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ABSTRACT OF THE DISSERTATION

Checksum-Based Fault Tolerance for LU Factorization

by

Teresa Davies

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2014

Dr. Zizhong Chen, Chairperson

In high-performance systems, the probability of failure is higher for larger systems.

The probability that a failure will occur before the end of the computation increases as the

number of processors used in a high performance computing application increases. For long

running applications using a large number of processors, it is essential that fault tolerance

be used to prevent a total loss of all finished computations after a failure. There are two

main classes of errors that we are concerned with: errors involving loss of data, and errors

involving corruption of data.

A fail-stop failure, where a process is lost along with its data, can be handled for

any application with checkpointing. While checkpointing has been very useful to tolerate

failures for a long time, it often introduces a considerable overhead especially when applica-

tions modify a large amount of memory between checkpoints and the number of processors

is large. Therefore an application-specific approach to handling fail-stop failures is likely to

allow fault tolerance with much lower overhead.

Errors in calculations may occur that cannot be detected by any other means.

These are called soft errors, and usually are the errors in the data that cause the program

to deliver the wrong result at the end, but do not have any other effect that would indicate

an error occurred. An existing approach uses duplication to confirm the results of the

calculation at the end, and it can be applied to any problem to protect against soft errors.

In this work, we propose an algorithm-based recovery scheme for the High Perfor-

mance Linpack benchmark (which modifies a large amount of memory in each iteration) to

tolerate fail-stop failures and soft errors. It has been proved by Huang and Abraham that,
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if LU factorization is used to factor a checksum matrix, the checksum relationship will be

preserved at the end of the computation. We first demonstrate that, for both the top and the

left looking LU factorization algorithms, the checksum relationship in the input checksum

matrix is NOT maintained in the middle of the computation. We then prove that in the

right looking LU factorization algorithm, the checksum relationship will be maintained at

each step in the middle of the computation. It was proved by Huang and Abraham that a

checksum added to a matrix will be maintained after the matrix is factored. We demon-

strate that, for the right-looking LU factorization algorithm, the checksum is maintained at

each step of the computation. Based on this checksum relationship maintained at each step

in the middle of the computation, we demonstrate that errors in High Performance Linpack

can be tolerated.

Because of error propagation, the existing approach for soft errors has to repeat

calculations. Our approach detects and corrects errors before they are propagated. The

frequency of checking can be adjusted for the error rate, resulting in a flexible method of

fault tolerance. Because no periodical checkpoint is necessary during computation and no

roll-back is necessary during recovery, the proposed recovery scheme is highly scalable and

has a good potential to scale to extreme scale computing and beyond. Experimental results

on the supercomputer Jaguar demonstrate that the fault tolerance overhead introduced by

the proposed recovery scheme is negligible.

These techniques are guaranteed to handle at least one error. In certain cases,

multiple simultaneous errors can be handled, but it is not guaranteed. If multiple errors

are likely, multiple checksums can be used to handle more than one simultaneous error.

Multiple checksums can be created using coefficients to calculate different sums from the

same set of elements. Since the calculations to recover from an error use real numbers,

it is extremely important that the coefficients be chosen to minimize the error created by

a recovery, and this is the main challenge for adding the ability to recover from multiple

errors.
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Chapter 1

Introduction

1.1 Fail-stop failures

Fault tolerance is becoming more important as the number of processors used for

a single calculation increases [3]. When more processors are used, the probability that one

will fail increases [4]. Therefore, it is necessary, especially for long-running calculations, that

they be able to survive the failure of one or more processors. One critical part of recovery

from failure is recovering the lost data. Depending on the application, which method has

the least overhead varies. General methods for recovery exist, but for some applications

specialized optimizations are possible. There is usually overhead associated with preparing

for a failure, even during the runs when no failure occurs, so it is important to choose the

method with the lowest possible overhead so as not to hurt the performance more than

necessary. We have developed a technique using checksums that has lower overhead than

any alternative for the LU factorization and other operations.

There are various approaches to the problem of recovering lost data involving

saving the processor state periodically in different ways, either by saving the data directly

[5, 2, 6, 7] or by maintaining some sort of checksum of the data [1, 8, 9, 10] from which

it can be recovered. A method that can be used for any application is Plank’s diskless

checkpointing [6, 11, 12, 13, 14, 15, 16], where a copy of the data is saved in memory,

and when a node is lost the data can be recovered from the other nodes. However, its

performance degrades when there is a large amount of data changed between checkpoints [2],

as in for instance matrix operations. Since matrix operations are an important part of most
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large calculations, it is desirable to make them fault tolerant in a way that has lower overhead

than diskless checkpointing.

Chen and Dongarra discovered that, for some algorithms that perform matrix

multiplication, it is possible to add a checksum to the matrix and have it maintained at

every step of the algorithm [17, 18]. If this is the case, then a checksum in the matrix

can be used in place of a checkpoint to recover data that is lost in the event of a processor

failure. In addition to matrix multiplication, this technique has been applied to the Cholesky

factorization [9]. In this work, we extend the checksum technique to the LU factorization

used by High Performance Linpack (HPL) [19].

LU is different from other matrix operations because of pivoting, which makes it

more costly to maintain a column checksum. Maintaining a column checksum with pivoting

would require additional communication. However, we can show that HPL has a feature that

makes the column checksum unnecessary. We prove that the row checksum is maintained

at each step of the algorithm used by HPL, and that it can be used to recover the required

part of the matrix. Therefore, in this method we use only a row checksum, and it is enough

to recover in the event of a failure. Additionally, we show that two other algorithms for

calculating the LU factorization do not maintain a checksum.

The checksum-based approach that we have used to provide fault tolerance for the

dense matrix operation LU factorization has a number of advantages over checkpointing.

The operation to perform a checksum or a checkpoint is the same or similar, but the

checksum is only done once and then maintained by the algorithm, while the checkpoint

has to be redone periodically. The checkpoint approach requires that a copy of the data be

kept for rolling back, whereas no copy is required in the checksum method, nor is rolling back

required. The operation of recovery is the same for each method, but since the checksum

method does not roll back its overhead is less. Because of all of these reasons, the overhead

of fault tolerance using a checksum is significantly less than with checkpointing.

1.2 Soft errors

Modern computer systems are becoming more vulnerable to soft errors, both be-

cause of smaller, denser components and because they are becoming larger. The more

components there are, the more likely a failure. Dealing with soft errors is becoming more
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of a concern [20, 21, 22, 23, 24], with both hardware and software solutions proposed. Al-

though methods exist to detect errors in stored values, the more calculations there are, the

more likely it is that an error will go undetected. If a soft error changes the data only, it

is possible that the error will be completely undetected until the calculation returns the

wrong answer at the end, because no other way of detecting soft errors exists [25, 26]. For

a large matrix operation, one error could be propagated to a large fraction of the matrix.

Therefore, it is useful to be able to detect errors that are not found any other way soon after

they occur, and to recover the correct value in order to continue. A method that is designed

for a specific matrix operation will have lower overhead than a more general technique.

An existing technique is algorithm-based fault tolerance (ABFT) [27, 28, 29, 30],

which puts a checksum onto a matrix, and the sum will stay correct through an operation

on the matrix. If the sum is incorrect at the end of the calculation, it indicates that an

error occurred. Depending on the approach and the type of error, the sum may be used to

determine the correct values, or the calculation may be repeated. Using a sum to correct

an error at the end of the calculation is limited in the number of errors it can handle, so

it is more reasonable that, when ABFT is used, an error will cause the entire calculation

to be repeated. With the LU factorization, error propagation happens frequently enough

to make it impossible to recover from the checksums at the end of the calculation. Instead,

we are able to recover as soon as errors occur.

In the LU factorization, a single error can be propagated to large sections of the

matrix [31]. This can include affecting the checksums as well. Soft errors are not easily

detected, so it is necessary to check the matrix for correctness often enough that the errors

will not be propagated to the extent that they can no longer be recovered. We have found

that errors in different sections of the matrix are more or less sensitive to errors, so that

some sections do not have to be verified as frequently.

Previously, a global checksum of a matrix has been used to make the LU factoriza-

tion able to recover from fail-stop failures [32]. This approach used a single checksum, and

relied on getting the information about a failure from some other source. When a process

dies, it is apparent that there has been a failure, and it should also be possible to obtain

the information about which process has failed. In contrast, soft errors often do not result

in any noticeable sign that an error has occurred. The only indication of a soft error might

be that the result of a calculation is wrong. Therefore, in our approach it is necessary

3



to have two separate checksums of each matrix element - one that indicates that an error

occurred, and one that can be used to recover. The matrix elements must be periodically

verified using one set of checksums. If the check shows that an error has occurred, the first

checksums are not enough to recover from it, and a second set of checksums is needed to

allow recovery to take place.

We have taken the idea of a checksum on a matrix and extended it, finding the

way to set up a checksum on a matrix so that it is correct throughout the calculation. For

the LU factorization, we are able to provide fault tolerance using a row checksum, where

the sums are of elements in the same row. With multiple checksums we can both detect

and recover errors - with soft errors, there is no other way to detect them, so at least two

checksums are needed.

This approach has low overhead. With ABFT the entire calculation has to be

repeated when there are more errors than the number of checksums can recover. In our

method, a single iteration - a small fraction - of the calculation is repeated when an error

occurs. Therefore the expected amount of recalculation due to errors is much smaller than

with ABFT. The overhead when no error occurs is O( 1
N ), where the matrix is N ×N , and

can be adjusted to the error rate.
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Chapter 2

Related Work

2.1 Algorithm-Based Fault Tolerance

Algorithm-based fault tolerance [33, 28, 27, 10, 34, 35, 36] is a technique that has

frequently been used to detect miscalculations in matrix operations. This technique consists

of adding a checksum row or column to the matrices being operated on. For many matrix

operations, some sort of checksum can be shown to be correct at the end of the calculation,

and can be used to find errors after the calculation is done. It can be used for the LU

factorization with a single additional row and column added onto the matrix, which has the

sum of all elements in its row or column.

The original algorithm-based fault tolerance uses a checksum to determine at the

end whether the calculation had been successful or not. If the sums are not consistent with

the final result, the calculation is repeated. If the probability of a failure is p, the expected

number of runs is 1
1−p . If p is small, then the overhead of using this method on average is

low, but the cost of repeating is larger the higher the probability of failure. The probability

of failure increases linearly with the number of processors.

The existence of a checksum that is correct at the end raises the question: is

the checksum correct also in the middle? It turns out that it is not maintained for all

algorithms [1], but there do exist some for which it is maintained. In other cases, it is

possible to maintain a checksum with only minor modifications to the algorithm, while still

keeping an advantage in overhead over a diskless checkpoint. It may also be possible to use a

checksum to maintain redundancy of part of the data, while checkpointing the rest. Even a
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reduction in the amount of data needing to be checkpointed can give a gain in performance.

The checksum approach has been used for many matrix operations to detect errors and

correct them at the end of the calculation, which indicates that it may be possible to use it

for recovery in the middle of the calculation as well.

The idea of adding a checksum to a matrix is useful for multiple types of errors. A

checksum of a matrix can be used to both locate and correct entries in the solution matrix

that are incorrect. In some cases, one checksum must be used to detect the error, then

another is required in order to correct it. For fail-stop failures, the location is determined

by the message passing library in the case of the failure of a processor. In this case, only

one checksum is required in order to correct one failure.

2.2 Diskless Checkpoint

In order to do a checkpoint, it is necessary to save the data so that it can be

recovered in the event of a failure. One approach is to save the data to disk periodically [7].

In the event of a failure, all processes are rolled back to the point of the previous checkpoint,

and their data is restored from the data saved on the disk. Unfortunately, this method does

not scale well. For most scientific computations, all processes make a checkpoint at the

same time, so that all of the processes will simultaneously attempt to write their data to

the disk. Most systems are not optimized for a large amount of data to go to the disk at

once, so this is a serious bottleneck, made worse by the fact that disk accesses are typically

extremely slow.

In response to this issue diskless checkpointing [6] was introduced. Each processor

saves its own checkpoint state in memory, thereby eliminating the need for a slow write

to disk. Additionally, an extra processor is used just for redundancy, as shown in figure

2.1, which could be parity, checksum, or some other appropriate reduction. Typically

there would be a number of such processors, each one for a different group of the worker

processors. This way, upon the failure of a process in one group, all of the other processes

can revert to their stored checkpoint, and the redundant data along with the data of all

the other processes in the group is used to recover the data of the failed process. The lost

process is recovered by reversing the operation that was used to compute the values stored

in the checkpoint process. The checkpoint process can potentially be used to replace the
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lost process, or some form of redundancy can be used to provide a replacement for the lost

process [37].

Diskless checkpointing has several similarities to the checksum-based approach.

When a checksum row is added to a processor grid, each checksum processor plays the role

of the redundancy processor in a diskless checkpoint. The difference is that the redundancy

of the checksum data is maintained naturally by the algorithm. Therefore there are two

main benefits: the working processors do not have to use extra memory keeping their

checkpoint data, and less overhead is introduced in the form of communication to the

checkpoint processors when a checkpoint is made. A key factor in the performance of

diskless checkpointing is the size of the checkpoint. The overhead is reduced when only data

that has been changed since the last checkpoint is saved [38]. However, matrix operations

are not susceptible to this optimization [2], since many elements, up to the entire matrix,

could be changed at each step of the algorithm. When the checkpoint is large, the overhead

is large [39].

2.3 Applications of Checksum-Based Recovery

It has been shown in [1] how a checksum is maintained in the outer product matrix-

matrix multiply. It is also made clear that not all algorithms will maintain the checksum

in the middle of the calculation, even if the checksum can be shown to be correct at the

end. So it is important to ensure that the algorithm being used is one for which a checksum

is maintained before using a checksum for recovery. Another application of a checksum is

described in [9]. Here a checksum is used to recover from a failure during the ScaLAPACK

Cholesky factorization.

