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Abstract

In this work we present a new rate-dependent model, which has the fea-
ture of being bounded by two plasticity models. After a brief review of the
continuous equations for a material with inelastic behavior governed by a
von Mises (J2) yield function, including both linear isotropic and kinematic
hardening mechanisms, we introduce their discrete counterpart within the
framework of a return mapping algorithm. Hence, we address the new ma-
terial model, called generalized visco-plasticity, which includes as sub-cases
classical visco-plasticity, classical plasticity and generalized plasticity. We
discuss both the continuous and the discrete-time version for the case of a
J2 associative model. Moreover, we present its algorithmic implementation
in a return map setting as well as the form of the discrete consistent tangent
tensor, which guarantees quadratic convergence in a Newton iterative tech-
nique. Finally, some numerical simulations are presented to illustrate the
performance of the new material model.
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1 INTRODUCTION

Key aspects of any constitutive model are its ability to reproduce the be-
havior of a real material and the cost of its algorithmic implementation,
which opens the possibility of numerical simulations. Relatively to the first
aspect, it is well known that in many practical problems (such as dynamic
loading conditions) the actual behavior of a material is governed by per-
manent rate-independent (plastic) effects as well as by rheological (visco)
effects. Sometimes it can even happen that the rheological effects are more
pronounced after the plastic state has been reached. For example, under
dynamic loading many metals show a variable yield limit, increasing with
the strain rate and bounded within a finite interval. Moreover, they often
present a smooth change of behavior from the elastic to the plastic range.
Consequently, any suitable constitutive model must be able to reproduce at
least some of these important features of real material behavior, which are
usually determined by experimental investigations, such as those discussed
by Campbell [3], Clark [5] and Harste [6].

Looking at some of the available literature on visco-plastic theories, such
as the ones discussed in Perzyna [17], Chaboche [4] and McDowell [15], it
seems that the efforts to create constitutive models showing the appropriate
response in terms of simulation of real material behavior are often at the
expenses of the algorithmic implementation, and hence limit the possible
final use of these models.

The purpose of this paper is to present a new rate dependent model,
which shows some of the features mentioned above and whose algorithmic
implementation is at the same time simple and straightforward. The model is
called generalized visco-plasticity, since it includes classical visco-plasticity,
classical plasticity and generalized plasticity [1, 2, 12] as sub-cases. The
model has a visco-rate dependent behavior, bounded by two rate independent
plasticity models; in particular it approaches either generalized plasticity or
classical plasticity depending on whether the internal characteristic time is
large or small compared to the loading rate. Other interesting features are: it
smoothly reaches a limiting stress asymptote for both monotonic and cyclic
loading conditions; if unloaded from the plastic range, upon reloading, it
renews plasticity before the attainment of the stress where unloading began.

The discussion is organized as follow. In Section 2 we introduce the consti-
tutive equations for a non-linear material with a von Mises (J2) yield function
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and an associative flow rule. The model includes both linear isotropic and
kinematic hardening mechanisms, and the capability to have a limit function
different from the yield function. In Section 3 we present the discrete version
of the equations introduced in Section 2, together with a brief review of the
return mapping algorithm used for their integration. In Section 4 the new
model and its specializations to associative plasticity for both the continu-
ous and the discrete-time case are presented. In Section 5 and 6 we address
the tangent tensor, consistent with the discrete model, which guarantees a
quadratic convergence for a Newton iterative algorithm. In the last section
we present some numerical simulations which illustrate the performance of
the material model.

2 CONTINUOUS-TIME MODEL

We now briefly review the eqdations governing a material whose inelastic
behavior is controlled by the second invariant of the deviatoric stress, J;: we
shall refer to this general class as von Mises or J2 materials. Accordingly,
the evolution equations involve only the deviatoric parts of stress and strain,
s and e respectively, which are related to the total stress o and to the total
strain € through the usual relations:

1
o = gtr(a)l +s
1
€ = gtr(e)l +e
1 being the second order unit tensor and tr(-) the trace operator. The linear
vector space of second order tensors is equipped with the natural (Euclidean)

inner product, defined by the trace of the product of any second order tensor,
a. Accordingly:

lafl = [a: a]f = [tr(a-a)]2
n:f‘;g—jhﬁ , Jnjl =1

and we note that: ||s|| = v/2J/5.
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Moreover, the model is also based on the assumption of an associative flow
rule and includes both linear isotropic and kinematic hardening mechanisms,
which are controlled by the two constants H;,, and Hyi,, and the back stress
tensor, a. Assuming an additive decomposition of the strain into an elastic
and a plastic part, € and €” respectively, denoting time as ¢ and the time
derivative with a superposed dot, the governing equations are:

(2.1) s(t) = 2G[e(t) — eP(t)] = 2Ge®(2)

(2.2) () = s(t) - alt)
(2.3) f@) = [E@ - R(@)
(2.4) g(t) = g(f(1),&(2),¥(1))
(2.5 0 = Aghs

(2.6) &t) = %Hkme @)
(2.7) () = 0, A(t)g(t)=0

where:

e Equation (2.1) is the linear elastic relation between the deviatoric stress
s(t) and the elastic deviatoric strain e®(t); e?(¢) is the deviatoric part
of the plastic strain.

e Equation (2.2) is merely the definition of the relative stress 3(t), where
the back stress a(t) physically represents the center of the yield surface,
which can shift as a result of the kinematic hardening mechanism.

e Equation (2.3) is the von Mises yield function, where R(t) = \/gay(t)
is the radius of the yield surface and o,(t) is the yield stress in uniaxial
‘tension. The time dependence of o, is due to an isotropic hardening
mechanism, which in the simplest form is given by:

(2.8) oy(t) = oy + Hiso €°(1)

oy being the initial uniaxial yield stress, H;s, the linear isotropic hard-
ening parameter and é? the equivalent plastic strain:

(2.9) o= [ 21w
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e Equation (2.4) is the limit function expressed in terms of the yield func-
tion f, a set of internal variable £(¢) and a rate factor 4(t). The limit
function embodies and models the rate dependency and the yielding
properties of a material model. Observe that g and f are not required
to coincide, although they might for some specific model, such as clas-
sical plasticity.

e Equation (2.5) is the evolution equation (flow rule) for the deviatoric
plastic strain, in the framework of associative plasticity.

e Equation (2.6) is the simplest form of the Prager equation for the evolu-
tion of the back stress a(t), Hiin being the linear kinematic hardening
parameter.

e Equations (2.7) are the Kuhn-Tucker conditions, which reduce the plas-
tic problem to a constrained optimization problem.

Since we limit ourselves to the case of a von Mises yield function, the
following equalities hold:

of() _ D) _ o
5t~ T2

(2.10)

where n(t) is the unit tensor normal to the yield function at X(t). As a
result, equations (2.5) and (2.6) can be rewritten as:

e’(t) = A(t)n(t)

at) = —?;Hkm’?(t)n(t)

A more descriptive and general approach of the equations governing the
behavior of an associative J2 material can be found in Reference [11].

3 DISCRETE-TIME MODEL AND INTE-
GRATION ALGORITHM

From a computational standpoint we treat the non-linear behavior of a ma-
terial as a strain driven problem. Accordingly, the stress is obtained from the
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strain history by means of an integration technique, such as a return mapping
algorithm. In this section, we introduce a discrete version of the equations
presented in Section 2 and review the resulting integration algorithm.

Let [0,7] C R be the time interval of interest and consider two time
values within it, say t, and t,41 > tn, such that 1,41 is the first time value
of interest after ¢,. To minimize the appearance of subscripts (to make the
equations more readable), we introduce the convention:

a, =a(t,), a=a(tws1)

where a is any generic quantity. Accordingly, in the discrete version of the

equations the subscript n indicates a quantity that is evaluated at time t,,

while no subscript indicates a quantity that is evaluated at time t,41.
Assuming that the solution is known at time ¢, and given by the state:

{sn,en, €0, an, €

we wish to compute the solution at time tn11, given the total strain €. Using
the backward Euler integration formula for the plastic strain and the back
stress flow rules, we obtain:

(3.1) e = e +An
(32) a = o+ %Hkin An
where:

tnta
/\:/ Y at)dt
tn

is the integrated rate factor. Equation (2.9) can now be rewritten as:

2
&P — P 5\
€ €, + \/;
Substitution of (3.1) into (2.1) yields:
(3.3) s=2G(e—e’)—2G An

while subtraction of (3.2) gives:

