKQ 

5 VIAL 15 LIVF 25 NDST 35 GESR 45 FYLI 55 TSIA 65 SAND 75 GSCD 
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6 KREN 16 EDKN 26 VILM 36 IVTL 46 AGSV 56 LVIA 66 TVIS 76 GSAN 

7 TSNM 17 VIAT 27 KREQ 37 PSLA 47 GSRD 57 SAKG 67 LIVM  

8 LFVP 18 EDKN 28 AQSE 38 PSVL 48 KREQ 58 DEYN 68 HYQR  

9 TSAM 19 SPAT 29 KRQM 39 DENV 49 QELR 59 YCHF 69 LMVI  

10 GSER 20 STNG 30 IVLT 40 QHEL 50 LMVF 60 NSDG 70 VLIA  

 

Table 1: Multiple Sequence Alignment for Ubiquitin Variants  

Presented in the table is each allowable amino acid (represented by its singular letter) at each possible 

position. This is the sequence space we move forward with for all relevant model training.  

Table 1 is a representation of each allowable amino acid at each position in the ubiquitin mutants 

we wish to take into consideration for model training. This is the final sequence space we set for 

training our models, coupled with four random mutations of the above sequence space at four 

random positions per sequence.  

Design Objective: Boltzmann Distribution Optimization 

 Upon accurate generation of all 100 sequence-energy models for all 100 conformations 

we can then design sequences with specified conformational dynamics. We start with the 

simplest design objective of stabilizing one of the one-hundred conformational states. We do this 

through maximizing the Boltzmann Distribution for a selected conformational state. The 

Boltzmann Distribution (presented below) gives the probability that our protein system will be in 

the specified state based on energy and temperature [49].  

 
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ip  is the probability of state i existing, i is the energy of conformational state i , and RT is the 

Boltzmann Constant multiplied by system temperature. For our designs we select to use 

31.99 10 kcalR
K mol

 


 and 298.15*2T  . Furthermore, the denominator of the function is a 

sum of the energies of all states while the numerator only takes into consideration state i . Based 
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on the distribution a higher probability corresponds with a lower i . This maximization of the 

Boltzmann Distribution then leads to a theoretically more stable conformational state i .  
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Figure 5: Sequence Optimization Routine 

Algorithm set-up and loop procedure for searching through sequence space and maximizing probability

ip  for state ‘i’.    

In this procedure we essentially walk through sequence space with one mutation at a time 

starting at the wild type sequence. If a mutation increases ip we accept this mutation and 

continue applying mutations/calculating probabilities until a set number of mutations from the 

wild type sequence is met. If a mutation decreases ip we decline this mutation and revert back to 

the previous mutation and continue the loop. We only care for mutations that increase probability 

of the chosen state so those are the only mutations we accept. Once the mutation threshold is met 

we save the probability and sequence data and we restart at the wild type sequence again 

continuing the process. At the end of the loop we take the maximum ip value over all iterations 
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and select the corresponding sequence as the optimized sequence for the specified state i  for the 

overall system. This process was repeated for each state i  once and the accuracy of probability 

and energy (using our mean field approximations) for all designed sequences was tested against 

the probability and energy values calculated with Rosetta energy values. Before optimization 

through the use of the Boltzmann Distribution we first had to apply a conversion factor to the 

REU values to transform them into real energy units. We use the following conversion factor 

taken from a paper by Kellogg et al, 0.57y x . Where y  is the new converted energy in 

kcal
mol

 and x  is an REU energy value [50]. They use an experimental approach to generating 

a linear fitting converting REU to kcal
mol

. Given that we do not have experimental energies 

for ubiquitin mutants we select to use their conversion factor for simplicity. After this conversion 

our energy values are in the correct units and we can begin to start sequence optimization. This 

design optimization was written and implemented using Python. Sequence-Energy models (text 

files) were imported into Python and turned into NumPy arrays and put into Python Dictionaries 

for ease of calling and distinguishing between different models. After sequences were designed 

based on stabilizing a specific state the probability values generated from our energy 

approximation models were then tested against probabilities from true Rosetta energy values. 

Percent error between the approximated and true probabilities were calculated in order to 

determine relative accuracy of our designs. 

Design Objective: Two State Stabilization 

 Another design objective we pursued was to simultaneously stabilize two states. This was 

accomplished through maximizing the probability for two states at the same time. We do this 

through minimization of the following objective function: 
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Where ip  is the probability of state i , kp  is the probability of state k and i k . Here we try to 

force each probability towards a value of .5 through minimizing the sum of both probabilities. As 

each probability approaches .5 the objective function value will approach zero. Therefore, 

through minimizing the two-state objective function we can force each probability toward a 

value of .5. We use a similar algorithmic approach as was presented in the single state 

stabilization (Figure 5). We start with the wild type sequence and apply 1 mutation. If ip and kp  

both increase then we accept the mutation and continue with another mutation. If either ip or kp  

decrease or if both probabilities decrease then we do not accept the mutation and we apply a new 

mutation to the previous sequence. We again do this until we reach a certain threshold for the 

number of allowable mutations. When this is reached we save the overall probability values and 

objective function values and restart the process at the wild type sequence. When the loop has 

finished we take the sequence with the smallest objective function value as the optimized 

sequence for the two state stabilization. Accuracy of two state stabilization is also assessed 

through comparisons with Rosetta energy values and corresponding probabilities for the 

optimized states/sequences similarly to accuracy testing of probabilities in single state 

optimization.  

Energy Landscape 

 Upon successful designs of sequences with specified conformational stability we wish to 

test the validity and accuracy of our designs. We do this through comparisons of conformational 

energy landscapes. After we design a sequence we will have completely altered the energy 

landscape of the mutated protein away from the wild type sequence energy landscape. We create 
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plots of the energy landscapes of our designed sequences using our energy models and overlay 

them with energy landscape plots using energies of the ubiquitin mutants generated with the 

Rosetta energy function. Through this comparison we can check accuracy of our energy models 

to see if they remain accurate across all states for designed sequences.  

Results 

Protein Design using Coarse-Grained Energy Landscapes 

 We developed and implemented a brand new method for protein design. Our approach 

incorporates conformational variation and dynamics directly into the design process and is also 

able to handle large sequences spaces, both of which tend to be neglected in other design 

methods. Our method utilizes advances in protein sequence-structure energy scoring, protein 

conformational space modeling, machine learning, distributed computing, and optimization. The 

first step in our design process involves discretization of the conformational landscape of human 

ubiquitin. Conformational space is discretized and coarse-grained through implementing a 

Markov State Model (MSM). The MSM is essentially a simplified representation of the 

conformational landscape of the chosen protein and is constructed through all-atom molecular 

dynamics simulations. From the MSM we end up with a specified number of highly probable 

conformational structures for the specified protein. Secondly, we develop fast sequence-energy 

mappings for each of the fixed backbone structures from the MSM. To do this we implement 

methods similar to Cluster Expansion (CE) which involves training linear regression models 

based on mean field theory using sequence and energy data [13]. In this step we use Rosetta for 

fixed backbone energy scoring of ubiquitin mutants for each conformational variant from the 

MSM. We take an online learning approach to our model training using stochastic gradient 

descent. These SGD models are trained with the sequence and energy data generated from 
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Rosetta. Each model for each conformational variation is trained simultaneously through 

distribution over a high performance computer cluster (HTCondor) [46]. We end up with a fast 

and accurate energy function in vector form for each conformational variation from the MSM. 

Finally, we applied optimization algorithms in an attempt to stabilize a specific conformational 

state or multiple conformational states across the coarse grained conformational energy 

landscape of ubiquitin. We do this through maximizing the Boltzmann Distribution for a singular 

state or pair of states while applying single site mutations to the wild type ubiquitin sequence 

until a certain threshold number of mutations is hit. Essentially, through this optimization 

process we increase the probability of our selected state(s) existing relative to all other states by 

applying single site mutations and calculating energy and probability at each mutation. We found 

that our method can accurately stabilize a state or pair of states even with minimal searching 

through sequence space. Furthermore, given the stability and accuracy of our mean field energy 

functions our method can be expanded to much more complex design objectives. Much larger 

regions of sequence space could potentially be searched using branch and bound optimization 

techniques. Ultimately, with our new approach we can completely and accurately redesign the 

energy landscape of human ubiquitin. 