2.4 Soft Error Detection and Recovery

Although handling of soft errors has not been very important in the past, as

systems and problems continue to increase in size, the importance of detecting and correcting

soft errors has increased, leading to techniques to deal with them being created [40, 41].

Handling soft errors for matrix operations is an important problem [31, 30, 42].

To both detect and correct soft errors, multiple checksums are needed. One ap-

proach is to use differently weighted checksums of the same elements in the matrix [8, 43, 44].
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Figure 2.1: A checkpoint is periodically saved to a checkpoint process.

process 1 process 3process 2

checkpoint
process

This approach requires finding optimal weights for numerical stability, which is a difficult

problem. Our approach uses only single checksums of different sets of elements to achieve

the same effect as multiple checksums. One checksum is kept of the local matrix on each

process, and another checksum is kept of the global matrix. The local checksum can be

used to detect errors, and the global checksum to correct them. Any approach that uses a

single checksum could be extended to use multiple weighted checksums to provide tolerance

of more errors.

2.5 Multiple Simultaneous Errors

Algorithm-based fault tolerance can be set up with multiple checksums weighted

with coefficients in order to handle multiple errors [45]. The same approach can be applied

when the errors will be found in the middle of the calculation instead of at the end.
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Chapter 3

High Performance Linpack

HPL performs a dense LU factorization using a right-looking partial pivoting al-

gorithm. The matrix is stored in two-dimensional block-cyclic data distribution. These are

the most important features of HPL to our technique.

3.1 2D Block-Cyclic Data Distribution

For many parallel matrix operations, the matrix involved is very large. The number

of processors needed for the operation may be selected based on how many it takes to have

enough memory to fit the entire matrix. It is common to divide the matrix up among the

processors in some way, so that the section of the matrix on a particular processor is not

duplicated anywhere else. Therefore an important fact about recovering from the failure

of a processor is that a part of the partially finished matrix is lost, and it is necessary to

recover the lost part in order to continue from the middle of the calculation rather than

going back to the beginning.

Matrices are often stored in 2D block cyclic fashion [1, 9, 2]. Block cyclic distribu-

tion is used in HPL. This storage pattern creates a good load balance for many operations,

since it is typical to go through the matrix row by row or column by column (or in blocks of

rows or columns). With a block cyclic arrangement, matrix elements on a particular proces-

sor are accessed periodically throughout the calculation, instead of all at once. An example

of 2D block cyclic distribution is shown in figure 3.1. As this figure indicates, the global

matrix will not necessarily divide evenly among the processors. However, we currently are
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Figure 3.1: Global and local matrices under the 2D block cyclic distribution [1].

assuming matrices that divide evenly along both rows and columns of the processor grid to

simplify the problem. The block size is how many contiguous elements of the matrix are

put in a processor together. Blocks are mapped to processors cyclically along both rows

and columns.

3.2 Right-looking Algorithm

In Gaussian elimination, the elements of L are found by dividing some elements

of the original matrix by the element on the diagonal. If this element is zero the division

is clearly not possible, but with floating point numbers a number that is very close to zero

could be on the diagonal and not be obvious as a problem. In order to ensure that this does

not happen, algorithms for LU factorization use pivoting, where the row with the largest

element in a the current column is swapped with the current row. The swaps are not done

in the L matrix, which enforces our idea that it is not necessary to be able to recover it. The

equation Ax = b can be rewritten as LUx = b using the LU factorization, where Ux = y, so

that Ly = b. The algorithm transforms b to y, so that L is not needed to find x at the end.

The factorization is performed in place, which means that the original matrix is replaced

by L and U .

HPL does the factorization by panels instead of one column at a time. A panel is

a block of elements that extends from the current diagonal element to the last row and is

the width of a block. The order of one iteration is panel factorization, panel broadcast, and

trailing matrix update. This is why it makes sense to not apply pivots to L: it would mean
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sending the information to the processors that hold parts of L, when the swap in L is not

necessary for the solution at the end. By not applying the pivots to L, some communication

time is saved each iteration.

The right-looking variation is the version of LU that updates the trailing matrix.

When one row and column are factored in basic Gaussian elimination, the remaining piece

of the original matrix is updated by subtracting the product of the row and column. It

is possible to put off the update of a particular section of the matrix until that section

is going to be factored. However, this approach means that large sections of the matrix

are unchanged after each iteration. Figure 3.2 shows how the matrix is changed in each

of the three variations. Because of the data distribution, the load balance is best when

each processor does some work on its section of the matrix during each iteration. When

the trailing matrix is not updated at each step, the work of updating it has to be done

consecutively by a small set of processors when the factorization reaches each new part.

When the update is done at every step, the work is done at the same time that other

processors are doing factorization work, taking less total time.

3.3 Partial pivoting

In the LU factorization, some values in the matrix are divided by elements on

the main diagonal. If a value on the diagonal is either zero or very small relative to the

other values in the matrix, it will cause a roundoff error in the result of the factorization.

Fortunately, it is possible to exchange rows of the matrix without changing the answer found

by the algorithm. (If the matrix represents a system of equations, then exchanging rows

is equivalent to putting the equations in a different order, which clearly does not change

the solution to the system of equations.) It would be difficult for the algorithm to attempt

to judge whether each main diagonal value is too small; instead, it simply searches down

columns to find the largest available value for every spot in the diagonal and exchanges rows

to put values in the correct location. The name partial pivoting refers to the fact that the

entire matrix is not updated with the new row permutation. Instead, only rows to the right

of the current column are swapped; the L matrix is not updated because it is not necessary

to the solution at the end. This decision has two effects on the way the checksum is set up,

both of which make using a row checksum only to be the better option.
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Figure 3.2: Three different algorithms for LU factorization [2]. The part of the matrix that
changes color is the part that is modified by one iteration. Unlike right-looking, left- and
top-looking variants change only a small part of the matrix in one iteration.
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First, the checksum down columns becomes a sum of only the elements in the L

matrix after the factorization is completed. However, once the factorization of elements

from the L matrix is completed, those elements are never used again. Therefore protecting

them from being lost is not necessary. Second, the checksum value added along a column

would sometimes be the largest value in a particular column, and would therefore be the

value detected by the pivoting routine to be swapped into the main diagonal. The method

of pivoting would have to be altered to skip checksum rows, requiring extra checking and

slowing it down. Because the column fault tolerance is already unnecessary to the final

answer, it seems that the column checksum is better left out of the LU factorization fault

tolerance scheme when the goal is solving a system of equations. The application will have

slightly better performance while still being able to find the correct answer at the end.
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Chapter 4

Fail-Stop Failures

4.1 Failure Model

The type of failure that we focus on in this section is a fail-stop failure, which

means that a process stops and loses all of its data. The main task that we are able

to perform is to recover the lost data. Another type of failure that this technique could

handle is a soft failure, where one or more numbers become incorrect without any outwardly

detectable signs. A checksum can be used to detect and correct these types of errors as

well. However, it has higher overhead than handling only fail-stop failures. Detecting a

soft failure requires that all elements of the matrix be made redundant by two different

checksums, where different elements of the matrix go into each checksum.

For example, having both row and column checksums allows detection. The matrix

that will be factored into L and U starts with double redundancy but changes to single

redundancy in L and U, so another way of making a checksum for L and U would be

required for detecting soft failures. The other way in which the overhead of detecting and

recovering from soft failures is greater than recovering from fail-stop failures is that detecting

soft failures requires periodically checking to see if a failure has occurred. This does not

have to be done every step, but it should be done often enough that a second failure is not

likely to occur and make it impossible to recover.

Soft failures are another problem that can use the checksum technique, although

the idea behind having multiple sums for the same set of elements is similar. Instead, we are

focused on recovering from one hard failure, where the fact of the failure and the processor
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that failed are provided by some other source, presumably the MPI library. The ability

to continue after a process failure is not something that is currently provided by most

MPI implementations. However, for testing purposes it is possible to simulate a failure

in a reasonable manner. When one process fails, no communication is possible, but the

surviving processes can still do work. Therefore, the general approach to recovery is to

have the surviving processes write a copy of their state to the disk. This information can

then be used to restart the computation. The state of the surviving processes is used to

recover the failed process.

4.2 Checksum Setup

Adding checksums to a matrix stored in block cyclic fashion is most easily done

by adding an extra row, column, or both of processors to the processor grid. The extra

processors hold an element by element sum of the local matrices on the processors in the

same row for a row checksum or the same column for a column checksum. This way

processors hold either entirely checksum elements or entirely normal matrix elements. If

this were not the case it might make recovery impossible.

The checksum is computed by a reduce across rows of the entire local matrix

of each process. The result of the reduce is stored in the last process in the row, which

is added after the processes holding the original matrix. Computing lost elements is the

reverse process, subtracting all of the other local matrices in the row from the local matrix

of the checksum process.

In the following matrix, a row checksum has been added. The last element in each

row is the sum of the other elements. 
3 1 2 6

2 4 3 9

4 3 1 8


If one element is unknown, as represented by an x here, it can be calculated from the other

elements. 
3 1 2 6

2 x 3 9

4 3 1 8


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Here 2 + x+ 3 = 9, so x = 4, which is the correct recovered value. This relationship works

the same way if the individual elements are replaced by matrices. For a distributed matrix,

the local matrices are added together to create a checksum matrix for that row, which is

stored in another process in the same row of the process grid.

The block cyclic distribution makes it so that the checksum elements are inter-

preted as being spread throughout the global matrix, rather than all in the last rows or

columns as they would be in a sequential matrix operation. Figure 4.1 shows the global

view of a matrix with a row checksum. The width of each checksum block in the global

matrix is the block size nb. The block size is also used as the width of a column block

that is factored in one iteration. Periodically during the calculation checksum elements

may need to be treated differently from normal elements. In the LU factorization, when a

checksum block on the main diagonal is come to, that iteration can be skipped because the

work done in it is not necessary to maintaining the checksum. When there is only a row

checksum, as in this case, the elements on the diagonal of the original matrix are not all on

the diagonal of the checksum matrix. Instead of considering every element ai,i of the matrix

during Gaussian elimination, the element is ai,i+c·nb, where c is the number of checksum

blocks to the left of the element under consideration.

When a column checksum is used it is necessary to skip over checksum elements

when searching for a pivot. The largest element in a column is chosen to be switched

with the element on the diagonal. If all the elements in a column were positive, then the

checksum element would be the largest and would be selected as the pivot if it was treated as

a normal part of the matrix. The checksum elements cannot be moved off of their processors

because the method partly relies on processors containing either all checksum or all normal

elements.

It would be possible to have a system of recovery where processors contain both

checksum and normal elements, but only if only one of the elements going into a sum, or the

sum itself, were on the failed processor. Clearly, if both a sum and an element of the sum are

lost, it is not possible to recover the lost element. Requiring that processors contain strictly

checksum or non-checksum elements removes the possibility that sums and their elements

could be on the same processor and simplifies the process of maintaining the sums.

The checksum elements must be skipped when pivoting. If the matrix were not

stored in block cyclic fashion, the checksum elements would all be at the end of the matrix.
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nb

Figure 4.1: Global view of a matrix with checksum blocks and diagonal blocks marked.
Because of the checksum blocks, the diagonal of the original matrix is displaced in the
global matrix.

This would simplify the calculation slightly because there would be no need to skip over

checksum elements or treat them differently for pivoting. However, the complication is very

minor.

Another feature of the matrix storage for LU that is worth noting is that the

factorization is done in place, so that L and U replace the original matrix one panel at a

time. An implication of this fact is that the local matrix in a particular processor may

have sections of all three matrices. This means that different checksum might be needed to

recover different elements of the local matrix. This is one of the potential issues that are

avoided by our choice of LU within HPL.

It is not guaranteed that the checksum can be maintained for any algorithm for

calculating the LU factorization. The method relies on whole rows of the matrix being

operated on in the same iteration.

The right-looking LU factorization can be used with our technique, but the left-

looking LU factorization cannot. In the left-looking variation, columns to the left of the

currently factored column are not updated. So the row checksum will not be maintained,

and it will not be possible to recover U.
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4.3 Checksum behavior during LU factorization

Like all matrix operations, there are different algorithms for the LU factorization,

not all of which will necessarily maintain a checksum at each step. However, there is at

least one algorithm for LU that maintains the checksum in a way that is useful for recovery.

This is the right-looking algorithm with partial pivoting. If pivoting is not used at all, the

right-looking algorithm also maintains a checksum, but without pivoting the outcome of

the algorithm is not as numerically stable.

4.3.1 Left-looking LU factorization

Left-looking and top-looking LU factorization do not maintain a checksum because

various parts of the matrix are not updated in a given step, shown in figure 3.2 by the sec-

tions that do not change color. When some sections of the matrix are changed and others

are not, a sum that includes elements from both sections will not be maintained. Only

the right-looking variant updates the entire matrix at every step, maintaining the check-

sum. Interestingly, this characteristic makes the right-looking variant the least favorable

for diskless checkpointing.

The left-looking algorithm can be shown to not maintain the necessary checksums

in the middle of the operation.

This matrix has row and column checksums added to it.


3 1 4

2 4 6

5 5 10


Going through the left-looking LU factorization:


3 1 4

2/3 4 6

5/3 5 10




3 1 4

2/3 10/3 6

5/3 1 10


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
3 1 4

2/3 10/3 10/3

5/3 1 0


The sum relationships in this matrix are: in the first row, 3+1=4; in the first

column, 1+2/3=5/3 (1 on diagonal); in the second row, 10/3=10/3; and in the last row the

1 is the remaining sum of the 1 on the diagonal, and the 0 is the sum of the trailing matrix

with no elements in it.

