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    The continuous growth of the internet and the popularity of social networks have 

created a huge amount of social media data. This includes social networks like users’ 

friendships, as well as users’ contributed content such as tags, blogs, posts, tweets, and 

etc. In addition, other collaborating applications also generate large data, such as the 

versioned textual documents created in a collaborative authoring environment like 

Wikipedia. In a dynamic world, the social media data is continuously evolving with time. 

In December 2004, Facebook had about 1 million users; but by October 2012, Facebook 

has over 1 billion active users. The dynamically changing and rapidly growing data bring 

us critical challenges: how to store, how to query, and how to use it in different 

application domains. This dissertation examines four related problems. First, we consider 

the large historical evolving graphs created from a social network, and examined various 

temporal shortest-path queries (e.g., find the shortest-path between two nodes as of 

certain time in the past). For this environment we proposed an efficient storage model, 

and fast query processing algorithms that take advantage of appropriate speed-up 
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indexing techniques. For second problem examined, deals with social tagging websites, 

where users post and share items like bookmarks, videos, photos etc., along with 

comments and tags. Within this environment, we presented a study of top-k search that 

utilizes the temporal information as well as a user’s participation in multiple social 

networks; our results show an improved search performance. Third, we examined the 

problem of temporal top-k keyword search in versioned textual collections; we compared 

different approaches and proposed novel methods that utilize multi-version access 

methods to improve the search. Finally, we considered applications that support multi-

version schema evolutions; we explored scenarios for branching and merging, and 

proposed efficient indexing structures along with query processing optimizations.  
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Chapter 1 

Introduction 

The continuous growth of the internet and the popularity of social networks have 

created huge amount of data. Typical social media includes the social networks like 

users’ friendships, as well as users’ contributed contents such as tags, blogs, posts, 

tweets, and etc. Similarly, collaborating social applications also data, such as the 

versioned textual documents created in a collaborative authoring environment like 

Wikipedia. In a dynamic world, such data is continuously evolving with time. Taking the 

number of users as an example, in December 2004, Facebook had about 1 million users; 

by October 2012, Facebook has over 1 billion active users. The dynamic evolutions of 

social media data bring us critical challenges: how to store, how to query, and how to use 

it in different application domains. In this dissertation, we consider problems related to 

temporal querying over social data applications. The four problems we studied can be 

summarized as: (i) temporal shortest-path querying over evolving social graphs, (ii) top-k 

search in social tagging websites by using multiple networks and temporal information, 

(iii) temporal top-k keyword search in versioned textual collections from social 
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collaborating applications, and (iv) temporal querying for applications supporting 

branched schema evolutions.  

Query evaluation over evolving social graphs is important and challenging. Different 

from traditional studies of shortest-path queries on a single graph, our main objective is 

to efficiently answer temporal shortest-path queries within the evolving graph’s history. 

Considering an evolving social graph over a large temporal period (years), an example 

query would be to find the shortest-path between two users as of some past time. Note 

that the evolving graph is not stored as a separate snapshot at each time (this would 

require even more space), neither as a sequence of deltas (which would result in long 

query times). Rather, the space used to store such a graph is typically linear to the 

changes in the graph evolution but can still support fast query times. Shortest-path 

queries are a basic component for many other graph-related queries (trend analysis etc.) 

For example, using temporal shortest path queries in an evolving social network we can 

discover how close two given users were in the past, and how this closeness was changed 

over time. 

Our work on the temporal shortest-path query is distinguished from previous studies in 

four ways: (1) In order to reduce the storage overhead and to efficiently support time-

interval querying as well, we store the graph evolution into one “integrated” temporal 

graph, instead of a sequence of snapshots or deltas. (2) Our temporal shortest-path 

queries can be specified for any given time-point or time-interval, while past works have 

considered querying over the whole graph life-time. (3) We explore preprocessing index 

techniques, which are very effective and efficient. (4) Further enhancements like 
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temporal partitioning and their effects on the shortest-path query processing are 

discussed. To demonstrate our algorithms and optimizations, we do experimental 

evaluations on real-world social network datasets collected over long time periods. 

With their increasing popularity, social tagging sites store valuable information like 

user-generated items, user social networks, and user tags. Such information can be used 

to improve services such as hot-lists, recommendations and web search; top-k search in 

social tagging sites has thus attracted research interest from both academia and industry. 

Here we focus on temporal top-k search in social tagging sites. When compared to 

other works, our contributions are: (1) we apply multiple components to score an item 

with respect to a particular user’s different social networks and assign weights to each 

component based on the classification of that user’s participation in those networks. (2) 

We take into consideration the temporal information of tagging behaviors, in order to 

enhance popularity and freshness of the top-k results. (3) Last, we provide a variation of 

the classic top-k algorithm which works efficiently for our user-dependent temporal 

scoring functions. Experimental evaluations on real social tagging datasets show that our 

framework works well in practice. 

Versioned text collections are textual documents that retain multiple versions as time 

evolves. Numerous such collections are available today and a well-known example is a 

collaborative authoring environment, such as Wikipedia. If a text collection does not 

retain past documents, then a search query ranks only the documents as of the most 

current time. Even if the collection contains versioned documents, a search typically 

considers each version of a document as a separate document and the ranking is taken 
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over all documents independently to the document’s version (creation time). There are 

applications however, where this approach is not adequate. Consider the following 

example: in order for a company to analyze consumer comments on a specific product 

before some event occurred (new product, advertisement campaign etc.), a temporal 

constraint may be very useful. For example, to view opinions on iphone4, a time-window 

within 06/07/2010 (announce date) and 10/04/2011 (announce date of iphone4s) could be 

a fair choice. Many investigation scenarios also require combining the keyword search 

with a time-window of interest. For example, while considering a financial crime, an 

investigator may need to identify what information was available to the accused as of a 

specific time instant in the past. 

To answer that question, we need queries that can identify the top-k result with both 

keyword and temporal constraints over versioned textual documents. In particular: (1) 

We propose novel data organization and indexing solutions: The first approach partitions 

the temporal data based on their ranking positions, while the other maintains the full rank 

order using a multi-version ordered list. (2) In addition to top-k time-point keyword based 

search, we also consider two time-interval variants, namely “aggregation ranking” and 

“consistent” top-k querying. (3) We present experimental evaluations comparing our 

approaches to previous solutions, using large-scale real-world datasets. 

Due to the collaborative nature of web applications, information systems experience 

evolution not only on their data content but also under different schema versions. For 

example, Wikipedia has experienced more than 170 schema changes in its 4.5 years of 

lifetime. In many applications, the schema may change into multiple branches. For 
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instance, in a collaborative design environment, an initial schema may be branched into a 

number of parallel schemas whose data can evolve concurrently. 

We address the issues to examine both data and schema evolution in a branched 

evolution environment. In particular: (1) We utilize a sharing strategy with lazy-mark 

updating, to save space and update time when maintaining the schema branching. (2) We 

employ branched temporal indexing structures and link-based algorithms to improve 

temporal query processing over the data. (3) Moreover, we propose various optimizations 

for two novel temporal queries involving multiple branches, the vertical and horizontal 

queries. (4) We further examine how to support version merging within the branched 

schema evolution environment. Our experiments show the space effectiveness of our 

sharing strategy while the optimized query processing algorithms achieve great data 

access efficiency. 
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Chapter 2 

Efficient Temporal Shortest Path Queries on 

Evolving Social Graphs 

Graph-like data is widely used in many applications, such as social networks, internet 

hyperlinks, roadmaps, bioinformatics, etc. In most of these applications, graphs are 

dynamic (evolving) as changes are applied through time. In this work, we study the 

problem of efficient shortest-path query evaluation on evolving social graphs. Our 

shortest-path queries are “temporal”: they can refer to any time point or time interval in 

the graph’s evolution, and corresponding valid answers should be returned. To efficiently 

support this type of temporal query, we extend the traditional Dijkstra’s algorithm to 

compute shortest-path distance(s) for a time-point or a time-interval. To speed up query 

processing, we explore the bi-directional search method as well as preprocessing index 

techniques such as Contraction Hierarchies (CH) and Goal-directed Landmark-based A* 

search (ALT). Moreover, we examine how to maintain the evolving graph along with the 

indexing. Experimental evaluations on real world datasets demonstrate the feasibility and 

efficiency of our proposed algorithms and optimizations. 
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2.1 Introduction 

Graphs have been used as a general data structure to model numerous modern 

applications, such as social networks, internet hyperlinks, roadmaps, bioinformatics, etc. 

For example, in a social network application like Facebook, registered users can be 

considered as vertices with edges representing friendships between them. In a dynamic 

world, users and friendships are continuously evolving with time. In December 2004, 

Facebook had about 1 million users; by October 2012, the number of active Facebook 

users had increased to 1 billion. Similarly, edges are continuously added or deleted as 

new friendships are formed or old ones are broken. This dynamically changing 

environment brings critical challenges: how to store the evolution of large-scale graphs 

and how to efficiently support query evaluations. 

The shortest-path query is among the fundamental operations on graph data, as the 

shortest-path distance is important in measuring “closeness” between nodes. In social 

networks, users may be comfortable with adding close users as their friends, and users 

may be interested in finding contents from users that are close to them in the social graph.  

Computing the shortest-path distances efficiently is thus crucial for a variety of 

applications. 

Different from traditional studies of shortest-path queries on a single graph, our main 

objective is to efficiently answer temporal shortest-path queries within the graph 

evolving histories. Such temporal queries can be viewed as being issued on certain 

historical graph snapshot(s). This type of temporal query is not only essential for 
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searching and retrieving histories, but also useful for trend analysis. For example, 

temporal shortest-path queries in a social network can discover how close two given 

users were in the past and how their closeness evolved over time. However, in many 

scenarios, even a single snapshot graph is already very large; maintaining the evolving 

graph history has much greater volume in data storage and brings more challenges in 

querying. 

2.1.1 Related Work and Our Contributions 

In recent years, plenty of research work has studied efficient shortest-path querying of 

large graph data. To improve query times, several preprocessing indexes have been 

proposed; a survey of route planning is provided by [18]. Nearly all of these techniques 

rely on some variant of the classical Dijkstra’s algorithm [19]. These existing researches 

on preprocessing indexes can be classified into three general categories: hierarchical 

methods, goal-directed searches, and combinations of the two. Hierarchical methods 

(such as Highway Hierarchies [48], Transit Node Routing [7], and Contraction 

Hierarchies [22]) seek to order the nodes and/or edges within the graph into 

hierarchically nested levels. Goal-directed techniques (such as arc-flags [28] and ALT 

[24]) try to direct the shortest-path search toward certain explicit target nodes. However, 

most previous works focus only on a single (i.e. non-temporal) graph snapshot. There is 

also recent work on query processing techniques for time-dependent graphs [20] and 

dynamic graphs [14], but are different from our problem that computes temporal shortest-

path distances on evolving graphs. 
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To the best of our knowledge, the most relevant works are [35, 45]. In particular, [35] 

addressed the problem of evaluating historical queries on graphs. Its temporal query 

types, namely the point and range queries, are very close to our time-point and time-

interval query definitions. However, its storage model maintains the current graph and 

deltas to previous time snapshots; as a result, the first step of evaluating a historical 

shortest-path query is to first reconstruct the corresponding snapshot or snapshots that 

relate to the query’s temporal predicate. Such a reconstruction phase can be costly; 

moreover, traditional speed-up preprocessing techniques such as CH and ALT are very 

difficult to incorporate in this storage framework. 

Another storage approach was proposed in [45], namely, the historical evolving graph 

sequence (EGS). Various snapshots and deltas are explicitly stored, but in addition, 

temporally close snapshots are clustered together. Graph-based queries (like shortest-path 

and closeness centrality) are answered for the whole graph history (not a single time point 

or small time interval); this is done efficiently with the help of a Find-Verify-Fix (FVF) 

framework [45]. 

Our work is distinguished from previous studies in various ways: 1) In order to reduce 

storage overhead and support time-interval querying efficiently, we store the historical 

evolution in one “integrated” temporal graph instead of a sequence of snapshots or 

clusters and their deltas. 2) We explore preprocessing index techniques for the temporal 

evolving graph query processing, which are very effective and efficient. 3) We explore 

further enhancements like temporal partitioning. 
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The rest of this chapter is organized as follows. In section 2.2, the temporal evolving 

graph model is proposed along with temporal shortest-path querying definitions. In 

section 2.3, the fundamental solutions are explored as the extensions of Dijkstra’s 

algorithms, while section 2.4 describes speedup techniques such as the bi-directional 

search method and preprocessing indexes like CH and ALT. Section 2.5 discusses further 

optimizations, in particular how temporal partitioning affects the processing of temporal 

queries. Section 2.6 presents our experimental analysis and section 2.7 concludes the 

chapter with future work. 

2.2 Temporally Evolving Graph 

2.2.1 Graph Data Model 
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(a) G1 at t1 (b) G2 at t2 (c) G3 at t3

(d) G4 at t4 (e) G5 at t5
 

Figure 1: Example of temporal evolving graph 

A single static graph, either directed or undirected, can be modeled as G = (V, E), 

where V is the set of nodes and E is the set of edges. If G is a weighted graph, there is a 

weight function w : E → R+
 mapping edges in G to a positive, real-valued weight. An 
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edge is represented as a triplet <n1, n2, w > : i.e., this edge is from node n1 to node n2 with 

weight w. If the graph evolves with time, a different graph snapshot exists logically at 

each time. For example, as shown in Figure 1(a), the graph G1 at time t1 had six nodes 

and six directed edges. From then, until the latest time t5, there are five graph snapshots 

with four updates. Each update may contain multiple operations including: node 

insertion, node deletion, edge insertion, edge deletion, and edge weight adjustment. This 

graph evolution creates a Graph Sequence (GS), GS = (G1, G2, G3, G4, G5). To maintain 

this graph sequence in a space-efficient way, we use the Temporally Evolving Graph 

(TEG). 

In a TEG = (V, E, w, ts, te), besides the nodes, edges and weights, we add two temporal 

attributes ts and te to restrict the nodes and edges. Each node is represented in a triplet as 

<n, ts, te> which implies that node n appears in the graph snapshots during the time 

interval [ts, te). When a node is first created, its te is initialized with the special symbol 

“now”, noting a currently existing (‘alive’) node in the current snapshot of the graph. 

Each edge in a TEG is represented as <n1, n2, w, ts, te> noting that this edge runs from 

node n1 to node n2 with weight w during the time interval [ts, te). Figure 2(a) shows the 

TEG of the graph sequence in Figure 1. Its nodes and edges are listed in Figure 2 (b) and 

(c). Given that most graphs do not change drastically over time, adding a temporal 

interval for each node and edge ever created allows the integrated temporal evolving 

graph to save storage space significantly. 
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<a, t1, now>
<b, t1, now>
<c, t1, now>
<d, t1, now>
<e, t1, now>
<f, t1, now>
<g, t3, now>

<a, b, 2,  t1, now>
<a, c, 3, t1, now>
<b, d, 5, t1, now>
<c, d, 3, t1, now>
<d, e, 4, t1, now>
<e, f, 6, t1, t5>
<a, d, 7 t2, t4>
<d, f, 8, t2, t5>
<d, g, 5, t3, now>
<g, f, 2, t3, now>
<b, g, 8, t4, now>
<c, e, 6, t4, now>
<e, f, 4, t5, now>

(b) Nodes (c) Edges

a

b

e

d

c

f

g

(a) TEG

 

Figure 2: The TEG example and its nodes and edges 

Note that in a TEG there may exist parallel edges connecting two nodes (such edges, 

however, have non-intersecting time intervals). For example, in Figure 2(a), between 

nodes e and nodes f, there are two separate edges <e, f, 6, t1, t4> and <e, f, 4, t5, now>. 

However, between the same pair of nodes, there is only one unique valid edge at any 

given time point.  

2.2.2 Temporal Query Definitions 

In addition to the given source node ns and target node nt, a temporal shortest-path 

query requires a time constraint, such as a time-point tq, or a time-interval [tsq, teq), which 

restricts the candidate nodes and edges within a specific part of the whole temporal graph 

TEG. 

Definition 1. The sub-graph of a temporal evolving graph TEG = (V, E, w, ts, te) for a 

time-point constraint tq is defined as sub-TEG(TEG, tq) = (sub-V, sub-E, w, ts, te), where 

∀v∈sub-V : (v∈V ∧ ts(v) ≤tq ∧ te(v) > tq) and ∀e∈sub-E : (e∈E ∧ ts(e) ≤tq ∧ te(e) > tq), 
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representing the graph snapshot at time tq. Similarly, the sub-graph of a temporal 

evolving graph TEG for a time interval constraint [tsq, teq) is defined as sub-TEG(TEG, 

tsq, teq) = (sub-V, sub-E, w, ts, te), where ∀v∈sub-V : (v∈V ∧ ts(v) < teq ∧ te(v) > tsq) and 

∀e∈sub-E : (e∈E ∧ ts(e) < teq ∧ te(e) > tsq), representing the graph snapshots during time 

interval [tsq, teq). 

