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Abstract
Background: Large foundation models, such as the Segment Anything Model
(SAM), have shown remarkable performance in image segmentation tasks.
However, the optimal approach to achieve true utility of these models for
domain-specific applications, such as medical image segmentation, remains an
open question. Recent studies have released a medical version of the foun-
dation model MedSAM by training on vast medical data, who promised SOTA
medical segmentation. Independent community inspection and dissection is
needed.
Purpose: Foundation models are developed for general purposes.On the other
hand, stable delivery of reliable performance is key to clinical utility. This study
aims at elucidating the potential advantage and limitations of landing the foun-
dation models in clinical use by assessing the performance of off -the-shelf
medical foundation model MedSAM for the segmentation of anatomical struc-
tures in pelvic MR images. We also explore the simple remedies by evaluating
the dependency on prompting scheme. Finally, we demonstrate the need and
performance gain of further specialized fine-tuning.
Methods: MedSAM and its lightweight version LiteMedSAM were evaluated
out-of -the-box on a public MR dataset consisting of 589 pelvic images split
80:20 for training and testing. An nnU-Net model was trained from scratch to
serve as a benchmark and to provide bounding box prompts for MedSAM.Med-
SAM was evaluated using different quality bounding boxes, those derived from
ground truth labels, those derived from nnU-Net, and those derived from the for-
mer two but with 5-pixel isometric expansion. Lastly, LiteMedSAM was refined
on the training set and reevaluated on this task.
Results: Out-of -the-box MedSAM and LiteMedSAM both performed poorly
across the structure set,especially for disjoint or non-convex structures.Varying
prompt with different bounding box inputs had minimal effect. For example, the
mean Dice score and mean Hausdorff distances (in mm) for obturator inter-
nus using MedSAM and LiteMedSAM were {0.251 ± 0.110, 0.101 ± 0.079}
and {34.142 ± 5.196, 33.688 ± 5.306}, respectively. Fine-tuning of LiteMedSAM
led to significant performance gain, improving Dice score and Hausdorff dis-
tance for the obturator internus to 0.864 ± 0.123 and 5.022 ± 10.684, on par
with nnU-Net with no significant difference in evaluation of most structures. All
segmentation structures benefited significantly from specialized refinement, at
varying improvement margin.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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Conclusion: While our study alludes to the potential of deep learning models
like MedSAM and LiteMedSAM for medical segmentation, it highlights the need
for specialized refinement and adjudication. Off -the-shelf use of such large
foundation models is highly likely to be suboptimal, and specialized fine-tuning
is often necessary to achieve clinical desired accuracy and stability.

KEYWORDS
foundation model, medical image segmentation

1 INTRODUCTION

Foundation models are general models trained on
extremely large and diverse datasets that make up
a wide range of categories which enable the model
to be multi-purpose.1 Segment Anything (SAM) is a
generalist foundation model developed by Meta for
image segmentation. It is trained on over 11 million
natural images with 1 billion masks and has shown
remarkable zero-shot segmentation performance on a
diverse range of image segmentation tasks.2,3 Foun-
dation models can potentially generalize across dif-
ferent imaging modalities, anatomical structures, and
pathologies. This reduces the need for developing and
maintaining multiple task-specific models. SAM utilizes
a variety of prompts including point-prompting, bound-
ing box, or auto-prompting to facilitate segmentation
decoding.

However, studies have shown that SAM may be chal-
lenged by low image contrast and amorphous target
structures in medical image segmentation, resulting in
poor and unstable performance compared to natural
image applications.4–7

Multiple methods have been devised to bridge this
gap such as the incorporation of Low Rank Adapta-
tion (LoRA) into SAM’s image encoder.4,8,9 Another
method, SAM-Adapter, was developed primarily for
improved detection of shadows and camouflaged
objects in natural images, but has also been shown to
improve performance of polyp segmentation for medical
images.10,11 Another study proposed a 3D adaptation of
SAM, originally limited to 2D images, to better facilitate
medical images.5

Ma et al. chose to preserve the architecture of the
original SAM and refine the same foundation model
with an unprecedented dataset with over a million
annotated medical images, giving rise to the medical
“version” of SAM, known as MedSAM.12 MedSAM’s
training spans across diverse modalities including CT,
MRI, endoscopy, ultrasound, X-ray, pathology, fundus
photography, dermoscopy, and OCT. The authors report
that MedSAM shows significant improvement over SAM
for medical applications and can perform on par with
modality-specific state-of -the-art models.