In the intermediate steps, there are checksum relationships along columns, but

they do not exist for every row. Therefore the left-looking variation cannot be used with

our checksum method. A similar problem exists with the top-looking variation, since the

trailing matrix is not updated each step.

4.3.2 Right-looking LU factorization

The right-looking algorithm for LU maintains a checksum at each step as is re-

quired because each iteration operates on entire rows and columns. If an entire row is

multiplied by a constant, or rows are added together, the checksum will still be correct.

The same is true of columns. When an operation finishes factoring a part of the matrix

into part of L or U, the checksums in that part will be sums on L or U only. Elements

belonging to L will go into column checksums only, and elements belonging to U will go

into row checksums only. The elements of L and U that are not stored in the matrix-ones

on the diagonal of L and zeros above or below the diagonal-also go into the checksums.

Right-looking LU factorization maintains a checksum at each step, as shown below.

This version is also faster than the others, left-looking and top-looking.

The right-looking algorithm is:

for i = 1 to n-1

A(i+1:n,1) = A(i+1:n,1)/A(i,i)

A(i+1:n,i+1:n) = A(i+1:n,i+1:n)

- A(i+1:n,i)*A(i,i+1:n)

In an iteration of the loop, the original matrix is:
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
a11 a12 . . . a1n

∑n
j=1 a1j

a21 a22 . . . a2n
∑n

j=1 a2j
...

...
...

...

an1 an2 . . . ann
∑n

j=1 anj


Dividing it up by the sections that are relevant to the step, this matrix isa11 A12

∑
A12

A21 A22
∑
A22


where

A12 =
(
a12 . . . a1n

)
∑

A12 =
(∑n

j=1 a1j

)

A21 =


a21
...

an1



A22 =


a22 . . . a2n
...

...

an2 . . . ann


∑

A22 =


∑n

j=1 a2j
...∑n

j=1 anj


The first part of the iteration makes the matrix into a11 A12

∑
A12

A21/a11 A22
∑
A22


The second step modifies the trailing matrix as follows:
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(
A22

∑
A22

)
−
(
A21/a11

)(
A12

∑
A12

)
=

(
A22

∑
A22

)
−
(
A21A12/a11 A21/a11

∑
A12

)
=

(
A22 −A21A12/a11

∑
A22 −A21/a11

∑
A12

)
Note that A22 −A21A12/a11 = aij − ai1a1j/a11 for i = 2, . . . n and j = 2, . . . n.

The term representing the sums is

∑
A22 −A21/a11

∑
A12

=


∑n

j=1 a2j
...∑n

j=1 anj

−

a21/a11

...

an1/a11

(∑n
j=1 a1j

)

=


∑n

j=1 a2j − a21a1j/a11
...∑n

j=1 anj − an1a1j/a11



=


∑n

j=2 a2j − a21a1j/a11
...∑n

j=2 anj − an1a1j/a11


The first term of each sum is zero. Therefore they become sums of the elements

in the trailing matrix only. The trailing matrix contains correct checksums at the end of

the iteration. The row that became part of U has a checksum for itself. The column that

is part of L no longer has a checksum that it is part of, but with the HPL algorithm it is

no longer needed for the final result.

4.4 HPL and Distributed Checksum

In the HPL algorithm, the L matrix is applied to the right hand side of the equation

as it is factored, and so it is not necessary for solving the equation at the end, and does not

need to be recovered if part of it is lost in a failure. So the process of recovering is made

simpler, and requires only one reduce operation across the row with the failure. However,
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both U and the original matrix A are recovered using row checksums, so the elements of L

in the row are simply set to zero so that they do not affect the outcome. The recovery is

done by a reduce across the row containing the failed process. If recovery of both L and

U was required, reduce operations along both the row and column of the failed processor

would be necessary, with each reduce involving only elements from the matrix stored in

that checksum.

The checksum is most useful when it is maintained at every step of the calculation.

The shorter the period of time when the checksum is not correct or all processors do not

have the information necessary to update the checksum, the less vulnerable the method is.

This period of time is equivalent to the time it takes to perform a checkpoint when the

checkpointing method is used. If a failure occurs during the checkpoint, it is likely that the

data cannot be recovered. The same might be true for the checksum method.

Specifically for HPL, it is necessary to take some extra steps to reduce this vul-

nerability. One iteration of the factorization is broken down into two parts: the panel

factorization and the trailing matrix update. During the panel factorization, only the panel

is changed, and the rest of the matrix is not affected. This operation makes the checksum in-

correct. Fortunately, simply keeping a copy of the panel before factorization starts is enough

to eliminate this problem. The size of the panel is small compared to the total matrix. HPL

already keeps copies of panels for some of the variations available for optimization.

Once the panel factorization is completed, the factored panel is broadcast to the

other processors, and the panel is used to update the trailing matrix. If a failure occurs

while the panel is being factored, recovery consists of replacing the partially factored panel

with its stored earlier version, then using the checksums to recover the part of the matrix

that was kept on the failed processor.

Figure 4.2 shows how a checksum is added to a matrix with 2× 2 block size. The

matrix is distributed on a 2 × 3 process grid. The checksum is calculated as the sum of

the local matrices in the row, so that the last process column contains a matrix that is the

sum of the matrices in the same row. When the expanded matrix is viewed as a global

matrix, the checksum elements appear in stripes throughout the matrix. The elements of

the original matrix are near the checksums they go into in the global view of the checksum

matrix.

In figure 4.3, the first step of the top-looking algorithm is shown, and the checksum

22



is not maintained. The checksum elements marked in red no longer reflect the elements of the

matrix because some elements going into those sums are changed, but the sums themselves

are not. The top-looking algorithm, like the left-looking algorithm, changes only elements

in one section at a time, and specifically only one column of processes at a time. Therefore

a checksum that must be kept on a separate process in order to survive a failure can never

be automatically updated by these algorithms.

In contrast to the top-looking version, the first step of the right-looking algorithm

in figure 4.4 maintains the checksum. The trailing matrix update has the effect of making

the checksum elements consistent with the rest of the matrix. Note that the sums are of

only elements in the U and trailing matrices. This reflects our decision not to make L

recoverable.

4.5 Performance Analysis

Even when there is no failure, the process of preparing for one has a cost. For this

method, the cost is performing the checksum at the beginning, as well as the extra processors

required to hold the checksums. The checksum is done by a reduce. The number of extra

processors required is the number of rows in the processor grid, since an extra processor is

added to each row. The number of iterations is not increased because the checksum rows are

skipped. Performing the factorization on checksum blocks is not necessary for maintaining

a correct checksum, so the work done in that step would be pointless.

4.5.1 Overhead of constructing the checksum

This method competes with diskless checkpointing for overhead. Because the extra

processors do the same sort of tasks as the normal processors in the same row, the time to

do an iteration is not significantly increased by adding the checksums. In contrast, in order

to do a checkpoint it is necessary to do extra work periodically to update the checkpoint.

If the checkpoint is done every iteration, then the cost of recovery is the same as with a

checksum, but the cost during the calculation is clearly higher.
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Figure 4.2: Global and distributed view of a matrix, with checksum added

4.5.2 Overhead of computation

The only parts of an iteration that are affected by there being more processors are

the parts with communication. There are broadcasts in both rows and columns, but only

broadcasting in rows is affected because there are no column checksums. If the original

matrix dimension is P, then with a checksum added it is P + 1. So the overhead of each

iteration is the difference between a broadcast among P + 1 processors and a broadcast

among P processors. Depending on the implementation, the value varies. With a binomial

tree, the overhead would be log(P + 1) − logP . Using pipelining, where the time for the

broadcast is nearly proportional to the size of the message, the overhead is even smaller.

The total overhead of the checksum technique is

TP+1 + (TP+1 − TP ) · N
nb

where TP is the time for either a broadcast or a reduce on P processors, N is the matrix

dimension, and nb is the block size. N/nb is the number of iterations. It seems reasonable to

assume that TP+1 − TP is a very small quantity. Whether this term is significant depends

on the exact value and the number of iterations, but for certain ranges of matrix size

the overhead is essentially the time to do one reduce across rows. The total overhead of

checkpointing is

TP+1 ·
N

nb
/I

where I is the number of iterations in the checkpointing interval. There is an interval for
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Figure 4.3: Top-looking algorithm does not maintain a checksum
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Figure 4.4: Right-looking algorithm maintains a checksum at each step
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which these overheads are the same:

TP+1 + (TP+1 − TP ) · N
nb

= TP+1 ·
N

nb
/I

I =
TP+1 · Nnb

TP+1 + (TP+1 − TP ) · Nnb

If N
nb is large, the number of iterations required in the interval would be approxi-

mately
TP+1

TP+1−TP , which could be a very large number, depending on the implementation of

broadcast and reduce.

In addition to the time overhead, both checksum and checkpoint techniques have

the overhead of additional processors that are required to hold either the checksum or

checkpoint. The overhead in number of processors for the checksum is approximately
√
P ,

where P is the number of processors, so the relative increase in processors is smaller the

more processors there are.

4.5.3 Overhead of one recovery

Both checkpoint and checksum methods make it so that at any particular time,

only a small part of the total execution is vulnerable to a failure. With either method,

only the time spent in the most recent interval can be lost. With a checkpoint this interval

depends on the failure rate of the system, but with a checksum the interval is always one

iteration. For the checksum method, the checksums are consistent at the beginning of each

iteration. To recover from a failure, it is necessary to go back to the beginning of the current

iteration and restart from there.

Both checkpoint and checksum recoveries use a reduce of some sort to calculate

the lost values, so that the recovery time tr is comparable for the two methods.

The other aspect of the overhead of recovery, beside tr, is the amount of calculation

that has to be redone. Since the checkpoint interval can be varied while the checksum

interval cannot, it seems that this overhead could favor one method or the other depending

on the circumstances. However, the optimum checkpointing interval is determined partly

by the time it takes to perform a checkpoint, and one of the main points emphasized in this

paper is that the time to perform a checkpoint is very long for matrix operations because

of the large amount of data that changes between checkpoints. Therefore it is reasonable to
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assume that the interval required by the checkpoint will be larger than that of the checksum

method, and the overhead introduced by the repeated work will be less with the checksum

method.

There are two ways in which the overhead of the checksum method is less than

that of checkpointing: the time added even when there is no failure, and the time lost when

a failure occurs.

4.5.4 Comparison to checkpointing

One way to evaluate the relative merit of the checkpointing and checksum tech-

niques is to compare their overhead. The most straightforward way of measuring overhead

is to find how much longer a run on the same matrix size takes with fault tolerance than

without. This way all of the effects of the additional work will be included.

A problem with this comparison is that the optimal rate of checkpointing depends

on the expected rate of failure, among other factors. The time between checkpoints that

gives the best performance is given in [46]. This means that it is impossible to absolutely

state that checkpointing has higher overhead. However, it is possible to show that the

interval would have to be extremely long, which is only possible when the failure rate is

extremely low, for checkpointing to achieve overhead as low as that of the checksum method.

Making a checkpoint is the same operation as making the checksum, the difference

being that a checksum is only done once while the checkpoint is done many times. Aside

from that fact, the difference lies in the fact that the checksum needs to have some work

done to keep it correct, while the checkpoint ends with doing the sum periodically. The

extra work comes from the fact that the blocks with the sums in them are treated as part

of the matrix. However, no extra iterations are added because it is possible to skip over

the sum blocks and keep the sums correct. So the number of steps is the same; the only

difference is how much longer each step takes when there are more processors in the grid.

Another consideration is how the overhead scales. If the checkpoint is done at the

same interval regardless of the matrix size, then the overhead would remain nearly constant.

However, when more processors are added, the expected rate of failure increases, so that

in practice the checkpoint interval would likely have to be shorter when a larger matrix is

used. In contrast, the fraction of total time that is overhead in the checksum technique

should decrease as the size of the matrix increases. Since much of the overhead comes from
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making the sum at the beginning of the calculation, the overhead as a fraction of the total

time will decrease as the length of the calculation increases.

When no error occurs, the overhead of performing a checkpoint is the time it takes

to do one checkpoint multiplied by the number of checkpoints done. For checkpointing, the

optimum interval depends on the failure rate and the time it takes to do a checkpoint. The

more frequently failures are likely to occur, the smaller the interval must be. The longer

the checkpoint itself takes, the fewer checkpoints there should be in the total running time,

so the interval is longer for a larger checkpoint. Whatever the optimum interval is, the

additional overhead from the checkpoint when no failure occurs is Ntc, where N is the total

number of checkpoints and tc is the time to perform one checkpoint.

The checksum technique, in contrast, does not take any extra time to keep the

sum up to date. The only overhead when no failure occurs is the time to calculate the

sum at the beginning. Since both the sum and the checkpoint operation will use some sort

of reduce, the time to calculate the checksum is comparable to the time to perform one

checkpoint.

Whether fault tolerance is used or not, a failure means that some amount of

calculation time is lost and has to be repeated. When no fault tolerance is used, the time

that has to be repeated is everything that has been done up to the point of the failure. The

higher the probability of failure, the less likely it is that the computation will ever be able

to finish.

4.5.5 Expected time to complete a calculation

Both the checkpoint and checksum techniques require some calculation to be re-

peated. The total computation can be divided into segments where, if an error occurs during

the execution of the segment, the entire segment will have to be repeated. When a segment

will have to be repeated an unknown number of times until it succeeds, the expected time

to complete the segment can be defined as t/P , where t is the length of the segment and

P is the probability of successfully completing it. The probability of succeeding, then, is

1− t/M , where M is the mean time to failure.
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Therefore, the expected time is

t

1− t/M
=

t
M−t
M

=
tM

M − t

= t
M

M − t

The factor by which the time increases over the error free time is M
M−t . This value

shows how when there are very few errors, so that M is large compared to t, the expected

time only increases by a small amount; usually no error will occur and the segment will

complete successfully on the first try. On the other hand, if errors occur more frequently,

the time to complete will be greater due to the greater number of segments repeated.

