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Abstract
Background: Multiple technologies have been brought to bear on understanding the three-
dimensional morphology of individual neurons and glia within the brain, but little progress has been
made on understanding the rules controlling cellular patterning. We describe new matlab-based
software tools, now available to the scientific community, permitting the calculation of spatial
statistics associated with 3D point patterns. The analyses are largely derived from the Delaunay
tessellation of the field, including the nearest neighbor and Voronoi domain analyses, and from the
spatial autocorrelogram.

Results: Our tools enable the analysis of the spatial relationship between neurons within the
central nervous system in 3D, and permit the modeling of these fields based on lattice-like
simulations, and on simulations of minimal-distance spacing rules. Here we demonstrate the utility
of our analysis methods to discriminate between two different simulated neuronal populations.

Conclusion: Together, these tools can be used to reveal the presence of nerve cell patterning and
to model its foundation, in turn informing on the potential developmental mechanisms that govern
its establishment. Furthermore, in conjunction with analyses of dendritic morphology, they can be
used to determine the degree of dendritic coverage within a volume of tissue exhibited by mature
nerve cells.

Background
Recent advances in developmental neuroscience have
revealed how the mechanisms controlling proliferation,
fate determination, migration, differentiation, synap-
togenesis and cell death each contribute to the establish-
ment of the architecture and connectivity of the mature
brain. What has been lacking, however, is an understand-
ing of the determinants of the positioning of neurons in
3D space: what controls the position a neuron will come

to occupy within a brain structure relative to other cells in
the local environment? In some structures, cells are
packed side-by-side and there is no mystery to their spac-
ing; in others, the distance between members of a cell type
is often conspicuous, but we know nothing of the con-
straints imposing this spacing. We do not know, for
instance, whether higher-order patterning is present,
much like a rough or distorted lattice, or whether such
cells are essentially randomly distributed within a volume
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of tissue, constrained only by the physical size of other
cells. We may know quite a bit about the dendritic mor-
phology of individual cells within a region, and can make
inferences about the relationship between the morphol-
ogy of a cell and how a population of those cells should
be distributed to maximize a uniform dendritic sampling
within the structure, but little concrete evidence exists to
relate one to the other. This issue of neuronal positioning,
almost completely neglected within the brain, has been
explored extensively within the two-dimensional confines
of the neural retina, where modeling studies have revealed
the rules governing intercellular spacing, in turn suggest-
ing plausible biological mechanisms that might embody
such spacing rules [1-4]. Several mathematical techniques
have been used to good effect in quantifying neuronal pat-
terning in 2D [5-7]. Computer aided methodologies now
allow for the localization of x, y, z centroids for neuroan-
atomical structures in 3D space [8,9], making the study of
neuronal patterning in 3D space more feasible provided
the tools for such spatial analysis exist.

To this end, we have now extended 2D methods to allow
a comparable analysis on 3D datasets, described in this
paper, to study the geometrical relationships between
cells in a volume of tissue and to model their positioning
in 3D space. To our knowledge, our program is the first
GUI-driven program that allows for the interactive explo-
ration and analysis of 3D neuronal datasets.

Implementation
Computing environment
Our program, Spatial Analysis 3D (SA3D), is written
mostly in matlab, for several reasons. First, matlab is
cross-platform (available on Unix, Macintosh and Win-
dows), and combines a powerful numerical environment
with a portable GUI. We hope that some of our users will
know the matlab language and hence develop further rou-
tines to be included in future releases of SA3D. Also, mat-
lab can interface with programs written in other languages
like C. We use this feature for some of the more numeri-
cally-intensive aspects of the computation (such as the
Dmin model simulations), and also for reuse of existing C
functions for the analysis of 3D datasets [10].

SA3D is available on our website [11] along with a sepa-
rate user guide that describes in detail how to install and
use the program.

Data input/output
Data files (containing the x, y, z locations of neurons) can
be read in to SA3D in several formats, most notably an
excel data file, a comma separated value file, or a tab-
delimited text file. Program output is mostly graphical,
and standard matlab menu items allow for these windows
to be printed. In addition, data generated by the program

can be saved in the native matlab format – files are given
the suffix .sa3 to indicate they are generated by SA3D.

Analysis functions
The bulk of the program is dedicated to quantitative anal-
ysis of the spatial positioning of neurons, described
below. In addition, we make use of matlab's built-in
capacities for interactively viewing 3d datasets, e.g. to pro-
vide real-time rotation of datapoints [see Additional files
1 and 2].