Mean Field Approximation of the Sequence-Energy Landscape 

Learning the Mean Field Approximation 

 We are able to learn the sequence-energy landscape through applying statistical learning 

algorithms to our mean field models. Before applying statistical algorithms to our mean field 

model we must truncate the mean field model at a certain ‘n’ number of n-body interactions. We 

truncate our models at either one-body interactions or at a specified number of two-body 

interactions given a geometric constraint. The statistical algorithm we implement is stochastic 
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gradient descent with the sum of squared errors cost function. For model training we write 

python scripts that first take the wild type sequence and applies four random mutations at four 

random positions in the sequence. The mutations allowed per position were based on the 

sequence alignment that we ran on the 1000 ubiquitin variants. Upon generating a random 

mutation the energy is scored with Rosetta. This sequence/energy pair was then used to update 

the SGD model (also implemented and written in Python). Once models have converged (MAD 

levels off and no longer increases) then we output our mean field approximation parameter 

vectors as a text file. This text file of parameters is our sequence-energy approximation and is 

uploaded as a vector into Python for fast approximation of energies of random ubiquitin mutants 

during sequence optimization.  

Developing Accurate Sequence-Energy Models 

 Generating Accurate Sequence-Energy models was mostly done through trying to 

minimize the mean absolute deviation (MAD) of our models through applying different 

variations to the SGD algorithm and through implementing restrictions on sequence space. We 

chose to optimize our models based solely on the State 0 conformation and then applied the final 

model parameters to all 100 conformational states. To start we ended up restricting sequence 

space through the implementation of a sequence alignment on ubiquitin variants using the 

MUSCLE algorithm [47]. This restricted sequence space to only four possible amino acids per 

position as opposed to all twenty amino acids per position. This change in our model approach 

lead to lower overall energy scores for mutations because most of these amino acids at each of 

the 76 positions are likely to exist in nature. Below we showcase two separately trained models: 

one of the models uses sequences without restricted sequence space from the sequence alignment 
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(all 20 AA’s allowed per position) while the other model restricts sequence space to the top 4 

amino acids per position based on the sequence alignment.  

  

   

Figure 6: Sequence Alignment Model Comparison  

(A) MAD vs Number of Training Sets for a model with 76 mutations per sequence generated and 20 

amino acids per position with only single interaction parameters. (B) MAD vs Number of Training Sets 

for a model with 76 mutations per sequence generated and 4 amino acids per position (from sequence 

alignment) with only single interaction parameters. (C) Model Estimated Energies vs Rosetta Energies for 

a model with 76 mutations per sequence generated and 20 amino acids per position with only single 

interaction parameters. (D) Model Estimated Energies vs Rosetta Energies for a model with 76 mutations 

per sequence generated and 4 amino acids per position (from sequence alignment) with only single 

interaction parameters. 

In Figure 6-A and Figure 6-C we see a model trained on sequences and energies with no 

sequence alignment while in Figure 6-B and Figure 6-D we see a model trained on sequences 

and energies with the top 4 amino acids per position from the sequence alignment. At first 

observation we can already see the reduction in energy when comparing the axis between Figure 

A 

C D 

B 
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6-C and Figure 6-D. The model with no multiple sequence alignment has energies that seem to 

range from around 0 to 6000 REU while the model with the multiple sequence alignment has 

energies that range from 0 to 2000 REU. This makes sense as the amino acids from the multiple 

sequence alignment are those amino acids that exist readily in nature in ubiquitin variants. 

Therefore, we see lower overall energies in sequences that utilize the multiple sequence 

alignment. This is exactly what we are interested in as we care most about being accurate and 

modeling lower energy sequences for optimization purposes. Aside from the lower energies 

generated through the multiple sequence alignment we also see that the model that utilizes the 

multiple sequence alignment mutations also performs better compared to the model that can have 

any amino acid at any position.  

Multiple Sequence 

Alignment 

Avg MAD last 1000 

Values 

Avg CC last 1000 

Values 

Number of Model 

Parameters 

No, All 20 AA per 

position 

384.39851 0.88 1445 

Yes, Top 4 AA per 

position 

137.79078 0.88 229 

 

Table 2: Multiple Sequence Alignment Model Comparison 

‘No, All 20 AA per position’ row corresponds with Figure 6-A and Figure 6-C while ‘Yes, Top 4 AA per 

position’ corresponds with Figure 6-B and 6-D. Applying the sequence alignment seems to improve 

model accuracy by over double. 

As we can see from Table 2, restricting sequence space using the sequence alignment improves 

model accuracy from a MAD of 384 to a MAD of 137. This is a drastic improvement in model 

accuracy which can likely be attributed to the smaller energy range associated with sequences 

that are restricted by the multiple sequence alignment. 

After the implementation of the multiple sequence alignment we saw a large 

improvement in model accuracy. However, we thought we needed another method to improve 

the accuracy of our models. We selected to further reduce sequence space by only allowing 4 
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possible mutations for each sequence we generated (quadruple mutants) as opposed to mutating 

every single amino acid in the protein. We saw that having less deviations from the wild type 

sequence lead to lower overall energy scores for the mutated sequences. Therefore, we should 

expect these mutation restricted data sets to train more accurate models. This restriction of 

sequence space was a very important part of our model training as without it MAD values for our 

models were far too large to run optimization on. Although this may seem like a drastic 

restriction in sequence space, we still feel that we cover a large and reasonable amount of the 

space. Most importantly we wanted our models to perform well on sequences with low energies 

as that is what we will ultimately optimize for and we believe training the models with these 

restrictions helps accomplish that goal.  

Upon restricting sequence space, we next wanted to determine the amount of parameters 

we should be including in our models. First, we included all single interactions and gradually 

included more and more pair interactions given a threshold distance between amino acids. 

Surprisingly, after restricting sequence space, pair interactions did not drastically effect the 

accuracy of our models. After seeing this, we were interested in why pairs were not so important 

for our models. We selected to investigate this through generating different data sets while 

gradually increasing the number of possible mutations in the protein per data set. We selected to 

generate data sets with 10, 20, 35, 50, 65, and 76 mutations per sequence. We then trained 

models for each of these data sets first starting with only single interactions (229 model 

parameters) and then including pairs of amino acids that were within 8 angstroms of each other 

as well as single interactions (8212 model parameters for state 0). Here we wanted to see if pairs 

mattered at all in our models and if they did, then when they begin to matter and when they stop 

influencing the models as much. We generated the following table of data and corresponding 
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plots to test to see if and where pairs matter when altering the number of mutations. When 

changing and altering sequence space as presented in the table below we also had to alter our 

learning rate 
 i  (stochastic gradient descent hyper parameter) to generate optimal models. To 

ensure convergence of our algorithm, literature on SGD suggests we use a decaying learning rate 

  1i
i 

 [51]. Below is the learning rate we selected for model training. 

 

 
 0.5 10

100

i
Learning Rate

i

 


  

  is the scalar we optimized through trial and error and i  is the training set index. We had to 

keep altering this scalar until we reached a minimum MAD value for the specific data set. The 

type of data set influences what the optimal learning rate multiplier should be and for our 

quadruple mutant model we found the optimum scalar multiplier to be 2.  