In order to compare the checksum and checkpoint methods, consider what the

expected time will be for the total calculation. The total time when no errors occur is

T = t1 ∗n1: the total time is divided into n1 segments of length t1 each. When errors occur,

there are still n1 segments, but they will each have an expected time determined by the

equation above. Then the expected runtime is

n1
t1M

M − t1
=

TM

M − t1

This equation can be used to compare the ratio of the two different methods on the

same problem, where the error-free runtime can be assumed to be the same. In fact, each

method adds some amount of overhead. However, since it has been shown that even without

considering errors, the checkpoint method adds more overhead, the ratio resulting from

assuming the error-free runtime is the same will be slightly too favorable to the checkpoint

method.

Defining t1 as the interval between checkpoints and t2 as the time that has to be

repeated in the case of an error in the checksum method, the ratio of the checkpoint time

to the checksum time is
TM/(M − t1)
TM/(M − t2)

=
M − t2
M − t1

Since t2 is a much smaller value than t1, the value is greater than one and the checkpoint

technique will clearly have a longer expected runtime than the checksum technique. Also,

assuming the same calculation is done in environments of different error rates, more frequent
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errors mean that M is a smaller number, making the ratio even more favorable to the

checksum method.

The more frequently errors are expected to occur, the better the checksum method

will perform compared to checkpointing.

4.6 Experiments

4.6.1 Platforms

We evaluate the proposed fault tolerance scheme on the following platforms:

Jaguar at Oak Ridge National Laboratory (ranks No. 2 in the current TOP500

Supercomputer List): 224,256 cores in 18,688 nodes. Each node has two Opteron 2435

“Istanbul” processors linked with dual HyperTransport connections. Each processor has

six cores with a clock rate of 2600 MHz supporting 4 floating-point operations per clock

period per core. Each node is a dual-socket, twelve-core node with 16 gigabytes of shared

memory. Each processor has directly attached 8 gigabytes of DDR2-800 memory. Each

node has a peak processing performance of 124.8 gigaflops. Each core has a peak processing

performance of 10.4 gigaflops. The network is a 3D torus interconnection network. We used

Cray MPI implementation MPT 3.1.02.

Kraken at the University of Tennessee (ranks No. 8 in the current TOP500 Super-

computer List): 99,072 cores in 8,256 nodes. Each node has two Opteron 2435 “Istanbul”

processors linked with dual HyperTransport connections. Each processor has six cores with

a clock rate of 2600 MHz supporting 4 floating-point operations per clock period per core.

Each node is a dual-socket, twelve-core node with 16 gigabytes of shared memory. Each

processor has directly attached 8 gigabytes of DDR2-800 memory. Each node has a peak

processing performance of 124.8 gigaflops. Each core has a peak processing performance

of 10.4 gigaflops. The network is a 3D torus interconnection network. We used Cray MPI

implementation MPT 3.1.02.

Ra at Colorado School of Mines: 2,144 cores in 268 nodes. Each node has two 512

Clovertown E5355 quad-core processor at a clock rate of 2670 MHz supporting 4 floating-

point operations per clock period per core. Each node has 16 GB memory. Each node has

a peak processing performance of 85.44 gigaflops. The network uses a Cisco SFS 7024 IB

Server Switch. We used Open MPI 1.4.
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Table 4.1: Jaguar: local matrix size 2000× 2000, block size 64

N P Total time (s) Checksum time (s) Overhead (%) Performance (Gflops)

192000 9312 161.83 1.22 0.759 29160

216000 11772 186.24 1.24 0.670 36070

240000 14520 206.08 1.26 0.615 44720

264000 17556 238.56 1.29 0.541 51420

Table 4.2: Jaguar: local matrix size 4000× 4000, block size 64

N P Total time (s) Checksum time (s) Overhead (%) Performance (Gflops)

384000 9312 913.16 5.72 0.630 41340

432000 11772 995.98 5.70 0.576 53960

480000 14520 1137.26 5.69 0.503 64830

528000 17556 1254.81 5.91 0.473 78200

Table 4.3: Jaguar: local matrix size 2000× 2000, block size 128

N P Total time (s) Checksum time (s) Overhead (%) Performance (Gflops)

192000 9312 162.52 1.29 0.800 29030

216000 11772 184.92 1.28 0.697 36330

240000 14520 210.50 1.29 0.617 43780

264000 17556 244.63 1.33 0.547 50140
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4.6.2 Overhead without recovery

We ran our code on both a larger scale (Jaguar and Kraken) and on a smaller

scale (Ra). Since the time required to perform the checksum can be kept almost constant

when the matrix size is increased, the larger scale shows lower overhead as a fraction of the

total time.

Tables 4.1, 4.2, and 4.3 show the overhead of making a checksum at the beginning

of the calculation for a matrix of size N ×N on P processes. The processes are arranged in

a a grid of size p× (p+ 1) = P . The sum is kept on the extra processes in the last column

of the processor grid. When the local matrix on each process is the same size, the time to

perform the checksum is nearly the same for different total matrix sizes. The overhead of

the checksum method consists almost entirely of the time taken to perform the checksum

at the beginning, so it decreases as a fraction of the total time. Changing the block size

has very little effect on the overhead. However, when the local matrix on each process is

increased from 2000 × 2000 to 4000 × 4000, the overhead is less for the same number of

processes, while the performance is greater.

Table 4.4 shows the results on a different large system. Here also the overhead

is typically less than 1%. Table 4.5 shows the results for small matrices. Even with few

processes the overhead is low, and it decreases as the size increases.

Figure 4.5 shows runtimes with and without fault tolerance. The difference in

times between the two cases is smaller than the variation that can arise from other causes,

as in the case of sizes 264000 and 288000, where the untouched code took longer for some

reason.

4.6.3 Overhead with recovery

Tables 4.6 and 4.7 show simple recovery times for a single failure. Here the recovery

is done at the end of an iteration, and requires only a reduce. Consequently, the time needed

to recover is very similar to the time needed to perform the checksum in the beginning. In

order to find the recovery time, we did the recovery operation to a copy of the local matrix

of an arbitrary process, using this to both time the recovery operation and to check its

correctness by comparing to the original local matrix.

By this measure, the recovery time is only the time needed for a reduce. In the

case of a real failure it may be necessary to repeat at most one iteration. As an example
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Table 4.4: Kraken: local matrix size 2000× 2000, block size 64

N P Total time (s) Checksum time (s) Overhead (%) Performance (Gflops)

144000 5256 214.71 1.16 0.543 9272

168000 7140 195.06 1.18 0.609 16210

192000 9312 256.91 1.17 0.457 18370

216000 11772 307.34 1.18 0.385 21860

240000 14520 342.28 1.18 0.346 26930

Table 4.5: Ra: local matrix size 4000× 4000, block size 64

N P Total time (s) Checksum time (s) Overhead (%) Performance (Gflops)

16000 20 36.51 2.16 6.29 74.81

20000 30 44.44 1.84 4.32 120.0

24000 42 54.98 1.97 3.72 167.7

28000 56 65.82 2.23 3.51 222.4

32000 72 77.20 2.43 3.25 283.0

36000 90 89.95 2.46 2.81 345.8

40000 110 81.44 2.27 2.87 523.9

Table 4.6: Jaguar: local matrix size 2000× 2000, block size 64

N P Total time (s) Recovery time (s)

192000 9312 161.83 1.19

216000 11772 186.24 1.24

240000 14520 206.08 1.24

264000 17556 238.56 1.25
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Figure 4.5: On Jaguar, when run with and without checksum fault tolerance, the times are
very similar. In fact, variations in the runtime from other causes are greater than the time
added by the fault tolerance, with all effects included.

192000 216000 240000 264000 288000 312000

with checksum
without

matrix size

tim
e 

(s
)

0
50

10
0

15
0

20
0

25
0

Table 4.7: Ra: local matrix size 4000× 4000, block size 64

N P Total time (s) Recovery time (s)

16000 20 36.51 1.52

20000 30 44.44 1.94

24000 42 54.98 2.60

28000 56 65.82 3.03

32000 72 77.20 3.41

36000 90 89.95 4.25
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of the amount of work that is repeated, the first entry in table 4.6 did 3000 iterations,

which means that each iteration took less than 0.05 seconds, which is not very significant

compared to the other cost of recovery.

4.6.4 Algorithm-based recovery versus diskless checkpointing

According to [47], an approximation for the optimum checkpoint interval is

I =

√
2tc(P )M

P

where tc(P ) is the time to perform one checkpoint when there are P processes and M is the

mean time to failure of one process, assuming that the process failures are independent so

that, if the failure rate of one is 1
M , then the failure rate for the entire system is P

M . This

formula illustrates the balance between the two main factors that determine the optimum

interval. The longer it takes to perform a checkpoint, the less often it should be done for the

sake of overhead. The term M/P is the mean time to failure for the entire system. When

the expected time until a failure is less, checkpoints need to be done more often for the

optimum expected runtime. Since the time to perform a checkpoint only increases slightly

as the number of processes increases, the significant factor is the number of processes, which

makes failures more likely and decreases the length of the checkpoint interval.

As an example of possible checkpoint overhead, Figure 4.6 shows the overhead

when the mean time to failure is 10000 hours for one process. Because both the operation

to create the backup (checksum or checkpoint) and the operation to recover from a failure

are essentially the same between the two different approaches, using the same values for both

the checksum and the checkpoint approach gives an approximation for how the overheads

compare that is fair to the checkpointing approach.

The checkpoint interval decreases as more processes are added because the prob-

ability of a failure increases. This means that the amount of work repeated because of

one failure is less, but the expected number of failures during the run increases. On aver-

age, half of the checkpoint interval will have to be repeated. The running time increases

as the problem size is larger, while the checkpoint interval decreases. So there will be an

increasing number of checkpoints, and therefore the overhead increases as the number of

processes increases. With the checksum method, on the other hand, the overhead decreases

as the number of processes increases. Figure 4.7 shows the results of smaller runs, com-
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Figure 4.6: Fault tolerance overhead without recovery: Algorithm-based recovery versus
diskless checkpointing
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Figure 4.7: On smaller runs on Ra, the difference between checksum and checkpoint can be
easily seen.
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Figure 4.8: Fault tolerance overhead with recovery: Algorithm-based recovery versus disk-
less checkpointing
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paring checksum and checkpoint overhead without a failure. Figure 4.8 shows the cost of

one recovery with the algorithm-based recovery scheme. Here the overhead is less than one

percent for each case, compared to at least 15 percent with a checkpoint. Table 4.8 also

shows the comparison of overhead from checkpoint and the checksum method.
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Table 4.8: Jaguar: projected checkpoint overhead

N P Total time (s) Checksum

time (s)

Recovery

time (s)

Checkpoint

interval (s)

Overhead: no

failure (%)

Overhead:

one failure

(%)

ABR over-

head (%)

192000 9312 161.83 1.22 1.19 97.1 0.75 30.7 0.73

216000 11772 186.24 1.24 1.24 87.1 1.33 24.0 0.67

240000 14520 206.08 1.26 1.24 79.0 1.22 19.8 0.60

264000 17556 238.56 1.29 1.25 72.7 1.62 15.8 0.5239



Chapter 5

Soft Errors

5.1 Failure Model

The type of failure that we handle with this technique is a fail-continue failure,

where the failure is not evident except by the fact that the application has the wrong data.

We use a set of checksums to both detect and correct errors. We assume that errors can

only occur during calculation, so that stored values will not become wrong. Matrix elements

can only potentially be wrong when they are changed.

We assume that the failure is not detectable from outside the application. This

is different from a larger hardware failure where it is obvious from other signs where the

problem is located. Because it is most likely not possible to know if or where a soft error

has occurred, an important part of our technique is verifying the results of the calculation

periodically. An error is detected by a failure in verification, which indicates that recovery

is necessary.

In any application, the biggest problem from soft errors is that they may be prop-

agated soon after they occur [41]. The error will spread to other processors as soon as an

incorrect value is included in some sort of message, which could happen immediately after

the error occurs. Once the error is propagated, a single error becomes multiple incorrect

values, which the fault tolerance scheme will most likely not be able to correct. In a general

case, the best approach might be to have error correction on each message sent. Fortunately,

in the case of HPL, there are specific points where errors can be detected before they are

propagated to the rest of the matrix.
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In HPL, error propagation can cause a single error to affect nearly the entire

matrix. Therefore, the verification must be done often enough to catch errors before they

can affect enough of the matrix to make recovery impossible. The results of a part of

the calculation can be verified before they are broadcast to other processes, which is when

propagation occurs. When an error is detected before it affects multiple processes in a row

of the process grid, it is still possible to recover.

5.2 Error Propagation in High Performance Linpack

HPL performs a dense LU decomposition using a right-looking algorithm. The

matrix is stored in a two-dimensional block-cyclic data distribution [32]. Matrices are often

stored in 2D block cyclic fashion [1, 9, 2]. These are the most important features of HPL

to this technique.

Generally matrix operations are done in parallel because the matrix involved is

very large. The matrix will most likely not fit in the memory of one processor, and so it will

be distributed so that each process has one part of the matrix. Therefore an important part

of recovering from errors is the fact that the affected part of the matrix is not duplicated

anywhere else, and has to be recovered.

