
UCSF
UC San Francisco Previously Published Works

Title
Targeting CD22 Reprograms B-Cells and Reverses Autoimmune Diabetes

Permalink
https://escholarship.org/uc/item/7tj9b6bw

Journal
Diabetes, 57(11)

ISSN
0012-1797

Authors
Fiorina, Paolo
Vergani, Andrea
Dada, Shirine
et al.

Publication Date
2008-11-01

DOI
10.2337/db08-0420
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7tj9b6bw
https://escholarship.org/uc/item/7tj9b6bw#author
https://escholarship.org
http://www.cdlib.org/


Targeting CD22 Reprograms B-Cells and Reverses
Autoimmune Diabetes
Paolo Fiorina,

1,2
Andrea Vergani,

1,2
Shirine Dada,

1
Mollie Jurewicz,

1
Masie Wong,

1
Kenneth Law,

3

Erxi Wu,
4

Ze Tian,
4

Reza Abdi,
1

Indira Guleria,
1

Scott Rodig,
3

Kyri Dunussi-Joannopoulos,
5

Jeffrey Bluestone,
6

and Mohamed H. Sayegh
1

OBJECTIVES—To investigate a B-cell–depleting strategy to
reverse diabetes in naïve NOD mice.

RESEARCH DESIGN AND METHODS—We targeted the CD22
receptor on B-cells of naïve NOD mice to deplete and reprogram
B-cells to effectively reverse autoimmune diabetes.

RESULTS—Anti-CD22/cal monoclonal antibody (mAb) therapy
resulted in early and prolonged B-cell depletion and delayed disease
in pre-diabetic mice. Importantly, when new-onset hyperglycemic
mice were treated with the anti-CD22/cal mAb, 100% of B-cell–
depleted mice became normoglycemic by 2 days, and 70% of
them maintained a state of long-term normoglycemia. Early
therapy after onset of hyperglycemia and complete B-cell deple-
tion are essential for optimal efficacy. Treated mice showed an
increase in percentage of regulatory T-cells in islets and pancre-
atic lymph nodes and a diminished immune response to islet
peptides in vitro. Transcriptome analysis of reemerging B-cells
showed significant changes of a set of proinflammatory genes.
Functionally, reemerging B-cells failed to present autoantigen
and prevented diabetes when cotransferred with autoreactive
CD4� T-cells into NOD.SCID hosts.

CONCLUSIONS—Targeting CD22 depletes and reprograms B-
cells and reverses autoimmune diabetes, thereby providing a
blueprint for development of novel therapies to cure autoim-
mune diabetes. Diabetes 57:3013–3024, 2008

A
lthough B-cells have been primarily considered
antibody-producing cells, recent studies dem-
onstrate that they participate in the priming of
autoimmune responses (1,2). Many investiga-

tions have examined the role of B-cells as antigen-present-
ing cells (APCs) in the generation of autoreactive T-cell
responses (3,4). The role of B-cells in one of the most
classical autoimmune disorders, type 1 diabetes, a disease
characterized by insulin deficiency resulting from the
autoimmune destruction of �-cells, is controversial (5).

Most individuals affected by type 1 diabetes exhibit mul-
tiple features associated with impaired B-cell function,
including autoantibodies against a variety of islet cell
antigens (6,7). Data from different groups using NOD mice,
the best animal model for the study of type 1 diabetes,
have confirmed the importance of B-cells in the onset of
diabetes (2–4,8,9). NOD mice that are deficient in B-cells
have been shown to be protected from autoimmune dia-
betes (3,10,11) and are deficient in the development of a
T-cell response to major autoantigens (such as 65-kDa
glutamate decarboxylase) (3,10,11). In humans, the pro-
duction of autoantibodies to islet antigens is well docu-
mented as an early indicator of disease onset (12). These
observations render B-cell targeting a particularly attrac-
tive and novel strategy for the treatment of type 1 diabetes
(13–15). Unfortunately, this strategy has not been fully
described in naïve NOD mice. Only recently did a publica-
tion show the positive effects of an anti-CD20–based
B-cell–depleting strategy in transgenic NOD mice express-
ing the humanized CD20 receptor on B-cells (8). Interest-
ingly, use of B-cell depletion as a therapy for human
autoimmune disease (16–20), including in patients with
new-onset type 1 diabetes, is ongoing (21,22).

We made use of a newly developed reagent (anti-CD22
calicheamicin-conjugated monoclonal antibody [anti-
CD22/cal mAb]) that efficiently depletes mature B-cells in
mice (13) to establish a therapeutic approach for type 1
diabetes. Our main hypothesis was that depleting B-cells
by targeting CD22 should prevent diabetes onset and
restore normoglycemia in newly hyperglycemic NOD
mice. Furthermore, we hypothesize that our approach will
generate a pool of reemerging B-cells that may function to
regulate the autoimmune response in vivo, establishing a
state of long-term tolerance toward autoantigens.

RESEARCH DESIGN AND METHODS

A complete description of our methods is available in an online appendix at
http://dx.doi.org/10.2337/db08-0420.

