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Cooperative Ramp Merging System: 
Agent-Based Modeling and 
Simulation Using Game Engine

Ziran Wang, Guoyuan Wu, Kanok Boriboonsomsin, and Matthew J. Barth, University of California, Riverside, USA

Kyungtae Han, BaekGyu Kim, and Prashant Tiwari, Toyota Motor North America, USA

Abstract
Agent-based modeling and simulation (ABMS) has been a popular approach for modeling autono-
mous and interacting agents in a multi-agent system. Specifically, ABMS can be applied to connected 
and automated vehicles (CAVs) since CAVs can operate autonomously with the help of onboard 
sensors, and cooperate with each other through vehicle-to-everything (V2X) communications. In 
order to improve energy efficiency and mobility of traffic, we have developed an online feedforward/
feedback longitudinal controller for CAVs to cooperatively merge at ramps. Agent-based CAV models 
were built in the Unity3D environment, where vehicles are given connectivity and autonomy through 
C#-based scripting application programming interface (API). Agent-based infrastructure model is 
also built as a Unity3D simulation network based on the city of Mountain View, California. A simula-
tion of cooperative on-ramp merging is carried out with a distributed consensus-based protocol, 
and then compared with the human-in-the-loop simulation where the on-ramp merging vehicle is 
driven by four different human drivers on a driving simulator. The benefits of introducing the proposed 
protocol are evaluated in terms of travel time, energy consumption, and pollutant emissions. The 
results show that the proposed cooperative on-ramp merging protocol can reduce average travel 
time, energy consumption, and pollutant emissions by 7%, 8%, and 58%, respectively, when compared 
to the human-in-the-loop scenario.
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Introduction

CAV and Ramp Merging
Our transportation systems around the world have been devel-
oping at a very fast pace recently, driven by the desire for 
different countries and regions to reach economic prosperity. 
It is estimated that there are more than 1 billion motor vehicles 
worldwide now, and it is estimated that this number will 
be doubled within one or two decades [1]. Intensive transpor-
tation activities have led to a variety of social and economic 
issues, however. For instance, from the safety perspective, it 
was reported that there are more than 30,000 deaths from car 
accidents on United States (US) highways every year [2]. From 
the efficiency perspective, Los Angeles, for example, tops the 
2017 global congestion ranking, with an average of 102 hours 
spent in traffic jams per commuter [3].

Connected and automated vehicle (CAV) technology is 
regarded as one of the transformative solutions for addressing 
the aforementioned issues. Connected vehicles (CVs) utilize 
different communication technologies to communicate with 
other vehicles on the road, roadside infrastructure, and the 
“Cloud” [4]. Automated vehicles (AVs) use a variety of meth-
odologies (e.g., radar, LiDAR, computer vision) to perceive its 
surrounding, and therefore has the capability to operate 
without direct driver input of the steering, acceleration, and 
braking. CAVs take advantage of both CVs and AVs, lever-
aging connectivity and automation. Not only they can operate 
in isolation from other vehicles using onboard sensors, but 
they also can communicate with nearby vehicles and infra-
structure to make decisions in a cooperative manner.

Researchers around the world have been developing various 
CAV applications to address traffic-related issues and improve 
efficiency and safety in specific traffic scenarios, such as highway 
on-ramp merging. A literature review on the coordination of 
CAVs merging at highway on-ramps was conducted by Rios-
Torres et al., which summarized the developments and research 
trends in this research topic [5]. It can be noted that the optimal 
control approach has been adopted by many of the recent 
on-ramp merging works. Rios-Torres et al. presented an opti-
mization framework and an analytical closed-form solution to 
allow online coordination of merging vehicles [6]. A proactive 
optimal merging strategy was proposed by Awal et al. to compute 
the optimal merging order for vehicles coming from main line 
and on-ramp, which introduces different benefits in terms of 
energy consumption, merging efficiency, and traffic flow [7]. 
Raravi et al. proposed an approach to optimize the time-to-
conflict-zone for every vehicle once their merging sequences are 
defined [8]. Model Predictive Control (MPC) scheme was 
adopted by Cao et al. to generate a cooperative merging path for 
vehicles to merge smoothly into the main line [9].

In addition to the optimization-based approach, some 
other approaches have also been developed for on-ramp 
merging. Milanes et al. developed a fuzzy-logic method to 
allow vehicles to merge from the ramp onto main line fluidly 
without causing congestion on the ramp, while changing the 

speed of mainline vehicles to minimize the effect on the 
already-congested main line [10]. Marinescu et al. developed 
a slot-based algorithm for merging vehicles to cooperate with 
each other in a highly efficient manner [11]. Uno et al. used 
the virtual vehicle-platooning concept to map a virtual vehicle 
onto the main line before it actually merges [12]. Lu et al. 
adopted a centralized controller to interchange relevant infor-
mation with merging vehicles, and each merging vehicle 
conducts its own control actions to achieve the assigned time 
and reference speed requirements [13, 14].

The approaches proposed in these previous works have 
one or more of the following limitations: (1) Some of the 
methods are not always suitable for real-time implementation 
due to the difficulty in finding an optimal solution; (2) a 
vehicle is considered in a single form, making it difficult to 
extend to a vehicle string; (3) benefits of energy efficiency and 
pollutant emissions are not typical considered. The coopera-
tive ramp merging system proposed in this article is aimed at 
addressing these limitations.

Agent-Based Modeling and 
Simulation
Agent-based modeling and simulation (ABMS) focuses on 
microscale models that simulate the simultaneous operations 
and interactions of multiple agents [15]. There is no universal 
definition of the term “agent”; however, certain characteristics 
are often shared by agents from a modeling standpoint [16]. 
Those characteristics include (a) identifiable, with rules 
governing their decision-making capabilities; (b) interactive, 
with the ability to recognize and distinguish the traits of other 
agents; (c) goal-directed, with goals to achieve with respect to 
their behaviors; (d) autonomous, with the capability to function 
independently in their environment; (e) flexible, with the ability 
to learn and adapt their behaviors over time based on experience. 
Given the fact that CAVs can fulfill the above characteristics to 
a large extent, ABMS is considered an attractive approach for 
modeling transportation systems comprised of CAVs.