Definition 2. A Time Point Shortest Path query TPSP(TEG, ns, nt, tq) returns the 

distance of a path p(e1,…,ek) for query time tq, which is the shortest-path from a source 

node ns to a  target node nt, and all edges in p are valid at query time tq. In another words, 

path p satisfies: n1(e1) = ns ∧ n2(ek) = nt ∧ ∀ei∈p : ( ts(ei) ≤ tq ∧ te(ei) > tq); and ∀p’⊆ sub-

TEG(TEG, qt) from ns to nt : dist(p’) ≥ dist(p). 

For any time point shortest-path query, since the corresponding historical graph 

snapshot is unique, there is a single distance returned. However, for the time interval 

query, the distance from source to target may change within this time interval. For 

example, during time interval [t2, t5), the shortest-path from node a to node f has three 

different distances, namely: {14, (a, c, d, f), [t2, t3)}, {13, (a, c, d, g, f), [t3, t4)}, and {12, 

(a, b, g, f), [t4, t5)}. We thus define two different time interval queries for shortest paths in 

a TEG: the first variation returns all the shortest distances during the time interval, while  

the second query variation returns an aggregated result over these distances. 

Definition 3. A Time Interval Shortest Path “all” query TISP-all(TEG, ns, nt, tsq, teq) 

returns a set of distances for paths P = {p1,…,pm} which contains all the shortest distance 

paths from source node ns to target node nt during the query time interval [tsq, teq).  Each 
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path pi ∈ P is associated with a time interval [tspi, tepi) and there is no other path shorter 

than pi from ns to nt during this time interval [tspi, tepi). 

For the aggregated time interval query, we could utilize the minimum, maximum, or 

average; without loss generality, here we outline the minimum as a representative.  

Definition 4. A time interval shortest path “min” query TISP-min(TEG, ns, nt, tsq, teq) 

returns the path p which is the minimum shortest path from source node ns to target node 

nt during the query time interval [tsq, teq).  

Based on definitions 3 and 4, it is clear that: TISP-min(TEG, ns, nt, tsq, teq) = 

min(TISP-all(TEG, ns, nt, tsq, teq)). 

2.3 Fundamental Solution 

Dijkstra’s algorithm [19] is the classic solution for the point-to-point shortest path 

query. Here, we discuss how to process a temporal shortest path query by extending the 

traditional Dijkstra’s algorithm. 

2.3.1 Dijkstra’s Algorithm for Time Point SP Queries 

For the time point shortest path (TPSP) query on a temporal evolving graph, there is a 

straightforward adaption of Dijkstra’s algorithm using a priority queue PQ, as presented 

in Algorithm 1. In particular, we need to verify if an edge e’s time interval [ts(e), te(e)) is 

valid at time tq (i.e., ts(e) ≤ tq < te(e)) before relaxing this edge in the search (Algorithm 

2.1, line 13). 
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Algorithm 2.1:    TPSP-Dijkstra(TEG, ns, nt, tq) 

Input: Temporal evolving graph TEG = (V, E, w, ts, te),  

ns, nt ∈ sub-V(tq), and query time tq 

Output: Distance of the shortest path p ⊆ sub-TEG(TEG, tq) 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

PQ ← ∅ 

for all v ∈ V ∧ ts(v) ≤ tq ∧ tq < te(v) do 

    d[v] ← ∞ 

end for 

d[ns] ← 0 

PQ.Insert(ns, d[ns]) 

while !PQ.empty() do 

u ← PQ.ExtractMin() 

if u = nt then 

    return d[nt] 

end if 

for all e = (u, v) ∈ E do 

    if ts(e) ≤ tq ∧ tq < te(e) ∧ d[u] + w(e) < d[v] then 

    d[v] ← d[u] + w(e) 

    if v ∉ PQ then 

        PQ.Insert(v, d[v]) 

       else 

           PQ.DecreaseKey(v, d[v]) 

       end if 

    end if 

end for 

end while 

return ∞ 

 

An optimization we used here is to store the adjacent edges of a given node sorted first 

by their target and then by their start time. This is helpful in pruning temporally invalid 

edges; when a target node or an edge is accessed whose start time is later than the query 

time-point, any remaining edges can be skipped. This edge pruning optimization can be 

utilized for time-interval queries as well. 

2.3.2 Dijkstra’s Algorithm on Time Interval SP Queries 

    For the time interval shortest path “all” (TISP-all) query, the naïve method is to 

perform the TPSP-Dijkstra for all time points within the query interval [qts, qte). 

Therefore, for a query time interval with k time instants, this approach would run TPSP-
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Dijkstra k times, which will not be as efficient. An improved approach is to run Dijkstra’s 

algorithm once and return all the qualified answers for the TISP-all query. 

 

Algorithm 2.2:    TISP-all-Dijkstra(TEG, ns, nt, tsq, teq) 

Input: Temporal evolving graph TEG = (V, E, w, ts, te),  

sou, tar ∈ sub-V(tsq, teq), and time interval [tsq, teq) 

Output: All distances of the shortest path set P ⊆ sub-TEG(TEG, tsq, teq) 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

28: 

29: 

30: 

31: 

32: 

33: 

34: 

[tsqin, teqin) ← [ts(ns), te(ns)) ∩ [ts(nt), te(nt)) ∩ [tsq, teq) 

if  ∅ = [tsqin, teqin)  then return ∞ 

dout ← ∞ with time interval(s) [tsq, teq) - [tsqin, teqin) 

PQ ← ∅; done ← ∅ 
for all v ∈ V ∧ ts(v) < teqin ∧ te(v) ≥ tsqin do 

    D[v] ← {d[v, tsqin, teqin] ← ∞} 

end for 

D[ns] ← {d[ns, tsqin, teqin] ← 0} 

PQ.Insert(<ns, tsqin, teqin >, d[ns, tsqin, teqin]) 

while !PQ.empty() do 

<u, tsui, teui> ← PQ.ExtractMin() 

if u = nt then 

    Done ← Done + [tsui, teui) 

    if Done = [tsqin, teqin) then 

        return D[nt] ∪ dout 

    end if 

end if 

for all e = (u, v) ∈ E do 

    if ts(e) < teui ∧ te(e) > tsui then        // [ts(e), te(e)) overlaps with [tsui, teui) 

        [tl, tr) ← [ts(e), te(e)) ∩ [tsui, teui) 

        for all d[v, tsvj, tevj] ∈ D[v] and tsvj < tr ∧ tevj > tl do   

            if d[u, tsui, teui] + w(e) < d[v, tsvj, tevj] then  

                Updating 

            end if 

       end for  

       for all dj[v, tsvj, tevj] ∈ D[v], ordered by tsvj do 

           if dj = dj-1 then 

               merge dj-1’s time interval into dj; remove dj-1 

           end if 

       end for  

    end if 

end for 

end while 

return D[tar] ∪ dout 

 

The TISP-all-Dijkstra’s algorithm, as presented in Algorithm 2.2, is different than the 

traditional TPSP in three aspects. First, the algorithm cannot stop until the confirmed 
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shortest path distance covers the whole query interval. As a result, we need to record the 

parts that are done as well as undone. Second, the distance from the source to a given 

node v within the query interval is not a single value d, but a set of values D with 

different time aspects (due to parallel edges). Last, updating the distance set D and 

priority queue PQ is more complex. We present the details in Algorithm 2.3. 

Algorithm 2.3:    Updating 

This is the updating function in Algorithm 2.2, line 23. The new distance of 

node v with time interval [tl, tr) is dnew = d[u, tsui, teui] + w(e). The overlapped 

previous distance with a larger value holds time interval [tsvj, tevj). 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

if tl ≤ tsvj ∧ tr ≥ tevj then 

    d[v, tsvj, tevj] ← dnew 

PQ.DecreaseKey(<v, tsvj, tevj >, d[v, tsvj, tevj]) 

else if tl ≤ tsvj ∧ tr < tevj then 

D[v] = D[v] + {d[v, tsvj, tr] ← dnew} 

PQ.Insert(<v, tsvj, tr >, d[v, tsvj, tr]) 

D[v] = D[v] + {d[v, tr, tevj] ← d[v, tsvj, tevj]} 

PQ.Insert(<v, tr, tevj >, d[v, tr, tevj]) 

    D[v] = D[v] - {d[v, tsvj, tevj]} 

PQ.Delete(<v, tsvj, tevj >, d[v, tsvj, tevj]) 

else if tl > tsvj ∧ tr ≥ tevj then 

D[v] = D[v] + {d[v, tl, tevj] ← dnew} 

PQ.Insert(<v, tl, tevj >, d[v, tl, tevj]) 

    D[v] = D[v] + {d[v, tsvj, tl] ← d[v, tsvj, tevj] } 

PQ.Insert(<v, tsvj, tl >, d[v, tsvj, tl]) 

D[v] = D[v] - {d[v, tsvj, tevj]} 

PQ.Delete(<v, tsvj, tevj >, d[v, tsvj, tevj]) 

else if tl > tsvj ∧ tr < tevj then 

D[v] = D[v] + {d[v, lt, rt] ← dnew} 

PQ.Insert(<v, lt, rt >, d[v, lt, rt]) 

D[v] = D[v] + {d[v, tsvj, tl] ← d[v, tsvj, tevj] } 

PQ.Insert(<v, tsvj, tl >, d[v, tsvj, tl]) 

D[v] = D[v] + {d[v, tr, tevj] ← d[v, tsvj, tevj]} 

PQ.Insert(<v, tr, tevj >, d[v, tr, tevj]) 

D[v] = D[v] - {d[v, tsvj, tevj]} 

PQ.Delete(<v, tsvj, tevj >, d[v, tsvj, tevj]) 

end if     

 

At the beginning, we consider the “inter” query time interval [tsqin, teqin), which is the 

intersection of the time intervals of source node ns, target node nt, and query time interval 

[tsq, teq). Outside of this “inter” query time interval, there is no valid path from ns to nt 
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within the original query time interval. Hence, we focus on the “inter” interval to 

compute the shortest-path distances, which can reduce the search space. When we extract 

a node u from the priority queue, and u is the target node nt, we check if the whole “inter” 

query interval is done (Algorithm 2.2, line 12). If not, the search for the “all” shortest-

path distances should be continued.  

As shown in Algorithm 2.2 (lines 18-32), when relaxing a valid edge e(u, v) from the 

node u (whose time-interval is [tsui, teui)), it may contribute a new distance(s) value for 

node v within an intersected time-interval [tl, tr). For any temporally overlapped distance 

of node v, if the new distance dnew = d[u, tsui, teui] + w(e) is smaller than the previous 

value (whose time-interval is [tsvj, tevj)), we need to update the distance set of v and the 

priority queue. 

As demonstrated in Figure 3 and Algorithm 3, there are three different cases to be 

considered. First, if the new distance’s time interval covers the whole old distance’s time 

interval (Figure 3(a)), we replace the old value with the new and decrease its key in the 

priority queue (Alg. 3, lines 1-3). Second, if the new distance’s time interval covers the 

head (or tail) of the old distance’s time interval (Figure 3(b, c)), we split the old interval 

into two parts. The covered one is updated with the new value while the uncovered one 

retains the old value (Alg. 3, lines 4-17). Third, if the new distance’s time interval is 

totally inside of the old one’s (Figure 3(d)), the old interval is split into three parts. The 

middle part is updated with the new value while the head and tail retain the old value 

(Alg. 3, lines 18-26). Each time, we only update one temporally overlapped distance 
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value d[v, tsvj, tevj]. After all distances are updated, we run a post-process to merge the 

adjacent identical distances for node v. 

tl tsvj tevj tr

new distance dnew new distance dnew

new distance dnewnew distance dnew

(a) (b)

(c) (d)

tl tsvj tevj tr

tsvj tl tevj tr tsvj tevjtl tr

 

Figure 3: Different scenarios for updating the previous distance and priority queue 

For the TISP-min query, the evaluation process is similar to the TISP-all-Dijkstra’s 

algorithm. The only difference is that the algorithm can be stopped once the first shortest 

path is settled for the target node, without exploring all the candidates. The first 

discovered shortest path is guaranteed to be the minimum due to the Dijkstra’s algorithm. 

2.4 Speed-up Techniques 

Here, we propose some speed-up techniques for the temporal shortest path algorithms. 

Besides the commonly used bidirectional search approach, we analyze the utilization of 

preprocessing indexes, such as hierarchical methods and goal-directed search algorithms. 

2.4.1 Bidirectional Search 

The bidirectional search method [42] utilizes the Dijkstra’s algorithm for both forward 

and backward searches, and proceeds in two phases. In the first phase, we alternate 
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between two unidirectional searches: one forward search from source s growing a 

spanning tree S, and the other backward search from target t growing a spanning tree T. 

When the forward and backward searches reach the same vertex v0, we move on to the 

second phase, in which the shortest path is found. 

For the TPSP query, the bidirectional Dijkstra’s algorithm can be straightforwardly 

extended from the unidirectional TPSP-Dijkstra. However, the case of the TISP-all query 

requires attention. In the unidirectional TISP-all-Dijkstra algorithm, we start by finding 

the “inter” interval [tsqin, teqin) which is the intersection of source and target node time 

intervals with the query interval [tsq, teq). In phase 1, we can adopt the TISP-all-Dijkstra 

for both the forward and backward search alternately. When we meet a vertex labeled in 

both S and T, we can move on to phase 2. A shortest path distance for the intersection 

time interval can be found if the intersection is not empty. Then we go back to phase 1 

and continue the bidirectional search until the whole “inter” interval [tsqin, teqin) is done in 

phase 2. 

2.4.2 Contraction Hierarchies 

Hierarchical methods (such as HH [48], TNR [7], and CH [22]) seek to order the nodes 

and/or edges within the graph to hierarchically nested levels, based on some measure of 

overall graph structure. One of the most efficient methods to date is the contraction 

hierarchies (CH [22, 23]). The effectiveness of the CH search technique comes from the 

use of the newly-added shortcut edges, which allow Dijkstra’s search to effectively 

bypass irrelevant nodes during the search, without invalidating correctness. 
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Node Contracting. Certain absolute ordering ϕ of the vertices is established in the 

graph, according to some notion of relative importance; then the CH is constructed by 

“contracting” one vertex at a time in increasing order. When a vertex v is contracted, it is 

removed from the current graph. For any pair of remaining vertices, u and w, adjacent to 

v in the original graph whose only shortest u-w path is <u, v, w>, a so-called shortcut 

edge (u, w) must be added with the weight of the original shortest path cost through v. A 

local witness search for v (from and to all its neighbors) is required to determine the 

shortcuts. 

Querying. Once all necessary shortcuts E’ are added to the graph G for a given 

ordering, shortest path queries may then be carried out using a bidirectional Dijkstra 

search variant which performs a simultaneous forward search in the upward graph G↑ = 

(V, E↑), where E↑ = {(v, w) ∈ E ∪ E’ | ϕ(v) < ϕ(w)}, and backward search in the 

downward graph G↓ = (V, E↓), where E↓ = {(u, v) ∈ E ∪ E’ | ϕ(u) > ϕ(v)}. A tentative 

shortest path cost is maintained and is updated only when the two search frontiers meet to 

form a shorter path. Once the minimum key from the priority queue exceeds the distance 

of the best path for both directions, the search is finished. 

Node Ordering. Note that a good node ordering is one of the most crucial aspects of 

CH. The computation of an optimal node ordering (i.e. shortcut minimal or query search 

space minimal) is NP-hard. The heuristic solution here is to consider several different 

ordering metrics, along with several different combinations of weighted coefficients for 

each metric tested. Work [23] establishes several metrics including edge difference, 

contracted neighbors, original edges, and so on. 
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Incorporating CH into TEG 

Here, we analyze how to incorporate the contraction hierarchies into our temporal 

evolving graph. Since the CH indexing adds shortcuts on the original graph, in a form of 

extra edges, we can extend the contraction hierarchies by adding temporal information on 

the shortcut edges as well. Now we discuss how to construct a global CH for the whole 

TEG based on a node ordering within the whole graph lifetime. 

When contracting a vertex v, one way we can do it is to perform a local witness search 

for each pair of neighbors, which is a total of |Iv
↓
|*|Ov

↑
| separate local searches (where Iv

↓
 

= {(u, v) ∈ E : ϕ(u) > ϕ(v)} and Ov
↑
 = {(v, w) ∈ E : ϕ(v) < ϕ(w)}). In practice, a better way is to 

perform a single forward shortest-path search from the source node u of each incoming 

edge e↓ = (u, v) ∈ Iv
↓
, ignoring node v until all nodes in the set W = {w ∈ V | (v, w) ∈ Ov

↑
} 

have been settled. When a target node w is “settled”, it means its distances are settled for 

the whole “local search time-interval” [tse↓, tee↓) of the incoming edge e↓. We can also 

stop the search from u when it has reached a distance of w(e↓) + max{w(e↑) | e↑ ∈ Ov
↑
}. 

