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ABSTRACT OF THE DISSERTATION

Identification and Control of a Magnetic Bearing System for Boring Application

by

Sandeep Singh Rai

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2018

Professor Tsu-Chin Tsao, Chair

This dissertation presents modeling, identification, fault detection, and control of an active

magnetic bearing system, and the experimental results for applications in metal cutting and

dynamic vibration suppression. A high order ARX identification method conducted within

stabilized feedback loops followed by balanced truncation model reduction was efficient and

effective in obtaining the open loop unstable multivariable AMBS dynamic model, which

agrees well with the system’s frequency response data. Also the severe flexible nature of the

spindle is seen in the frequency response both while stationary and spinning, which facilitates

the need for robust controller design. The experimentally obtained model is augmented to

include the tip dynamics by impulse hammer testing that allows for the inclusion on cutting

dynamics into the overall control system.

In cutting application there are two main concerns: the tip tracking a profile and avoid-

ance of chatter instability. Therefore, based on the identified model, a two-step optimal

repetitive controller was designed for minimal error tracking. The first controller consisted

of a control input weighted linear quadratic control with integral action that ensured stability,

broadband performance, and robustness. Then a plug-in multivariable repetitive controller

with modifications for enhanced performance and non-harmonic compensation was designed

by optimal model matching that highlights the classical trade-off between robustness and

performance. A cutting force model was incorporated into the overall system, and stability

lobes obtained for optimal cutting conditions.
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Vibration reduction is crucial in applications of magnetic bearings such as energy storage.

An adaptive feedforward control was seen to be effective in reducing housing vibrations even

while the spin frequency is changing. The regressors were filtered through a multivariable

filter obtained from gradient descent. The adaptive controller has a linear time invariant

state space representation from which the deviations of the add-on adaptive from the nominal

sensitivity and complementary sensitivity can be analyzed. Experimental results did indeed

show that vibrations can be reduced even while the spindle speed is changing.

The single input single output adaptive inverse control was extended to the multivari-

able case and demonstrated to be effective in rejecting narrow and broadband disturbances.

Two formulations that can accommodate multivariable plants were considered: the receding

horizon adaptive control and the decoupling adaptive control. Both methods need a multi-

variable adaptive filter such as RLS or LMS; in this thesis a multivariable lattice RLS filter

was chosen for its numerical stability and O(N) complexity. Experimental results on the

magnetic bearing system show the effectiveness of both control schemes.

Lastly, there were two main results for the standard single phase boost rectifier: 1) The

formulation of a linear model in the DQ domain suitable for controller design 2) A MIMO

repetitive add-on controller with peak filter modification was designed using the linear model

to reduce harmonics not compensated for by a nominal controller. In the process of deriving

the linear model, analysis of the equilibrium points gave the boost condition for the rectifier.

Experimental results proved the effectiveness of using the linear model for controller design

and the repetitive controller for reducing harmonics. The methodology can be used for

designing controllers that operate at near unity power factor.
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CHAPTER 1

Introduction

Active magnetic bearings are used in many applications such as molecular pumps, com-

pressors, magnetic levitating vehicles, and flywheels ( [BCK09]), to name a few. An active

magnetic bearing spindle (AMBS) has also been of interest for its use in high speed machin-

ing (HSM) because of its potential benefits of mitigating wears, thermal-mechanical effects,

and creating high bandwidth and dynamic stiffness for precision machining [CK07]. How-

ever, AMBS is a challenging mechatronic system, as it presents unstable, nonlinear, and

coupled-axis MIMO open-loop dynamics that require careful modeling, identification, and

control to enable the realization of the potential benefits. This thesis presents the methods

and results of real-time control instrumentation, system identification, and digital control we

conducted on a commercial grade AMBS for applications in high-speed machining, vibration

rejection, and broadband disturbance rejection.

Control approaches to AMBS mainly address establishing stability or compensating un-

balanced spindle motion. Compensation can take the form of either minimizing unbalance

force transmitted to the housing or minimizing rotor runout [ZS01]. In this thesis, we dis-

cuss control methods that can compensate both. First, we discuss a fixed filter internal

model approach for geometrical centering as would be encountered in high speed machining

application of magnetic bearings and in subsequent chapters discuss both narrow band and

broadband adaptive approaches that can accommodate varying disturbance characteristics.

1



1.1 Geometrical Centering Using Repetitive Control Applied to

Cutting

Because precision is valued above vibration suppression in the HSM application, the first

part of this thesis will focus exclusively on runout minimization. [FHM93] and [BSW11] use

a H∞ loop shaping approach to design a robust levitating controller. In most control design

considerations, the magnetic bearing can be decoupled, so SISO techniques can be used

( [NSL15], [KT16]). In [PDA09], a SISO repetitive controller based on the decoupled plant

model for an active air bearing system was developed for disturbance rejection. In [NI96],

a µ synthesis approach was used to design a controller for a flexible shaft on a magnetic

bearing system similar to the one considered in this paper.

For conventional HSM applications, the spindle runout motion must be eliminated to

create desirable axis-symmetric surfaces. This requires control that rejects the spindle runout

motion, which is synchronous to the spindle rotation. Another special machining application

that creates irregularly shaped surfaces, termed non-circular or axis-asymmetric machining,

requires precise tracking of specified spindle orbital motion. A specific example motivating

our investigation here is boring of non-circular holes for wrist pin holes in internal combustion

engine pistons.

Current production engine piston’s pin bore profiles have elliptical cross sections and

tapered diameters to increase the fatigue limit of the pin bore under cyclic combustion

loads ( [WT86]). To create this non-circular bore shapes, various fast tool servos have

been developed to either rapidly move the cutting tip mounted on the rotating boring bar

( [Cse03], [ZZW08]), or to move the non-rotating piston ( [Lia13]). AMBS has the potential

of performing this task if spindle orbital motion can be controlled precisely to generate tool

tip motion for creating the specified non-circular bore. This presents a tracking control

problem of a periodic signal whose fundamental frequency is an integer multiple of the

spindle speed. Therefore, in chapter 3 a multivariable repetitive controller is designed and

used for cutting. In chapter 5, the influence of the cutting the on the overall dynamics of the

system is considered and the model is augmented to take this into account. Actual cutting
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experimental results are shown to verify the validity of the overall identification and control

methodology.

1.2 Inertial Balancing Using Adaptive Feedforward Control

When compensating for mass imbalance, the goal is to have the spindle spin about its inertial

axis, which minimizes the force transmitted to the housing and the control effort on the

amplifiers. The traditional approach for achieving this is to place a notch filter in the control

so the synchronous spin frequency does not enter [KHF95]. The drawback is this approach

may perturb the feedback control loop too much and may result in instability especially when

the spin frequency is changing. An alternative is to use an adaptive feedforward algorithm,

which injects the proper sinusoidal signal to cancel the disturbance in a feedforward manner

[SZQ04] [SBL94]. In [HBG96], a combination of the two was used to tackle the balancing

problem.

In [MB95] and [GB10], they showed that the adaptive feedforward algorithm is equiv-

alent to an LTI internal model controller, therefore AFC is somewhat of an alternative

implementation of LTI sinusoidal internal model controllers. This is a powerful result since

it opens up LTI stability, robustness, and performance analysis to the time varying adap-

tive controller, essentially the learning gain can be analytically chosen. In most control

design considerations, the magnetic bearing can be decoupled, so SISO techniques can be

used ( [NSL15]; however, our test set-up exhibits significant coupling so the multivariable

approach is necessary. This thesis extends the traditional AFC to the multivariable case and

for the minimization of both the output and control input in a unified manner, as is needed

for magnetic bearings. The main results of chapter 3 is the AFC can reduce vibrations to

the housing and minimize the control current input.
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1.3 Adaptive Internal Model for Varying Narrow Band Rejection

Once again considering the geometrical centering problem, the spin frequency can be varying

in some applications. In this case, the fixed filter designs will have poor performance. In

chapter 6, an internal model that adapts with the spin frequency is considered. Selective

inversion only in the band of the unknown disturbance is used to enhance robustness. Also,

an observer is used to obtain an estimate of the disturbance which is used in the adaptive

frequency estimation algorithm. Results are shown for both single and double unknown

frequencies during spin up of the magnetic bearing. The pure adaptive approach is compared

to using the encoder for speed updates and is shown to have similar performance.

1.4 Unknown Disturbance Rejection for Geometrical Centering

Less work has been done considering both broadband and narrow band disturbances in

magnetic bearing application. In chapter 7, we consider the problem of rejecting unknown

disturbances for the geometrical centering problem which may be able to be applied to

HSM. We use a multivariable adaptive inverse control approach, that extends the typical

siso formulation of [WW08]. Specifically, both a receding horizon adaptive control and a

decoupling adaptive inverse controller is used for the unknown disturbance rejection problem.

Furthermore, this type of algorithm is able to reduce the fundamental spin frequency without

the need of an encoder while also reducing the broadband components.

1.5 Boost Rectifier

Rectification is concerned with converting AC power into DC. However, often rectification

techniques introduce unwanted current harmonics in the utility. It is well known that these

harmonics cause voltage distortion, heating, noise, and reduce the capability of the line to

provide energy [SSC03]. Thus, it is no surprise that utility companies enforce standards on

the levels of harmonics [GCP03]. Because of this fact, there has been plenty of research

interest in rectifiers from both a circuit design and control perspective.
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Power factor correction uses power transistors to shape the input current in order to

achieve unity power factor. By controlling the switching of the transistors, a properly de-

signed power factor scheme can achieve close to unity power factor. In this work, a typical

boost rectifier is used to showcase the control algorithm. While it is true that different topol-

ogy has a great impact on the power factor, the interest in this work is the control algorithm.

The goal of the controller is threefold: 1) make the current in phase with the input voltage

2) reduce the harmonics in the input current 3) regulate the output DC voltage.

To meet the aforementioned goals, researchers have studied many different strategies.

The typical strategy is a high bandwidth current loop and a low bandwidth voltage loop

based on simplified models [WJ97]. Aside from linear controllers, in [MDM08] a sliding

mode controller was applied to a linear model obtained from feedback linearization for a

single phase active filter. Additionally, in [PRC09] a predictive controller based on a model

of the current was used.

A challenging aspect of the rectifier is that it is a nonlinear system, and not amendable to

the abundant linear control techniques. Additionally, the point to linearize about is not well

defined (the current and voltage are sinusoids). In [SSP03], the linearization points of the

AC quantities are chosen to be the RMS value, but this is not the true equilibrium point. In

this paper, we expand on [MRA05] and propose to linearize the system in the DQ rotating

frame where all the AC quantities become DC variables, so that linear control techniques

can be readily applied. Specifically, repetitive control and a selective harmonic repetitive

type controller targets harmonics other than the fundamental.
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CHAPTER 2

System Description, Identification, and Stabilizing

Control for Active Magnetic Bearing

A challenging aspect of magnetic bearings is obtaining a model to facilitate controller de-

sign since the system is multivariable and unstable. Therefore closed loop identification

techniques must be used and it is well known that closed loop identification introduces

correlation between the input and noise that gives biased estimates of the plant parame-

ters [Lju99]. In [GH95] and [GMH97] a frequency domain SISO/MIMO identification was

used to overcome this correlation, while [BHW10] used a predictor based supspace identifi-

cation (PBSID). In [LM96], it was shown if there is a one step delay in the system, a one step

predictor with higher orders recursively built from the one step predictor (a high-order ARX)

will overcome the correlation issues in closed loop. Recent work in CLid (Closed loop identi-

fication) have built upon this; specifically, a high order ARX is used to estimate the Markov

parameters and then followed by subspace identification [Jan03]. As noted in [VBL13], these

new methods are all high order ARX followed by model reduction. In this dissertation, a

HOARX followed by balanced reduction is used to for the mutlivariable closed loop identi-

fication. The attractiveness of this identification scheme is that it is simple to implement,

works well in both open and closed loop, and is computationally efficient.

In cutting applications, the main concern is the tip dynamics where the cutting force

is concentrated. Using an impulse hammer, the tip dynamics is identified by a frequency

domain approach and is augmented to the existing magnetic bearing model. As might be

expected, the tip dynamics is related to the resonant frequencies and mode shapes of the

spindle. In this chapter, the mode shapes and tip dynamics of the magnetic bearing system

is also identified. Lastly, a baseline Linear Quadratic Gaussian controller is designed to
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stabilize and provide nominal performance for the magnetic bearing system.

2.1 System Description

Figure 2.1: Picture of the magnetic bearing system considered in this paper

An industrial grade magnetic bearing (Figure 2.1) for use in high-speed machining ap-

plication was used as the test bed for this thesis. Figure 2.2 shows the major components of

the system. There are two radial magnetic bearing, one in the front and another in the rear,

along with a thrust magnetic bearing. The front magnetic bearing is capable of loads up to

1400 N, while the rear is rated for 600 N. There is also an AC induction motor that is capable

of spinning the rotor up to 50,000 RPM at 10 kW. The position of the rotor is sensed by eddy

current sensors. The coils are energized by 10 amplifiers (one for each electromagnet). The

power amplifier is a PWM type that regulates the current into the coils. A block diagram

Figure 2.2: Schematic of the magnetic bearing system
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of the overall system is shown in Figure 2.3. The Real-Time operating system is using a

National Instruments R-series card (NI PCI7852R) for data acquisition and analog output.

The card is equipped with an FPGA that can be programmed to read encoders, upsample,

and generate sine and cosine signals for the processor. This is useful for alleviating some of

the computational demands from the processor. The loop rate was 10 kHz for all system

identification and control tasks.

Figure 2.3: Block diagram of the overall system

2.2 Bias Current and Linearization

The system gives full control of the amount of current going into each of the coils, therefore

a bias current scheme must be done in software. To see the necessity of bias currents in the

coil consider the following simplified 1 DOF equations of motion for a magnetic levitation

system

mÿ = k[
(Ib − i)2

(yg − y)2
− (Ib + i)2

(yg + y)2
] (2.1)

linearizing this equation about yg = 0

df

di
|yg=0 =

2Ib
y2
g

(2.2)

therefore the linearization around the nominal gap with respect to the current is linear when

using the bias current. Also,
df

dy
|yg=0 = 2

I2
b + i2

y3
g

(2.3)
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from this equation, it is seen that the linearization with respect to the position is more linear

when the bias current is large. Therefore, using a larger bias current will result in a more

linear system.

2.3 System Identification

There are several challenges in the identification the magnetic bearing system. For one, the

axes of the sensors are not co-located with those of the actuators, which introduces strong

off-diagonal coupling. Also, the electromagnetic force is nonlinear with respect to the coil

current and the air gap. As is commonly done, we add bias currents to the opposing coils to

render the system more linear. Lastly, the rotor is essentially suspended in the mid-air, so

the rotor dynamics are non-linear. But despite these issues, many researchers haver shown

that a linear model suffices around a sufficiently small equilibrium point.

In order to begin system identification, the system is assumed to be described by a linear

system in its innovation form as in equation 2.18.
[
A B C

]
are the system matrices sought

after, L is the kalman gain characterizing the noise, and e(t) is a white noise sequence.

x(t+ 1) = Ax(t) + Le(t) +Bu(t)

y(t) = Cx(t) + e(t)
(2.4)

Since the system is open-loop unstable, the identification has to be done in closed-loop. From

equation 2.18, if the output is fedback then there exists correlation between the noise and the

input which renders biased results [LM96]. Many times the correlation can be ignored and

open-loop methods such a N4sid can be used. However, we use high-order ARX methods for

identification and found that it performs more consistently than open loop methods since

there is significant noise in the system.

2.3.1 High-Order Multivariable ARX Identification

Key in high-order ARX modelling is the one step Kalman predictor. From the innovation

form, the one step Kalman predictor is as stated in equation 2.5.

9



x̂(t+ 1) = [A− LC]x̂(t) + Ly(t) +Bu(t)

ŷ(t) = Cx̂(t)
(2.5)

The impulse response of equation 2.5 is given by equation 2.6

ŷ(t+ 1) =
∞∑
k=1

C[A− LC]k−1[Lŷ(t− k) +Bû(t− k)] (2.6)

The main idea behind high order ARX methods is that the system’s markov parameters,

Ak = C[A− LC]k−1L and Bk = C[A− LC]k−1B, can be estimated as k goes to ∞ using an

ARX identification. Given a y and u data sequence, equation 2.7 can be casted as an ordinary

least squares problem to estimate that markov parameters using a large N . From [LM96],

assuming a delay in the feedback loop, the high order arx model gives non-biased results

even in closed loop.

y(t) +
N∑
k=1

Aky(t− k) =
N∑
k=0

Bku(t− k) (2.7)

Once the markov parameters (Ak and Bk) are estimated, a model reduction step is usually

needed for a low order model suitable for control design. A particulary simple approach is to

directly parameterize the high order ARX model into state space observer form as shown in

equation 2.8, where Γ = [A1A2...AN ]T , and then perform a balanced reduction. In [Jan03],

the markov parameter estimates are used to perform a subspace identification, where the

lower order model is obtained by the SVD. The main idea in both these methods is a high-

order ARX followed by model order reduction performs well.

x(k + 1) =


I

ΓF

0T

x(k) + ΓBu(k) (2.8)

y(k) =
[
I 0T

]
x(k)
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2.3.2 Non-Parametric Frequency Domain Identification

In order to assess the effectiveness of the identified models, a non-parametric frequency

domain identification was conducted and compared to parameterized model. To obtain the

frequency response data (FRD), four separate experiments that excited only one input of

the closed loop system for frequencies ranging from 10 to 2500 Hz. The reference given was

multitone sinusoids in the form of

r(t) =
N∑
k=1

aksin(ωkt) (2.9)

The sinusoids have to be chosen such that they sufficiently excite the system, especially

around resonant modes.

The reference, plant input, and plant output were recorded and processed to obtain a

matrix of frequency responses. The transfer function from r to u can be built up one at a

time using eqn. 2.10

ĥurl,m
(
ejω
)

=
Ψulrm(ejω)

Ψum(ejω)
, l = 1...4,m = 1...4 (2.10)

where Ψulrm is the fourier transform of the cross-correlation of ul and rm. Similarly, the

transfer function from r to y can be built up as

ĥyrl,m
(
ejω
)

=
Ψylrm(ejω)

Ψym(ejω)
, l = 1...4,m = 1...4 (2.11)

Once the overall transfer functions were obtained, the open loop unstable frequency response

is the point-by-point matrix inversion, as shown in eqn 2.12.

Ĥyu
(
ejωk

)
= Ĥyr

(
ejωk

) (
Ĥur

(
ejωk

))−1

(2.12)

The frequency response data is used to compare how good the models obtained from

the time-domain ARX identification are and to obtain approximate error bounds for robust-

ness analysis. Assuming a multiplicative error, eqn.2.13 is the error, where Hyu(ejω is the

frequency response data used as the truth model and Pmod the identified model.

E(ejωk) = P−1
mod(e

jωk)(Hyu(ejωk)− Pmod(ejωk)) (2.13)
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Figure 2.4: First 40 Hankel Singular Values of high order state space model

2.3.3 High-Order Results

A time-domain identification using Pseudo-Random Burst Sequence (PRBS) reference input

was performed to identify the open loop unstable plant. A high-order ARX least squares

was used to find the A and B Markov parameters which are both 4x4 matrices, while both

y(t) and u(t) are 4x1 vectors. Figure 2.4, shows the Hankel Singular Values of the high order

ARX model which is able to correctly estimate the 4 unstable modes.

Two major considerations when identifying high order models are: first, the order of the

high order ARX model and second, the number of data points needed for the least squares

problem. Figures 2.5 and 2.6 illustrates the effect of these. The plots show the maximum

singular value of the error, eqn 2.13. Larger data length keeps the matrix tall even when

identifying many parameters, which is crucial for identification. As suspected, the identifi-

cation gets worse as the number of data points decrease, for the magnetic bearing system

> 4000 points were used for identification. Also, increasing the the order has diminishing

return after a 120th order model, but low orders can give incorrect models.
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Figure 2.5: The effect of the number of data points chosen for the high order identification.