Delaunay tessellation
Delaunay tessellations (and the complementary Voronoi
domain volumes) are computed using the functions pro-
vided by matlab. These routines are, in turn, based upon
the standard routines within Qhull [12], and can compute
tessellations in geometrical spaces higher than just 2D.

Autocorrelation
The autocorrelation routines, and corresponding density
recovery profile (DRP), are written in C, and generalise the
formulation from 2D into 3D [5]. One complication with
the calculation of the DRP in 3D is computation of the
correction factor to handle boundary effects; here we have
used the isotropic boundary correction [10], imple-
mented in C by Prof. Adrian Baddeley along with the F, G,
K functions.

F, G, K functions
The program also permits the plotting of three other sta-
tistics often used in the analysis of spatial point patterns,
being the G, F and K functions [7,10]. The G function is
the cumulative frequency distribution for the population
of nearest neighbor distances:

where yi is the distance of cell i to its nearest neighbor, and
n is the number of cells. I(·) is the indicator function,
which is one if the argument is true, else zero. The F func-
tion, by contrast, plots the cumulative frequency distribu-
tion for the distance of each grid point to its nearest cell
when a regularly spaced grid of g points is superimposed
upon the population:

where zi is the distance of grid point i to the nearest cell.
The F function is useful for detecting non-homogeneities
in the distribution of cells within the field. Finally, the K
function counts the expected number of cells within a
given distance of a cell:
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where |B| is the volume of the sample region and dij is the
distance between cell i and cell j. The K function is the
cumulative version of the DRP. These three functions were
implemented in C and kindly provided by Prof. Adrian
Baddeley. All three functions include several methods to
correct for edge effects; see [10] for details.

Modeling functions
As well as analysing existing datasets, SA3D can generate
synthetic datasets for comparison with experimental data.
The program includes two main routines for generating
sample points within a given volume:

• Random: neurons are positioned at random, subject to
an optional constraint that no two neurons come closer
than some minimal distance (denoted Dmin) to each
other. The minimal distance is sampled from a Normal
distribution with a given mean and standard deviation.
Implementation of this rule follows that specified else-
where [3] with the obvious extension into 3D. Neurons
are added serially into the array until either the requested
number N of neurons has been added or until the packing
limit has been reached (in which case an error message is
displayed).

• Hexagonal Close Packing (HCP): neurons are initially
positioned into a regular hexagonal lattice, with a speci-
fied mean spacing between neurons; the number of neu-
rons N is automatically determined so that the lattice fills
the volume. The position of the neurons are then inde-
pendently jittered by adding Gaussian noise with a speci-
fied standard deviation.

Results and discussion
In this section, we present a case-study of usage of SA3D.
We have used the program to generate two datasets, one
using the Dmin model, and the other by jittering a regular
hexagonal structure of points. Here we show how our dif-
ferent analysis techniques can reveal differences between
the two datasets.

Delaunay tessellation analysis
By inputting x, y, z positional information for a popula-
tion of cells, a variety of spatial statistics can be generated
based upon the tessellation of the field by Delaunay tetra-
hedrons, including the derivation of Voronoi domains.
For a sample of 500 points, these calculations are nearly
instantaneous. Figure 1a shows examples of two simu-
lated datasets of comparable density, one of randomly
distributed cells constrained by a local minimal distance

(Dmin) spacing rule, the other being a hexagonal lattice
with local jitter applied to every cell. A single Voronoi
domain of a given cell is illustrated for each case, along
with its associated statistics to the right, including the vol-
ume of the Voronoi domain illustrated, the number of
Voronoi vertices and facets for that domain, the sum of
the surface area, and the vector details, being an index of
its elongation within the field.

From this plot, one can select any individual point within
the field for highlighting, or the points can be toggled
sequentially by using the arrow keys. While the figure
illustrates the Voronoi domain analysis, comparable anal-
ysis and presentation can be chosen for other derivatives
of the Delaunay tessellation (e.g. the segment lengths, the
tetrahedron volumes), including the nearest neighbor
analysis.

For any of those analyses, the population statistics for
every cell in the field can be plotted in one of two ways.
Figure 1b illustrates these for the Voronoi analysis shown
in figure 1a. The population of Voronoi domain volumes
can be presented in histogram form, for all cells in the
field, showing the less variable distribution for the jittered
lattice relative to the Dmin simulation (figure 1b, left histo-
grams in each pair). But to appreciate the nature of this
variability across the field, a graphic representation of the
Voronoi volume for each cell can also be plotted in 3D.
All such 3D plots can be zoomed and rotated for detailed
visualization [see Additional file 1].