This task can be achieved efficiently with the help of our TISP-all-Dijkstra query 

processing algorithm without a specified target, and all the “witness” shortest-path 

distances are stored in set D. Then we compare them against the distance of path 

u→v→w as dist = w(e↓) + w(e↑) within time-interval [tse↓, tee↓). If dist is smaller than 

some value in D of a time interval [tsi, tei), then we need to add a shortcut (u, w) with a 

weight dist and a time interval [tsi, tei). More details about node contracting in CH on 

TEG are shown in Algorithm 2.4. 
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Algorithm 2.4:    TEG-CH-Contraction(TEG, ϕ) 

Input: Temporal evolving graph TEG = (V, E, w, ts, te),  

and node ordering function ϕ: V→{1, …, |V|} 

Output: Augmented temporal evolving graph TEG’ = (V, E∪E’, w, ts, te), where E’ 

represents newly added shortcut edges 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

TEG’ ← TEG ; E’ ← ∅ 

for all v ∈ V ordered by ϕ do 

for all e↓ = (u, v) ∈ E ∪ E’ : ϕ(u) > ϕ(v) do 

    maxOutDist  ← 0; W  ← ∅ 

        for all e↑ = (v, w) ∈ E ∪ E’ : ϕ(v) < ϕ(w) do 

            if ∅ ≠ [tse↓, tee↓) ∩ [tse↑, tee↑) then  

                W ← W ∪ {w} 

                  maxOutDist ← max(w(e↑), maxOutDist) 

            end if 

        end for 

        TEG’v ← TEG’[{z ∈ V | ϕ(v) < ϕ(z)}] 

        do local search D ← TISP-all-Dijkstra(TEG’v, u, ∅, tse↓, tee↓) until 

        W fully settled for [tse↓, tee↓) or distance w(e↓)+maxOutDist reached 

    for all d(wi) ∈ D with time-interval [tswi, tewi) do  

        for all e↑ = (v, wi) overlaps with time-interval [tswi, tewi) do 

dist ←w(e↓) + w(e↑) 

if dist < d(wi) then 

                e’← (u, wi) ; w(e’) ← dist  

                [tse’, tee’) ←[tse↓, tee↓) ∩ [tse↑, tee↑) ∩ [tswi, tewi) 

                E’ ← E’ ∪ {e’} 
                  TEG’ ← TEG’ ∪ E’ 

            end if 

        end for 

   end for 

end for 

end for 

return TEG’ 

 

The CH on TEG of our running example in Figure 1 is shown in Figure 4, based on an 

example importance ordering as b < c < d < a < e < f < g. Since the shortcuts are also 

certain types of “edges” in the pre-processed graph, the shortcuts of CH on TEG have 

two new features inherited from the properties of TEG’s edges: i) each shortcut has a 

time interval validity [ts, te], and ii) parallel shortcuts are supported as well.  There are 
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two pairs of parallel shortcuts in our TEG-CH example: <a, e, 10, t1, t3, d> / <a, e, 10, t1, 

t3, d> and <a, g, 11, t3, t3, d> / <a, g, 10, t4, now, b>. 

Importance ordering: 

b < c < d < a < e < f < g

<a, d, 6, t1, now>
<a, e, 10, t1, t4>
<a, f, 14, t2, t3>
<a, g, 11, t3, t4>
<a, e, 9, t4, now>
<a, g, 10, t4, now>

a

b

e

d

c

f

2

3 3

5

4 6/4

7 8

g

5 2

6

8

10/11

6

9/10
14

<a, t1, now>
<b, t1, now>
<c, t1, now>
<d, t1, now>
<e, t1, now>
<f, t1, now>
<g, t3, now>

Nodes

<a, b, 2,  t1, now>
<a, c, 3, t1, now>
<b, d, 5, t1, now>
<c, d, 3, t1, now>
<d, e, 4, t1, now>
<e, f, 6, t1, t5>
<a, d, 7 t2, t4>
<d, f, 8, t2, t5>
<d, g, 5, t3, now>
<g, f, 2, t3, now>
<b, g, 8, t4, now>
<c, e, 6, t4, now>
<e, f, 4, t5, now>

Edges

Shortcuts

 

Figure 4: Example of contraction hierarchies on a temporally evolving graph 

Once the construction phase of CH on TEG is finished, the shortest path queries can be 

carried out. The algorithm employed on the corresponding CH for TEG is similar to the 

bidirectional Dijskra’s algorithm on CH for traditional shortest path queries. For each 

upward and downward search, our proposed TPSP-Dijkstra and TISP-Dijkstra algorithms 

can be utilized. For example, consider the time-interval “all” query of [t2, t5) from a to f. 

The upward search from a extracts the following distances in order: <e, 9, t4, t5>, <e, 10, 

t2, t4>, <g, 10, t4, t5>, <g, 11, t3, t4>, and <f, 14, t2, t3>, while the downward search from f 

only extracts the distance <g, 2, t3, t5>. So the “all” shortest path distances from a to f 

with [t2, t5) are: <14, t2, t3> (a→f), <13, t3, t4> (a→g→f), and <12, t4, t5> (a→g→f). 

2.4.3 Landmark-based A* Search 

Goal-directed search techniques (such as arc-flags [11] and ALT [5]) try to “direct” the 

shortest-path search toward some explicit target node (i.e., the “goal”), in order to speed 
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up the overall query time. One of the most effective goal-directed search techniques is the 

ALT algorithm [5], using A* search in combination with Landmarks and the Triangle 

inequality. 

The ALT algorithm is primarily based on A* search [12], which works like Dijkstra’s 

algorithm except that at each step it selects a labeled vertex v to scan, with the smallest 

value of k(v) = ds(v) + πt(v), where the potential function πt(v) gives an estimate on the 

distance from v to the search target t. For bidirectional A* search, we assume πt and πs 

give lower bounds to the target and from the source, respectively. As suggested, we use 

an average potential function defined as pt(v) = (πt(v) – πs(v)) / 2 for the forward 

computation and pt(v) = (πs(v) - πt(v)) / 2 = - pt(v) for the reverse one. They are feasible 

and consistent for bidirectional A* search. 

ALT involves preprocessing, which selects a small set of vertex as landmarks L, and 

for each vertex in the graph, pre-computes the shortest-path distance to and from every 

landmark. For any node v, with target node t, the triangle inequality provides two lower 

bounds for each landmark, l ∈ L: d(l, t) - d(l, v) ≤ dist(v, t) and d(v, l) - d(t, l) ≤ dist(v, t). 

The maximum of these lower bounds over all landmarks is used to get the tightest lower 

bound. The original implementation of ALT uses, for each shortest path querying, only a 

subset of active landmarks, those that give the best lower bounds on the s-t distance. 

Incorporating ALT into TEG 

The ALT method also can be extended for the temporal shortest path problems in TEG 

by solving the two key steps in preprocessing phase: landmark selection and distance 

computation. 
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Finding good landmarks is critical for the overall performance of lower-bounding 

algorithms. Selecting the optimal set of landmarks is an NP-hard problem [44]; however, 

several strategies are described in [24]. The simplest way to select landmarks is at 

random. The farthest greedy algorithm works as follows. Pick a start vertex at random 

and find a vertex v that is farthest from it. Add v to the set of landmarks. Proceed in 

iterations, always adding to the set the vertex that is farthest from it. 

The main problem of previous landmark selection strategies all focus on a static graph 

and measure the distance based on the graph structure. If we just simply utilize them, the 

selected landmarks may not be suitable for the general temporal shortest path querying. 

For example, at a given query time, there may be few landmarks valid at all, which could 

downgrade the performance of ALT. Therefore, we should take consideration of the 

temporal information of the vertex. Without loss of generality, we adopt the farthest 

landmark selection in this work and extend it by choosing a set of global landmarks with 

a combination of “farthest” and “longest.” The “longest” term refers to the lifetime of the 

selected nodes. 

In the distance computation step, for each vertex in the graph, we calculate the 

shortest-path distances to and from every landmark in the whole TEG graph lifetime. The 

computation can be efficiently achieved with the help of the proposed TISP-all-Dijkstra 

algorithm and its bidirectional version. Thus for each landmark, the distances are stored 

along with their time intervals. When computing the lower bounds in ALT search 

algorithm for time-point querying, we pick the unique temporally valid distance for the 

corresponding querying time point. When computing the lower bounds for time-interval 



 

27 

 

queries, due to multiple temporally valid distances, we choose the minimum triangle 

inequality lower bound value to and from each landmark, and then use the maximum of 

these lower bounds over all landmarks as the tightest estimation. 

2.5 Temporal Partition 

2.5.1 Storage Graph Model 

For historical evolving graphs, as we mentioned earlier, there are two data models. One 

is Graph Sequence (GS), storing all the graph snapshots for each time instance, and the 

other is our Temporal Evolving Graph (TEG) model with a super-graph containing all 

histories. The GS model is optimal for time-point querying, but it causes huge storage 

overhead and is not efficient for time-interval querying. On the other hand, the TEG 

model is optimal in space saving and efficient for time-interval querying (especially large 

intervals); however, its time-point querying performance is downgraded due to skipping 

plenty of temporally invalid edges. The trade-off solution is to make temporal partitions 

for one huge TEG along the time axis. For example, if the whole TEG has n time 

instances, and we create a partition for each m time instance, then we will get n/m 

partitions, as shown in Figure 5. 

……

……

Graph Sequences:

Temporal Evolving Graph:

Partitions of TEG:

n snapshots

One huge graph

n/m partitions

n

m
 

Figure 5: Example of a temporal partition for the storage graph model 
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The temporal partitioning indeed brings some duplicates between the partitions, but it 

reduces the size of queried TEG(s). The temporal shortest path queries (either a time-

point or a time-interval) are issued on the corresponding TEG partition(s) instead of the 

original “super” TEG, which may speed up the query process. However, a long time-

interval query may go across multiple partitions, which results in multiple runs of TISP-

all querying. 

For temporal partitioning, how to split is important. Here, we propose a simple and 

efficient split strategy called fixed-time-window (fix): each partition has a time-window 

with a fixed length. For example, as we presented in Figure 5, the fixed time-window 

length is m. The advantage of fix strategy is that: for a time-window length m any time-

interval query with a length l, we need to access at least ⌈l/m⌉ and at most ⌈l/m⌉+1 

partitions. 

Another applicable split strategy is called graph-edit-distance (ged). This is borrowed 

from a clustering idea in [45]: similar snapshots are grouped together based on the 

symmetric difference of the graph’s edge sets. During some time the graph may change 

more dramatically than other times, so the ged strategy may result in more balanced 

partitions from a storage point of view. However, ged’s time-lengths of partitions is 

different compared to a fixed one in fix. 

The basic temporal partition approach to split the whole graph into a set of disjointed 

adjacent partitions has an obvious drawback: even for a small time-interval query, if it 

goes over the borders of the partitions, we still need multi-partition accesses. For 

example, for a fix-10 temporal partition with time-window length as 10 (shown in Fig. 6), 
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small time-interval query q1 and q2 both have a length of 5; since q2 is over the border 

between partition p2 and p3 in the disjointed partition set (set-1), we need to access both 

p2 and p3 to get the correct “all” query answers. Therefore, we propose an overlapped 

partition solution: for partition pi (i>1), it is overlapped with previous partition pi-1 with 

a factor f (0≤ f <1). For example, in Fig. 6, we make another set of “overlapped” 

partitions (set-2) with f = 50%. We can see that partition p2 starts from time t6 by 

overlapping half of p1. Thus, the partition borders are covered by the overlaps. For a 

small time-interval like q2 (across the partition borders in set-1), it fits in one partition p4 

of the set-2. 

t1 t11

…….p1 p2 p3

t21 t31

t26

q1 [t3, t8) q2 [t18, t23)

set-1:

set-2:
t1

t11

…….

p1

p3
t6

p2

t16

p4

p5

t21

f = 50%

q3 [t13, t28)

 

Figure 6: Example of an overlapped solution for a temporal partition 

The overlapped partition solution increases the storage space by a factor of 1/(1-f); 

however, it improves the performance for time-interval queries by reducing the 

probability of multi-partition accessing for small time-interval queries. For example, 

assume a fix temporal partitioning with time-window length of m; we create the 

overlapped partition set by using f = 50% (overlap half). For any time-interval query 
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length l <= (m/2)+1, we just need to access one partition, while in the original disjointed 

partitioning, we have the probability of (l-1)/m to access two partitions. For time-interval 

query length (m/2)+1 < l <= m, we have the probability of [(l-1)-(m/2)]/m to access two 

partitions, which is much smaller than the probability of (l-1)/m in a disjointed partition 

set. Even for longer time-interval query whose l > m, we still have a larger probability to 

access fewer numbers of partitions in the overlapped partition solution than in disjointed 

partitioning. This is because the overlapped partition set with f = 50% is a superset of the 

disjointed adjacent partition set. For example, in Fig. 6, for a long time-interval query q3 

of 15-day length, it can be processed by accessing two partitions p3 and p5 (excluding 

partition p4). 

2.5.2 Indexing 

The temporal partition idea can be used on preprocessing indexes as well. For both CH 

and ALT, their performance is highly related to certain key feature in their construction 

phase, like the node ordering for CH and the landmark selection for ALT. One global 

choice may not be the best for any single temporal query. Therefore we explore the 

opportunities to maintain different index structures for different time period partitions. 

To implement temporal partition on indexing, there are two options: i) “partition both 

graph and index” by splitting the index along with the temporal evolving graph together; 

or ii) “partition only index” without actual graph-level splitting. For “partition both graph 

and index” option, we first partition the TEG based on certain splitting strategy. Then for 

CH (or ALT), we compute the node ordering and construct local CH (or select the 

landmarks and calculate the local distances) for each sub-TEG partition. 
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The “partition only index” option saves space for actual graph-level splitting; we need 

to access the original edges from the global TEG. For ALT, since the landmarks and their 

pre-computed distances are a set of separated structures from the original graph, this 

option seems favorable. For the whole graph lifetime, we split it into multiple sub-time-

intervals, one for each virtual partition. Then for each sub-time-interval, we select its 

local landmark set and pre-compute the local distances from and to those landmarks. 

Multiple local landmark sets can achieve better querying performances than the single 

global landmark set. For CH, we can implement this option in a similar way. In addition 

to the original TEG-graph and newly-added temporal partitioned shortcut sets, we need to 

store extra information such as the partitioning sub-time-intervals along with the node 

ordering for each partition. 

For temporal index partitioning of CH or ALT, in addition to fix and ged, other 

sophisticated split strategies can be explored, such as shortcut-edit-distance (sed) based 

on the symmetric differences among CH’s shortcut sets or landmark-edit-distance (led) 

based on the symmetric differences of the selected landmarks. 

2.6 Experimental Evaluations 

All experiments have been done on an Intel® Core™ i5-2400S CPU at 2.50GHz with 

8 GB RAM. Our implementation was written in C++ and compiled by gcc version 4.4.3. 

2.6.1 Datasets 

    In our experiments, we used social network graphs from YouTube and Flickr, as 

provided by socialnetworks.mpi-sws.org. The properties of the real datasets are given in 
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Table 1. The storage space for different data models are listed in that table as well. In 

addition to Graph Sequence and Temporally Evolving Graph, we also present the storage 

space of the snapshot-delta model proposed in FVF work [45] as a comparison. 

Table 1: Statistics of real datasets 

Dataset YouTube Flickr 

Graph type Undirected Directed 

Number of snapshots 165 104 

Date of last snapshot 2007-07-23 2007-05-08 

|V| of first Snapshot 1,402,949 1,620,392 

|V| of last Snapshot 3,218,658 2,570,535 

Vertex growth 129% 58% 

|E| of first snapshot 6,783,917 17,034,807 

|E| of last snapshot 18,524,095 33,140,018 

Edge growth 173% 63% 

|E|/|V| of first snapshot 4.84 10.51 

|E|/|V| of first snapshot 5.75 12.89 

Size of TEG 451.2 MB 776.4 MB 

Size of FVF 997.7 MB 1.6 GB 

Size of GS 49.7 GB 59.7 GB 

 

2.6.2 Setup of CH and ALT Indexing 

For CH, node ordering is important. In this work, we consider three classic ordering 

metrics from [23]: edge difference, contracted neighbors, and original edges, and two 

novel priority terms: lifetime length and new parallel-edge. Lifetime represents the time 

interval length of a node; new parallel-edge represents the number of new parallel-edges 

introduced during the contraction of a node. For both the YouTube and Flickr dataset, we 

achieve fairly good performances by using edge difference and original edges with 

weight 2 and 1 respectively. Therefore, we use this setup in the following experiments. 



 

33 

 

To speed up the preprocessing phase of CH, especially for local witness searches, we 

use the hop-limit optimization: limit the depth of the shortest-path tree of the local search 

to 5. Note that this has no influence on the correctness of CH as long as we make sure to 

always insert a shortcut when we have not found a path witnessing that the shortcut is 

unnecessary. Meanwhile, we also use the core nodes optimization to reduce the 

preprocessing time. Node contracting is stopped when the number of remaining un-

contracted nodes reaches a threshold, and the un-contracted nodes are left as core nodes. 

The size of core nodes we used here is 10k. 

For ALT, landmark selection is crucial. In this work, we use our temporal optimized 

“farthest + longest” algorithm. Meanwhile, for a set of landmarks we use 32 nodes, and 

for each individual temporal query, we choose at most 6 active landmarks as a subset. A 

larger number of landmarks can gain better querying performance, but it also results in 

considerable storage overhead. For example, the storage space for 64 landmarks is about 

double the size of that for 32 landmarks. 