However, it is also important to note that rather than
aiming for generality, solid clinical utilization prioritizes
stability and consistent high accuracy in addressing a

specific problem in a specific context. While it is tempt-
ing to use large foundation models off -the-shelf,whether
that being the original SAM or the modified MedSAM,the
question remains as to whether it is truly ready to deliver
clinical value.

In this study, we perform an independent investigation
and assessment of the clinical feasibility of the Med-
SAM foundation model on a new segmentation task,
MR-based pelvic segmentation, using various variants
in the MedSAM family. Specifically, we evaluate the per-
formance of off -the-shelf MedSAM, its dependency and
sensitivity on the prompt input,and impact of fine tuning.
Comparison was performed against a special-purpose
in-house trained nnU-Net benchmark.

2 MATERIAL AND METHODS

2.1 Dataset description

We used a dataset curated by Li et al. consisting
of 589 T2w MRI images acquired from seven stud-
ies (INDEX, the SmartTarget Biopsy Trial, PICTURE,
TCIA Prostate3T, Promise12, TCIA ProstateDx and the
Prostate MR Image Database).13 All the studies are
represented equally in the total curated dataset.The col-
lection contains images from multiple institutions that
were done using scanners with either 1.5T or 3.0T field
strengths and from two different manufacturers. The
images had an in-plane resolution ranging from 0.3 mm
to 1.0 mm and a slice thickness ranging from 1.8 mm
to 5.4 mm and had varying field-of -views. All images
distributed by the curated dataset had dimensions of
Nx180 × 180 pixels. Manually annotated segmenta-
tions were also provided for each of the images. Eight
anatomical structures were labelled, including bladder,
femur bone, obturator internus, transition zone, central
gland, rectum, seminal vesicle, and neurovascular bun-
dle. Prostate and bone segmentation were included as
part of MedSAM’s original training data and task, but
some of the other structures were not trained explicitly
in MedSAM.

The current SAM and MedSAM can only cope with
2D segmentation, so slices in each 3D volume are
processed and segmented independently and then
recompiled back into the volume space for performance
evaluation.
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2.2 Background on SAM and MedSAM

MedSAM consists of a vision transformer (ViT)-based
encoder for feature extraction, a prompt encoder that
accepts user-provided bounding box inputs, and a
lightweight mask decoder. MedSAM uses image inputs
of size 1024 × 1024 while LiteMedSAM uses image
inputs of size 256 × 256. Our images were resampled
to meet the respective dimension criteria.

MedSAM was pre-trained using a loss function
defined as the unweighted sum of Dice loss and binary
cross entropy (BCE) loss. Meanwhile, the loss function
used for the pre-training of LiteMedSAM also includes
intersection over union (IoU) loss into this summation.
The loss function used by LiteMedSAM is shown below.
Let N be the total number of voxels in an image and let gi
and si be the ith voxel of the ground truth and predicted
segmentations, respectively.

LBCE = − 1
N

N∑

i=1

gi log si + (1 − gi) log (1 − si)

LDice = 1 −
2
∑N

i=0 gisi
∑N

i=0 g2
i +

∑N
i=0 s2

i

LIoU = 1 −
∑N

i=0 gisi
∑N

i=0 g2
i +

∑N
i=0 s2

i −
∑N

i=0 gisi

L = LDice + LBCE + LIoU

We examined the performance of the pre-trained
MedSAM and a pre-trained LiteMedSAM on the testing
data and task described in Section 2.4.