The higher the number of data points, the better the identification.
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Figure 2.6: The effect of the order chosen for the high order ARX model. The higher the

order, the better the identification.
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2.3.4 Reduced Order Results

The high-order models obtained in the previous section are not suitable for low order control

design. Two different identification schemes were used to determine the low order open-loop

plant: 1) a high-order arx followed by balanced reduction 2) Matlab’s implementation of the

Jansson’s SSARX scheme [Jan03].

10
1

10
2

10
3

−30

−20

−10

0

10

20

30

40

50

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

 

 

ARX
Subspace ARX
HO

Figure 2.7: Multiplicative error comparison of open loop plant using two different high-order

arx techniques and the high order model compared to the frequency response data

Figure 2.7 sums up the results of the identification, which shows the error of both methods

and the high order identified model against the frequency response data. Both methods

identified a 20th order model while the high order model was the 120th model. Both methods

gave useable models for control design, but the ARX followed by balanced truncation was

used for design since it has less error at the 2 kHz resonant model. Figure 2.8 shows the

error for various reduced order lengths; this was the main consideration in choosing a 20th

order model. The primary conclusion drawn from the identification experiments is that it

is difficult to obtain an accurate plant model after 1 kHz. Figure 2.9 shows the error bound

Wr(z) used for robustness analysis where the actual plant is assumed to be contained in

14
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Figure 2.8: Error using low order models, reduced from the high order model

equation 2.14; ∆ is a full block 4x4 dynamic uncertainty with a norm less than one. Clearly,

Wr(z) is just an approximation of the plant uncertainty used to facilitate analysis and design

of controllers while taking an estimation of the plant uncertainty into account.

P (z) = Pnom(z)(I +Wr(z)∆(z)) (2.14)
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Figure 2.9: Multiplicative error bound used for robustness analysis

2.3.5 Flexible Modes and Frequencies

Viewing the rotor as a flexible structure, the general equations of motion is

Mẍ+ (C1 + C2(ω))ẋ+ (K +H(ω))x = f (2.15)

M is the symmetric mass matrix, C1 is the symmetric damping matrix, K is symmetric

stiffening matrix, and C2 and H are the anti-symmetric matrices depending heavily on the

rotor spin frequency. The identification procedure was done with the rotor not spinning,

figure 2.10 shows the raw Frequency Response Data (FRD) and the reduced state-space

model’s maximum singular value. The open loop frequency response show resonant modes

of the rotor at 1.1 kHz and 2 kHz, which appear strongly in the cross terms and make a

decoupling transformation difficult to obtain. The figure also shows the rigid body modes,

which can be visualized by neglecting the flexible modes.

Aside from the natural frequencies, the associated mode shapes are also important. The

mode shapes of a system describe the pattern of motion for a vibrating system at the resonant

frequencies. A spinning rotor’s first mode shape is cylindrical where the rotor is moving up
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Figure 2.10: Singular values of the open loop plant model and frequency response data

highlighting the flexible modes

and down, while the second forms a conical shape. Assuming the modes are lightly damped,

the mode shape can be determined by the ”Quadrature Peak Picking” method. This method

relies on the assumption

Real(G(ωr) = 0 (2.16)

e = peak(Imag(G(ωr)) (2.17)

The mode shape can be determined by examining the peak of the imaginary part of

the frequency response function at the resonant modes. Figure 2.11 shows the imaginary

part of the frequency response for the V axis sensor and actuator pair. Noting that the

sensor/actuator are not collocated, the peaks indicate the motion at both sensors are out

of phase with the motion at the first actuator while being in phase with the motion at the

second actuator. This also indicates the node is located in between the first sensor/actuator

pair and in front of the second pair (figure 2.12. The increased magnitude of the frequency

response at the rear axis compared to the front indicates a node is close to the front sensor.
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The first mode vibrations are more observable at the rear sensors than the front.

900 1000 1100 1200
−1.5

−1

−0.5

0

0.5

Frequency (Hz)

Im
ag

(P
11

)

u1 −> y1

900 1000 1100 1200
−0.5

0

0.5

1

1.5

Frequency (Hz)

Im
ag

(P
13

)

u3 −> y1

900 1000 1100 1200
−30

−20

−10

0

10

Frequency (Hz)

Im
ag

(P
31

)

u1 −> y3

900 1000 1100 1200
−10

0

10

20

Frequency (Hz)

Im
ag

(P
33

)

u3 −> y3

Figure 2.11: The imaginary part of the frequency response at the 1 kHz resonant mode.

Figure 2.12: Pictorial illustration of the first mode shape.
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2.3.6 Gyroscopic Effect

From eqn. 2.15, it is seen that the spin frequency (ω) impacts the natural frequencies of

the rotor system. This is termed the ”gyroscopic effect”, where the natural frequencies split

into a forward and backward whirl component. The moment caused by the spinning of the

rotor increases the forward whirl frequency while decreasing the backward whirl, termed

”gyroscopic stiffening” and ”gyroscopic weakening” respectively. In order to identify the

effect of the gyroscopic effect, a white noise sequence was fed into reference and the frequency

response obtained by the fourier transform of the correlations as detailed in section 2.3.2.
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Figure 2.13: Singular Values of the frequency response for different rotor speeds near the 1st

natural mode

Figures 2.13 and 2.14 show the singular values of the frequency response of the open

loop AMBS for rotor speeds ranging from 100 to 700 Hz around the 1st and 2nd natura

modes. They both show a separation of the natural frequency that increases as the rotor

speed increases. The first cylindrical mode is less affected by the rotor speed while the

second conical mode is more so. Figure 2.15 shows the modal frequencies as the rotor speed

increases, which illuminate these insights further. From a control perspective, instability can

19



1900 1950 2000 2050 2100
−10

−5

0

5

10

15

20

25

30

35

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

2nd mode splitting

 

 

100 Hz
300 Hz
500 Hz
700 Hz

Figure 2.14: Singular Values of the frequency response for different rotor speeds near the 2st

natural mode

result if the controller is not robust to these plant variation due to rotor speed changes.
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100 to 700 Hz, while the bottom shows the 2nd mode.

2.4 Tip Dynamics Identification

For cutting applications, the dynamics of the tip of the rotor is critical. It is a requirement

that for a given reference and rotor speed the tip is moving in a known manner. From section

2.3.5, the mode shapes indicate that the tip is more excited at the flexible modes than the

sensor indicate, so treating the rotor as a rigid body will not give accurate tip dynamics.

During cutting, the cutting forces are concentrated at the tip so a reasonably accurate model

of the tip dynamics is necessary.

 P11 P12

P21 P22


C(z)

y

z

u

w

r

Figure 2.16: Structure for the identification of plant and tip dynamics

Figure 2.16, shows a block diagram of the overall system with the cutting dynamics
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included. The main assumption is that the cutting dynamics can be represented as an

additional input and output to the linear model. This assumption implies the tip motion is

the sum of the modes of the rotor. The expanded system can be described as

x(t+ 1) = Ax(t) +Bu(t) +Bww(t)

y(t) = Cx(t)

z(t) = Cwx(t)

(2.18)

So the identification goal is to find the input and output matrices. The challenging part of

the identification is the tip is difficult to excite in a known fashion while exciting the reference

as well. Also, the identification must be done in closed loop so setting the plant input (u)

to zero and then injecting a disturbance (w) is not possible. Given these considerations, the

identification is done in two steps:

1. The
[
A B C

]
of the AMBS are identified as a 4 input and 4 output multivariable

system as done previously using time domain methods.

2. The Bw and Cw due to the tip force and displacement are then identified using the

given system matrices by a least squares fit using the frequency response obtained

by striking the tip with an impulse hammer. These are two input and two output

matrices.

The following sections describe the procedure, culminating in an expanded model of the

system that includes the tip dynamics.

2.4.1 Experimental Set-up for Tip Dynamics Identification

Figure 2.17 shows the major components for the rotor tip analysis. A special fixture was

manufactured to mount two external Kaman eddy current displacement sensors— one for

each axis. Although not shown, the eddy current sensors was calibrated using a Sony Mag-

nescale probe with 1 µm of resolution. A PCB Piezotronics 086C03 impulse hammer capable

of impulsive forces up to 500 lbs was used to inject a force at the tip.

22



Figure 2.17: Picture of the eddy current and impulse hammer set up at the tip.

2.4.2 Static Calibration

Figure 2.18: Simple Kinematics for the static calibration tests.

Figure 2.18 shows a simple kinematics diagram of the rotor useful for static calibration.

The goal of the static calibration is to relate the feedback sensors measurements to the actual

tip displacement. This allows us to be confident the tip is actually moving as expected when

injecting a reference to the feedback sensors. Exploiting similar triangles, the following
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expression for the tip position can be obtained

ytip = a(y1 − y2) + by1 (2.19)

where a and b are parameters that depend on the distance between the sensors. However, this

is unknown so the calibration will experimentally find these parameters. The first parameter

represents the rotation of the rotor, while the second is the translation component. By

evaluating the tip position at various different y1 and y2 positions, a least squares fit can be

done to obtain the unknown parameters. Figure 2.19 shows the fit for one axis (the other
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Figure 2.19: Calibration results of the static test, showing both the fitted parameters and

the experimental results when in translation and rotation.

is almost identical). The figure in the leftmost top is purely translational with both y1 and

y2 moving the exact same, which amounts to only identifying the ”b” parameter in eqn.

2.19. The rightmost top figure is with y1 = 0 and only y2 moving, which amounts to only

identifying the ”a” parameter. The last figure is with y1 = −y2 to test the accuracy of both

parameters.
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2.4.3 Impulse Hammer Identification

Using the impulse hammer and tip position sensors, the unknown input and output matrices

Bw and Cw can be identified after first identifying the system matrices
[
A B C

]
. From

figure 2.16, the following expressions can be obtained for the outputs z and y

y = S(z)P21(z)w + S(z)P22(z)C2(z)r

z = (P11(z) + P12(z)[C1(z)− C2(z)]S(z)P21(z))w + (P12(z)[C2(z) + S(z)P22(z)C2(z)])r

(2.20)

Where

S(z) = (I + P22(z)[C2(z)− C1(z)])−1 (2.21)

is the sensitivity and is given since it is a function of the plant parameters identified from

the original experiment and the controller. Also, since the reference is 0 when the impulse

hammer is striking the tip, the part due to the reference can be ignored. Then, by noting

that P21(z) = C(zI − A)−1Bw, equation 2.20 can be expanded at each frequency as

Ĝyw(ejω1)

.

.

.

Ĝyw(ejωN )


=



S(ejω1)C(ejω1I − A)−1

.

.

.

S(ejωN )C(ejωN I − A)−1


Bw (2.22)

Ĝyw is the estimated transfer function using the impulse hammer as the input and feed-

back sensors as the output (Section 2.3.2). This is a least squares problem, G = HBw, with

the frequency axis gridded that has a real solution

B̂w = Re(H∗H)−1Re(H∗G) (2.23)

once Bw is estimated, then P21(z) is fully defined. Similarly, equation 2.20 can be ex-

panded as
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

Ĝzw(ejω1)T

.

.

.

Ĝzw(ejωN )T


=



BT
w(ejω1I − A)−1 + P21(ejω1)S(ejω1)(C1 − C2)(ejω1)BT (ejω1I − A)−1

.

.

.

BT
w(ejωN I − A)−1 + P21(ejωN )S(ejωN )(C1 − C2)(ejωN )BT (ejωN I − A)−1


CT
w

(2.24)

which can be solved similarly for the output matrix Cw.

2.4.3.1 Tip Identification Results

Figure 2.20 shows a sample impulse hammer hit. Most notably, the tip motion is excited

at the first flexible mode far more than the feedback sensor, which further verifies the mode

shape.

0.37 0.375 0.38 0.385
−200

−150

−100

−50

0

50

100

Time (secs)

P
os

iti
on

 (µ
m

)

Sample Hammer

 

 
Imp Hammer
Feedback Sensor
Tip Sensor

Figure 2.20: Experimental impulse hammer test, showing the hammer impact, feedback

sensor, and the tip sensor.

Figures 2.21 and 2.22, show the results of fitting the input Bw matrix. It is important to
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note that it was assumed the force on the V axis did not affect the displacement on the W

axis and vice versa. Both the magnitude and phase show good agreement out to the useable

sensor bandwidth of 2200 Hz.
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Figure 2.21: The experimental magnitude of the frequency response and identified model

from the impact force to feedback sensor output.

Finally, the results of fitting the impulse force to the tip displacement is shown in figures

2.23 and 2.24. The overall identification fits well with the first and second flexible modes

being excited as expected.
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Figure 2.22: The experimental phase of the frequency response and identified model from

the impact force to feedback sensor output.
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Figure 2.23: The experimental magnitude of the frequency response and identified model

from the impact force to tip sensor output.
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Figure 2.24: The experimental phase of the frequency response and identified model from

the impact force to feedback sensor output.
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2.5 Frequency Weighted LQGi

2.5.1 Linear Quadratic Control Design

In order to stabilize the open loop plant and attenuate low frequency disturbances, a Linear-

Quadratic-Gaussian with Integral action (LQGi) controller that took robustness into con-

sideration was designed. The main design considerations for the LQGi controller were band-

width, saturation, and stiffness. Obviously, higher inner loop bandwidth is desired, but

comes at a cost of saturation and robustness.

LQGi control is well known, but the design process is briefly summarized here for com-

pleteness. Given a plant as in Equation 2.25,

P (z) =

 Ap Bp

Cp 0

 (2.25)

For constant tracking, such as levitation the plant needs to include an integrator

zk+1 = Izk + rk − yk (2.26)

To weight the control action at different frequencies, the control input is filtered through

a user defined system

wk+1 = Awwk +Bwuk

u′k = Cwwk +Dwuk

(2.27)

The overall augmented system is given by
xk+1

zk+1

wk+1

 =


Ap 0 0

−Cp I 0

0 0 Aw



xk

zk

wk

+


Bp

0

Bw

uk (2.28)

The cost to minimize is

J =
[
xTk zTk wTk

]
Qp 0 0

0 Qi 0

0 0 0



xk

zk

wk

+ u′Tk Rwu
′
k (2.29)
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u′ is the filtered state used to shape the frequency response. Substituting equation 2.27

for the weight into the cost, the problem is then a standard LQR one with crossterms,

provided Dw is not zero.

J =
[
xTk zTk wTk

]
Qp 0 0

0 Qi 0

0 0 CT
wRwCw



xk

zk

wk

+

wTk C
T
wRwDwuk + uTkD

T
wRwDwuk

(2.30)

The solution to this problem is a state feedback controller

uk = −
[
Kx Ki Kw

]
xk

zk

wk

 (2.31)

The plant states cannot be measured so an observer is needed

x̂k+1 = Apx̂k +Bpuk + L(y − Cpx̂k) (2.32)

The overall LQGi controller is given by Eqn 2.33. The optimal controller is 2-dof where

the inputs are the plant output and the error,y and r − y respectively.
x̂k+1

zk+1

wk+1

 =


Ap −BpKx − LCp −BpKi −BpKw

0 I 0

−BwKx −BwKi Aw −BwKw



x̂k

zk

wk



+


L 0

0 I

0 0


 y

r − y



uk = −
[
Kx Ki Kw

]
x̂k

zk

wk



(2.33)

By combining the plant (Eq. 2.25) and the LQGi (Eq. 2.33), the closed loop plant G(z)

can be obtained. Notice the overall closed system does not include the observer dynamics,
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Pnom(z)

K(z)

y

u

Figure 2.25: Nominal plant model and controller for sensitivity analysis

in that sense the order is minimal, which is helpful in designing a low order F (z) for the

plug in repetitive controller.

G(z) =


Ap −BpKx −BpKi −BpKw 0

−Cp I 0 I

BwKx −BwKi Aw −BwKw 0

Cp 0 0 0

 (2.34)

2.5.2 Sensitivity and Robustness of LQGi

By assuming r = 0, the LQGi controller (eqn 2.33) can be put into feedback form with

the plant as shown in figure 2.25, where Klq = C1(z) − C2(z). Then the sensitivity, for

performance analysis, is defined as in eqn 2.35. Also robustness can be analyzed by using

the multiplicative uncertainty and putting the plant into standard form as in figure 2.26.

Then a condition for robust stability is σ̄(T (z)) < 1, where T (z) is given in equation 2.36.

S(z) = (I + P (z)Klq(z))−1 (2.35)

T (z) = lft(

 0 I

P (z)Wr(z) P (z)

, Klq(z)) (2.36)

Figure 2.27 shows the weighting transfer function used to shape the sensitivity. A high

pass weighting decreased control activity in the higher frequency region while a peak filter

at the second resonant attenuated control activity near the second resonant mode.
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Figure 2.26: Uncertain plant model and controller for robustness analysis
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Figure 2.27: High-pass weighting transfer on the input used to increase robustness. The

weighting is a broad-band high pass and a narrow band peak filter at the second resonant

mode

Figure 2.28 and 2.29 summarizes the results of the inner-loop control design. From the

sensitivity plot, the LQGi controller has a bandwidth of approximately 50 Hz, given actuator

constraints, this was the highest comfortable bandwidth for a broadband controller, and is

well within the first resonant mode. The frequency weighting does not affect the sensitivity

too much. The frequency weighted LQGi is robust to the error bound, while the non-weighted

severely violates the bounds after the second resonant mode.
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Figure 2.28: Sensitivity of the LQGi feedback controller. The frequency weighting does not

affect the performance too much
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Figure 2.29: Robustness of the LQGi feedback controller. Adding frequency weighting at-

tenuates high frequency control action that increases robustness
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Lastly figure 2.30 shows good agreement between simulation and experimental results.
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Figure 2.30: Step Responses of LQGi Controller, Experiment and Simulation.
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CHAPTER 3

Orbital Motion Tracking

In order to machine circles and ovals, the control system must be able to track sinusoidal

references in the high speed machining region. To achieve that goal, we propose high-

gain feedback control— specifically a multivariable Repetitive Control. Repetitive control is

based on the internal model principle of [FW76a] that states that to achieve zero tracking

error, a model of the reference/disturbance must be contained in the controller. Repetitive

control places an internal model at a fundamental frequency and its harmonics. Traditional

repetitive control methods ( [TTC89a], [CDX04]) are SISO formulations, therefore it is not

clear how to easily extend these methods to the multivariable setting. In [KLT04], µ-synthesis

is used to design a repetitive controller and can be extended to the multivariable setting,

but it is highly sensitive to the weighting parameters. In [Lon10a], a FIR interpolation

method is discussed; this method extends naturally to the MIMO setting, but cannot claim

optimality and may result in long FIR filters. In this thesis, a multivariable repetitive control

is designed by solving the model matching problem using γ iteration, avoiding DK iterations.

Also, modifications to the repetitive control internal model is used to increase performance

and target non-integer frequencies such as 60 Hz electrical noise.

3.1 Repetitive Control Design

The plug-in repetitive control structure shown in figure 3.1 is considered. The goal of this

structure is to add tracking or disturbance rejection to an existing controller without per-

turbing the nominal sensitivity too much. If the controller C(z) is placed directly in the

error path, then the problem can be formed as µ-synthesis problem [KLT04]. However, this
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P (z)C(z)
Σ Σ

y

Σ z−N Q(z)

z−m

F (z)

u

r

Figure 3.1: Block Diagram of the Plug-in Repetitive Control

approach involves using DK iterations which can be difficult to tune, does not decouple the

nominal and plug-in controller, and can result in very high order controllers. To address

these issues, we propose a two step design: first a nominal H2 optimal controller which re-

sults in a closed loop system with the same order as the plant and secondly a simple weighted

H∞ model matching problem for add-on control action at the desired frequencies.