2.6.3 Experimental Results 

    Time-Point Shortest-Path Query. For time-point queries, we get the average query 

performance time by running the shortest-path algorithms on every dataset day. And for 

each tested day, we choose 1000 uniformly random s-t pairs. The results are reported in 

Table 2. We can see that both CH and ALT index get more improvement in querying 

performance than bidirectional search. Meanwhile, CH is better than ALT with much 

smaller extra space usage by using more time in preprocessing. The YouTube and Flickr 
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datasets have similar result patterns and we will show the results on the YouTube dataset 

for the following experiments. 

Table 2: Preprocessing time, extra space, and performance of time-point querying 

YouTube TPSP-Dijkstra Bidir CH ALT 

Preprocessing 0 0 3h47m 1h12m 

Extra Space (MB) 0 0 54.1 724.5 

Query Time (ms) 2159 1283 340 384 

Flickr TPSP-Dijkstra Bidir CH ALT 

Preprocessing 0 0 4h19m 1h26m 

Extra Space (MB) 0 0 97.2 817.5 

Query Time (ms) 3647 1994 620 672 

 

Table 3: Performance of time-interval querying 

“all” query   Multi-TPSP One-TISP Bidir CH ALT 

5-day  10.8s 6.3s 3.9s 1056ms 1163ms 

15-day  32.4s 15.1s 9.4s 3039ms 3375ms 

25-day  54.1s 25.9s 16.7s 4961ms 5428ms 

“min” query   Multi-TPSP One-TISP Bidir CH ALT 

5-day  10.8s 5.9s 3.4s 962ms 1039ms 

15-day  32.4s 13.7s 7.8s 2665ms 2981ms 

25-day  54.1s 23.4s 13.8s 4308ms 4846ms 

 

Time-Interval Shortest-Path Query. For time-interval querying, we tested on 

different query interval lengths of 5-day (3% of graph lifetime), 15-day (9% of graph 

lifetime), and 25-day (15% of graph lifetime). For each length, we randomly chose 100 

time-intervals within the dataset lifetime. The querying performance time is also 

averaged by 500 uniformly random s-t pairs for each query time-interval. The results on 

the YouTube dataset are reported in Table 3. It can be seen that, for both time-interval 

“all” and time-interval “min” querying, the one-time run of TISP-Dijkstra’s algorithm is 
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much better than multiple runs of TPSP-Dijkstra’s algorithm. And the average 

performance can be further improved by using CH or ALT index. 

Temporal Partitioning. First, we demonstrate some results by utilizing the fixed-

time-window (fix) split strategy. Different time-window lengths are tested as 10 days, 20 

days, and 30 days. Therefore, for the YouTube dataset, the numbers of partitions are 17, 

9, and 6, respectively. The last partition does not necessarily have a full fix-time length. 

Here, for both CH and ALT, we use the “partition only index” option. The preprocess 

time, extra space (refers to the space of index, while graph space is 451.2MB), and 

performance of time-point queries for different time-window lengths (CH-30 stands for 

CH index with 30-day time-window partition) are presented in Table 4. For temporal 

partitioning, the extra storage spaces have increased while time-point querying 

performances have improved. And smaller time-window length can bring in more time-

point querying benefit, by requiring more space usage as well. 

Table 4: Preprocessing time, extra space, and time-point querying for temporal partition 

YouTube  Preprocessing Extra space (index) Query time 

Bidir 0 0 1283 ms 

CH 3h47m 54.1 MB 342 ms 

CH-30 17h42m 234.7 MB 315 ms 

CH-20 26h3m 362.4 MB 280 ms 

CH-10 49h37m 687.0 MB 247 ms 

ALT 1h12m 724.5 MB 384 ms 

ALT-30 6h7m 6.8 GB 353 ms 

ALT-20 9h11m 9.7 GB 311 ms 

ALT-10 17h25m 18.6 GB 269 ms 

 

We also test the temporal partition for time-interval “all” and “min” queries (“min” 

queries have similar results). Since one query time-interval may go across multiple 



 

36 

 

partitions, we report the query performance by issuing multiple sub-queries (one for each 

overlapped partition) and merging the final results. The results of 5-day time-interval 

queries for CH temporal partitioning and ALT temporal partitioning are shown in Figure 

7. We can see that, if the query time-interval is inside of a single partition, then the 

querying performance is better than using one global index. However, if the query time-

interval goes across multiple partitions, the query performance is worse than on a global 

index solution due to multiple runs of all candidate partitions. 
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Figure 7: Performance of 5-day time-interval all queries for CH and ALT partitions 

Since the 5-day query has a relatively small query interval length, its average 

performance is improved for all three different partition lengths. For each query, we need 

to visit at most two partitions. However, if the query interval is longer, it would have 

more chances to go across several partitions. The average results for 15-day queries (9% 

of the graph lifetime) are shown in Figure 8. We can see that, for 15-day all queries, the 

temporal partitioned indexes have worse performances on average than one global index 

without partitioning and small time-window length (10-day) partitioning, which is best 

for time-point querying but has the worst performance for both CH and ALT. 
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Figure 8: Average performance of 15-day temporal queries for CH and ALT partitions 

Then, we compare the two different partition-level options: “partition only index (oi)” 

and “partition both graph and index (gi)” on fixed-time-window (fix) splitting for both 

CH and ALT speed-up techniques. Average results for time-point, time-interval “all”, and 

time-interval “min” queries are reported in Table 5. We can see that partition option gi 

gains a little improvement in average querying performance rather than oi by using much 

more space to store the partitioned graph and index structures (especially for CH). Thus, 

for our YouTube dataset, the “partition only index” may be the desirable option. 

Table 5: Comparing different partition-level options for CH and ALT 

YouTube CH CH-20-oi CH-20-gi ALT ALT-20-oi ALT-20-gi 

Preprocess 3h47m 26h3m 27h18m 1h12m 9h11m 10h26m 

Total space 504.8MB 813.6MB 3.3GB 1.2GB 10.1GB 12.6 GB 

TPSP 341ms 280ms 264ms 384ms 311ms 288ms 

5-day-all 1056ms 999ms 928ms 1163ms 1087ms 1019ms 

5-day-min 962ms 902ms 844ms 1039ms 984ms 933ms 

15-day-all 3039ms 3905ms 3525ms 3375ms 4284ms 4007ms 

15-day-min 2665ms 3280ms 2974ms 2981ms 3790ms 3525ms 

 

Next, we compare different splitting strategies on the “partition only index” option. For 

fixed-time-window (fix), we use the 20-day length, resulting in 9 partitions, for both CH 
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and ALT. The graph-edit-distance (ged) is also used for both CH and ALT by generating 

9 partitions. Meanwhile, shortcut-edit-distance (sed) is used for CH and landmark-edit-

distance (led) is used for ALT, both with 9 partitions. Since the time to compute each 

snapshot CH or ALT is too long, our sed or led splitting strategies compute the CH or 

ALT for every 5-day period; this results in 33 preprocessing computations. The average 

time-point and time-interval “all” querying results are shown in Table 6. Since our 

YouTube dataset has a smooth evolving pattern (without dramatic changes), the different 

splitting strategies have very similar performances. By considering the preprocessing 

time, fix split strategy may be the best choice. 

Table 6: Comparing different split strategies for CH and ALT 

YouTube CH-fix CH-ged CH-sed ALT-fix ALT-ged ALT-led 

Preprocess 26h3m 27h37m 138h49m 9h11m 10h18m 46h20m 

Total space 813.6MB 732.5MB 747.2MB 10.1GB 10.6GB 11.3GB 

TPSP 280ms 264ms 272ms 311ms 295ms 302ms 

5-day-all 999ms 937ms 952ms 1087ms 1004ms 1025ms 

5-day-min 902ms 843ms 859ms 984ms 889ms 906ms 

15-day-all 3905ms 4008ms 4061ms 4284ms 4332ms 4308ms 

15-day-min 3280ms 3392ms 3424ms 3790ms 3872ms 3839ms 

 

At last, we test the “overlapped partition” solution for fix-time-window splitting 

strategy. When we set overlap factor f = 0, it is the same as disjointed partitioning we 

used above. The results for “partition index only” option on CH indexing with time-

window length as 10-day and 20-day, along with overlap factor f as 0, 30% and 50%, are 

shown in Table 6. The extra space here refers to the space for index storage (while the 

graph space is 451.2MB). We can see that when set f as 30%, it is only good for time-
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point and small time-interval queries; when we set f as 50%, we can get fairly good 

performances for both small time-interval and large time-interval queries. 

Table 7: Overlapped temporal index partitioning for CH 

 CH 10-0% 10-30% 10-50% 20-0% 20-30% 20-50% 

# of partitions 0 17 24 33 9 12 17 

Preprocess 3h47m 49h37m 73h29m 99h42m 26h3m 37h40m 51h18m 

Extra space 54.1MB 687.0MB 892.2MB 1.2GB 362.4MB 530.4MB 774.8MB 

TPSP 341ms 247ms 245ms 240ms 280ms 276ms 271ms 

5-day-all 1056ms 1007ms 902ms 761ms 999ms 887ms 865ms 

10-day-all 2042ms 2542ms 2932ms 1946ms 2285ms 1945ms 1674ms 

15-day-all 3039ms 4504ms 5973ms 3960ms 3905ms 4510ms 3905ms 

 

2.7 Conclusion 

In this work, we studied the problem to answer temporal shortest-path distance queries 

on historical evolving graphs. Based on our newly proposed data model and query 

definitions, we extended the traditional Dijkstra’s algorithm for both time-point and time-

interval queries, in order to process the shortest-path querying efficiently. Moreover, we 

investigated how to incorporate preprocessing index structures such as CH and ALT to 

speed-up query processing. To analyze trade-offs and explore further optimizations, we 

proposed temporal partitioning, with multiple split strategies and partition-level options. 

To demonstrate our algorithms and optimizations, we performed experimental 

evaluations on real-world social-network datasets. 
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Chapter 3 

Temporal Top-k Keyword Search in Social 

Tagging Websites Using Multiple Social Networks 

The advent of Web 2.0 has facilitated the growth of online communities and 

applications such as blogs, wikis, online social networks and social tagging sites.  In 

social tagging sites, users are provided easy ways to create social networks, to post and 

share items like bookmarks, videos, photos or articles, along with comments and tags. In 

this chapter, we present an experimental study of top-k search in social tagging sites by 

utilizing multiple social networks and temporal information of tagging behaviors. In 

particular, besides the global connection, we consider two main social networks, namely 

the friendship and common interest networks in our scoring functions. Based on the 

degree of participation in various networks, users can be categorized into specific classes 

that differ in their weights on each scoring component. Temporal information, usually 

ignored by previous works, can enhance the popularity and freshness of the ranking 

results. Experiments and evaluations on real social tagging datasets show that our 

framework works well in practice and give useful and intuitive results. 



 

41 

 

3.1 Introduction 

  With the advent and popularity of Web 2.0, the World Wide Web has become 

increasingly open for everyone. Successful Web 2.0 applications include blogs, wikis, 

online social networks, and social tagging sites. In social tagging sites, such as 

del.icio.us, Flickr and CiteULike (Table 8), user-generated data is the core feature. Once 

a user is logged in, he/she can easily edit his/her own personal profile, build social 

networks with friends, and contribute content by posting bookmarks, videos, photos, or 

articles. He/she can also annotate those items with arbitrary labels— the so-called tags. 

Social tagging sites are free, fun, and functional, attracting more and more people to 

register as users. 

Table 8: Popular social tagging websites 

    
URL www.delcious.com www.flickr.com www.citeulike.org 

Type Online social 

bookmarking 

Photo sharing and 

Photo networking 

Social bookmarking 

of academic articles 

Owner Yahoo! Inc Yahoo! Inc Oversity Ltd 

Launched Sep 2003 Feb 2004  Nov 2004 

Statistics Over 180 million 

bookmarked URLs 

Over 6 billion 

images 

Over 3 million 

articles bookmarked 

 

With their increasing popularity, social tagging sites have formed and stored valuable 

information like user-generated items, user social networks, and user tags. How to make 

good use of this information to improve services such as hot-lists, recommendations and 

web search is an open and attractive challenge for both academia and industry. 
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In this work, we focus on temporal ranking and personal search in social tagging sites. 

When compared to other works, our contributions are: First, we apply multiple 

components to score an item with respect to a particular user’s different social networks 

and assign weights to each component based on the classification of that user’s 

participation in those networks. Then, we take into consideration the temporal 

information of tagging behaviors, in order to enhance popularity and freshness of the top-

k results. Last, we provide a variation of the classic top-k algorithm which works 

efficiently for our user-dependent temporal scoring functions. Moreover, experimental 

evaluations on real social tagging datasets show that our framework works well in 

practice. 

The rest of this chapter is organized as follows: in section 3.2 we review previous work 

on social tagging and web search. Section 3.3 describes the data model, user social 

networks and problem statement while section 3.4 demonstrates our user-based temporal 

scoring functions. The temporal top-k algorithm appears in section 3.5. Section 3.6 

provides experimental results on real social tagging datasets while conclusion appears in 

section 3.7. 

3.2 Related Work 

Social tagging has become a hot research topic recently. Much work has investigated 

in related areas such as recommendation systems and web search. 

Recommendation systems use information filtering (IF) techniques to present 

information items (movies, music, books, news, images, web pages, etc.) which are likely 
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of interest to the users [36]. A highly-automated novel framework for real-time tag 

recommendation is proposed in [51]. [57] uses explanation-based diversity to explore 

compromises between accuracy and diversity in recommender systems.  

An empirical analysis of how social bookmarking can influence web search is provided 

in [27], with both positive and negative insights. Various ranking methods have been 

developed and many of them are inspired by the well-known PageRank [13] method for 

web link analysis. They model the entities in social networks as a “social-content graph” 

and use a “random surfer” traversing the graph to compute the ranking of nodes to a 

user’s query. [29] proposes FolkRank to identify important users, data items, and tags. [6] 

introduces SocialSimRank which calculates the similarity between social annotations and 

web queries, and SocialSimRank which captures the popularity of web pages. 

Recently, some studies expand traditional top-k algorithms [21] to do search in social 

tagging. An incremental top-k algorithm is developed in [50] with two expansions: the 

social expansion considers the strength of relations among users, and the semantic 

expansion considers the relations of different tags. A network-aware search is presented 

in [2] to incorporate social behavior into searching content in social tagging sites. It 

extends traditional top-k algorithms to bounds-based algorithms, and explores clustering 

users as a way to achieve a balance between processing time and space consumption. 

However, neither of them considers temporal information or the combining of multiple 

social networks. 
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3.3 Data Model 

3.3.1 Tagging Behavior 

Previous work in social tagging mostly ignores timestamps, and treats a tagging 

behavior as a three-factor tuple: <User, Item, Tags>, which indicates that a user u 

annotated one item i with arbitrary tags. 

To take into account the temporal information, we extend the tagging behavior tuple by 

adding timestamps (Figure 9). In the following, we first demonstrate the model of social 

networks and static scoring functions without timestamps, and then explore a method to 

incorporate temporal information into ranking. 

 

Figure 9: Four-factor data model for temporal tagging behaviors 

3.3.2 Social Networks 

In social tagging sites, users are generally participating in multiple social networks. 

Aside from the global connection, meaning that everyone can connect with anyone else 
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on the whole web, here we consider two other kinds of social networks, namely, 

friendship and common interest networks. 

Friendship is a kind of explicit social network. One user can choose to add any other 

users as friends. Most of them could be acquaintances in real life—friends, schoolmates, 

business contacts, etc; some may be known through the internet. We use Friends(u) to 

represent all the users in a friendship with user u. 

Most social tagging sites have a service enabling users to create and join special groups. 

Users can post messages and share content to the group. This social network is also an 

explicit one, since members in the same group have direct connections with each other. 

Thus, for our purpose, we categorize group members into Friends as well. 

We also consider another kind of social network called common interest network [2]. It 

is different from the traditional explicit social networks which are built up by adding 

friends or joining groups. The common interest network is implicit in nature, and is 

formed based on similar tagging behaviors. The items posted by a person and the tags 

used can be considered indicators of that person’s interests. Linking people together 

whose tagging behaviors overlap significantly can implicitly form common interest 

networks. Users do not necessarily add each other as Friends when they have common 

interests. However, this social network may bring more relevant and interesting search 

results to the user. 

The common interest network can be computed by considering the overlap in tagged 

items between users. Let Items(u) be the set of items tagged by the user u with any tag. 

Using Links(u) to represent the common interest network for the user u, we could define 
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that another user v is in Links(u) iff a large fraction of the items tagged by u are also 

tagged by v, as follows: | ( ) ( ) | / | ( ) |Items u Items v Items u   , where   is a given threshold. 

The social networks we used in this chapter, namely friendship (Friends) and common 

interest networks (Links), are both very important social networks among social tagging 

sites. Different websites may have different names or forms; however, most of their 

social networks typically fall into these two main categories. 