2.3 Prompting variations

MedSAM models take bounding box input as prompts.
We have conducted investigation on four different
options of bounding box prompts: oracle bounding
boxes derived from the ground truth mask without and
with 5-pixel isometric expansion, and bounding boxes
derived from nnU-Net segmentation mask without and
with 5-pixel isometric expansion. The prompts derived
from ground truth labels are used to reflect the best-
case prompting while those derived from nnU-Net labels
simulate average-case prompting.

2.4 Refinement of LiteMedSAM with
specialized data and task

For fine-tuning of LiteMedSAM, the original 589 3D MR
images were randomly split at an 80:20 ratio for training
and hold-off testing in this study. The training group was
again randomly split at an 80:20 ratio for training and val-
idation. In total, 18,350 2D image-mask pairs were used

to train the LiteMedSAM model.Data augmentation was
utilized during training which consisted of random left-
right or up-down flips. During training, bounding boxes
were also generated from the ground-truth masks and
used as an additional model input. The bounding box
inputs had 5-pixel random shift. The network was opti-
mized using Adam optimizer (β1 = 0.9, β2 = 0.999) with
a learning rate of 5e-5 and a weight decay of 0.01. The
same loss function used for training of LiteMedSAM was
again used here for fine-tuning.

For consistency with the preprocessing protocol
described in the MedSAM paper, the following two
exclusion criteria were applied on the training dataset.
To improve dataset quality, tiny objects defined by a
100-pixel threshold were removed from slices as the
challenge would be detection rather than segmentation.
In addition, the intensity levels of all images were clipped
between the 0.5th and 99.5th percentiles, and min-max
normalization was applied.

Training was performed on a single GPU (NVIDIA
GeForce RTX3080, 10G memory) using resampled
image inputs of size 256 × 256 to accommodate the
memory limit. The model typically converges in about
300 epochs with a batch size of 4. The checkpoint with
the best validation loss was chosen for the final model.

2.5 Benchmark nnU-Net model

We trained a special-purpose in-house nnU-Net model
to serve two purposes: a benchmark for overall perfor-
mance comparison, and a means to generate bounding
box prompts for MedSAM. We opted to use nnU-Net
because it has been shown to perform well on a large
variety of segmentation tasks.14–16

Our nnU-Net was trained from scratch and using the
same dataset and dataset splitting as with LiteMed-
SAM fine-tuning. nnU-Net offers both 2D and 3D U-Net
configurations for training on new datasets. We opted
to use the “3D Full res” configuration which uses the
native image resolution (Nx180 × 180). The nnU-Net
model adaptively determines multiple hyperparameters
by analyzing the specific characteristics of the dataset.
The default network architecture is a U-Net consisting of
6 convolution blocks in the encoder and decoder. Each
block consists of two convolution layers followed by
batch normalization and a leaky ReLU activation func-
tion. Convolution steps were done with a 3 × 3 × 3
kernel size and stride length of 2. The patch size is
48 × 192 × 192 (zero-padding was automatically applied
as per nnU-Net standard operation) and a batch size of
2 was used. Training was performed using an SGD opti-
mizer with a learning rate of 0.01, momentum of 0.99,
and weight decay of 3e-5. The default loss function for
nnU-Net, a combination of Dice loss and cross-entropy
loss, was used. The network was trained over 1000
epochs and the checkpoint with the best validation loss
was chosen.
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F IGURE 1 Comparison of Dice scores and Hausdorff distances among MedSAM (blue), LiteMedSAM (green), and nnU-Net (orange).
While MedSAM and LiteMedSAM showcase comparable performance, nnU-Net is significantly superior.

2.6 Evaluation metrics

Dice scores and 95% Hausdorff distances were cal-
culated for each anatomical structure segmented for
all patients using each of the models. Comparisons
between each of the models were performed using a
two-sided paired t-test on statistics generated from the
testing of 117 volumetric images. A significance level of
0.05 was used.

