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Fluctuation-induced instabilities in front propagation up a comoving reaction gradient
in two dimensions

C. Scott Wylie* and Herbert Levine'
Center for Theoretical Biological Physics, University of California, San Diego,
9500 Gilman Drive, La Jolla, California 92093-0319, USA

David A. Kessler’
Department of Physics, Bar-Ilan University, Ramat-Gan IL52900, Israel
(Received 4 April 2006; published 26 July 2006)

We study two-dimensional (2D) fronts propagating up a comoving reaction rate gradient in finite number
reaction-diffusion systems. We show that in a 2D rectangular channel, planar solutions to the deterministic
mean-field equation are stable with respect to deviations from planarity. We argue that planar fronts in the
corresponding stochastic system, on the other hand, are unstable if the channel width exceeds a critical value.
Furthermore, the velocity of the stochastic fronts is shown to depend on the channel width in a simple and
interesting way, in contrast to fronts in the deterministic mean-field equation. Thus fluctuations alter the
behavior of these fronts in an essential way. These effects are shown to be partially captured by introducing a
density cutoff in the reaction rate. Moreover, some of the predictions of the cutoff mean-field approach are
shown to be in quantitative accord with the stochastic results.

DOI: 10.1103/PhysRevE.74.016119

I. INTRODUCTION

Several well known processes in spatially extended sys-
tems exhibit fronts that propagate through space. Most of
these processes that have been considered to date occur in
media in which the governing dynamics are spatially uni-
form. Recently, however, some interesting findings have
been made concerning fronts propagating in systems with
spatially heterogeneous dynamics. In particular, the simple
infection model A+B—2A on a lattice with equal hopping
rates and a linear reaction rate gradient has been studied
[1,2]. Two versions of this system have been examined in
some detail: one in which the gradient is defined with respect
to the medium itself (the “absolute gradient”), and another in
which the gradient is defined relative to the front’s interface
and travels along with the front (the “quasistatic gradient”).
One can imagine numerous systems that can be described by
the absolute gradient, e.g., a chemical reaction occurring in a
temperature gradient, or a convection front [3] propagating
in a system with nonparallel top and bottom plates. The qua-
sistatic gradient is more analytically tractable and also arises
naturally in models of biological evolution [4,5].

The usual way to analytically study a system with a
propagating front, such as the infection model mentioned
above, is within a mean-field (MF), reaction-diffusion frame-
work. The simplest MF analog to our infection model is the
well-known Fisher equation [6], with a spatially varying re-
action rate:

i

Py =DV’ +r(x)p(1 - ). (1)
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For our simple infection model, Eq. (1) (the “naive MF”)
fails to capture many of the qualitative aspects of the sto-
chastic problem with either absolute or quasistatic gradients.
These failures, as well as many other issues involving the
MF description of similar front propagation problems, are
largely remedied [1,2,7-9] by introducing a cutoff factor in
the reaction term [4,10,11]:

¢

b DV2¢p+r(x)p(1 - ) 0(d— ¢.). (2)

This added factor causes the reaction rate to abruptly drop to
zero in regions far into the front’s leading edge where ¢
drops below a critical level ¢., and is meant to roughly
mimic the effect of finite number fluctuations in the stochas-
tic process. In other words, the discrete nature of individual
particles implies that a sufficiently small value of the density
field <.~ 1/N corresponds, in an average sense, to zero
particles present and thus zero reaction rate. In previous
work [1,2], we showed how this modified MF treatment
gives a quantitatively accurate prediction of the stochastic
model in one dimension.

The purpose of this paper is to extend these investigations
to the two-dimensional system. We will work in a channel
geometry, with no-flux conditions on the sidewalls, such that
the front propagates down the channel. In particular, we are
interested in the patterns generated by the system, due to an
instability to transverse fluctuations.

As mentioned previously, this system can be viewed as
being analogous to certain problems in biological evolutio-
n.In this context, the relevant equation is similar to Eq. (2),
but with a simpler rate term:

‘;—‘f =DV g+ (x— D) dA - b,). (3)

Here, ¢ represents the fraction of individuals in a population
with a given fitness x. If the size of the population is fixed,
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the growth rate of individuals with a particular fitness is pro-
portional to x—X, where x is the mean fitness in the popula-
tion. The diffusion term represents the effect of mutation,
and the dynamics of the system corresponds to the popula-
tion evolving towards greater mean fitness. The transverse y
coordinate, being orthogonal to the fitness x, represents the
frequency of some selectively neutral trait. Instability of a
planar pulse would then correspond to evolution toward a
nonuniform frequency distribution of this neutral trait. Due
to the difference in the structure of the rate term, Eq. (3)
describes an evolving pulse whereas Eq. (2) describes a
front. However, this difference should not alter the stability
properties of the system since, as we shall see, these proper-
ties are determined by the leading edge where the front and
the pulse are identical. The cutoff term is appropriate in this
context because members of a population, like particles, are
quantized.