Multiple 

Sequence 

alignment 

Number of 

Mutations per 

Sequence 

Pair 

Distance 

AVG MAD 

last 1000 

Values 

AVG CC 

last 1000 

Values 

Weight   Number of 

Model 

Parameters 

Top 4 AA 76 Mutations  No Pairs 137.79078 0.88 None .1 229 

Top 4 AA 76 Mutations 8 Angstroms 86.931540 0.96 None .1 8212 

Top 4 AA 65 Mutations No Pairs 122.80745 0.90 None .1 229 

Top 4 AA 65 Mutations  8 Angstroms 101.01928 0.95 None .1 8212 

Top 4 AA 50 Mutations No Pairs 109.31297 0.89 None .1 229 

Top 4 AA 50 Mutations 8 Angstroms 80.502496 0.96 None .1 8212 

Top 4 AA 35 Mutations No Pairs 75.636257 0.90 None .1 229 

Top 4 AA 35 Mutations 8 Angstroms 60.950644 0.96 None .1 8212 

Top 4 AA 20 Mutations No Pairs 37.424889 0.94 None .1 229 

Top 4 AA 20 Mutations 8 Angstroms 38.378149 0.95 None .1 8212 

Top 4 AA 10 Mutations  No Pairs 14.842482 0.97 None 1 229 

Top 4 AA 10 Mutations 8 Angstroms 14.728381 0.99 None 1 8212 

Top 4 AA 4 Mutations No Pairs 2.8544475 0.99 None 2 229 

Top 4 AA 4 Mutations 8 Angstroms 2.9023789 0.99 None 2 8212 

 

Table 3: Model Accuracy of Pairs vs No Pairs for different Numbers of Mutations per Sequence 

This table represents model accuracy of models trained on specified datasets with limited numbers of 

mutations per position. We see that as we decrease the number of mutations allowed per sequence that our 

MAD values decrease and our CC values increase. We also see that after 20 Mutations per position pairs 

no longer influence our models. 
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Figure 7: 76 Mutations per Sequence Pair Comparison 

(A) MAD vs Number of Training Sets for a model trained on sequences with 76 mutations per sequence 

and only single interactions. (B) MAD vs Number of Training Sets for a model trained on sequences with 

76 mutations per sequence with single interactions and 8 angstrom pair distance two-body interactions. 

(C) Model Estimated Energy vs Rosetta Energy for a model trained on sequences with 76 mutations per 

sequence and only single interactions. (D) Model Estimated Energy vs Rosetta for a model trained on 

sequences with 76 mutations per sequence with single interactions and 8 angstrom pair distance two-body 

interactions. We see that pairs seem to make the model more accurate at this mutation threshold and (B) 

seems to not have even leveled out yet. With more training data it looks that it will reach an even lower 

MAD value.  
 

A B 

C D 
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Figure 8: 65 Mutations per Sequence Pair Comparison 

(A) MAD vs Number of Training Sets for a model trained on sequences with 65 mutations per sequence 

and only single interactions. (B) MAD vs Number of Training Sets for a model trained on sequences with 

65 mutations per sequence with single interactions and 8 angstrom pair distance two-body interactions. 

(C) Model Estimated Energy vs Rosetta Energy for a model trained on sequences with 65 mutations per 

sequence and only single interactions. (D) Model Estimated Energy vs Rosetta for a model trained on 

sequences with 65 mutations per sequence with single interactions and 8 angstrom pair distance two-body 

interactions. In (B) we see that MAD has not leveled off and the model will likely improve further with 

more training data. (D) Also seems to have more linear agreement as compared with (C). 

 

A B 

D C 
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Figure 9: 50 Mutations per Sequence Pair Comparison 

(A) MAD vs Number of Training Sets for a model trained on sequences with 50 mutations per sequence 

and only single interactions. (B) MAD vs Number of Training Sets for a model trained on sequences with 

50 mutations per sequence with single interactions and 8 angstrom pair distance two-body interactions. 

(C) Model Estimated Energy vs Rosetta Energy for a model trained on sequences with 50 mutations per 

sequence and only single interactions. (D) Model Estimated Energy vs Rosetta for a model trained on 

sequences with 50 mutations per sequence with single interactions and 8 angstrom pair distance two-body 

interactions. We see that (B) has not leveled off and will likely still improve with more training sets. Also, 

(D) seems to have better linear agreement than (C). At this mutation threshold pairs seem to still have 

some influence on model accuracy.  

 

A B 

C D 
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Figure 10: 35 Mutations per Sequence Pair Comparison 

(A) MAD vs Number of Training Sets for a model trained on sequences with 35 mutations per sequence 

and only single interactions. (B) MAD vs Number of Training Sets for a model trained on sequences with 

35 mutations per sequence with single interactions and 8 angstrom pair distance two-body interactions. 

(C) Model Estimated Energy vs Rosetta Energy for a model trained on sequences with 35 mutations per 

sequence and only single interactions. (D) Model Estimated Energy vs Rosetta for a model trained on 

sequences with 35 mutations per sequence with single interactions and 8 angstrom pair distance two-body 

interactions. We see that (B) has not leveled off but almost has. It will likely still improve with more 

training sets. Also, (D) and (C) are actually quite similar so correlation seems to not matter as much at 

this threshold. At this mutation threshold pairs seem to still have some influence on model accuracy. 
 

A B 

C D 
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Figure 11: 20 Mutations per Sequence Pair Comparison 

(A) MAD vs Number of Training Sets for a model trained on sequences with 20 mutations per sequence 

and only single interactions. (B) MAD vs Number of Training Sets for a model trained on sequences with 

20 mutations per sequence with single interactions and 8 angstrom pair distance two-body interactions. 

(C) Model Estimated Energy vs Rosetta Energy for a model trained on sequences with 20 mutations per 

sequence and only single interactions. (D) Model Estimated Energy vs Rosetta for a model trained on 

sequences with 20 mutations per sequence with single interactions and 8 angstrom pair distance two-body 

interactions. We see that (A) and (B) seem to have both leveled off and are nearly identical. Also, (C) and 

(D) are nearly identical. At this mutation threshold pairs seem to no longer influence model accuracy. 

 

A 

C D 

B 
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Figure 12: 10 Mutations per Sequence Pair Comparison 

(A) MAD vs Number of Training Sets for a model trained on sequences with 10 mutations per sequence 

and only single interactions. (B) MAD vs Number of Training Sets for a model trained on sequences with 

10 mutations per sequence with single interactions and 8 angstrom pair distance two-body interactions. 

(C) Model Estimated Energy vs Rosetta Energy for a model trained on sequences with 10 mutations per 

sequence and only single interactions. (D) Model Estimated Energy vs Rosetta for a model trained on 

sequences with 10 mutations per sequence with single interactions and 8 angstrom pair distance two-body 

interactions. We see that (A) and (B) seem to have both leveled off and are nearly identical. Also, (C) and 

(D) seem to be identical. At this mutation threshold pairs seem to also have no influence on model 

accuracy.  

 

A B 

C D 
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Figure 13: 4 Mutations per Sequence Pair Comparison 

(A) MAD vs Number of Training Sets for a model trained on sequences with 4 mutations per sequence 

and only single interactions. (B) MAD vs Number of Training Sets for a model trained on sequences with 

4 mutations per sequence with single interactions and 8 angstrom pair distance two-body interactions. (C) 

Model Estimated Energy vs Rosetta Energy for a model trained on sequences with 4 mutations per 

sequence and only single interactions. (D) Model Estimated Energy vs Rosetta for a model trained on 

sequences with 4 mutations per sequence with single interactions and 8 angstrom pair distance two-body 

interactions. We see that (A) and (B) seem to have both leveled off and are also essentially identical again 

as in Figure 11 and Figure 12. Also, (C) and (D) look identical. At this mutation threshold pairs seem to 

also have no influence on model accuracy. 

As we can see from the Figures 7-13 and Table 3, the 8 Angstrom pair distance seems to 

improve model accuracy for the 76, 65, 50, and 35 mutations per sequence models. Once we 

reach the 20 mutation per sequence model we see that the MAD vs Number of Training set plots 

(Figures 11-13 A and B) look nearly identical for no pairs vs 8 Angstrom distance pairs and 

ending MAD values are nearly identical as shown in Table 3. Upon first inspection at 4 and 20 

mutations per position the inclusion of pairs seems to actually make the models less accurate 

A B 

C D 
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according to Table 3. This may just be due to the specific data sets trained on as the difference in 

MAD values between pairs and no pairs in these numbers of mutations per sequence as well as 

10 mutations per sequence seems to be marginal. Going forward it appears that pairs do not 

greatly influence models for our final restricted sequence space of quadruple mutants per 

sequence. The most important factor of our models seems to be restricting the number of 

mutations per sequence to a max of 4 as well as utilizing the sequence alignment for allowable 

amino acids per position. However, we still select to train two sets of all 100 conformational 

models. The first set of models will have single interactions and no pairs included while the 

second set of models will have single interactions as well as pairs with a set threshold distance 

between them.  

To select the threshold distance on pairs for final model training we select to compare No 

pairs, 4 angstrom pair distance, 8 angstrom pair distance, and 12 angstrom pair distance. We use 

the same sequence and energy data as in the previous table (quadruple mutant data set). We do 

not include plots of this data as each model produces largely identical plots. 

