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ARTICLE OPEN

Osteocyte dysfunction promotes osteoarthritis through
MMP13-dependent suppression of subchondral bone
homeostasis
Courtney M. Mazur1,2, Jonathon J. Woo 1, Cristal S. Yee1, Aaron J. Fields 1, Claire Acevedo1,3, Karsyn N. Bailey1,2, Serra Kaya1,
Tristan W. Fowler1, Jeffrey C. Lotz1,2, Alexis Dang1,4, Alfred C. Kuo1,4, Thomas P. Vail1 and Tamara Alliston1,2

Osteoarthritis (OA), long considered a primary disorder of articular cartilage, is commonly associated with subchondral bone
sclerosis. However, the cellular mechanisms responsible for changes to subchondral bone in OA, and the extent to which these
changes are drivers of or a secondary reaction to cartilage degeneration, remain unclear. In knee joints from human patients with
end-stage OA, we found evidence of profound defects in osteocyte function. Suppression of osteocyte perilacunar/canalicular
remodeling (PLR) was most severe in the medial compartment of OA subchondral bone, with lower protease expression,
diminished canalicular networks, and disorganized and hypermineralized extracellular matrix. As a step toward evaluating the
causality of PLR suppression in OA, we ablated the PLR enzyme MMP13 in osteocytes while leaving chondrocytic MMP13 intact,
using Cre recombinase driven by the 9.6-kb DMP1 promoter. Not only did osteocytic MMP13 deficiency suppress PLR in cortical and
subchondral bone, but it also compromised cartilage. Even in the absence of injury, osteocytic MMP13 deficiency was sufficient to
reduce cartilage proteoglycan content, change chondrocyte production of collagen II, aggrecan, and MMP13, and increase the
incidence of cartilage lesions, consistent with early OA. Thus, in humans and mice, defects in PLR coincide with cartilage defects.
Osteocyte-derived MMP13 emerges as a critical regulator of cartilage homeostasis, likely via its effects on PLR. Together, these
findings implicate osteocytes in bone-cartilage crosstalk in the joint and suggest a causal role for suppressed perilacunar/canalicular
remodeling in osteoarthritis.

Bone Research            (2019) 7:34 ; https://doi.org/10.1038/s41413-019-0070-y

INTRODUCTION
Osteoarthritis (OA), the most common chronic joint disease, is a
leading cause of pain and disability worldwide.1 OA irreversibly
damages articular cartilage and the surrounding tissues, compro-
mising joint function and mobility of over 30 million Americans.2

Abundant research efforts have investigated cartilage and its
interactions with other joint tissues in order to understand the
underlying mechanisms of OA initiation and progression.3–5 Still,
no permanent disease-modifying therapies exist short of joint
replacement.
A major question in the field is the extent to which subchondral

bone plays a causal role in the pathogenesis of OA. Though much
correlative evidence indicates the coordinated degradation of
subchondral bone and cartilage,3,6 causality is difficult to ascertain
because analyses are often conducted on tissues with end-stage
disease or in models in which both the bone and cartilage are
affected. Recent studies have illuminated that biological7 and
mechanical8 changes to the subchondral bone can precede
degradative changes to overlying cartilage. However, the cellular
mechanisms responsible for OA-related changes in subchondral
bone, and particularly the role of osteocytes, remain unclear.
Recent reports have reinvigorated interest in the active role of

osteocytes in remodeling their surrounding bone matrix—a

process called perilacunar/canalicular remodeling (PLR).9–12 PLR
is a dynamic process by which osteocytes secrete matrix
metalloproteinases (MMPs),13–15 cathepsin K (CatK),10 and other
enzymes16,17 to dynamically resorb and then replace the local
bone matrix. PLR maintains bone material properties,13,18,19

systemic mineral homeostasis,10,12 and the canalicular channels
that facilitate osteocyte communication, mechanosensation, and
nourishment.9,20,21 Several known regulators of bone homeostasis,
including TGF-β,19 SOST,17 parathyroid hormone,10,22 and Vitamin
D,23,24 regulate PLR to support the metabolic and mechanical
function of the skeleton. Although PLR is a fundamental
mechanism by which osteocytes maintain bone homeostasis, its
role in the maintenance of subchondral bone and the progression
of joint disease remain unclear.
To elucidate the role of PLR in disease, we previously

investigated osteonecrosis, a progressive and severe joint disease
in which subchondral bone mechanically fails with painful
collapse of the articular surface.25,26 We found that glucocorti-
coids, a major risk factor associated with osteonecrosis,25 suppress
PLR and cause the same changes in subchondral bone of mice as
seen in glucocorticoid-induced human osteonecrosis.27 Although
suppression of PLR is clearly associated with the degradation of
subchondral bone in osteonecrosis, it was not possible to isolate
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the effects of osteocytes from the systemic influence of
glucocorticoids. Given that the health of articular cartilage
depends upon subchondral bone for mechanical and vascular
support,28,29 we hypothesized that signs of PLR dysregulation may
also accompany the much more common joint disease, osteoar-
thritis. We tested this hypothesis by examining specific hallmarks
of PLR suppression and their relationship to cartilage degenera-
tion in OA of the human knee. As a step toward evaluating the
causality of PLR suppression in joint disease, we evaluated the
bone and joint phenotypes of a novel mouse model with ablation
of the critical PLR enzyme MMP13 from osteocytes, but not
chondrocytes. Together, our results demonstrate the causal role of
osteocyte-derived MMP13 in the pathogenesis of OA, suggesting
the importance of osteocyte perilacunar/canalicular remodeling
for joint homeostasis.

RESULTS
Degeneration of the osteocyte lacunocanalicular network in
human osteoarthritis
To determine if osteocytic PLR is affected by OA in humans, we
compared subchondral bone in tibial plateaus from patients with
end-stage OA to that of cadaveric donors with no clinical evidence
of joint disease. As expected, tibial plateaus from patients with OA
had gross degeneration of the articular cartilage (Supplementary
Fig. 1a–f) and radiographic evidence of subchondral bone
sclerosis, particularly on the medial side of the joint (Supplemen-
tary Fig. 1g–i). Histological analysis confirmed the cartilage
degeneration and subchondral bone sclerosis in OA specimens
(Fig. 1a). Consistent with prior reports,6 both the subchondral
bone plate and trabeculae were thicker in OA than in controls (Fig.
1a). Relative to the cadaveric controls, OA tibial plateaus showed
decreased cartilage thickness, reduced Safranin-O-positive pro-
teoglycan staining in the superficial zone, and cartilage fibrillation
(Fig. 1a), resulting in significantly higher OARSI scores (Supple-
mentary Fig. 1b). Although the control cartilage was more intact
than the OA cartilage overall, the medial compartment showed
more evidence of degeneration in both OA and control speci-
mens. Therefore, the subsequent analyses of subchondral bone
compared defined regions of interest between the control and OA
specimens, as well as between the medial and lateral side of the
same specimen.
While OA-dependent differences in osteoblast and osteoclast