Zzs——a:2G(e—eﬁ)—an—<2G+—§-H;€m>x\n
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Note that A is an unknown quantity, computed by means of an integra-
tion algorithm, such as a return mapping procedure. Initially suggested by
Maenchen and Sack [14] and Wilkins [23], the return mapping algorithm
provides an efficient and robust integration scheme, based on a discrete en-
forcement of the limit equation. It belongs to the family of elastic-predictor
plastic-corrector algorithms and, hence, is a two part algorithm. In the first
part, a purely elastic trial state is computed; in the second, if the trial state
violates the constitutive equation, a correction is computed and applied such
that the final state is fully consistent with the model. The algorithm has
been widely studied [16, 20, 21] as has its stability [7, 19]. It is interesting
to recall that the incremental elasto-plastic initial value problem formulated
as a constrained convex minimization problem is equivalent to the classical
mazimum plastic dissipation postulate. - Using this analogy, the return map-
ping algorithm can be shown to be the closest point projection of the trial '
state to the limit surface g = 0. Therefore, besides its simplicity, the algo-
rithm has a strong theoretical basis. Details of this analogy and theoretical
discussions can be found in Reference [20]. For the particular case of associa-
tive J2 materials, the search for the closest point reduces to a radial return

mapping.

We shall now discuss the two steps of the algorithm in more detail.
o Trial state: we assume that in the interval [t,, ,41] no plastic deforma-
tion occurs (i.e. e? = e?, which implies: A =0, a = a,, ). As a result,
we have as trial values:

AR =0

»TR p
e e,

ofR = a,

TR __ »

s = 2G(e—ef)

wTR _ gTR_ oTR_ TR _ o
=» TR _  p
€ = &,

If the elastic trial state is admissible, i.e. it does not violate the condi-
tion g < 0, then it represents the new solution at tn41 and the second
part of the algorithm is skipped.

o Plastic correction: if the trial state is not admissible, a correction has
to be performed. Enforcing the condition g = 0, the integrated rate
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factor A may be computed, as shown in Section 4 for the generalized
visco-plasticity model. All the equations can be now rewritten in terms
of the trial state and A:

e = ePTR4An
2
a = aTf4 -3-Hkm An
s = sTR_2G \n

> = ETR“(2G+-2-Hkin> An

3
el = ép’TR+ \/%)\

which allow us to compute and update the solution.

Using equation (2.10) (¥ = ||| n) in the equation for ¥, we deduce that
$7R and ¥ have the same direction n (i.e. nTR = n ). Hence, a scalar
relation between their norms can be derived:

2
3] = 1575~ (26 + 3 He)

and a radial return can be performed. Note that, once )\ is determined, the
state {s, e, e”, a, &} may be easily computed.

4 THE GENERALIZED VISCO-PLASTICITY
MODEL

We first introduce a new generalized visco-plasticity mode] in its continuous
version and consider its specialization to the case of J2 associative plasticity.
Then we address the discrete version of the model, which we treat within the
framework of the return mapping algorithm, outlined in the previous section.

4.1 The continuous-time model

A simple model of generalized plasticity was introduced in Reference [12]
and its numerical implementation was discussed in References [1] and [2].
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Referring to the notation of these works, the limit function of the visco-
plastic model is:

(4.1) g=aoh[n” :d’]—}—%z-(l) (—é;) — agy

where: the ; (¢ = 1,2,3) are constants which may be set equal to 1 or 0 to
render active or inactive each term of the model, n* = df/0a is the normal
to the yield function f, 7 is an internal characteristic time parameter, D is
a function deduced from dynamic tests on the material, R, = \/—gao is the
initial radius of the yield surface and h is a non-linear function of f. We
assume:

- f
S(B—f)+2HPB

with 8 and & two positive parameters with dimensions of stress and H =
H;., + Hyin. In particular £ is a scalar measure of the distance between
the asymptotic and the initial radius of the yield function, while § measures
the speed of the model in approaching the asymptotic behavior. Using the

relations:
2 2
=AH5Pu 6= "'(Su
p \/gﬂ 3

B and 6§ can be related to the corresponding parameters computed in a one-
dimensional setting, which means that now 8, measures the distance between
the asymptotic stress and the yield stress o, and é, measures the speed of
the model in approaching the asymptotic behavior.

From equation (4.1), it is possible to check that the limiting behaviors
of the model are two rate independent plasticity models. For values of the
internal characteristic time 7 which are large compared to the loading rate
p the viscous part, i.e. the one associated with as, drops out and the model
reduces to the generalized plasticity model, described in References 1, 2,12].
For small values of the internal time 7, again compared to the loading rate
p, the viscous effects are large and make negligible the part of the response
associated with a; and as, hence the model reduces to classical plasticity. It
is also interesting to point out how several different simpler models can be




Generalized visco-plasticity ‘ F.Auricchio and R.L.Taylor 9

Model o) Qp Q3
Classical visco-plasticity 0 1 1
Generalized plasticity 1 0 1
Classical plasticity 0 1 0
Classical plasticity (8, =0)| 1 0 1

Table 1: Possibility of retrieving simpler models with appropriate choice of
the a parameters

directly retrieved with particular choices of the o parameters, according to
Table 1.