5.2.1 Right-looking LU factorization

In Gaussian elimination, the elements of L are found by dividing some elements

of the original matrix by the element on the diagonal. If this element is zero the division

is clearly not possible, but with floating point numbers a number that is very close to zero

could be on the diagonal and not be obvious as a problem. In order to ensure that this

does not happen, algorithms for LU factorization use pivoting, where the row with the

largest element in a the current column is swapped with the current row. Partial pivoting

means that the swaps are not done in the L matrix. The equation Ax = b can be rewritten

as LUx = b using the LU decomposition, where Ux = y, so that Ly = b. The algorithm

transforms b to y, so that L is not needed to find x at the end. The factorization is performed

in place, which means that the original matrix is replaced by L and U .

The right-looking algorithm is the version of LU factorization that updates the

trailing matrix, unlike other versions. It is possible to put off the update of a particular
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section of the matrix until just before that section is going to be factored. However, this

approach means that large sections of the matrix are unchanged after each iteration. Only

the processes holding a small section of the matrix are working at any particular time,

making the efficiency of these versions lower. Our technique requires the matrix to be

updated each step, which is what is done in the right-looking version. Figure 3.2 shows how

the matrix is changed in each of the three variations. Because of the data distribution, the

load balance is best when each processor does some work on its section of the matrix during

each iteration. When the trailing matrix is not updated at each step, the work of updating

it has to be done consecutively by a small set of processors when the factorization reaches

each new part. When the update is done at every step, the work is done at the same time

that other processors are doing factorization work, taking less total time.

The factorization in HPL is done by iterating over panels, which are sections of

columns the width of the block size. An example panel is shown as section 1 in figure 5.1.

Each iteration takes its panel from the trailing matrix of the previous iteration (section 3

in figure 5.1), so the height of the panel decreases by one block size each iteration.

Algorithm 1 An iteration has three main steps that are of interest for our technique.

for i = 0 to N/nb do

factor the panel at (i*nb, i*nb)

broadcast the panel to the rest of the matrix

update the matrix using the factored panel

end for

Each step - the panel factorization, the row panel update, and the trailing matrix

update - changes only its particular section of the matrix. After the first two steps, matrix

elements are broadcast to be used in the updates. The broadcast is where errors can be

propagated outside of processes, which is when an error could potentially become unrecov-

erable. Since we use row checksums only, we are only concerned about error propagation

along rows. It turns out that propagation along rows can only happen during the broad-

cast after the panel factorization. Therefore, it is sufficient to verify the checksums only

after the panel factorization of each iteration in order to guarantee that all errors will be

detected while it is still possible to recover successfully, as long as only one error occurs. It

is necessary to verify the trailing matrix with a frequency depending on the failure rate.
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Algorithm 2 Error checking is added to the main factorization loop as shown

for i = 0 to N/nb do

factor the panel at (i*nb, i*nb)

verify the panel

if the panel contains an error then

perform recovery

return to the beginning of this loop iteration

end if

broadcast the panel to the rest of the matrix

update the matrix using the factored panel

if it is time to verify the entire matrix then

verify the matrix

if the matrix contains an error then

perform recovery

end if

end if

end for

Figure 5.1: The part of the matrix that is involved in the three parts of an iteration: (1)
panel factorization, (2) row panel update, (3) trailing matrix update.
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In algorithm 2, the step “verify the panel” must be done to ensure that the values

that are being broadcast are correct. It uses the local checksums to verify the result of the

panel factorization. The step “verify the matrix” means checking the trailing matrix for

correctness. This step takes longer than verifying just the panel, and it is less critical. An

error outside of the current panel will only make recovery impossible if it is a second error

that occurs before the first error can be corrected. Therefore, the frequency of verifying the

trailing matrix depends on the expected error rate.

If a recovery is needed, it is done using the global checksums. A recovery just after

the panel factorization will actually undo the result of the factorization: at this point in

the loop iteration, only the panel has been factored, and the panel has just been shown to

contain an error. Therefore, the entire panel must be replaced with the recovered version.

The recovery is done using elements that are still in the state from the previous iteration,

so the result will be to recover the panel from before it was factored.

However, in the case an error is found during the trailing matrix verification, this

is the last step in the loop: the entire matrix has now been updated to the next step in the

factorization. Therefore, the entire matrix is consistent with the end of an iteration, and

the recovery of any part of the matrix will not require any work to be repeated.

The recovery depends on there not being uncorrected errors outside of the panel.

This error check must be done periodically, with a frequency determined by the error rate.

If the entire matrix is verified occasionally, then when an error is found in the panel we

can assume that the other elements involved in the recovery will be correct. There is still

a chance of an error occurring between the last full verification and the recovery, but it is

very unlikely.

5.2.2 Error Propagation

Errors that occur in different sections of the matrix have different levels of risk to

the correctness of the calculation. Section 1 of figure 5.1, the column panel, is the most

important to verify. Errors that occur here will be propagated across the rows. This panel

is used to update the rest of the matrix. An error will affect the elements in the same row

to the right of the affected element. Because the global checksum is across rows, when more

than one process in a row is affected, recovery becomes impossible. This panel is factored

separately, then it is broadcast to the rest of the matrix. The verification must be done
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Figure 5.2: An error in the row panel is propagated down the column. If there is a second
error in the matrix, it creates a situation where there are two errors in the same row, making
recovery impossible.

before the broadcast to prevent errors from being propagated. Because of the way the local

checksum is set up, the stored sums for most of this panel will be zeros as long as no error

occurred. This check is the shortest, because only one block of sums need to be recalculated.

Section 2 is the row panel, and is also sensitive to errors. An error in this section

is not immediately damaging. It is propagated down the column it occurs in, which does

not make recovery impossible. However, since the entire column is affected, a second error

in a different location would make recovery impossible unless it happened to occur in the

same process column. Therefore it is important to check this section for correctness as well,

although it is possible to lengthen the period between verifications depending on the error

rate. The sums in this panel all need to be recalculated for the verification, so it takes

longer than the column panel verification.

Section 3 is the trailing matrix, and is least sensitive to errors. An error in this

section is not propagated until it becomes part of a panel in a later iteration, at which point

it can be handled by the panel verification. There is still a possibility that a second error

could make recovery impossible, but the probability that an error would do so is lower than

for the row panel. It can be necessary to verify this section of the matrix as well, again
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depending on the error rate, and less frequently than the row panel verification. Again this

verification takes longer than the row panel verification, because every sum in the trailing

matrix must be recalculated.

Figure 5.3 shows how much an error is propagated when it occurs in the U section

of the panel. The error is propagated down the entire column that it occurs in during the

panel factorization. This is the point when it would be detected by our method, before it

can become impossible to recover. The corrupted elements are in one process column, so

recovery is possible. If it were not recovered at this point, the error would be propagated

to every row in the row panel that had an error in the column panel. Finally, the error is

spread to the entire trailing matrix.

5.3 Soft Error Detection, Location, and Correction

5.3.1 Checksum Setup

We use two types of checksums, global and local. The local checksum is a sum of

elements in the local matrix on each process, and is stored in the same local matrix. The

global checksum is a sum of local matrices, and it is stored in additional processes. The

local checksum is verified periodically; if the sum is not correct, then the global sum is used

for recovery. No extra communication is needed unless an error occurs.

Any checksum of elements in the same row can be maintained at the end of an

iteration. However, in this technique we verify the checksums after the panel factorization,

where the panel is factored but the rest of the matrix is not updated. Therefore we use local

checksums by blocks - the elements in the block are added up across the row and stored

just after the block, and the block size is increased by one. After the panel factorization,

the checksums within the panel are correct because they involve only elements of the panel.

If an error is detected by the check after the panel factorization, the recovery will

take the matrix state back to the beginning of the iteration and the panel factorization

will have to be repeated. At the point just after the panel factorization, the panel only is

updated (section 1 in figure 5.1). The global sums, which are used for recovery, have not

yet been changed from their state in the previous iteration. When an error is detected in

the panel, it is necessary to replace the entire panel with a recovered version due to error

propagation. The recovered panel is constructed using elements that are still in the state
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Figure 5.3: A single error can be propagated to a very large section of the matrix when it
occurs in the panel.

of the previous iteration; therefore, the panel recovered will be the one from the previous

iteration, and the panel factorization will have to be repeated. With this method there is

no other way to recover: any error detected in the panel factorization will require a recovery

back to just before the factorization. With only one local sum, even an incorrect sum will

cause a recovery, since with a single sum it is impossible to tell which element of the sum

is incorrect.

Figure 5.4 shows an example matrix that will have a checksum added. The matrix

is distributed on the process grid according to the 2D block cyclic distribution. Figure 5.5

shows the same matrix with row sums added to each local matrix. The elements in one

block of a row of a local matrix are summed, and the result is stored just after the block

that it is the sum of. The block size is increased by one so that the sums are always included

with their elements in operations. Maintaining checksums at a fine-grained level requires

operating on both a sum and the elements that go into it at the same time. Figure 5.6

shows the matrix after global sums in additional processes are added. These sums are the

sum of the local matrices, stored in extra processes. In the global view of the matrix, these

checksums appear to be spread out periodically through the matrix. However, where the

sums are located in the global matrix does not impact their correctness.
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Figure 5.4: An example matrix, shown first in the original global view, then as it would be
distributed on a 3× 2 grid with a block size of 2.

Figure 5.5: The matrix after local sums are appended to the matrices in each process, and
how this addition affects the global matrix.
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Figure 5.6: The matrix after global sums are also added, with the global view of the matrix
with all checksums.

5.3.2 Proof of Correctness for Checksum

Each iteration of the LU factorization operates on the trailing matrix from the

previous step. Once factored, the sections of L and U are not changed again. Beginning

with a matrix with row checksums, one factorization step results in panels of L and U, and

a trailing matrix with correct row checksums. Since one step maintains the checksum, it is

maintained through the entire calculation.

The panel factorization on a matrix indexed starting from 1, with a block size of

nb, is

for i = 1 to nb

A(i+1:n,i) = A(i+1:n,i)/A(i,i)

A(i+1:n,i+1:nb) -= A(i+1:n,i)*A(i,i+1:nb)

The first step in this loop creates elements of L, which are not maintained with checksums

in our approach. The second step uses the modified elements from the first step. Therefore,

the elements at the end of the step in terms of the elements from the beginning of the step

are

A(i+1:n,i+1:nb) - A(i+1:n,i)*A(i,i+1:nb)/A(i,i)

Checksums are included in this calculation at the end of each block, so sections of the matrix

where the index goes to nb will have checksums appended.
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Theorem 1 After one iteration of the main loop in the HPL algorithm, if the matrix

started with correct global and local checksums, then the resulting matrix sections of U and

the trailing matrix will each have correct global and local checksums.

Each iteration operates on the trailing matrix from the previous iteration. As

we will show below, the trailing matrix begins the iteration with all checksums within the

trailing matrix consisting only of elements from the trailing matrix. Therefore it can be

treated as an entire matrix, independent of the sections that are already completely factored.

This is why the indices start from 1 instead of i below. Before the panel factorization, the

panel is set up with a checksum: A1:n,1:nb

nb∑
j=1

A1:n,j


At each iteration for i from 1 to nb, only the matrix Ai:n,i:nb is involved. So if the previous

iteration resulted in correct checksum relationships, then row i in iteration i will have a

correct checksum and will not be changed again in the panel factorization. Iteration i results

in Ai+1:n,i+1:nb

nb∑
j=i

Ai+1:n,j


−Ai+1:n,i

Ai,i+1:nb

nb∑
j=i

Ai,j

 /Ai,i
=

[
Ai+1:n,i+1:nb −Ai+1:n,i ·Ai,i+1:nb/Ai,i

nb∑
j=i

Ai+1:n,j −Ai+1:n,i

nb∑
j=i

Ai,j/Ai,i

]
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=
[
Ai+1:n,i+1:nb −Ai+1:n,i ·Ai,i+1:nb/Ai,i

nb∑
j=i

Ai+1:n,j −Ai+1:n,i ·Ai,j/Ai,i
]

=
[
Ai+1:n,i+1:nb −Ai+1:n,i ·Ai,i+1:nb/Ai,i

Ai+1:n,i −Ai+1:n,i ·Ai,i/Ai,i

+
nb∑

j=i+1

Ai+1:n,j −Ai+1:n,i ·Ai,j/Ai,i
]

=
[
Ai+1:n,i+1:nb −Ai+1:n,i ·Ai,i+1:nb/Ai,i

nb∑
j=i+1

Ai+1:n,j −Ai+1:n,i ·Ai,j/Ai,i
]

At the end of iteration i, the sum to the panel is the sum from i + 1 to nb. So iteration

i+ 1 will operate on a panel and a checksum that includes only elements that are involved

in the iteration.

Adding a checksum to a matrix can be represented as multiplying the matrix by

another matrix Hr, which is set up to produce the appropriate checksum, and is assumed

below to have the correct dimensions for the matrix in question. For example, the Hr that

adds a row checksum to a 3× 3 matrix is
1 0 0 1

0 1 0 1

0 0 1 1


After the panel factorization, the row panel is updated according to the equation

A = LU , where A = A1:nb,nb+1:n, L is the lower triangle of A1 : nb, 1 : nb with the diagonal

replaced with ones, and U is the new value of A1:nb,nb+1:n. This step maintains the checksum

because of the original ABFT idea: since A with a checksum can be represented as A ·Hr,

A ·Hr = (LU) ·Hr = L(U ·Hr), so that U has a checksum as well. The checksum is actually

the sum across the entire row, while the part of the matrix being updated is the entire

row except for the first nb columns. Therefore, the sums are correct for the entire block of

the first nb rows of U . The first nb columns have already been calculated, so they are not

included. Nevertheless, the sums will be correct.
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Referring to the parts of the matrix shown in figure 5.7, the relationship is [A11A12] =

L11[U11U12], so A12 = L11U12. With a checksum,

[A11A12]Hr = L11[U11U12]Hr = L11 ([U11U12]Hr)

The checksum on the right hand side is a checksum of U only.