function have been described,3,6 the effect of OA on osteocytes is
not well-defined. Therefore, we evaluated osteocyte PLR in
subchondral bone by studying one of its key hallmarks, the
lacunocanalicular network (LCN). Silver staining revealed that
cadaveric control subchondral bone had both more abundant and
apparently longer canalicular projections than the subchondral
bone from OA patients (Fig. 1b). The dramatic degeneration of the
canalicular network in OA bone was particularly evident in the
medial side of the tibial plateau, where cartilage degeneration was
most severe. Quantitative analysis revealed significant OA-
dependent reductions in the total osteocyte lacunocanalicular
area (38%–46%) (Fig. 1c) and canalicular length (51%–54%) (Fig. 1d)
relative to cadaveric controls, consistent with this hallmark feature
of PLR suppression.10,13–15,19,27,30 Therefore, the reduced canali-
cular length and lacunocanalicular area in OA subchondral bone
strongly suggests that PLR is suppressed in OA.

Collagen disorganization and hypermineralization in human OA
subchondral bone
In mouse models of PLR suppression and in human osteonecrotic
subchondral bone, loss of lacunocanalicular area is often
accompanied by collagen disorganization and hypermineraliza-
tion of the bone extracellular matrix (ECM).13,27,30 Therefore, we
evaluated the organic and mineral constituents of OA subchondral
bone. Birefringent collagen fibers in OA subchondral bone showed

qualitatively less alignment relative to the control tissue (Fig. 2a).
Upon quantification, collagen linearity was significantly lower in
OA specimens compared with control specimens on both the
lateral and medial sides. Furthermore, collagen fibers were
significantly less aligned on the medial side of the joint than on
the lateral side in both groups (Fig. 2b).
Consistent with these site-dependent and disease-dependent

patterns, hypermineralization of subchondral bone was most
pronounced in specimens from the medial side of the OA tibial
plateau (Fig. 2d). Medial OA specimens also portrayed a rougher
subchondral surface than control specimens. Statistical analysis
confirms that the distribution of mineral density is significantly
shifted in medial OA samples relative to lateral OA samples, but
low sample size precludes quantitative comparison with control
groups (Fig. 2c). Therefore, OA is accompanied by subchondral
bone collagen disorganization and is regionally associated with
bone matrix hypermineralization within samples, concordant with
suppressed PLR.13,27,30

Reduced osteocyte expression of PLR enzymes in human OA
subchondral bone
Given that OA subchondral bone shows multiple signs of
suppressed PLR, we sought to evaluate the expression of key
enzymes implicated in PLR by osteocytes. Immunohistochemistry
(IHC) revealed qualitatively lower levels of MMP13 (Fig. 3a) and
Cathepsin K (CatK, Fig. 3c) protein expression in subchondral bone
of the medial OA tibial plateau relative to healthy controls and
relative to the less severely affected lateral OA tibial plateau.
Accordingly, the percentage of MMP13-positive osteocytes was
lower in OA subchondral bone by 20% on the medial side and
10% on the lateral side relative to their respective control sites
(Fig. 3b). The percentage of CatK-positive osteocytes was 24%
lower on the medial side and 13% lower on the lateral side in OA
subchondral bone compared to respective cadaveric controls
(Fig. 3d). No differences in negative control immunostaining were
observed between cadaveric and OA samples (Fig. 3e). Interest-
ingly, the percentage of MMP13-positive osteocytes is strongly
correlated with the lacunocanalicular area and with canalicular
length for each sample and region (Fig. 3f–g).
Together these results suggest that human OA is correlated with

PLR suppression in subchondral bone, as demonstrated by
repression of key PLR enzymes in subchondral bone, loss of
lacunocanalicular area, collagen disorganization, and hyperminer-
alization. As a next step in evaluating the causality of PLR
suppression in joint disease, we generated mice with a targeted
deletion of MMP13 from osteocytes. We previously reported that
systemic ablation of MMP13 suppresses PLR,13 however, chondro-
cyte expression of MMP13 contributes to cartilage degradation,31

and ablation of MMP13 in chondrocytes is chondroprotective.32,33

Therefore, we characterized the bone and joint phenotypes of mice
with a novel, osteocyte-intrinsic ablation of MMP13.

Targeted ablation of MMP13 expression in osteocytes
An established floxed MMP13 allele34 was deleted under control
of DMP1-Cre (9.6-kb promoter),35 resulting in mice with a targeted
deletion of MMP13 in osteocytes. DMP1-Cre+/−; MMP13fl/fl

(MMP13ocy−/−) animals are born at the same rate and are grossly
similar to their DMP1-Cre−/−; MMP13fl/fl (wild-type) littermates,
with no significant differences in weight or lifespan.
We validated the tissue-specific reduction in MMP13 expression at

the transcriptional and translational level. In femoral cortical bone of
MMP13ocy−/− animals, immunofluorescence revealed 37% fewer
MMP13-positive osteocytes (Fig. 4a, c), and in subchondral trabecular
bone, the number of MMP13-positive osteocytes was reduced by
63% (Fig. 4b, c, regions of interest shown in Supplementary Fig. 2a, b,
channels shown separately in Supplementary Fig. 2c). This result was
consistent with the 63% reduction in MMP13 mRNA expression in
humeri cleaned of marrow and periosteum (Fig. 4e).
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Given the goal of identifying the role of osteocyte-derived
MMP13, and since the 9.6-kb DMP1-Cre promoter can induce off-
target recombination in late osteoblasts and some soft tissues,36

we also evaluated possible changes in MMP13 expression in other
cell types in the MMP13ocy−/− mouse model. Immunofluorescence
revealed neither significant changes in the number of MMP13-
positive chondrocytes in articular cartilage (Fig. 4g) nor qualitative
differences in MMP13 expression in growth plate chondrocytes in

MMP13ocy−/− mice (Supplementary Fig. 2d). MMP13 expression in
periosteal cells (Fig. 4a), bone marrow (Fig. 4b; Supplementary Fig.
2c), and skeletal muscle (not shown) was also unchanged between
genotypes. Furthermore, the number of DAPI-stained osteocytes
in the cortical bone is not affected by MMP13 ablation (Fig. 4f),
suggesting that recombination in this model is not affecting the
differentiation and embedding of osteocytes. Therefore, the
MMP13ocy−/− mouse model is appropriate to observe differences
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in bone and joint phenotypes arising primarily from changes in
osteocyte-derived MMP13.
Trabecular bone volume is increased in mice with systemic

ablation of MMP13 and in other models of PLR suppression.13,19,34

To determine if deletion of osteocyte-intrinsic MMP13 is sufficient
to alter bone mass, we used μCT to analyze trabecular and cortical
bone mass and microarchitecture. Relative to wild-type mice,