Many different tools for the modeling and simulation of 
CAVs are available. From the traditional four-step travel 
demand models to the state-of-the-art agent-based models, 
they all have their unique advantages and thus are suited for 
different purposes [17]. The emergence of the CAV technology 
triggers a challenging system modeling problem: Traditional 
modeling tools that consider only one target vehicle can no 
longer be adopted since we need to also consider a CAV’s 
surrounding environment, such as other vehicles, road infra-
structure, and pedestrians. Microscopic traffic simulators, 
such as SUMO, VISSIM, and Aimsun, provide the options for 
researchers to model a relatively large amount of vehicles in 
a traffic environment [18, 19, 20]. However, users of such simu-
lators cannot model full dynamics of vehicles, and neither can 
they get involved in the control of vehicles. Conversely, game 
engines are able to model complex virtual reality environ-
ments and also allow users (i.e., game players) to get fully 
immersed in the simulation game. Therefore, in this work 
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we adopt the Unity3D game engine to conduct ABMS of CAVs 
in a case study of cooperative on-ramp merging.

The Unity3D game engine used in this work integrates a 
custom rendering engine with the Nvidia PhysX physics engine 
and Mono, the open source implementation of Microsoft’s NET 
libraries [21]. Unity3D has been widely used to build simulation 
platforms. Graighead et al. implemented the Search and Rescue 
Game Environment (SARGE) with Unity3D, where robotic 
vehicles in this environment are equipped with various sensors, 
such as 3D camera, GPS, odometer, inertial measurement unit 
(IMU), and planar laser ranging [22]. KTH Royal Institute of 
Technology in Sweden conducted several studies on the visu-
alization of truck platooning using Unity3D [23, 24]. Toyota 
InfoTechnology Center in the USA also contributed a series of 
work to the vehicle prototyping research by Unity3D. Yamaura 
et al. built a virtual prototype of advanced driver-assistance 
systems (ADAS) with a closed-loop simulation framework that 
consists of four tools: Unity3D, Simulink, OpenMETA, and 
Dymola [25]. Kim et al. proposed several research directions 
and potential approaches for testing autonomous vehicle 
software in a virtual prototyping environment using Unity3D, 
from the perspective of test criteria and test case generation 
[26]. As an extended work of that work, Dai et al. presented a 
co-simulation toolchain for the automated optimization of 
various parameters in the virtual prototyping environment 
[27]. In general, Unity3D has the following advantages over 
other simulation tools:
	 a.	 Graphics and visualization: Since Unity3D is 

designed for developers to develop 3D video games, it 
has an impressive capability of graphics rendering 
and visualization. It streamlines the demonstration of 
the proposed CAV technology to the audience, 
especially to the general public (without knowing 
technical details). This is the primary reason why 
we selected Unity3D for performing ABMS of CAVs.

	 b.	 Integration with driving simulator: Unity3D provides 
easy access to change the input equipment, which 
makes it possible to integrate it with driving simulator 
hardware. Since we want to compare the proposed 
CAV technology with the baseline, using driving 
simulator hardware with human-in-the-loop 

simulation is more realistic than simply applying 
some human driver models in the simulation.

	 c.	 Asset store: Unity3D has an official asset store where 
Unity3D developers and users can upload and 
download different Unity3D assets, which allows 
Unity3D users to develop their own game 
environment based on others’ previous work, instead 
of building things from scratch.

	 d.	 Documentation and community: Unity3D provides 
thorough, well-organized, and easy-to-read 
documentation covering how to use each component 
in Unity3D, and an online commUnity website for all 
Unity3D users to ask and answer questions.

The structure of this article is as follows: The following 
section introduces the general architecture of the proposed 
cooperative ramp merging system, together with assumptions 
of this study. Then the proposed online feedforward/feedback 
longitudinal controller for CAVs is demonstrated, including 
an online parameters modeling algorithm and a distributed 
consensus longitudinal control algorithm. The agent-based 
modeling of CAVs and infrastructures, and the agent-based 
simulation of the proposed system are included next. The last 
section concludes the article and introduce some potential 
next steps of this study.

System Architecture
The proposed cooperative on-ramp merging system utilizes 
V2X communications of CAVs, which means vehicles can 
communicate with each other through V2V communications, 
and with the infrastructure through V2I communications. The 
illustrative system architecture is shown in Figure 1. When 
merging vehicles from the upstream of on-ramp and main line 
enter the V2I communication range of the infrastructure, they 
send the infrastructure their own information measured by 
onboard sensors. That information includes but is not limited 
to current acceleration, speed, and position of the vehicle. Then, 
the computer connected to the infrastructure processes all the 
information gathered from on-coming vehicles within a certain 

 FIGURE 1  Illustrative architecture of the V2X-based cooperative on-ramp merging system.
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time interval, and assigns a series of sequence identification 
numbers to different vehicles based on the vehicle sequencing 
protocol. Vehicles retrieve those sequence identification 
numbers from the infrastructure at the next time step.

Once a vehicle gets its own sequence identification 
number, it can automatically match its predecessor, which is 
not necessarily the one in front. In the case that the ego CAV 
and its predecessor are not on the same lane (such as vehicles 
6 and 5 in Figure 1), the predecessor is strategically projected 
as a virtual CAV on the ego CAV’s lane, where the virtual 
CAV has the same longitudinal speed and position as the 
original CAV. Note that longitudinal position of CAVs in this 
on-ramp merging system are calculated by their distance to 
the merging point, so the relative longitudinal position 
between any two CAVs is the difference between their 
distances to the merging point. After the predecessor of the 
ego CAV is decided, the proposed online feedforward/
feedback longitudinal controller can be applied, so the ego 
CAV will cooperatively merge with its predecessor before 
reaching the merging point. In this manner, the possibility of 
rear-end or side collision in the conflict zone will be largely 
decreased compared to human driving.