Naturally, different users have different social networks. As a result, when searching 

within a user’s particular social networks, the top-ranked answers will be user-dependent. 

3.3.3 Problem Statement 

Given a query Q = t1,…,tn with n terms, issued by user u, and a number k, we want to 

efficiently return the top-k items with the highest overall scores. Our search strategy is 

user-focused, giving different results to different users, even when the query is the same. 

Our search strategy considers the user’s multiple social networks. Moreover, the top-k 

results returned take into account the tagging behaviors’ temporal information. For 

simplicity, tags and keywords are treated the same, and our framework deals with exact 

string matching. 

3.4 Scoring Function 

We first demonstrate how to score the items for a user’s specific query. The static 

scoring functions for each social network component are initially discussed without 

timestamps, and are combined together to form an overall scoring function. A method for 

combining weight assignments based on user classification is then discussed. Finally, 
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temporal information of tagging behaviors is added and temporal scoring functions are 

examined. 

3.4.1 Multiple social network components 

The overall static scoring function needs to aggregate three social network 

components: friendship (Friends), common interest network (Links), and global 

connection (Global). 

Given a user u, the friendship component score of an item i for a tag t is defined as the 

number of users in u’s Friends who tagged i with tag t: 

( , , ) | ( ) { | ( , , )}|Friendsscore i u t Friends u v Tagging v i t   

 

(1) 

Similarly, the score from common interest network is defined as the number of users in 

u’s Links who tagged i with tag t: 

( , , ) | ( ) { | ( , , )}|Linksscore i u t Links u v Tagging v i t 
 

 

(2) 

Besides the above two score component from a user’s social networks, we also 

consider the global effect on scoring. Not everyone is an active participant and/or has 

large personal social networks; if we only use the local social network scoring, the search 

effectiveness may decrease. The Global score is defined as the total number of users in 

the whole website tagged item i with tag t: 

( , ) |{ | ( , , )}|Globalscore i t v Tagging v i t  

 

(3) 
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The global score is thus user-independent; it is only related to the corresponding item 

and tag, so for the same item and tag, the Global component score is the same for all 

users. 

As a result, the static overall score of item i for user u with one tag t is an aggregate 

function of the weighted scores from the three components: 

1 2 3( , , ) * ( , ) * ( , , ) * ( , , )Overall Global Friends Linksscore i u t w score i t w score i u t w score i u t    

 

(4) 

where wi is the weight of each component and 3

1
1ii

w


  

Since a query contains multiple tags, we also define the static overall SCORE of item i 

for user u with the whole query Q = t1,…,tn as the sum of the scores from individual tags, 

which is a monotone aggregation function: 

1
( , ) ( , , )

n

Overall jj
SCORE i u score i u t


  (5) 

3.4.2 User Classification 

Different weight assignments of components can generate different overall scores. 

Meanwhile, users may have different trusts on each component of the scoring function. 

So finding an efficient approach to set the weights is far from trivial.  

There are several ways to assign component weights. Machine learning methods can 

be used to get “optimal” solutions. However, these need the definition of “optimal” and a 

large amount of user feedback data for training. Also, statistics algorithms need user log 

records and exploring data in the website, which are not easy to access either. For 

simplicity, here we use a user classification method based on the social networks size and 

recommend weight assignments for each class. 
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Users in social tagging sites have different usage patterns and degrees of participation 

in their social networks. Some users have many friends, while some may only have few. 

Also, for tagging, some users do frequent tagging and thus have a lot of tagged items; 

while others may not tag as much. As an example, we randomly collected 100 users in 

del.icio.us as shown in Table 9. A user can bookmark a URL with several tags in 

del.icio.us, and the friendship social network is called “Network”. One can observe huge 

differences of usage pattern among the del.icio.us users. 

Table 9: 100 randomly collected users in del.icio.us 

 Maximum Minimum Average Standard 

deviation 

Bookmarks 29942 52 1769.38 4272.27 

Network 100 0 15.82 21.19 

 

In our general framework, we use three categories for each social network component, 

described as: many, some and few; nine classes are shown in Table 3. The users in the 

same class have similar usage patterns and degrees of participation, as their social 

networks have similar sizes. 

Table 10: User classification 

User Friends 

many some few 

L
in

ks
 many Class 1 Class 2 Class 3 

some Class 4 Class 5 Class 6 

few Class 7 Class 8 Class 9 

 

Within this classification, we assume that users in the same class have similar degree 

of trust on each social network scoring component. Then we can give a recommendation 
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of weight assignments for users in each class. For example, a user in Class 1 has a large 

common interest network and has a lot of directly added friends. In Class 1, then, w1 and 

w2 could be set higher than w3, because this user may wish to get more relevant and 

attractive information from his/her Friends and Links. In another example, a user in Class 

7 only has a small common interest network, but he/she has a lot of friends. So such user 

may trust more on his/her Friends and have a high weight value w2. 

3.4.3 Temporal Scoring Functions 

We believe that ranking results will be more attractive to users not only based on their 

relevance, but also on popularity and freshness; hence the temporal information of 

tagging behaviors is important. For example, one item may be more interesting if it is 

recently added. In this case, a simple interpretation of freshness is the first date the item 

was posted. However, not all new posts are popular, and not all popular posts are new. A 

more subtle way may consider how many recent tagging behaviors have targeted an item. 

Our basic approach is to divide the tagging behaviors into multiple time slices, based 

on their time stamps for our scoring functions. We use m to denote the number of time 

slices and adjust the weights of different time slices based on their recency (or freshness). 

A higher weight is set to tagging behaviors occurring in the current time slice, and a 

lower weight to tagging behaviors in earlier time slices. 

We use decay factor a (0 < a < 1) to penalize the count score from old time slices. 

Thus, the temporal score of Global component of item i with tag t can be defined as: 

1
- ( , ) ( , , )*

m m s

Global Globals
T score i t score i t s a 


  

(6) 
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where ( , , )Globalscore i t s  is the global score of item i with tag t at time slice s, with s = m 

being the current time slice. 

We demonstrate the importance of temporal information for search with a real 

example. We used tag “kdd” as keyword in a search on del.icio.us on June 1
st
, 2009, 

using the search function provided, and got the top-5 results including “KDD Cup 2007”, 

“KDD 2008” and “KDD 2009”1. The search revealed the three results in that order 

because the static total number of tags as “kdd” added to each item, which were 24, 16 

and 15 respectively. When we looked at the timestamps of these tagging behaviors, we 

found that “KDD Cup 2007” has many “old” tags, although it has the biggest total 

number of tags as “kdd”. The details are shown in Figure 10. 
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Figure 10: Monthly number of tags as "kdd" of three top results 

Using temporal ranking in this example, we can set a = 0.5, m = 5, and separate the 

time slices with a length of 6-month for each. Then the temporal global component scores 

(T-scoreGlobal) for “KDD Cup 2007” “KDD 2008” and “KDD 2009” are 5, 6.75 and 11 

                                                 
1 The other two results in top-5 are “UCI KDD Archive” and “KDnuggest” 
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respectively. The ranking order will be changed as “KDD 2009”, “KDD 2008” and 

“KDD Cup 2007” which reflects the tag freshness. 

The temporal scoring functions for Friends and Links components are defined 

similarly with the temporal factors in Global: 

1
- ( , , ) ( , , , )*

m m s

Friends Friendss
T score i u t score i u t s a 


  (7) 

1
- ( , , ) ( , , , )*

m m s

Links Linkss
T score i u t score i u t s a 


  (8) 

The temporal overall scoring function of item i for user u with tag t is: 

1 2 3- ( , , ) * - ( , ) * - ( , , ) * - ( , )Overall Global Friends LinksT score i u t w T score i t w T score i u t w T score i t  
 

(9) 

Therefore, the temporal scoring for whole query is: 

1
- ( , ) - ( , , )

n

Overall jj
T SCORE i u T score i u t


  (10) 

 

 3.5 Temporal Ranking Algorithm 

To compute the top-k items with query tags for a particular user, items are organized in 

inverted lists with some information pre-computed, so that the well-known top-k 

algorithm can be adapted. 

Typically, one inverted list is created for each keyword and each entry contains the 

identifier of a document along with its score for that keyword [5]. For our framework, 

when the query is composed of multiple tags, we need to access multiple lists and apply 

the top-k processing algorithms. 

One straightforward method is to have one inverted list for each (tag, user) pair and 

sort items in each list according to the temporal overall score (T-scoreOverall) for the tag t 

and user u. However, there are a lot of users in social tagging sites (del.icio.us has over 5 
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million users). If we create inverted lists per keyword for each user, there will be too 

many inverted lists and thus large space is required. 

Another solution is to factor out the user from each inverted list by using upper-bound 

scores [2]. Since we use the number of users as the static score without normalization and 

set all three social network component with the same temporal factors for a query, for the 

same item i with the same tag t, no matter which user, we have T-scoreFriends<=T-

scoreGlobal and T-scoreLinks<=T-scoreGlobal. 

As a result, temporal global score is an upper-bound of temporal overall score for all 

the users, because T-scoreOverall=w1*T-scoreGlobal+w2*T-scoreFriends+w3*T-scoreLinks 

<=w1*T-scoreGlobal+w2*T-scoreGlobal+w3*T-scoreGlobal=T-scoreGlobal. Since the global 

component scoring is user-independent, we can create only one list for each keyword 

along with the temporal global scores (T-scoreGlobal) as an upper-bound of the user-based 

temporal overall scores (T-scoreOverall). 

In our framework, the temporal factor is designed as adjustable for users. It is 

impossible to know a user’s choice in advance, so the temporal factors may also need to 

be factored out from the inverted lists. The static global scores (scoreGlobal) is an upper-

bound for the temporal global scores (T-scoreGlobal), since the static scores correspond to 

the temporal ones with a = 1. Therefore, the final upper-bound scores used in our 

inverted lists are the static global scores. The entries of lists have a form: 

<item, {(user1, time1), (user2, time2),…}, scoreGlobal > 

which includes item ID, all users who tagged the item with that tag along with 

timestamps, and the static global score. 
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We can thus extend Fagin’s classic top-k TA algorithm [21] to rank the items listed in 

the order of static global scores scoreGlobal as the upper-bound for temporal overall scores 

in Algorithm 3.1. Given a user u, query Q and k, Friends(u), Network(u), weights w1, w2, 

and w3 for that user’s class are identified. We access the relevant inverted lists 

sequentially in parallel. When an item o is seen for the first time, we compute its exact 

temporal overall score (T-scoreOverall) with a “local” aggregation function of three 

component temporal scores. For every item entry, we have all the IDs of tagging users 

and timestamps, so we can compute T-scoreGlobal directly, and T-scoreFriends, T-scorelinks 

by checking with user’s Friends and Links. Then, we do the random access to other lists 

and perform computation of T-scoreOverall. When at least one of T-scoreOverall = 0, we set 

T-SCORE = 0 for that item. This means an item must include all query tags; otherwise it 

will be scored 0 for T-SCORE. After that, we can have the exact temporal overall score T-

SCORE of this item for the whole query Q and check whether it can be swapped into top-

k sorted heap. Meanwhile, a Thres, the sum of bottom bounds of all lists is recorded and 

updated. The algorithm stops whenever the score of the kth item in the heap is no less 

than the Thres, and outputs the top-k results. 

Other top-k algorithms like NRA can easily be extended in a similar way. We also 

notice that the upper-bound scores can be coarse at times. [2] explores the use of 

clustering to save processing time. This methodology could be adapted into our 

framework as well; however it is left as future work. 
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Algorithm 3.1   Temporal Top-k Ranking Algorithm 

Require: User u, Query Q, and k 

1:  Get Friends(u), Links(u), weights w1, w2, w3, and temporal factors; 

Open inverted lists for each keyword tQ; 

2:  while score of kth heap item <= Thres do 

3:      Do sequential access in parallel to each of the list Li; 

4:      Once a new object o is seen, get the exact T-ScoreOverall of o in that list;  

5:      Do random access to the other lists, and get the T-ScoreOverall of o; 

6:      if at least one the T-ScoreOverall = 0 then 

7:         Set the exact T-SCORE of o to be 0; 

8:      end if 

9:      else 

10:        Compute T-SCORE by sum up T-ScoreOverall; 

11:        if o’s T-SCORE > kth score in top-k heap then 

12:           Replace kth item with o; keep heap sorted; 

13:        end if 

14:    end else 

15:    Update Thres as sum of bottom bounds of all lists; 

16: end while 

17: Output the heap as top-k results 

 

3.6 Experimental Evaluation 

Below we evaluate our proposed framework and method for the temporal top-k search 

problem using various real datasets. An extended collection of our experiments and 

evaluations appears in [30]. 

3.6.1 Data Collections 

To evaluate the effectiveness of our scoring functions and query process methods, we 

collected datasets from CiteULike (http://www.citeulike.org), an academic article social 

tagging site. 

In CiteULike, articles are stored with their metadata, abstracts, and links to the papers 

at the publishers’ websites. Users can add their academic papers to their online library 
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with tags and personal comments. Friendship and social networks can be created between 

users through “Connections”. In addition, CiteULike also allows a user to set up and join 

groups that share academic or topical interests. Many other services, such as “Watchlist” 

and “Neighbours”, are also offered. 

CiteULike provides some datasets from their core database.2 However, to get more 

recent data, we further crawled datasets before 2009.7.1. After filtering, our datasets 

comprised approximately 104,000 unique articles posted by approximately 4,600 unique 

users using approximately 35,000 unique tags. 

3.6.2 Top-k result lists 

We proceed with experimental top-k results based on different temporal factors and 

weight assignments. 

We first evaluate the effects of temporal information; we search for top-k results, and 

only consider the global scoring functions. Figure 11 depicts the top-10 results for the 

search query “social tagging” of two tags, “social” and “tagging”. We divide the time 

range of our datasets into six-month periods, starting from the most recent 2009.1.1 – 

2009.6.30 to earlier time slices, which will remain the same throughout this work. 

Changes of temporal factors differentiate the top-k lists. If the decay factor a = 1, then 

the scoring function is the same as the static scoring function, and the results are ranked 

by the total number of users who tagged the item with the query keywords, without 

considering any temporal information. On the other hand, with decay factor a = 0, the 

query considers recency and shows the ranking of the number of tagging behaviors only 

                                                 
2 http://www.citeulike.org/faq/data.adp 
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in the most recent time slice. A balanced decay factor a = 0.5, is neither too high to miss 

the temporal information and freshness, or too low to lose classic popular items. The top-

10 results are shown in Figure 11 in ranking order, along with the items’ Ids, Names and 

Years they published. 

 

Figure 11: Top-10 results for different decay factor a. (a) a = 1; (b) a = 0; (c) a = 0.5 

These three lists reveal some interesting observations. First, when the decay factor a 

decreases from 1 to 0, the average “age” of the top-10 items becomes younger. Second, 

some recently popular articles improve their rating when a decreases, such as I13 and I7. 

Meanwhile, some classic items, due to their “old age”, rank down dramatically. However, 

when a = 0.5, the top-10 lists include both classic and fresh popular items. Last, some 
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articles (such as I12, I28, I3, I13, and I8) show up in all three lists. These articles are very 

important and stay in top-10 lists despite the decay factor changes. 

We further show the top-10 results as related to different weight assignments of the 

three social network components, Global, Friends and Links. Here the temporal factors 

remain unchanged using the same query: “social tagging”. 

CiteULike has an explicit friendship social network called “Connections”, however, 

due to privacy reasons such data is not available. It also has the “Groups” friendship, so 

we use Friends(u) to include all users who are members in the user u’s Groups. 

 

Figure 12: Top-10 results of different weights (a) w1 = 1; (b) w2 = 1; (c) w3 = 1; (d) recommended 
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Moreover, CiteULike has a service named “Neighbours” which is quite similar to our 

common interest network in social tagging. Neighbours of u are the users who have 

bookmarked the same articles as u. To remove the “long tail”, it only shows neighbors 

who share at least the median number of articles. As a result, we used the “Neighbours” 

as our Links social network component for our experiments. 

We picked up a specific user from our user dataset who uses the tags “social” and 

“tagging” very frequently. This user has 13 Friends and 23 Links, and is then categorized 

into Class 2 in the users classification. We gave a recommended weight assignment for 

this class as w1 = 0.1, w2 = 0.3, and w3 = 0.6. The temporal scoring functions use the 

decay factor a = 0.5, while the time slices remain as six months. The top-10 results for 

different weight assignments are shown in Figure 12. 

The first three lists are generated using only one social network component each time. 

As seen, some articles, I3, I12, I7, and I8, stay in top-10 among all three lists. Note that 

the top-10 list with our recommended weights for the three social networks also includes 

these important articles with relatively high ranking positions. Therefore, our top-k 

search framework using multiple social networks can embrace manifold opinions without 

losing any important items. 

3.6.3 NDCG Measurements 

We now proceed with an evaluation of our framework using the NDCG standard for 

measuring the search quality. Classical IR metrics, namely NDCG, MRR, and MAP [38] 

are widely used for measuring search quality. Here we use the NDCG (normalized 
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discounted cumulated gain) measurement [33] to evaluate the performance of our 

experiments. 