MMP13ocy−/− femurs had a 25% increase in trabecular bone
volume fraction due to a 16% increase in the trabecular number
and a corresponding decrease in trabecular spacing with no
change in trabecular thickness (Fig. 4h). MMP13ocy−/− femurs also
show an increase in volumetric bone mineral density and a
decrease in SMI reflecting a shift to more plate-like microarchi-
tecture. The mRNA levels or ratio of RANKL and OPG mRNA
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expression do not account for these differences (data not shown).
Cortical bone thickness and total mineral density were normal in
MMP13ocy−/− femurs (Fig. 4i). Therefore osteocyte-intrinsic
MMP13 is sufficient to alter trabecular bone volume and
mineralization.

Suppressed PLR in MMP13ocy−/− bone
To determine the role of osteocyte-intrinsic MMP13 in PLR, we
evaluated the osteocyte LCN and collagen alignment, both of
which are sensitive to PLR suppression, including in mice with
systemic ablation of MMP13.13 The LCN of femoral cortical bone is
visibly disrupted by osteocyte-intrinsic MMP13 deficiency (Fig. 5a).
Canalicular length in MMP13ocy−/− mice is reduced by 20% (Fig.
5b) with no significant change in lacunar area (Fig. 5c) or lacunar
density (data not shown). This decrease in canalicular length
occurs in a coordinated manner across the medial, lateral, anterior,
and posterior regions of MMP13ocy−/− cortical bone (Fig. 5b). We
consistently observed a small but significant decrease in peak
alignment of collagen fibers in MMP13ocy−/− bone compared with
wild-type bone in the anterior region (Fig. 5d, e). In the other
regions studied, no differences in collagen linearity were detected
despite the change in PLR activity suggested by LCN analysis.
Since changes to collagen, mineral, or LCN organization can

affect bone biomechanical behavior,13,19,37 we tested mechanical
properties of femurs from 2- and 4-month-old wild-type and
MMP13ocy−/− mice using three-point bending. Small but

significant decreases in whole-bone structural stiffness and
ultimate load were detected in 4-month-old MMP13ocy−/− bones
(Table 1), consistent with minor deficiencies in both collagen and
mineral.38,39 However, no significant changes were detected in
yield properties, postyield displacement, or work-to-fracture, so
cortical bone biomechanical outcomes were relatively insensitive
to osteocyte-intrinsic MMP13 deficiency in this model. Overall,
osteocyte-intrinsic MMP13 is required for PLR since its ablation
disrupts the maintenance of canalicular networks and collagen
organization and reduces bone mechanical properties.

Increased cartilage degradation in MMP13ocy−/− mice
Though subchondral bone clearly contributes to osteoarthritis, the
role of osteocytes in joint disease remains unclear.3,5–8 Given the
strong association of PLR suppression with cartilage degeneration
in human OA (Figs. 1–3), we tested the hypothesis that PLR
suppression via ablation of osteocyte MMP13 is sufficient to cause
cartilage degeneration. Articular cartilage of 4-month-old wild-
type and MMP13ocy−/− mouse knees demonstrated clear histo-
pathological differences (Fig. 6a). Relative to the smooth,
proteoglycan-rich articular cartilage in wild-type knees,
MMP13ocy−/− cartilage had surface irregularities and depletion
of proteoglycans. These characteristic features of degenerating
articular cartilage were apparent in basal conditions on the medial
and lateral tibial and femoral surfaces. Accordingly, using two
established OA grading scales,40,41 MMP13ocy−/− knees had
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statistically more cartilage degeneration than wild-type knees (Fig.
6b, c). Therefore, loss of MMP13 function in the subchondral bone
osteocytes is sufficient to disrupt cartilage homeostasis, causing
the appearance of osteoarthritic features in otherwise healthy
cartilage. This result further suggests that the severe PLR
suppression observed in OA human subchondral bone plays a
causal role in the progression of joint disease.
To assess the role of PLR suppression in post-traumatic cartilage

degeneration, we used an established medial ligamentous injury
(MLI) model to induce OA in wild-type and MMP13ocy−/− knees.42

As in non-injured controls, sham-injured MMP13ocy−/− joints
showed more cartilage degeneration than their wild-type counter-
parts (Fig. 6d). Increases in chondrocyte hypertrophy and articular
cartilage lesions, as well as proteoglycan loss, contributed to the
more severe OA grade in sham-injured MMP13ocy−/− knees (Fig.
6e, f). After injury, both genotypes experienced severe loss of
articular cartilage and osteophyte formation, but no differences
were found between genotypes (Fig. 6d–f). These data suggest
that although MMP13 expression by osteocytes is important for
cartilage homeostasis, the severity of joint injury overshadows the
osteocytic contribution to healthy joint crosstalk in this model.

Mechanisms of subchondral osteocyte influence on cartilage
Although a causal role for osteocytes in cartilage degeneration, to
our knowledge, has not previously been demonstrated, there are
multiple hypothetical mechanisms by which subchondral bone
deterioration could exacerbate cartilage degeneration and drive
OA.3,5,6 These include biological hypotheses such as cell death or
vascular changes, and mechanical hypotheses such as rod and
plate distribution in subchondral bone.8,43–45 To further under-
stand why MMP13ocy−/− mice are predisposed to cartilage
degeneration, we evaluated biological and structural features of
tibial cartilage and subchondral bone in healthy and injured joints.
First, we tested the hypothesis that MMP13ocy−/− bone causes

increased chondrocyte catabolism and apoptosis by evaluating
the expression of cartilage matrix constituents collagen II and
aggrecan, of degeneration markers collagen X and MMP13, and of
the products of cartilage matrix degradation, the neoepitopes
VDIPEN and NITEGE. Relative to the wild-type, MMP13ocy−/−

chondrocytes had increased levels of collagen II and a slight
decrease in aggrecan (Fig. 7a). The resulting increase in the
collagen II to aggrecan ratio in MMP13ocy−/− cartilage (Fig. 7b) is a
hallmark of early OA.46 MMP13 expression by MMP13ocy−/−

chondrocytes was also significantly elevated (Fig. 7a, c), consistent
with the observed cartilage degeneration (Fig. 6). Significant
differences were not observed in collagen X, VDIPEN, or NITEGE
expression (not shown), nor were osteocyte or chondrocyte
viability altered by osteocyte MMP13 deficiency or injury
(Supplementary Fig. 3), though additional timepoints may be
required to observe these cellular responses.47,48