Pair Distance Avg MAD of last 1000 

Values 

Avg CC of last 1000 

Values 

Number of Model 

Parameters 

No Pairs 2.8544475 0.99 1445 

4 Angstroms 2.7437790 0.99 3298 

8 Angstroms 2.9023789 0.99 8212 

12 Angstroms 3.2178822 0.99 14332 

 

Table 4: Pair Distance Comparison for Quadruple Mutant Models 

Here we show comparisons of MAD and CC for only single interactions, 4 angstrom pair distance two-

body interactions, 8 angstrom pair distance two-body interactions, and 12 angstrom pair distance two-

body interactions. 

Displayed in Table 4 we see that the lowest MAD values come from the 4 Angstrom distance 

pair model. Although most of the models appear to give very similar performance, we select to 
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go forward with an only single interaction model as well as a model that includes pair 

interactions that are closer than 4 Angstroms away in the 3-D structures. 

Next, we wanted a way to potentially improve accuracy of our models further. We did 

this through the use of weighted linear regression. The implementation and proof for the SGD 

algorithm including weights is identical to the unweighted equations so it will be skipped for 

efficiencies sake. Below are the general linear regression algorithm with weight matrix (equation 

11) and final stochastic gradient descent algorithm also with weights included (equation 12): 

    
1

11T TJ X W X X W E


      

                   1
12

T
i i i i i i i

j j j j jw w w x y x  

       

The variable  is a scalar weight depending on the energy value of the current sequence to be 

trained by the model. Before selecting our weight distribution we first wanted to examine the 

energy distribution of the State 0 conformation. We did this through finding the median energy 

value of a large data set of 4 mutations per sequence with the top 4 amino acid sequence 

alignment. We also generated the following histogram plot with this data: 
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Figure 14: Histogram Plot of Energies with 4 Mutations per Sequence for State 0 

Most of the energy values seem to be at values less than 50 REU. The vast majority of energies are just 

above a value of 0. We restrict the x-axis to (-50,150) for presentation purposes.  

From Figure 14, we see that most of the energies fall below a value of 50. Further investigation 

of this data set reveals a median value of around 7. We then wanted to implement this median 

value into how we assign weights for our energies. We wanted to create a weight distribution 

that fully weights low energies (less than 7) and then weights higher energy values (greater than 

7) in a decaying fashion. The final weight distribution we came up with is presented below as an 

exponentially decaying function: 

  
    
7

min 1, 13
1200

y
ey



  

Below is a picture of a plot of the weight distribution. As pictured, if an energy value is less than 

7 the weight gets assigned as 1. Once an energy value is larger than 7 we apply the exponentially 

decaying function. We select to divide the exponentially decaying function by 1200 because we 
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find this to be optimal for producing the most accurate models. This selection leads to an energy 

value of 2000 REU receiving a weight of .189 which seems reasonable given that an energy of 

2000 REU was around the maximum value we are saw in the energy distribution.  

 

Figure 15: Weight Distribution Values Based on Energy Being Trained 

A weight of 1 is assigned at energy values less than an REU of 7. An exponentially decaying function 

then assigns weights for energies above an REU of 7 as presented in the distribution.  

When applying this weight distribution to model training we saw slight improvement in accuracy 

of our quadruple mutant models. In Table 5 we present the results of comparing an unweighted 

quadruple mutant model and a weighted quadruple mutant model utilizing the same quadruple 

mutant data set as before. 

Weights Pair Distance Avg MAD of last 

1000 Values 

Avg CC of last 

1000 Values 

 

Yes /1200 No Pairs 2.6054508 0.99 229 

No No Pairs 2.8544475 0.99 229 

Yes /1200 4 Angstroms 2.5281883 0.99 3298 

No 4 Angstroms 2.7437790 0.99 3298 
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Table 5: Model Accuracy between weighted and unweighted Stochastic Gradient Descent models for 

Quadruple Mutants 

We observe the average MAD value for the last 1000 Values improved from 2.85 to 2.60 for the single 

body models and the MAD values improved from 2.74 to 2.52 for the 4 Angstrom pair models. 

Upon further model accuracy testing with a completely different data set (shown below) we 

observed that the weighted model performs better than the unweighted model with low energy 

values as well (less than 7 REU). This is very important for our purposes as we are most 

interested in being accurate on low energy sequences. 

Weights Avg MAD of last 

1000 values for 

Energies less than 7 

Avg MAD of last 

1000 values for 

Energies 7<x<100 

Avg MAD of last 

1000 values for 

Energies greater than 

100 

Yes /1200 1.15242503453 2.52471694016 4.50868347544 

No 1.34844898124 3.3187129332 5.01383673149 

 

Table 6: Weighted vs Unweighted Model Accuracy at Different Energy Values for an Only One-Body 

Model 

Table showcasing the accuracy of a weighted and unweighted single interaction model. Models were 

tested against an independent data set in order to determine accuracy at respective energy ranges. Our 

models perform best on energy values less than 7.  

In Table 6 at every energy range the weighted model outperforms the unweighted model. At first 

look it seems like an easy selection to include the weight distribution into model training. 

However, we do not readily know the energy distributions of the other 99 conformations. This 

could create problems when utilizing this weighting scheme on other conformations. However, 

based on the wild type energy landscape of all the conformations we see that most of the 

energies of the wild type sequence are quite close in value. Therefore, it would seem likely that 

some of the conformational states will have similar energy distributions. Thus, we selected to 

train all 100 conformational models with weights included as well as another set of models 

without weights.  
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These were the final model parameters we set to include in model training. We were able 

to optimize our models and achieve great accuracy through utilization of the sequence alignment 

of ubiquitin variants (selecting the top 4 amino acids per position), only allowing for sequences 

to be quadruple mutants, including certain pair interactions given a geometric constraint, and 

applying weights based on the energy of the sequence being trained. Going forward we selected 

to train three sets of all 100 conformational models. The model variations selected to be trained 

were as follows: single interactions only without weights, single interactions only with weights, 

and single interactions plus pair interactions closer than 4 angstroms without weights. In the end 

during optimization we select the model set that performs the best across all conformations. 

Modeling the Energy Landscape  

Markov State Model 

  The MSM of ubiquitin was generated through collaborations with Dr. Greg R. 

Bowman’s lab at Washington University in St. Louis and consists of 100 separate conformations 

which serves as the coarse-grained conformational space for our system. Each conformation in 

the MSM was output as a PDB file or a file of the atomic coordinates of every atom in the 

structure. Below we present several pictures of the generated conformations of ubiquitin overlaid 

with each other from the MSM to showcase how ubiquitin can change drastically through 

conformational space. Each of the following pictures was created by loading each PDB file into 

PyMOL, running the align command to structurally align the PDB’s, and selecting to view them 

based on secondary structure (alpha helices, beta sheets) [52]. 
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Figure 16: Picture Representation of Select Conformational States of the Ubiquitin MSM Overlaid and 

Aligned  

Each of the pictures (A-D) consist of 4 chosen states which are aligned with one another structurally and 

overlaid with each other. We select to overlay 4 states per picture for a total of 16 showcased states. As 

we can see, there is definite conformational variability from state to state.   

Although this image representation of the space is limited to just 16 of the 100 states it 

showcases the variability of ubiquitin over conformational space. Based on the images. there 

seems to definitely be conformational changes between states which should have an impact on 

the energy distributions of each state as well. Specifically, in Figure 16-D we see that State 44 

A. States: 0-green, 2-cyan, 12-

purple, 26-yellow 

B. States: 33-pink, 47-white, 54-

purple, 69-orange 

C. States: 71-green, 85-blue, 97-

magenta, 93-gold 

D. States: 7-purple, 94-silver, 

44-blue, 59-yellow 
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(blue) has a large change on the right side of the picture at the end of the chain as compared with 

the other states. Also, structures overall seem to be slight variations of one another with small 

changes all throughout the entire structure. We utilize each of these separate conformational 

states during model training where each model is based on one of the one-hundred separate 

conformational states.  