The model so far discussed resembles in part the one proposed by Lubliner
in References [9, 10], which is however obtained by a different approach and
discussed only in a one-dimensional setting.

We now consider how the model specializes in the case of associative J2
plasticity, for which the term (n*: &) can be expressed in a more explicit
form. Accordingly, treating a as a dependent variable, we have:

T 0¥ 00 do
Therefore:
; . 9
(4.2) n*:o=n:$=n:" ran:&x=n:%+=YHgn

3
Noting that:

n:n=1 = n:n=n:n=90
equation (4.2) simplifies:

. d 2. d 2.
n*:o=n: E(HZHH) + §7Hkm = ZEHEH + §7Hkm

As a result, the limit function (4.1) can be rewritten as:

(43) o= arh [%uzn +2 H] + % (7;1) ~ and
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4.2 The discrete-time model

We now present the discrete version of the J2 associative generalized visco-
plasticity model, previously addressed in its continuous form. The discrete
model is required to properly evaluate the integrated rate factor A for the
solution of a discrete-time problem. Since A may be interpreted as a measure
of the correction that renders admissible a non-admissible trial state, it must
be computed enforcing the condition ¢ = 0 in a discrete-time setting. We
assume ®(f) = f?, often adopted for metal plasticity [17].

Integrating the condition g = 0 over the time interval [tns tnt1], we obtain:

(4.4) ah ”2” - HEnH -+ %/\ Hkin:l + az-A?t' (%) —azA =0

(2]

If we set:
A1 = |27 - R,
A = ||ZTR ==,
2
ao = —(045H)8
At
A = T R?

after clearing fractions, the limit equation can be rewritten as:
O[lf [A2 - QG/\] — a2A4f2 [A3 -+ 5f] + (13)\ [Ag -+ (Sf] =0

Recalling the scalar relation between |E=T%|| and ||Z]| and the definition of
R, we have:

f = |Zl-R
= 1= - (26 + %Hkm) )] - (R §Hisox)
= A;—2G1A

where:

1
Gl = G -+ EJ)- (Hiso + Hkin)
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Eventually, performing some algebraic manipulations, we end up with the
following cubic equation in A:

(4.5) Xt +esd e =0
where:
ci = (8] [8G?5A4]
Cy = (851 [4GG1] —02A44G§ {35/11 + A3] -—0132(;15
Cy3 = O3 [2GA1 -+ 2G1 Az] +a22G’1 Al A4 [36/41 + 2A3] +as [A16 + Ag]
Cq4 = +a1/ilA2 '—agA%A‘; [5A1 -+ A3]

The toots can be computed in closed form as discussed in Reference [18]. It
is interesting to observe that, starting from the cubic equation (4.5) and with
the choice of the a parameters set in Table 1, it s possible to derive in closed
form the integrated rate factor for simpler material models such as classical
visco-plasticity, classical plasticity and generalized plasticity.

Finally, observe that in the generalized visco-plasticity model an admis-
sible inelastic state of stress can be outside the surface f; but it must always
be on the surface ¢ (i.e. ¢ = 0). Since the return mapping algorithm is such
that the trial state is projected on the limit equation surface, the condition
gTR > 0 is sufficient to determine if a step is plastic.

5 CONSISTENT ALGORITHMIC TANGENT
TENSOR

We now address the form of the tangent tensor, consistent with the discrete
J2 associative plasticity model described in Section 3. In the next section, we
then specialize the form of the tensor to the generalized plasticity model. The
use of the tangent moduli preserves the quadratic convergence of a Newton
method, which we adopt in Section 7 for the incremental solution of a finite
element scheme.