Every item in top-k lists is given a corresponding human judgment scoring from 0 to 3 

(0=Bad, 1=Fair, 2=Good, 3=Excellent). The cumulated gain is computed by summing up 

and the discounted cumulated gain vector is defined recursively as: 

2

[1],                                      if 1

[ 1] [ ] / log ,  otherwise

G i
DCG

DCG i G i i


 

 
 

The DCG vectors can be normalized by dividing them by the corresponding ideal DCG 

vectors (all score 3), so the normalized value ranges in [0, 1]: [ ] [ ] / [ ]IdealNDCG i DCG i DCG i  

Our human judgments of top-10 results are based on relevance and attractiveness 

(popularity and freshness) for particular query tags. Since it is difficult to ask real users, 

we elicit the help of graduate student volunteers to provide us with their educated 

judgments. Different queries may prefer different temporal factor settings. We thus used 

two different sets of popular query tags, and ask three volunteers to judge each query. For 

set-1, the queries are “social-network” and “tagging”. These are popular and very hot 

recently. For set-2, we use “algorithm” and “database” as queries, because they are very 

popular and classic. 

We change the decay factor a from 1 to 0 with the same time slice division as six 

months. Meanwhile, we only evaluate the global temporal scoring (T-scoreGlobal) to factor 

out user diversity. The average NDCG results are shown in Figure 13. From this figure, 

we observe that different kinds of queries have different preferences. Hot queries may 

prefer recent tagging behaviors much more than classic queries. And for classic queries, 
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the total number is a very important factor for search. But for both sets, the average 

NDCG peaks when a is neither too high nor too low. 
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Figure 13: Average NDCG results for different decay factor a 

Here we evaluate the NDCG of different user classes with different weight 

assignments for each social network. The users are classified based on the size of their 

social networks. The distributions of our user dataset are shown in Figure 14. We set few 

as 0~5, some as 6~15, and many as 15+ for both Friends and Links. 
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Figure 14: Distributions of the size of users' social networks 
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Based on the user classification in Table 10, we provided an example recommendation 

of weight assignments for six representative classes as listed in Table 11. The decay 

factor was set as a = 0.5 and the time slices were six months. We tested two queries—

“tagging” and “algorithm”, picked up two users from our dataset for each class, and used 

two volunteers to evaluate. Then we extracted the average NDCG. 

Table 11: Recommendation of weight assignments 

Class Recommendation Class Recommendation 

1 r1: w1 = 0.1, w2 = 0.45, w3 = 0.45; 5 r5: w1 = 0.2, w2 = 0.4, w3 = 0.4; 

2 r2: w1 = 0.1, w2 = 0.3, w3 = 0.6; 6 r6: w1 = 0.2, w2 = 0.3, w3 = 0.5; 

3 r3: w1 = 0.1, w2 = 0.1, w3 = 0.8; 9 r9: w1 = 0.4, w2 = 0.3, w3 = 0.3; 

 

First we examined whether our multiple social network components method works 

better than using only one component. As shown in Figure 15, in all six representative 

classes, our multiple-component method produced better NDCG than any other one-

component method. 
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Figure 15: Average NDCG for different weight assignments across six classes 
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Figure 16: Average NDCG for different recommendations across four classes 

Then we tested if our respective weight assignments recommended for each class were 

performing better than other multiple component assignments. In this experiment, our 

recommended weight assignments were r1 for Class 1, r2 for Class 2, r3 for Class 3, and 

r9 for Class 9. We tested all these four assignments for each class. As seen in Figure 16, 

our recommended weight assignments performed better than the other assignments for 

each specific class. For example, when running assignments r1, r2, r3, and r9 for Class 1, 

r1 performed better. Similarly, r2 performed better for Class 2, r3 for Class 3, and r9 for 

Class 9. 

3.7 Conclusions 

In this chapter, we presented an experimental study of temporal top-k search in social 

tagging sites using two main types of social networks, friendship and common interest 

networks, to model the scoring functions along with the global component. To set the 

weights of each scoring component for different users, a classification of users is 

proposed based on the size of users’ social networks. To improve the popularity and 
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freshness of ranking results, the timestamps of tagging behaviors are recorded and 

separated into multiple time slices. Then temporal scoring functions are formed by giving 

higher weights to more recent time slices. In addition, an efficient temporal top-k 

algorithm for ranking is proposed which stores inverted lists for each tag with static 

global scores as upper-bound of each item. Experimental evaluation on real social 

tagging website datasets shows that our framework and methodology work well in 

practice. 
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Chapter 4 

A Comparison of Top-k Temporal Keyword 

Querying over Versioned Text Collections 

As the web evolves over time, the amount of versioned text collections increases 

rapidly. Most web search engines will answer a query by ranking all known documents at 

the (current) time the query is posed. There are applications however (for example 

customer behavior analysis, crime investigation, etc.) that would need to efficiently query 

these sources as of some past time, that is, retrieve the results as if the user was posing 

the query in a past time instant, thus accessing data known as of that time. Ranking and 

searching over versioned documents considers not only keyword constraints but also the 

time dimension, most commonly, a time point or time range of interest. In this chapter, 

we deal with top-k query evaluations with both keyword and temporal constraints over 

versioned textual documents. In addition to considering previous solutions, we propose 

novel data organization and indexing solutions: the first one partitions data along ranking 

positions, while the other maintains the full ranking order through the use of a multi-

version ordered list. We present an experimental comparison for both time point and time 
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interval constraints. For time-interval constraints, different querying definitions, such as 

aggregation functions and consistent top-k queries are evaluated. Experimental 

evaluations on a large real world dataset demonstrate the advantages of the newly 

proposed data organization and indexing approaches. 

4.1 Introduction 

Versioned text collections are textual documents that retain multiple versions as time 

evolves. Numerous such collections are available today and a well-known example is the 

collaborative authoring environment, such as Wikipedia (http://en.wikipedia.org/), where 

textual content is explicitly version-controlled. Similarly, web archiving applications 

such as the Internet Archive (http://www.archive.org) and the European Archive 

(http://europarchive.org/) store regular crawls over time of web pages on a large scale. 

Other time-stamped textual information such as, weblogs, micro-blogs, even feeds and 

tags, as also create versioned text collections. 

If a text collection does not retain past documents, then a search query ranks only the 

documents as of the most current time. If the collection contains versioned documents, a 

search typically considers each version of a document as a separate document and the 

ranking is taken over all documents independently to the document’s version (creation 

time). There are applications however, where this approach is not adequate. Consider the 

following example: in order for a company to analyze consumer comments on a specific 

product before some event occurred (new product, advertisement campaign etc.), a 

temporal constraint may be very useful. For example, to view opinions on iphone4, a 
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time-window within 06/07/2010 (announce date) and 10/04/2011 (announce date of 

iphone4s) could be a fair choice. Many investigation scenarios also require combining the 

keyword search with a time-window of interest. For example, while considering a 

financial crime, an investigator may need to identify what information was available to 

the accused as of a specific time instant in the past. 

Providing “as-of” queries is a challenging problem. First is the data volume. Document 

collections like Wikipedia and Internet Archive, are already huge even if only their most 

recent snapshot is considered. When searching in their evolutionary history, we are faced 

with even larger data volumes. Moreover, how to quickly return the top-k temporally 

ranked candidates is another new challenge. Note that returning all qualified results 

without temporal constraints would not be efficient since two extra steps are required: (i) 

filtering out results later than the query specified time constraint, and, (ii) ranking the 

remaining results so as to provide the top-k answers. 

We present an experimental evaluation of the top-k query over versioned text 

collections, comparing previously proposed as well novel approaches. In particular the 

key contributions can be summarized as: 

1. Previous methods related to versioned text keyword search are suitably extended 

for top-k temporal queries. 

2. Novel approaches are proposed in order to accelerate top-k temporal queries. The 

first approach partitions the temporal data based on their ranking positions, while 

the other maintains the full rank order using a multiversion ordered list. 
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3. In addition to top-k time-point keyword based search, we also consider two time-

interval (or time-range) variants, namely “aggregation ranking” and “consistent” 

top-k querying. 

4. Experimental evaluations with large-scale real-world datasets are performed on 

both the previous and newly proposed methods. 

The rest of this chapter is organized as follows. Preliminaries and related work are 

introduced in section 4.2. Our novel approaches appear in section 4.3. Different query 

definitions of time-interval top-k queries are presented in section 4.4. All techniques are 

comprehensively evaluated and compared in a series of experiments in section 4.5 while 

the conclusions appear in section 4.6. 

4.2 Preliminaries and Related Work 

4.2.1 Definitions 

The data model for versioned document collections was formally introduced in [11], 

and used by later works [10, 3, 4]. Let D be a set of n documents d1,d2,…,dn where each 

document di is a sequence of mi versions: 1 2
{ , , ..., }i

m

i i i i
d d d d . Each version has a semi-

closed validity time-interval (or lifespan)
 ( ) [ , )

j

i s e
life d t t . Moreover, it is assumed that 

different versions of the same document  have disjoint life spans. An example of five 

documents and their versions appears in Figure 17; each document corresponds to a 

colored line, while segments represent different versions of a document. 
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The inverted file index is the standard technique of text indexing for keyword queries, 

deployed in many search engines.  Assuming a vocabulary V, for each term v in V, the 

index contains an inverted list Lv consisting of postings of the form (d, s) where d is a 

document-identifier and s is the so-called payload score. There are numerous existing 

relevance scoring functions, such as tf-idf [5], language models [43] and Okapi BM25 

[47].  The actual scoring function is not important for our purposes; for simplicity we 

assume that the payload score contains the term frequency of v in d. 
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Figure 17: Example of versioned documents with scores for one term 

In order to support temporal queries, the inverted file index must also contain temporal 

information. Thus [11] proposed adding the temporal lifespan explicitly in the index 

postings. Each posting includes the validity time-interval of the corresponding document 

version: (di, s, ts, te) where the document di had payload score s during the time interval 

[ts, te). 

If the document evolution contains few changes over time, the associated score of most 

terms is unchanged between adjacent versions. In order to reduce the number of postings 
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in an index list, [11] coalesces temporally adjacent postings belonging to the same 

document that have identical (or approximate identical) scores. 

A general keyword search query Q consists of a set of x terms q = (v1, v2,…,vx) and a 

temporal interval [lb, rb]. Without loss of generality, we use the aggregated score of a 

document version for keyword query q is the sum of the scores from each term v. The 

time-interval [lb, rb] restricts the candidate document versions as a subset of the original 

collection:
 

[ , ]

{ | [ , ] ( ) }
lb rb j j

i i
D d D lb rb life d     . When lb = rb holds, the query time interval 

collapses into a single time point t. For simplicity we first concentrate on time-point 

query and more complex time-interval queries are discussed in section 4 with related 

variations. 

The answer R to a Top-K Time-Point keyword query TKTP = (q, t, k) over collection 

D is a set of k document versions satisfying:
 

{ | ( : ) ( )
j j j t

i i i
d R v q v d d D       ( ( ) : ( ) ( ))}

t j

i
d D R s d s d       

where { | ( )}
t j j

i i
D d D t life d   . The first condition presents the keyword constraint, the 

second condition the temporal constraint, while the third implies that the top-k scored 

document versions are returned. Now we present how to answer query TKTP using 

previous methods based on temporal inverted indexes. 

4.2.2 Previous methods 

The straightforward way (referred to as basic) to solve query TKTP uses exactly one 

inverted list for each vocabulary term v with the posting (di, s, ts, te). To answer the top-k 
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queries, corresponding inverted lists are traversed and postings are fetched. When a 

posting is scanned, it is also verified for the time point specified in TKTP. 

The sort-order of the index lists is also important. One natural choice is to sort each list 

in score order. This method (score-order) enables the classical top-k algorithms [21] to 

stop early after having identified the k highest scores with qualified lifespan. Another 

suitable sorting choice is to order the lists first by the start time ts and then by score (ts-

order) which is beneficial for checking the temporal constraint. However, this approach is 

not efficient for top-k querying, especially when the query includes multiple terms. Fig. 1 

shows the score-order and ts-order lists for a specific term. 

Note that the efficiency of processing a top-k temporal query is influenced adversely 

by the wasted I/O due to read but skipped postings. We proceed with various 

materialization ideas of the slice the whole list of a term into several sub-lists or 

partitions thus improving processing costs. 

Interval Based Slicing splits each term list along the time-axis into several sub-lists, 

each of which corresponds to a contiguous sub-interval of the time spanned by the full 

list.  Each of these sub-lists contains all coalesced postings that overlap with the 

corresponding time interval. Note that index entries whose validity time-interval spans 

across the slicing boundaries are replicated in each of the spanned sub-lists. 

The selection of the corresponding time-intervals where the slices are created is vital as 

discussed in [10, 3]. One obvious strategy is to eagerly slice sub-lists for all possible time 

instants (and adjacent identical lists can be merged). This will create one sub-list per time 

instant; this will provide ideal query performance for a TKTP query since only the 
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postings in the sub-list for the query time point will be accesses. We refer to this method 

as elementary. 

Note that the basic and elementary methods are two extremes: the former requires 

minimal space but requires more processing at query time since many entries irrelevant to 

the temporal constraint are accessed; the latter provides the best possible performance 

(for time-point query) but is not space-efficient (due to copying of entries among sub 

lists). To explore the trade-off between space and performance, [3] employs a simple but 

practical approach (referred to as Fix) in which a partition boundary is placed after a 

fixed time window. The window size can be a week, a month, a year, or other flexible 

choices. Figure 18 shows the Fix-2 and Fix-4 sub-lists of our running example from 

Figure 17, with the partition time window size as 2 and 4 time instants respectively. 

Nevertheless, all variations of the interval based slicing suffer from an index-size blowup 

since entries whose valid-time interval spans across the slicing boundaries are replicated. 

[t0, t2):

d4, 1, t0, t1

d2, 0.95, t1, t4

d2, 0.7, t0, t1

d4, 0.7, t1, t3

d1, 0.6, t0, t6

d3, 0.5, t0, t8

[t2, t4):

d2, 0.95, t1, t4

d5, 0.75, t3, t8

d4, 0.7, t1, t3

d1, 0.6, t0, t6

d3, 0.5, t0, t8

d4, 0.4, t3, t6

[t4, t6):

d2, 0.9, t4, t8

d5, 0.75, t3, t8

d1, 0.6, t0, t6

d3, 0.5, t0, t8

d4, 0.4, t3, t6

[t6, t8):

d2, 0.9, t4, t8

d5, 0.75, t3, t8

d3, 0.5, t0, t8

d4, 0.25, t6, t8

Fix-4:

[t0, t4):

d4, 1, t0, t1

d2, 0.95, t1, t4

d5, 0.75, t3, t8

d2, 0.7, t0, t1

d4, 0.7, t1, t3

d1, 0.6, t0, t6

d3, 0.5, t0, t8

d4, 0.4, t3, t6 

[t4, t8):

d2, 0.9, t4, t8

d5, 0.75, t3, t8

d1, 0.6, t0, t6

d3, 0.5, t0, t8

d4, 0.4, t3, t6

d4, 0.25, t6, t8 

Fix-2:

 

Figure 18: Time Interval Based Slicing sub-list examples 

Stencil Based Partitioning. Another index partitioning method along the time-axis 

was proposed in [26]. It is distinguished from the interval based slicing by using a multi-

level hierarchical (vertical) partitioning of the lifespan. The inverted list of term v, at 
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level L0 contains the entire lifespan of this list, while level Li+1 is obtained from Li by 

partitioning each interval in Li into b sub-intervals. Such a partitioning is called a stencil; 

each index posting is placed into the deepest interval in the multi-level partitioning that 

fits its range. A stencil-based partition of three levels with b = 2 for the running example 

(from Figure 17) is shown in Figure 19. 

Comparing to the time interval based slicing, the stencil based partitioning has 

significant advantage in space because each posting falls into a single list, the deepest 

sub-interval that it fits. Nevertheless, for a time-point query stencil based partitioning has 

to fetch multiple sub-lists, one from each level. 
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Figure 19: Stencil-based partitioning with 3 levels and b = 2 

The sort-order of each sub-list is again important. Since the temporal partitioning 

already shreds one full list into several sub-lists along the time-axis, a more appropriate 

choice for top-k queries is score-ordering. 

Temporal Sharding. The approach proposed in [4] is to shard (or horizontally 

partition) each term list along the document identifiers instead of time. Entries in a term 

list are thus distributed over disjoint sub-lists called shards, and entries in a shard are 
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ordered according to their start times ts. So as to eliminate wasteful reads, within a shard 

gi, entries satisfy a staircase property: , , ( ) ( ) ( ) ( )
i

p q g ts p ts q te p te q     . An optimal 

greedy algorithm for creating this partitioning is given in [4]; an example of temporal 

sharding for the term list from Figure 17 is shown in Figure 20. 
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Figure 20: Temporal sharding example 

As with the stencil based approach, the space usage for temporal sharding is optimal 

since there are no replications of index entries. However, for query processing, all shards 

for each term need to be accessed, resulting in multiple sub-list readings. Moreover, the 

entries in each shard can only be time-ordered (based on start time ts). Thus the benefit of 

score-ordering for ranked queries cannot be achieved, because all temporal valid entries 

have to be fetched. 