The first controller, denoted as C(z) in the diagram 3.1, is designed using an optimal

frequency weighted LQGi controller. The main purpose the controller serves is to stabilize

the magnetic bearing system. The other major consideration is to attenuate low frequency

disturbances, so it should be tuned for broadband performance. Also, the controller should

be robust especially in the high frequency region. Lastly, for implementation purposes, the

order should not be very high.

The second controller, denoted as F (z), is designed using an optimal H∞ model matching

approach solved using γ iterations. The primary objective is stabilize the add-on repetitive

controller given the nominal controller. The controller should properly attenuate distur-

bances at the desired frequencies, while being robust to plant uncertainty.

When the switch in Figure 3.1 is closed, the repetitive controller is added on to the

existing LQGi control. Similar to single variable case, the main objective is to produce high

gain at a desired frequency to track references or reject disturbances and its harmonics.

This is accomplished by the internal model generator in Eqn 3.1, where N is the number of

samples constituting one period of the desired frequency.
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D(z) =
1

zN − 1
I (3.1)

Q(z)z−N

z−mI −G(z)F (z)

Figure 3.2: Equivalent Block Diagram of the Plug-in Repetitive Control suitable for small

gain theorem

In order to design a repetitive controller, filters F (z) and Q(z) need to be determined.

The design of these filters is much more difficult when the plant is multivariable; methods

such as zero phase error tracking (ZPETC) and zero magnitude inversion are single-variable

formulations, and cannot be used. Assuming r = 0, the add-on repetitive control can be put

into feedback form as shown in figure 3.2; then using the small gain theorem the inequality

in Equation 8.11 is a sufficient stability condition.

‖(z−mI − F (z)G(z))Q(z)‖∞ < 1 (3.2)

G(z) is the nominal closed-loop transfer function, from reference input to output with

the LQGi controller given in equation 2.34. From the stability equation, it is easy to see that

the inequality is satisfied when F (z) = G−1(z). However, when the system is non-minimum

phase, there will be unstable pole-zero cancellation, so a naive inversion will not work. m is

a tuning parameter that depends on how close the non-minimum phase zeros of the system

are to the unit circle. From [Tsa94], it is known that the optimal F (z) is such that the

optimal cost in Equation 3.5 is an all-pass filter, and that increasing the preview length, m,

decreases the error of the model matching problem.

Q(z) (Equation 8.15) is a zero phase low pass filter that limits the bandwidth of the

inversion filter, so that high frequency noise will not be amplified and the system is robust
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to plant model uncertainty. For the magnetic bearing system under consideration, theQ filter

is comprised of four SISO filters (Equation 8.15) in block diagonal form. Q(z) is noncausal,

but the preview steps can be emulated. Also, Nq was chosen to be 5 which at 10 KHz is a

low pass with a cut off at 800 Hz.

q(z) = (.25z + .5 + .25z−1)Nq (3.3)

Once q(z) is incorporated into the internal model, then

D(z) =
z−Nq(z)

1− z−Nq(z)
(3.4)

which gives high gain in the passband of q(z) and low gain in the stopband.

3.1.1 H∞ minimization

min
F (z)∈RH∞

∥∥∥∥∥∥[z−mI − F (z)G(z)]Q(z)r(t)

αu(t)

∥∥∥∥∥∥
∞

(3.5)


z−mI G(z)

0 α

I 0



F (z)

Q(z)

y

e

u

u

r

Figure 3.3: γ iterations finds the transfer function to minimize e and obtain an inversion

filter for repetitive control

Motivated by the stability condition, the H∞ problem (Equation 3.5) can be solved for

the inversion filter F (z). Figure 3.3 shows the generalized plant in a form suitable for H∞

solvers. Since there is no uncertainty, H∞ solvers using γ iterations can minimize equation

3.5. If the transfer function from r to e is less than one then stability of the repetitive control

system is guaranteed. Q(z) is determined by the model uncertainty and reduces high gain at

high frequency, while m is increased until the stability criterion is met. α in the cost function
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limits the magnitude of the controller which leads to a trade off between performance and

robustness. The weighting used in this thesis is a simple scalar, but can also be a transfer

function to shape the inversion at various frequencies.

3.1.2 Repetitive Control Sensitivity and Robustness

Similar to the LQGi case, the add-on repetitive control from figure 3.1 can be put into

feedback form (figure 2.25)when r = 0 for sensitivity analysis.

Srep(z) = (I + P (z)Krep(z))−1 (3.6)

After some block diagram manipulation, it can be seen that overall controller is as in equation

3.7.

Krep(z) = Klq(z) + C1(z)F (z)[
z−N+mq(z)

1− z−Nq
I4x4] (3.7)

From which the robustness can be analyzed by the norm of equation 3.8

Trep(z) = lft(

 0 I

P (z)Wr(z) P (z)

, Krep(z)) (3.8)

Figure 3.4 shows maximum singular value of Trep for the γ iteration inversion filter with

Q(z) weighting filter and the input weighted at various levels. The best robustness expected

is that of the LQGi controller with the add-on repetitive turned off (F (z) = 0), so it is

also shown for comparison. The effect of the weighting is easily seen, as α is weighted more

a less robust controller is obtained; while a lower weighting will limit the add-on and the

robustness approaches that LQGi controller.

Figure 3.5 shows the maximum singular value of the sensitivity, Srep, which indicates the

frequencies that can be tracked or rejected. By adjusting the weighting the α, the sensitivity

approaches LQGi only or more aggressive attenuation at the desired frequencies. This plot

shows the classical robustness vs performance trade-off as the more aggressive controllers

have deeper notches in the sensitivity at the desired frequencies but are less robust to plant

model mismatch (figure 3.8.
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Figure 3.4: Robustness analysis of the repetitive design procedure varying the scalar control

input weight

It is also interesting to look at the maximum singular values of the inversion filter itself,

since this gives an indication of the frequencies at which control effort can be excessive.

From figure 3.6, lower α weighting have much higher gain across all frequencies. On the

actual experiment it was seen that high gain caused noisy actuation and excessively excited

some frequencies. On the other hand, scaling α too low gives very low actuation across the

frequency band and suffers in terms of performance. Therefore, a compromise such that one

of the filter in purple was chosen for the inversion filter.
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Figure 3.5: Sensitivity/performance analysis of the repetitive design while varying the control

input weighting
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Figure 3.6: Gain of the inversion filter while varying the control input weighting
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z−NL(z) F (z)

z−m

urepe

Figure 3.7: Internal model modification with peak filter

3.2 Repetitive Control with Peak Filter

The performance of the classical repetitive control internal model structure can be signif-

icantly enhanced by replacing the q(z) filter. From figure 3.7, the transfer function from

input to output is

D(z) =
z−NL(z)

1− z−NL(z)
(3.9)

where L(z) is a peak filter 8.18 that picks out discrete frequencies and ideally leaves the

others unaltered. The ideal peak filter is given as

L(z) =


L = 1 if ω = ωk=1,2,...M

L ≈ 0 if ω 6= ωk

(3.10)

If z−N+mL(z) = 1 if ω = ωk=1,2,...M then D(z) will have infinite gain the desired frequencies

and perfect disturbance rejection is achieved.

For repetitive control, the L(z) is usually a low-pass zero phase Q filter. The major issue

with using a low pass Q filter is that when rejecting higher frequencies the magnitude is not

exactly equal to 0 which effects the quality of the internal model generator. Also for severely

non-minimum phase systems, many inversion filters such as zero phase tends to have low

gain. A low gain inversion filter coupled with a low quality internal model generator because

of the Q filter makes rejecting high frequency disturbances problematic. Therefore, the L(z)

filter in the proposed controller is a peak filter that has exactly unity gain at the desired

frequency. Since plant and model mismatch is usually at high frequencies, using a L(z) that

attenuates these frequencies will make equation 3.11 easier to satisfy.

‖(z−mI − F (z)G(z))L(z)‖∞ < 1 (3.11)
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A simple way to construct a peak filter is through an all-pass filter as

L(z) =
1

2
(1− A(z)) (3.12)

This corresponds to phase constraints of 0 degrees at the desired frequency and 90 degrees

at the bandwidth which also leads to a monotonically decreasing phase that can be realized

using a stable all-pass filter.

3.2.1 Peak Filter Sensitivity and Robustness

The sensitivity and robustness of repetitive control with the peak filter modification can be

analyzed similarly to the previous section but with the internal model adjusted accordingly.

Moreover, the same inversion filter can be used if the passband of L(z) is in the passband of

q(z) then

‖(z−mI − F (z)G(z))L(z)‖∞ ≤ 1‖(z−mI − F (z)G(z))Q(z)‖∞ (3.13)

The same inversion filter is used for repetitive control and its peak filter modification.

Figure 3.8 shows maximum singular value of the complementary sensitivity function for

LQGi, classical repetitive, and its peak filter modification. When compared to the classical

repetitive control, the peak filter modification has better robustness properties in the inter

harmonics and high frequency region. The level of attenuation in these region depends on

the bandwidth of the peak filter design. This highlights another added benefit of using the

peak filter modification, namely that bandwidth and roll off of the internal model can be

adjusted.

Figure 3.9 shows the maximum singular value of the sensitivity. The classical repetitive

controller has nearly 20 dB attenuation at 200 Hz and even less at high frequencies because

of the q(z) and inversion filter pair. However, using the peak filter modification with internal

models at 100, 200, 300, and 400 Hz the level of attenuation at these frequencies is effectively

0. This highlights the main benefit of the peak filter modification— that it decreases the

sensitivity at higher frequencies while improving robustness.
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Figure 3.8: Robustness analysis of the repetitive design procedure with the peak filter mod-

ification compared against classical repetitive and LQGi
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Figure 3.9: Sensitivity/performance analysis of the repetitive design procedure with the peak

filter modification compared against classical repetitive and LQGi
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3.3 Peak Filter with Phase Compensation

The main drawback of repetitive control with the peak filter modification is that only integer

harmonics can be targeted. However, by replacing the large delay with a phase compensation

filter, non-integer harmonics can be targeted. For the inversion of non-minimum phase

systems, delays must be introduced and the internal model generator must compensate for

the added delays. In repetitive control, the internal model generator is z−N and the non-

causal operator zm can be absorbed by z−N+m but this only allows for integer harmonics to

be targeted. A useful feature of all-pass filters is that it can be used to add phase advance

at specific frequencies. Obviously, a non-causal operator such zm cannot be implemented in

real-time, however at discrete frequencies an all-pass filter that has the correct phase advance

can be constructed. The key idea is from equation 3.14

∠zm = ∠ejmω = mω (3.14)

Then the phase constraints on the desired all pass filter is θA(ωn) = mωn.

To design the all pass filter, the approach described in [PT97] is used. It can be verified

that phase of an all pass filter is given by

θA = −2Mω + 2 arctan(

∑2M
k=1 ak sin(kω)

1 +
∑2M

k=1 ak cos(kω)
) (3.15)

given a desired phase response at 2M points then equation 8.20 can be cast as linear system

as in equation 8.25 where βi = θA + 2Mω and i ranges from 1 to 2M .

tan(βi) =
2M∑
k=1

[sin(kωi)− tan(βi) cos(kω)]ak (3.16)

The main benefit of the designing an all-pass using equation 8.25 is the phase can be as

desired at specific frequencies, however it is not guaranteed to return a stable system. As

AP (z)L(z) F (z)

z−m

urepe

Figure 3.10: Internal model modification with peak filter and phase compensation
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long as the desired frequencies is monotonically decreasing, a stable high order all-pass will

be generated.

From figure 3.10, the transfer function from input to output is

D(z) =
AP (z)L(z)

1− zmAP (z)L(z)
(3.17)

where L(z) is a peak filter and AP (z) is an all-pass filter that compensates for the phase zm

at the desired frequencies. If the AP (z) compensates for the phase exactly and L(z) is 1 at

the desired frequencies than there will be infinite gain at those frequencies.

3.3.1 Peak Filter with Phase Compensation Sensitivity and Robustness

Since AP (z) has unity gain the stability condition is the same as for the repetitive control

with peak filter. Therefore, the same inversion filter can be used and the sensitivity and

robustness can be analyzed similar to the classical repetitive control. For controller design

on the AMBS, an internal model was placed at 60, 180, 200, 300, and 400 Hz to account for

the 60 and 180 Hz noise from the AC lines.

Figure 3.11 shows maximum singular value of the complementary sensitivity function

for LQGi, repetitive with peak filter modification, and peak filter with phase compensa-

tion. When compared to the peak filter modification, the addition of phase compensation

minimally affects the robustness. Figure 3.12 shows the maximum singular value of the sen-

sitivity. The phase advance internal model gives the desired deep notches in the sensitivity,

but sacrifices some performance in the region where the frequencies are close together such as

180 Hz and 200 Hz. It is important to note to place internal modes close together is another

advantage of this formulation since the bandwidth can be adjusted easily when designing

the peak and phase compensation filters.
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Figure 3.11: Robustness analysis of the repetitive design procedure with the peak filter

modification compared against classical repetitive and LQGi
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Figure 3.12: Sensitivity/performance analysis of the repetitive design procedure with the

peak filter modification compared against classical repetitive and LQGi
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3.4 Experimental Results

The effectiveness of the controllers were verified on the AMBS. The control used a real-time

target, sampling at 10 kHz. The experimental results are presented in a manner to show the

advantages of the different controllers. First, the classical repetitive with robust inversion

design is shown along side the LQGi controller. Secondly, the classical repetitive controller

is compared against the peak filter modification for both 200 and 400 Hz. Lastly, the phase

advance controller is compared the peak filter modification to highlight the attenuation of

60 and 180 Hz.

3.4.1 Repetitive Control and LQGi

The repetitive controller designed used a 5th order Q filter with a cutoff at 800 Hz and

10 preview steps.The add-on repetitive controller was verified on the system under three

conditions:

1. first a reference of 200 Hz and amplitude of 7.5 µm was tracked on the front two axis,

while the back to regulated to zero. This is a simple circle cutting type profile.

2. secondly, the spindle was spun to 200 Hz and was tested whether the controller can

regulate it about its geometrical axis.

3. lastly the reference was again injected while the rotor was spinning, testing both dis-

turbance and reference tracking of the controller.

3.4.1.1 Reference Tracking

The results of the reference only tracking experiment is shown in figure 3.13. The plot is

only shown for one of the front axis because the others are similar. The top plot shows the

reference (red), tracking with only LGQi (green), and with the add-on repetitive (blue) in the

time domain; while the bottom shows a spectral plot of the error, r − y. Clearly, repetitive

track much better, with 40 dB less error at the main fundamental. The second-largest

49



component is at 180 Hz, most likely a manifestation of the mains hum. The controllers

are stable and able to track the reference with less than one micron of error, tracking a

15µm (peak-to-peak) reference. Tracking performance is good, without amplifying sideband

frequencies.
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Figure 3.13: 200Hz Tracking Results–the spindle is tracking a 200 Hz reference on its front

two axis while not spinning

3.4.1.2 Disturbance Rejection

The disturbance caused by the spindle spinning at 200 Hz amounts to 12,000 RPM—in the

acceptable high speed machining region. Figure 3.14 shows both time-domain and spectral

results of this experiment. Due to mass imbalance, spinning the spindle causes it to vibrate

at the spin frequency. From the time domain results, it is seen that the LQGi controller has

about 7.5 µm vibration. This is unacceptable for cutting applications that need precision

tracking. The repetitive controller is able to reject this disturbance and center itself. Also,

from the LQGi spectral plot, the spinning at 200 Hz introduces vibrations 300 Hz, 400

Hz, 500Hz, and 600Hz albeit smaller magnitude than the fundamental. One of the main

50



advantages of repetitive controller is that by placing the internal model at 100 Hz, it is able

to target integer frequencies as well. The spectral plot show that the repetitive controller

have control action at integers of 100 Hz as is expected, but tapers off after 600 Hz due to

the Q filter. Therefore it is able theses harmonic disturbances.
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Figure 3.14: 200Hz Disturbance Rejection Results–the spindle is spinning without any ref-

erence

3.4.1.3 Reference Tracking and Disturbance Rejection

In the final experiment, the spindle was spun to 200 Hz and the front to axis attempted

to track a 200 Hz reference. The results are shown in figure 3.15. From the time domain

results the LQGi controller cannot track the reference, it is even 180 degrees phase shifted

from the reference and heavily affected by the spinning. The repetitive controller is able to

reject the disturbance which occurs on all four axis while tracking at non-spinning levels on

the front two. Main conclusion to be drawn is the repetitive controller is able to reject the

spin frequencies and its harmonics, while tracking as if the spindle was not spinning.
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Figure 3.15: 200Hz Reference and Disturbance Rejection Results – the spindle is spinning

and a 200 Hz reference injected on its front two axis

Results of the three experiments are summarized in Table 3.1 and 3.2. The repetitive

add-on outperforms the LQGi controller in terms of RMS error. The results show that

including the repetitive controller can bring tracking/disturbance error to almost purely

levitating levels on all axis.

Channel RMSe1 RMSe2 RMSe3 RMSe4

V13 .41 .76 .55 .66

W13 .46 .82 .60 .77

V24 .48 .60 .70 .67

W24 .45 .65 .62 .63

Table 3.1: RMS error for repetitive controller when (1)just levitating, (2) only tracking,(3)

only spinning, and (4)both spin and track. All units are µm.
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Channel RMSe1 RMSe2 RMSe3 RMSe4

V13 .41 7.06 4.95 7.37

W13 .46 7.53 3.96 9.5

V24 .48 .53 5.56 4.9

W24 .45 .62 5.84 5.5

Table 3.2: RMS error for LQGi controller when (1)just levitating, (2) only tracking,(3) only

spinning, and (4)both spin and track. All units are µm.

3.4.2 Peak Filter Modification

The peak filter placed an internal model at 100, 200, 300, and 400 Hz. The controller was

then compared to both classical repetitive and LQGi under the following conditions:

1. first the spindle was spun to 200 Hz and a circle reference was injected.

2. the spindle was spun to 400 Hz and the corresponding circle reference was injected

Figures 3.16 and 3.17 show the error spectrum of the position for both 200 and 400 Hz.

The top plots on both is when the spindle is just levitating, without any tracking, while the

bottom is both spinning and tracking as would be encountered in a cutting application. The

main takeaway is that by modifying the internal model using a peak filter, better performance

is achieved when compared to repetitive control. This especially true when tracking 400 Hz

while spinning where the targeted frequencies are attenuated by over 20 dB as suggested by

the sensitivity analysis. In terms of maximum rms error for each of the four axis, at 400 Hz

tracking, repetitive control has 1.2 µm while the peak filter modification has only .85 µm.
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Figure 3.16: 200Hz Reference and Disturbance Rejection Results – the spindle is only spin-

ning on the top and spinning while tracking on the bottom
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Figure 3.17: 400Hz Reference and Disturbance Rejection Results – the spindle is only spin-

ning on the top and spinning while tracking on the bottom
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3.4.3 Peak Filter with Phase Compensation

The peak filter with phase compensation placed an internal model at 60, 180, 200, 300, and

400 Hz. The controller was then compared to the peak filter modification under the following

conditions:

1. first the spindle was spun to 200 Hz and a circle reference was injected.