Mean Field Approximation of all Conformational States 

 Upon success in modeling a single states sequence-energy mapping followed by 

successfully coarse graining conformational space we then moved on to modeling the entire 

sequence-energy mapping for all conformational states. Our online machine learning approach 

was vastly important for this step as it allowed us to train all 100 conformational models 

simultaneously and efficiently. We wanted to train several different model variations when we 

applied the modeling to the entire coarse grained conformational space. We did this so we could 

compare which model variations were best for particular states and to avoid potential 

inaccuracies that could occur due to the differing energy distributions associated with each 

conformational state. For example, just because pairs seem to not matter for State 0 does not 

mean that pairs may not improve a model for a different conformational state. We selected to 

train three different model variations each over all 100 conformational states for a total of 300 

models. The model variations we trained were as follows: single interaction parameters only with 

no weights, single interaction parameters only with weight distribution, and single interaction 

parameters plus 4 angstrom pair distance interaction parameters with no weights. We were able 

to achieve good accuracy for all three sets of the 100 different conformational models and below 

is a table of the relative accuracy of the models: 
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Model Type     → single interaction 

parameters only with 

no weights 

single interaction 

parameters only with 

weights 

4 angstrom pair 

distance 

interaction 

parameters with no 

weights 

Range of Avg MAD of 

last 1000 values  

Number of 

Conformational 

Models that fit the 

Criteria 

Number of 

Conformational 

Models that fit the 

Criteria 

Number of 

Conformational 

Models that fit the 

Criteria 

Less than 1 0 0 0 

Less than 2 17 14 19 

Less than 3 61 45 56 

Less than 4 83 69 82 

Less than 5 89 76 90 

Less than 6 94 86 97 

Less than 7 95 88 98 

Less than 8 97 88 98 

Less than 9 97 88 99 

Less than 10 99 90 99 

Less than 11 99 91 100 

Less than 12 100 91 100 

 

Table 7: Relative Accuracy of all 100 Conformational Models for Quadruple Mutants with various Model 

Variations 

This table presents the relative accuracy of all 100 models for each of the 3 model variations. We test the 

accuracy by presenting how many models in each variation have an average MAD over the last 1000 

values of less than a threshold value (in our case values between 1-12). The vast majority of models in 

each of the three variations seem to have an MAD of at least less than 6 REU.  

Based on the table, the most accurate set of 100 models seem to be those with single interaction 

parameters only with no weights as well as the 4 angstrom pair distance parameter model with no 

weights. Both models showcase very similar accuracy but for initial optimization we selected to 

use the single interaction/unweighted model. The 4 angstrom pair distance with single interaction 

parameters and no weight model is quite accurate and is essentially on par or even better than the 

single interaction/no weight model. Although either model could be used for optimization, we 

select to use the single interaction model due to the fewer parameters associated with the model. 
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The single interaction models have 229 parameters while the 4 angstrom pair models have 

parameters around 3000 parameters (varies with state). These increased parameters for the pair 

models will lead to slightly longer calculation times. Given that we get nearly identical results 

from an accuracy standpoint we select to go forward with the single interaction/unweighted 

model as we believe results will be similar for both models. We also see that the weighted single 

interaction model has poor performance. The weights we selected were good for optimizing the 

State 0 conformation. However, we did not readily know the energy distributions of the other 

conformations. Therefore, selecting the weight distribution as we did was not guaranteed to work 

for the other conformations. We thought that the weights might make some of the lower energy 

conformations train more accurate models. However, as we can see from the table the pair and 

single unweighted models outperform the weighted model at every threshold MAD value. Given 

the inaccuracy of the weighted model with only single interactions, we decided to not train the 

single interaction parameters plus 4 angstrom pair distance interaction parameters with weight 

distribution as we expect this model variation to perform as bad as the other weighted model.  

 As a whole, we see that for our most accurate model variation that 83 of the models had 

an average MAD value of less than 4. Based on the data we were successful in our ability to 

accurately model the energy landscape of all conformational states. There were a few 

conformations that gave us some difficulty however. These inaccurate conformations were 

generally those that had large energy distributions over sequence – energy space. Given the high 

energies of these specific conformations they are mostly seen as off target conformations anyway 

and could be discarded if needed. These conformations provided difficulty during optimization 

as well due to their inaccuracies.  
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Figure 17: Rosetta Energy vs No Pair No Weight Model Energy for State 2 

Plot of Rosetta Energy vs Model Energy for State 2. We see that there are groups of energies scattered all 

through the plot from around a value of 0 to a value of around 1500.  

As seen in the plot above, we showcase the accuracy of our model for State 2. For our no pair no 

weight model State 2 had an average MAD of 9.73 for the last 1000 terms. Although this is not 

terrible it is one of the worst models we generated. We think this inaccuracy is attributed to the 

large energy spread for this conformation. As we can see in the plot above the energies span 

from 0 REU to nearly 2000 REU while State 0’s energies span from around -30 REU to 100 

REU. Although most of the energies in the plot seem to be quite accurate a few look to be very 

inaccurate. State 2 also had greater inaccuracy when trained on with the weighted model which is 

expected given then large amount of high energies present. Other inaccurate conformational 

models include States 91, 94, 96, and 98. All of these States as well as State 2 had MAD values 

greater than 7 for our most accurate modeling scheme (no pair no weights). Despite a few 

inaccuracies we believe we successfully modeled the sequence-energy mappings for all 

conformations based on the results from Table 7. Going forward we decided to run our 
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optimizations with the most accurate models we generated which were the no pair no weight 

models.  

Protein Design Using Coarse Grained Energy Landscapes 

 After successfully modeling the sequence-energy mapping of all conformations we then 

moved forward to the design of energy landscapes. Below we present the energy landscape of the 

wildtype sequence ubiquitin for our specified MSM. Most of the energy values of wild type 

ubiquitin for all conformational states fall below a value of zero. During optimization many of 

these states are destabilized and the energy landscape changes substantially.  

 

Figure 18: Energy Landscape of Wild Type Ubiquitin 

Energy values of wild type ubiquitin generated through Rosetta presented in an energy landscape plot 

over all conformational states from the MSM. States are sorted by increasing energy value. 

The goal of this project was to completely alter this energy landscape and design 

sequences that stabilize certain conformational states. We did this through maximizing the 
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Boltzmann Distribution for either one state or for a pair of states. The general protocol for this 

was to run the optimization maximizing the Boltzmann Distribution or minimizing the dual state 

objective function for a specified state or pair of states using our sequence-energy 

approximations. After this, to check the accuracy of our optimized sequence we would go back 

and calculate energy values using Rosetta (of the optimized sequence for all 100 conformations) 

and use these energy values to calculate Boltzmann Distribution values (probabilities). We then 

calculated the percent error between the probabilities our energy model approximations give and 

the probabilities generated through the true Rosetta energy values.  

 We ran optimizations that maximize the probability of each conformational state once 

which generates a single mutated sequence per optimization for a total of 100 optimized 

sequences. We also ran optimizations that maximize the probabilities of each pair of 

conformational states once for a total of 4950 total optimized sequences. We then tested the 

accuracy of each of these optimized sequences to see if certain optimized states give false 

positive results for maximizing probability (minimizing energy). For these optimizations we 

select to optimize sequences that can at most be triple mutants from the wild type sequence. We 

do this to ensure a higher degree of accuracy as our models were trained on quadruple mutants. 

Below are tables that showcase the accuracy of the sequences we optimized: 

Model Type     → single interaction 

parameters only with 

no weights 

single interaction 

parameters only with 

weights 

4 angstrom pair 

distance 

interaction 

parameters with no 

weights 

Percent Error Threshold 

Value Comparing the 

Probability Values of 

the Optimized State 

Number of 

Optimized 

Sequences that fit the 

Percent Error 

Threshold 

Number of 

Optimized 

Sequences that fit the 

Percent Error 

Threshold 

Number of 

Optimized 

Sequences that fit 

the Percent Error 

Threshold 
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Less than 0.01 16 15 17 

Less than 0.1 26 26 27 

Less than 1 47 49 52 

Less than 10 57 61 66 

Less than 100 68 72 72 

Less than 1000 75 79 78 

Less than 10000 83 84 86 

 

Table 8: Accuracy of Triple Mutant Single State Optimized Sequences for all Three Model Variations  

For each model variation we showcase how many of the optimized sequences of 100 fit a specified 

percent error threshold value. Percent error is calculated through comparing our model energy generated 

probability values with Rosetta energy generated probability values. Each of the designed sequences is 

optimized for 1 of the 100 states where each state is optimized once. We see that around half of our 

sequence designs from our models are within 2-3 orders of magnitude of the Rosetta comparisons. 