Second, since human osteoarthritic subchondral bone is
characterized by sclerosis, collagen disorganization, and disrupted
LCN (Figs. 1–3), we hypothesized that these structural features
would be observed in MMP13ocy−/− subchondral bone. As in
cortical bone (Fig. 5a), the canalicular length of osteocytes in
MMP13ocy−/− subchondral bone was visibly shorter than in wild-
type bone (Fig. 8a). Canaliculi were 17%–20% shorter in MMP13ocy
−/− subchondral bone compared with wild-type bone, and injured
samples had 17%–20% shorter canaliculi than in the correspond-
ing sham-injured groups for each genotype (Fig. 8b). These
findings suggest that the cartilage degradation in mice lacking
osteocyte MMP13 could be due to reduced PLR and highlight the
sensitivity of the LCN to joint injury. Collagen fiber organization in
sham-injured tibial subchondral bone was also disrupted by
osteocytic MMP13 deficiency (Fig. 8c). Joint injury caused a loss of
collagen fiber organization compared to wild-type shams (Fig. 8d),
but no differences between genotypes were detected after injury.
Similarly, μCT of tibial subchondral bone revealed a MMP13-
dependent difference in bone volume fraction between the sham
groups, but not between the injured groups (Fig. 8e, f). Thus, loss
of osteocyte MMP13 causes structural changes to subchondral
bone that mimic joint injury, possibly via its effects on PLR.
Finally, we performed RNA-seq on wild-type and MMP13ocy−/−

bones to determine which biological pathways in osteocytes were
disrupted by MMP13 ablation. We detected 90 upregulated and
454 downregulated differentially expressed genes in MMP13ocy−/−

bone, of which MMP13 was one of the most significantly
downregulated (Fig. 9a). With induction or suppression of PLR,

Table 1. Flexural properties of wild-type and MMP13ocy−/− femurs

Posterior compression, 2 months (n= 9) Posterior compression, 4 months (n= 8–9)

Flexural propertities WT MMP13ocy−/− WT MMP13ocy−/−

Bending stiffness/(N·mm−1) 83.63 ± 9.14 82.85 ± 6.00 112.24 ± 13.40 110.26 ± 9.64

Yield load/N 7.94 ± 1.71 8.07 ± 1.03 9.31 ± 1.97 11.26 ± 1.40*

Ultimate load/N 16.79 ± 2.21 15.11 ± 1.24# 19.02 ± 2.08 18.24 ± 1.63

Postyield displacement/mm 0.56 ± 0.22 0.60 ± 0.27 0.54 ± 0.37 0.38 ± 0.13

Work to fracture/N-mm 7.98 ± 1.87 7.86 ± 3.09 8.24 ± 3.30 6.55 ± 1.85

Bending modulus/GPa 10.97 ± 1.60 12.50 ± 2.56 15.31 ± 1.07 15.50 ± 3.26

Yield stress/MPa 107.94 ± 19.20 124.38 ± 30.27 132.45 ± 25.56 162.75 ± 32.98#

Anterior compression, 2 months (n= 3–9) Anterior compression, 4 months (n= 8–9)

WT MMP13ocy−/− WT MMP13ocy−/−

Bending stiffness/(N·mm−1) 78.65 ± 10.82 67.03 ± 1.04 100.77 ± 6.70 94.25 ± 9.42

Yield load/N 8.65 ± 1.22 9.28 ± 2.29 11.08 ± 1.09 10.73 ± 1.50

Ultimate load/N 13.25 ± 1.65 13.61 ± 1.67 17.12 ± 1.34 15.64 ± 1.35*

Postyield displacement/mm 0.95 ± 0.56 1.00 ± 0.50 0.31 ± 0.10 0.37 ± 0.19

Work to fracture/N-mm 8.91 ± 2.32 9.16 ± 2.40 5.09 ± 1.50 5.27 ± 2.01

Femurs from wild-type and MMP13ocy−/− mice were broken with either anterior or posterior side in compression. In general, structural and tissue material
properties were stronger in posterior (physiological) compression than anterior compression and get stronger with age. Ultimate load tended to be lower in
MMP13ocy−/− bones than wild-type bones, particularly in 4-month-old samples broken in anterior compression. MMP13ocy−/− bones also had lower stiffness in
this test configuration. Values are presented as mean ± SD. *P < 0.05 between genotypes, #P < 0.065 between genotypes by unpaired t test
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we and others have previously observed coordinated and
compensatory changes in expression of genes required for matrix
resorption, including proteases and genes involved in acid
secretion.19,27 Thus, it was striking to find that the most
differentially induced genes in MMP13ocy−/− bone included Ctsk
and Acp5, as well as many subunits of vacuolar type ATPases
associated with intracellular and extracellular acidification (Fig. 9a,
b). A gene signature score of acidification-related genes showed
that they are significantly upregulated in MMP13ocy−/− bone (P <
0.05). On the other hand, a gene signature score of transcription
factors and markers of osteoblast differentiation showed no
significant change in MMP13ocy−/− bone compared with wild-type
bone (P= 0.19), further indicating that the phenotype of the
MMP13ocy−/− joint is a result of defective osteocyte function
rather than of osteogenic differentiation. Using qPCR, we validated
that MMP13ocy−/− bone has reduced expression of Mmp2 and

increased expression of Ctsk, Atp6v0d2, and Acp5 (Fig. 9c). No
changes were observed in Timp1, Timp2, or Mmp14. The increase
in Cathepsin K is due to a change in osteocyte expression rather
than osteoclast expression, which was verified by immunohisto-
chemistry (Fig. 9d). Thus, MMP13 ablation in osteocytes not only
disrupts PLR but also disrupts structural and biological home-
ostasis of the joint.