Problematic boundary cells can be eliminated from the
population statistics by selecting one of a number of
increasingly stringent filters. Filter choice is dependent
upon the analysis being conducted, since, for example,
only those cells closer to the boundary than to any other
cell will have an uncertain nearest neighbor, but cells
meeting this restriction may still have an uncertain Delau-
nay tetrahedron or Voronoi domain.

Spatial autocorrelation analysis
The 3D spatial autocorrelation of the field can also be gen-
erated, from which the DRP is computed. The organizing
principles of these two distributions of cells, while diffi-
cult to surmise by visual inspection of the population data
or the tessellation analysis provided in figure 1, are now
readily apparent: the minimal distance spacing rule is
revealed by a region surrounding the origin of the auto-
correlogram where cellular density is lower than at all
other locations within the field; by contrast, the periodic-
ity in the jittered hexagonal lattice reinforces itself within
the correlogram, revealed as repeating regions of high and
low cell density (figure 2a, left correlograms in each pair)
[see Additional file 2]. The DRP can be computed from
each correlogram [5], being a plot of average density in
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the correlogram as a function of increasing distance from
the origin (figure 2a, right histograms in each pair), show-
ing this difference clearly: the DRP for the Dmin simulation
reveals only the presence of an exclusion zone surround-
ing the origin, whereas the DRP for the jittered lattice sim-
ulation reveals the waxing and waning of average density
at increasing distances from the origin. As mentioned
above, the program also permits the plotting of the K
function, being the cumulative frequency histogram asso-
ciated with the autocorrelogram.

The plots for both correlograms readily discriminate these
features in histogram form (figure 2a); however, they con-
ceal any angular variation in density. Those can be made
apparent by separate plots of cell density as a function of

their angles of azimuth and elevation (figure 2b): while
the minimal distance spacing rule produces no systematic
variation in density as a function of direction from the ori-
gin, the variation by angle is clearly revealed for the jit-
tered lattice.

Cumulative nearest neighbor distributions (G functions)
The F, G and K functions are commonly used to compare
two sets of spatial patterns, or one set of patterns against
the null hypothesis of complete spatial randomness
(CSR). Here we demonstrate the utility of the G function
to compare two simulated populations both created using
the Dmin model, where only one parameter (the standard
deviation of Dmin values, σ) differed (Figure 3). At small
distances (t <80 μm), G(t) for both simulated datasets is

Examples of two different simulated 3D neuronal populations and their Voronoi domain volumesFigure 1
Examples of two different simulated 3D neuronal populations and their Voronoi domain volumes. a: 3D distribu-
tions of simulated populations of cells based on a minimal distance spacing rule (left) and on a jittered hexagonal lattice (right), 
with the Voronoi domain of a single cell illustrated within each field. The data summary panel to the right of each 3D distribu-
tion provides statistical details associated with the illustrated cell. b: Frequency distributions of Voronoi domain volumes asso-
ciated with every cell (excluding those at the border) in the fields illustrated in a. The 3D depictions to the right of each 
frequency distribution portray the variation in Voronoi domain volume within space, where both color and increasing size sig-
nify an increase in volume. The histograms convey the population variability, while the bubble diagrams display that variability 
within 3D space.
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less than G(t) under CSR, which indicates exclusion in
neuronal positioning. Further, G(t) helps discriminate
between the two simulations: the sigmoidal curve for the
Dmin simulation with σ = 20 μm is wider than the curve for
the simulation with σ = 10 μm. This is expected, since the
larger the standard deviation, the larger the range of min-
imal nearest-neighbor distances that are allowed in the
model.

Future directions
This paper accompanies the first release of SA3D, and we
hope that it will continue to be developed over the com-
ing years. Some features that we would like to implement
in future releases include:

• Extension to multiple types of neuron. Currently the
program assumes that all neurons are of the same type,
and hence can be described just by their x, y, z location.
The addition of an extra label, t, which typically would be
an integer, would allow for us to discriminate between
different types of neuron, and perform other analyses. For
example, cross-correlation analysis could be used to test
whether there is any spatial arrangement between neu-
rons of different types. The corresponding 2D methods
have previously been useful in helping assess whether
groups of related retinal neurons should be regarded as
one type or many types [13] and hence we expect these
methods to be comparably useful in 3D.