4.3 Novel Approaches 

A common characteristic of existing works is that they only consider the versioned 

documents on the time- and docID-axes, and try to partition the data along either 

direction. Instead, we view the index entries from a new angle -- namely, their score over 
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time, and create index organizations to improve the performance of top-k querying. The 

score-time view of the example from Figure 17 is shown in Figure 21. 
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Figure 21: The Score-Time view of the versioned documents 

Recall that to answer a TKTP query we should be able to quickly find the top-k scores 

of a term at a given time instant. The main idea behind the score-time view is to maintain 

an index that will provide the top scores per term at each time instant.  For example, at 

time t0, the term depicted in Fig.5 had scores 1 (from d4), 0.7 (from d2), 0.6 (from d1) and 

0.5 (from d3). These orderings change as time proceeds; for example at time t2, the top 

score is 0.95 from d2, etc. In rank-based partitioning (section 4.3.1), we first discuss a 

simplistic approach (SPR) where an index is created for each rank position of a term. For 

example, there is an index that maintains the top score over time, then one for the second 

top score, etc. More practical is the group ranking approach (GR) where an index is 

created to maintain the group of the top-g scores (g is a constant), then the next top-g etc. 

We also consider temporal indexing methods (section 4.3.2). One solution is to use the 

Multiversion B-tree and maintain the whole ranked list in order over time. We realize 

however that these ranked lists are always accessed in order, so a better solution is 
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provided (multiversion list) that links appropriately the data pages of the temporal index, 

without overhead of the index nodes. 

4.3.1 Rank Based Partitioning 

The Single Position Ranking (SPR) approach creates a separate temporal index for 

each ranking position of a term. Thus, for the i-th ranking position (i = 1,2,…), a sub-list 

is maintained that contains all the entries that ever existed on position i over time. 

Together with each entry we maintain the time interval during which this entry occupied 

that position. All sub-list entries are ordered based on their recorded starting time; a 

B+tree built on the start times can easily locate the appropriate entry at a given time. The 

SPR of our running example (from Figure 17) is shown in Figure 22(a). Space can be 

saved by using only the start time of each entry but for simplicity we show the end times 

as well (the end time is needed only if there is no entry in a particular position, but this is 

true only at the last position). 

Using the SPR approach, to process a TKTP query about time t, the first k sub-lists 

have to be accessed for each relevant term; from each sublist the B+tree will provide the 

appropriate score (and document id) of this term at time t. If each sub-list has m items on 

average, the estimated time complexity is O(k∙logBm) (here B corresponds to the page 

size in records). Many sub-list accesses can degrade querying performance; moreover, in 

this simple SPR method the same posting can be duplicated in multiple ranking position 

sub-lists. This unavoidable replication may result in storage overhead. 

Group Ranking (GR). In order to save space and improve querying performance, GR 

maintains an index not for a single ranking position, but for a group of positions. Let the 
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group size be g. For example, the first g ranked elements are in group gr1, the next g 

ranked elements are in group gr2, etc. Thus, compared to the n sub-lists maintained in 

SPR for n ranking positions, GR uses instead n/g sub-lists. With respect to the I/O of top-

k querying, we only need k/g random accesses (each of them still logarithmic). 
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Figure 22: Ranking position based partitioning 

As with the SPR each member within a group also records the time interval that the 

member was in the group. For example, assume that group gri maintains ranking 

positions (i-1)g+1 through ig. If at time ts the score of a particular term falls within these 

positions, this score is added to the group, with an interval starting at ts. As long as this 

score falls within the ranking positions of this group, it is considered part of the group; if 

at time te it falls out of the group, the end time of its interval is updated to te. 

To save on update time, within each group we do not maintain the rank order. That is, 

each group is treated as an unordered set of scores that evolves over time. To answer a 

TKTP query that involves a particular group gr at time t, we need to identify what 

members group gr had at time t. Since the size of the group is fixed, we can easily sort 

these member scores and provide them to the TKTP result in rank order. However, it is 

guaranteed that given time t, the members in gri have no lower scores than those in group 
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grj where 1 ( / )i j n g   . The GR approach for the above example (from Figure 17) with 

g = 2 is shown in Figure 22(b). 

An interesting question is what index to employ for maintaining each group over time. 

Different than SPR, each group at a given time may contain multiple entries; thus a 

B+index on the temporal start times is not enough. Instead, temporal index structures that 

maintain and reconstruct efficiently an evolving set over time, like the snapshot index 

[52] can be used to accelerate temporal querying. 

Note that when implementing GR in practice, each group may have a different size g. 

It is preferable to use smaller g for the top groups and larger g for the lower groups (since 

the focus is on top-k, the few top groups will be accessed more frequently and thus we 

prefer to give faster access). For simplicity however, we use the same g for all groups. 

4.3.2 Using a Multiversion List 

Consider the ordered list of scores that a term has over all documents at time t; as time 

evolves, this list changes (new scores are added, scores are promoted, demoted or even 

removed, etc). Temporal indexing methods have addressed a more general problem: how 

to maintain an evolving set of keys over time. This set is allowed to change by adding, 

deleting or updating keys; the main temporal query supported is the so called: temporal-

range query: “given t, provide the keys that were in the set at time t, and are within key 

range r”. The Multiversion B-tree (MVBT) proposed in [9], is an asymptotically optimal 

(in terms of I/O accesses under linear space) solution to the temporal range query. 

Assuming that there were a total of n changes that occurred in the set evolution, then the 

MVBT uses linear space (O(n/B)). Consider a range temporal query that specifies range r 
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and time t, and let at denote the number of keys that were within range r at time t (i.e., the 

number of keys that satisfy the query); the MVBT answers the above query using 

O(logBn + at/B) page I/Os, which is optimal in linear space [9]. 

In order for the MVBT to maintain order among the keys, it uses a B+tree to index the 

set. As the set evolves, so does the B+-tree. Conceptually the MVBT contains all B+-

trees over time; for a given query time t the MVBT provides access to the root of the 

appropriate B+-tree, etc. Of course, the MVBT does not copy all B+-trees (as this would 

result in quadratic space). Instead it uses clever page update policies. In particular, when 

a key k is added to the evolving set at time t a record is inserted in the (leaf) data page 

whose range contains k; this record stores key k and a time interval of the form: [t, *). 

The ‘*’ denotes that key k has not been updated yet. If later at time t’ this key is removed 

from the set, its record is not physically deleted. Instead this change is represented by 

changing the ‘*’ to t’ in this record’s interval. A record is called “alive” for all time 

instants in its interval. Given a query about time t, the MVBT tree identifies all data 

pages that contain alive records for that time t. In contrast to a regular B+-tree that deals 

with pages that get underutilized due to record deletions, the MVBT pages cannot get 

underutilized because no record is ever deleted. Like the B+-tree pages can get full of 

records and need to be split (page overflow). However, the MVBT needs to also 

guarantee that the number of “alive’ records in a page do not fall below a lower threshold 

l (weak version underflow) and also do not go over an upper threshold u (strong version 

overflow)- note that l and u are O(B). If a page overflows, a time-split occurs, that copies 

the alive records of the overflown page (at the time of the overflow) to a new page. If 
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there are too few alive records, the page is merged with a sibling page that is also first 

time-split. If there are too many alive records, a key split is first applied (among the alive 

records) [9]. 

Using the MVBT for our purposes means that the scores play the role of “keys”. That 

is, the MVBT will maintain the order of scores over time. Since however term records are 

accessed by the docID they belong to, a hashing index is also needed that, for a given 

docID, it provides the leaf page that holds the record with this term’s current score. This 

hashing scheme need only maintain the most current scores (i.e., it does not need to 

maintain past positions). 

Nevertheless, the above MVBT approach has a significant overhead. In particular, it is 

built to answer queries about any range of scores. This is achieved by starting from an 

appropriate root of the MVBT and follow index nodes until the leaf data pages in the 

query range are accessed. For top-k processing however, we only access scores in 

decreasing order, starting with the largest score at a particular time instant. Thus, what we 

actually need, is a way to access the leaf page that has the highest scores at a particular 

time, and then follow to its sibling leaf page (with the next lower scores) at that time, etc.  

We still maintain the split policies among the leaf pages, but we do not use the MVBT’s 

index nodes. Effectively we maintain a multiversion list (MList), i.e., of the leaf data 

pages over time. 

To access the leaf data page that has the highest scores at a given time, we maintain an 

array A with records of the form (t, p) where t is a time instant and p is a pointer to the 

leaf page with the highest scores at time t. If later at time t’ another page p’ becomes the 
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leaf page with the highest scores, array A is updated with a record (t’, p’). If this array 

becomes too large for main memory, it can easily be indexed by a B+-tree on the 

(ordered) time attribute. 

For the above “list of leaf pages” idea to work, each leaf page needs to “remember” the 

next sibling leaf page (with lower scores) at each time. (Note: the MVBT does not require 

the sibling pointers, since access to siblings is done through the parent index nodes). One 

could still use the array approach (one array responsible to keep access to the second leaf 

page, one for the third etc.) but this would require many array look-ups at query time 

(each such lookup taking O(logBn) page I/Os. Instead, we propose to embed these arrays 

within the page structure. That is, within each leaf page, we allocate a space of c records 

(where c is a constant) for the sibling page pointer records (also of the form (t,p)). As a 

result, each leaf page has now space for B-c score records. Since however, the sibling 

page can change over time, it is possible that for a leaf page p the sibling will change 

more than c times. If this happens at time t, page p is “time split”, that is, a new leaf page 

p’ is created containing only the currently alive records of page p and with an empty 

array for sibling pointers. Moreover, p’ replaces p in the list. If before t, the list of leaf 

pages contained pages (in that order) m  p  v, a new record (t, p’) is added in the 

array of page m, and the array of page p’ is initialized with a record (t,v). If p was the first 

page, the record (t,p’) is added to array A. 

The advantage of the Mlist approach is apparent at query processing time. A search is 

first performed within array A for time t (in O(logBn) page I/Os). This will provide access 

to the page with the highest scores at time t. Find the next sibling page at time t however 
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will be provided by looking among the c records of this page, etc. That is, the top-k 

scores at time t will be accessed in O(logBn + k/B) page I/Os. The justification is that 

after the access to array A, each leaf page (except possibly the last one) will provide O(B) 

of the top-k scores (since we are using the MVBT splitting policies within the B-c space 

of each leaf page and c is a constant, each page is guaranteed to provide at least l=O(B) 

scores that were valid at the query time t. 

4.4 Top-k Time Interval Queries 

Until now we focused on the top-k time point (TKTP) querying, and analyzed different 

index structures for solving it. We proceed with the time interval top-k query. The main 

difference is that in the TKTP, each document has at most one valid version at the given 

time point t; while for an interval querying, each document may have multiple versions 

valid during the given time interval [lb, rb]. As a result, there are different variations, 

depending on how the top-k is defined (which of the valid scores per document 

participate in the top-k computation). Here, we summarize the different definitions of 

top-k time-interval queries and discuss how to process them efficiently within the 

proposed index structures. 

4.4.1 Classic Top-k Time-Interval Query 

This query definition is a straight forward extension from the top-k time point query. 

For a Top-K Time Interval keyword query TKTI = (q, lb, rb, k) over collection D, we 

require the answer R be a set of k document versions satisfying: { | ( : )
j j

i i
d R v q v d     
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[ , ] [ , ]
( ) ( ( ) : ( ) ( ))}

j lb rb lb rb j

i i
d D d D R s d s d        where [ , ]

{ | [ , ] ( ) }
lb rb j j

i i
D d D lb rb life d     . This definition 

only changes the time constraints from a time point t to a time range [lb, rb]. The 

returned top-k answers are different versions, which may be from the same document, 

that is, we consider each document version as an independent object. 

Processing a TKTI query is similar to processing a TKTP query. For some of the 

described index methods, multiple sub-lists have to be accessed instead of one. For 

example in time interval based slicing and stencil based partitioning, all the sub-lists (or 

stencils) overlapping with the query time-interval should be checked in order to find the 

correct top-k results. The multiple parallel sub-lists can be accessed in a round-robin 

fashion which is compatible with top-k algorithms. 

4.4.2 Document Aggregated Top-k Time-Interval Query 

Another possibility is to treat each document as one object, that is, a document appears 

at most once in the result. There are various approaches in aggregating relevance scores 

of the document versions that existed at any point in the temporal constraint [lb, rb] to 

obtain a document relevance score drs(di, lb, rb). Three aggregation relevance models are 

mentioned in [11]: 

MIN. This model judges the relevance of a document based on the minimum score. It 

is formally defined as: ( , , ) min{ ( ) | [ , ] ( ) }
j j

i i i
drs d lb rb s d lb rb life d    . The MIN scores of our 

five-document example for interval [t0, t8) are d2=0.7, d3=0.5, d4=0.25, d1=0, d5=0. 
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MAX. In contrast, this model takes the maximum score as an indicator. It is formally 

defined as: ( , , ) max{ ( ) | [ , ] ( ) }
j j

i i i
drs d lb rb s d lb rb life d   . MAX scores of our five-document 

example for interval [t0, t8) are d4=1, d2=0.95, d5=0.75, d1=0.6, d3=0.5. 

TAVG. Finally, the TAVG model assigns the score to each document using a temporal 

average among all its valid versions. Since score ( )
j

i
s d  is piecewise-constant in time, 

drs(di, lb, rb) can be efficiently computed as a weighted summation of these segments. 

TAVG scores of our five-document example for interval [t0, t8) are d2=0.89, d4=0.51, 

d3=0.5, d5=0.47, d1=0.45. 

After the aggregation mechanism has been defined, one can consider the Aggregated 

Top-K Time-Interval keyword query TKTI
A
 = (q, lb, rb, k) over collection D, that finds 

the top k documents with aggregated scores over all their valid document versions. To 

process the aggregated top-k time-interval query, we need to extend the traditional top-k 

algorithms (such as TA and NRA) by recording the bookkeeping information and 

computing the scores and thresholds with candidates at document-level. The relevance 

score of a document in the query temporal-context depends on the scores of its version 

that are valid during this period. 

4.4.3 Consistent Top-k Time-Interval Query 

The consistent top-k search finds a set of documents that are consistently in the top-k 

results of a query throughout a given time interval. The result of this query has size 0 to k; 

queries can have empty results if k is small or the rankings change drastically. A relaxing 

consistent top-k query utilizes a relax factor r, 0 < r <= 1, and seeks for documents that 
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are in the top-k for at least r ×(rb – lb) time in the [lb, rb] interval. For a Consistent Top-

K Time Interval keyword query TKTI
C
 = (q, lb, rb, k) over collection D, the documents 

in the answer R are in the top-k for at least r ×(rb – lb) time in the [lb, rb] interval. The 

consistent top-3 query of our five-doc example for time-interval [t0, t8) has only one 

result as d2 if r = 1, and has three results as d1, d2 and d5 if r = 0.6. 

In [54] several algorithms were introduced to answer the consistent top-k query; the 

most efficient ones are based on the assumption that there is a list containing all versions 

satisfying the keyword and time interval constraints and the list is ordered by score. This 

assumption coincides with the purpose of our proposed index structures, thus we can 

access the qualified entries and execute the consistent top-k time interval query using the 

proposed approaches in [54]. 

4.5 Experimental Evaluations 

4.5.1 Dataset Description and Methods Implemented:  

We used news-like articles as our primary versioned document collection. We 

collected US and world-wide English newspaper websites and treated each URL as a 

single document. Then their historical homepage versions were retrieved by crawling the 

Internet Archive from 1997.1.1 until 2011.12.31. We created two different datasets with 

daily unit time granularity. The US based news had many frequent updates. The size of 

raw data is about 0.2 TB, with 12,649 documents and 1,542,893 versions; thus on 

average there are 122 versions per document in the US dataset. For the world-wide news 
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websites, the size of raw data is about 50 GB, with 5,046 documents and 275,981 

versions, so on average there are 55 versions per document. Previous related works create 

query workloads by extracting frequent queries from the AOL query logs. In addition to 

this traditional query workload, we use popular keywords (such as “twitter”, “iphone”, 

“lady gaga” etc.) from the Google Zeitgeist (http://google.com/zeitgeist/) annual reports 

from 2001 until 2011. Overall, we formed 200 queries with 265 terms for both classic 

and popular keywords. 

We organize the data into term inverted list(s) using the previous and novel approaches. 

In the basic method with score-ordering (referred to as Basic-s) we create one inverted 

list per term. The second method is elementary time-interval slicing with a merging of 

adjacent identical sub-lists (Ele). For the Fix approach we used a time-window length of 

30 days (Fix-30). The stencil based partitioning was implemented with 3 levels and b = 4 

(Stencil). Temporal sharding is referred as Shard, while the single position ranking 

model appears as SPR. Two group ranking methods were implemented with group sizes 

of 25 and 50 (GR-25 and GR-50). For comparison purposes we also included the MVBT 

index (with the appropriate hashing secondary index).The multiversion list approach 

(MList) uses a factor a = c / B to present the ratio of the number of pointer records to the 

number of all records in a page. More details can be found in [31]. 