DISCUSSION
This study advances our understanding of crosstalk between
cartilage and subchondral bone by implicating osteocytes as
causal drivers of joint disease in osteoarthritis. In both human and
mouse joints, osteoarthritic subchondral bone exhibits several
outcomes of PLR suppression, including canalicular and collagen
fiber disorganization, hypermineralization, and changes in PLR
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enzyme expression. Furthermore, osteocyte-intrinsic deficiency in
the key PLR enzyme MMP13 is sufficient to suppress PLR and
induce premature OA, with subchondral sclerosis and cartilage
damage in otherwise healthy young mice. This study highlights a
new, causal role for osteocytic MMP13 in the regulation of
cartilage homeostasis and suggests PLR suppression as a novel
mechanism in OA. Therefore, osteocytes emerge as a potential
cellular target of new therapeutics to block or reverse OA
progression.
Several features of the bone phenotype in MMP13ocy−/− mice

resemble those in other models of MMP13 ablation and PLR
suppression. Col1-Cre+/−;MMP13fl/fl and systemic MMP13−/−

mouse models together implicate bone-derived MMP13 expres-
sion in trabecular bone remodeling, PLR, and bone quality.13,30,34

As in systemic MMP13−/− bone, osteocyte-specific MMP13
ablation increased trabecular bone mass and disrupted canalicular
and collagen organization. However, whereas systemic ablation
caused decreased postyield deflection and decreased fracture
toughness, we observed changes to cortical bone stiffness and
ultimate strength only. This was surprising because we previously
observed severe defects in bending modulus, yield stress, and
toughness in TβRIIocy−/− bone that also has severe PLR suppres-
sion.19 The less severe mechanical phenotype is, however,
consistent with the more subtle changes to canalicular and
collagen organization in MMP13ocy−/− bone. Possible explanations
for these differences include the incomplete ablation of MMP13 in
MMP13ocy−/− bone, the contribution of non-osteocytic MMP13 to
the systemic MMP13−/− phenotype, partial rescue of the
MMP13ocy−/− phenotype by diffusion of MMP13 from cells in
which it is not ablated, or the coordinated repression of multiple
PLR enzymes in TβRIIocy−/− but not in MMP13ocy−/− bone.
Whereas Mmp2, Mmp13, Mmp14, Ctsk, and Acp5 were repressed
in TβRIIocy−/− bone, MMP13ocy−/− bone showed both co-
repression (Mmp2) and an apparent compensatory upregulation
(Ctsk, Acp5) of PLR enzymes. Therefore, the partial reduction of
PLR enzyme expression in the MMP13ocy−/− model may be
insufficient to substantially impact material properties and
postyield behavior measured at the whole-bone scale. Overall
the MMP13ocy−/− model was sufficient to suppress PLR in cortical
and subchondral bone, consistent with the subchondral bone
changes seen in end-stage human OA.

This MMP13ocy−/− mouse model presented a unique opportu-
nity to investigate the role of osteocytes in joint homeostasis.
Since chondrocyte-derived MMP13 drives OA by cleaving collagen
II,31 systemic MMP13 ablation is chondroprotective.32,33 By
preserving chondrocyte expression of MMP13 while reducing its
expression in osteocytes, we observed evidence of osteocyte-
dependent joint crosstalk, illustrating a novel cellular mechanism
by which bone affects the overlying cartilage. Because off-target
expression of the 9.6-kb DMP1-Cre promoter has been reported in
non-skeletal tissues and in osteoblasts,36 it is impossible to rule
out contributions from other cell types to the observed cartilage
phenotype. We anticipate that the effect on cartilage of possible
non-skeletal MMP13 ablation, which participates in wound healing
and cell migration,49 would be most pronounced in sham or MLI
animals. However, the cartilage phenotype in non-injured controls
and sham-operated animals was consistent, and MLI surgery was
not affected by genotype. Our immunostaining and RNA-seq
results suggest that loss of MMP13 in osteocytes, rather than in
chondrocytes or osteoblasts, is predominantly responsible for the
MMP13ocy−/− cartilage phenotype. Indeed, MMP13 was not
ablated in MMP13ocy−/− articular cartilage, but rather was
elevated, along with other outcomes of cartilage degeneration.
Together the results of this study address an important gap in

understanding OA, namely the identification of mechanisms
responsible for the coupled degeneration of cartilage and
subchondral bone. We show here that suppression of osteocytic
MMP13 causally contributes to the pathogenesis of OA, and
several lines of evidence suggest that this is a PLR-dependent
mechanism. First, MMP13 plays a key role in the induction and
suppression of PLR. In a systemic model of MMP13 ablation and in
glucocorticoid treatment, MMP13 expression in osteocytes is
reduced and canaliculi are short and disorganized.13,27 In lactation,
MMP13 is strongly upregulated as lacunar area and canalicular
size increase.10,18 In human subchondral bone, we show that
MMP13 expression is tightly correlated with LCN area and
canalicular length (Fig. 3), and while the LCN phenotype is more
subtle in MMP13ocy−/− subchondral bone than in humans, the
relationship remains. Second, several groups have observed
changes to osteocyte morphology in OA subchondral bone
consistent with suppressed PLR.50–53 Our findings complement
and extend beyond these prior reports of altered osteocyte
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morphology, viability, and gene expression in human OA
subchondral bone50–53 by describing the profound effect of OA
on bone extracellular matrix organization, canalicular length, and
lacunocanalicular network area. Furthermore, the most severe PLR
suppression was evident in the medial compartment with the

most cartilage damage. Finally, in mouse cortical bone, gluco-
corticoids repress MMP13 and other PLR enzymes, resulting in
canalicular degeneration, collagen disorganization, and hypermi-
neralization of subchondral bone,27 all of which mimic the signs of
PLR suppression in the subchondral bone from another human
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joint disease, glucocorticoid-induced osteonecrosis.25,26,54 Never-
theless, it is possible that osteocytic MMP13 supports joint
homeostasis through PLR-independent mechanisms, such as
activation of latent growth factors55–57 or control of osteocyte
differentiation or embedding. Although RNA-seq analysis indicates
that MMP13ocy−/− bone expresses normal levels of osteogenic
differentiation markers, including Runx2, Sp7, and Atf4, an
inducible model of MMP13 ablation would be needed to
definitively rule out this possibility. The current findings, in which
cartilage degeneration results from osteocyte-intrinsic ablation of
PLR enzyme MMP13, strengthen the idea that osteocytes play a
causal role in joint disease through PLR.
Much remains to be elucidated about the relative role of PLR in

age-related joint degeneration and in post-traumatic OA (PTOA).
Most animal models of OA involve a joint injury in which both
bone and cartilage are affected, and which may additionally
initiate inflammatory cascades,40,42,58–62 making it difficult to
isolate the cell type responsible for cartilage degeneration. In our
hands, MLI joint injury reduced canalicular length in both
genotypes but did not affect MMP13ocy−/− cartilage more
severely. This suggests that reduced subchondral bone MMP13

expression is sufficient to disrupt PLR and cartilage homeostasis,
but that joint injury can override preexisting defects.63 In human
bone, the more dramatic differences in the lacunocanalicular
network may be due to a combination of biochemical and
mechanical effects over many years that were not replicated in our
injury model. Review of additional timepoints post injury, or use of
a milder injury model, may provide a clearer illustration of how
osteocytic MMP13 and PLR contribute to PTOA pathogenesis.
Basal phenotypes may be more representative of age-related joint
degeneration, in which cartilage degeneration occurs without a
known traumatic injury. The predisposition of mice with
suppressed PLR to develop cartilage wear is consistent with the
idea that subchondral bone sclerosis leads to cartilage breakdown.
For example, in a guinea pig model of spontaneous OA, trabecular
rod loss and plate thickening precede significant cartilage
degradation.8 Likewise, in non-human primates that spontaneously
develop OA, subchondral bone thickening appears to precede
cartilage fibrillation.64 In humans, longitudinal tracking of bone
marrow lesions by MRI reveals the clinical relationship of
subchondral changes to OA progression and knee pain.44 Although
similar end-stage OA phenotypes can arise from age, injury, or
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other causes,65 PLR may play a causal role in some of these
pathological mechanisms, but not others. The role of PLR in OA in
female patients and mice must also be considered separately since
PLR, like OA, may have sexually dimorphic effects.66