In this study, we focus on developing the online feedfor-
ward/feedback longitudinal controller for the CAV and build 
agent-based CAV model and infrastructure model. The afore-
mentioned vehicle sequencing protocol is adopted from one 
previous study, where details of the protocol are not intro-
duced in this study and can be referred to the literature [28]. 
However, the vehicle sequencing protocol is integrated in the 
agent-based infrastructure model in Unity3D environment, 
and also gets simulated in this study.

It should be noted that some reasonable specifications 
and assumptions are made in this work, as follows:

	 a.	 All vehicles in this system are CAVs with appropriate 
onboard sensors and communication equipment, and all 
hardware functions perfectly without any error or noise.

	 b.	 Only vehicles on the right-most main line are 
considered, and no cut-in maneuver is conducted by 
mainline vehicles which are in other lanes.

	 c.	 Only the longitudinal control is discussed in this 
system, while the lateral movements of vehicles do not 
affect their longitudinal movements.

Online Feedforward/
Feedback Longitudinal 
Controller

Problem Statement
First, the longitudinal dynamics of a vehicle i can be given as 
the following equations:

	 �r t v ti i( ) = ( )	 Eq. (1)

	 �v t a ti i( ) = ( )	 Eq. (2)

	 a t
m

F t R T t c v t c v t d ti net i br vi i pi i mii i
( ) = ( ) - ( ) - ( ) - ( ) - ( )é

ë
ù
û

1 2 	

Eq. (3)

where ri(t), vi(t), and ai(t) denote the longitudinal position, 
longitudinal speed, and longitudinal acceleration of vehicle i 
at time t, respectively; mi denotes the mass of vehicle i; Fneti

(t) 
denotes the net engine force of vehicle i at time t, which mainly 
depends on the vehicle speed and the throttle angle; Ri denotes 
the effective gear ratio from the engine to the wheel of vehicle 
i; Tbrii

(t)denotes the brake torque of vehicle i at time t; cvi 
denotes the coefficient of aerodynamic drag of vehicle i; cfi 
denotes the coefficient of friction force of vehicle i; and dmi(t) 
denotes the mechanical drag of vehicle i at time t.

The following equations can then be derived from the 
principle of vehicle dynamics when the braking maneuver is 
deactivated, i.e., vehicle i is accelerating by the net engine force:

	 F t x t m c x t c x t d tnet i i vi i pi i mii
( ) = ( ) + ( ) + ( ) + ( )�� � �2

	 Eq. (4)

and when the braking maneuver is active, i.e., vehicle i 
decelerates by the brake torque:

	 T t
t m c x t c x t d t

R
x

br
i i vi i pi i mi

i
i
( ) = ( ) + ( ) + ( ) + ( )�� � �2

	 Eq. (5)

It should be noted that the net engine force is a function 
of the vehicle speed and the throttle angle, which is generally 
based on the steady-state characteristics of engine and trans-
mission systems, and the mathematical derivation can 
be referred to [29, 30].

Generally, the longitudinal control command of a vehicle 
is based on a hierarchical strategy, where the high-level 
controller (Equations 1 and 2) generates a target acceleration, 
while the low-level controller commands the vehicle actuators 
to track the target acceleration (Equation 3). In this work, 
we focus on the high-level vehicle controller, where we propose 
the online feedforward/feedback longitudinal controller based 
on the predecessor following information flow topology of a 
string of vehicles, where the following vehicle only gets infor-
mation from its immediate leading vehicle through V2V 
communications, given that the problem can be generalized 
as a longitudinal control problem shown as Figure 2.

In this figure, the term lj denotes the length of vehicle j. 
As can be seen, the following vehicle i receives information 
from the leading vehicle j through V2V communications. 
Therefore, the problem of forming a predecessor following a 
string of vehicles can be formulated, given li and lj, and initial 
states ri(0), vi(0), ai(0), rj(0), vj(0), aj(0), how to apply a longi-
tudinal control algorithm such that

	 r t r t ri j headway( ) ® ( ) - 	 Eq. (6)

	 v t v ti j( ) ® ( )	 Eq. (7)
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	 a t a ti j( ) ® ( )	 Eq. (8)

where “→” means the value on the left-hand side converges 
to the value on the right-hand side and rheadway is the desired 
distance headway between two vehicles.

Most existing relevant works adopt the same set of 
control parameters (i.e., damping gains) independent of 
certain driving scenario characteristics [31, 32, 33, 34]. Such 
uniform assignment of control gains may not guarantee the 
constraints of the proposed longitudinal control algorithms 
under some driving scenarios. For example, the algorithm 
might work well when the initial speed difference of two 
vehicles are relatively small, and the initial headway is rela-
tively large. However, when the initial conditions of these 
parameters change dramatically but the control gains remain 
the same, some overshoot of the headway might appear 
during the convergence process. Although the dynamics of 
two vehicles will still converge to consensus eventually, 
safety constraints cannot be satisfied since rear-end collision 
between vehicles will happen. The convergence to stability 
might also take a very long time, making the algorithm inef-
ficient. Additionally, the speed or acceleration can change 
dramatically during a short period without considering the 
riding comfort of human passengers. These are the issues 
we want to address in this study by developing an online 
feedforward/feedback longitudinal controller, where the 
block diagram is shown as Figure 3.

Feedback Control: Distributed 
Consensus Longitudinal 
Control Algorithm
The information flow topology of a string of vehicles can 
be  represented by a directed graph G H E= ( ), , where 
H = {1, 2,   …,   n} is a finite nonempty node set and E H HÍ ´
is an edge set of ordered pairs of nodes (i.e., edges). The edge 
(i, j) ∈ E  denotes that vehicle j can obtain information from 
vehicle i. It is not necessarily true vice versa, since the infor-
mation flow is not always bidirectional. The neighbors of 
vehicle i are denoted by N H Ei j i j= Î ( )Î{ }: , . The topology 
of the graph is associated with an adjacency matrix 
A = éë ùûÎaij R, which is defined such that αij = 1 if edge (j, i), 
∈ E , αij  =  0 if edge (j, i)  ∉  ε, and αii  =  0. L  =  [ℓij]  ∈  ℝ  

(i.e., ℓij  =  −  αij, i  ≠  j, � ii
j j i

n

ij=
= ¹
å
1,

a ) is the nonsymmetrical 

Laplacian matrix associated with G. A  directed spanning tree 
is a directed tree formed by graph edges that connects all the 
nodes of the graph.