2. the spindle was spun to 400 Hz and the corresponding circle reference was injected

Figures 3.18 and 3.19 show the position error spectrum of the peak filter with phase com-

pensation and repetitive peak filter. In both the 200 Hz and 400 Hz case, using the phase

compensation technique allows for targetting of the 60 and 180 Hz noise present in the sys-

tem. From the figures, it is apparent there is large 60 and 180 Hz and indeed targeting these

frequencies reduces the overall rms error. The maximum rms error for repetitive control with

peak filter is .85 µm while using phase compensation lowers it to .73 µm.
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Figure 3.18: 200Hz Reference and Disturbance Rejection Results – the spindle is only spin-

ning on the top and spinning while tracking on the bottom
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Figure 3.19: 400Hz Reference and Disturbance Rejection Results – the spindle is only spin-

ning on the top and spinning while tracking on the bottom
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3.4.4 Circles, Ovals, and Control Effort

There are two obvious ways to move the spindle such that the tip carves out a specific

trajectory: 1) Translate both the front and rear sensors so that whole spindle translates 2)

Regulate the rear sensors while tracking a specific trajectory in the front to get an amplifi-

cation effect, this is called rotational. Figure 3.20 shows the phase portrait of both the front

and rear sensors when tracking a 200 Hz circle using both LQGi and repetitive control; the

top two plots are the translational approach, while the bottom two is the rotational. The

LQGi cannot track trajectories while repetitive can.

Figure 3.20: The top two plots is tracking a circle profile at 200 Hz by translating both the

front and rear axis (translational), while the bottom is tracking a circle by tracking a circle

on the front and regulating the rear (Rotational). Clearly, the repetitive control with peak

filter is able to track circles while the LQGi cannot.

Figure 3.21 shows the control effort using the translational and rotational approach. This

highlights the main advantage of using the rotational approach, the control signal is reduced

by over 100 percent.
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Figure 3.21: The control signal of each of the four axis when tracking a circle using repetitive

control. Tracking at both and front and rear (Translational) is compared to only tracking

at the front while regulating the rear (Rotational).

3.22 shows the tracking results for an oval profile, that is obtained by tracking a sine and

cosine of different magnitudes.

Figure 3.23 shows the control effort tracking an oval. Using the rotational approach, the

control effort is reduced.
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Figure 3.22: The top two plots is tracking an oval profile at 200 Hz by translating both the

front and rear axis (translational), while the bottom is tracking an oval by tracking a circle

on the front and regulating the rear (Rotational).
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Figure 3.23: The control signal of each of the four axis when tracking an oval using repetitive

control. Tracking at both and front and rear (Translational) is compared to only tracking

at the front while regulating the rear (Rotational).
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3.4.5 Tip Tracking

In a cutting application, the primary concern is the tool tip tracking performance. It is

expected that tracking of the feedback sensors are directly correlated with the tip tracking

performance, figures 3.24 and 3.25 verify this. The figures show the tip tracking for a circle

and oval using LQGi and repetitive control at 100 and 200 Hz. Repetitive control is able to

track the tip adequately while LQGi cannot. It is also important to note that the spindle is

not spinning, since the eddy current position sensors at the tip are not able to give reliable

measurements while spinning.

Figure 3.24: Tracking at the tip using LQGi and repetitive control for both a circle and oval

at 100 Hz, the spindle is not spinning.

Since the spindle is not spinning, the LQGi seems to have better performance than in

actuality. At 200 Hz, the benefit of using repetitive control is seen more clearly.
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Figure 3.25: Tracking at the tip using LQGi and repetitive control for both a circle and oval

at 200 Hz, the spindle is not spinning.
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CHAPTER 4

Cutting Process

In this chapter, the inclusion of a cutting model is considered in the overall control system.

The stability of the control system with the tracking controllers is analyzed for the onset

of chatter. Furthermore, experimental cutting experiments verify the validity of the overall

control design procedure.

4.1 Reference Generation

Figure 4.1: Simple kinematics of the tracking problem for cutting

Figure 4.1 shows the simple kinematics for the tracking problem. The objective is to

carve out a trajectory by keeping the cutter on the surface of the work piece by moving the

center of mass. To that effect, it can be seen that the position of the cutter is given by

rc = (xcm + rcos(θc))x̂+ (ycm + rsin(θc))ŷ (4.1)

where θc is the angle of the cutter that is dependant on the spin frequency ω. Therefore

to carve out circle or ellipses, the reference should track
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Figure 4.2: Overall block diagram of the linearized cutting process with the three main parts:

1) augmented plant with tip dynamics 2) internal model control for reference tracking 3)

cutting dynamics

rx = acos(θc)

ry = bsin(θc)
(4.2)

The reference is generated by the encoder angle while the spindle is spinning, which gives

the cutter angle.

4.2 Overall Cutting Process

Figure 4.2 shows the overall schematic of the linearized cutting process. There are three

major parts of the process:

1. The six input and six output augmented plant. The inputs are the four current com-

mands for the coils and two cutting forces at the tip. the outputs are the four dis-

placements near the coils and two displacements at the tip. In chapter 2, the model

was derived in detail.

2. The controller C(z) stabilizes the magnetic bearing and contains and internal model

to track the reference as required by the application to minimize tracking error. The

controller design and analysis was detailed in chapters 2 and 3.

65



3. The cutting dynamics that relates the tip displacements to cutting forces. The inclusion

of this model is essential as it predicts chatter instability and can be used to determine

optimal cutting speeds. This is the main focus of this chapter.

The following summarizes the dimensions of the various signals in the system

r, u, y ∈ R4x1

w, z ∈ R2x1

rc, Fc ∈ R

(4.3)

r is the reference that is determined by the trajectory profile for cutting, u is the input

current to the coils, y is the displacement near the coils, w is the cutting forces in the two

axis, z is the tip displacement for the two axis, rc is the radial displacement at the cutter,

and Fc is the cutting force in the radial direction at the cutter.

4.2.1 Chatter Model

Chatter is self-excited vibrations induced by variations in the cutting force that manifests

itself as noticeable marks on the surface that directly affect productivity. Chatter is a

complex phenomenon that depends on the tool, workpiece geometry, and mounting. The

cutting conditions, such as depth of cut (doc), width of cut, and cutting speed greatly affect

the onset of chatter.

The commonly used model for cutting force is that it is proportional to the cutting area

by a factor known as the ”cutting stiffness”

Fc = KcAc (4.4)

In a boring type application, such as the magnetic bearing system in this thesis, the area

can be expressed as

Ac = (
f

Ω
)(δ) (4.5)

where f is the feedrate, Ω is the spin frequency in Hertz, and δ is the depth of cut. The

depth of cut depends on surface of the previous pass, which causes the variation in the
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cutting force, and can be expressed as

δ = rc(0) + rc(t)− rc(t− τ) (4.6)

where τ = 1
Ω

and is the time it takes to make one revolution. Combining the above equations,

the widely used linear cutting force model is obtained

Fc =
KcFR

Ω
(rc0 + rc(t)− rc(t− τ)) (4.7)

This relates the radial tip displacement to the radial cutting force and forms a feedback loop

in the cutting process as shown in figure 4.2. The forces and displacements at the tip are in

two perpendicular axis which is related to the radial cutting direction by

rc =
[
cos(θc) sin(θc)

]
z (4.8)

w =

cos(θc)
sin(θc)

Fc (4.9)

and Tc =
[
cos(θc) sin(θc)

]
z is the transformation of the rectangular displacements to the

radial cutting direction. Also, without loss of generality, r can be assumed to be 0 since it

has no impact on chatter instability. Therefore,

G = lft(P (z), K(z)) (4.10)

where P (z) is the augmented plant and K(z) is the controller assuming r = 0. Furthermore,

the tip displacements and cutting forces are independent and the off-diagonal terms are small

so the closed loop system has the form

G = g(z)I2x2 (4.11)

where g(z) is now siso. Putting all these insights together, the overall block diagram (figure

4.2) can be greatly simplified into figure 4.3. The delay term in the cutting model is put

into its discrete equivalent and the linear cutting stiffness is

Kcl =
Kcf

Ω
(4.12)
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Figure 4.3: Simplified siso model for the prediction of chatter instability

4.2.2 Stability Lobes

The value of Kcl which the feedback system in figure 4.3 is stable for a given cutting speed

N = 1
Ω

is used to create the stability lobe diagram. This value is simply the gain margin of

the overall feedback system and can be obtained by

Kcl(N) =
1

|g(ejωcpTs)(1− ejωcpNTs)|
(4.13)

where ωcp is the phase crossover frequency (180 degree crossover). Practically this can be

determined by looking at the leftmost point in the Nyquist plot. Also in the worst case

ejωcpNTs) = −1 and the above equation becomes speed independent and a critical cutting

stiffness can be obtained, which gives the stiff below which the cutting process is stable for

all speeds

Kcrit
cl =

1

|2g(ejωcpTs)|
(4.14)

Figure 4.4 shows the stability lobe diagram for the magnetic bearing system with the

LQGi controller and add-on repetitive with peak filter. The closed loop system was obtained

for the identified augmented plant and the given feedback controller. The LQGi controller

is stable for all cutting process with a linear stiffness less than .2 N
µm

, while the add-on

repetitive controller is stable for values less than .15 N
µm

. The cutting stiffness being lowered

by the add-on repetitive structure is expected since the added performance comes at the

cost of robustness. It is important to note that the LQGi controller cannot be used for

actual cutting since it is unable to reject the spin disturbance or track sinusoidal references.

Also interesting is the stability lobe diagram is determined experimentally through system

identification procedures.
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Figure 4.4: Stability lobe diagram for the LQGi and repetitive controller

Figure 4.5 shows the crossover frequency as the spin frequency increases for both LQGi

and repetitive controller. Most striking is that the crossover frequency is at near the first

mode for almost all spin frequencies, which indicates chatter instability. However, at some

frequencies, the crossover is at the rigid body modes which indicates the cutting process will

cause traditional instability.
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Figure 4.5: The crossover frequency at which instability occurs for the magnetic bearing

system with cutting model

4.3 Experimental Results

Cutting experiments were conducted to verify the control design procedure for various depth

of cuts and feedrates. An aluminium workpiece was used to bore out circles. Figure 4.6

shows the vibration level for 40µm, 60µm, and 80µm depth of cuts at a feedrate of 1.7

mm/s and spin frequency of 100 Hz (6000 RPM). Although a change in the vibration levels

is seen, it is relatively small and most importantly no chatter was seen during these set of

experiments. This reinforces the linear cutting model where the gain is determined by the

feedrate and spin frequency.

Figure 4.7 summarizes the cutting experiments conducted at a depth of cut of 20 µm

and various feedrates and spin frequencies of 100 and 150 Hz with respect to the stability

lobe diagram. Chatter was observed at a feedrate of 3.5 mm/s when spinning at 100 Hz

which was used to obtain the cutting stiffness and the other points were created with respect
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Figure 4.6: Vibration levels of the control input for various depth of cuts at a feed rate of

1.7 mm/s, no chatter was seen

to that point. Therefore, changing the feedrate and spin frequency corresponds to moving

up and down on the stability lobe. At higher spin frequencies, the linear cutting stiffness

is increased and less chatter is observed. This was experimentally seen, as at 150 Hz (9000

Hz), no chatter was observed even as the feedrate was increased to 7.5 mm/s. Feedrates

faster than this actually starts threading the work piece. Figure 4.8 shows two actual cut

pieces: the one of the left is a clean cut, while the one on the right is a chattered piece with

the marks clearly visible.
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Figure 4.7: Summary of the experiments conducted at a depth of cut of 20 µm to verify the

validity of the stability lobe diagram. No chatter was observed when cutting at 150 Hz as

the instability limit was approaching threading.

Figure 4.8: Actual workpieces: the left is a clean cut, and the right is a chattered piece.
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4.3.1 Vibration Levels

Figure 4.9 shows the vibration levels for feed rates of 1 mm/s, 2 mm/s, and 3.5 mm/s when

cutting at 100 Hz. As the feed rate increases, the vibration levels increase as well. Figure

4.10 shows the vibration levels at the higher spin frequency of 150 Hz (9000 RPM). The

vibration frequency when cutting at 100 Hz is around 1069 Hz, while at 150 Hz it is shifted

down to 1033 Hz; this is expected from the crossover frequency analysis and is indeed seen

during experiments.
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Figure 4.9: Vibration levels of the control input for various feed rates at 20µm depth of cuts

and a spin frequency of 100 Hz, chatter was seen at a feed rate of 3.5 mm/s
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Figure 4.10: Vibration levels of the control input for various feed rates at 20µm depth of

cuts and a spin frequency of 150 Hz, chatter was not observed at the higher spin frequency

4.3.2 Tracking Error

Figure 4.11 shows the tracking results for a 20 µm circle cut of aluminium. The top plots

shows the error spectrum for both with and without cutting, cutting predominately excites

the first flexible mode while not affecting the other frequencies too much. The bottom plots

show the feedback sensors tracking; the front sensors track a circle (blue) while the back

regulates to zero. Figure 4.12 shows the tracking results for a chattered piece. The first

flexible mode is excited more during chatter and the tracking error is visibly larger than

without cutting.

Figure 4.13 shows tracking error results for a 20/40 µm oval cut as would be expected in

a piston wrist pin boring application. Similar to the circle case, only the first flexible mode

is excited and the others are not affected too much.
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Figure 4.11: Tracking results from a 20 µm circle cut that did not chatter. The top plots

shows the error spectrum with and without cutting. The bottom plots show the feedback

sensors tracking; the front sensors track a circle (blue) while the back regulates to zero (red).
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Figure 4.12: Tracking results from a 20 µm circle cut that did chatter. The top plots shows

the error spectrum with and without cutting. The bottom plots show the feedback sensors

tracking; the front sensors track a circle (blue) while the back regulates to zero (red).
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Figure 4.13: Tracking results from a 20/40 µm oval cut that did not chatter. The top plots

shows the error spectrum with and without cutting. The bottom plots show the feedback

sensors tracking; the front sensors track an oval (blue) while the back regulates to zero (red).
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4.4 Fault Detection
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Figure 4.14: The fault detection scheme

As noted the cutting process introduces extra dynamics that the system must be robust

against. The overall cutting process along with the unstable magnetic bearing system is

very complex and unexpected behavior can occur that can be catastrophic; therefore, a fault

detection scheme that is able to handle unexpected behavior is necessary. The main idea

behind fault detection is if the system behavior deviates from the model then to reconfigure

the system into a safer state.

Figure 4.14 shows the control system with fault detection included. If a fault is detected,

then the add-on repetitive control is disconnected from the system and the AMBS is levitated

by the robust LQGi controller. The observer is constructed such that only the model is

weighted, hence it is a low gain observer, or the smallest observer gain that stabilizes the

open loop system. The residual from the observer is then filtered through the nominal

sensitivity, which gives an indication of the frequency region where the system is robust.

If this signal is greater than a preset threshold, then the add-on repetitive controller is

disconnected and the cutting process stopped.

78



CHAPTER 5

Vibration Suppression

In this chapter, we consider the problem of spinning the rotor along its inertial axis which

reduces the amount of vibration transmitted to the housing and the synchronous current

at the spin frequency. An adaptive feeedforward algorithm is used for this purpose. The

adaptive feedforward algorithm is able to treat both the inertial balancing and geometrical

centering problem and is advantageous in many respects. First, the seemingly opposites

tasks (ones places a notch and the other infinite control action in the feedback) can be

switch between the same algorithm. Also, since they both have a LTI equivalent, both

can be analyzed using the wide range of LTI techniques. Lastly, the adaptive feedforward

algorism injects references to cancel the disturbance, therefore it inherently identifies the

mass imbalance or misalignment and can be turned off during operation if needed. The

internal model type controllers do not have this luxury.

5.1 Problem Setup and Adaptive Algorithm

P (s)C(s)

FF

Σ
Σ

d

sin(θk)

cos(θk)


r

u y

Figure 5.1: Block diagram of the adaptive feedforward controller with sinusoidal regressors

Figure 5.1 shows the block diagram for the problem considered. The plant (P (s)) is nxn,
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square, and can be unstable with output y and input u. The plant is also assumed to be

pre-stabilized by a 2-dof controller (C(s)) which, for example, can be designed using LQG

methods. There is also assumed to be an input disturbance at m narrow band frequencies

given by

d =
m∑
k=1

cksin(ωkt+ θk) (5.1)

The goal of the controller is to minimize the control input u or the output y at the at

the specified frequencies by injecting the appropriate signal r. The most simple approach in

minimizing u is to place a notch filter in the control loop, but this may perturb the closed

loop too much and cannot adapt when the frequencies are changing. The standard approach

in minimizing y is based on the internal model principle, which is to introduce infinite control

action at the specified frequencies and it has similar issues as the notch filter. In this paper,

we use an adaptive feedforward approach to minimize either u or y.

To minimize the control input or plant output a gradient descent algorithm for the

phase and gain of the reference signal r is used. The controller minimizes the following

instantaneous cost

J = eTe (5.2)

where e can be either u or y. Given that the controller can be represented as C(s) =[
C1(s) C2(s)

]
,and defining the transfer function

S(s) = (I + (C2(s)− C1(s))P (s))−1 (5.3)

then from figure 5.1, the control input can be written as

u = S(s)[(C1(s)− C2(s))P (s)d + C2(s)r] (5.4)

Similarly, the plant output y can be written as

y = S(s)[P (s)d + P (s)C2(s)r] (5.5)
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Since the goal is to minimize u or y at discrete frequencies, the reference can be param-

eterized as

r =
m∑
k=1

aksin(ωkt) + bkcos(ωkt) (5.6)

where ak and bk are the nx1 unknown array of fourier coefficients, which the adaptive

controller attempts to identify. Then, depending on whether u or y is minimized, the com-

plementary transfer function T (s) is defined as

T (s) =


S(s)C2(s), if e = u

S(s)P (s)C2(s), if e = y

(5.7)

The update for the fourier coefficients is derived by a simple gradient descent law
ȧk

ḃk

 = µ


dJ
dak

dJ
dbk

 (5.8)

The gradient of the cost, eqn 5.2, can be evaluated by using the expression of u or y and

equation 5.6 and 5.7. Then the update law becomes


ȧk

ḃk

 = µ


T (s)T [sin(ωkt)Inxn]e

T (s)T [cos(ωkt)Inxn]e

 (5.9)

The notation used here is that

T (s)T [sin(ωt)Inxn] =[
T (s)[sin(ωt)e1] T (s)[sin(ωt)e2] ... T (s)[sin(ωt)en]

] (5.10)

en is the standard basis vector with a one in the nth row and the notation T (s)[x] is the

input x filtered through the transfer function T (s).

Since the input in equation 5.9 is either sine or cosine, then neglecting the transient, the

update law simplifies to
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
ȧk

ḃk

 = µ

Re[T (jωk)] −Im[T (jωk)]

Im[T (jωk)] Re[T (jωk)]

T sin(ωkt)Inxn

cos(ωkt)Inxn

 e (5.11)

the part of the reference that cancels the kth frequency in the signal is given as

rk =
[
sin(ωk)Inxn sin(ωk)Inxn

]ak

bk

 (5.12)

the total reference signal to cancel all frequencies is then given by

r =
m∑
k=1

rk (5.13)

Equations 5.11, 5.12, and 5.13 give the state-space equations for the adaptive feedforward

controller.

5.1.1 SISO Adaptive Feedforward

The standard adaptive feedforward control can be derived by assuming T (s) = Inxn. This

effectively neglects the coupling between channels and treats each input/output pairs as

separate SISO systems.


ȧk

ḃk

 = µ


esin(ωkt)

ecos(ωkt)

 (5.14)

This is a much simplified descent algorithm to minimize e; but, as is shown in this paper,

this type of update law may have slow convergence and high sensitivity to the learning gain

especially for multivariable systems.
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5.2 LTI Equivalent Controller

The multivariable adaptive feedforward controller given by equations 5.11, 5.12, and 5.13

has a LTI internal model equivalent, equation 5.15.

C(s) = µ

m∑
k=1

sRe[T (jωk)]
T + ωkIm[T (jωk)]

T

s2 + ω2
k

(5.15)

This can be seen by applying a change to coordinates (equation 5.17) to the state-space

system (equations 5.11 and 5.12). ak

bk

 = Rkxk (5.16)

where

Rk =

sin(ωkt)Inxn −cos(ωkt)Inxn

cos(ωkt)Inxn sin(ωkt)Inxn

 (5.17)

Then the following LTI state-space system is obtained

ẋk =

 0nxn −ωkInxn

ωkInxn 0nxn

xk + λ

 Re[T (jωk)]
T

−Im[T (jωk)]
T

 e (5.18)

with output

rk =
[
I 0

]
xk (5.19)

By converting the LTI state-space to transfer function and summing over the m harmonics,

the result falls out.