Unraveling the circumstances and mechanisms through which a
bone-intrinsic defect in MMP13 suppresses PLR and induces OA
will require further studies. PLR has the potential to affect
subchondral bone vascularity, microarchitecture, and mechanics,
cartilage strain distribution, and cell-cell signaling, any of which
could impact bone–cartilage crosstalk. The LCN, maintained by
PLR, is important for solute transport, and transport between
subchondral bone and cartilage is altered in mouse and human
OA.21,67,68 Changes in subchondral bone volume fraction43,69 and
geometry,8 similar to those seen in MMP13ocy−/− bone, can
precede cartilage pathology, possibly by changing strain distribu-
tion in the overlying cartilage. Based on our RNA-seq analyses,
biological mechanisms might include autocrine or paracrine
effects resulting from excessive acidification by osteocytes. If the
critical points at which osteocytes cause and respond to cartilage
degradation can be identified, these cells may emerge as a
potential target of new therapies to prevent or treat OA. Although
many questions remain about the role and regulation of PLR in
OA, our data collectively suggest that osteocyte MMP13 dynami-
cally maintains subchondral bone homeostasis and joint crosstalk,
and that its disruption can exacerbate joint disease, likely through
suppression of PLR.

MATERIALS AND METHODS
Human donor population and specimen preparation
Five male subjects with clinically diagnosed stage IV osteoar-
thritis of the tibial plateau, who were scheduled for total knee
arthroplasty, were recruited for this study (Supplementary Fig.
1a). Recruitment occurred through referral from orthopedic
surgeons at a Department of Veterans Affairs Medical Center. All
samples were collected from patients with OA of the femor-
otibial joint as described in protocols that were reviewed and
approved by our Human Subjects Protection Program Institu-
tional Review Board. Informed consent was obtained from each
study participant prior to enrollment. Five freshly harvested
cadaveric human tibial plateaus from age-matched and gender-
matched donors without history of OA, osteonecrosis, osteo-
porosis, or fractures were collected through the Willed Body
Program at University of California, San Francisco for use as
controls. Patients with OA and healthy cadaveric controls had
similar BMI. All samples used for immunohistochemistry and
mineralization analysis were harvested within 4 days postmor-
tem to minimize effects of degradation. Integrity of the tissue
and epitopes in histological analyses (Figs. 1, 3; Supplementary
Fig. 1j, k) suggests that refrigerated storage of cadaveric samples
for up to 4 days did not significantly affect the conclusions.
Each tibial plateau was removed en bloc (Supplementary Fig.

1c, d), and X-rays were collected to evaluate the severity of
subchondral bone deterioration (Supplementary Fig. 1g–i). To
facilitate comparison of the subchondral bone between the lateral
and medial side of the joint, which was more severely affected by
OA in these samples, each specimen was cut into 8–10mm thick
coronal slabs with a band saw (Supplementary Fig. 1e, f).
Subchondral bone was compared between the medial and lateral
regions of interest on the same osteoarthritic tibial plateau, as well
as with comparable regions of cadaveric tibial plateaus. The data
were collected from five samples per group for all outcomes
unless otherwise specified in figure legends.

Mice
To test the role of osteocytic MMP13 in bone and joint health, we
generated mice with osteocyte-specific ablation of MMP13.
Homozygous MMP13fl/fl mice on an FVB background have loxP

sites flanking exons 3, 4, and 5, which encode the enzyme’s active
site (Jackson Laboratories #005710).34 Hemizygous DMP1-Cre+/−

mice (9.6-kb promoter) on a C57BL/6 background express Cre
predominantly in osteocytes and odontoblasts (Jackson Labora-
tories #023047).35 Mice were bred at UCSF to generate wild-type
(DMP1-Cre−/−; MMP13fl/fl) and MMP13ocy−/− (DMP1-Cre+/−;
MMP13fl/fl) mice with a mixed background. Littermate controls
were used throughout. Animals were housed in groups in a
specific pathogen-free environment with temperature maintained
between 68 °F and 74 °F, humidity maintained between 30% and
70%, 12-h light/dark cycles, and access to water and rodent chow
(LabDiet 5053) ad libitum. To match the VA population of human
patient samples and to exclude the sexually dimorphic effects of
both OA and PLR,66,70 only male mice were utilized for this study.
The procedures for animal experiments were approved by the
Institutional Animal Care and Use Committee at the University of
California, San Francisco. Six to eleven biological replicates were
used for each outcome, with exact n given in figure legends.

Histology
Human tibial plateaus were fixed in 10% neutral buffered formalin
(NBF) and incubated in 10% disodium and tetrasodium EDTA for
56–60 days until fully decalcified, or in an Ion Exchange
Decalcification Unit (American Master Technologies) for 5–6 days,
followed by serial ethanol dehydrations and paraffin embedding.
Paraffin sections (7-μm thick) in the coronal plane were generated
for polarized light microscopy, Safranin-O with Fast Green stain,
Ploton silver stain, and immunohistochemistry. To standardize
evaluation, a consistent region of subchondral bone was selected
for evaluation in the medial and lateral areas of each specimen
(Fig. 1a). For each specimen, values were collected from five high-
powered field images per region of interest. Within each region,
these values were averaged to obtain a mean value for each
specimen. Each quantitative average represents an average across
all specimens.
Intact mouse knee joints and proximal femurs were fixed in 10%

NBF and decalcified for 2 weeks in EDTA, followed by serial
ethanol dehydration and paraffin embedding. Knees were
embedded at 90° of flexion and sectioned in the frontal plane.
Femora were embedded and sectioned axially to generate 6-μm
sections. All brightfield imaging was conducted on a Nikon Eclipse
E800 microscope.