5.3.3 Local Checksum after Panel Factorization

The checksum verification in general requires recalculating the sums and comparing

to the stored values. The overhead involved could be significant because of the memory

access required. However, for the most frequent verification, the operation is faster.

All checksums are of either the original matrix or of U . Once elements that went

into a checksum have been replaced by elements of L, the checksum reflects the fact that

the equivalent position in U has a zero. When the panel is factored, the first nb× nb block

contains a part of U , but the rest is L. In this section, the checksums will all be zeros.

Therefore, no computation is required, and the memory access is less, for the main part of

the panel verification. Since this verification must be done every iteration, a lower overhead

for it is useful.

Theorem 2 The sums of L in the panel will be zeros immediately after the factorization

of that panel if and only if no errors occurred at any point earlier in the calculation either

in the panel or in the columns the panel belongs to.

Starting with a checksum matrix, where local row sums are done for each block,

after a panel is factored, the sums for the part of the panel that becomes L will be zeros.

The reason for this fact is that the algorithms changes the sums from sums on the original

matrix to sums on U only. In the place where the L matrix is stored, the U matrix has

zeros. The sums become the sums of zeros.

If there are no errors, then the L sums are zero. As shown in the proof of the

correctness of the checksum, the sums are correct only for U . This is achieved by the

algorithm when the sum elements that are below the diagonal go to zero. These elements

are not stored as part of U because they are zeros. Therefore, when the elements that

formerly went into the sum are all storing part of L, the sum will be zero. The panel
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Figure 5.7: Relevant sections of a matrix in the factorization of one panel.

factorization is done in a loop from 1 to nb. After iteration nb − 1, the sum is from nb to

nb, or just the last element. After iteration nb, no elements go into the sum, so it is zero.

If there are errors, then the L sums are not zero (which is the same as saying if

the L sums are zero, then there are no errors). As stated above, the elements of the panel

are updated in a loop:

for i = 1 to nb

A(i+1:n,i) = A(i+1:n,i)/A(i,i)

A(i+1:n,i+1:nb) -= A(i+1:n,i)*A(i,i+1:nb)

When an element in Ai+1:n,i has an error during the first line of the loop, it will affect the

second line as well. In the second line the checksums are updated. If an element of Ai+1:n,i

is incorrect, then the value subtracted from Ai+1:n,i+1:nb will be incorrect. In the case of

the checksums, they will be nonzero.

Figure 5.8 shows the different sections where errors could occur. The matrix shown

is the trailing matrix from the previous iteration, which is the only area of the matrix

where values are changed, and therefore is the only area where errors can occur with our

assumption of errors only occurring from calculations. The error shown in case 1 is when

an error occurs in L. In this case, since L is not included in the checksums, the error will

remain, and no recovery will be done. In case 2, the error will be detected by the checksum
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in the same block, and a recovery of the entire panel will be required. Case 3 is detected

by the sums being nonzero. Errors shown in case 4 and case 5 can be detected with one

verification, and recovered at the same time, even if both occur. This is possible because

errors in different rows do not interact; multiple errors can always be recovered as long as

they occur in different rows.

5.3.4 Error Detection and Location

In order to detect a single error, it is sufficient to verify the sums of the panel

after each panel factorization. The reason is the way that errors are propagated. There are

three phases of each iteration: panel factorization, broadcast and row panel update, and

trailing matrix update. During the updates of the upper row panel and the trailing matrix,

rows are combined. Any error in these sections will be spread down its column. Because

global checksums are kept across rows, an error of this sort can be recovered. When it is

propagated down a column, it amounts to one erroneous local matrix per row. As long as

the error is kept to one process column, it can be recovered.

The panel factorization is the part of the iteration where there is a possibility of

an unrecoverable error occurring. After the panel is factored, it is broadcast to the rest of

the matrix, which is multiplied by the panel. In this case an error would affect entire rows,

making recovery impossible. When multiple local matrices in a row are affected, the error

cannot be recovered. Therefore, to guarantee recovery, the results of the panel factorization

must be verified with local sums before there is any communication, so that a potential

error is contained to the column containing the current panel.

Verifying the panel factorization consists of recalculating the sums for the U section

of the panel, and of checking that the rest of the sums are zeros. If any sum is found to be

incorrect, the entire panel must be recovered and the factorization repeated. The calculation

has to be repeated because the global checksums, which the recovery is done from, have not

been updated at the time of the panel factorization, so the recovered local matrices will be

from the beginning of the iteration before the factorization. Although an error in the panel

factorization could be propagated to the entire panel or not, the recovery can only restore

the original unfactored panel, so the entire panel must be recovered in any case.

It is possible to detect all errors with only the check after the panel factorization.

With this approach, the verification process requires only the calculation of sums in nb×nb
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Figure 5.8: The small boxes indicate the sections of the matrix where errors could occur at
different points in an iteration.

blocks, as well as checking if the sums in the rest of the panel are zeros. Therefore, it has

extremely low overhead, significantly less than if even the trailing matrix is also verified.

However, this method is vulnerable to multiple errors. The approach of only verifying the

panel means that an error could potentially occur a long time before it can be detected.

Any error is guaranteed not to leave its column until it becomes part of the panel to be

factored, at which point it will be detected and corrected. However, this delay leaves

the method vulnerable to a second error. If another error occurs before the first error is

detected, recovery is impossible and the calculation must be repeated. What this means

for the recovery process is that all of the local matrices must be verified with their sums

before using them to recover the corrupted panel. Also, in cases where the error rate is high

enough, this method will not be effective. In that case, more frequent checks can be used

to detect errors immediately, making it much more likely that each error will be handled

before another can occur.

In order to ensure that up to one error per iteration can be handled, and to remove

the improbable but fatal possibility of two errors far apart in time causing an impossible

recovery, we eventually decided to verify both the panel factorization and trailing matrix

update. The panel factorization verification is necessary because errors that occur in this

step will be propagated along rows, making recovery impossible. The verification after the

trailing matrix update, which is at a time when the checksums in the entire matrix are
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consistent, ensures that the matrix will be entirely correct going into the next iteration,

and that no error will go undetected for a long period of time.

5.3.5 Soft Error Correction

An error on the diagonal within the panel will be propagated down the column

and along all of the rows that are affected by the first propagation. This type of error would

corrupt the entire trailing matrix if it were not caught immediately after the factorization,

at which point it is still contained within one column of the process grid. An error above

the diagonal will propagate down its column, which is harmless in this method. An error

below the diagonal will propagate across its row, which is another type that must be caught

before it can leave the panel.

An error that occurs in the row panel section of the matrix will be propagated

down the column. It cannot cause an impossible recovery until part of the affected area

is in the current panel. At this point, an entire column with erroneous values will exist

in the panel, but the errors cannot propagate outside the column if the error is detected

immediately after the panel factorization.

An error that occurs in the trailing matrix will not be propagated during the

update. The error will have no effect until it is part of either the column or row panel, at

which point it has the same effect as an error that occurred in one of those areas.

When an error is detected in the panel, it is necessary to recover, not just the

entire panel, but the entire column it belongs to. This is because of the situation where an

error occurs in place where it is propagated down a column but not immediately detected.

This type of error will affect part of the matrix that has already been factored, and this

part of the matrix will have to be recovered as well. The recovery is possible even though

the error occurred earlier and is in an entire column. Errors cannot spread outside of a

single column unless they are part of the panel, and up to one corrupted process per row

can be recovered.

Figure 5.9 shows the idea of the detection and recovery technique with a simple

example. With a real block size, more elements go into each local sum - perhaps 32 or

64. Even if multiple elements in the same row are affected, the checksum will indicate an

error as long as the elements do not change in such a way that their sum remains the same

- for instance, if two values are changed in a way that cancel each other out. The error
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Figure 5.9: The element -12 is replaced by 10. The sum verification shows that an error
exists: −1 + 10 6= −13. This is not enough to tell which element is incorrect. The reduce
is done on the whole panel, and the result for this element is 1− 16− (−3) = 12, restoring
the correct element.

propagation that can still happen even with the checking that we do is only down columns.

Therefore, for more than one error to occur among the elements that go into one local

checksum, two soft errors would have to occur within a short time.

The situation where a single error has propagated down a column before being

detected is easily handled by our method, although many elements might be affected. We

are unable to locate the specific element within the local matrix without communication.

Doing this would require a second local checksum. Instead, we recover the entire affected

local matrix using the global checksum. Locating the error before recovering only the

elements with errors can require as much communication as just recovering the entire local

matrix, when an error is propagated down an entire column.

It is possible, as an exercise, to see how the exact location of the error can be

found. In the example in figure 5.9, the sums need to be checked to find the failure. The

elements in equivalent locations in the equivalent blocks of the local matrices are compared.

This is done by doing the matrix addition and comparing the elements, but for this example

we look at one element at a time to demonstrate. All of the sums need to be verified at the

appropriate times, but looking just at the row where the error is, −19+(−1)+(−1) = −21,

but −3+10+16 = 23, while the stored sum is 1. The last sum −22+(−13)+15 = −20 also

checks as correct. The global sum shows that the second element in the block is incorrect,

so it is replaced with a variable in the local sum and solved for: −1 +x = −13, so x = −12.
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5.4 Performance Analysis

5.4.1 Overhead of checksum setup and error detection

Calculating the checksum at the beginning of the calculation requires calculating

the local checksum, followed by a reduce for the global checksum.

The overhead when no failure has occurred consists of the time to verify the local

checksums in each iteration. The sums are verified twice per iteration, once for just the

panel and once for the entire trailing matrix. The verification of the panel requires that

nb numbers are summed, then the result is compared to the stored value. The verification

of the trailing matrix requires each block in the local matrix to be summed and verified.

If the maximum number of blocks in a local matrix is B, and the average time to sum nb

numbers and do one comparison is tnb, then the total time for both comparisons in one row

is

tnb(B + 1)

To repeat it for every row in a local matrix, if the matrix and grid are both square, is

tnb(B + 1)Bnb. This operation occurs every iteration. If the total matrix size is n, the

number of iterations is n
nb . Therefore the total overhead for the calculation is

ntnb(B + 1)B

The value of tnb depends on the time it takes to access the memory.

The panel verification, which takes ntnbB, must be done every iteration. However,

the trailing matrix verification, which takes ntnbB
2, can be done less often. The frequency of

checking the trailing matrix depends on the error rate. If two errors occur between trailing

matrix verifications, it is likely to be impossible to recover. Therefore the interval for

checking the trailing matrix can be adjusted so that the probability of two errors occurring

in that time is acceptably low. If the interval is Ti, with a time between errors of Tf , the

probability of an error in that interval is Ti
Tf

, so the probability that two errors occur is
(
Ti
Tf

)2
Since the overhead of the trailing matrix check is B times that of the panel verification,

doing the check less often is worthwhile.

58



5.4.2 Overhead of checking for errors in stored values

This technique mainly focuses on errors in the unfactored parts of the matrix,

because these are the errors that can be propagated and make large parts of the matrix

incorrect. However, errors could occur in the factored section of the matrix. Since these

errors will not be propagated, multiple errors can be corrected in some cases. Only multiple

errors in the same row can make it impossible to recover. Even if multiple errors occur in

one row within one process, this will still be recoverable because the entire local matrix

can be recovered from the other processes in the same row. So unless it is likely that

errors will appear in multiple processes that are all in the same row in the process grid,

errors can be corrected in the stored values with a high probability of success by doing a

verification (and recovery if necessary) on the matrix after the factorization is complete.

This verification would actually only apply to the U matrix. During the entire calculation,

L is not maintained because it is not necessary to the solution to the problem at the end,

so the same applies here.

The time to check the entire factored matrix for errors is similar to the time to

verify the trailing matrix, ntnbB
2, because it involves verifying up to the entire local matrix

in some processes. No communication is required just for the verification, so the time to

finish the verification is the time for the slowest process to finish.

5.4.3 Overhead of computation

The time for one iteration aside from the verification overhead is made of the panel

factorization, the broadcast, and the trailing matrix update. For the panel factorization:

repeated nb times, do B divisions followed by a matrix multiplication and subtraction. Some

communication is also required to determine the pivots. After the factorization the panel

is broadcast to the processes containing the trailing matrix. The trailing matrix update

requires more communication. The row and column panels are multiplied, and the result is

subtracted from the trailing matrix.

The block size is increased by one, and the entire matrix is increased by the size

of the local matrices in one column of the process grid. The number of iterations is not

increased because the global checksum elements can be skipped in the factorization. When a

panel made of global checksum elements is reached, the sums in it are already zeros because

the elements going into them are in the lower diagonal, which is zeros in the U matrix.
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The only parts of an iteration that are affected by there being more processors are

the parts with communication. There are broadcasts in both rows and columns, but only

broadcasting in rows is affected because there are no column checksums. If the original

matrix dimension is P , then with a checksum added it is P + 1. So the overhead of each

iteration is the difference between a broadcast among P + 1 processors and a broadcast

among P processors. Depending on the implementation, the value varies. With a binomial

tree, the overhead would be log(P + 1) − logP . Using pipelining, where the time for the

broadcast is nearly proportional to the size of the message, the overhead is even smaller.

The number of iterations is the same, and the length of each iteration is close to

the same as when no fault tolerance is used. Any difference in the computation time comes

from the increase in the block size. With typical block sizes, this increase might be between

0.5% and 2%.