RESULTS

CD22 is widely expressed on mature B-cells in NOD
mice. We first examined CD22 expression on B-cells in
NOD mice. No differences were observed in terms of CD19
and CD22 expression on B220� cells (B220�CD19� cells,
82.0 � 2.5 vs. B220�CD22� cells, 83.1 � 2.7%, NS) (Fig. 1A
and B). Furthermore, CD22 is expressed on CD138� cells
(Fig. 1C).
B-cells represent the majority of infiltrating cells in
the pancreata of NOD mice. The kinetics of CD45�

CD19� (B-cells) infiltration in the pancreata of NOD mice
showed a significant increase at 8 weeks, when the mice
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began to exhibit islet peri-infiltration (from 22.8 � 7.8% at
4 weeks up to 65.1 � 5.0% at 8 weeks of age, P � 0.01) (Fig.
1D). This increase was not observed for CD45�CD3� cells
(T-cells) (Fig. 1E). The percentage of CD45�CD19� cells
(B-cells) was significantly higher than CD45�CD3� cells (T-
cells) in the pancreata of 8-week-old NOD mice (B-cells,
65.1 � 5.0 vs. T-cells, 30.2 � 3.2%, P � 0.004) (Fig. 1E).
Anti-CD22/cal mAb produces a profound depletion of
B-cells in NOD mice. We first treated NOD mice with
anti-CD22/cal mAb to evaluate whether our antibody can
successfully deplete B-cells in NOD mice. Two injections
(160 �g/kg i.p. 5 days apart, D0–D5) of anti-CD22/cal mAb
elicited a quick and profound depletion of B-cells in the
peripheral blood of 10-week-old NOD mice; the effect ap-
pears at 1 week and lasts for 5–7 weeks (Fig. 1F and H).
Control NOD mice did not appear to be depleted of B-cells
(Fig. 1F and G), whereas the group treated with an equivalent

dose of unconjugated anti-CD22 mAb (0.2 mg/injection i.p. 5
days apart, D0–D5) showed transient and partial B-cell deple-
tion (Fig. 1F and I). B-cell recovery was complete by 8–10
weeks after therapy (Fig. 1F and H). No B-cell depletion was
evident when using the control mAb, a mouse IgG1 anti-rat
very-late antigen 4 mAb that does not bind to mouse cells and is
conjugated to calicheamicin (GG5/cal) (data not shown).
Anti-CD22/cal mAb delays diabetes onset in pre-
diabetic NOD mice. The effect of anti-CD22/cal mAb
treatment on diabetes onset was evaluated in female
10-week-old NOD mice. NOD mice were treated with two
injections of 160 �g/kg anti-CD22/cal mAb 5 days apart and
were monitored for diabetes development. As shown in
Fig. 2A, we observed a significant delay in diabetes onset
in the anti-CD22/cal mAb–treated mice (n � 20 mice, 50%
protected in the long term) compared with untreated
controls (n � 30 mice, P � 0.01, 10% protected in the long

FIG. 1. Depletion studies. Splenocytes were extracted from normoglycemic 10-week-old NOD mice (n � 5) and were analyzed by flow
cytometry for CD19 and CD22 expression on B220� cells and CD138� cells (plasma cells). CD19 and CD22 were similarly expressed on
B220� cells (A and B), and CD22 was expressed on CD138� cells (C). We then examined by flow cytometry the infiltrating cells in the
pancreata of 4-, 8-, and 12-week-old and hyperglycemic NOD mice (>14 weeks old) (n � 5 mice/group). Most of the infiltrate is constituted
by CD45�CD19� cells (B-cells) (D). B-cell pancreatic infiltration in NOD mice peaked around 8–10 weeks (P < 0.05; D), whereas
CD45�CD3� cells (T-cells) remained stable over time (E). The percentage of CD45�CD19� cells (B-cells) was significantly higher than
CD45�CD3� cells (T-cells) in the pancreata of 8-week-old NOD mice (B-cells, 65.1 � 5.0 vs. T-cells, 30.2 � 3.2%, P � 0.004) (E). Two
injections (160 �g i.p. 5 days apart, day 0 and day 5) of anti-CD22/cal mAb elicits a quick and profound depletion of B-cells in the peripheral
blood of 10-week-old NOD mice (n � 6 mice/group) by 1 week that lasts for 6–7 weeks (F and H). Control NOD mice did not appear to be
depleted (F and G), whereas the group treated with unconjugated anti-CD22 mAb shows a transient and partial B-cell depletion (F and I).
At 8–10 weeks after depletion, B-cells recovered almost completely (F and H).
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term) and with the group treated with calicheamicin alone
(GG5/cal) (n � 10 mice, P � 0.01) (Fig. 2A).

We also treated 10-week-old female NOD mice with the
unconjugated anti-CD22 mAb that only partially depletes
B-cells (n � 20) (Fig. 1F and I). Diabetes onset was slightly
delayed compared with controls (P � 0.06; Fig. 2A). This
indicates that complete B-cell depletion is required to
induce long-term protection from diabetes and stable
tolerance toward autoantigens.
Anti-CD22/cal mAb treatment in pre-diabetic mice is
associated with an increase in the percentage of
CD4�CD25�FoxP3� cells percentage in the pancre-
atic lymph nodes. We also examined the effect of B-cell
depletion on T-cell phenotype in NOD mice. A significant
increase in the percentage of CD4�CD25�FoxP3� cells is
evident at 35 weeks of age (but not at 15 weeks) in the
pancreatic lymph nodes of normoglycemic treated mice
compared with both untreated hyperglycemic and normo-
glycemic untreated control NOD mice (anti-CD22/cal mAb
treated, 20.3 � 3.1 vs. normoglycemic control, 8.1 � 0.6,
P � 0.02, and vs. hyperglycemic control, 7.7 � 3.1%, P �
0.009; Fig. 2B).
Hyporesponsiveness of CD4� T-cells toward au-
toantigen in anti-CD22/cal mAb–treated NOD mice.