In this study, we focus our attention on the quasistatic
gradient in two dimensions and ask how finite number fluc-
tuations and the related cutoff approach affect the stability of
planar fronts propagating in a rectangular channel. In what
follows we will see that in contrast to the predictions of the
naive MF, the results of stochastic simulations point to un-
stable planar fronts. Furthermore, once again the cutoff term
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will rescue the effectiveness of the mean field description of
the stochastic process. We first study the cutoff mean-field
equations, both numerically and analytically, showing the in-
stability. We then turn to the stochastic model, demonstrating
the instability there as well. An Appendix contains details
about the numerics.

II. MEAN FIELD STABILITY CALCULATION

The full equation of motion governing the quasistatic gra-
dient in the MF cutoff framework is Eq. (2) with

P(x,y,t) = N4/N,

r(x) = max[rmin’ro + a(x - f)]’

x(r) = % f o(x,y,)dxdy,

b.=kIN,

dy#(x,0,1) = d,p(x,b,1) = 0.

Here x is the direction parallel to the channel’s long axis. N,
is the number of A’s at a given site and N is the equilibrium
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FIG. 1. (Color) Snapshots of the growing finger for the cutoff MF compared to that for the stochastic model. The parameters are D
=1, ry=6, a=0.3. Lengths are expressed in units of the lattice spacing /= 1. Left: The cutoff MF with k/N=8.7 X 107>. Center: The stochastic

model with N=90801. Right: The stochastic model with N=2881.
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FIG. 2. Finger length (as defined in the text) versus channel
width for the cutoff MF. The parameters are: D=1, ry=6, a=0.3,
k/IN=8.7%x 107, I=1.

number of A particles per lattice site. k is some O(1) fitting
parameter. X serves to define the interface position of the
front by essentially comparing the front’s profile to a step
function, and b is the cross-channel width; note that the in-
tegral over x starts from x=0 which is the bottom of the
computational domain. r,,;,, merely serves to keep the reac-
tion rate from going negative far behind the front and plays
no role in the front dynamics.

To numerically investigate the stability of the planar front,
we start with a front which is a slightly perturbed planar
front, with

B(x,y,0) = 0(10+0.01 cos(?) —x) )

with 6(x) again the Heaviside step function. Direct numerical
integration of a spatially discretized version (with lattice
spacing, I, unity) of the time-dependent Eq. (2) shows that
planar fronts are in fact unstable to transverse fluctuations.
For a sufficiently wide channel, perturbed planar fronts de-
velop into long, though finite, fingers whose length increases
with increasing channel width. An example of such a finger
is shown in Fig. 1. We see that there is a deep narrow
“notch” on the trailing side of the finger, so that the width of
the interface is much greater here than for the rest of the
finger. Defining the finger length by [[¢(x,0)—@(x,b)]dx,
the data for finger length versus channel width is presented
in Fig. 2. We now turn toward an analytic understanding of
this result.

Due to the translational invariance of the system, it is
natural to investigate first steady-state propagating planar
front solutions. Plugging into Eq. (2) the traveling wave
form, ¢y(x,y,7)=dy(x—vt), with velocity v, we obtain

k
D¢8+v¢6+r(z)¢o(1—¢o)9(¢o—x,)=0 )

in terms of the comoving coordinate z=x—wvt. An analysis of
the linearized version of Eq. (5) provides insight into the role
of the cutoff. As z——», ¢,— 1. Linearizing around ¢y=1,
we find two exponential solutions, but one must be discarded
since it decreases with increasing z. Similarly, as z— o,
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¢o— 0. Linearizing around ¢,=0, in the region past the cut-
off, once again we find only one acceptable, decaying solu-
tion. This leaves our solution with a total of two undeter-
mined constants. Fixing translational invariance reduces this
number to 1. Requiring continuity of ¢, at the cutoff deter-
mines the remaining coefficient, and continuity of ¢, deter-
mines the velocity. Thus, viewed mathematically, the cutoff
fixes the velocity by overdetermining the boundary condi-
tions, i.e., converting Eq. (5) into an eigenvalue problem. An
analysis for large N yields the leading order result [1]:

v=[24Da In(N/k)]'3. (6)