5.4.4 Time complexity of HPL

According to [19], the runtime of the HPL algorithm is approximated as

2γ3N
3

3P 2
+

2βN2

P
+
αN((NB + 1) logP + P )

NB

where the time to send a message of length L is defined as α + βL, γ3 is the time to

perform one floating point operation during a matrix-matrix operation, and there is a

N ×N matrix distributed on a P × P process grid with a block size of NB. This equation

is an approximation with the highest order terms only.

When the checksum is added to the original matrix, the size of the matrix increases

from N to N + N/P + N/NB. The increase of N/P comes from the global sum, which

is additional elements equal to the number of elements in one process, and the increase of

N/NB comes from the local sum, where one additional element is added for each block. To

make a simpler comparison, this will be an upper bound on the runtime, since the following

will not take into account the fact that additional processes are used. The use of additional

processes reduces the impact of the larger matrix on the runtime. Then the new time with

this larger matrix will be

2γ3(N +N/P +N/NB)3

3P 2
+

2β(N +N/P +N/NB)2

P

+
α(N +N/P +N/NB)((NB + 1) logP + P )

NB
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An expression for the percentage overhead can be found by 1+(T1−T0)/T0, where

T0 is the original runtime and T1 is the runtime with the larger matrix.

So

T0 =
2γ3N

3

3P 2
+

2βN2

P
+
αN((NB + 1) logP + P )

NB

and

T1 − T0 =
2γ3(N +N/P +N/NB)3

3P 2
+

2β(N +N/P +N/NB)2

P

+
α(N +N/P +N/NB)((NB + 1) logP + P )

NB

−2γ3N
3

3P 2
+

2βN2

P

+
αN((NB + 1) logP + P )

NB

=
2γ3(3N

2(N/P +N/NB) + 3N(N/P +N/NB)2 + (N/P +N/NB)3)

3P 2

+
2β(2N(N/P +N/NB) + (N/P +N/NB)2)

P

+
α(N/P +N/NB)((NB + 1) logP + P )

NB

Looking at the term involving γ3, every component involves N3 in the numerator

and some combination of P and NB in the denominator. The values of 1/P and 1/NB are

significantly larger than 1/P 2, 1/NB2, 1/PNB, and other combinations that arise. The

same pattern exists in the rest of the expression. Therefore, to simplify this expression,

look at the higher order terms only:

2γ3(3(N3/P +N3/NB))

3P 2
+

2β(2(N2/P +N2/NB))

P
+
α(N/P +N/NB)((NB + 1) logP + P )

NB

Comparing this to the expression for the original time, each term is multiplied by

some constant and by 1/P + 1/NB. So in a very rough approximation, the increase in the

runtime depends on both the number of processes and the block size. Generally the block

size will stay the same for different sizes of matrices on the same system. However, larger

matrices will typically be run on larger numbers of processes. So the percentage overhead

added to the runtime by the addition of checksums has a component that will stay constant

as the matrix size is increased, but has another component that will decrease as the matrix

size is increased. The overall overhead as a percentage of the total time decreases for larger

matrices.
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5.4.5 Overhead of recovery

The overhead of correcting an error is the time for a reduce, along with the calcu-

lation of the panel factorization that has to be repeated if the error is found in the panel

check. The time to do a reduce is comparable but less than the time of a broadcast. There-

fore the total cost of recovery is similar to the time one iteration takes, without the trailing

matrix update. The overhead of one recovery as a fraction of the total time is approximately

nb
n . Since the block size is much smaller than the total matrix size, the overhead fraction

is small. Our technique should have low overhead because it does not use communication

during an error-free run. However, it does access large parts of the matrix during some

checks. We have tested the technique experimentally to see how much the memory access

affects the overhead.

5.4.6 Comparison to alternatives

Generally, the alternative method to our technique is ABFT, using a checksum to

verify the result at the end and repeating the entire calculation if there was an error. With

multiple weighted checksums, it is possible to recover a certain number of errors - another

checksum is needed for each expected error. Another option that is available with HPL is

residual checking. The solution x to the system Ax = b is multiplied by A and compared

to b, which shows whether the solution is correct. The calculation can be repeated if the

solution is incorrect. This approach is essentially the same as ABFT - only one row and

column are added for ABFT, and the difference between factoring a N ×N matrix and a

N + 1×N + 1 matrix is small, especially when N is large.

As long as the expected time between failures is greater than the running time of

the calculation, the number of times the calculation has to be run is a geometric random

variable. If the expected time to failure is Tf and the running time of the calculation

is T , the probability of an error occurring is T
Tf

. The probability of an error-free run is

1− T
Tf
− T 2

T 2
f
− · · · ≈ 1− T

Tf
. So the expected time that it will take to complete an error-free

run is
1

1− T
Tf

=
Tf

Tf − T

When the expected time to a failure is less than the run time, as the error rate

increases it becomes increasingly unlikely that the calculation will ever finish using ABFT.
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5.5 Experimental Results

5.5.1 Platforms

We evaluate the proposed fault tolerance scheme on the following platforms:

Kraken at the University of Tennessee: 99,072 cores in 8,256 nodes. Each node

has two Opteron 2435 “Istanbul” processors linked with dual HyperTransport connections.

Each processor has six cores with a clock rate of 2600 MHz supporting 4 floating-point

operations per clock period per core. Each node is a dual-socket, twelve-core node with 16

gigabytes of shared memory. Each processor has directly attached 8 gigabytes of DDR2-800

memory. Each node has a peak processing performance of 124.8 gigaflops. Each core has a

peak processing performance of 10.4 gigaflops. The network is a 3D torus interconnection

network. We used Cray MPI implementation MPT 3.1.02.

Ra at Colorado School of Mines: 2,144 cores in 268 nodes. Each node has two 512

Clovertown E5355 quad-core processor at a clock rate of 2670 MHz supporting 4 floating-

point operations per clock period per core. Each node has 16 GB memory. Each node has

a peak processing performance of 85.44 gigaflops. The network uses a Cisco SFS 7024 IB

Server Switch. We used OpenMPI 1.4.

5.5.2 Overhead without failure

The overheads of this technique when no failure occurs are constructing the check-

sum at the beginning and verifying the results periodically during the computation. There

are two types of verification, the panel and the trailing matrix. The panel verification must

be done every iteration, so its overhead is the minimum possible. The trailing matrix veri-

fication takes longer, but can be done at a variable rate. The measured overhead is for the

trailing matrix update done every iteration.

The overhead of verifying the checksums in each iteration is given in tables 5.1 and

5.2. The percentage overhead of the trailing matrix verification is close to 1
N . The overhead

of verifying the panel only is lower, but does not decrease as quickly with decreasing matrix

size.

If only the elements involved in the verification are retrieved from memory, the

ratio of the trailing matrix check to the panel check should be approximately the number

of column blocks in a local matrix, or N
Pṅb . For the experiments on Ra this value is 15.6,
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Table 5.1: Ra: N ×N matrix on P × P process grid, Tp is the panel verification time, and
Tt is the trailing matrix verification time, block size 256, time in seconds, performance in
Gflops

N P Total time Tp (% overhead) Tt (% overhead) Performance

48000 12 128.10 3.40 (2.65) 31.66 (24.71) 575.6

64000 16 170.77 4.78 (2.79) 41.29 (24.17) 1023

80000 20 234.84 6.14 (2.61) 53.13 (22.62) 1454

96000 24 331.42 7.49 (2.25) 62.87 (18.96) 1780

112000 28 404.23 8.89 (2.19) 75.42 (18.65) 2317

128000 32 448.77 10.09 (2.24) 85.45 (19.04) 3115

Table 5.2: Kraken: N ×N matrix on P × P process grid, Tp is the panel verification time,
Tt is the trailing matrix verification time, block size 256, time in seconds, performance in
Gflops

N P Total time Tp (% overhead) Tt (% overhead) Performance

144000 72 242.38 5.63 (2.32) 16.85 (6.95) 8213

168000 84 368.16 6.57 (1.78) 19.68 (5.34) 8586

192000 96 307.70 7.51 (2.44) 22.50 (7.31) 15340

216000 108 405.24 8.46 (2.08) 25.32 (6.24) 16580

240000 120 459.27 9.39 (2.04) 28.13 (6.12) 20070

264000 132 553.96 10.32 (1.86) 30.96 (5.58) 22140

288000 144 606.51 11.28 (1.85) 33.75 (5.56) 26260

312000 156 725.67 12.23 (1.68) 36.57 (5.03) 27900
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and for the experiments on Kraken it is 7.8. However, the ratios do not match these values,

as shown in table 5.3. The panel verification times from both sets of experiments appear to

be about a factor of two larger than the predicted values. The reason for this is most likely

that the part of the matrix put in the cache during the operation includes elements that

are not part of the panel. The trailing matrix verification needs the entire local matrix, so

it ends up making a better use of the cache than the panel verification. If just the elements

in the panel could be retrieved from memory, then the panel verification should take about

half as long.

5.5.3 Overhead with Failure: Our approach compared to ABFT

In figure 5.10, the expected runtime using ABFT is shown assuming an average

time between soft errors of both 40 and 80 minutes for the entire system. These values are

chosen to illustrate a situation where our technique would be useful - it is not necessary to

take these measures to survive failures unless the failure rate is close to the runtime of the

program. When the runtime of the program is orders of magnitude less than the expected

time between failures, the probability that a failure will actually occur during a run is low

enough to make ABFT the best approach. On a very large system, the error rate would

increase and the running time of some applications would also increase, bringing it into the

range where our technique is useful.

With a time between failures that is between one and two orders of magnitude

longer than the runtime, our technique shows its advantage over ABFT. As the time between

failures gets shorter relative to the runtime, our technique gains even more advantage over

ABFT.

All times shown include the runtime from an experiment without any fault toler-

ance and the expected overhead of the specified technique. For our technique, this is the

time to verify the checksums and correct errors. For ABFT, this is the expected runtime

given that a certain number of repetitions will be required due to propagated errors that

make recovery from the checksums impossible.

As the number of processors increases, the expected time for ABFT increases

at a faster rate than the time with our checksums. The difference that the error rate

makes in the runtime for our method is much less than for ABFT. The expected time for

ABFT increases as the error rate increases, and as the number of processors increases.
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Table 5.3: With a N×N matrix, the ratio of trailing matrix verification to panel verification
on Ra and Kraken

Ra N Ra ratio Kraken N Kraken ratio

48000 9.32 144000 2.99

64000 8.66 168000 3.00

80000 8.67 192000 2.99

96000 8.43 216000 3.00

112000 8.52 240000 3.00

128000 8.50 264000 3.00

288000 3.01

312000 2.99
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0

100
200
300
400
500
600
700
800
900

1000

Comparison to ABFT

our approach – 
MTBF=40 minutes
our approach – 
MTBF=80 minutes
ABFT – MTBF=40 
minutes
ABFT – MTBF=80 
minutes

P (PxP process grid)

tim
e 

(s
)

Figure 5.10: Assuming the times shown as the time between failures on average, the expected
times using ABFT and our method are shown.
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The increase in expected time with an increase in error rate for ABFT is large, while the

increase in expected time for our approach is much less. For the numbers of processes shown,

ABFT starts with an advantage for the less frequent error rate. However, its expected time

increases much more quickly with an increase in the number of processes. To run very

large calculations, ABFT becomes impractical. Even for the largest sizes shown here, the

overhead of using ABFT is significant.
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Chapter 6

Multiple error correction

The first technique allows one fail-stop failure to be corrected. The second tech-

nique allows at least one soft error to be both detected and corrected. Both of these

techniques use just a sum of elements, that is

S = x1 + x2 + · · ·+ xn

The more errors the technique must be able to handle, the more sums it will need. Each

simultaneous error might need another sum in order for it to be corrected.

The second technique can both detect and correct errors because it has two sets of

sums that are calculated with different ways of dividing up the matrix elements. However,

there is a limit to how the elements can be added up in different ways. A necessity for a

technique that anticipates multiple simultaneous errors is coefficients to calculate different

sums from the same elements, that is

S1 = a1,1x1+a1,2x2+· · ·+a1,nxnS2 = a2,1x1+a2,2x2+· · ·+a2,nxn
...Sk = ak,1x1+ak,2x2+· · ·+ak,nxn

The problem of finding coefficients is difficult because they must be chosen so that

when the sums are used to recover lost elements, the error is not too large. The problem

is to find a matrix of coefficients for which any possible combination of errors will result in

an acceptable error in the recovered elements.
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6.1 Existing approaches

In [8], the optimal solution for a 2× n matrix is given: cos π2n cos3π2n . . . cos (2n−1)π
2n

sin π
2n sin3π

2n . . . sin (2n−1)π
2n


The supercondition number of this matrix is approximately 2n

π , so the larger the matrix is,

the larger its minimum supercondition number.

For very large matrices, a randomly generated matrix has better condition numbers

on average than any other known method of generating it [48]. This means that there is a

higher probability that the matrix needed to recover is well-conditioned. Still, if it is possible

to find a matrix where every possible combination is well-conditioned, that is better because

it guarantees that recovery is possible.

In [43], an evolutionary algorithm is used to find solutions for 2 × 100 and 3 ×
10. The move used here tries to improve the condition number of the worst-conditioned

submatrix by making a small change to the smallest singular value. This improves the

condition number of this matrix, although it could make a different submatrix condition

number worse.

6.2 Condition number and supercondition number

The condition number of a matrix A is defined as ||A|| · ||A−1||, using the 2-norm

here because it is used in [43], to make the results comparable. A lower condition number

means that the solution of the system of equations will have more accuracy. The condition

number is the target of the optimization for this problem. When the coefficients are used

to recover from multiple failures, which ones are actually used depends on which processors

fail. The relevant coefficients (in a 3×n matrix, for instance) could be from any 3 columns -

whichever correspond to the failed processors. Therefore, the resulting system of equations

should have good numerical stability no matter which columns are chosen. The name

given to the maximum condition number out of any possible combination of columns is the

supercondition number.