We sought to determine whether B-cell depletion can
modify BDC2.5 peptide-driven interferon-� (IFN-�) pro-
duction of T-cells, which can be considered an index of
the T-cell anti-islet response (23). CD4� T-cells ex-
tracted from splenocytes of normoglycemic anti-CD22/
cal mAb–treated and normoglycemic control NOD mice
were isolated at 15 and 35 weeks of age and were
challenged with the BDC2.5 peptide and syngeneic
dendritic cells in an ELISpot assay to evaluate IFN-�
production. Only at 35, but not at 15, weeks of age was
the frequency of CD4� T-cells extracted from normogly-
cemic treated animals responding to autoantigen signif-
icantly were reduced compared with responding CD4�

T-cells of normoglycemic 10-week-old and hyperglyce-
mic untreated NOD mice (Fig. 2C). Interestingly, CD4�

T-cells extracted from splenocytes obtained from normo-
glycemic anti-CD22/cal mAb–treated NOD mice at 15
and 35 weeks of age are capable of mounting an immune
response to alloantigen similar to the response by CD4�

T-cells extracted from normo- or hyperglycemic untreated
control NOD mice (at 35 weeks: anti-CD22/cal mAb–treated,
15,210 � 5,524 vs. normoglycemic control, 11,863 � 2,470,
NS, and vs. hyperglycemic control, 12,389 � 897 [3H]thymi-

FIG. 2. Diabetes prevention studies. We observed a significant delay in diabetes onset in anti-CD22/cal mAb–treated female 10-week-old NOD
mice (n � 20) compared with controls (n � 30, P < 0.01) (A). The calicheamicin alone–treated group developed diabetes similarly to untreated
controls (n � 10, P < 0.01 vs. anti-CD22/cal mAb–treated NOD mice) (A). Unconjugated anti-CD22 treatment slightly delayed diabetes onset (n �
10, P � 0.06 vs. untreated controls) (A). At 35 weeks of age, an increase in the percentage of CD4�CD25�FoxP3� cells was evident in the
pancreatic lymph nodes of anti-CD22/cal mAb–treated NOD mice (n � 4) compared with 10-week-old untreated control NOD (n � 4, P � 0.02)
and compared with hyperglycemic >14-week-old NOD mice (n � 4, P � 0.009) (B). CD4� cells extracted from splenocytes of anti-CD22/cal
mAb–treated NOD mice at 35 weeks of age produced less IFN-� when challenged with the BDC2.5 peptide compared with CD4� cells extracted
from splenocytes of untreated age-matched control hyperglycemic NOD mice (P � 0.001) and 10-week-old NOD mice (P � 0.04) (n � 4
mice/group) (C). Isolated autoreactive BDC2.5 TCR Tg� CD4� cells were transferred into NOD.SCID mice previously reconstituted with NOD
splenocytes and then treated with anti-CD22/cal mAb or left untreated. Fewer autoreactive BDC2.5 TCR Tg� CD4� cells were recovered (D) in
the anti-CD22/cal mAb–treated NOD.SCID hosts (E, top quadrant) compared with the untreated controls (E, bottom quadrant). Insulitis score
analysis revealed better-preserved islets in the anti-CD22/cal mAb–treated NOD mice at 15 and 35 weeks of age (F). (Please http://dx.doi.org/
10.2337/db08-0420 for a high-quality digital representation of this figure.)
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dine incorporation counts/min, NS), indicating that the CD4�

T-cells are immunocompetent.
Lack of B-cells prevents expansion of autoreactive
T-cells in an adoptive transfer model. We then tracked
the effect of B-cell depletion on survival and proliferation
of autoreactive CD4� T-cells in vivo (24–26). NOD.SCID
mice were reconstituted with splenocytes from normogly-
cemic 10-week-old NOD mice. After 7 days (thereby allow-
ing reconstitution of the immune system), mice were
either treated with anti-CD22/cal mAb or were left un-
treated. After another 7 days, to allow ample time for
B-cell depletion, isolated BDC2.5 T-cell receptor (TCR)
Tg� CD4� cells extracted from splenocytes were trans-
ferred into B-cell–depleted or untreated NOD.SCID mice.
After 72 h, mice were killed and examined for autoreactive
CD4� cell frequency in the spleen of recipients (easily
tracked using the anti-ideotypic antibody against the V�4
chain of the TCR) (26). Interestingly, when B-cells are
absent, fewer BDC2.5 TCR Tg� CD4� cells can be recov-
ered from the host (reduction of 50%) (Fig. 2D and E,

bottom quadrant) compared with the anti-CD22/cal mAb–
treated NOD mice (Fig. 2D and E, top quadrant).
Islets in anti-CD22/cal mAb–treated mice showed
reduced infiltration and preserved morphology even
after complete B-cell recovery. In the anti-CD22/cal
mAb–treated NOD mice at 15 weeks of age, infiltrates were
reduced compared with untreated control NOD mice and
baseline untreated 10-week-old normoglycemic NOD mice
(Fig. 3A1, B1, and C1). As expected, B220� cells were very
few in the anti-CD22/cal mAb–treated NOD mice but not in
the control and in the baseline group (Fig. 3A2, B2, and
C2). Surprisingly, very few CD3� cells were apparent in
the anti-CD22/cal mAb–treated NOD mice but not in the
control and in the baseline group (Fig. 3A3, B3, and C3).
Insulin (Fig. 3A5, B5, and C5) and glucagon (Fig. 3A6, B6,
and C6) staining showed well-preserved islets in all the
three groups. An increase in FoxP3� cells was evident
within the islets of the anti-CD22/cal mAb–treated group
compared with the baseline and the untreated control
group (Fig. 3A4, B4, and C4).