We start by linearizing equations (3.3) and (3.2) about a solution point:

(5.1) ds = 2Gde —2Gnd\ —2GXdn

(52) daa = %Hkmnd)\-{-%Hkm)\dn
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If we assume that the linearization of the limit equation yields an expression
of the type:

dA = A(n: de)
we can solve equations (5.1) and (5.2) for ds:
ds =2G[(1-C)I+ (C — A)(n®n)]de

where:

2G A
C = =g
[

This is an incremental relation between the deviatoric part of the stress tensor
s and the deviatoric part of the strain tensor e, consistent with the discrete
J2 associative plasticity model of Section 3. Under the assumption of linear
elasticity, we can get an incremental relation between the total stress tensor
o and the total strain tensor € :

do = D%de
where the algorithmic elastic-inelastic tangent tensor is finally given by:
(53) D =[K(1®1)+2G(1-C)li+2G (C —A)(n@n)]
in which K is the bulk modulus and I, is a rank four tensor defined as:
Tiew =1~ %(1 ®1)

A more detailed discussion on the construction of the tangent tensor for
material models for which d\ = A (n : de) holds can be found in References

[1] and [2].

6 CONSISTENT DISCRETE TANGENT TEN-

SOR FOR THE GENERALIZED VISCO-
PLASTICITY MODEL

In Section 5 we presented a form of the tangent tensor, consistent with the
discrete J2 associative plasticity model of Section 3 and involving a coeffi-
cient A coming from the linearization of the discrete limit equation. In the
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following, we compute this scalar factor for the generalized visco-plasticity

model.
Noting that:

dIT| = 2G(n:de) - <2G+§Hk,-nd/\)
df = d|S|| - dR = 2G (n: de) — 2G1d\

we can linearize the discrete limit equation (4.4) and obtain a relation of the
form:

d) = A(n: de)
where:
(6 1) A: 2G{C¥] [Dl +D2] +CX2 [D2D3D4]+a3 [6/\]}
| @1 [2G1D1 + 2G Do) + @ [2G1 D2 D3 Dy] + 03 [2G106 + Dy
with:
2
Dy = ||Z] - 1= + E))'Hkin)\
2
D, = ||Z| - (Rn + gHmA> = f
D; = 2<5+§H)ﬂ—3D26
At
Ds = TR?

Dy = 8- f)+ 2 H}p

Note that starting from equation (6.1) and with a proper choice of the «
parameters, it is possible to retrieve the correct form of the factor A for
simpler material models, such as classical visco-plasticity, classical plasticity
or generalized plasticity.

7 NUMERICAL EXAMPLES

In this section we present some numerical examples performed to test the
generalized visco-plasticity model. They are all obtained running a three
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dimensional finite element, based on a mired approach [22] and implemented
into the Finite Element Analysis Program (FEAP) [24, 25].
The numerical simulations are organized as follow:

e Uniaxial tension test: rate dependent effects

e Uniaxial tension test: reduction to simpler model
e Uniaxial tension test: cyclic load

e Thin walled tube in tension and torsion

In all the examples we consider a cubic specimen of side length equal
to 10, with boundary and loading conditions set to produce the appropriate
stress state. The load is usually applied controlling the displacements. The
sample is modeled with only one element and the material properties are:

E=100, v=03, Hg=Hiu=0

7.1 Uniaxial tension test: rate dependent effects

The material properties are:
o, =15, fu=10, & =20

In a first group of analyses, we test the model for different values of the
internal characteristic time 7 and fixed loading rate p; in particular, we used
7 € {0.01,1,100} and p = 1. In fig.1 the stress-strain curves are reported
together with the generalized plasticity and the classical plasticity solutions.
We can observe that for high values of 7 the generalized visco-plasticity
model tends to generalized plasticity (for 7 = 100 the two solutions almost
coincide), while for low values of 7 it tends to classical plasticity.

In a second group of analyses we fix the value of the internal characteristic
time 7 and vary the loading rate p; in particular we used 7 = 100 and
p € {10,100,1000}. In fig.2 the stress-time curves are reported; in terms of
stress-strain similar results of those presented in fig.1 are recovered, as should
be expected.
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7.2 Uniaxial tension test: reduction to simpler model

The capacity of the generalized visco-plasticity model to reduce to simpler
material models by a correct choice of the o parameters has also been tested
numerically, in order to check any instability or numerical problem.

All the simpler models have been reproduced perfectly. In particular the
generalized plasticity model retains all its characteristics, such as:

e after initial yield, it shows a smooth transition before reaching an
asymptote,

e if unloaded from the plastic range, upon reloading, it renews plasticity
before the attainment of the stress where unloading began,

e the asymptote is approached faster for larger values of é..

7.3 Uniaxial tension test: cyclic load

This time the specimen undergoes a cyclic uniaxial load history presented in
fig.3. The load history has some periodic time-interval of constant load, to
check the relaxation of the model as suggested for rate dependent model in
Reference [8]. The material properties are:

o, =15, B,=10, 6, =20

The axial stress is plotted versus the axial strain in fig.4. Observe that the
generalized visco-plasticity material model retains all its properties also under
cyclic loading; moreover, the relaxation effect depends on the value of the
internal characteristic time 7, which means that for high value of 7 (materials
requiring a long time to respond to a change of the external load conditions)
the length of constant load time-interval is too short for the model to feel it.