In the limit k/N—0 we regain the naive MF approach, in
which v — . Thus the naive MF and the cutoff MF predict
qualitatively different results for the velocity. Not surpris-
ingly, stochastic fronts in fact approach a (finite) steady-state
velocity that agrees well with that given by the cutoff MF.
Turning now to two-dimensional (2D) fronts, we wish to
study the linear stability of the planar solution to transverse

perturbations. We write ¢(x,y,1)=do(z)+H(z,y,1) and lin-
earize Eq. (2) with respect to ¢. The invariance of the system
with respect to translations in time and the transverse spatial
direction y implies @(z,y,r)=e“e5(z). The governing
equation for #7(z) is then

Dy'+vy + nr(z)[(l —2¢’0)9<¢0— ]%)

cani- o 4] = )
with
Q=Dg + w. (8)

The delta function arises from differentiating the step func-
tion and is due to the shift in z,.,, caused by the perturbation

¢. We have assumed here that ¢ # 0 so that [(z,y,1)dy=0.
The case g=0 has to be treated separately and the linear
operator is in fact different; but, for this sector the least
stable mode is just the translation mode with 1=0. For the
nonzero transverse wave vector, notice that Eq. (8) implies a
simple stabilizing quadratic dependence of the growth rate
on g. Thus the least stable mode is that with the smallest
nonzero g, which, assuming a zero-flux sidewall boundary
condition, is ¢,,;,,=m/b. This implies a minimum channel
width b* below which even the longest wavelength mode has
too much curvature for any instability to exist:

b*=77\/QD , 9)

max

where (),,,, is the largest (positive) eigenvalue of the stabil-
ity operator, Eq. (7).

Like the steady-state problem, insight can be gained into
Eq. (7) by considering the boundary conditions at z— %,
We require that 7p— 0 as z— —%. As ¢~ 1 in this region, we
find two exponential solutions for #z: one growing with in-
creasing —z and the other decaying. The former must of
course be excluded. If we perform the same procedure past
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the cutoff, we find both modes decaying as z— . However,
one of the modes decays more slowly than the steady-state
solution and thus dominates it for sufficiently large z. This is
unacceptable behavior for a perturbation and therefore this
solution is discarded. Thus our solution has two arbitrary
constants, one of which may be chosen arbitrarily since Eq.
(7) is linear in 7. The remaining constant is fixed by requir-
ing continuity of # at the cutoff. Matching 7' at the cutoff
determines the eigenvalues (). Thus once again the cutoff has
played a central role in determining the problem’s interesting
quantities.

As with the steady-state problem, we can make analytic
progress in the limit of large N. In this case, the cutoff is at
large z, in the region where ¢, is small. If we consider Eq.
(7) in the region where ¢y< 1 and z<z,,, and fix the trans-
lation invariance by setting z=0 for the unperturbed state, we
obtain

Dy +vn + n(rg+ az) = Q9. (10)

Up to a similarity transformation, this is the Airy equation,
with the general solution

nze—vz/zb[AAi<F;Z>+BBi(F;Z)} (11)

with
2
U/4D—r0+Q
I=———,
«
D 1/3
o= (;) . (12)

We now can argue that the Bi term must vanish by con-
sidering the large v limit of Eq. (7) and matching onto Eq.
(11). As shown in Ref. [2], in the large v limit, the diffusion
term in Eq. (10) can be ignored, and the solution in the
region where ¢y<1 is

n~ o~ (10(r-Q)z+(112)az?]. (13)

Expansions of Ai and Bi for a large argument show that the
diffusionless result Eq. (13) matches onto Eq. (11) only if the
Bi term is absent. The constant A may be arbitrarily set to
unity since the problem is linear. Thus we have for z=<z,,

| .
= e-vz/ZDAi( . Z). (14)

We have to match this result to the simple exponential solu-
tion for z>z,,,. Thus

o~VZcul2D Ai( ﬂ) = Cel~Wzeud2D) (14 1+4Q0D/w?)]
1)

(15)