FIG. 3. Histology of prevention studies. At baseline, NOD mice showed mild perinsulitis (A1) with many B220� cells (A2) and some CD3� cells
(A3) but still with well-preserved insulin and glucagon staining (A5 and A6). FoxP3� cells are merely present at baseline (A4). Interestingly, at
15 weeks of age, treated NOD mice showed reduced infiltrate (B1) with no B220� cells (B2) and fewer CD3� cells (B3), whereas in the control,
B220� and CD3� cells are abundantly represented with increased infiltrate (C1–C3). At 35 weeks of age, the treated group showed cleaner
pancreata compared with the untreated control hyperglycemic NOD mice (D1 and E1). B220� and CD3� cells did not infiltrate the islets in the
treated group (D2 and D3), whereas in the controls, islets were extensively infiltrated by B220� and CD3� cells (E2 and E3). Islet morphology
is well-preserved in the treated group at 15 and 35 weeks of age (B5, B6, D5, and D6) but not in the control group (C5, C6, E5, and E6). FoxP3
staining of islet infiltrate revealed a persistent reduced expression of FoxP3 in untreated compared with treated NOD mice at 15 and 35 weeks
of age, particularly when compared with the massive presence of T-cells in the control (B4, D4, C4, and E4). (Please see http://dx.doi.org/10.
2337/db08-0420 for a high-quality digital representation of this image.)

ANTI-CD22 IMMUNOTHERAPY IN DIABETES

3016 DIABETES, VOL. 57, NOVEMBER 2008



At 35 weeks of age, despite the complete recovery of the
B-cell pool in the originally anti-CD22/cal mAb–treated
group, pancreatic islets appeared to contain much less
infiltrate than untreated control hyperglycemic NOD mice
(Fig. 3D1 and E1). Again, neither the B220� nor the CD3�

cells infiltrated the islets but instead remained at the islet
border in the anti-CD22/cal mAb–treated group but not in
the control group (Fig. 3D2, E2, D3, and E3). Insulin and
glucagon staining confirmed the presence of many well-
preserved islets in the anti-CD22/cal mAb–treated but not
in the control group (Fig. 3D5, E5, D6, and E6). FoxP3
staining of islet infiltrate revealed reduced FoxP3 expres-
sion, particularly when compared with the massive pres-
ence of T-cells, in the untreated control but not in the
anti-CD22/cal mAb–treated NOD mice (Fig. 3D4 and E4).

Finally, insulitis score revealed more well-preserved
islets (0 –50% of infiltration) in the anti-CD22/cal mAb–

treated compared with untreated control NOD mice
(Fig. 2G).
Anti-CD22/cal mAb treatment restores normoglyce-
mia in newly hyperglycemic NOD mice. Newly hyper-
glycemic female NOD mice (defined on the basis of
glucose levels �250 mg/dl for 3 consecutive days) were
treated with a protocol identical to what is outlined above
using the anti-CD22/cal mAb. A rapid reversal of hypergly-
cemia (within 2 days) was observed in all the B-cell–
depleted NOD mice (10 of 10; Fig. 4A). Six of 10 remained
normoglycemic in the long term (for �100 days). Three
mice remained normoglycemic for 20–40 days and then
reverted to hyperglycemia (Fig. 4A). One mouse remained
normoglycemic for �50 days and then reverted to hyper-
glycemia (Fig. 4A). No consistent correlation was evident
between glucose levels at baseline and the ability to
restore or maintain normoglycemia after treatment (data

FIG. 4. Hyperglycemia reversal studies. A rapid reversal of hyperglycemia was observed in all treated hyperglycemic NOD mice (A). Six of 10
remained normoglycemic in the long term. None of the untreated newly hyperglycemic control NOD mice reverted from hyperglycemia (B). After
5 days from hyperglycemia onset (n � 6), anti-CD22/cal mAb was not able to restore normoglycemia in the long term (B). Either calicheamicin
alone (GG5/cal) (n � 5) or CD22 unconjugated treatment failed to restore normoglycemia in the long term (B). Proinflammatory cytokines
(IL-17, TNF-�, and slightly IFN-�) are reduced 10 days after treatment compared with untreated controls (C). CD4�CD25�FoxP3� cell percent-
age increases in anti-CD22/cal mAb–treated long-term tolerant compared with untreated control NOD mice in the pancreatic lymph nodes (anti-
CD22/cal mAb–treated vs. normoglycemic 10-week-old mice, P � 0.007, and vs. hyperglycemic, P � 0.03; D) and in the spleen as well (anti-CD22/cal
mAb–treated vs. normoglycemic 10-week-old mice, P � 0.02, and vs. hyperglycemic, P � 0.01; E). Insulitis score confirmed that anti-CD22/cal
mAb–treated NOD mice showed better preserved and less infiltrated islets compared with untreated control NOD mice both at baseline and 10
days after hyperglycemia onset (F).
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not shown). None of the control NOD mice (n � 10) ever
reverted from hyperglycemia spontaneously after 3 con-
secutive days of hyperglycemia (Fig. 4B). When hypergly-
cemic NOD mice were treated with anti-CD22/cal mAb
after 5 days (n � 6) from hyperglycemia onset, a transient
return to normoglycemia was evident in five of six NOD
mice, which lasted for 20 days (Fig. 4B); subsequently, all
mice then reverted to hyperglycemia. These data suggest
that for treatment to be most effective, it must be initiated
early after onset of hyperglycemia. We then treated newly
hyperglycemic NOD mice with GC5/cal (n � 5), and no
effect was observed in three of five mice treated, whereas
in two NOD mice treated, some glycemic oscillations were
observed before a return to stable hyperglycemia (Fig.
4B). Finally, B-cell depletion appeared to be mandatory for
the restoration of normoglycemia. In fact, when B-cells
composed �3–5% of the blood, normoglycemia was not
restored. Only 2 of 10 partially depleted (with unconju-
gated CD22 treatment) hyperglycemic NOD mice showed
a transient return to normoglycemia with a quick reap-
pearance of hyperglycemia (Fig. 4B). Taken together,