Percent Error Threshold 

Value Comparing the 

Probability Values of the 

Optimized State 

Number of Optimized 

Sequences that fit the Percent 

Error Threshold for First 

State 

Number of Optimized 

Sequences that fit the Percent 

Error Threshold for Second 

State 

Less than 0.01 15 29 

Less than 0.1 218 224 

Less than 1 1655 1514 

Less than 10 2737 2437 

Less than 100 3492 3227 

Less than 1000 3930 3666 

Less than 10000 4224 3979 

 

Table 9: Accuracy of 4950 Dual State Optimized Triple Mutant Sequences using the No Pair No Weight 

Models 

For the no pair no weight model we showcase how many of the optimized sequences of 4950 fit a 

specified percent error threshold value. Percent error is calculated through comparing our model energy 

generated probability values with Rosetta energy generated probability values. Each of the designed 

sequences is optimized for 2 of the 100 states where each pair of states is optimized once for a total of 

4950 optimized sequences. We showcase the percent error threshold value for the probability values of 

both states that were optimized. We see that around half of our sequence designs from our models are 

within 2-3 orders of magnitude of the Rosetta comparisons.  

From Table 8 we see that all three model variations are essentially on par with one another. The 

4 angstrom pair model actually seems to perform the best and the single interaction/weighted 

model actually performs well too. Given that all of the models perform similarly we still feel 
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confident running optimizations with the single interaction/unweighted model. However, running 

optimizations with the 4 angstrom pair model may produce better results but would take longer 

to compute energy values during optimization. We believe the weighted single body model gives 

accurate results of probability given that these models emphasize low energies during training. 

Therefore, the weighted models have have higher MAD values for all states, but given that they 

are accurate at low energies then these models can provide accurate results for calculating 

probabilities of the optimized (low energy) sequences. From Table 8 and Table 9 we see that 

around half of our optimized sequences for single state and dual state optimization achieved a 

percent error on Boltzmann Probability of less than 10. Although this may not seem ideal we 

actually believe that this is a fairly accurate result given how we calculate percent error. We 

calculate our percent error values through comparing the Boltzmann Distribution values (for the 

selected state) of our models with those generated through Rosetta Energy values so it is 

essentially it is a test to see how accurate our energy models perform on the designed sequences 

over all conformational states. If our probabilities are off by 2 or 3 orders of magnitude or around 

10 to 100 percent error then our predictions are still quite accurate. Based on the Table 8 and 

Table 9, the majority of our predictions of probability are within a few orders of magnitude 

compared with the Rosetta probabilities. Therefore, we believe our optimizations provide 

accurate results based on the scale of the optimization and compared with the wild type 

probabilities.  

Next, we showcase results of a few of our designed sequences and landscapes for single 

state and dual state optimization. We present Rosetta energy vs model energy prediction plots for 

all states, energy landscape plots sorted by increasing wild type energy, and plots of shifted 

probability across all states sorted by increasing wild type state probability. For our shifted 
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probability plots we select to plot our probabilities in increasing order and we select to plot the 

inverse of the logarithm of our probability values. Therefore, a lower value on the shifted 

probability plot corresponds with a higher probability. We do this transformation to more easily 

showcase highly probable states for the designed sequences. When looking at the shifted 

probability plots a more stabilized state will be represented by a downward spike in green 

(mutant shifted probability). The nature in which we showcase specific states is largely arbitrary 

as any state could be selected and optimized for. However, we do showcase several states that 

are easily destabilized or states that have high wild type energies. In each of the state optimized 

plots we list the mutation that generated the energy values in the title of the plot. First, we 

showcase results for a few randomly selected triple mutants that each stabilize one 

conformational state. 
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Figure 19: Triple Mutant Sequence Optimization for Stabilizing State 12 

(A) Rosetta Energy vs No Pair No Weight Model Energy for all 100 conformations for specified 

sequence. We see good linear agreement especially at low energies. As energy raises our models seem to 

underestimate energy values. (B) Energy landscape of specified sequence. Blue line represents model 

energies green dashed line represents Rosetta energies, and red line represents wild type energies. In (B) 

we see good agreement between Rosetta and Model energies. (C) Shifted Probability Plot of specified 

sequence. The green line represents the probabilities calculated with Rosetta energies and the red line 

represents the probabilities of the wild type sequence calculated with Rosetta energies. We select to plot 

the inverse of the log of the probability value for each state. We do this so we can clearly see stabilized 

states. States that are below the red wild type line are seen as stabilized states for the specified mutation. 

We see that our algorithm optimized for State 12 (blue dot) as it is below the wild type value on the plot. 

This means that our optimization worked for stabilizing State 12. Our optimized sequence also has 

various other states that are highly probable as well.  

In Figure 19-A, we showcase a comparison between model energies and Rosetta energies (of 

each state) for the sequence which was optimized for stabilizing State 12. We also show the 

energy landscape of the optimized sequence over all states in Figure 19-B. In Figure 19-A and 

Figure 19-B, we see that as energy increases our models get less and less accurate (deviate from 

the line of slope 1). This makes sense based on preliminary model testing for State 0, generally 

the lower energy values used for model testing the lower MAD values we got. Essentially our 

models perform better on low energy sequences and this becomes more apparent during 

State 12, P = 0.072 

1/Log(P) ≈ - 0.4 

Wild Type Rosetta Probability 

Rosetta Probability 

C 

Highly Probable 

States 
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optimization. In Figure 19-B we also see that the energy landscape has been entirely and 

accurately redesigned. The blue line corresponds to our model approximation energies of each 

state while the green dotted line corresponds with the Rosetta energy values of each state. Based 

on the landscape we can see that our models tend to underestimate high energy values but seem 

to be fairly accurate at lower energies. It is also important to note that our Rosetta and model 

probability values are also of equal magnitude. The value of State 12 was measured to be -13 

REU for the optimized sequences based on our models. The wild type sequence has an energy of 

-31 REU for this same state. Although the energy value increased for this state raised for this 

sequence, the probability of this state existing is still higher due to the destabilization of other 

states. For our optimization we did not declare that energy for the optimized state must decrease.  

Although such a restriction could be easily implemented into the design problem. In Figure 19-C 

we present the probability of each state existing sorted by increasing wild type probability. We 

plot these probability plots by shifting the probability values by taking the inverse of the 

logarithm of probability for each state. This makes our shifted wild type probability data 

decreasing with increasing wild type probability. A stabilized state (more probable state) is seen 

as being a spike lower than the red wild type line. Essentially, if the green mutant line is above 

the red wild type line, then we have destabilization occurring in this state and the state has a low 

probability of existing. If the green mutant line is below the red wild type line then we have 

stabilization and the state has a higher probability of existing in this mutation. Our optimized 

state in this case, State 12, has been stabilized with respect to all other states. We see that it is 

below the red wild type line on the plot which is exactly what we were looking for in this 

optimization procedure. Although it is not the most probable state as seen in the plot, it definitely 

is one of the few stabilized states.  
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Figure 20: Triple Mutant Sequence Optimization for Stabilizing State 97 

(A) Rosetta Energy vs No Pair No Weight Model Energy for all 100 conformations for specified 

sequence. We see good linear agreement especially at low energies. As energy raises our models seem to 

underestimate energy values (B) Energy landscape of specified sequence. Again we see similar agreement 

as in Figure 19-A and Figure 19-B. However, in (B) we see that State 2 has been substantially 

destabilized to a value of around 1400 REU. (C) Shifted Probability Plot of specified sequence. We see 

that our algorithm optimized for State97 (blue dot) as it is lower than the transformed wild type 

probability and is one of the only probable states in the entire conformational landscape. At the right hand 

side, we do see a very probable state (State 33) that is substantially stabilized even more so than State 97. 

In Figure 20-A and Figure 20-B we present another single state designed sequence to show that 

the energy landscape changes again but differently for a different design. In most designs we see, 

State 2 (circled in red in Figure 20-B) is substantially destabilized. As we can see, the energy 

value for State 2 is around 1400 for our model predictions as well as the true Rosetta value. 