3 RESULTS

3.1 Suboptimal performance for
off-the-shelf SAM models

Regardless of the intrinsic segmentation challenge level
based on the scale and morphology of the structure or
intensity context, MedSAM or LiteMedSAM is notably
inferior compared to the specialized nnU-Net perfor-
mance, as shown in Figure 1. The benchmark nnU-Net
showed statistically significant superiority in Dice score
for all structures (p < 0.0001) and in Hausdorff distance
for all structures (p < 0.05) except seminal vesicle in
which no significance difference was noted. Specifically,
for structures with well-defined and reasonably convex
shapes, as in bladder, rectum, and intact prostate, Med-
SAM resulted in dice scores of 0.808, 0.846, and 0.833,
respectively while LiteMedSAM achieved comparable
dice scores of 0.783, 0.787, and 0.818, respectively.
That’s 10%–20% lower than mean dice scores of 0.958,
0.924, and 0.918 from the benchmark nnU-Net. In addi-
tion,both MedSAM and LiteMedSAM experienced great
difficulty segmenting disjoint, bilateral structures includ-
ing femur, neurovascular bundle, and obturator internus.
For these structures, both models yielded mean Dice
scores lower than 0.6. The specific values are reported
in columns 1, 5, and 7 in Table 1. Illustrative examples
are shown in Figure 2.

Our in-house nnU-Net performs as expected com-
pared to its usage in other studies which suggests that
it is a reliable reference benchmark. Bhandary et al.
reported that nnU-Net achieved mean Dice scores of
0.850, 0.876, and 0.910 of the prostate when trained
and evaluated on three different MR prostate datasets.17

This is fairly consistent with our in-house nnU-Net which
scored 0.918 for prostate segmentation but which had
been trained on a larger compilation of datasets.

3.2 Impact of bounding box prompt

MedSAM models currently only offer stable support
for prompts in the form of bounding boxes. We eval-
uated the stability of MedSAM segmentations when
provided with different bounding box prompts. To sim-
ulate best-case prompting, we provided MedSAM with
oracle bounding boxes derived from the ground truth
labels.Meanwhile,bounding boxes generated from nnU-
Net was used to approximate average-case prompting.
As shown in Figure 3, when provided bounding boxes
generated by nnU-Net labels, MedSAM inferences saw
a statistically significant decrease in mean Dice score
compared to MedSAM inferences using ground-truth
bounding boxes for prostate central gland (0.808 vs.
0.800), intact prostate (0.836 vs. 0.801), seminal vesicle
(0.718 vs. 0.637), and neurovascular bundle (0.294 vs.
0.249). No significant difference in Hausdorff distances
were observed between the two tests,except for seminal
vesicle (6.34 mm vs. 8.23 m m).

As shown in Table 1 columns 3 and 4,isometric expan-
sion of both the ground truth derived bounding boxes
and the nnU-Net derived bounding boxes by 5 pixels
showed a very minor increase in mean Dice score for
all structures but were only found to be statistically
significant in the case of central gland, neurovascular
bundle,and obturator internus.No significant differences
in Hausdorff distances were observed.
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TABLE 1 Mean and standard deviation Dice Scores and 95% Hausdorff Distances for different models. Best value for each structure is
bolded. Abbreviations: OI (obturator internus), NVB (neurovascular bundle), SV (seminal vesicle).

Model
(bbox option)

MedSAM
(oracle)

MedSAM
(Unet)

MedSAM (oracle
expanded)

MedSAM (Unet
expanded)

LiteMedSAM
(oracle
expanded)

LiteMedSAM
refined
(oracle)

nnU-Net
(none)

Dice Scores

Bladder 0.81 ± 0.24 0.80 ± 0.24 0.81 ± 0.24 0.80 ± 0.24 0.78 ± 0.25 0.92 ± 0.17 0.96 ± 0.06

Bone 0.58 ± 0.19 0.57 ± 0.19 0.59 ± 0.18 0.58 ± 0.19 0.51 ± 0.19 0.92 ± 0.14 0.95 ± 0.05

Central gland 0.84 ± 0.10 0.80 ± 0.09 0.87 ± 0.09 0.83 ± 0.09 0.80 ± 0.12 0.91 ± 0.08 0.90 ± 0.04

Intact prostate 0.83 ± 0.09 0.81 ± 0.08 0.84 ± 0.09 0.82 ± 0.08 0.82 ± 0.09 0.90 ± 0.08 0.92 ± 0.04