For the purpose of the evolutionary algorithm, the supercondition number indicates

how good of a solution a particular matrix is. However, the supercondition number gives
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very little information about the matrix, and does not uniquely identify a particular matrix.

Because only a very small number out of the total number of columns contribute to it,

enough diversity exists within one matrix so that the algorithm can be run with just one

matrix as the evolving solution to the problem.

Often an evolutionary algorithm creates a population of possible solutions, and

moves forward by creating new individuals through combinations and mutations, then keep-

ing the best ones. In this algorithm, however, the columns of the matrix act more like the

individuals in the population. Each evolutionary step, more candidates are introduced

to the population and the least fit individuals are removed. The situation is somewhat

complicated by the fact that the fitness of individual columns is only determined by their

relationship to all of the other columns in the matrix. Nevertheless, this approach is suc-

cessful at providing enough diversity that the evolution can continue moving forward, while

taking into account the fact that each supercondition number evaluation takes a long time.

6.3 Simulated annealing approach

This problem has been approached with evolutionary algorithms before [43]. How-

ever, for large matrices this approach is very slow. It seems that taking a randomized method

that optimizes just one matrix should be faster than one that optimizes a population of ma-

trices. Because an exact solution is known for 2×n matrices, using simulated annealing on

3 × n matrices seems like a good approach. The larger the matrix, the longer calculations

take. Since the time to calculate the supercondition number is O(nm) for a m× n matrix,

where m is determined by the number of sums that are required, finding coefficient matrices

for realistically sized problems can become very costly.

The simulated annealing approach is intended here to add more diversity to the

evolutionary search. Near the beginning of the calculation, there is a somewhat higher

probability that a new column will be kept in spite of creating a higher supercondition

number. This approach allows for the possibility that these columns might combine more

favorably with other columns in the matrix later in the calculation. However, as the evolu-

tion proceeds, the probability of allowing unfavorable columns to be added is lowered. As

the matrix converges to a solution, it becomes less likely that a column will eventually come

to fit in. Later in the evolution, all of the columns in the matrix are more closely related
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to each other, since every possible combination of columns has had a low enough condition

number to be kept through all the previous steps of the evolution.

6.4 Origin of moves

The move that removes one column from the matrix while decreasing the super-

condition number consists of finding which columns make up the submatrix that has the

largest condition number, then deleting one of them. For example, when there are three

rows the submatrix with the highest condition number could look like figure 6.1. When one

of these columns is deleted, that submatrix no longer exists and the supercondition number

of the matrix becomes the next highest condition number, from some other submatrix. In

order to perform this move, it is necessary to decide which of the columns of the submatrix

to delete. Deleting any one of them will have the effect of lowering the supercondition

number, but each column interacts in different ways with the other columns of the matrix.

Randomly picking one column to delete is a reasonable way to resolve this problem, given

that the evolutionary algorithm already depends on some amount of randomness to generate

its solution.

Figure 6.1 illustrates the fact that a large portion of the matrix is not directly

affecting its evolutionary fitness. Only the columns of the submatrix with the highest

condition number determine the value for the matrix. The remaining columns could be

anything, as long as among all their combinations there is none with a higher condition

number.

An approach that seemed promising at first was to randomly generate a much

larger matrix, then delete columns that contribute to high condition numbers until the

target size is reached. This seems like a promising approach because the supercondition

number is guaranteed to improve with each step. The supercondition number is determined

Figure 6.1: A 3× n matrix with one particular submatrix highlighted
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by just a few columns, so if one of those columns is deleted, that condition number no longer

exists. The one that replaces it as the highest must be lower, since no new combinations

of columns have been added. Some factors that work against this approach are the time

it takes to find the supercondition number of a very large matrix, and the fact that larger

matrices are guaranteed to have higher supercondition numbers. Experimental results from

this approach did not seem promising.

An alternative that is based on this first approach is to repeatedly add a small

number of random columns, then delete down to the target size. This is essentially the

same as the first approach, since the columns in that matrix were randomly generated to

start with. It has the benefit of each column deletion taking less time on average than it

would for the first method, and that it can be continued for an arbitrary number of moves

instead of being constrained to the number that gets the matrix down to the desired size.

A disadvantage of this approach is that it is possible for the supercondition number to

increase when a new random column is added. However, it is possible to remove this effect,

at least when only one column is added and deleted at a time. If the new column is part of

the matrix that creates the supercondition number, then delete it. If it is not, that means

that it does not create a larger condition number in combination with any of the columns

already in the matrix, so it is favorable with respect to the existing columns.

In a test run on a 2×100 matrix with 100 deletions, which means that one approach

starts with a 2 × 200 matrix and deletes columns until there are 100, and the other starts

with 100 columns and adds and deletes one at a time 100 times, the first approach reached

a supercondition number of 399.47 while the other had reached 352.41. Even if this is

not always the pattern, for practical reasons the add-and-delete approach is better. Each

operation on average takes less time since the time to find the supercondition number is

O(nm) for a m×n matrix (m is 2 or 3 in these experiments, but could be larger; this assumes

that n is much larger than m). The approach of starting with a much larger matrix is also

fixed to a certain number of moves, while the add-and-delete approach can be continued for

any number of moves.
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Figure 6.2: Comparison of two add-and-delete approaches when 10 columns are added then
deleted at a time
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Figure 6.3: Comparison of two add-and-delete approaches when 1 column is added then
deleted at a time
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6.5 Variations on add-and-delete

When adding only one column then picking one to delete, there are two choices that

seem reasonable. One option is to always delete the last of the columns that contributes to

the supercondition number, and the other is to pick one at random when the added column

is not part of the supercondition number submatrix, and delete the new column when it

makes a worse supercondition number. It seems like the second option should be the best

because the first option tends to keep more of the original matrix intact. It is unlikely to

ever remove columns that are early in the matrix, which may actually be unfavorable.

It is easier to extend the first option to adding multiple columns than the second,

but for the second option it is also possible. If the matrix dimension is n and k columns

are added, then deleted each move, then by always deleting a column with an index greater

than n if it is part of the worst-conditioned submatrix will almost be the same as deleting

new columns if they turn out to be unfavorable. A new column could escape being deleted

even though it is part of the current worst matrix if columns within the original matrix are

deleted first, making its index less than n even if it is part of the k added columns. However,

this occurrence is not very likely, and there is still a chance of the unfavorable column being

deleted in this step or a later one. Also, the value of the columns depends only on the rest of

the matrix, so a column that creates a high condition number may become more favorable

when just a few other columns are removed.

An alternative to the two moves above that may seem reasonable is to always

randomly choose a column to delete, not favoring the newly added columns for deletion.

However, it turns out that the newly added columns are more likely to be bad with respect

to the rest of the matrix, especially when the matrix is larger. This kind of move could

be useful as a bad move for a simulated annealing approach, since it has the potential to

introduce new columns that will keep the matrix from being stuck in a local minimum.

In figure 6.2, just the end of the run is shown. The values start much higher at

the beginning, but if the entire range is shown the difference at the end is not visible. Here

ten columns are added before being deleted. An operation is one column being removed. In

this run, the approach of always deleting the last column of the worst-conditioned matrix

does better earlier, but levels off at a higher value then the approach of only deleting the

last column when it is one of the newly added columns. Even though the difference is small,

it seems reasonable that the second approach would do better at the end of the run because
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it can create more possible new matrices.

Figure 6.3 shows the mixed approach doing only slightly better. Nevertheless, it

is used for the simulated annealing runs because it guarantees to always improve or not

change the supercondition number while offering more diversity in moves.

6.6 Results

Our experiments show that the best approach is to delete the last column when it

is a new one and a randomly chosen column otherwise. The approach that always chooses

a random column to delete performs very badly alone, but also adds the most variety since

it adds a lot more new columns: randomly generated columns are usually bad with respect

to the existing matrix, so are usually deleted right away with the first approach. Therefore

we chose to do a variation of simulated annealing where which of those two approaches to

use is determined by the temperature, where the first approach is the “good” move and the

second approach is the “bad” move. This seems to make sense because, using only one type

of deletion approach, the unfavorable move typically is one that changes a column without

changing the supercondition number. It makes more sense to use a move that will probably

add a new column in order to add more variety.

Figure 6.4 shows a run on a 3× 10 matrix. The best result had a supercondition

number of 35.7, which is somewhat close to the value of about 21 obtained in [43] with less

than half as many supercondition number evaluations. It seems promising that this method

may give better results than the alternative evolutionary algorithm for larger matrices.

Figure 6.5 shows a run with a 2 × 100 matrix. It shows the effect of bad moves

early in the run, then it converges to about 170. Unfortunately this is higher than the

known miniumum value of about 63, indicating that this combination of parameters did

not work well for this matrix size.

Figure 6.6 shows a run on a 3×40 matrix that ends with a supercondition number

of 1126. While we cannot know how close this is to optimal, it seems likely that the optimal

supercondition number of a 3× n matrix would grow at a faster rate than that of a 2 × n
matrix. The 2× n supercondition number is O(n).

Figure 6.7 shows a run with a 3 × 100 matrix. In this run, the value of the

supercondition number went as high as 9× 1016 because of bad moves, which is not shown

75



0 5000 10000 15000 20000

0
50

10
0

15
0

20
0

number of operations

su
pe

rc
on

di
tio

n 
nu

m
be

r

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

run 1
run 2
run 3

Figure 6.4: Three runs of 3× 10 matrix with simulated annealing
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Figure 6.5: A run of 2× 100 matrix with simulated annealing
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Figure 6.6: A run of 3× 40 matrix with simulated annealing
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Figure 6.7: A run of 3× 100 matrix with simulated annealing
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Figure 6.8: For a 2 × 1000 matrix, comparison in progress between adding 1 or 3 random
columns per move

on the graph. The solution after 600 operations had a supercondition number of 11825, and

it appears to be close to converging. Since at this point in a run the amount of improvement

for additional moves is small, this solution is a reasonable one that can be obtained fairly

easily.

Figure 6.8 shows the results of adding either one or three columns at a time when

generating a 2×1000 matrix. In [43], the algorithm to find a 2×1000 matrix, run in parallel,

took about a month of computing time and 30,000 supercondition number evaluations to

come up with a matrix with a supercondition number that was 1.5 times the optimum. Our

simulated annealing approach was able to find a matrix with a supercondition number one

order of magnitude greater than the optimum (meaning one more digit of accuracy lost in

recovery) in only a few hours, using about 400 supercondition number evaluations. As long

as no better method for generating large matrices exists, this method seems to be a good

way of generating usable, if not optimal, solutions.

6.7 Optimization

The biggest difficulty in using an evolutionary approach to find a matrix of coef-

ficients that can be used in a large system is the time it takes to find the supercondition

number. Since the time is O(nm) for a n ×m matrix, where n is the number of elements

in the sum and m is the number of sums, it can quickly become very time-consuming to

attempt to find coefficients for a realistically sized problem. It is useful to reduce the num-
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ber of supercondition number evaluations it takes to reach an acceptable solution. One

aspect of this problem is the amount of error that is acceptable in the calculation that the

fault tolerance is being used for. If a certain amount of error is acceptable, the search for

the coefficient matrix can be stopped once the condition number is low enough, even if it

is not optimal. Another consideration with the coefficient matrix is that the supercondi-

tion number is only the maximum possible condition number. When an error occurs, the

coefficients for the lost elements are likely to be a different combination that results in a

lower condition number. These considerations might mean that the time spent on slightly

lowering the supercondition number is not worthwhile.

An important improvement on the time for the overall evolutionary algorithm is

adding and removing multiple columns in one step. Adding a few extra columns when the

matrix is large slightly increases the time to find the supercondition number, but just one

supercondition number evaluation allows multiple new columns to be added to the matrix.

As our results show, adding more than one new column at a time does not affect how quickly

the calculation converges, but if, for instance, three columns are added per supercondition

number evaluation, the same result as when one column is added at a time can be found

with the amount of time spent on calculating supercondition numbers reduced by nearly a

factor of three.

Here we only added a small additional number of columns, but for very large

coefficient matrix it might be worthwhile to look for further ways to improve the time it

takes to find a solution. One possibility is adding a much larger number of columns for each

step. It would be necessary to find out to what extent this approach would affect how well

the evolutionary algorithm can converge. Another possibility might be to start the process

by finding multiple smaller matrices, then combining them in order to create the starting

point for the evolution of the matrix of the required size. This possibility is less likely to

be as effective, but could produce some useful information on techniques for finding much

larger coefficient matrices.
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Chapter 7

Conclusion

By adding a row checksum to the matrix, we are able to make the right-looking LU

factorization with partial pivoting fault tolerant. We can recover lost data from the original

matrix and from U resulting from one process failure. The overhead of the method consists

mostly of the time to calculate the checksum at the beginning, using a reduce. The time to

perform the checksum is approximately proportional to the size of the local matrix stored

on one process, so that the overhead time can be kept almost constant when the matrix

size is increased, decreasing the overhead as a fraction of the total time. This method can

perform with much lower overhead than diskless checkpointing, which is a very good option

in general. Although this method is specific to matrix operations, it can offer much better

performance than diskless checkpointing for those operations.

We have also created a fault tolerance method that handles soft errors in the LU

factorization. Our technique uses global and local checksums to both detect and correct

soft errors when they occur, preventing repeated calculation. The frequency of checking

can be adjusted to the error rate.

In this technique we have used only one checksum to handle one failure. However,

with weighted checksums it is possible to recover from multiple failures, or to use the

additional checksums to detect as well as recover from errors.
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