these data clearly indicate that optimal therapeutic effi-
cacy for reversal of diabetes requires early initiation of
therapy that effectively depletes B-cells in hyperglycemic
animals.
Anti-CD22/cal mAb treatment reduces proinflamma-

tory peripheral cytokine levels in hyperglycemic NOD

mice. Remarkably, a change in peripheral cytokine levels
was observed during the restoration of normoglycemia
(Fig. 4C). Most proinflammatory cytokines were reduced
10 days after treatment, when normoglycemia was re-
stored (Fig. 4C). Particularly, 10 days after injection in the
normoglycemic anti-CD22/cal mAb–treated mice, interleu-
kin (IL)-17 levels were significantly reduced compared
with hyperglycemic untreated controls (P � 0.01). Inter-
estingly, although in the long-term hyperglycemic un-
treated control NOD mice, peripheral levels of tumor
necrosis factor-	 (TNF-	) (P � 0.06), IL-17 (P � 0.03), and
IFN-� (P � 0.03) were higher than in baseline hyperglyce-
mic NOD mice, those normoglycemic NOD mice treated
with anti-CD22/cal mAb showed peripheral levels of pro-

FIG. 5. Histology of hyperglycemia reversal studies. Untreated, hyperglycemic mice at baseline show islets heavily infiltrated by lymphocytes (A1)
predominantly composed of B220� and CD3� cells (A2 and A3) with few FoxP3� Tregs (A4). Few insulin-positive cells and more glucagon-positive cells
can be detected (A5 and A6). Ten days after treatment with anti-CD22/cal mAb, islets appeared scarcely infiltrated compared with untreated controls
(B1 and C1), with few B220� and CD3� cells (B2, B3, C2, and C3) but with an increase in FoxP3� cells (B4 and C4). In treated animals but not in the
untreated controls, islets show abundant stainable insulin (B5 and C5) and glucagon (B6 and C6). Two histological patterns are seen in the treated
group 100 days after treatment: Many of the islets show essentially no lymphoid infiltrate at all (D1–D3), and few cells stain for insulin whereas more
stain for glucagon (D5 and D6). A smaller subset of islets show an abundant B220�/CD3� infiltrate (E1, E2, and E3). However, the infiltrate remains
largely confined to the periphery of the islets, with a greater percentage of FoxP3� Tregs (E4). Glucagon is easily detected (E6), but insulin staining
is low (E5). (Please see http://dx.doi.org/10.2337/db08-0420 for a high-quality digital representation of this image.)
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inflammatory cytokines similar to newly hyperglycemic
NOD mice (Fig. 4C).
In the course of reversal, anti-CD22/cal mAb treat-
ment is associated with changes in the percentage of
CD4�CD25�FoxP3� cells. The percentage of CD4�CD25�

FoxP3� cells was significantly increased in normoglyce-
mic anti-CD22/cal mAb–treated long-term tolerant mice
compared with hyperglycemic untreated control NOD
mice, in both the pancreatic lymph nodes (anti-CD22/cal
mAb–treated, 14.3 � 1.9 vs. normoglycemic 10-week-old
mice, 6.4 � 0.7, P � 0.007, and vs. hyperglycemic mice,
8.7 � 1.1%, P � 0.03; Fig. 4D) and in the spleen (anti-CD22/
cal mAb–treated, 12.8 � 1.7 vs. normoglycemic 10-week-
old mice, 7.9 � 0.4, P � 0.02, and vs. hyperglycemic mice,
8.4 � 0.2%, P � 0.01; Fig. 4E).

Between normoglycemic anti-CD22/cal mAb–treated
and hyperglycemic untreated control NOD mice, 100 days
after injection, the effector-to-regulatory T-cell (Treg) ratio
in the pancreatic lymph nodes and spleen was similar
(data not shown).
Islets from anti-CD22/cal mAb–treated NOD mice
demonstrated an absence of T- and B-cell infiltrates
long after B-cell recovery. After 3 days of hyperglyce-
mia, islets are extensively infiltrated by lymphoid cells
(Fig. 5A1) with disrupted structure, marked reduction in
insulin staining, and a smaller reduction in glucagon
staining (Fig. 5A5 and A6). The lymphoid infiltrate is
composed predominately of B220� cells with a smaller
population of CD3� cells (Fig. 5A2 and A3) and very few
FoxP3� cells (Fig. 5A4).

After 10 days, pancreas histology and immunohisto-
chemistry show in untreated control NOD mice that all of
the above features worsen (Fig. 5B1–B3, B5, and B6).
Surprisingly, in the anti-CD22/cal mAb–treated NOD mice
10 days after treatment, islets showed very mild infiltrates
confined to the borders of �-cells (Fig. 5C1) with an almost
complete absence of B220� and CD3� cells (Fig. 5C2 and
C3) and well-maintained and preserved insulin and gluca-
gon staining (Fig. 5C5 and C6). In the anti-CD22/cal
mAb–treated NOD mice 10 days after treatment but not in
the controls, more infiltrating cells appeared to be FoxP3�

cells (Fig. 5B4 and C4).
In the anti-CD22/cal mAb–treated NOD mice, 100 days

after treatment, two histological patterns were observed;
islets still appeared almost completely free of infiltrates
(Fig. 5D1) with very few B220� and CD3� cells inside
islets (Fig. 5D2 and D3). Many small but well-preserved
islets were present in the pancreas (Fig. 5D5 and D6)
without a clear increase in FoxP3� cells (Fig. 5D4). A
smaller subset of islets showed an abundant infiltrate of
B220� and CD3� B-cells (Fig. 5E1, E2, and E3), which
remained, however, largely confined to the periphery of
the islets. A high percentage of FoxP3� Tregs (Fig. 5E4)
and well-preserved islets (Fig. 5E5 and E6) were evi-
dent. Insulitis score confirmed that anti-CD22/cal mAb–
treated NOD mice showed better preserved and less
infiltrated islets compared with untreated control NOD
mice (Fig. 4F).
Transcriptome analysis revealed a reprogramming of
reemerging B-cells compared with naïve B-cells. We
examined the gene expression profile of reemerging B-
cells (obtained from normoglycemic NOD mice treated
with anti-CD22/cal mAb 100 days after B-cell depletion)
and compared it with that of B-cells obtained from naïve
normoglycemic 10-week-old or hyperglycemic untreated
control NOD mice. CD19� cells were extracted from

splenocytes with microbeads. Interestingly, a significant
downregulation of inducible gene transcription was ob-
served within the reemerging B-cell pool. Almost 200
genes were downregulated in reemerging B-cells com-
pared with B-cells extracted from normoglycemic 10-
week-old NOD mice (Fig. 6A), and 38 genes were
downregulated in reemerging B-cells compared with B-
cells extracted from hyperglycemic NOD mice (Fig. 6B).

When all three groups of B-cells were compared (naïve
normoglycemic 10-week-old NOD mice, naïve hyperglyce-
mic NOD mice, and reemerging), 21 genes appeared to be
downregulated in the reemerging B-cell population (Table
1; Fig. 6C). It should be noted that the downregulation of
many extracellular lytic enzyme products (elastase 1 and
2, lysozime, chymotrypsinogen B1, and amylase) may be
associated with directed islet damage or a sustained
proinflammatory effect (Table 1; Fig. 6C). Genes of the
complement cascade (Fcna and C1qb) and proinflammatory
(heme binding protein 1 [Hebp1], paired immunoglobin-like
type 2 receptor �1 [Pilrb1], peroxisome proliferator–acti-
vated receptor-� [PPAR�], and heme oxygenase-1 [Hmox-
1]) genes are downregulated in reemerging B-cells as well.
Hebp1 has been recently shown to be involved in mono-
cyte chemotaxis (27); Pilrb1 is a receptor that can activate
natural killer cells, dendritic cells, and monocytes (28);
PPAR� has been related to dendritic cell/platelet activa-
tion/function (29); and Hmox-1 is an antioxidant gene
(Table 1; Fig. 6C).
Phenotype of reemerging B-cells in contrast to naïve
B-cells. We then analyzed by fluorescence-activated cell
sorting (FACS) the proportion of different B-cell sub-
populations before B-cell depletion and after B-cell
reconstitution with respect to expression of CD80,
CD86, CD40, IgM, and major histocompatibility complex
(MHC) class II and with respect to the presence of
anergic B-cells; the latter can be identified as a small
population of B220�CD93�CD23�IgMlo cells (30).

No differences were detected in CD80, CD86, CD40, IgM,
and MHC class II expression between naïve and reemerg-
ing B-cells obtained from splenocytes (too few B-cells can
be recovered from pancreatic lymph nodes) of normogly-
cemic treated NOD mice (Fig. 7A). No differences were
detected in the frequency of marginal zone B-cells or B-cell
subpopulations as well (Fig. 7A). A small percentage of
anergic B-cells is evident in naïve B-cells from either
normo- or hyperglycemic untreated control NOD mice
(Fig. 7B), whereas in the reemerging B-cell population
obtained from normoglycemic treated NOD mice, an in-
crease of B220�CD93�CD23�IgMlo cells was detected,
with a restoration of the original frequency found in naïve
NOD mice, which was reduced in hyperglycemic NOD
mice (Fig. 7B).
Reemerging B-cells have a reduced ability to present
autoantigen in vitro and to reduce proinflammatory
cytokine production by autoreactive T-cells. We also
evaluated the functional ability of reemerging and naïve
B-cells to present autoantigen to T-cells in vitro. We
designed and optimized an in vitro assay in which B-cells
are used as APCs and autoreactive BDC2.5 TCR Tg� CD4�

cells are used as responders in the presence of the BDC2.5
peptide. Although B-cells from hyperglycemic untreated
control NOD mice were capable of presenting autoantigen
and stimulating IFN-� production by CD4� T-cells (Fig.
7C), reemerging B-cells obtained from normoglycemic
treated NOD mice were defective in this capacity (Fig. 7C).
In the same experiment, we evaluated the ability of
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FIG. 6. Transcriptome analysis of reemerging B-cells. We extracted B-cells (using CD19 magnetic beads) from 10-week-old NOD mice, from
hyperglycemic NOD mice, and from the reemerging B-cell pool from age-matched B-cell–depleted NOD mice in which the B-cell repertoire is recovered.
A gene array analysis was performed to evaluate gene expression of >40,000 genes. Genes that are differentially expressed in naïve B-cells extracted
from normoglycemic 10-week-old or hyperglycemic NOD mice and reemerging B-cells are shown in the heat map (A–C). Blue represents lesser expression
and red higher expression. Two hundred genes are downregulated in the reemerging B-cells compared with naïve B-cells from 10-week-old NOD mice (A).
Thirty-eight genes are downregulated in the reemerging B-cells compared with naïve B-cells from hyperglycemic NOD mice (B). Twenty-one genes are
downregulated similarly in the reemerging B-cells compared with naïve B-cells from 10-week-old and hyperglycemic NOD mice (C).
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reemerging B-cells to modulate cytokines profile of auto-
reactive BDC2.5 TCR Tg� CD4� cells; supernatant was
therefore collected, and cytokines were evaluated with a
Luminex assay. Interestingly, when reemerging B-cells but
not naïve B-cells were used, BDC2.5 TCR Tg� CD4� cells
downregulated their production of proinflammatory cyto-
kines (Fig. 7F–I). Particularly, when reemerging B-cells
obtained from normoglycemic treated NOD mice were
used, BDC2.5 TCR Tg� CD4� cells produced less TNF-	
compared with naïve B-cells extracted from normoglyce-
mic and hyperglycemic untreated control NOD mice (P �
0.05 vs. both), less IL-17 compared with hyperglycemic
untreated control NOD mice (P � 0.004), and less IFN-�
compared with hyperglycemic untreated control NOD
mice (P � 0.02) (Fig. 7F–I).
Reemerging B-cells are regulatory in vivo and halt
the transfer of diabetes from diabetogenic CD4�

T-cells to NOD.SCID recipients. To compare the regu-
latory functions of reemerging and naïve B-cells in vivo,
diabetogenic CD4� T-cells extracted with magnetic beads
from splenocytes obtained from hyperglycemic NOD mice
were adoptively transferred into NOD.SCID hosts. We then
coadoptively transferred CD19� cells extracted with mag-

netic beads either from splenocytes of normoglycemic
anti-CD22/cal mAb–treated mice at 100 days (i.e., reemerg-
ing B-cells) or from untreated control NOD mice from our
prevention studies at 35 weeks of age. Interestingly, when
B-cells from untreated controls were transferred, NOD-
.SCID developed diabetes (particularly when naïve B-cells
were extracted from hyperglycemic NOD mice) (Fig. 7D).
Conversely, when reemerging B-cells were used, the onset
of diabetes mediated by the transfer of CD4� T-cells from
hyperglycemic NOD mice was completely abrogated (Fig.
7D). To determine whether this protection is related to
induction/expansion of Tregs in vivo, we analyzed the
percentage of CD4�CD25�FoxP3� cells (Tregs) in spleen
of the NOD.SCID recipients of the diabetogenic CD4�

T-cells and reemerging B-cells or controls (B-cells from
hyperglycemic animals or no cells) at day 30 after adoptive
transfer. As seen in Fig. 7E, no differences were detected
among the three groups. These data suggest that the
reemerging B-cells may function to inhibit autoreactivity
by a mechanism distinct from induction/expansion of
Tregs, although further studies are required to define the
exact mechanisms in vivo.

TABLE 1
Downregulated genes in reemerging B-cells compared with B-cells extracted from naïve normoglycemic or hyperglycemic NOD mice

Symbol Name Function Process Component

Acp2 Acid phosphatase 2,
lysosomal

Acid phosphatase, hydrolase Lysosome organization and
biogenesis

Lysosome

Amy2 Amylase 2 Amylase/hydrolase Metabolic process Extracellular space
C1qb Complement component 1,

� polypeptide
Complement activation,

immune response
Cytoplasm,

extracellular space
Ctrb1 Chymotrypsinogen B1 Chymotripsin,

hydrolase/peptidase
Digestion/proteolysis Extracellular space

Dgat2 Diacylglycerol
O-acyltransferase 2

Diacylglycerol
O-acyltransferase

Glycerol/lipidic metabolic
process

Endoplasmic reticulum,
membrane

Ela1 Elastase 1 Hydrolase/peptidase Proteolysis/digestion Extracellular space
Ela2 Elastase 2 Hydrolase/peptidase Leukocyte migration,

proteolysis, phagocytosis
Extracellular space

Fcna Ficolin A Receptor binding, sugar
binding

Signal transduction,
complement activation

Cytoplasm,
extracellular space

Hebp1 Heme-binding protein 1 Heme binding Heme metabolic process,
chemotaxis

Cytoplasm,
mitochondrion

Hmox1 Heme oxygenase
(decycling) 1

Heme oxygenase, ion
binding, oxidoreductase

Heme oxidation, immune
response, stress
response

Membrane, microsome

Hs3st2 Heparan sulfate Transferase Biological process Golgi apparatus,
membrane

Igf1 Insulin-like growth factor 1 Growth factor, hormone Antiapoptosis/metabolic
process and cell growth,
IGF pathway

Extracellular space

Lyzs Lysozime Hydrolase Cell wall catabolic
process/cytolysis, host
defense

Extracellular space

Nr1h3 Nuclear receptor subfamily
1

Transcription factor, steroid
hormone receptor

Transcription Nucleus

Pilrb Paired immunoglobin-like
type 2 receptor �1

Molecular function Biological process Membrane

Pparg Peroxisome
proliferator–activated
receptor �

Transcription factor,
receptor activity, metal
ion binding

Transcription,
inflammatory response,
fat cell differentiation

Cytosol, nucleus

Tgfbi Transforming growth
factor, � induced

Protein binding Cell adhesion Extracellular space

Tgm1 Transglutaminase 1 Acyltransferase ion binding Morphogenesis, peptide
cross linking, protein
metabolic process

Adherens junction,
membrane
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DISCUSSION

B-cell–depleting strategies are rapidly growing in popular-
ity as a treatment approach for autoimmune diseases,
thanks to the availability of an anti-CD20 mAb in humans.