A double-integrator distributed consensus longitudinal 
control algorithm for CAVs is proposed as

	 �r t v ti i( ) = ( )	 Eq. (9)

�v t k r t r t t l v t t ti ij ij i j ij j i ij
g

ij

( )=- × ( )- - ( )( )+ + ( )× ( )((éë
+

a t

t tt v t v t t i ji i j ij( )))+ × ( )- - ( )( )( )ùû Îg t , , H
	 Eq. (10)

where τij(t) denotes the time-variant communication 
delay between two vehicles and t tij

g ( ) is the time-variant 
desired time gap between two vehicles, which can be adjusted 
by many factors like road grade, vehicle mass, braking ability, 
etc. The term l v t t t tj i ij

g
ij+ ( ) × ( ) + ( )( )éë ùût  is another form of 

the term rheadway in Equation 6. The longitudinal position and 
speed converges to position consensus and speed consensus, 
respectively, as

r t r t t l v t t t ti j ij j i ij
g

ij( )® - ( )( ) - - ( ) ( ) + ( )( )éë ùût t. 	 Eq. (11)

	 v t v t ti j ij( )® - ( )( )t 	 Eq. (12)

If we define �ri and �v i as the position error and speed error 
of vehicle i with respect to the leading vehicle of a vehicle 
string (i.e., the desired values of all following vehicles in the 
string), then Equations 9 and 10 can be rewritten as

	 �r t v ti i( ) = ( )	 Eq. (13)

� � �

� �

v t k r t r t t

v t v t

i ij ij J ij

i J ij

( ) = - × ( ) - - ( )( )( )é
ë

+ ( ) - -

a t

g t

i

i. tt i j( )( )( )ùû Î, , H
	 Eq. (14)

 FIGURE 3  Block diagram of the online feedforward/
feedback longitudinal controller.
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 FIGURE 2  Illustration of the predecessor following 
information follow topology.
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If we  further define the dynamics of the vehicle in a 
compact form as

	 � � � � �r r r r rT T
i
T

n
T T

= ¼ ¼éë ùû1 2, , , , , 	 Eq. (15)

	 � � � � �v v v v vT T
i
T

n
T T

= ¼ ¼éë ùû1 2, , , , , 	 Eq. (16)

then the state vector can be defined as

	 � � �c = éë ùûr vT T T
	 Eq. (17)

The double-integrator vehicle dynamics in Equations 15 
and 16 can be further transformed into a compact form as

	 � � ��c c c tt t t tk k( ) = ( ) + - ( )( )G G1 	 Eq. (18)

	 G G1

0 0 0
=

- -
é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

´ ´ ´ ´n n n n
k

n n n n

k k

I

A A A A� � � �g g
, 	 Eq. (19)

	 �A ij n n= ¼ ¼{ }-( )diag , , , , ,a a a a12 23 1 	 Eq. (20)

where τk(t), k = 1, 2,    … ,   m with m ≤ n(n − 1) is defined 
as an element of the time-varying communication delay τij(t).

Given the Leibniz-Newton formula,

	

� � �

� �

�c t c c

c c

t

t

t t t t s ds

t t s

k
t

l
t

k

k

- ( )( ) = ( ) - +( )

= ( ) - +

- ( )

- ( )

ò

ò

0

0

G -- +( )( )t l t s ds
	 Eq. (21)

where l = 0,1,2,  … , m, and substitute this into Equation 
18 as

� � ��c c c t
t

t B t t s t s dsk l
t

l

k

( ) = ( ) - + - +( )( )
- ( )
òG G
0

	 Eq. (22)

	 B
I

A Ak
N N N N= + =
- -
é

ë
ê

ù

û
ú

´ ´G G1

0

g
	 Eq. (23)

where A A Ak= - +� � .
If there exists a directed spanning tree in the platoon 

information f low topology G , and the control gain γ of 
Equation 10 suffices,

	 g
m

m mm h
i

A

i

i i
i

Im
>

{ }
{ } ×

ì
í
ï

îï

ü
ý
ï

þï
Î ( )

max
Re

	 Eq. (24)

where μi is the ith eigenvalue of A and h A( ) is the set of 
all eigenvalues of A, then there exists a constant τ0 > 0 such 
that when 0 ≤ τk ≤ τ0(k = 1, 2,   …,   m), the vehicles in the same 
string can achieve consensus as defined in Equations 11 and 
12. Due to the limitation of space in this article, the proof of 

this theorem is not covered in this section, but it can be referred 
to the reference [28].

String stability is a desirable characteristic for vehicle 
strings to attenuate either distance error, velocity, or accelera-
tion along upstream direction, and therefore guarantee the 
safety of the longitudinal control algorithm. If we consider 
vehicle 𝑖 as a following vehicle (=𝑖 − 1), then we can write 
Equation 10 in the Laplace domain with time-variant commu-
nication delay set to a constant value 𝜏 as

	

A s k R s R s e
l
s

V s

i i i i i i i
s i

i

( ) = - × ( )- ( ) +
æ

è
ç
é

ë
ê +

(

-( ) -( ) -( )
- -a t

1 1 1
1

))
+( ) ö

ø

÷
÷÷
+ ( )- ( )( )

ù

û

ú
ú
ú

Î- -( )
-

-e
t

s
V s V s e is i i

g

i i i
st t

t
g

1

1 , H

	

Eq. (25)

After some algebraic manipulations when assuming low 
frequency condition, the following equation can be derived

A s

A s

k e se t b s e
i

i

i i i i
s s

ij
g

i i
s( )

( )
=

× + +( ) +éë
-

-( ) -( )
- - -

1

1 1a t gt t t ùùû
+ +s si

2 1g
	 Eq. (26)

where the control gains k and γ in Equation 10 can 

be chosen to guarantee 
A s

A s
i

i

( )
( )

£
-1

1 and hence satisfy the string 

stability for all frequencies of interest [28].