NVB 0.29 ± 0.10 0.25 ± 0.10 0.33 ± 0.10 0.28 ± 0.10 0.22 ± 0.12 0.72 ± 0.13 0.71 ± 0.15

OI 0.25 ± 0.11 0.24 ± 0.11 0.29 ± 0.11 0.28 ± 0.11 0.10 ± 0.08 0.86 ± 0.12 0.89 ± 0.06

Rectum 0.85 ± 0.12 0.83 ± 0.11 0.86 ± 0.11 0.84 ± 0.11 0.79 ± 0.12 0.91 ± 0.11 0.92 ± 0.05

SV 0.72 ± 0.16 0.64 ± 0.17 0.74 ± 0.16 0.65 ± 0.18 0.69 ± 0.16 0.81 ± 0.18 0.79 ± 0.12

Hausdorff Distances

Bladder 6.63 ± 6.05 6.68 ± 5.50 6.55 ± 6.17 6.55 ± 5.54 7.53 ± 6.44 2.76 ± 4.70 1.97 ± 2.11

Bone 56.15 ± 13.87 57.34 ± 13.13 55.80 ± 14.09 56.98 ± 13.34 57.37 ± 12.52 3.97 ± 14.11 2.77 ± 11.53

Central gland 4.12 ± 3.20 4.53 ± 2.51 3.67 ± 3.27 4.12 ± 2.52 4.74 ± 2.94 2.64 ± 2.78 3.17 ± 1.67

Intact prostate 6.82 ± 4.12 6.51 ± 3.02 6.83 ± 4.11 6.34 ± 2.35 6.75 ± 3.88 5.57 ± 4.58 3.49 ± 2.85

NVB 13.55 ± 5.35 13.43 ± 5.73 13.56 ± 5.34 13.39 ± 5.60 13.52 ± 5.47 5.72 ± 6.44 5.49 ± 6.30

OI 34.14 ± 5.20 33.66 ± 4.30 34.01 ± 5.33 33.50 ± 4.41 33.69 ± 5.31 5.02 ± 10.68 4.98 ± 5.13

Rectum 8.39 ± 12.47 8.25 ± 8.14 8.26 ± 12.62 8.21 ± 8.20 9.48 ± 11.99 6.03 ± 12.56 5.10 ± 7.11

SV 6.40 ± 4.31 8.23 ± 6.50 6.30 ± 4.39 8.17 ± 6.65 5.52 ± 3.42 3.39 ± 3.19 4.95 ± 4.96

F IGURE 2 Examples of off -the-shelf MedSAM and LiteMedSAM segmentations compared to nnU-Net for two different patients. Shading
indicates ground-truth. Structures shown: femur (green), bladder (blue), central gland (orange), intact prostate (purple), obturator internus (red),
seminal vesicle (pink), neurovascular bundle (cyan), rectum (brown).
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F IGURE 3 Comparison of MedSAM sensitivity to bounding box prompts derived by nnU-Net or ground truth labels. [*, **, ***, ****, ns]
corresponds to statistical significance of α = [0.05, 0.01, 0.001, 0.0001, No Significance].

F IGURE 4 Comparison of Dice scores and Hausdorff distances between refined LiteMedSAM and nnU-Net. [*, **, ***, ****, ns] corresponds
to statistical significance of α = [0.05, 0.01, 0.001, 0.0001, No Significance].

3.3 Impact of specialized refinement

After being fine-tuned using a subset of our total
Pelvic MR dataset, the LiteMedSAM model can per-
form on par with the benchmark nnU-Net, as shown in
Figure 4. Whereas out-of -the-box LiteMedSAM strug-
gled with disjoint object segmentation, the fine-tuned
model has successfully learned to segment these struc-
tures more effectively. While most structures showed
comparable performance between the refined LiteMed-
SAM model and the benchmark nnU-Net in either mean
Dice score or mean Hausdorff distance, LiteMedSAM
showed advantage in segmenting the seminal vesicle
better. Figure 5 shows the improvement of LiteMedSAM
after fine-tuning.