The multivariable adaptive feedforward controller is equivalent to m parallel internal

model controllers with poles of multiplicity n at the disturbance frequencies. The fact that

the time-varying adaptive controller has an equivalent LTI representation has the immediate

consequence that the controller can be analyzed using LTI techniques. The block diagram

suitable for LTI analysis is shown in figure 5.2. The ability to analyze the adaptive controller

using the LTI equivalent is especially useful for multivariable systems with more than one

frequency in the disturbance.
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T (s)

C(s)

e

r

Figure 5.2: Equivalent LTI feedback control system for the adaptive feedforward controller

5.2.1 Stability and Convergence Rate

The most obvious usefulness of the LTI equivalence is to predict the stability of the adaptive

controller for various adaption gains. Along the same lines, the convergence rate can also be

predicted by evaluating the maximum eigenvalue.

λconv = max(Re[λ(Inxn + T (s)C(s))−1]) (5.20)

The practical usefulness of this is that if the frequency region of the disturbance is known

then the LTI control loop can be evaluated for a given adaption gain to ensure stability

throughout.

5.2.2 Sensitivity Transfer Functions

Another direct consequence of the LTI equivalence is that traditional sensitivity analysis can

be used to evaluate the performance and robustness of the algorithm. By looking at the

maximum singular values of the sensitivity function, the frequencies at which e is attenuated

or amplified can be determined. Also, the maximum singular value of the complementary

sensitivity gives an indication of the robustness of the controller. Again, the range of fre-

quencies can be gridded for varying disturbances and the sensitivity and complementary

sensitivity can be analyzed for various adaption gains.
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5.3 Implementation Details

Implementation of the controller is done on a processor, so equation 5.11 must be discretized.

For the discretization, a simple forward euler approximation, shown in equation 5.21, is used.

Ts

ȧk

ḃk

 ≈
ak(t+ 1)

bk(t+ 1)

−
ak(t)

bk(t)

 (5.21)

Also, it is assumed the angle is given by an encoder or phase-locked loop which can

be used to estimate the angular velocity. For magnetic bearing systems, usually an encoder

gives the shaft angle which can be used to synchronize the angle in adaptive algorithm. High-

order harmonics can be targeted by multiplying the encoder angle by an integer. Moreover

if speed is changing, then adaptive algorithm can be implemented by performing a linear

interpolation on the matrix transfer function as shown in equation

Re[T (jωk)] ≈ αRe[T (jωl)] + (1− α)Re[T (jωl+1)]

Im[T (jωk)] ≈ αIm[T (jωl)] + (1− α)Im[T (jωl+1)]
(5.22)

The transfer function T (jω) is gridded at the l nodes by a seperation of δω and stored in a

3-d array, then depending on the speed

α =
ωl+1 − ωk

δω
(5.23)

Obviously the smaller δω the better the interpolation approximates the actual transfer func-

tion at the expense of storage. This significantly reduces the implementation cost of the

transfer function, especially if the transfer function is multivariable and high order. Lastly,

the sine, cosine, and encoder counting can be done on a FPGA which communicates with a

processor using FPGA/processor type chips.

5.4 LTI Equivalent Analysis

In this section the LTI equivalence is used to analyze the stability, convergence rate, and

robustness of the adaptive feedforward algorithm. Two different cases are analyzed:
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1. The standard SISO adaptive feedforward algorthim equation 5.14 and the coupled

MIMO adaptive feedforward algorithm equation 5.11.

2. The one frequency algorithm and the two frequency algorithm for the MIMO adaptive

feedforward controller

5.4.1 SISO vs MIMO Adaptive Feedforward Algorthm

A first attempt at using an adaptive feedfoward algorithm for unknown narrow band distur-

bance rejection might be to try the decoupled single input single output version equation

5.14; but, since this method ignores the decoupling between channels it was seen to be unsta-

ble. This can be analyzed using the LTI equivalent system as described in 5.2. The analysis

in this section was done for the minimization of the control input (u), so the transfer function

T (s) was created by using the plant and controller described in Section 5.2.

Figure 5.3 shows the maximum eigenvalue, which corresponds to the convergence rate of

the adaptive filter, of the AFC versus the learning gain for various frequencies. The top plot

is the MIMO AFC, while the bottom is the SISO AFC. The most striking feature is the SISO

algorthim is unstable for all learning gains when attempting to reject frequencies below 100

Hz, while the MIMO AFC is stable for gains less than 300. Also the convergence rate for

the MIMO AFC exhibits good convergence rate at throughout the whole frequency range.

However, both the MIMO and SISO algorthim have adequate stability and convergence for

frequencies above 200 Hz.

The maximum eigenvalue does not give a complete picture of the overall system, since

it doesn’t caputure the robustness and amplification of other frequencies. Figure 5.4 shows

the maximum singular value of the complementary sensitivity transfer function and the

sensitivity for a disturbance of 150 Hz at different learning gains. The complementary

sensitivity function gives an indication of the robustness of the overall system; it should be

small at frequencies where the model is incorrect. From the figure, as the gain increases

robustness near the disturbance frequency is compromised. Also, the sensitivity gives an

indication of the effect of a disturbance on the output. The figure shows that external
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Figure 5.3: Plot of the maximum eigenvalue versus the learning gain for several disturbance

frequencies. The top plot is the MIMO AFC algorthm, while the bottom is the standard

SISO AFC.

disturbances near the disturbance frequency will be further amplified for increasing learning

gains.

Figure 5.5 shows the complementary sensitivity and sensitivity for various disturbance

frequencies while holding the learning gain fixed at 100. The MIMO AFC is less robust at

lower frequencies for low disturbances but more robust in the high frequency region for the

same disturbances. Also, there is more amplification of other frequencies for lower distur-

bances. These factors depend on the controller and plant, which makes the LTI equivalence

useful in analyzing the AFC controllers.

5.4.2 Multiple Frequency Analysis

For a magnetic bearing application, it may be necessary to target harmonics of the spin

frequency. The LTI equivalent controller, equation 5.15, can be used to analyze the stability,

convergence rate, and robustness for the adaptive system. Once again the goal is to mini-

mize the input control (u), so the appropriate T (s) is chosen, except twice the disturbance
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Figure 5.4: The top plot is the maximum singular value of the complementary sensitiv-

ity transfer function for various learning gains, while the bottom is the sensitivity. The

disturbance frequency is 100 Hz

frequency is targeted as well. In this section, the LTI equivalent system is used to analyze

the two frequency algorithm.

Figure 5.6 shows the maximum eigenvalue of the closed-loop system. From the figure,

adding an additional internal model narrows the stability margin especially at lower frequen-

cies. Figure 5.7 shows the complementary sensitivity of the overall system when targeting

100 Hz for the single sinusoid case (top plot) and 100/200 Hz for the two frequency case. It

is seen that increasing the learning gain not only decreases robustness at all frequencies but

can be especially problematic at frequencies in between the desired two. This is even more

evident when looking at the sensitivity (Figure 5.8) where for higher learning gains the inter

frequency components are amplified.
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Figure 5.5: The top plot is the maximum singular value of the complementary sensitivity

transfer function for various disturbance frequencies, while the bottom is the sensitivity. The

learning gain is 100
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Figure 5.7: The top plot is the maximum singular value of the complementary sensitivity

transfer function for a single frequency, while the bottom is the complementary sensitivity

for two frequencies at various learning gains and a disturbance frequency of 100 Hz.
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of the overall LTI equivalent system for the same disturbance frequencies and its harmonic.
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Figure 5.8: The top plot is the maximum singular value of the sensitivity transfer function for

a single frequency, while the bottom is the sensitivity for two frequencies at various learning

gains.
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Based on these observations, the learning gain is chosen based on three criterions

1. Stability of the overall system

2. Adequate convergence rate

3. The sensitivity transfer functions not amplifying unwanted frequency components
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5.5 Magnetic Bearing Spin Results

This section presents experimental validation of the multivariable adaptive feedforward con-

troller using LTI design techniques. The controller attempts to minimize the control input

and three cases were considered:

1. The control uses the encoder signal to minimize the control input during the tran-

sient spin-up stage of the induction motor. Also shown in this section is an external

accelerometer used to monitor the housing vibrations.

2. A single frequency adaptive feedforward controller is used to reject the spin frequency

at a fixed frequency. The accelerometer was used here to monitor housing vibrations.

3. The spindle was spun at a lower a frequency and a two frequency adaptive feedforward

was used to reject the spin frequency and one of its harmonic.

5.5.1 Transient Spin-up Vibration Reduction

From the LTI analysis in section 5.4, standard siso AFC does not work on the test bed

because of instability or slow convergence. To highlight the benefits of the MIMO approach,

the controller was tested in a transient situation. Namely, the spindle was levitated using the

LQGi controller and then spun from stationary to 500 Hz (30,000 RPM). The speed control

was done by the internal industrial rexroth three phase motor controller. Figure 5.9 shows

the short-time fft of the control signal with the adaptive controller and without it, because

of the controller fast transient it is capable of minimizing the control input throughout the

varying spin frequency. It is also worth mentioning that the motor spin up is similar to a

chirp input disturbance. The adaptive controller is able to bring down the control effort as

if it levitating without spinning.
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Figure 5.9: Short-time fft plot of the control input for a single channel (others are similar)

during a transient spin-up to 500 Hz. The top is without the adaptive controller, while the

bottom is with the adaptive controller turned on for a µ value of 20.

Figure 5.10 shows the weights for the first channel adapting during spin-up. Other

channels are not shown since they are similar, but there are a total of 8 weight that depend

on each other, 2 for each channel. In figure 5.10, top is the weight corresponding to the sine

term and bottom is the weight corresponding to the cosine term which determine the phase

and gain of the reference signal.
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Figure 5.10: The weights for a single channel (others are similar) during the transient spin-up.

The top is the weight corresponding to the sine term and bottom is the weight corresponding

to the cosine term.

An accelerometer was also mounted on the housing the monitor vibrations. If the control

effort is minimized at the spin frequency, then the controller takes no action and is spinning

about its inertial axis, or as if it was just purely levitating. In this sense, the AFC is much

like placing a notch filter in the control loop to minimize housing vibrations, but with the

added benefit that it can adapt to changes in the spin frequency. Figure 5.11 shows the

short-time fft of the accelerometer sensor with and without the adaptive controller. The

AFC is able to reduce housing vibrations by about 20 dB when compared with just using

the LQGi controller alone.
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Figure 5.11: Short-time fft plot of the accelerometer mounted on the housing with and

without the adaptive controller during the transient.

5.5.2 Steady-State Vibration Reduction

In this section, the spindle is kept at 500 Hz and then steady-state data is collected. This is

similar to a constant 500 Hz disturbance. Figure 5.12 shows the power spectral density of the

control input under these circumstances. The AFC reduces the control effort by 100 dB at

the spin frequency, or it effectively notches out the control effort at that particular frequency.

Due to the reduced control effort, the housing vibration also gets attenuated approximately

35 dB (figure 5.13). Also interesting from figure 5.12 is the presence excitation in the control

multiples of 60 Hz which creep into the signal. There is content at 180 Hz , 240 Hz, 300 Hz,

etc.
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Figure 5.12: Power Spectral Density of the control input for one channel with the spindle

spinning at 500 Hz and the controller converged. The blue shows the control input without

adaptive and the green with adaptive.
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Figure 5.13: Power Spectral Density of the accelerometer mounted on the housing while the

spindle is spinning at 500 Hz.The blue shows the control input without adaptive and the

green with adaptive.
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5.5.3 Two Frequency Control Input Reduction

In the last test, the spindle was spun to 250 Hz and the two frequency AFC was used to

reject not only the spin frequency but also a harmonic. Once again the control input was

minimized. Figure 5.14 shows the power spectral density of the control input for three cases:

• The blue trace is the spindle spinning with the LQGi controller with the adaptive

controller off

• The green trace is the single frequency AFC controller

• The red trace is the double frequency AFC controller

Most striking is the double AFC controller is about to minimize u at the spin frequency (250

Hz) just as well as the single frequency algorithm; but, is also able to completely reject the 500

Hz component. A slight disappoint was the 500 Hz component in the accelerometer reading

was not attenuated as expected when using the two frequency algorithm. This is believed to

be because the vibrations induced at 2x the spin frequency are not that significant, so there

is not much to attenuate.
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Figure 5.14: Power Spectral Density of the control input for one channel, while the spindle

was spinning at 250 Hz. The blue is without the AFC algorthm, the green is the one

frequency AFC algorthm, and the red is the two frequency AFC algorthm.
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CHAPTER 6

Geometrical Centering of Varying Frequencies

In this chapter, the geometrical centering problem is once again considered; however, with

the assumption that there is no encoder measurements available. Essentially, this requires

an adaptive frequency estimation algorithm using only the internal signals, and updates of

the controller based on the estimation. This type of controller is useful in applications of

magnetic bearings where it is desired to geometrically center the spindle while there are

unknown narrow band disturbances.

The general problem of compensating for unknown narrow band frequencies has been

addressed in literature. In [AKU99],a Youla based internal model for unknown frequencies

was applied to an acoustic duct. In this scheme, a FIR Youla parameter was updated by

estimating the disturbance using an observer. In [LCR05], the same approach was applied

to an active suspension system. In [BD97], an AFC algorithm was used with frequency

estimation and another with a phased lock loop. The proposed AFC algorithm with fre-

quency estimation was indirect in that the frequency estimation was decoupled from the

updating the control law and not updated at every time step. In the PLL, the controller and

phase estimates were updated at every time step.In [MST03], the disturbance was estimated

and then fedback to the input for cancellation, known as the disturbance observer (DOB).

In [CT12] another DOB scheme, but with robust modification that amounts to using an

IIR youla parameter. In [PFX15], the DOB type scheme was applied to a magnetic bearing

system, however in SISO manner.

The previous approaches have a few drawbacks that is addressed by the approach used

in this thesis. The Youla updates use a FIR approximation to an internal model and need

to have a relatively accurate plant model. Using a phased lock loop can be slow and inac-
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curate, since there must be phase error for the frequency estimation. Additionally, a PLL is

dependant on input amplitude which, as in the magnetic bearing case, can be varying. In

DOB schemes accurate estimations of the disturbance is necessary which is difficult across

large frequency bands.

The approach in this thesis addresses many of these issues. The error is directly fed

into the internal model, so accurate estimation of the disturbance is not necessary. The

disturbance is estimated using a closed loop observer, but only for the frequency estimation.

Similar to [CT13], an inversion only in the expected frequency band of the disturbance is

used for enhanced robustness and ease of implementation. Moreover, the approach is shown

to work on the multivariable unstable magnetic bearing system. Lastly, both steady state

and transient results for one and two unknown frequencies are presented and compared to

using the known frequency version.

6.1 Problem Setup

ω

ω

Σ C(z) P (z) Σ

Ñ(z) M̃(z)Σ

F (z)Lz(z)

z−1

Σ

Σ

A(z).5Σ

r

y

e

w

D(z)

H(z)
Obs(z)

Figure 6.1: Set-up of the unknown sinusoidal disturbance/reference problem

Figure 6.1 shows the overall block diagram for the adaptive control problem. The ob-

jective is to reject or track a single or possibly multiple sinusoid frequencies. The added
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difficulty is the frequency is assumed to be unknown, so an estimation of the frequency is

needed. Moreover, it is also assumed there can be multiple unknown frequencies. Also,

the plant P (z) is non-minimum phase, unstable, and multivariable 4x4. Repetitive control

with peak filter modification from the previous chapter is extended to create a time-varying

internal model that is capable of handling varying frequencies.

The scheme has 4 major components:

1. the adaptive internal model D(z)

2. the inversion filter F (z)

3. the disturbance observer Obs(z)

4. the frequency estimation H(z)

The internal model is responsible for asymptotical error rejection, while the inversion filter

ensures stability with some robustness. Also, the observer is used to identify the disturbance

frequency for use in the frequency estimation algorithm. The following section will describe

in greater detail the four major parts of the approach.

6.1.1 Internal Model

Lz(z)I

z−1I

urepe

Figure 6.2: The internal model is updated as estimations of the disturbance frequencies is

computed.

As in Chapter 3, the goal of the internal model (fig. 6.2) is to have infinite gain at the

disturbance frequencies. The filter L(z) is constructed such that it is 1 at the disturbance
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frequencies and small elsewhere. The filter is constructed using cascaded notch filters in the

following form

HL(z) =

p∏
i=1

1− 2cos(ωi)z
−1 + z−2

1− 2ρcos(ωi)z−1 + ρ2z−2
(6.1)

omegai determines the location of the notch filter while ρ determines the bandwidth of the

notch filter. The peak filter can then be constructed as

L(z) = 1−HL(z) (6.2)

It is also important to note, that when using cascaded nothces, the peak filter can also be

represented as

HL(z) =

p∏
i=1

2(1− ρ)cos(ωi)z
−1 + (ρ2 − 1)z−2

1− 2ρcos(ωi)z−1 + ρ2z−2
(6.3)

Eqn. 6.3 is of relative degree one, therefore it is particularly attractive to provide look aheads

for non-casual inversion schemes.

6.1.2 Inversion Filter

Lz(z)I

z−1I −G(z)F (z)

Figure 6.3: Rearrangement of the overall control scheme suitable for small gain, in the

adaptive case the filter L(z) is time-varying.

The control diagram can be rearranged into the equivalent block diagram shown in fig

6.3. This is similar to the non-adaptive case in Chapter 3 except the filter L(z) is time

varying. Time varying small gain theorem can be used to ensure stability, however it may

be too conservative and does not help facilitate inversion filter design. So by assuming

the frequency estimates are slowly varying and using frozen values then following stability
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condition can be obtained

‖(z−1I − F (z)G(z))L(z)‖∞ < 1 (6.4)

Further by restricting the unknown frequencies to be in a certain interval ω =
[
ωL ωH

]
, then

the stability condition requires inversion in that band and low gain in others. Specifically,

F (z) =


F ≈ z−1G−1(z) if ω =

[
ωL ωH

]
F ≈ 0 else

(6.5)

This is approximately accomplished by solving the H∞ model matching problem with ap-

propriate weighting filters as outlined in chapters 3 and 7.

6.1.3 Disturbance Observer

In order to estimate the frequency online, an estimation of the disturbance signal is necessary.

Using the control signal or the output is not a robust solution since it is in feedback and

these quantities can approach 0. To estimate the disturbance, an observer is designed for

the open loop unstable plant using the steady state Kalman filter

x̂(k + 1) = (Ap − LCp)x̂(k) +Bpu(k) + Ly(k) (6.6)

r(k) = −Cpx̂(k) + y(k) (6.7)

This can also be represented in transfer function form as

r(z) = M̃(z)y(z)− Ñ(z)u(z) (6.8)

where M̃(z) and Ñ(z) is given as

M̃(z) = Cp(zI − Ap + LCp)
−1L+ I (6.9)

Ñ(z) = Cp(zI − Ap + LCp)
−1Bp (6.10)

It is straight forward by writing the error dynamics to obtain the following expression when

there is no plant/model mismatch

r(z) = M̃(z)d(z) (6.11)
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From this equation it it seen the observer gives a filtered representation of the disturbance.

Since the only interest is to estimate the frequency of the disturbance, this is suitable as the

input to the adaptive frequency estimation scheme outlined next.