Feedforward Control: Online 
Parameters Modeling 
Algorithm
As can be seen in the proposed consensus algorithm (10), there 
are two control gains k and γ. Although most existing literature 
proved convergence and string stability of their proposed 
consensus algorithms, whether they can satisfy real-world 
constraints during the implementation is not known. Since most 
works only adopt one initial condition of vehicle in the simula-
tion study, one single set of well-defined control gains worked 
well under that condition. However, given different initial states 
of CAVs, the consensus algorithm tends to behave differently in 
terms of overshoot, convergence rate, and maximum changing 
rate. A set of control gains working well under one initial condi-
tion does not necessarily mean working well under all other 
initial conditions. Finding the ideal value of control gains in real 
time when the initial conditions of vehicles are dynamically 
changing remains an unsolved problem.

In this section, we propose the feedforward control-based 
parameter modeling algorithms, aiming to find the ideal 
values of control gains in terms of different initial states of the 
leading vehicle and the following vehicle by building a lookup 
table. Given the second-order dynamics of vehicles as 
Equations 1 and 2, the initial condition of the following vehicle 
i and the leading vehicle j are (ri(t0), vi(t0), ai(t0)) and  
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(rj(t0 − τij(t0)), vj(t0 − τij(t0)), aj(t0 − τij(t0))), where t0 denotes the 
initial time step when the consensus algorithm is applied. Since 
the proposed double-integrator consensus algorithm (10) does 
not consider the acceleration of the leading vehicle, and the 
positions of vehicles are only calculated as their difference, the 
initial condition of the proposed consensus algorithm can 
be simplified to (Δrij(t0), vi(t0), vj(t0 − τij(t0))), where Δrij(t0) = 
rj(t0 − τij(t0)) − ri(t0). The reason we cannot simplify the initial 
speed of two vehicles into one term is that the term vi(t0) is also 
calculated in the position consensus term (11), so the value of 
each vehicle’s speed matters to the consensus algorithm.

Every time the consensus algorithm (10) starts to run on 
the vehicle i, the value of control gains kij and γ can be set in 
real time with the initial condition of vehicles (Δrij(t0), vi(t0), 
vj(t0 − τij(t0))). The method is to build a three-dimensional 
lookup table ahead of time covering certain possible values of 
the initial conditions within certain sets, and the ideal values 
of control gains can be picked from certain sets of candidates. 
The three major constraints we consider when choosing the 
ideal control gains are safety, efficiency, and comfort.

Constraint 1: Safety Constraint The overshoot of the 
algorithm influences the safety of the longitudinal motion 
controller. Since the consensus algorithm is proposed to 
control the longitudinal motion of vehicles, overshoot of the 
longitudinal position might cause rear-end collision between 
two vehicles. Therefore, the following constraint should 
be  satisfied to guarantee the safety of the longitudinal 
motion controller

	 r t t r t l t t tj ij i j consensus- ( )( ) - ( ) > Î[ ]t , 0 , 	 Eq. (27)

where tconsensus denotes the time step when consensus is 
reached. If the headway between the leading vehicle and the 
following vehicle is no greater than the length of the leading 
vehicle, a rear-end collision happens. Control gains should 
be set to guarantee no overshoot of the headway.

Constraint 2: Efficiency Constraint The convergence 
rate of the consensus algorithm influences the efficiency of 
the longitudinal motion controller. If the convergence process 
takes a relatively long time, the traffic mobility and roadway 
capacity are highly affected during this process. Specifically, 
if the consensus algorithm is applied to control the longitu-
dinal motion of ramp merging vehicles, slow convergence rate 
also introduces safety issue since consensus must be reached 
before the two vehicles merge with each other. Control gains 
should be set with the least time to consensus min tconsensus 
(they need to firstly satisfy constraint (27)). Consensus is 
reached when the following constraints are satisfied

r t t r t

l v t

j consensus ij consensus i consensus r

j i con

- ( )( ) - ( ) £

+

t h .

ssensus ij
g

consensus ij consensust t t( ) × ( ) + ( )( )éë ùût
	 Eq. (28)

          
v t t v t

v t

j consensus ij consensus i consensus

v j consen

- ( )( ) - ( )
£ ×

t

h ssus ij consensust- ( )( )t
	 Eq. (29)

	 a ti consensus a( ) £ d 	 Eq. (30)

	 jerk ti consensus jerk( ) £ d 	 Eq. (31)

where jerki is the derivative of vehicle i’s acceleration/
deceleration; ηr and ηv are proportional thresholds of the 
headway consensus and speed consensus, respectively; δa and 
δjerk are differential thresholds of acceleration and jerk 
consensus, respectively.

Constraint 3: Comfort Constraint The maximum 
changing rate of the consensus algorithm is defined as the 
maximum absolute value of acceleration/deceleration and 
jerk. This factor influences the ride comfort of the proposed 
longitudinal motion controller. A high maximum changing 
rate does not necessarily mean a high convergence rate, since 
algorithm (10) can either converge to consensus within a rela-
tively short time but in a smooth manner or converge to 
consensus within a relatively long time but change extremely 
fast at first. In this constraint, the maximum absolute value 
of acceleration/deceleration and jerk matter, since passengers 
on the vehicle would expect a comfort ride with acceleration/
deceleration and jerk limited to certain intervals. The 
maximum changing rate of the consensus algorithm is evalu-
ated by defining a parameter Ω as

	

Wi
t t t

i i
consensus

a t d t= × ( ) ( )( )
+ ×

Î[ ]

Î

w

w
t

1

2

0

max

max

max max

,
| |,| |

tt t
i i

consen

consensus

jerk t jerk t

t t t
0

0

,
| |,| |

,

[ ]
( ) ( )( )

Î

max min ,

ssus[ ]

	 Eq. (32)

where ai
max, di

max , jerki
max, and jerki

min  denote the maximum 
acceleration, maximum deceleration, maximum jerk, and 
minimum jerk of vehicle i, respectively, and ω1 and ω2 are 
weighting parameters. Control gains should be set with the 
minimum value of Ω in this constraint.