A recent paper from Yale University (8) showed that the
human anti-CD20 mAb is capable of preventing autoim-
mune diabetes and reverses established diabetes in trans-
genic NOD mice expressing the human CD20 receptor on

FIG. 7. Functional studies of reemerging B-cells. FACS analysis of CD80, CD86, CD40, Class II, and IgM did not reveal any differences between
reemerging and naïve B-cells extracted from splenocytes (the latter from either normo- or hyperglycemic NOD mice) (representative of five mice;
A). Interestingly, we observed by FACS analysis a higher percentage of anergic B-cells (B220�CD93�CD23�IgMlo cells) in the reemerging B-cell
pool compared with naïve B-cells from hyperglycemic age-matched untreated NOD mice (representative of five mice [B, with anergic B-cells
circled]). We customized an in vitro assay in which B-cells are used as APCs and autoreactive BDC2.5 TCR Tg� CD4� cells are used as responders
in the presence of the BDC2.5 peptide. When reemerging B-cells were APCs, a lower IFN-� production by BDC2.5 TCR Tg� CD4� cells was evident
compared with when naïve B-cells were used (C). Supernatants were collected from the experiment described above, and cytokine profile was
assessed with a Luminex assay. Interestingly, when reemerging B-cells, but not naïve B-cells, were used as APCs, BDC2.5 autoreactive CD4� cells
downregulated the production of proinflammatory cytokines (IL-2, IL-17, TNF-�, and IFN-�) (F–I). We then coadoptively transferred CD19� cells
(obtained from reemerging or from naïve B-cell pool) into NOD.SCID recipients with diabetogenic CD4� cells obtained from hyperglycemic NOD
mice. When reemerging B-cells, but not naive B-cells, were transferred, they completely abrogated the onset of diabetes mediated by the transfer
of diabetogenic CD4� cells (n � 5 mice/group) (D). We also analyzed the percentage of CD4�CD25�FoxP3� cells in the spleen of NOD.SCID
recipients of diabetogenic CD4� T-cells and reemerging B-cells or controls (B-cells from hyperglycemic animals or no cells) at day 30 after
adoptive transfer. E: There is no difference between the groups (n � 5 mice/group).
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B-cells. Another recent paper showed that a murine anti-
CD20 protects from diabetes onset when given at an early
time point (4 weeks) and delays diabetes onset when given
later on (15 weeks) (31). In this study, no data on reversal
of diabetes were reported, and B-cell depletion was not
complete (5% of B-cells were still found in NOD mice).

Our approach is novel for the following reasons: 1) We
established a B-cell–depleting protocol in naïve NOD mice
and not in transgenic NOD mice; 2) we targeted a new
pathway, CD22, because CD22 expression is found on
more mature B-cells and plasma cells and this may also
have a positive effect on autoantibody production; 3) for
the first time, the complete gene profiling of naïve NOD
B-cells and reemerging B-cells has been identified; 4) our
therapy not only depletes B-cells but also reprograms the
entire pool of reemerging B-cells, generating a novel
functionally impaired and regulatory B-cell population;
and 5) anti-CD22 antibodies are available for human use as
well, and this therapy is potentially different from an
anti-CD20 approach in humans. Although anti-CD20 ther-
apy can efficiently deplete B-cells in the blood, a number of
reports suggest a potential incomplete depletion in lym-
phoid organs (32–35). This issue raises the question of
whether pancreatic B-cells are depleted, and it is likely
that the current ongoing trial will not clarify this issue due
to the impossibility of performing pancreatic biopsies. On
the contrary, anti-CD22 therapy seems to be more com-
prehensive regarding B-cell depletion (36).

We made use of a novel agent targeting CD22 (13) to
develop and study a B-cell–depleting approach in naïve
NOD mice as a model for human type 1 diabetes. Anti-
CD22 treatment has been tested in humans, both for the
immunoregulatory properties of CD22 engagement and for
the possibility of depleting mature B-cells, with promising
results in the fields of autoimmune disease (37,38) and
B-cell malignancies (39). Surprisingly, the effect of target-
ing CD22 has never been tested in diabetes.

Our data show that anti-CD22/cal mAb treatment is
capable of delaying diabetes onset in pre-diabetic NOD
mice and, more importantly, of restoring normoglycemia
in new-onset hyperglycemic NOD mice. In our experi-
ments, complete B-cell depletion is required for restora-
tion of normoglycemia; this is relevant from a clinical
point of view, given that inefficient B-cell depletion after
anti-CD20 mAb therapy (Rituximab) is a well-recognized
phenomenon that can result in poor clinical outcome (32).
Our data indicate that the absence of B-cells increases
Tregs and reduces autoreactive T-cell proliferation, high-
lighting the importance of a persistent interaction of
B-cells and autoreactive T-cells in maintaining the autoim-
mune response.

More than 150 treatments are capable of delaying dia-
betes in NOD mice (40–42); however, only anti-CD3 (43)
and a few other strategies were found to be capable of
restoring normoglycemia in NOD mice (44–46). Thus far,
only the anti-CD3 regimen has been translated into clinical
use in humans (47). Regarding our reversal studies, it is
surprising how rapidly B-cell depletion rids islets of cellu-
lar infiltrates, because even treatment with anti-CD3 mAb
appeared to be slower than B-cell depletion in restoring
normoglycemia, and 20% of anti-CD3 treated animals did
not revert from hyperglycemia (48). In our studies, 100% of
hyperglycemic NOD mice reverted to normoglycemia
within 2–3 days.

Our studies also show for the very first time that
reemerging B-cells in NOD mice display a different pheno-

type confirmed by our transcriptome analysis, are func-
tionally impaired in their ability to present antigen, and
can regulate the autoimmune response, resulting in long-
term tolerance to autoantigens in vivo. Our adoptive
transfer studies show that reemerging B-cells can abrogate
the transfer of diabetes in NOD.SCID by diabetogenic
CD4� T-cells.

In conclusion, we have shown for the very first time that
anti-CD22 immunotherapy can deplete and reprogram
B-cells, thereby reversing autoimmune diabetes in naïve
NOD mice. Our study provides valuable knowledge to
develop an approach using anti-CD22 in patients affected
by type 1 diabetes.
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