Therefore, State 2 could potentially be discarded or treated as an off target state if deemed 

necessary for optimization purposes as the destabilization of this state seems to play a role in the 

optimization of other states. In Figure 20-C we see again that the probability of our optimized 

state, State 97, has increased from our optimization (presented as lower on the plot when we shift 

probability to inverse of the log of probability). So, we have successfully stabilized State 97. 

Wild Type Rosetta Probability 

Rosetta Probability 

C 

State 97 

State 33 
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However, we see that State 33 is even more probable, as its shifted value is around -6. Upon 

further inspection we see that State 33 has an energy of around -21 while State 97 only has an 

energy of -19. So, we were successful in stabilizing State 97 and as a consequence State 33 was 

stabilized as well.  

 Next, we wish to compare and contrast two landscapes to show just how different 

landscapes can be when optimized for different conformational states. We select to stabilize 

State 59 and State 0 separately for two different optimized sequences. We then compare energy 

landscapes and shifted probability plots.  

 

Figure 21: Energy Landscape of a Triple Mutant Optimized for State 59 

Energy landscape of specified sequence. There seems to be very low destabilization occurring in this 

optimization. As only two states have been destabilized above a value of 200 REU. State 59 (optimized 

state) also seems to have an energy below its wild type energy.  

State 2 and 

State 58 
State 59 

Model Energy 

Rosetta Energy 

Wild Type 
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Figure 22: Energy Landscape of a Triple Mutant Optimized for State 0 

Energy landscape of specified sequence. There seems to definitely be much more destabilization 

occurring especially when compared against Figure 21.  

 

Figure 23: Shifted Probability Plot of a Triple Mutant Optimized for State 59 

Shifted Probability Plot of the specified mutant based on Rosetta energy values for each state. We see that 

our optimized state, State 59, seems to have been stabilized from the wild type sequence at least slightly 

as compared with other state stabilizations. There is a greater probability on the right side of the figure 

(State 52). State 59 in this mutation only seems to be slightly more probable when compared to the wild 

type sequence. 
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Rosetta Energy 

Wild Type 

Rosetta Energy 

Wild Type Rosetta Probability 

Rosetta Probability State 59 
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Figure 24: Shifted Probability Plot of a Triple Mutant Optimized for State 0 

Shifted Probability Plot of the specified mutant based on Rosetta energy values for each state. When the 

green line is lower than the wild type red line that means that specific state has a higher probability of 

existing for the given sequence. We see that our optimized sequence for State 0 seems to have a much 

higher probability compared with the wild type sequence. Also, it seems to be one of the only states that 

actually has a higher probability after the optimization.  

In Figure 21 we showcase a designed energy landscape of a triple mutant stabilized for State 59. 

We do not see much destabilization across all conformational states. We see typical State 2 

destabilization and also some destabilization in State 58. In Figure 22 we showcase a designed 

energy landscape of a triple mutant optimized for stabilizing State 0. We see the typical peak at 

State 2 but also see a rather large peak at State 74. Also, looking at the orange line going across 

at an REU value of 200 we see that the State 0 optimized sequence (Figure 22) has multiple 

States that are destabilized past an REU of 200 while the State 59 optimized sequence (Figure 

21) only has two states past an REU value of 200. We present this comparison to showcase that 

we can drastically alter designed energy landscapes from the wild type sequence and also that 

designed energy landscapes can be significantly different from each other depending on which 

state is being optimized. Optimized probabilities for each state also appear to be successful as 

Wild Type Rosetta Probability 

Rosetta Probability 

State 0, High Probability  
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seen in Figure 23 for State 59 and Figure 24 for State 0. In Figure 23 we see that State 59 is 

slightly stabilized as the blue dot is at least somewhat underneath the red wild type inverted 

probabilities. However, in Figure 24, we see substantial stabilization as compared with all other 

states for the given sequence. State 0 is definitely the preferred state as it has the highest 

probability (lowest inverse shifted probability) by far when compared to all other states. Only 

two other states seem to have a higher probability than the wild type sequence when looking at 

Figure 24.  

 Next we compare energy landscapes of dual state optimized sequences. For this 

optimization, we forced the probability of each selected state towards a value of .5 through 

minimization of the dual state objective function (as opposed to 1 for single state optimization). 

Below we present a sequence optimized to stabilize State 3 as well as State 4.  

 

A 
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Figure 25: Triple Mutant Optimized Sequence Stabilizing State 3 and State 4 

(A) Rosetta Energy vs No Pair No Weight Model Energy for all 100 conformations for specified 

sequence. We see good linear agreement especially at low energies. As energy raises our models seem to 

underestimate energy values (B) Energy landscape of specified sequence. There does not seem to be 

substantial destabilization although some is definitely present and we see that State 3 and State 4 seem to 

be optimized at values around zero REU. (C) Shifted Probability Plot of specified sequence. Both 

optimized states seem to be at least slightly optimized above the associated wild type probabilities. State 4 

seems to be substantially more probable while State 3 is at least slightly more probable for the new 

sequence. 
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Based on Figure 25-B as well as Figure 25-C and the data it seems that we were successful in 

stabilizing State 3 and 4. We see the typical destabilization at State 2 and State74. Energy values 

for both of the optimized states seem to be at or near the wild type energy line as well. We also 

see good accuracy when comparing the Rosetta energies and model energies for each of the 100 

states (Figure 25-A). In Figure 25-C we see that the inverse shifted probability for both states has 

also been decreased (regular probability increased) from the wild type sequence inverse shifted 

probability. State 4 is substantially more probable while State 3 is at least slightly more probable. 

This also makes sense when compared to the data present above Figure 25-A as State 4 has a 

probability of 0.59 while State 3 only has a probability of 0.079.  

 

A 



64 
 

 

 

Figure 26: Triple Mutant Optimized Sequence Stabilizing State 28 and State 98 

(A) Rosetta Energy vs No Pair No Weight Model Energy for all 100 conformations for specified 

sequence. We see good linear agreement especially at low energies. As energy raises our models seem to 

underestimate energy values (B) Energy landscape of specified sequence. There seems to be substantial 

destabilization especially at State 2 (typical). Other than that in (B) we see that our models follow the 

general Rosetta energy trends. (C) Shifted Probability plot for specified sequence. We see that both State 

28 and State 98 have been successfully stabilized. Both shifted values are below the wild type shifted 

probability line while various other states have been destabilized.  
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In Figure 26 we present plots for a dual optimized sequence stabilizing State 28 and State 98. We 

again see the typical destabilization in State 2 but we were successfully able to both target states. 

Both states are below the shifted wild type probability line in Figure 26-C. When looking at 

Figures 26-B and C we see that in Figure 26-B all states have been destabilized. Our target states 

definitely have lower energies when compared to off target states, but even our target states seem 

to be destabilized from the wild type. However, in Figure 26-C we see that both of our target 

states have higher probability values (lower shifted values). We believe this is largely due to all 

other states being substantially destabilized. So, instead of our algorithm successfully stabilizing 

the target states, it seems that we have destabilized other states and that plays into the relative 

higher probability of the target states. Ultimately, our energy functions and optimization 

algorithms tend to hold up in regards to two state optimization though it is difficult to pick out 

trends in the landscape across optimized states.  

 Finally, we showcase that we can design sequences with a higher mutation threshold than 

simply triple mutants. Many more designed sequences for specified conformational states can be 

generated with any number of allowable mutations and potentially stabilizing any number of 

states. A larger number of mutations from the wild type sequence will likely correspond with less 

accurate predictions from our models. This is likely due to the higher energy sequences 

associated with larger numbers of mutations from the wild type sequence. Higher energy 

sequences result in our models being less accurate given that our models were trained on 

quadruple mutant data (with relatively low energies). We showcase a sequence optimized for 

State 80 (Figure 27). The optimized sequence was allowed to have 8 mutations from the wild 

type sequence. 
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Figure 27: Eight Mutation Optimized Sequence Stabilizing State 80 

(A) Rosetta Energy vs No Pair No Weight Model Energy for all 100 conformations for specified 

sequence. We see decent linear agreement especially at low energies but there is definitely more 

deviations when compared with the triple mutant optimized sequences. As energy raises our models seem 

to underestimate energy values although at a few energies our models overestimate energy values (B) 

Energy landscape of specified sequence. We do see good agreement in the energy landscape however, at 

high energies we do see some disagreements. There seems to be substantial destabilization, likely due to 

their being 8 mutations from the wild type sequence. (C) Shifted Probability plot for specified sequence. 