4 DISCUSSION AND CONCLUSIONS

The current development of large foundation models,
including SAM and MedSAM, offers potential promise

to perform a unified solution for a large set of med-
ical segmentation. Realizing that the importance of
general purpose takes lower priority than stable accu-
rate clinical performance, we performed comprehensive
assessment and investigations of the large foundation
model MedSAM and its light version LiteMedSAM to
segment anatomical structures in pelvic MR images.
We investigated the possible improvement (or the lack
of) by using different bounding box prompts on Med-
SAM segmentations. More importantly, upon observing
the general inferior performance on the specific task,
we performed specialized fine-tuning and assessed its
effectiveness.

Our results indicate that out-of -the-box MedSAM and
LiteMedSAM exhibit suboptimal performance compared
to state-of -the-art models regardless of the bounding
box prompting schema used. We observed that the
MedSAM models have a particularly difficult time seg-
menting objects that are non-convex or non-elliptical
despite possessing relatively well-defined boundaries.
This is likely because MedSAM was originally trained on
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F IGURE 5 Visual comparison of LiteMedSAM before and after
fine-tuning for the same two patients as shown in Figure 2.

a variety of modalities which included pathology images
and dermoscopy, and a variety of segmentation tasks,
including cellular and molecular,which may bias the seg-
mentation decoder to contiguous convex shapes. We
also found that MedSAM is challenged by segmenting
multiple, disjointed objects.

Fine-tuning LiteMedSAM with a subset of our dataset
yielded promising results, with the fine-tuned model
performing comparably with nnU-Net, our benchmark
model, especially for disjoint object segmentation. This
suggests that MedSAM’s foundation model can adapt
effectively to specific task and anatomy with targeted
training.

While our preliminary investigation shows that varying
prompting using the current bounding box input offers
only moderate to minimal improvement on the seg-
mentation result, a more flexible and enabling scheme,
such as wider shape atlas or customized masking,2 may
provide implicit guidance to the underlying task and
could offer higher performance gain.Furthermore,multi-
point prompting (a feature currently supported by SAM
but not MedSAM) would allow the user to have more
control over the demarcation of foreground/background
which would also improve segmentation accuracy if
implemented. These approaches offer an opportunity
to combine a coarse task-specific training for mask
prompt generation and the advantage of detail sensi-
tivity from SAM/MedSAM’s extensive training for feature
encoding. In addition, the current work performed spe-
cialized refinement on the decoder portion of MedSAM
to achieve comparable performance to the benchmark
nnU-Net. It is expected that more sophisticated refine-

ment, such as introducing modifiers to the deep layers
of the encoder portion of MedSAM may further improve
performance.

The model refinement test was only performed
on LiteMedSAM due to the high memory require-
ment for training the complete MedSAM. Off -the-
shelf, LiteMedSAM and MedSAM perform compa-
rably, and prostate texture is relatively simple, so
we believe that a LiteMedSAM is sufficient to cap-
ture the encoding power of MEDSAM with little
compromise.

Isometric expansion of 5 pixels was used to explore
relaxed bounding box prompting. As discussed ear-
lier, refinement of the prompting may offer indirect
injection of task-awareness into the decoding block in
segmentation, but as a general theme, a good seg-
mentation scheme should be reasonably robust against
prompting.

The development of foundation models presents
many potential clinical advantages. Clinics can test new
tasks with minimal retraining, enabling faster adaptation
to evolving clinical needs without extensive development
efforts. Since these models leverage transfer learn-
ing and pre-training, they also require fewer annotated
examples for fine-tuning on specific tasks, thus reducing
the manual annotation burden.18,19 However,before they
can be implemented clinically, it is crucial to perform rig-
orous quality assurance and adjudication to appreciate
its applicability and requirement. Despite their general-
izability and efficiency advantages, they are not useful
if they cannot provide accurate and robust results in a
medical setting.

Overall, our study highlights the necessity and impor-
tance of specialized fine tuning to make large foundation
models like MedSAM and LiteMedSAM to be clinically
relevant and useful.
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