Safranin-O/Fast Green stain and OA scoring
Safranin-O with Fast Green was used to visualize the cartilage
quality of the tibial plateaus using a protocol adapted from
University of Rochester.71 Briefly, sections were deparaffinized,
rehydrated, and incubated in Weigert’s Iron Hematoxylin for
3 min. Stained slides were then washed in water and differentiated
in 1% acid–alcohol for 15 s. Slides were then stained with a 0.02%
aqueous Fast Green solution for 5 min and differentiated with 1%
acetic acid for 30 s. Slides were then washed with water and
stained in a 1% Safranin-O solution for 10min and subsequently
dehydrated, cleared, and mounted.
For human tibial plateaus, standardized OARSI grading72,73 was

used to assess OA in Safranin-O-stained histological sections by
two orthopedic surgeons. For murine samples, Safranin-O staining
was conducted on sections of the knee in a plane where the ACL
and PCL were visible to maintain constant region of interest. Each
quadrant of the knee (medial and lateral tibia and femur) was
graded by three blinded graders using OARSI41 and modified
Mankin40 scales. For each sample, the numerical scores of all
graders were averaged to obtain a mean score. Mean scores were
then averaged within each group.

Analysis of collagen fiber orientation by picrosirius red stain
Polarized light microscopy was performed on deparaffinized
sections stained in a saturated aqueous solution of picric acid
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with 0.1% Direct Red-80, as described30,74 to visualize collagen
fiber orientation. During microscopy, polarized filters were rotated
to achieve the maximum birefringence before capturing each
image. Red channel images were processed using the OrientationJ
plug in for ImageJ as described.75 Statistical analysis was
performed as described below.

Analysis of the lacunocanalicular network by Ploton silver stain
To visualize the osteocyte lacunocanalicular network, sections
were deparaffinized and incubated in two parts 50% silver nitrate
and one part 1% formic acid in 2% gelatin solution for 55 min, as
described.30,76 Stained slides were then washed in 5% sodium
thiosulfate for 10min and subsequently dehydrated, cleared, and
mounted. Images were acquired at 100x magnification for
analysis. For human tibial plateau subchondral bone, quantifica-
tion of the lacunocanalicular area was performed with ImageJ by
thresholding gray-scale images for dark, silver-stained lacunae and
canaliculi. The resulting area was normalized to the total bone
area in each image captured. Canalicular length was analyzed with
ImageJ by individually measuring canaliculi surrounding osteo-
cytes (average ten canaliculi per osteocyte). For murine cortical
bone, two images were acquired in each quadrant of an axial
section (medial, lateral, anterior, and posterior). In murine tibial
plateau subchondral bone, four images were captured on the
medial and lateral side of the joint. In each of the eight images,
area of all visible lacunae was calculated with a custom,
commercially available StrataQuest application (TissueGnostics),
yielding approximately 90 measurements per animal. In addition,
ten canaliculi on three osteocytes per image (24 osteocytes per
animal) were traced using ImageJ to calculate mean canalicular
length. To determine whether we had sampled canalicular length
from enough osteocytes, we randomly sampled from within the
24 osteocyte averages per animal and found that group averages
consistently stabilize once 15 osteocytes per animal are included
in the analysis.

Analysis of PLR enzyme expression by immunohistochemistry
(IHC)
IHC was used to examine protein localization qualitatively and
semi-quantitatively (i.e., % positively stained cells). For IHC, slides
were deparaffinized and hydrated prior to incubation in Innovex
Uni-Trieve low temperature retrieval solution (NB325) in a 40 °C
water bath for 24 hours (human) or in a 65 °C water bath for
30min (mouse). Endogenous peroxidase activity was quenched
using 3% H2O2 for 10 min at room temperature. For the
subsequent steps, Innovex Universal Animal Immunohistochem-
istry Kit (329ANK) was utilized. Samples were blocked with Fc-
Block and Background Buster for 45 min each at room tempera-
ture. Primary antibodies were diluted in PBS (anti-MMP13, 1:100,
ab39012; anti-CatK, 1:50, ab19027; anti-Aggrecan, 1:200,
ab216965; anti-Collagen II, 1:200, ab34712; anti-CGGFVDIPEN,
1:200 and anti-CGGNITEGE, 1:200, both gifts from Dr. John Mort)
and incubated in a humid chamber at 4 °C overnight. Secondary
linking antibody and HRP-enzyme were both used at room
temperature for 10 min each. Fresh DAB solution was applied and
incubated at room temperature for 5 min prior to washing with
tap water and mounting with Innovex Advantage aqueous
mounting medium. Negative controls were performed by
substituting rabbit IgG at the same concentration as primary
antibody. Quantification was performed with the help of ImageJ
Cell Counter plug in to determine the average percentage of
positively stained osteocytes or chondrocytes relative to the total
number of cells in each 40x magnified visual field.
In murine cortical bone, subchondral bone, and cartilage,

MMP13 expression was additionally visualized and quantified
using immunofluorescence. Sections were deparaffinized, and
antigens were retrieved with Uni-Trieve solution as above.
Sections were blocked with Background Buster (Innovex) for

10min or 10% normal goat serum for 1 h, incubated with PBS/
0.1% Tween for 5 min, and then incubated overnight with rabbit
anti-MMP13 antibody (1:50). After washes in PBS, secondary goat
anti-rabbit antibody conjugated to Alexa Fluor 594 (1:1 000,
ab150080, pseudocolored green in Fig. 4) was applied for 60 min.
Background was reduced with copper sulfate for 10min, and
slides were mounted with Prolong Gold antifade reagent with
DAPI. Images were acquired on a Leica DMi8 confocal microscope.
The percentage of MMP13-expressing osteocytes and chondro-
cytes was calculated relative to the total number of cells in at least
two 40x fields per sample for 6–9 mice per genotype.

Analysis of cell death by TUNEL assay
To detect osteocyte and chondrocyte death, mouse knee sections
were deparaffinized and permeabilized in 0.1% sodium citrate
with 0.1% Triton X-100 for 8 min. For a positive control, two
sections were treated with DNase for 10 min at room temperature
to induce DNA strand breaks. Then all samples were incubated
with TUNEL reaction mix for 60 min at 37 °C (Roche). After
washing, slides were mounted with Prolong Gold antifade reagent
with DAPI and imaged on a Leica DMi8 confocal microscope. The
total number of labeled osteocytes and chondrocytes per bone or
cartilage area was calculated in the medial and lateral compart-
ments of the tibia for six knees per group.