6.1.4 Frequency Estimation

cos(θ2)

cos(θ2

sin(θ2)−sin(θ2)A(z)

u

z−1
y

cos(θ1)

cos(θ1)

z−1

−sin(θ1) sin(θ1)

x1 x2

Figure 6.4: Lattice structure for the all pass state,θ1 controls the location of the notch and

is adaptive to minimize the error while θ1 determines the bandwidth of the notch.

The adaptive frequency estimation algorithm is the one used in [Reg91], and is briefly

outlined here. The scheme is based on the normalized lattice version of an all pass filter

shown in figure 6.4 whose parameters are adapted based on the following error

e(k) = H(z)M̃(z)d(k) = [
1

2
(1 + A(z))]M̃(z)d(k) (6.12)

M̃(z)d is the output of the observer and H(z) is a notch filter based on the all pass normalized

lattice. θ1 determines the location of the notch, while θ2 determines its bandwidth. For

frequency estimation only θ1 needs to be adjusted and is updated according by the following

law

θ1(k + 1) = θ1(k)− µ(k)e(k)x1(k) (6.13)

where x1 is the output of the delay in the normalized lattice structure. Also the learning

gain is normalized so the algorithm is independent of the input signal amplitude

µ(k + 1) =
1∑n

k=1 λ
n−kx2

1(k)
(6.14)
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where λ is a forgetting factor.

An advantage of the algorithm is the estimates are not biased for white noise input com-

ponents as opposed to direct form parameterizations. Therefore, the frequency estimation

will converge to the non-biased solution. Also shown in [Reg91] if the bandwidth is small

(narrow notches) then a cascade, as shown in fig 6.5, of filters will give low biased results

to estimate multiple frequencies. However, the estimation error will increase when multiple

frequencies are close together.

ω1 ω2

H1(z) H2(z)
d e

Figure 6.5: Single frequency adaptive frequency estimation algorithm can be cascaded to

estimate multiple frequencies provided the bandwidth is small.

6.2 Experimental Results

Experiments to verify the efficiency of the algorithm were performed. The following experi-

ments were conducted:

• During the first experiment, the spindle was spun up to 250 Hz and then spun down,

a single internal model was updated to reduce runout.

• The spindle was spun up to 250 Hz and then spun down while a 100 Hz disturbance

was injected at the output. An internal model with two frequencies were updated and

a cascade of two adaptive algorithms used to estimate both frequencies. This is repre-

sentative of a time varying disturbance alongside an unknown dominant disturbance.

• The spindle was spun to 125 Hz, while a disturbance at twice the spindle speed was

injected. This is representative of the second harmonic of a time varying frequency

being excited.
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• In the last experiment, the spindle was spun to 250 Hz while a chirp was injected at

the output. This is representative of two time varying frequency that may overlap at

times.

For all the experiments, the following three controllers were compared:

1. Just LQGi without any internal model as a reference

2. The add-on peak filter with speed estimates from the encoder during spinning and

reference speed if injected at the output. This is a best case as the speed is known and

only the internal model is updated so there is no feedback from the adaptive frequency

estimation.

3. The add-on peak filter with frequency estimates from the adaptive algorithm

This section begins with a discussion of the tuning parameters for the controller. Then

experimental results are presented for the 4 experiments described.

6.2.1 Tuning

There are three major tuning parameters in the controller. First, the forgetting factor for

the adaptive frequency estimation which mainly determines the transient response of the

frequency estimation. Obviously a faster transient response is desired but comes at the

expense of larger variations in the estimate. Also, the bandwidth of the notch for the

adaptive estimation is important as it determines the resolution of the frequency estimates,

a small bandwidth is desired but too narrow may cause convergence issues especially in a

noisy environment. Lastly, the bandwidth of the internal model is very crucial because if it

is too narrow then error in the frequency estimation can cause instability because of large

transients. On the other hand, if it is too wide then it may not be able to properly attenuate

the disturbances.
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Figure 6.6: The frequency estimates during spin up and down from both the adaptive algo-

rithm and from the encoder.

6.2.2 Spin up with Single Frequency Internal Model

In the first experiment, the spindle was spun was up to 250 Hz and the internal model

was updated using both encoder speed estimates and from the adaptive algorithm. Figure

6.6 shows the estimates during spin up and down. From the zoomed in plot the frequency

estimation is unbiased with a variance of .5 Hz. Also apparent is the adaptive estimates

deteriorate in the very low frequency region since not enough cycles are present for the

algorithm. Note also that around 23 seconds the motor driver switches from actively braking

during spin down to coasting so a smaller change in frequency occurs after that time.

Figure 6.7 shows the output position of each of the four axis during the spin up and down

for the three control strategies. The LQGi controller has the largest amount of error since

it is not designed for narrow band rejection. The internal model updates using the encoder

reduces the error to near levitation levels and is the best case. The adaptive updates perform

just as well as using the encoder, this observation is further quantified in table 6.1 which

gives the rms value of the error plot for all three controllers.
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Figure 6.7: Time domain of the output of each of the four axis for the three controllers. The

adaptive estimation performs just as well as encoder speed estimates

Figure 6.8 shows the sum of spectrogram of the outputs of each axis. Most important is

both internal model approaches are able to reduce the error due to the spin frequency by 20

db while leaving the other unaffected. Interestingly, during coasting, many harmonics of the

spin frequency are visible. During spin up, the third harmonic is mainly excited. The mains

third harmonic is also present in the output, while there is also a broadband low frequency

component.
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Channel RMSe1 RMSe2 RMSe3

V13 4.1 .73 .73

W13 3.9 .66 .66

V24 2.2 .75 .75

W24 2.3 .79 .78

Table 6.1: RMS error for single frequency adaptive during spin up and down with (1)just

LQGi, (2) Updating using encoder,(3) updating using adaptive estimation. All units are

µm.

Figure 6.8: Spectrogram of the output error during the spin up and down.
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6.2.3 Spin up and Constant Frequency with Two Internal Model
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Figure 6.9: The frequency estimates during spin up and down from both the adaptive algo-

rithm and from the encoder/injection reference. Zoomed in plot for the crossover region is

also shown.

In this experiment, the spindle was spun up to 250 Hz and then down while a 100 Hz

disturbance was injected at the output. Figure 6.9 shows the frequency estimation for both

the encoder and adaptive. Two cascaded adaptive frequency estimation algorithms were

used. From the figure, it is apparent the estimation of the spin frequency is biased but still

less than 1 Hz error. To compensate for this mismatch, the internal model must be widened.

Also, during the cross over at 100 Hz, larger errors in the estimation of both frequencies

occur which can result in instability if the internal models is too aggressive because of the

large transients induced.

Figure 6.10 shows the output during the experiments for all four axis. The adaptive

estimate performs just as well as the encoder updates except in the cross over region. Table

6.2 further validate this observation. The rms error for the adaptive updates is slightly larger

than the encoder updates but still less than 1µm of error. It is also interesting to note that
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Figure 6.10: Time domain of the output of each of the four axis for the three controllers.

The adaptive estimation performs just as well as encoder speed estimates

the encoder update error is the same as the single frequency case.

Figure 6.11 shows the sum of spectrogram of the output errors. Both the adaptive and

encoder updates provide 20 dB of attenuation when compared to only LQGi. However, the

error during the cross over region is larger when using adaptive updates.
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Channel RMSe1 RMSe2 RMSe3

V13 5.4 .74 .84

W13 4.7 .66 .75

V24 3.7 .75 .78

W24 3.9 .81 .85

Table 6.2: RMS error for 2 frequency disturbance with one constant adaptive during spin

up and down with (1)just LQGi, (2) Updating using encoder,(3) updating using adaptive

estimation. All units are µm.

Figure 6.11: Spectrogram of the output error during the spin up and down. The adaptive

algorithm has larger error during the crossover region when compared to encoder updates.
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6.2.4 Spin up and Double Frequency with Two Internal Model
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Figure 6.12: The frequency estimates during spin up and down from both the adaptive

algorithm and from the encoder and injection reference. The injected frequency is twice that

of the spin frequency

In this experiment, the spindle was spun to 125 Hz while a disturbance was also injected

at twice the spin frequency. This type of situation is when the 2nd harmonic is excited and

the fundamental is unknown. Figure 6.12 shows the estimation of these two frequencies using

the adaptive algorithm and the encoder/ reference injection. In this case both frequencies

were estimated with .5 Hz of error. Since the frequencies do not cross, there are not any

obvious issues using the cascaded structure.

Figure 6.13 show the output of each of the axis for all three control strategies. Both

internal models approaches behave similarly and this is verified by table 6.3 which gives the

rms the output error during the experiment.

Figure 6.14 shows the sum of the spectrogram during the experiment. Both internal

model schemes have a similar error spectrogram throughout the experiment.
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Figure 6.13: Time domain of the output of each of the four axis for the three control. The

adaptive estimation performs just as well as encoder speed estimates

Channel RMSe1 RMSe2 RMSe3

V13 4.2 .88 .91

W13 3.5 .75 .79

V24 2.8 .95 .93

W24 2.9 1.0 1.0

Table 6.3: RMS error for 2 frequency during spin up and down with the other at twice the

spin frequency for (1)just LQGi, (2) Updating using encoder,(3) updating using adaptive

estimation. All units are µm.
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Figure 6.14: Spectrogram of the output error during the spin up and down.
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6.2.5 Spin up and Ramp with Two Internal Model
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Figure 6.15: The frequency estimates during spin up and down from both the adaptive

algorithm and from the encoder and injection reference. An opposite chirp was injected,

making sure they cross at some point

In the final experiment, the spindle was spun up to 250 Hz and then back down while an

opposite chirp was also injected at the output. In this situation, the controller must com-

pensate for two time varying disturbances that also cross. Figure 6.15 shows the frequency

estimation of the two signals. Large estimation errors, seen in the zoomed in plot, occur

in the cross over region that must be accounted for by designing a less aggressive internal

model. Overall, the cascade adaptive structure is able to track two unknown narrow band

signals.

Figure 6.16 show the error during experiments, while table 6.4 show the rms error. The

adaptive frequency updates have slightly (.5 µm max) increased rms error when compared

to encoder updates.

Figure 6.17 shows the sum of the spectrogram during the experiment. Both internal model

schemes have a similar error spectrogram throughout the experiment, with the exception of
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Figure 6.16: Time domain of the output of each of the four axis for the three controllers.

The adaptive estimation performs just as well as encoder speed estimates

the cross over region. Here, the increased error when using the adaptive frequency estimation

is seen to be 10 dB higher than using encoder speed updates.
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Channel RMSe1 RMSe2 RMSe3

V13 5.5 .76 .81

W13 5.1 .69 .75

V24 3.8 .78 .80

W24 4.2 .83 .87

Table 6.4: RMS error for 2 frequency with one constant adaptive during spin with (1)just

LQGi, (2) Updating using encoder,(3) updating using adaptive estimation. All units are

µm.

Figure 6.17: Spectrogram of the output error during the spin up and down. The adaptive

algorithm has larger error in the crossover region.
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CHAPTER 7

Unknown Multivariable Narrow and Broadband

Disturbance Rejection

7.1 Introduction

In this chapter, the assumption that the disturbances are sinusoidal is dropped and stochastic

or broadband disturbances are also taken into account. Furthermore, the disturbance is also

assumed to be unknown, although the plant is known, so an adaptive algorithm is necessary.

Once again, the geometrical centering problem is considered so the control scheme minimizes

the output variance. On a big picture, the disturbance model needs to identified and the

controller adjusted based on that model.

The control strategy is based on the adaptive inverse controller which has been used

widely in applications [WW08] . Usually the disturbance model is identified by an LMS

algorithm, which suffers from the drawback of slow convergence. In [HL95],RLS updates

were first used for Hard Disk Drives, the overall control scheme was expanded to include

adaptive plant and disturbance model identification in [TMM12]. The algorithm is known to

suffer from high control effort, so in [PTG10] it was extended to include high pass weighting

filter for robustness. Additionally, it has also been extended to include internal models into

the adaptive controller [WCT09] for enhanced rejection when there are periodic disturbances

also present. In [CKB00], a similar adaptive algorithm was done on a siso white box magnetic

bearing but with no experimental results.

The main drawback of the approaches stated above is they are essentially siso formula-

tions. First introduced in [TGV13] and later in [TGT16] for laser beam jitter mitigation, a
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receding horizon adaptive using rls updates made no assumption about the number of inputs

or outputs. The scheme used high pass weighting for robustness but was only applied on

single variable system.

In this work, the receding horizon control and another algorithm based upon a decou-

pling approach is used to compensate for unknown disturbances. Experimental results show

the efficiency of both approaches for time-varying and stochastic disturbances. Both meth-

ods are shown to work for the flexible AMBS. Furthermore, similarities and differences are

highlighted where appropriate.

7.2 Problem Setup

ΣP (z)

Wd(z)

u y

w

Figure 7.1: Set-up of the unknown disturbance problem

Figure 7.1 shows the set-up for the adaptive control problem. The objective is to find a

control input u such that the disturbance in the output y is minimized. If the disturbance

was known and the plant was invertible then the control u = P−1(z)d would exactly cancel

the disturbance. Many plants, such as the magnetic bearing considered in this dissertation,

are non-minimum phase and unstable so a naive inversion technique is not possible. Also,

the assumption that the disturbance is known is usually not a realistic one.

A particulary attractive solution is based on the internal model controller and shown in

Figure 7.2. A feedback controller C(z) is used to stabilize the plant and provide nominal

performance. The disturbance w is estimated using an open-loop observer, ŵ = G(z)− Ĝ(z)

where Ĝ(z) = P (z)C(z)
1+P (z)C(z)

. The estimated disturbance ŵ is then used in the adaptive inverse

control formulation to find a FIR filter Q(z) which implicitly identifies the disturbance model.

The adaptive filter can be updated using LMS or RLS type adaption algorithms.
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Figure 7.2: The SISO adaptive disturbance rejection control

For the magnetic bearing system under consideration, this SISO type adaptive algorithm

cannot be used. The main difficulty comes from the fact that matrices do not commute. In

particular,

Q(z)Ĝ(z) 6= Ĝ(z)Q(z) (7.1)

so if there is coupling between the inputs and outputs of a system then the traditional

Adaptive Inverse disturbance rejection scheme will not work.

7.3 Receding Horizon Adaptive Control

The finite horizon linear quadratic adaptive controller considers a linear plant with output

disturbance given by eqn. 7.2

xk+1 = Axk +Buk

ek = Cxk + wk

(7.2)

The system matrices are assumed to be known, by an initial system identification exper-
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iment. The output disturbance is, however, assumed to be unknown. The objective of the

adaptive controller is to find the optimal input uk that minimize the following cost (eqn.

7.3).

J = (
h∑
k=1

eTk ek + uTkRuk) + xThQfxh (7.3)

The first term in the cost minimizes the effect of the output disturbance on the output

and the second term punishes the input so that it does not have high gain. The last term,

the terminal cost, assures stability of the optimal control sequence.

Indeed the optimal control problem given by eqn, 7.2 and 7.3 is the finite horizon linear

quadratic tracking problem, whose solution is known to be a linear feedback control law

given by eqn 7.4.

uk = −Kxxk −Kww (7.4)

Since the states are not measurable an open loop observer is used and the optimal control

law is input into the plant to give

xk+1 = (A−BKx)xk −BKww

uk = −Kxxk −Kww
(7.5)

The controller now consists of two parts: 1) The portion, which along with the open loop

observer, contributed by state feedback 2) The portion due to the h future values of the

disturbance. Figure 7.3 shows a block diagram of the optimal controller.

A−BK B

−K I

uKww

Figure 7.3: The U(z) system of the controller, where the state-feedback portion is embedded

in the open-loop observer and the portion due to the future disturbance value are an input

to the system
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7.3.1 Computing Optimal Gains

Expanding eqn. 7.2, the error sequence can be written as

e = Oxxk +Hxu + w (7.6)

where

e =


ek+1

ek+2

...

ek+h

 (7.7)

and the sequences u and w are defined similarly. The matrices Ox and Hx are given by

Ox =


C

CA
...

CAh

 (7.8)

Hx =


CB 0 . . . 0

CAB CB . . . 0
...

...
...

...

CAh−1B CAh−2B . . . CB

 (7.9)

The terminal cost can also be propagated, the following relationships can be verified

Q
1
2
f xh = Q

1
2
fA

hxk +Hfu (7.10)

Hf =
[
CAh−1B CAh−2B . . . CB

]
(7.11)

The overall cost can then be given by

J = eTe + uTdiag(R)u + xThQfxh (7.12)
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Then the optimal control sequence can be found by taking the derivative and setting it

0.

dJ

du
=
deT

du
e+ diag(R)u+

dxTh
du

xh (7.13)

Finally, the optimal control input is given by

u = (HT
xHx +HT

f Hf )
−1[(HT

x Ox +HT
f A

h)xk +HT
x w] (7.14)

This is the desired state-feedback control law and the optimal gains of the unknown

disturbance input.

7.3.2 Adaptive Prediction

The control law is non-casual since it depends on future disturbances which is not known.

To overcome this an adaptive prediction filter for the control Kww is used. To set this up,

note that

Kww = zhKwwp (7.15)

Now, F (z) = Kwwp is casual FIR filter and the prediction error can be defined as

e = Q(z)z−h − F (z) (7.16)

Then the Q(z) can be adapted such that the prediction error is minimized. So the adaptive

filter attempts to predict the non-causal control law by using the past data. The overall

receding horizon controller is shown in figure 7.4

7.3.3 Multichannel Lattice RLS

In using the receding horizon adaptive controller for multivariable systems, a multichannel

adaptive fir scheme is needed; instead of the typical single input single output. The set-up

is similar single variable FIR adaption except the regressors can have multiple components.

If the input x is defined as
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Figure 7.4: The overall Receding Horizon Adaptive Control consisting of an observer for w

and adaptive prediction for the non-causal part

x(t) =
[
x1(t) x2(t) ... xm(t)

]
(7.17)

where m is the number of inputs, for the magnetic bearing system m = 4. Similarly, the

outputs

y(t) =
[
y1(t) y2(t) ... ym(t)

]
(7.18)

Although both the inputs and outputs do not need to have the same dimensions, we assume

they do since this is the case for the magnetic bearing system. The regressors are FIR and

composed of N delayed versions of the inputs

X(t) =
[
x(t) x(t− 1) x(t− 2) ... x(t−N)

]
(7.19)

Then the the goal is find the weights W such that the following error is minimized

e(t) = y(t)−X(t)W (7.20)
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The weights are a Nxm matrix. In multichannel adaptive filtering, these weights are adjusted

online such that the error is minimized.

RLS adaption is attractive because of its rapid convergence when compared to LMS

algorithms. In RLS adaption, the following cost function is considered

J =
n∑
t=1

λt−neT (t)e(t) (7.21)

The standard RLS algorithm based on the matrix inversion lemma can be used to update

the weights; but it is well known that this algorithm is numerically unstable which can cause

the algorithm to diverge in certain applications. The QR algorithm is more numerically

robust than the traditional RLS. Eqn. 7.22 briefly describes the Givens QR algorithm.

Q(θ)

R(t− 1)

x(t)

W =

R(t)

0

W = Q(θ)

yq(t− 1)

y(t)

 =

yq(t)

eq(t)

 (7.22)

At each instant of time, a series of givens rotations are used to annihilate the incoming

regressors to form a triangular matrix R. The same series of rotations are also applied to

the output sequence y(t) and the previous rotated output sequence yq(t−1) to form the new

rotated sequence yq(t) and the rotated error eq(t). In some applications, only the error is of

concern and this completes the algorithm. However, if the weights are explicitly necessary

as would be the case for adaptive control applications, then an additional backsolve step is

necessary.

W = R(t)−1yq(t) (7.23)

Figure 7.5 describes the QR algorithm pictorially.

If the rotation angles are given, then they can be used to rotate the incoming output data

into the error. The hybrid QR and lattice algorithm find these angles by taking advantage of

the shift structure of the input data sequence, instead of computing explicit givens rotations.