Online Parameter Modeling Protocol After above 
three constraints are developed, we propose Algorithm 1 to 
build the three-dimensional lookup table, aiming to choose 
the control gains. The set of Δrij contains ζ1 elements, the set 
of vi contains ζ2 elements, and the set of vj contains ζ3 elements; 
therefore, the size of this lookup table is ζ1 × ζ2 × ζ3. These 
three sets ΠΔrij

,   Πvi
, and Πvj

 are sorted set in ascending order. 
Each combination of these three parameters maps to an ideal 
value of k and an ideal value of γ, out of their sets Πγ and Πk. 
Note that some specific initial condition cannot satisfy 
Constraint 1, as shown on line 04-05 of Algorithm 1. In that 
case, no value of control gains is generated, considering algo-
rithm (10) being not functional under that particular condition.

Once the lookup table has been generated, the initial 
condition of vehicles does not always match certain values 
while implementing algorithm (10)

	  D Dr t v t v t t r v vij i j ij ij i j0 0 0 0 1 2 3
( ) ( ) - ( )( )( ) ¹ ( ), , , ,t

x x x
	 Eq. (33)
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Therefore, in order to find the ideal values of control gains 
given different initial conditions, Algorithm 2 is proposed. If 
the initial states of vehicles fall out of the ranges, invalid values 
are returned as shown on line 02-03, meaning no values of γ 
and k could be selected by the online parameter modeling 
protocol. In such rare cases, algorithm (10) cannot guarantee 
all three constraints and will not be applied to control the 
vehicle. The default car-following algorithm and lane-
changing algorithm equipped on the vehicle (whatever they 
are) will be applied to control the longitudinal and lateral 
vehicle motion, respectively.

ABMS Using Unity3D 
Game Engine

Agent-Based Modeling  
of CAVs
A vehicle is modeled as a game object in Unity3D, which 
always includes a rigid body and its associated colliders. By 
applying forces or torque to the vehicle’s rigid body, the vehicle 
will start to move. Forces such as gravity, friction, drag, and 
angular drag also have effects on the movement of a vehicle. 
Compared to real-world environment, time in Unity3D is 
discrete (default simulation time step is 0.02 s), so the accu-
mulative force acts on the vehicle’s rigid body at the start of 
each simulation time step and resets to zero before the start 
of the next simulation time step.

Colliders are components defined by Unity3D to simulate 
physical collisions between two rigid bodies. Since colliders 
are the major physical parts of game objects, they also define 
the shapes and sizes of game objects in the simulation. Wheel 
colliders, specifically, are colliders of game objects that interact 
with the simulation environment in Unity3D. In our coopera-
tive on-ramp merging case study, we adopt two different 
vehicle models with realistic dimensions in the real world, 
which are shown in Figure 4(a) and (b).

In order to enable vehicles with CAV technology in 
Unity3D, scripts with cooperation protocol are attached to 
enable their connectivity, and sensors are integrated to enable 
their autonomy. Specifically, a script written in Unity3D’s 
C#-based Mono Scripting application programming interface 
(API) is attached to all merging vehicles, which allows those 
CAVs to retrieve information from the infrastructure and other 
vehicles through V2X communications. This script also controls 
CAV’s longitudinal movements by the proposed online feed-
forward/feedback longitudinal control algorithm. Since 
we mainly focus on the longitudinal control of CAVs in this 

 FIGURE 4  Vehicle models (a, b) and radar illustration  
(c) built in Unity3D.
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 ALGORITHM 2  Search lookup table in real time.
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 ALGORITHM 1  Build feedforward lookup table.
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case study, the Simple Waypoint System is adopted, where a 
vehicle can track the preset trajectory with a user-defined longi-
tudinal speed [35]. Additionally, four radar sensors, including 
long-/short-range front radars and left/right blind spot radars, 
are equipped on each CAV. As shown in Figure 4(c), the long-
range front radar has a relative narrow angle and long detection 
distance, so it is appropriate to be considered the primary front-
sensing approach. In order to prevent any rear-end collisions, 
the long-range front radar and the short-range front radar 
(redundant sensor) continuously check the distance to the 
physical preceding vehicle on the same lane.

Agent-Based Modeling  
of Infrastructure
In order to conduct ABMS for CAVs, we build a simulation 
environment in Unity3D partially based on the city of 
Mountain View, California as shown in Figure 5(a). California 
State Route 237 (SR 237) is the major corridor in this environ-
ment, with several on-ramps and off-ramps connecting it with 
urban arterial roads. In this work, we conduct the case study 
based on the on-ramp which connects E Middlefield Rd and 
SR 237 westbound. As shown in Figure 5(b), this on-ramp has 
a length of 267 meter, with a roadside unit-equipped infra-
structure positioned between the on-ramp and main line. 
There is also an elevation difference between the on-ramp and 
main line, which means the vision of the on-ramp vehicle’s 
driver is obstructed for a long period before merging.

In this simulation environment, a game object associated 
with a sphere collider is used to simulate the V2I-enabled 
infrastructure. Essentially, the center of the sphere collider is 
positioned at this game object (which is represented by a power 
tower in Figure 5b), and the sphere collider’s radius can be set 
as the V2I communication range. The “isTrigger” function of 

the sphere collider is enabled to prevent any collisions with 
incoming vehicles, otherwise vehicles cannot enter the volume 
of this collider. After setting this sphere collider to “isTrigger,” 
when a vehicle enters and exits its volume, it sends 
“OnTriggerEnter” and “OnTriggerExit” messages. Then 
we can attach a configuration script to this game object to call 
these functions and integrate the aforementioned vehicle 
sequencing protocol into the script. Namely, when a vehicle 
enters the radius of this sphere collider (i.e., enters the V2I 
communication range of the infrastructure), the 
“OnTriggerEnter” function is called, and the infrastructure 
retr ieve information from the vehicle through 
“GetComponent” function. The infrastructure then processes 
this information along with other information retrieved from 
all other entering vehicles during a certain time window and 
sends the sequence identification number back to each vehicle 
at the next time step of sorting process. Once a vehicle exits 
the radius of this sphere collider, the “OnTriggerExit” function 
is called, and the infrastructure clear all stored information 
of this vehicle.