The derivative of 7 must also match properly at the cutoff.
Looking back to Eq. (7), we see that the delta function term
causes a discontinuity in %’ at z.,,:
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FIG. 3. (Color online) The circles represent the exact numeric
solution of Eq. (7). The solid line is the exact numeric solution of
Eq. (17) which is itself a large v approximation. Exact numerically
generated values of N and z.,, were used to generate this approxi-
mation. The dashed curve is the analytic approximation Eq. (19).
The parameters are D=ry=1, @=0.3.

n;ight_ nl,eft _ r(zcut) (k/N)(l - k/N) __ r(zcut)

= - (1 —k/N).
n(zcut) D ¢0(Zcut)
(16)
Computing the derivatives, we obtain
T Y
—\1+4DQ/v" — —(ry + aze,,)(1 — kIN)
2D v
1AI'(I'(Q) - /5
C1A(T(Q) = 20 )9) -

- 6 Al([F(Q) - Zcut]/é) .

This equation determines () if the quantities v and z,, are
known.

For large v, we can progress further by noting that the
left-hand side of Eq. (17) is also large. For the right-hand
side to balance it, the Airy function in the denominator must
be small. Thus F_(;“” =~ §,, where &,=~—2.3381 is the first zero
of the Airy function. For the position of the cutoff, we quote
another result from Ref. [1] obtained by matching the linear-
ized steady-state equation at the cutoff:

2
vY4D -1, 2D
s

a v

(18)

Zeur =~

Plugging this expression into Eq. (17), expanding around &,
and dropping higher order terms, we obtain the leading order
result valid for large v:

2D«
==

(19)

This result is tested in Fig. 3, where we plot the eigenvalue
Q) versus velocity determined by an exact numerical solution
of Eq. (7), together with the numerical solution of the match-
ing condition, Eq. (17), and the leading-order result, Eq.
(19). We see that indeed the leading-order result approaches
the exact result as v increases.

016119-4



FLUCTUATION-INDUCED INSTABILITIES IN FRONT...

Our leading-order result, Eq. (19), yields the interesting
conclusion that planar fronts become stable in the limit as
v—oo, ie., N—oo, ie., the cutoff disappears. Equation (19)
can be interpreted as saying that () is proportional to the ratio
of the diffusive length scale (D/v) to the length scale over
which the rate changes appreciably (1/c«). Thus heuristically
incorporating the effects of finite number fluctuations quali-
tatively changes the system’s stability properties by limiting
the front’s velocity, which in turn makes the diffusive length
scale finite. In practice, however, without a cutoff, an initial
front which is compact (or decays sufficiently rapidly) will
act as a time-dependent cutoff [12], so that at least initially
transverse fluctuations will grow. The fluctuation induced in-
stability in this system is similar to that in Ref. [11], where it
was found that a coupled reaction diffusion system with no
reaction gradient, but with unequal diffusion coefficients, is
unstable with a cutoff but stable without one. Furthermore,
Eq. (19) shows that the fronts become stable as a— 0, for
any value of N. This is consistent with the stability shown in
Ref. [11] in the case of equal diffusion coefficients.

Thus, once again, the presence of the cutoff qualitatively
changes the simple mean field predictions. If the cutoff ap-
proach indeed captures the effect of finite number particle
fluctuations, we should expect to see some analog of this
front instability in the stochastic, discrete infection model
discussed earlier, to which we now return.

III. STOCHASTIC SYSTEM

We ran simulations in which the lower rectangular portion
of the channel was initially populated with N particles of
type A per lattice site and the upper rectangular portion of the
channel was populated by N particles of type B per lattice
site. During each time step, a binomially distributed random
number of particles hop to adjacent sites. Furthermore, A
particles probabilistically cause some B particles to change
into A particles. The reaction probability and hopping rates
were chosen so that the discretized, stochastic equation for
AN, reduces to Eq. (1) [with the quasistatic form for r(x)]
when the expectation value is taken in the small time, small
lattice spacing limit. In particular, for the hopping probability
we took Phop~D‘lL2t, where dt is the simulation time step
and / is the lattice spacing. The number of particles reacting
during each time step was chosen as a binomially distri-
buted random variable characterized by N, repetitions of a
Bernoulli process with individual event probability given by