Figure 7.6 gives the overall structure of the lattice algorithm. The key idea is that a QR

algorithm parameters can be shown to be equivalent to a normalized lattice. Moreover, the

reflection coefficients can be obtained from the forward prediction problem; while, the QR
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Figure 7.5: The McWhirter structure of the QR algorithm. The rotations obtained from

the regressors are used on the rotated output data and the incoming output to produce the

error.

given angles can be obtained from the backward prediction errors. The taps of the lattice

structure are also the rotated output vector.
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Figure 7.6: The overall structure of the lattice algorthm giving the forward and backward

normalized prediction errors with the taps as the rotated output vector.

Other than being numerically stable, by taking advantage of the shift structure of the

input regressors the lattice algorithms are of O(N) complexity when compared to O(N2)

for QR and standard RLS. Another advantage is that lattice this lattice algorithm is order

recursive. So it will not only give the N th order optimal FIR filter but also all orders less

than N for no extra computational burden.
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7.3.4 Results

Experimental results were conducted on the magnetic bearing system. Three different test

cases were ran:

• The spindle was spun up from purely levitating to 350 Hz both with and without the

adaptive controller

• White noise filtered through a 4th order low pass butterworth filter and then injected

at the output was used to simulate broadband noise and then tested with and without

the adaptive controller

• the broadband noise was also injected during spin up to see if the adaptive controller

can handle both broadband and narrow band spin up

It is also worth noting the 4x4 multichannel lattice adaptive filter of order 3 was used for

the results in this section.
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Figure 7.7: the position of one of the axis during spin up to 350 Hz and then back down.

The first 5 seconds the rotor is simply levitating.

Figure 7.7 shows the position of one of the axis during spin-up with and without the

adaptive controller. The spindle was purely levitating for the first 8 seconds, then the rotor
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began to spin up to 350 Hz, finally at 30 seconds it was spun down to rest. The time domain

shows the adaptive controller is able to minimize the variance of the output even during spin

up transients. Furthermore the position error is less than 2µm when the adaptive controller

is used.

7.3.4.1 Just Levitating

During the purely levitating period from 0 to 8 seconds, as shown in figure 7.8, the adaptive

controller is able to attenuate the error about 10 dB below 150 Hz. Although the spectrum

does slight raise in the higher frequency region.

100 200 300 400 500 600 700 800 900 1000 1100
−160

−140

−120

−100

−80

−60

−40

−20

0
Just Levitating

Freq (Hz)

M
ag

 (
dB

)

 

 
No Adaptive
Adaptive

Figure 7.8: The effect of the adaptive control during only levitation.
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7.3.4.2 Spinning at 350 Hz

Figure 7.9 shows the power spectrum of the position error while the rotor is spinning at 350

Hz. A 40 dB reduction in the error at the spin frequency is seen. Equally important to

note is that the adaptive controller has no knowledge about the frequency (ie. it does not

use encoders or any form of frequency measurement) but is still able to attenuate the spin

frequency.
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Figure 7.9: While spinning at 350 Hz the adaptive controller is able to attenuate the position

error by 40 dB.
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7.3.4.3 Spin up Transient

Figure 7.10 shows the spectrogram of the position during spinup. The adaptive controller

is able to attenuate the position error by 40 dB even during transients. Once again the

adaptive controller has no knowledge about the frequency, and is purely adapting to the

estimated disturbance signal.

Figure 7.10: During transient spin-up the adaptive controller is able to reduce the position

error by 40 dB.
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7.3.4.4 Broadband injection

Figure 7.11 shows the position error while a broadband disturbance was injected at the

output to simulate broadband disturbance. The adaptive controller was turned on and off

at 12 and 34 seconds, to visualize the transient response. The adaptive controller reduces

the position error to less than 2µm.
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Figure 7.11: The position error when broadband disturbance is injected. At 12 and 34

seconds the adaptive controller is turned off.

Figure 7.12 shows the power spectrum of the position error with and without the adaptive

controller. The adaptive controller is able to reduce the error in the low frequency region

where the disturbance is but amplifies in the higher frequency region.
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Figure 7.12: Power spectrum of the error with and without the adaptive controller during

broadband disturbance injection.

7.3.4.5 Broadband injection During Spin up

In this experiment the rotor was spun up to 350 Hz while a broadband disturbance was

also injected. Figure 7.13 shows the time domain results. Clearly, the adaptive controller is

minimizing the output position.

Figure 7.14 shows the spectrogram of the position error during spin up. The adaptive

controller attenuates the low frequency broadband disturbance while also rejecting the time

varying spin frequency.
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Figure 7.13: Plot of the position error for one of the axis during spin-up with disturbance

injection.

Figure 7.14: Spectrogram of the position during spin up with broadband disturbance injec-

tion.
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7.4 Receding Horizon as Delayed Inverse

Figure 7.15 shows the maximum singular value of

e = z−hI − U(z)F (z)G(z) (7.24)

the interpretation is that in the low frequency region where the error is small the adaptive

controller is a delayed inverse of the closed loop system. Using high pass weightings increases

robustness but at the the cost of a performance. This is the main idea behind the decoupling

adaptive control design in the next section which allows for the inversion to shaped.
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Figure 7.15: maximum singular value of the receding horizon delayed inverse error.
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7.5 Decoupling Adaptive Disturbance Rejection

Σ C(z) P (z) Σ

Ĝ(z) Σ

Q(z)G−1
δ (z)

Q(z) z−d

Σ
−

−

ym

G w

ys

Figure 7.16: The H∞ adaptive control diagram.

The Decoupling adaptive control scheme explicitly constructs a delayed inverse offline

and then uses an adaptive prediction filter to compensate for the delay. The overall control

diagram is shown in figure 7.16.

7.5.1 Inverse Design

Ĝ(z)

Wr(z) ∆

Σ

ΣĜ(z)

Q(z)

−

y

u

Figure 7.17: The typical internal model controller.
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To motivate the Decoupling approach it is useful to consider the standard internal model

controller shown in figure 7.17. The stability condition given in eqn. 7.25 can be derived by

the small gain theorem.

||Wr(z)Ĝ(z)Q(z)||∞ < 1 (7.25)

Also the sensitivity can be shown to be

S(z) = I −G(z)Q(z) (7.26)

From the sensitivity it is clear for disturbance rejection the controller Q(z) needs to invert

the plant. However, for robustness the controller needs to have small gain in the region Wr(z)

is greater than 1. Therefore, the controller needs to invert the plant in the low frequency

region of disturbance rejection but needs to have low gain in the high frequency region where

the plant is now know as well.

Both of these criteria, can be cast into the following problem eqn 7.27

min
F (z)∈RH∞

∥∥∥∥∥∥[z−dI −G(z)G−1
δ (z)]W1(z)r(t)

W2(z)u(t)

∥∥∥∥∥∥
∞

(7.27)

and is shown in figure 7.18 There are three tuning knobs in this formulation: 1) the delay

Σ LP

HP

G(z)G−1
δ (z)

z−d

r
e

u

Figure 7.18: The H∞ problem setup.

length d 2) the lowpass weight on the error 3) the high pass weight on the control input.

Increasing the delay length gives a better inversion, but the adaptive prediction filter needs

to be able to compensate for it. The lowpass and high pass weighting filters shape the

inversion so it inverts in the low frequency region and has low gain in the high frequency

region.
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7.5.2 Adaptive Prediction

In the low frequency region where the inversion is good

G(z)G−1
δ (z) ≈ z−dI (7.28)

then

y ≈ (I − z−dQ(z))Wdw (7.29)

and the plant is essentially decoupled. An adaptive prediction for the disturbance d steps

ahead can be used to compensate for the delayed inverse design.

7.5.3 Results

7.5.3.1 Spinning at 350 Hz

The experiments are similar to that of the receding horizon adaptive controller. The adaptive

control order is 3 and the inversion horizon length is 10. Figure 7.19 shows the position error

while spinning at 350 Hz, the error is reduced by 40 dB.
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Figure 7.19: The adaptive controller stead-state error while spinning at 350 Hz.
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7.5.3.2 Spin Up

Figure 7.20 shows the spectrogram of the position error during spin up. The adaptive

controller is able to attenuate the error by 40 dB.

Figure 7.20: Spectrogram of the position error during spin-up.

7.5.3.3 Broadband Disturbance Rejection

Figure 7.21 shows the power spectrum when a broadband disturbance is injected into the

output.
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Figure 7.21: Power Spectrum of the position error with the broadband output disturbance

injected.
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7.5.4 Analysis of Decoupling Approach

Figure 7.22 shows the maximum singular value of

e = z−dI −G(z)G−1
δ (z) (7.30)

which from the previous section is an indication of the the sensitivity for the overall

system. In the low frequency region, e is small and adequate disturbance attenuation can

be expected.
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Figure 7.22: Delayed inversion matching error for both the aggressive and robust inversion.

Figure 7.23 shows the maximum singular value of

T (z)Wr(z) = G−1
δ G(z)Wr(z) (7.31)

which gives an indication of the robustness of the system. Indeed choosing the proper weights

is essential for a robust adaptive controller design. Lastly figure 7.24 shows the gains of the

aggressive inversion and the robust inversion. The robust inversion rolls off at high frequency

and does not amplify high frequency noise and plant/model mismatch.
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Figure 7.23: Robustness criteria for an aggressive high performance inversion and a robust

inversion.
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Figure 7.24: The gain of both the aggressive and robust inversion.
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CHAPTER 8

Boost Rectifier for THD Minimization

8.1 Introduction

Rectification is concerned with converting AC power into DC. However, often rectification

techniques introduce unwanted current harmonics in the utility. It is well known that these

harmonics cause voltage distortion, heating, noise, and reduce the capability of the line to

provide energy [SSC03]. Thus, it is no surprise that utility companies enforce standards on

the levels of harmonics [GCP03]. Because of this fact, there has been plenty of research

interest in rectifiers from both a circuit design and control perspective.

Power factor correction uses power transistors to shape the input current in order to

achieve unity power factor. By controlling the switching of the transistors, a properly de-

signed power factor scheme can achieve close to unity power factor. In this work, a typical

boost rectifier is used to showcase the control algorithm. While it is true that different topol-

ogy has a great impact on the power factor, the interest in this work is the control algorithm.

The goal of the controller is threefold: 1) make the current in phase with the input voltage

2) reduce the harmonics in the input current 3) regulate the output DC voltage.

To meet the aforementioned goals, researchers have studied many different strategies.

The typical strategy is a high bandwidth current loop and a low bandwidth voltage loop

based on simplified models [WJ97]. Aside from linear controllers, in [MDM08] a sliding

mode controller was applied to a linear model obtained from feedback linearization for a

single phase active filter. Additionally, in [PRC09] a predictive controller based on a model

of the current was used.

For a DC/DC converter, it is quite easy to design a controller to achieve zero steady state
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Figure 8.1: Schematic of the Boost Rectifier

error using a PI controller; however, for a rectifier, the control design is more challenging

because the current and voltage are AC quantities. In [FY01], a harmonic controller based

an internal model for a sinusoid was used to track the first fundamental, but this approach

can be difficult to implement in continuous time. Therefore in [MRA05] a DQ transformation

is proposed to convert the AC variables into DC quantities so a well-designed Proportional-

Integral controller can reduce the errors of the fundamental component to zero in steady

state.

A challenging aspect of the rectifier is that it is a nonlinear system, and not amendable to

the abundant linear control techniques. Additionally, the point to linearize about is not well

defined (the current and voltage are sinusoids). In [SSP03], the linearization points of the

AC quantities are chosen to be the RMS value, but this is not the true equilibrium point. In

this paper, we expand on [MRA05] and propose to linearize the system in the DQ rotating

frame where all the AC quantities become DC variables, so that linear control techniques

can be readily applied.

Although PI control in the DQ rotating frame guarantees zero steady state error, it does

not compensate for the harmonics other than fundamental. In order to have compensation

for other harmonics, a repetitive control, based on internal model principle [FW76b], is

applied to the rectifier. In [ZW03], a repetitive controller is applied to a three phase rectifier

using an internal dead-beat controller which makes the closed loop system look like a three

siso delay systems. This approach is however sensitive to plant mismatch and start-up since

it divides by the output voltage. Therefore in this paper, using the linear model in the DQ
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coordinates, a simple multi-variable repetitive controller is added on to compensate for the

harmonics.

8.2 Modelling and System ID

Shown in figure 8.1 is the boost rectifier. The boost rectifier consists of 4 IGBTs which form

a full bridge, an input inductor, and an output capacitor. Simply, the rectifier converts the

AC source voltage (usually the grid) into a DC output voltage. Not to be overlooked is the

equivalent series resistance (ESR) of the inductor. As we will be shown in section 8.3, this

resistance determines the boost capabilities of the rectifier. The controller must adjust the

duty cycle of the transistors to ”shape” the current while regulating the output DC voltage.

The power factor (PF) is the ratio of the actual power into the rectifier over the apparent

power. For a perfectly sinusoidal input voltage, PC is as shown in Eq. 8.1 [EM07]

PF =
cosφ√

1 + THD2
(8.1)

where

THD =

√∑
Pharmonics

Pfundmentals
(8.2)

In order to achieve unity power factor, the current harmonics must be reduced and input

current must be in phase with the input voltage.

8.2.1 Sinusoidal PWM and Sampling Synchronization

For the boost rectifier topology, transistors on the same leg cannot be closed at the same

time in order to avoid a short circuit. For this paper, we use a simple sinusoidal PWM, as

shown in Figure 8.2, to switch the transistors. A reference triangular signal is compared to
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the control signal input (or the duty cycle) which outputs a boolean to transistors S1A and

S2B and its complement to S1B and S2A. Clearly, all four transistors change state at the

same time; therefore, proper dead time is necessary to avoid shorting the circuit during the

switching transients.

Along the same lines, the switching done by the PWM modulator will create high fre-

quency ripples in the circuit. According to the Nyquist sampling theorem, the sampling rate

should be at a frequency such that the spectrum of the signal is negligible at the Nyquist fre-

quency. This would require a sampling frequency at least an order of magnitude higher than

the switching frequency. Unfortunately since the hardware capability limits the sampling

frequency from being too fast, the Nyquist sampling theorem must be violated. However, if

the sampling processes are synchronized with the PWM carrier signal properly, the effect of

aliasing can be attenuated and the sampled data will be in close proximity to the average

value of the actual signal. These issues are discussed in more detail in [BM06] .

8.2.2 State Space Model and System Identification

In order to develop model-based controllers, a mathematical model of the boost rectifier is

needed. Assuming ideal switching and applying KCL and KVL, the model shown in figure

8.3 can be obtained where s is 1 or 0 for the IGBTs in the circuit. İL
V̇C

 =

VsL − (s1A − s2A)VC
L
− ResrIL

L

− Vc
RLC

+ (s1A − s2A) IL
C

 (8.3)

The difficulty with the given model is that the switching is binary, so by taking the

average value of the switching over one PWM cycle the average model of the boost rectifier,

is obtained in Eqn. 8.4.

 İL
V̇C

 =

−Resr

L
−D

L

D
C

− 1
RLC

IL
VC

+

VsL
0

 (8.4)

Now Equation 8.4 is a continuous, bilinear model. Also since the PWM frequency and

sampling are synchronized, the model is valid up to the PWM frequency. It is important
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to notice that for a constant duty cycle, the model is linear; therefore, by performing a

frequency sweep with only Vs varying the model can be validated. Figures 8.3 and 8.4 show

the frequency response of the actual system against the linear state space model (parameters

of the circuit are given in Table 8.1) at a duty cycle of .3 and .5, respectively; other duty

cycles showed similar good behavior. The frequency response comparison validated the

average bilinear model for the rectifier and allowed it to be used for control design.
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Figure 8.3: Bode Plot of Boost Rectifier with .3 Duty
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Figure 8.4: Bode Plot of Boost Rectifier with .5 Duty

8.3 DQ Linearized Model

In order to apply linear control design techniques, the model needs to be linearized and

equilibrium points chosen. For the output DC voltage Vc, it is straight forward to choose

the desired output DC voltage as the equilibrium point. As for the input voltage VAC, it

varies from positive peak to negative peak which makes it difficult to choose a reasonable

equilibrium point. These issues can be circumnavigated by linearizing the model in the DQ

coordinates.

To apply a DQ transformation to single phase converters, two orthogonal quantities are

needed. In three phase power systems, the original components are first transformed to the

stationary αβ frame where they are in pairs and orthogonal. Then the DQ transformation

matrix in Eqn 8.5 is applied to further transform the orthogonal components into the syn-

chronous DQ rotating frame. A similar procedure as outlined in [ZCS02] is done for single

phase inverters, where the quantities are delayed 90 degrees into αβ coordinates, then the

transformation (Eqn. 8.5) is applied to the orthogonal coordinates.
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Figure 8.5: Diagram of the Single Phase DQ Transformation for the Boost Rectifier

Id
Iq

 =

 cos(ωt) sin(ωt)

− sin(ωt) cos(ωt)

Iα
Iβ

 (8.5)

8.3.1 DQ Model for Boost Rectifier

A similar DQ transformation as in the inverter case can be applied to single phase boost

rectifier. The scheme is graphically shown in Figure 8.5. The current, IL, is delayed by 90

degrees to form two orthogonal quantities. Since the capacitor voltage is to be regulated at

DC, it is assumed to be the same in both the α and β coordinates. With this assumption,

there are two orthogonal quantities, and the rectifier model can be written as in Eqn. 8.6

 ˙IL,α

˙IL,β

 = −

IL,α
IL,β

 Resr

L
+

Vα
Vβ

 1

L
−

Dα

Dβ

 Vc
L

V̇c =
1

2C

[
Dα Dβ

]IL,α
IL,β

− Vc
RLC

(8.6)

Now applying the DQ transformation and using the product rule, the model in the

DQ coordinates can be obtained (Equation 8.7). The DQ model is bilinear in both the

current and voltage equations, however the sinusoidal quantities are constant which makes

the linearization points more intuitive.
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 ˙IL,d

˙IL,q

 =

−Resr

L
ω

−ω −Resr

L

IL,d
IL,q

−
Dd

Dq

 Vc
L

+

Vd
Vq

 1

L

V̇c =
1

2C

[
Dd Dq

]IL,d
IL,q

− Vc
RLC

(8.7)

8.3.2 Equilibrium Points and Linearization

By setting the derivatives in Eqn. 8.7 to zero, the equilibrium points can be found. Moreover,

the equilibrium points give the boost condition of the boost rectifier. The points chosen to

linearize about are the desired output voltage (V̄c), the given input source voltage (V̄d, V̄q =

0), and the desired current in the quadrature coordinate (Iq = 0). This gives three equations

and three unknowns, which can be solved for the equilibrium points. Combining the three

equations gives Eqn. 8.8.

V̄dD
2
d − V̄cDd −

2ResrV̄c
R

= 0 (8.8)

Equation 8.8 is a second order polynomial for Dd which is restricted to be real. Enforcing

the realness of Dd, gives the boost condition shown in Eqn. 8.9. This limits how much the

output can be boosted up if the Resr is known. Also, if Resr is considred 0, it is apparent

that the output can be boosted as high as desired.

V̄c
2
< V̄d

2
[
E

8Resr

] (8.9)

Finally, the linearized model, shown in Equation 8.10, can be derived by evaluating the

derivatives of the states at the equilibrium point.


˙δIL,d

˙δIL,q

V̇c

 =


−Resr

L
ω − D̄d

L

−ω −Resr

L
− D̄d

L

D̄d

2C

D̄q

2C
− 1
RLC



δIL,d

δIL,q

Vc

+


− V̄c

L
0

0 − V̄c
L

¯IL,d

2C

¯IL,q

2C


δDd

δDq

 (8.10)
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Figure 8.6: Block Diagram of the Plug-in Repetitive Control

8.4 PI, Repetitive, and Resonator Control

In this section three controllers will be described: 1) The traditional PI controller 2) add-on

repetitive controller 3) add-on resonator controller. In the DQ coordinates a PI controller

can track the fundamental frequency, but is not able to reject unwanted harmonics. Repet-

itive control is able rejection harmonics, while the resonator controller can target specific

harmonics with possible greater attenuation.