Many of the states are substantially destabilized. We see that our optimized state, State 80 is the only 

visible state on the plot. It is stabilized below the shifted wild type probability. However, this is likely due 

to the vast majority of other states being destabilized. 

In Figure 27-A and Figure 27-B we see that our models are less accurate for this sequence with 

higher mutations. However, we still get correlated energy values that trend along the line of 

slope 1. This higher inaccuracy of our models is likely attributed to the higher energies 

associated with this sequence at various conformational states. Given the higher number of 

mutations we see significantly more destabilization from state to state. This makes sense as more 

mutations from the wild type sequence would correspond with higher overall energy values. On 

the energy landscape plot we can also clearly see that State 80 has been stabilized while all other 

states have been substantially destabilized as State 80 is the lowest value in the energy landscape. 

Wild Type Rosetta Probability 

Rosetta Probability 
State 80 

C 



68 
 

In Figure 27-C, we see that the probability for nearly all of the states is highly unlikely and the 

only likely state is our optimized state 80. Essentially, the only state that is likely to exist is our 

optimized state of State 80. We also see that State 80 is a good amount below the shifted and 

inverted wild type probability line in Figure 27-C. This extremely high probability we see is 

likely attributed to the large amount of destabilization in nearly all of the other states (energy 

landscape plot destabilization). So in relative terms, State 80 is the only probable state given the 

vast destabilization of most of the other states. The energy value for State 80 (4.1 REU) is above 

the wild type value but in Figure 27-B it is the only state with an energy value relatively close to 

the wild type energy level. A 
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Figure 28: Eight Mutation Optimized Sequence Stabilizing State 13 

(A) Rosetta Energy vs No Pair No Weight Model Energy for all 100 conformations for specified 

sequence. We see good linear agreement especially at low energies. As energy raises our models seem to 

underestimate energy (B) Energy landscape of specified sequence. The energy landscape plot again shows 

our model energies following the Rosetta energy value trends. (C) Shifted Probability plot for specified 

sequence. The shifted probability plot has a few states from the mutation that are more probable when 

compared to the wild type sequence. We see that our optimized state, State 13, has the highest probability 

when compared to all other states in the mutated sequence.  
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In Figure 28 we showcase an 8 mutation designed sequence for State 13. Again, we see general 

linear agreement when comparing our model energies and the Rosetta energies (Figure 28-A). 

This sequence optimization (State 13) appears more accurate as compared with the previous 

optimized sequence (State 80) and this is largely due to the lower energy values present in most 

of the conformational states across the energy landscape. Essentially, there is less destabilization 

occurring across all states. This is also presented in the Shifted Probability Plot (Figure 28-C) as 

we can actually see other states present in the plot. We see that State 13 is the most probable 

state in the landscape while four other states are also more probable when we compare wild type 

sequence with the new mutation.  

Ultimately, we could showcase any sequence optimization that selects to stabilize either 

one state or a pair of states for any allowable number of mutations. As we increase the number of 

mutations we see less agreement with Rosetta energy values and our models. Also, with 

increased mutation threshold for designed sequences we definitely see substantially more 

destabilization from state to state including the optimized state. This is due to the higher energies 

associated with higher mutation numbers. The highly probable states in this high mutation case 

seems to largely be stabilized by the destabilization of many of the other states. Also, at this high 

mutation threshold we see that the energy value of our stabilized state usually increases relative 

to the wild type sequence. Running longer optimizations over a larger number of sequences 

could potentially improve the energy value of the optimized state. In the triple mutation case we 

sometimes get lower energy values for the optimized state/states, if not they are generally pretty 

close to the wild type values. Among the optimized sequences presented (3 or 8 mutations per 

sequence) we show across all states that our models have generally good performance and 

agreement with Rosetta values. Although our models tend to underestimate some of the high 
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energy values we believe this is not extremely relevant as these destabilized states would be seen 

as off target states that are not as important. We see that our models follow the general energetic 

landscape trends when compared with Rosetta energy values. Therefore, as long as our models 

can stay accurate for the optimized state at low energy levels then we generally see accurate 

results as a whole.  

Conclusions 

Potential Problems and Improvements 

 Our models are able to provide relatively good accuracy during optimization; however, 

there are some issues with model accuracy when optimizing certain states. Some of our models 

tend to underestimate specific sequences that have low energy scores (from Rosetta). This 

provides an energy score from our models that seems extremely ideal but it is an underestimated 

value from the true Rosetta energy value. This is a problem during optimization because it comes 

up as a false positive for an optimal (maximum) probability. This generally happens with a high 

number of mutations from the wild type sequence during optimization. There are potentially 

ways to bypass or fix these inaccuracies. First, the most obvious fix is we could simply only 

optimize for lower number of mutations such as triple or quadruple mutants. Secondly, we could 

find inaccurate states by running one or two optimizations per state and looking for designed 

sequences that are inaccurate compared with the true Rosetta energy values. We could then go 

back and re-train weighted models for inaccurate states with their own specifically tailored 

weight distribution based on the energy distribution of said state. This could provide more 

accurate results for low energy sequences which could provide better accuracy during 

optimization. Thirdly, we could select to run optimizations with models that include the 4 

angstrom distance two-body parameters. This change was seen to slightly improve model 
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accuracy and it should provide more accurate results across all states. At low mutation numbers 

these changes do not seem to be a necessity. However, they could be implemented for more 

accurate results as well. 

Expansion of Computational Method 

 This computational method could certainly be expanded to larger protein systems and 

conformational spaces. This is largely due to our online learning approach for model training 

which makes our approach not limited by system memory. Therefore, the biggest issue is 

generating accurate sequence-energy models for each state. Further expansion of this method 

could also be to implement more complex design objectives. The simplistic design objectives we 

use could definitely be expanded upon. For example, one could optimize for more than two 

states up to as many states as one would want. Also, one could include that energy for the 

stabilized state(s) has to be lower than the previous iterations energy or the wild type energy. 

This could ensure more stabilization of selected state(s). Other design objectives could include 

the classification of specific states as off-target, target, and transition states. With more 

biological information about specific conformations one could make these decisions. Essentially, 

specific subfunctions of a protein or enzyme could be mapped to specific conformational states. 

For example, substrate binding and product release could have specified conformations mapped 

to them from MSM’s. Then these conformations associated with each subfunction can be 

optimized for and the energy transition between them could potentially be controlled through use 

of a transition conformation. One could assign certain energetic constraints during optimization 

for specified on-target, off-target, and transition conformations. This would ultimately control 

the energetic transition between conformational states. If one wanted to attempt to improve 

stability of a specific subfunction then the associated state could be selected as target and could 
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be optimized for. On the contrary if this function wanted to be turned off one could label the 

state as off-target and select to stabilize other states. Sequences would then be optimized to 

selectively ‘turn off’ certain functions or destabilize certain states related to specific functions or 

to stabilize states related to these functions. Larger areas of sequence space could also be 

searched through using methods such as branch and bound optimization. We only cycle through 

around one million sequences for each optimized sequence. Using a branch and bound 

optimization method would allow searching through a much larger space of sequences.  

Model Accuracy Testing 

Further accuracy testing of designed sequences could also be done. For a designed 

sequence we show that we can generate an energy landscape plot through scoring the mutated 

sequence with our models as well as scoring the mutated sequence with an energy function 

(Rosetta and OpenMM). This is a good comparison for design but a more valid accuracy testing 

technique could be to compare our landscape plots as well as our shifted probability plots with an 

energy landscape plot and a shifted probability plot from an MSM of the designed mutation. We 

could score the energies of this new MSM and compare with our designed energy landscape 

plots and probability plots to see if the new MSM has energy values from new states that map to 

the energy values of our models energy landscape plots. 

Accurately Designed Energy Landscapes 

 Through this new protein engineering method we showcase the ability to completely and 

accurately redesign energy landscapes for ubiquitin mutants up to 8 mutations away from the 

wild type sequence. This is largely due to the online learning approach we take allowing us to 

train all computational models at the same time. We were able to generate accurate models for 

all 100 separate structures. Putting all of these models together during the design phase, our 
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models maintained good enough accuracy at low energy to stabilize either one target state or a 

pair of target states while destabilizing other off-target states.  
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