r(x)dt\Ng
1- (1 - T) .
The simulation results are easiest to interpret when the

channel width b and the average number of particles per
lattice site, N, are large. For fixed large N, there is some b
beyond which there is a pronounced finger which survives
for very long times. An example of such a finger is seen in
the middle frame of Fig. 1. The overall similarity of the
patterns for the MF simulation and the stochastic one is clear.
As N is reduced for the same b, the statistical fluctuations
become larger, as expected, and give the finger a clearly
finite lifetime before it succumbs to the noise. The pattern
eventually regenerates, sometimes with opposite parity, and
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FIG. 4. (Color online) Evidence of the transition to instability.
The linear envelope of the different curves demonstrates the N
renormalization N,g~ Nb required by widening the channel. The
dotted lines show the b” resulting from the corresponding determin-
istic, MF cutoff simulation (k=0.25). Each data point represents an
ensemble average of three long trials (100 time units each). The
parameters are D=1, ry=6, a=0.3, [=1.

the cycle of destruction and regeneration starts anew. Such a
noise-roughened finger in seen in the rightmost frame of the
figure; here N was chosen to correspond to the cutoff chosen
for the MF simulation seen in the leftmost frame. The very
visible effect of the noise is striking given the still quite large
value of N employed, underscoring the extreme sensitivity of
our system to fluctuations.

For very narrow channels, on the other hand, the interface
appears to be essentially planar, with random short-lived
fluctuations. All this is in accord with our expectations based
on our study of the cutoff MF dynamics. What is more
subtle, however, is a quantitative measurement of the critical
value of b for the onset of the pattern. On the small b side of
the transition, the pattern is not exactly planar due to noise.
On the large b side, the pattern is smeared out due to noise.
This problem is exacerbated by the supercritical nature of the
transition, such that the pattern has very small amplitude
near the transition. In order to compare the stochastic system
to the MF prediction, we need a way to distinguish this ran-
dom roughening of the interface from the genuine pattern
forming mechanism discussed in the previous section. We
present below two tests whose results we believe demon-
strate the existence of a sharp transition in the stochastic
system.

Both of these tests exploit the predicted transition be-
tween stable and unstable states that occurs when the channel
width exceeds a critical value b”, as stated in Eq. (9). First,
we measured the ensemble averaged velocity of the mean
interface 7= Ei,;% as a function of b (Fig. 4). The increas-
ing trend along the envelope of the different curves can be
understood as a result of wider interfaces presenting an ef-
fectively larger number of particles N, In fact, since in the
steady state, v ~ (In N)!/3, we see from the figure the remark-
ably simple result Nz~ Nb. This simple dependence contin-
ues until b approaches b* (dotted vertical lines), where the
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velocity suddenly increases. This increase can be understood
as a result of the system spending much of its time in a
configuration in which one side of the interface significantly
leads in front of the other. The lagging side then effectively
stalls while the leading side is in a region of large reaction
rate, and thus propagates quickly. The overall effect is an
increase in the velocity averaged over the width of the chan-
nel. The fact that the change occurs so near the b calculated
earlier suggests that the cutoff approach is effectively captur-
ing the stochastic dynamics.

As a second test, we plot the mean roughness of the in-
terface W vs b (Fig. 5). W is defined in the standard way,

v = ([ ] ).

where () denotes ensemble average and the bar denotes av-
erage over the transverse direction. For b<<b" we see power
law scaling reminiscent of that discovered by Kardar, Parisi,
and Zhang [13] for a growing interface. However, the data
show no sign of a universal exponent. It may be that the very
weak stability of the interface near b” is responsible for a
long crossover. This issue clearly requires more extensive
study. For a fixed b, W decreases with increasing N, consis-
tent with the hypothesis that interface roughness is noise
driven in this regime. However, for b=b" this simple depen-
dence is lost. The curves converge near b, showing that
particle number and its associated noise are no longer the
relevant factor in determining interface roughness. Past this
intersection, there is no apparent correlation between W and
N. We interpret this as a crossover from noise driven inter-
face roughness to gradient driven pattern formation occur-
ring very near the b” predicted from the cutoff MF approach.
Thus the cutoff MF approach is quantitatively successful
in predicting the transition of the width and velocity ob-
served in ensemble averaged stochastic fronts when the
channel is widened. In contrast, the naive MF approach pre-
dicts no such transition and an infinite steady-state velocity,
in stark qualitative disagreement with the simulation results.
The cutoff MF approach also predicts the velocity of the
average interface for b<<b", provided we take N— Nb.
Another aspect of the stochastic system which one would
like to predict is the ensemble-averaged shape. We find that
qualitatively this behaves as expected; namely, for small
channel width the average shape is flat, and above the critical
width, a nontrivial shape is apparent. The amplitude of the
averaged pattern continues to increase with increasing width.
However, we do not know how to quantitatively relate the
average pattern to the results of the cutoff MF equations.
One obvious impediment is the fact that the stochastic sys-
tem switches parity at random, with the right and left sides
alternating as the leading edge. Thus a naive ensemble aver-
age produces a shape which is highest in the center, clearly at
odds with the deterministic calculation. Another aspect of the
problem that we would like to correlate with the determinis-
tic calculation is the growth rate of the pattern near onset.
This problem is also difficult because the width, measured in
the usual way, consists of a contribution from noise driven
roughening and one due to pattern formation. Clearly, the
usual MF approach can only make predictions about the con-
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FIG. 5. (Color online) Noise driven roughness scaling for b
<b", gradient driven scaling thereafter. Each data point represents
an ensemble average of three long trials (100 time units each).
Parameters are D=1, ry=6, «=0.3, [=1.