8.4.1 PI Control

A typical control strategy is PI in the fixed frame (without the DQ transformation). This

controller can behave well if it is properly tuned. Since it is well-known that a PI cannot

perfectly track sinusoidal references, the DQ coordinates are attractive since all sinusoidal

quantities become a constant which a PI can perfectly track. Therefore, first a PI controller

was designed in the DQ coordinates by discretizing the continuous linear DQ model. To speed

up the system, a LQR state feedback controller was used, then two diagonal PI controllers

were wrapped around as shown in Figure 3.1.

8.4.2 Repetitive Add-On

When the switch in Figure 8.6 is closed, the repetitive controller is added on to the existing

PI control. Repetitive control relies on an accurate model to track or reject periodic signals.

In order to design a repetitive controller, filters F (z) and Q(z) need to be determined. It is

known that for the add on repetitive controller to be stable the inequality in Eqn. 8.11 is a
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sufficient condition [Lon10b].

‖(I − F (z)H(z))Q(z)‖∞ < 1 (8.11)

In Eqn. 8.11, H(z) is the nominal closed-loop transfer function from reference input

to output with the PI controller. From the stability equation it is easy to see that the

inequality is satisfied when F (z) = H−1(z). In order to obtain the inverse of the closed loop

system, three assumptions are made: 1) the system is minimum phase 2) the relative degree

is the same for each sub-system 3)the system is square. Luckily, all of these assumptions are

satisfied for the MIMO state space model, Eqn 8.10, for the rectifier in the DQ coordinates.

Given these assumptions, a simple inversion can be obtained as follows. First the closed

loop discretized system can be written as in Eqn. 8.12

x(k + 1) = Aclx(k) +Bclu(k)

y(k) = Cclx(k)
(8.12)

Using the state-space model, the d step look-ahead (d is the relative degree of the system)

can be written as in Eqn 8.13

x(k + 1) = Aclx(k) +Bclu(k)

y(k + d) = CclA
d
clx(k) + CclA

d−1
cl Bclu(k)

(8.13)

Defining C̃ = CclA
d
cl and D̃ = CclA

d−1
cl Bcl, the inverse of the look-ahead system in state

space form is as shown in Eqn 8.14. The look-ahead requirement can be emulated by using

the appropriate delays in the internal model as is done in the standard SISO case [TTC89b].

x(k + 1) = (Acl −BclD̃
−1C̃)x(k) + D̃y(k + d)

u(k) = D̃−1C̃x(k) + D̃−1y(k + d)
(8.14)

Ideally, the inverse guarantees that the inequality in Eqn 8.11 is satisfied. However, at

high frequencies, the model is usually not accurate, which can violate the inequality. The Q
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filter, which is 1 at low frequencies and near 0 at high frequencies, can provide robustness

to this mismatch. For the rectifier, the Q filter is chosen as shown in Eqn 8.15. Q(z) is a

noncasual and diagonal 2 by 2 system or order Nq.

Q(z) =

q(z) 0

0 q(z)


q(z) = (.25z + .5 + .25z−1)Nq

(8.15)

Having described the design of F (z) and Q(z), it is important to note they are both

noncasual filters of order d and Nq respectively. N is defined to be the number of samples in

one period of the reference signal and it determines the number of delays in the repetitive

control structure. The noncasual filters can be mimicked by borrowing from the overall

delay. Equations 8.16 and 8.17 show the number of delays needed in the repetitive control

structure (Figure 8.6).

N1 = N − d−Nq (8.16)

N2 = d (8.17)

8.4.3 Resonator Add-on

In order to generate an internal model at the desired frequencies, a filter L(z) is designed so

to satisfy

L(z−1) =


L = 1 if ω = ωk=1,2,...p

L ≈ 0 if ω 6= ωk

(8.18)

where the filter reaches unity at p number of frequencies and is approximately zero

elsewhere. When placed in a positive feedback loop, the internal model generators infinite

control action at the desired frequencies while producing none at the others. The design of L
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filter can be reduced to an All Pass design problem. This can be see by equation 8.19, where

A(z) is a high order all pass filter. Therefore, by designing an all pass filter with correct

phase at the prescribed frequency a suitable L(z−1) filter can be obtained

L(z) =
1

2
(1− A(z)) (8.19)

To design the All pass filter, the approach described in [PT97] is used. It can be readily

verified that phase of an all pass filter is given by

θA = −2Mω + 2 arctan(

∑2M
k=1 ak sin(kω)

1 +
∑2M

k=1 ak cos(kω)
) (8.20)

given a phase response at 2M points then eqn 8.20 can be cast as linear system

tan(βi) =
2M∑
k=1

[sin(kωi)− tan(βi) cos(kω)]ak (8.21)

where i ranges from 1 to 2M .

The basic idea is seen from 8.19. By designing an all pass filter that has 180 degrees of

phase at the peak frequencies and +/- 90 degrees of phase at the peak bandwidths, equation

8.19 will produce multiple peak filter. When the All pass filter has 180 degrees of phase

then equation 8.19 will be one as desired. Moreover by setting the phase to be 90 degrees at

wi − BW
2

the -3 dB point is set. This highlights one of the benefits of this design approach,

the bandwidth and peak locations can be set independently. Another advantage of using

this linear system approach for the design of L(z) filter is the condition number determines

if placement of the peaks is possible. Put in other words, placing peaks too close together

will make the linear system very ill conditioned.

A sufficient condition for the stability of the resonator is given by equation 8.22. The

inversion used in the repetitive control design will not work in this case since L(z−1) has

relative order zero and is therefore unable to absorb any look aheads. Using the fact that

L(z−1) is unity at the interested frequencies and nearly zero elsewhere, the inequality 8.22

can be approximated by an interpolation constraint (equation 8.23). Assuming F (z) =

A0 + A1z
−1...ANz

−N , namely has FIR structure, the interpolation can be casted as a least

squares problem (equation 8.25). The FIR inversion filter is interpolated at M points which
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Figure 8.7: Block Diagram of the Plug-in Resonator

are at and around the interested frequencies. Since the solution to the least squares is

restricted to be real, it is a constrained phase least squares problem which the solution

is given by 8.26. Design of the inverse filter using the method describes is an iterative

process with the order of the filter and interpolation points as tuning knobs. Once a solution

is obtained, it can be substituted into the inequality 8.22 to verify it meets the stability

condition.

‖(I − F (z)H(z))L(z)‖∞ < 1 (8.22)

F (ejωi) = H(ejωi)−1 (8.23)

ωi = ω1...ωp (8.24)


I e−jω1I e−2jω1I... e−Njω1I

. . . .

. . . .

I e−jωM I e−2jωM I... e−NjωM I




A0

.

.

AN

 =


H(ejω1)−1

.

.

H(e−jωM )−1

 (8.25)

Afir = Re(A∗A)−1Re(A∗H(ejω)) (8.26)
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Figure 8.8: Outer PI Loop for Voltage Control

8.4.4 Outer Voltage Loop

To regulate the capacitor voltage, an outer voltage loop is wrapped around the current loop.

The error is formed as shown in Figure 8.8 and fed into a PI controller, which gives the

Id reference (Iq reference is 0) to the current loop. The main design criterion is that the

bandwidth of the outer PI loop must be smaller than the current loop, or else unwanted

distortion of the current may result. Many authors use the same outer voltage loop, so its

design will not be discussed any further. Except to say that using the linear DQ model 8.7

another LTI controller can be designed for the outer loop if necessary.

8.5 Experimental Results

8.5.1 Experiment Setup

The schematic in figure 8.1 was the hardware set up. A ST IGBT module and an optocoupler

for isolation was used for the IGBT bridge. The input sinusoidal voltage was created using

a TI OPA541 power amp, so a simple amplifier circuit can mimic the power source. The

inductor current was measured across a 1Ω shunt resistor, while the capacitor voltage was

measured using a divider circuit. All signals were fed into a NI 7833 R card running on a

PC target, which has a FPGA that handled PWM, synchronization, sampling, and delay.

The PC target communicated with the FPGA and ran all the control algorithms. National

Instrument’s Labview makes this FPGA and PC target communication relatively easy. Table

8.1 shows the values of the parameters used for the experiment. Also, the pwm (sampling)

frequency was chosen to be 10 KHz.
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Table 8.1: Experimental Parameters

Parameter Value

L 10 mH

C 6 mF

R 75 Ω

Vin 12 VAC

8.5.2 Experimental Results

The desired output voltage was set at 15 V and the input frequency at 50 Hz. Three different

controllers were compared: 1) a PI controller in the DQ coordinates 2) a repetitive add-on

was added 3) a resonator was added on.

The rest of this section shows results first the current and duty cycle for the three con-

trollers. Then the output voltage regulation for the each of controller. Followed by a har-

monics analysis of the input current and the phase of the current wrt the input voltage for

each of controller.

8.5.2.1 DQ Current and Duty

As shown in figure 8.9, the repetitive and resonator add-on is more aggressive than the PI

controller. The duty cycle plot also shows a diode non-linearity at the zero crossing in the

circuit which the controller attempts to compensate for. Repetitive controller had a Q filter

of order two; lower order Q filters were shown to be unstable since the controller attempts

to over correct for the non-linearity.
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Figure 8.9: Duty Cycle for the Three Controllers

The advantage of the add-on repetitive is clearly seen in the DQ currents. As shown in

figure 8.10, the repetitive controller reduces the variation in both the D and Q currents. The

nonlinearities in the circuit create harmonics which a simple PI controller is not able to fully

reject.
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Figure 8.10: Current in the DQ Coordinates for PI and Add-on Repetitive

8.5.2.2 Output Voltage

The output voltage is shown in Figure 8.11. From 0 to 1 seconds, an open loop sinusoidal duty

cycle is fed in; afterwards, the controller is turned on. The settling time for all controllers

are the similar since the same PI bandwidth was chosen for the outer loop, and was chosen

to be long so the controller does not interfere with the current loop controller.
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Figure 8.11: Output Voltage for the Three Controllers

8.5.2.3 Harmonics

As stated in Eqn 8.1, the power factor is dependant on both the phase and THD of the input

current. Shown in Figure 8.12 is the the harmonic content of the current using the three

different controllers. The fundamental is tracked well by all controllers, which indicates the

current amplitude is approximately equal. This is expected because of the outer PI voltage

loop. The L(z−1) was designed to have peaks at 50 Hz, 150 Hz, 200 Hz, 250 Hz, 300 Hz,

and 400 Hz.

From Table 8.3, it is clear that the add-on repetitive controller is able to significantly

reduce the harmonics. PI in the DQ frame reduces harmonics by 2 dB. This improvement

pales in comparison to the add on repetitive, which attenuates harmonics over 20 dB, showing

that PI alone may not be able to satisfactorily meet harmonic requirements, even in the DQ

coordinates.
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Figure 8.12: Harmonic Content for the Three Controllers

Table 8.2: THD in DB for the Three Controllers

Controller THD (dB)

DQ PI -31

DQ Rep -51

DQ L -56

Table 8.3: Phase for the Three Controllers

Controller Phase (deg)

DQ PI .648

DQ Rep .646

DQ L .648
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8.6 Conclusion

In this chapter, we have two main results for the standard single phase boost rectifier: 1)

The formulation of a linear model in the DQ domain suitable for controller design 2) A

MIMO repetitive add-on controller was designed using the linear model to reduce harmonics

not compensated for by a nominal controller. In the process of deriving the linear model,

analysis of the equilibrium points gave the boost condition for the rectifier. Experimental

results proved the effectiveness of using the linear model for controller design and of the

repetitive controller for reducing harmonics. The methodology can be used for designing

controllers that operate at near unity power factor.

Future work can include analyzing the controller design from a robust point of view using

the linear model. Also using the model to develop other types of linear controllers.
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CHAPTER 9

Conclusions and Future Directions

This thesis presents an experimental investigation for an active magnetic bearing system

(AMBS) specifically for cutting applications. A high order ARX identification method con-

ducted within stabilized feedback loops followed by balanced truncation model reduction

was efficient and effective in obtaining the open loop unstable multivariable AMBS dynamic

model, which agrees well with the system’s frequency response data. Also the severe flexible

nature of the spindle is seen in the frequency response both while stationary and spinning,

which facilitates the need for robust controller design. The experimentally obtained model

is augmented to include the tip dynamics by impulse hammer testing that allows for the

inclusion on cutting dynamics into the overall control system.

In cutting application there are two main concerns: the tip tracking a profile and avoid-

ance of chatter instability. Therefore, based on the identified model, a two-step optimal

repetitive controller was designed for minimal error tracking. The first controller consisted

of a control input weighted linear quadratic control with integral action that ensured stability,

broadband performance, and robustness. Then a plug-in multivariable repetitive controller

with modifications for enhanced performance and non-harmonic compensation was designed

by optimal model matching that highlights the classical trade-off between robustness and

performance. A cutting force model was incorporated into the overall system, and stability

lobes obtained for optimal cutting conditions.

Vibration reduction is crucial in applications of magnetic bearings such as energy storage.

An adaptive feedforward control was seen to be effective in reducing housing vibrations even

while the spin frequency is changing. The regressors were filtered through a multivariable

filter obtained from gradient descent. The adaptive controller has a linear time invariant
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state space representation from which the deviations of the add-on adaptive from the nominal

sensitivity and complementary sensitivity can be analyzed. Experimental results did indeed

show that vibrations can be reduced even while the spindle speed is changing.

The single input single output adaptive inverse control was extended to the multivari-

able case and demonstrated to be effective in rejecting narrow and broadband disturbances.

Two formulations that can accommodate multivariable plants were considered: the receding

horizon adaptive control and the decoupling adaptive control. Both methods need a multi-

variable adaptive filter such as RLS or LMS; in this thesis a multivariable lattice RLS filter

was chosen for its numerical stability and O(N) complexity. Experimental results on the

magnetic bearing system show the effectiveness of both control schemes.

Lastly, there were two main results for the standard single phase boost rectifier: 1) The

formulation of a linear model in the DQ domain suitable for controller design 2) A MIMO

repetitive add-on controller with peak filter modification was designed using the linear model

to reduce harmonics not compensated for by a nominal controller. In the process of deriving

the linear model, analysis of the equilibrium points gave the boost condition for the rectifier.

Experimental results proved the effectiveness of using the linear model for controller design

and the repetitive controller for reducing harmonics. The methodology can be used for

designing controllers that operate at near unity power factor.

Some future directions can be summarized

1. The augmented model and a cutting chatter model can be used with H∞ control

methods to stiffen the tip at the flexible model.

2. In an effort to make the rotor system ”smart”, more advanced fault detection schemes

can be used.

3. Additionally, the broadband adaptive control techniques can be used to compensate

for disturbances introduced by the cutting process.
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[PTG10] Néstor O Pérez-Arancibia, Tsu-Chin Tsao, and James S Gibson. “Saturation-
induced instability and its avoidance in adaptive control of hard disk drives.”
IEEE Transactions on Control Systems Technology, 18(2):368–382, 2010.

[Reg91] Phillip A Regalia. “An improved lattice-based adaptive IIR notch filter.” IEEE
transactions on signal processing, 39(9):2124–2128, 1991.

[SBL94] Beale Shafai, S Beale, P LaRocca, and E Cusson. “Magnetic bearing control
systems and adaptive forced balancing.” IEEE Control Systems, 14(2):4–13,
1994.

[SSC03] Bhim Singh, Brij N Singh, Ambrish Chandra, Kamal Al-Haddad, Ashish Pandey,
and Dwarka P Kothari. “A review of single-phase improved power quality AC-DC
converters.” Industrial Electronics, IEEE Transactions on, 50(5):962–981, 2003.

[SSP03] VB Sriram, Sabyasachi SenGupta, and Amit Patra. “Indirect current control of a
single-phase voltage-sourced boost-type bridge converter operated in the rectifier
mode.” Power Electronics, IEEE Transactions on, 18(5):1130–1137, 2003.

[SZQ04] Juan Shi, R Zmood, and L Qin. “Synchronous disturbance attenuation in mag-
netic bearing systems using adaptive compensating signals.” Control Engineering
Practice, 12(3):283–290, 2004.

[TGT16] Nolan Tsuchiya, Steve Gibson, Tsu-Chin Tsao, and Michel Verhaegen.
“Receding-Horizon Adaptive Control of Laser Beam Jitter.” IEEE/ASME Trans-
actions on Mechatronics, 21(1):227–237, 2016.

[TGV13] Jonathan Tesch, Steve Gibson, and Michel Verhaegen. “Receding-horizon adap-
tive control of aero-optical wavefronts.” Optical Engineering, 52(7):071406–
071406, 2013.

168



[TMM12] Teng-Tiow Tay, Iven Mareels, and John B Moore. High performance control.
Springer Science & Business Media, 2012.

[Tsa94] Tsu-Chin Tsao. “Optimal feed-forward digital tracking controller design.” Jour-
nal of dynamic systems, measurement, and control, 116(4):583–592, 1994.

[TTC89a] Masayoshi Tomizuka, Tsu-Chin Tsao, and Kok-Kia Chew. “Analysis and syn-
thesis of discrete-time repetitive controllers.” Journal of Dynamic Systems, Mea-
surement, and Control, 111(3):353–358, 1989.

[TTC89b] Masayoshi Tomizuka, Tsu-Chin Tsao, and Kok-Kia Chew. “Analysis and syn-
thesis of discrete-time repetitive controllers.” Journal of Dynamic Systems, Mea-
surement, and Control, 111(3):353–358, 1989.

[VBL13] Gijs van der Veen, Marco Bergamasco, Marco Lovera, Michel Verhaegen, et al.
“Closed-loop subspace identification methods: an overview.” IET Control Theory
& Applications, 7(10):1339–1358, 2013.

[WCT09] Yigang Wang, Kevin C Chu, and Tsu-Chin Tsao. “Adaptive Control for Deter-
ministic Trajectory Tracking and Random Disturbance Rejection With Applica-
tion to Nano-Precision Positioning of a Halbach Linear Motor.” In Proceedings of
the ASME 2009 Dynamic Systems and Control Conference DSCC2009 October,
pp. 12–14, 2009.

[WJ97] Simon Wall and Robin Jackson. “Fast controller design for single-phase power-
factor correction systems.” Industrial Electronics, IEEE Transactions on,
44(5):654–660, 1997.

[WT86] John P Whitacre and HG Trainer. “Piston pin bore treatments for high perfor-
mance diesel engines.” Technical report, SAE Technical Paper, 1986.

[WW08] Bernard Widrow and Eugene Walach. Adaptive inverse control, reissue edition:
a signal processing approach. John Wiley & Sons, 2008.

[ZCS02] Richard Zhang, Mark Cardinal, Paul Szczesny, and Mark Dame. “A grid sim-
ulator with control of single-phase power converters in DQ rotating frame.” In
Power Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual,
volume 3, pp. 1431–1436. IEEE, 2002.

[ZS01] Shiyu Zhou and Jianjun Shi. “Active balancing and vibration control of rotating
machinery: a survey.” Shock and Vibration Digest, 33(5):361–371, 2001.

[ZW03] Keliang Zhou and Danwei Wang. “Digital repetitive controlled three-phase PWM
rectifier.” Power Electronics, IEEE Transactions on, 18(1):309–316, 2003.

[ZZW08] Peng Zhai, Cheng-rui Zhang, Xin-liang Wang, Lei Qin, and You-zhi Qin. “Novel
mechanism for boring non-cylinder piston pinhole based on giant magnetostrictive
materials.” Journal of Shanghai University (English Edition), 12:363–367, 2008.

169