7.4 Thin walled tube in tension ahd torsion

We consider a thin walled circular tube with inner and outer radii equal to
9.75 and 10.25, respectively. The material properties are:

o,=10, Bu=5, 6,=30
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By controlling the displacements, the tube is initially pulled in tension be-
yond the yielding limit (i.e. up to a value of axial deformation equal to 1)
and then a tangential displacement (torsion) is applied, leaving the axial
displacement unchanged (fig.5). The axial and the tangential stresses are
plotted versus time in figs.6 and 7 for different values of the internal charac-
teristic time 7. Note that, as the shear stress approaches the limiting value,
the axial stress approaches zero and a virtually pure torsion is attained for
all values of 7. Hence, the elastic part of the constant axial strain changes
from purely elastic to plastic, as the tangential displacement is increased.

8 CLOSURE AND FURTHER DIRECTIONS
OF RESEARCH

In this work we introduced and discussed a new generalized visco-plasticity
model, which includes as sub-cases generalized plasticity [1, 2, 12], classical
plasticity [11] and classical visco-plasticity [17]. We present also the algo-
rithmic implementation of the model as a return mapping algorithm. For
applications using the finite element method and a Newton iterative solution
technique, we also address the algorithmic tangent tensor consistent with
the discrete-time model. All of the development includes both isotropic and
kinematic hardening.

Solutions to example problems illustrate some interesting features of the
model; in particular it has the property of having two plasticity models as
limiting behavior: it tends to generalized plasticity or to classical plasticity
depending if the ratio of the loading rate p and the internal characteristic
time 7 is large or small. Moreover, the model retains all the feature of
the generalized plasticity: it smoothly reaches a limiting asymptote for both
monotonic and cyclic loading conditions; if unloaded in the plastic range,
upon reloading, it renews plasticity before the attainment of the stress where
unloading began.

We note that the generalized visco-plasticity model may be implemented
into existing finite element programs, originally limited to classical plasticity
alone, with only minor modification and extension. Namely, the appropriate
limit equation and tangent factor A must be specialized for the model.

Finally, we want to stress that the model can be easily extended to pro-
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duce more realistic responses. For example, as pointed out by Lubliner {13],
in equation (4.1) the function f appearing in the nonlinear function k can be
different from the function f used as the argument of ®. In the future the
authors plan to extend the model in this direction as well as to introduce the
possibility of a generalized visco-plasticity model, whose limiting behavior
are two different generalized plasticity model.
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Figure 1: Uniaxial tension test: rate dependent effects. Dependence on the
characteristic time: stress versus strain.

o, =15,8=10,6 =20, Hiso = Hiin = 0. Loading rate p = 1 = const,
characteristic time 7 € {0.01,1,100}. The solution for the classical plasticity
and the generalized plasticity models are reported with dotted lines. The
latter almost overlaps the solution for 7 = 100.
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Figure 2: Uniaxial tension test: rate dependent effects. Dependence on the
loading rate: stress versus time.

o,=15,8=10,6 =20, H;;, = Hyin = 0. Loading rate p € {10,100,1000},
characteristic time 7 = 100 = const. The solution for p = 1000 is reported
with a dotted line.
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Figure 3: Uniaxial tension test: cyclic loading. Time history: displacement
‘versus time.
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Figure 4: Uniaxial tension test: cyclic loading. Stress versus time.

o, =15,8=10,6 =20, Hi,, = Hpn = 0. Loading rate p = 1 = const,
characteristic time 7 € {0.1,1,10}. The solution for 7= 10 is reported with
a dotted line.
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Figure 5: Thin walled tube in tension and torsion.
Time history: normal and tangential displacements versus time. The tan-
gential displacement is reported with a dotted line.
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Figure 6: Thin walled tube in tension and torsion. Normal stress ., versus
time.

Loading rate p = 1 = const, characteristic time 7 € {0.1,1,10}. The solution
for 7 = 10 is reported with a dotted line.
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Figure 7: Thin walled tube in tension and torsion. Tangential stress o4

versus time.
Loading rate p = 1 = const, characteristic time 7 € {0.1,1,10}. The solution
for 7 = 10 is reported with a dotted line.
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