The information sent from a vehicle to the infrastructure 
includes its longitudinal speed, acceleration, and the global 
position. Since the distance to the merging point of a vehicle 
is needed to calculate its estimated arrival time, we also come 
up with a map-matching system to convert the global position 
of a vehicle into its distance to the merging point. Since the 
road segment is neither straight nor flat, we cannot simply 
calculate the distance between the vehicle’s position and the 
merging point’s position. Instead, we build paths with multiple 
waypoints along the lanes of both main line and on-ramp. 
Whenever the infrastructure gets the global position of a 
vehicle, it firstly compares the position with all waypoints’ 
positions on that path to figure out which path segment this 
vehicle is currently on and what the next waypoint is. Once 
finished, the distance to the merging point of this vehicle is 
the sum of its distance to the next waypoint and the path 
length from the next waypoint to the merging point.

It should be noted that building such a CAV simulation 
environment that conforms to various test criteria requires 
huge efforts from developers. Test criteria are oftentimes 
decided by different OEMs, CAV features to be tested and the 
level of confidence obtained from previous tests. In order to 
construct a similar realistic test environment in the virtual 
simulation in an automatic manner, one needs to come up 
with some test case generation protocol, which is discussed 
in the reference [26].

Agent-Based Simulation  
and Results
Cooperative Merging Simulation with Proposed 
Protocols In this work, we  study the case where one 
on-ramp vehicle tries to merge with a six-vehicle string trav-
eling in the main line. The proposed cooperative on-ramp 
merging protocol is applied to all these seven vehicles. There 
are other vehicles on the on-ramp and in the main line, but 

 FIGURE 5  Game environment of Mountain View, California 
(a) and infrastructure (b) built in Unity3D.
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they are all conventional vehicles and are running with a 
cruise speed of 20 m/s in their own lanes, so they will not 
affect the cooperative merging process. Hence, they are not 
considered when we analyze simulation results. The on-ramp 
vehicle is discharged from the starting point of the on-ramp 
at an initial speed of 5 m/s. The mainline vehicles are 
discharged from the upstream of the main line (which is 
outside the V2I communication range of the infrastructure) 
with random initial speeds and longitudinal positions. Before 
they reach the V2I communication starting point, they are 
driven in a vehicle string at a desired speed of 20 m/s and with 
a desired time gap of 0.5 s. Upon the mainline vehicles arriving 
at the V2I communication starting point, the vehicle string 
has already been formed with a stable state.

Figure 6 illustrates the cooperative on-ramp merging 
process in this simulation. Figure 6a shows the state when the 
mainline vehicles have already formed the vehicle string, but 
have not entered the V2I communication range yet. Figure 6b 
shows that the on-ramp vehicle and all mainline vehicles are 
already inside of the V2I communication range, and a 
sequence identification number of “2” is assigned to the 
on-ramp vehicle. Therefore, the mainline vehicle with a 
sequence identification number of “3” is decelerating to create 
a gap for the on-ramp vehicle to merge. When the on-ramp 
vehicle is about to merge, as shown in Figure 6c, the gap has 
already been created and no further longitudinal speed adjust-
ments are needed.

Human-in-the-Loop Simulation with Driver 
Simulator Platform After running the simulation with 
all the vehicles controlled by the proposed online feedforward/
feedback longitudinal controller, we also conduct human-in-
the-loop simulations where the merging vehicle is controlled 
by a human driver on a driving simulator as shown in Figure 7. 
In this scenario, the on-ramp vehicle is a conventional vehicle 
with no connectivity and autonomy, while all six mainline 
vehicles are still CAVs. A mainline vehicle can sense the 

on-ramp vehicle by its long-range front radar once the 
on-ramp vehicle cuts in front.

Given the fact that Unity3D allows users to change user 
input in its graphical user interface (GUI) very easily, the 
Logitech driving simulator (or potentially any other plug-in-
and-play driving simulators) can be connected to Unity3D by 
simply plugging in the USB cable. A car user control script 
and a car controller script work together to allow a human 
driver to control the longitudinal and lateral movements of 
the vehicle on the driving simulator platform. The car user 
control script receives horizontal input from the driving simu-
lator’s steering wheel and vertical input from the driving 
simulator’s throttle and brake pedals, then it calls the move 
function of the car controller script with the horizontal and 
vertical inputs. Wheel colliders of the vehicle will then 
be controlled based on these inputs, and the vehicle can be set 
in motion. In order to reduce any system biases on the results 
of human-in-the-loop simulation, we recruit four different 
drivers to drive the on-ramp vehicle, each for five times. The 
drivers drive the vehicle on the driving simulator based on 
their own preferences, namely, there is no requirement for 
them to drive aggressively or cautiously. We categorize their 
driving behaviors only after the speed trajectories are gener-
ated by their simulation runs. It should be also noted that a 
scene view of the game is displayed on the left-hand side of 
the driver’s view, which is slightly different with the view 
shown in Figure 7. The scene view works as the rearview 
mirrors to allow the driver of the vehicle to observe its 
surrounding traffic.

Simulation Results of Cooperative Merging 
S im u la t ion  a n d H u m a n - in - t he - Loop 
Simulation The vehicle speed profiles and distances to the 
merging point from the cooperative merging scenario and the 
human-in-the-loop scenario are compared in Figures 8 and 
9, respectively. Both cooperative merging simulation and 
human-in-the-loop simulation are run with a frequency of 50 
FPS. It should be noted that, we only show five of the twenty 
simulation runs from the human-in-the-loop scenario and 
categorize them into “cautious driver” and “aggressive driver” 

 FIGURE 6  Cooperative on-ramp merging process.
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 FIGURE 7  Driving simulator platform.
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 FIGURE 9  Distance profiles of vehicles driven in 
different scenarios.
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 FIGURE 8  Speed profiles of vehicles driven in 
different scenarios.
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cases based on the average changing rate of vehicle speed, but 
all twenty simulation runs are included when calculating the 
results shown in Table 1.

Also note that in the cooperative merging simulation, 
ramp vehicle merges to the second place of the vehicle string. 
However, in the human-in-the-loop simulation, there is no 
requirement for the human driver to follow. All he/she needs 
to do while conducting the human-in-the-loop simulation is 
to drive the ramp vehicle from on-ramp to the main line, but 
the ramp vehicle can either merge into the six-vehicle string, 
or attach to the front/end of the vehicle string.