tribution due to pattern formation and thus the stochastic
results and MF predictions are intrinsically difficult to com-
pare. Even though the noise decreases with increasing N, the
dominance of the dynamics by the leading edge where fluc-
tuations are unavoidably present makes this a nontrivial task,
even at large N. These questions remain challenges for the
future.

ACKNOWLEDGMENTS

The work of H.L. and C.S.W. was supported in part by the
NSF PFC-sponsored Center for Theoretical Biological Phys-
ics (Grant No. PHY-0216576 and Grant No. PHY-0225630).
The work of D.A.K. was supported in part by the Israel
Science Foundation.

APPENDIX: DETAILS CONCERNING THE NUMERICAL
INTEGRATION

In order to determine the spectrum (v) we numerically
integrated Eq. (7), and this required numerically integrating
Eq. (5). Integration of Eq. (5) was initialized in the bulk
state, from the left, where we defined z=0. We set v arbi-
trarily, took ¢,(0)=0.99, and calculated ¢;(0) from the so-
lution to the version of Eq. (5) linearized around ¢~ 1,

, 0.01v 4Drmi,>
0)=- — 141+ ),
¢o(0) 2D ( v?

T'inir» Which we set to one, differs from the previously defined
ro in that it fixed the rate at a definite location in the bulk
state rather than the location where ¢,=1/2. Integration ter-
minated in the neighborhood of the cutoff, half way between
time steps where ¢,/ ¢, crosses —v/D. N was then read off

from the relation N=— 5 ¢”(k ) and the value of the cutoff was
0\Zcut

recorded for subsequent numerics. This value is measured
relative to the bulk position where ¢,=0.99, not relative to z,
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where ¢y=1/2. All of this was done using ode45 from MAT-
LAB, with a maximum step size of 0.001.

The solution for ¢, appears as a coefficient in Eq. (7), and
was incorporated into the ordinary differential equation
(ODE) integration scheme with a cubic spline. Numerical
integration of Eq. (7) was initialized at z=0 with some trial
Qy, 7(0)=1, and

, U 4D(r,-m< +Qo)
7](0):5(—1+\/1+ Ut2

which follows from Eq. (7) if we plug in ¢,= 1. Integration
terminated at the z.,, obtained from integration of Eq. (5),
where we checked if Eq. (16) was satisfied with the trial ).
This procedure was iterated with a root solver while varying
Q until Eq. (16) was satisfied. Each integration of Eq. (7)
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was done over 1000 time steps with a fourth order Runge-
Kutta ODE solver with fixed step size, meant to facilitate
incorporation of the spline.

This yields the exact numeric solution presented in Fig. 3.
Our “exact analytic approximation” presented in Fig. 3 is
just the solution to Eq. (17) obtained with a root solver. The
required values for N and z,,, were obtained from the previ-
ous integration of Eq. (5), and we took ro=1. Since we
dropped the term involving ¢, in Eq. (10), this equation is
insensitive to the precise definition of z, e.g., it could be
defined naturally as the coordinate where ¢y=1/2 or it could
be defined out of numerical convenience as the coordinate
where ¢,=0.99. This insensitivity explains why the results
agree so well despite the fact that r, and r;,;, are not defined
in the same way.
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