Autocorrelation analysis of the two different simulated populations shown in Figure 1Figure 2
Autocorrelation analysis of the two different simulated populations shown in Figure 1. a: 3D spatial autocorrelo-
grams for the fields shown in figure 1a. The minimal distance spacing rule (left) is revealed as a region surrounding the origin 
where cell density is reduced, displayed in histogram form to the right, in the DRP. The jittered lattice (right), in comparison, 
shows a periodic variation in cell density across the correlogram. The color of each point within the correlogram indicates the 
average density in the shell containing that point, indicated by the scalebar. Its DRP evidences the reduction in density sur-
rounding the origin, but also reveals the waxing and waning in cell density as a function of increasing distance from the origin. 
The effective radius (reff), the radius of the empty region surrounding the origin, is also indicated, by the red line. b: There is no 
angular variation in density for the minimal distance spacing rule, while these plots of azimuth and elevation for the jittered lat-
tice display such variation evident within the correlogram.
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• Model fitting. We currently provide two models for gen-
erating simulated neuronal populations; both these mod-
els require various parameters. Some automated method
for finding the values of these parameters to minimize the
discrepancy of the model and real data would be benefi-
cial.

Conclusion
These tools provide a means for investigating the rules
governing nerve cell patterning within the central nervous
system. They can be used to reveal the spatial statistics
associated with a given population of cells; they can dis-
criminate the patterning between experimental and con-
trol conditions; and they permit the modeling of real
distributions based upon lattice-like distributions and on
minimal distance spacing rules, both of which can be
established with parameters modulated by the user. These
spatial statistics can be compared with the morphological
features associated with single cells, for example, by corre-
lating the Voronoi domain with dendritic morphology in
3D, to understand the nature of the dendritic coverage
within a volume of tissue [14]. A limitation of the analysis
methods presented here is that they assume that each of

the x, y, z dimensions are treated equally. Our methods
are therefore inappropriate for specific cases, e.g. cortical
microcolumns [15], where neurons of a certain type
appear columnar across the depth of a slice; for these types
of data, more specialised methods are appropriate [16].
However, even with columnar data, the interactive visual-
isation facilities offered by SA3D may still be useful for
viewing the data. Studying the emerging regularity of a
population of cells during development can clarify the
potential biological mechanisms underlying it [17], in
turn directing an assessment of the interactions that might
mediate such homotypic cell spacing behavior. As well as
informing us about developmental mechanisms, these
methods can also be applied to adult tissue, as the spatial
distribution of neurons can help assess the number of nat-
ural cell types in a structure [18]. The tools require the user
to be able to assign positional information for each cell in
3D, and assume equal accuracy in the z dimension; this
may be their greatest constraint, necessitating thick speci-
mens sampled with confocal or two-photon microscopy,
or sectioned specimens that can be accurately reassembled
to preserve true spatial relationships in 3D. Ultimately,
the benefit of such tools will depend upon the ingenuity
of the researcher, but if the field of retinal research is any-
thing to judge by, their adoption by brain researchers can
only enlighten our understanding of the developmental
neuroanatomy and nerve cell biology associated with
such populations of cells.

Availability and requirements
• Project name: Spatial Analysis 3D

• Project home page: http://www.nri.ucsb.edu/Labs/
breese/SA3D.html

• Operating system(s): Platform independent (tested on
Windows XP, Linux, Mac OS X)

• Programming language: matlab/C

• Other requirements: matlab 7 or higher.

• License: SA3D (including the code by Prof. Baddeley) is
distributed free under the conditions that (1) it shall not
be incorporated in software that is subsequently sold; (2)
the authorship of the software shall be acknowledged in
any publication that uses results generated by the soft-
ware; (3) this notice shall remain in place in each source
file.

• Any restrictions to use by non-academics: none.

G functions for Dmin simulations with slightly different exclu-sion zonesFigure 3
G functions for Dmin simulations with slightly differ-
ent exclusion zones. Two simulated populations of 500 
cells were created in a volume of 1000 × 1000 × 1000 μm3 

using the Dmin model with a mean of 70 μm and a standard 
deviation (σ) of either 10 μm or 20 μm. The G function for 
each simulated population is plotted, along with the expected 
G function if the cells were positioned according to complete 
spatial randomness (Poisson curve).
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Additional file 1
Rotations of example 3D populations. 3D plots of the populations of cells 
shown in figure 1a, in rotation, showing, for an individual cell near the 
center of each field, its near neighbors that define the Voronoi domain of 
that cell. The nearest neighbor is illustrated in red.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-9-68-S1.mov]

Additional file 2
Rotations of example autocorrelograms. 3D autocorrelograms of the pop-
ulations of cells shown in figure 2a, in rotation.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-9-68-S2.mov]
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