Simulation results are shown in Figures 8 and 9, where 
Figure 8 shows the longitudinal speed profiles of CAVs, while 
Figure 9 shows the longitudinal position of CAVs, respectively, 
for different simulation cases. Note that the longitudinal posi-
tions of CAVs on different lanes (main line and on-ramp) are 
calculated by their distances to the merging point, which is 
also the way we  apply our online feedforward/feedback 
longitudinal controller.

Figure 8a shows the speed profiles generated from the 
proposed cooperative merging scenario, where mainline 
Vehicle 2 reaches the V2I communication starting point at 
around 3 s, and is assigned a sequence identification number 
of 3, which means it needs to follow the movement of the 
on-ramp vehicle. When Vehicle 2 starts to decelerate to adjust 
its speed and longitudinal position with respect to the on-ramp 
vehicle, its followers (mainline Vehicles 3, 4, 5, and 6) also 
decelerate accordingly since they are still in a vehicle string. 
Meanwhile, the on-ramp vehicle gradually adjusts its speed 
and longitudinal position with respect to mainline Vehicle 1. 
Therefore, when the merging happens at around 18 s, there is 
no speed change of any vehicle. As shown in Figure 9a, 
different vehicles’ distances to the merging point further 
explain aforementioned descriptions.

For the cautious driver cases shown in Figure 8b and c, 
the on-ramp vehicle speeds up with a relatively small accelera-
tion while it is on the on-ramp. Upon approaching the merging 
point, the on-ramp vehicle is already behind all mainline 
vehicles. So, it attaches to the end of the mainline vehicle 
string, and there is no speed change of any mainline vehicle. 
The distance to the merging point plots shown in Figure 9b 
and c are also straightforward.

For the aggressive driver cases shown in Figure 8d, e, and 
f, the on-ramp vehicle speeds up with a relatively large accel-
eration at first since the driver’s line of sight is obstructed and 
the driver does not know the traffic condition in the main line 
at that time. Once the driver observes the traffic condition at 
around 14 s, the vehicle begins to slow down to avoid rear-end 
collision with the downstream traffic (which all travel at a 
speed of 20 m/s). Although the aggressive drivers already 

decide to overpass the whole six-vehicle string, they also need 
to adjust their speed to merge into the gap between the string 
leader and its downstream vehicle (but the time gap is larger 
than 0.5 s so it is possible to merge in). Upon attaching to the 
front of the mainline vehicle string, all the six followers in 
that string change speed accordingly to prevent any rear-end 
collisions, and there are also some speed fluctuations after-
wards due to the relatively poor speed control of the 
aggressive drivers.

We also compare the system performance of the coopera-
tive merging scenario with that of the human-in-the-loop 
scenario, in terms of travel time, energy consumption, and 
pollutant emissions. The number shown in each cell of Table 1 
is the sum of all seven vehicles’ results over the same traveling 
distance. The results for the human-in-the-loop scenario are 
the average of all twenty simulation runs. Specifically, travel 
time is used to represent the mobility benefit of the proposed 
cooperative on-ramp merging protocol, and it is calculated as 
the average time spent by all seven vehicles to travel the same 
distance. It is shown in Table 1 that a reduction in travel time 
of 6.6% can be achieved by applying the protocol. Energy 
consumption and pollutant emissions are calculated by the 
US Environmental Protection Agency’s MOtor Vehicle 
Emission Simulator (MOVES) [36]. Compared to the human-
in-the-loop scenario, the cooperative merging protocol 
provides 7.8% savings on energy consumption and up to 58.4% 
reduction on pollutant emissions, respectively.

Conclusions and Future 
Work
In this work, an online feedforward/feedback longitudinal 
control algorithm was developed for CAVs. The game engine 
Unity3D was used to create ABMS of CAVs due to its visual-
ization capability and many other advantages. Agent-based 
models of CAVs and infrastructures were built in Unity3D 
with colliders and C#-based scripting API for a roadway envi-
ronment in Mountain View, California. The models were used 
to simulate a situation where an on-ramp vehicle merges into 
a string of CAVs in the main line. A comparison between the 
cooperative merging scenario and the human-in-the-loop 
scenario was made, analyzing the benefits of the proposed 
cooperative merging protocol in terms of travel time, energy 
consumption, and pollutant emissions. It is shown that the 
proposed cooperative merging protocol can result in 7% travel 
time reduction, 8% energy savings, and up to 58% pollutant 
emission reduction when compared to human driving.

TABLE 1 Comparison results between cooperative merging and baseline.

Travel time (s) Energy (KJ) HC (g) CO (g) CO2 (g) NOx (g)
Cooperative merging 218.14 9154.0 0.0094 1.1737 651.29 0.0440

Human-in-the-loop 233.58 9930.6 0.0200 2.8192 706.54 0.0759

Reduction percentage 6.6% 7.8% 53.0% 58.4% 7.8% 42.0%
© 2019 SAE International. All Rights Reserved
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Future work includes developing multi-fidelity CAV 
models with higher flexibility and quality, where a mixed 
traffic environment (penetration rate of CAVs is not 100%) 
can be evaluated. Additional case studies of CAV technology 
can be conducted within this ABMS platform, such as coop-
erative adaptive cruise control (CACC) and eco-driving at 
signalized intersections. Integrating Unity3D with other 
software platforms via User Datagram Protocol (UDP) 
socket communicat ion is a lso another possible 
research direction.
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Definitions/Abbreviations
ABMS - agent-based modeling and simulation
ADAS - advanced driver-assistance systems
API - application programming interface
AV - automated vehicle
CACC - cooperative adaptive cruise control
CAV - connected and automated vehicle
CV - connected vehicle
GUI - graphical user interface
IMU - inertial measurement unit
MOVES - MOtor Vehicle Emissions Simulator
MPC - model predictive control
UDP - User Datagram Protocol
V2I - vehicle-to-infrastructure
V2V - vehicle-to-vehicle
V2X - vehicle-to-everything
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