Synchrotron radiation X-ray computed micro-tomography (SRμT)
To visualize and quantify bone mineralization, 4-mm-wide speci-
mens of cartilage and subchondral bone were imaged by SRμT at
beamline 8.3.2 of the Advanced Light Source (ALS) (Lawrence
Berkeley National Laboratory, Berkeley) as described.27 Briefly,
transmission radiographs were taken over a 180° rotation with a
monochromatic energy of 20 keV and an exposure time of
800ms. Computational reconstruction of 3D images reveals bone
microstructure at 1.3 μm/per pixel (5X lens, LuAG scintillator).
Images were segmented using ImageJ by binarization of the
bone volume morphology. 3D visualization and quantification of
bone mineral density was performed using Avizo (Visualization
Sciences Group). The data were collected from n= 2 control
medial, n= 2 control lateral, n= 4 OA medial, and n= 5 OA
lateral human tibial plateaus. Statistical analysis was performed
only between medial and lateral regions of OA subchondral bone,
as described below.

Micro-computed tomography (μCT)
For skeletal phenotyping, femurs were harvested from male mice
at 13 weeks old and stored in 70% ethanol. Cortical analysis was
conducted in a 1-mm region equidistant from the proximal and
distal ends of the bone. Trabecular analysis was conducted in a 2-
mm region immediately proximal to the distal growth plate. For
subchondral bone analyses, knee joints were harvested from 16-
week-old males and stored in saline solution at −20 °C. A 4-mm
region centered on the joint was scanned. Medial and lateral tibial
subchondral bone were delineated 200 μm from the proximal
surface of the tibia and extended for 250 μm distally. The medial
and lateral femoral condyles were designated 200 μm from the
distal end of the femur and extended proximally 200 μm. All
samples were scanned using a Scanco μCT50 specimen scanner
with an X-ray potential of 55 kVp, current of 109 μA, and voxel size
of 10 μm. Thresholding and quantification were performed as
previously described.19,27

RNA-seq and quantitative RT-PCR analysis
Humeri from wild-type and MMP13ocy−/− mice were cleaned of
muscle and periosteum, epiphyses were trimmed, and marrow
was removed by centrifugation. Bones were snap-frozen in liquid
nitrogen prior to homogenization in TRIzol (Invitrogen), as
described.19,27 mRNA was purified using the RNeasy Mini Kit
following the manufacturer’s instructions (Qiagen).
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For RNA-seq, samples were sequenced on the Illumina HiSeq
4000 at the UCSF Functional Genomics Core. Single-end 50 bp
RNA-seq reads were aligned to the Ensembl mouse GRCm38.87
reference genome using STAR 2.5.2b aligner. We obtained 367.4
million total reads and average of 82.6% of these reads aligned
uniquely to the mouse genome. The DESeq2 package in R
Statistical Computing Environment was used to find differentially
expressed genes with false discovery rate of 0.1.77 To calculate
gene signature scores, we generated gene sets of acidification-
related genes (Fig. 9b) and osteoblast differentiation-related
genes (Runx2, Sp7, Atf4, Alpl, Col1a1, Col1a2, Dmp1, Sost, Bglap,
Bglap2, Spp1, Phex, Mepe, Enpp1, and Enpp2),78 subtracted the
mean from each element, and divided by the standard deviation.
RNA-seq data have been deposited in the NCBI BioProject:
PRJNA549974.
For qPCR, 1 μg RNA per sample was reverse-transcribed using

the iScript cDNA synthesis kit. qPCR was performed using Taqman
probes for β-actin (assay #Mm02619580_g1) and MMP13 (assay
#Mm00439491_m1 which targets exons 4-5) and using iQ SYBR
Green Supermix (BioRad) with β-actin as the housekeeping gene
(primer sequences given in Supplementary Table 1). In total, 20 ng
equivalent of cDNA was used per reaction for β-actin, and
30 ng–50 ng equivalent of cDNA was chosen for each test gene to
achieve threshold values of amplification between 20 and 30
cycles. Expression was then quantified by the ΔΔCt method.79

Flexural strength tests
Whole-bone biomechanical properties were measured in femurs
isolated from 2-month-old and 4-month-old wild-type and
MMP13ocy−/− mice. Whole hydrated femurs were loaded to failure
in three-point bending using a Bose Electroforce 3200 test frame.
One femur per mouse was broken in the direction of primary
physiological bending (posterior compression), and the other was
broken against the direction of physiological bending (anterior
compression). An 8-mm span was chosen because it was
approximately 50% of the bone length. Tests were performed in
air at a fixed displacement rate of 10 μm‧S−1. Whole-bone stiffness
was calculated from the linear portion of the load-displacement
curve, and yield was designated as the point where a line
representing a 10% loss in stiffness intersected the load-
displacement curve.80 Following fracture, bone cross-sections
were imaged by scanning electron microscopy on a Sigma 500
VP FE-SEM (Zeiss) at an excitation voltage of 15 kV and a partial
pressure of 35 Pa. Measurements of cross-sectional diameter and
thickness were acquired in ImageJ and used to calculate moment
of inertia assuming an elliptical cross-section. These geometric
parameters were used to convert the load-displacement data to
stress–strain data in order to measure tissue modulus, tissue
stress, and tissue strain with standard beam theory equations.81

MLI surgery
Eight-week-old male mice were separated into three groups:
control, sham, and meniscal-ligamentous injury (MLI).42 Under
general isofluorane anesthesia, both hind limbs of MLI animals
were shaved and sterilized. A bilateral approach was chosen in
order to minimize effects of altered biomechanics arising from a
single knee injury, as previously described.82,83 Briefly, medial
incisions through the skin and joint capsule were made adjacent
to the patella to expose the medial collateral ligament, which was
transected. The medial meniscus was then removed. Sham-injured
animals received bilateral incisions without MCL transection or
meniscus dissection. Skin incisions were closed with sutures, and
animals received an injection of long-acting buprenorphine
analgesic. Control animals did not receive anesthesia or analge-
sics. All animals were allowed unrestricted activity, food, and
water. At 16 weeks of age, animals were euthanized and hind
limbs collected for histological and radiographic analyses.

Statistics
Comparisons between two groups were tested with unpaired two-
tailed Student’s t test. Comparisons between disease state and
region in human specimens or between genotype and injury in
mice were tested with two-way ANOVA followed by Holm–Sidak
post hoc tests. Analyses were performed in GraphPad Prism 8
(GraphPad Software, Inc.). The Clinical and Translational Science
Institute Statistical Consulting Service at UCSF evaluated signifi-
cant differences in the distributions of human collagen organiza-
tion and mineral density (SRμT) among each group using a mixed
model with random intercepts. A linear model was used for the
fixed effects, and the outcome was logarithmically transformed. In
all figures, P-values < 0.05 were considered statistically significant
and are reported as such. As appropriate for each outcome, the
mean is shown+ /− SD or SEM, as specified in figure legends.
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