4.5.2 Comparison Results 

First, the space usage for all implemented methods on both the US-news and World-

news datasets is presented in Table 12. The page size is 4 Kbytes while B = 100 records. 

The table presents the space consumed (in GB) to implement the index methods for the 
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256 terms used in our experiments. Clearly, the elementary time-interval slicing has a 

huge space overhead while the Stencil and Shard methods present substantial space 

savings. As expected, the Basic-s approach has the minimal space requirements. Fix-30 

uses more space since a record may appear in more partitions while in Stencil and Shard, 

each record appears once. The additional space that Stencil and Shard use wrt Basic-s is 

due to the additional structures they utilize. Among the rank-based partitioning methods, 

SPR uses more space than the GR approaches; this is because the SPR approach has to 

maintain one index per ranked position. GR-25 uses more space than GR-50 since it uses 

more index structures (one per group). For the MList method, we show the results of a = 

7% and a = 10% (referred to MList-7 and MList-10). The MList approaches also use 

linear space (but due to the copying of records at page splits, the space is more than the 

Stencil and Shard approaches). MList uses slightly more space than the MVBT because 

of the use of sibling pointers and the splits they create. 

Table 12: The space usage (in GB) for the 256 terms used in the queries 

Methods Basic-s Ele Fix-30 Stencil Shard SPR GR-25 GR-50 MVBT MList-7 MList-10

US 1.93 213.34 4.26 2.24 2.31 6.65 6.12 5.93 3.79 4.02 3.95

World 0.35 38.6 0.78 0.41 0.43 1.21 1.12 1.06 0.69 0.75 0.78  

The top-k temporal queries include both time-point (in our dataset this corresponds to 

one day) and time-interval queries. For each temporal keyword query, we randomly 

choose 50 time constraints from the 15-year lifespan from 1997 to 2011, and record the 

average performance. For TKTI
A
, we use TAVG scoring; for TKTI

C
, we use r = 1. The 

page I/O costs for top-20 queries using the US-news dataset are shown in Table 13 (the 

best performance for each query is shown in bold). For time interval queries, the time-
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interval lengths used were 15 days, 30 days, and 60 days. We also present the I/O costs 

for top-100 queries on both US-news and World-news datasets in Table 14 for both time-

point query and 30-day time-interval queries. 

Table 13: The page I/O cost of top-20 temporal keyword queries for US news 

Methods Basic-s Ele Fix-30 Stencil Shard SPR GR-25 GR-50 MVBT MList-7 MList-10

TKTP 49.16 3.74 7.44 11.16 87.5 33.24 6.26 7.8 5.34 5.58 5.02

TKTI-15 65.32 56.22 13.9 16.5 90.64 40.74 14.92 17.26 11.46 11.7 11.18

TKTI-30 81.76 108.7 16.48 20.42 93.58 45.9 19.32 22.88 15.74 16.22 15.28

TKTI-60 105.6 195.82 31.26 35.8 95.22 49.66 23.06 26.14 22.38 22.9 21.7

TKTIA-15 74.16 67.84 20.8 24.12 96.54 48.38 20.42 22.8 18.68 19.54 16.92

TKTIA-30 89.84 126.4 23.18 27.84 98.3 50.1 25.78 26.2 21.9 23.84 21.42

TKTIA-60 112.96 209.56 41.06 46.76 103.86 60.22 31.14 33.84 30.32 30.82 29.68

TKTIC-15 68.48 60.6 17.42 19.48 92.82 44.34 16.68 19.12 14.04 14.58 13.74

TKTIC-30 83.52 110.58 19.5 22.38 96.04 47.48 21.5 24.04 18.18 20.36 17.44

TKTIC-60 108.34 201.42 35.74 39.22 98.72 53.82 26.7 27.98 25.6 26.24 24.18  

Table 14: The page I/O cost of top-100 temporal keyword queries for US and World news 

US Basic-s Ele Fix-30 Stencil Shard SPR GR-25 GR-50 MVBT MList-7 MList-10

TKTP 93.4 10.14 25.74 38.7 102.68 162.4 29.64 21.18 20.72 21.84 19.12

TKTI-30 157.84 315.3 48.62 70.22 114.2 233.94 92.82 62.94 46.92 49.38 46.24

TKTIA-30 171.8 336.44 53.5 79.18 118.24 241.48 115.74 75.32 52.1 55.92 51.48

TKTIC-30 163.52 324.86 50.26 73.42 115.7 236.5 101.36 67.28 49.06 52.06 48.2

World Basic-s Ele Fix-30 Stencil Shard SPR GR-25 GR-50 MVBT MList-7 MList-10

TKTP 85.44 9.96 23.36 37.52 98.8 156.44 27.5 20.84 20.12 18.22 18.84

TKTI-30 143.32 306.58 45.74 69.62 110.28 228.36 83.34 54.62 45.32 44.78 45.1

TKTIA-30 152.7 322.36 50.82 77.84 115.66 237.02 103.6 70.7 51.16 49.82 50.56

TKTIC-30 147.24 311.92 47.78 72.16 112.72 231.84 91.76 62.58 47.24 46.3 46.82  

The elementary time-interval slicing has the best snapshot querying performance for 

both top-20 and top-100 queries. This is to be expected since the answer is basically 

prepared for each time instant (at the cost of huge storage requirements). Among the 

other methods, the newly proposed approaches (GR, MList) outperform the previous 

methods (Stencil and Shard). The best performance is provided by the MList-10 method. 

It has better performance than the MVBT given it accesses the answer faster (by avoiding 



 

89 

 

the MVBT index traversal). Considering its low space requirements, this approach 

provides the overall best performance for TKTP queries. 

For time-interval queries, the Ele method’s performance degrades drastically, 

especially for longer time-interval. The group ranking method’s performance is related to 

its group size g as it relates to k. For top-20 querying, a group size of 25 works better than 

a group size of 50 (the answer can be found by accessing the first group only); while for 

top-100 querying, GR-50 is a better choice (only two groups need to be accessed instead 

of four for GR-25, thus less index accesses). For top-20 interval queries, the MList-10 

had consistently the best performance for each query. 
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Figure 23: The Multiversion list method for different ratio a using the US and World news 

datasets 
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Interestingly, for the top-100 interval queries the MList-7 shows better performance for 

the World-news dataset. The reason for that is that this dataset has fewer updates. As a 

result, there will be fewer pointer changes in the ordered list, thus a smaller a will provide 

enough space to hold the pointer structure. This can also be seen in the space 

requirements for this dataset: the fewer pointer splits mean that MList-7 uses less space 

than MList-10 (and thus the lists are shorter and the query performance better). The 

above observation implies that the performance of the multiversion list method is related 

to the value of a. There are two opposing factors affecting the query performance with 

respect to a. For a given page size, a small a implies that the area allocated to sibling 

pointers is small; thus few sibling page changes can cause the page to split. More splits 

use more space and the query time increases. On the other hand, a large a implies that the 

space allocated for the regular records in a page is small, thus the page can split faster due 

to the record updates. This also increases space and query time. The optimized value of a 

depends on the dataset characteristics. Figure 7 depicts the page I/O for the top-100 

results returned by point (TKTP) and interval (TKTI-30) queries for the US and World-

news datasets. For the US-news dataset, a = 10% has the best average performance for 

both time-point querying (TKTP) and 30-day time-interval querying (TKTI-30) while for 

the World-news dataset (which has less update frequency), the performance is optimized 

for a = 7% . 
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4.6 Conclusion 

We presented an experimental comparison of indexing methods over versioned text 

collections for top-k temporal keyword queries. In addition to previous methods, we 

proposed novel solutions that partition the data along the score-time axes. Among all 

methods, the multiversion list provided the most robust performance considering space 

usage and query time efficiency for both time-point and time-interval queries. We 

examined variations of the time-interval queries, including the document-level 

aggregated top-k queries and consistent top-k queries. The performance of the 

multiversion list is affected by the value of a, the percentage of a data page allocated to 

hold sibling pointers. As future work, we plan to devise a model that can optimize the 

value of a based on the frequency of updates, the size of the page and other factors. 
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Chapter 5 

Querying Transaction-time Databases under 

Branched Schema Evolution 

Transaction-time databases have been proposed for storing and querying the history of 

a database. While past work concentrated on managing the data evolution assuming a 

static schema, recent research has considered data changes under a linearly evolving 

schema. An ordered sequence of schema versions is maintained and the database can 

restore/query its data under the appropriate past schema. There are however many 

applications leading to a branched schema evolution where data can evolve in parallel, 

under different concurrent schemas. In this work, we consider the issues involved in 

managing the history of a database that follows a branched schema evolution. To 

maintain easy access to any past schema, we use an XML-based approach with an 

optimized sharing strategy. As for accessing the data, we explore branched temporal 

indexing techniques and present efficient algorithms for evaluating two important queries 

made possible by our novel branching environment: the vertical historical query and the 

horizontal historical query. Moreover, we show that our methods can support branched 
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schema evolution which allows version merging. Experimental evaluations show the 

efficiency of our storing, indexing, and query processing methodologies. 

5.1 Introduction 

Due to the collaborative nature of web applications, information systems experience 

evolution not only on their data content but also under different schema versions. For 

example, Wikipedia has experienced more than 170 schema changes in its 4.5 years of 

lifetime [16]. Schema evolution has been addressed for traditional (single-state) database 

systems and issues on how data is efficiently transferred to the latest schema have been 

examined [15]. Consider however the case where the application maintains its past data 

(typically for archiving, auditing reasons etc.) which may have followed different 

schemas. A temporal database can be facilitated to manage the historical data, but issues 

related to how data can be queried under different schemas arise. The pioneering work in 

PRIMA system [40] addresses the issues of maintaining a transaction-time database 

under schema evolution by introducing: (i) an XML-based model for archiving historical 

data with evolving schemas, (ii) a language of atomic schema modification operators 

(SMOs), and (iii) query answering and rewriting algorithms for complex temporal queries 

spanning over multiple schema versions. Nevertheless, PRIMA considers only a linear 

evolution: a new schema is derived from the latest schema and at each time there is only 

one current schema. 

In many applications, however, the schema may change in a more complex way. For 

instance, in a collaborative design environment, an initial schema may be branched into a 
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number of parallel schemas whose data can evolve concurrently. Another common case 

of non-linear evolution is in software development management. Revision control 

enables the modifications and developments happening in parallel along multiple 

branches. The release history of Mozilla Firefox shows that 10 branches of versions have 

been developed and 4 more branches are on the way. 

In this chapter we address the issues involved in archiving, managing and querying a 

branched schema evolution. In particular, we maintain the branched schema versions in 

an XML-based document (BMV-document) using schema sharing. This choice was made 

because the number of schema changes is relatively smaller than data changes and the 

hierarchal structure of XML allows for easy schema querying. The data level changes are 

stored in column-like tables (BC-Tables), one table for each temporal attribute, with the 

support of applicable temporal indexing. To the best of our knowledge, this is the first 

work to examine both data and schema evolution in a branched environment ([32]). Our 

contributions can be summarized as: 

1. We utilize a sharing strategy with lazy-mark updating, to save space and update 

time when maintaining the schema branching. 

2. We employ branched temporal indexing structures and link-based algorithms to 

improve temporal query processing over the data. Moreover, we propose various 

optimizations for two novel temporal queries involving multiple branches, the 

vertical and horizontal queries. 

3. We further examine how to support version merging within the branched schema 

evolution environment. 
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4. Our experiments show the space effectiveness of our sharing strategy while the 

optimized query processing algorithms achieve great data access efficiency. 

The rest of this chapter is organized as follows. Section 5.2 summarizes work on linear 

schema evolution (PRIMA). Section 5.3 introduces branched schema evolution while 

section 5.4 presents the BMV-Document for storing schema versions and the BC-Tables 

for storing the underlying data changes (with the support of branched temporal indexing). 

Section 5.5 provides algorithms and optimizations for efficient processing of temporal 

queries. The merging challenges are discussed in section 5.6 and the experimental 

evaluations are presented in section 5.7. Finally, conclusions appear in section 5.8. 

5.2 Preliminaries 

5.2.1 A linear Evolution Example 

Consider the linear schema evolution shown in Table 15 and Figure 24(a), of an 

employee database, which is used as the basic running example in this chapter. When the 

database was first created at T1, using schema version V1.1, it contains three tables: 

engineerpersonnel, otherpersonnel and job. As the company seeks to uniformly 

manage the personnel information, the DBA applies first schema modification at T2, 

which merges two tables engineerpersonnel and otherpersonnel, producing schema 

V1.2. Each schema version is valid for all times between its start-time Ts and its end-time 

Te (the time it was updated to a new schema). The rest schema versions and their 

respective time intervals appear as well until the latest schema V1.5. A special value 

“now” is used to represent the always increasing current time. 
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Schema changes are represented by Schema Modification Operators (SMOs) [15]; 

each operator performs an atomic action on both the schema and the underlying data, like 

CREATE/MERGE/PARTITION TABLE, ADD/DROP/RENAME COLUMN. For example, two 

tables in V1.1 were merged to one table by a MERGE TABLE operation in V1.2. In the 

following discussion we will use the term SMO to denote a change operator applied to 

one schema without detailing which SMO was actually used. 

Table 15: A linearly evolving employee database 

 

5.2.2 XML Representation of a Linear Schema Evolution 

The history of the relational database content and its schema evolution can be 

published in the form of XML, and viewed under a temporally grouped representation 

whereby complex temporal queries can be easily expressed in standard XQuery [40, 41]. 

The MV-Document [40] intuitively represents both schema versions and data tuples 

using XPath notation, as: /db/table-name/row/column-name. Each of the nodes, 

representing respectively: databases, tables, tuples, and attributes, has two more 
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attributes, start-time (ts) and end-time (te), respectively representing the (transaction-) 

time in which the element was added to and removed from the database. 

Consider our running example: when the three-table schema in version V1.1 was 

created, three table nodes with names engineerpersonnel, otherpersonnel and job were 

created in the MV-Document, each with interval [T1, “now”). Similarly, the nodes for 

their attributes etc., were added in the XML document. In V1.2 the schema evolved into 

the two tables employee and job; these changes were updated in the MV-Document by 

changing the end-time of engineerpersonnel and otherpersonnel to T2 (as well as the 

intervals of their attribute and tuple nodes). Meanwhile, a new table node for employee is 

added with interval [T2, “now”). Since the job relation continues in the new version, 

there is no update on that table node. 

To make the storage and querying of MV-Documents more scalable, [41] uses 

relational databases and mappings between the XML views and the underlying database 

system. This is facilitated by the use of H-Tables, firstly introduced in [56]. Consider the 

employee (id, title, deptno, salary) relation of schema V1.5 in Table 1. Its history is 

stored in four H-Tables, namely: (i) a key table, employee_key (id, ts, te), that stores the 

interval (ts, te) during which tuple with key id was stored in the corresponding relation. 

(ii) three attribute history tables: employee_title (id, title, ts, te), employee_deptno (id, 

deptno, ts, te) and employee_salary (id, salary, ts, te) that maintain how the individual 

attributes of a tuple (identified by id) changed over time, and (iii) an entry in the global 

relation table relations (relationname, ts, te) which records the time spans covered by 

the various relations in the database. 
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5.3 Branched Schema Evolution 

Many modern complex applications need to support schema branching; examples 

include scientific databases, collaborative design environment, web-based information 

systems, etc. With branched schema evolution enabled, a new branch can be created by 

updating the schema of a parent version Vp. If version Vp is a current schema version and 

the data populating the first schema of the new branch is adapted from the currently alive 

data of Vp, we have a current branching (c-branching). An example of c-branching 

appears in Figure 24(b) where the most current version of branch B1 is V1.5. At the 

current time T6 branch B2 is created out of V1.5 (i.e., the B2 creation time is T6) by 

applying SMOs on the relations that V1.5 has at T6. For example, under branch B2 a new 

attribute status was added in empbio to describe the marital status of employees. As a 

result, data can start evolving concurrently under two parallel schemas, V1.5 and V2.1. A 

real life scenario leading to c-branching is the case when a company establishes a 

subsidiary. These two companies share the same historical database (branch B1 from T1 

to T6) but in the future their schema and data evolve independently. Note that a version 

can start from any past version (h-branching). Here we concentrate on c-branching due to 

the challenges of the parallel evolving it imposes. 

employee (id, title, deptno, salary)

dept (deptno, deptname, managerid)

empbio (id, name, sex, status)

Branch B1

Branch B2

(b) c-branching

V1.1 V1.2 V1.3 V1.4 V1.5 The only branch

(a) linear schema evolution

V1.1 V1.2 V1.3 V1.4 V1.5

V2.1

T1
T2 T3 T4 T5 T1 T2 T3 T4 T5

T6

 

Figure 24: Linear evolution and branching 
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As more branches occur, effectively the different schema versions create a Version 

Tree; an example (assuming c-branching) with six branches is shown in Figure 25, which 

is an extension of the branched employee DB example from Figure 24(b). Such version 

tree can easily display the parent-child relationship among versions and branches; this 

relationship information is very useful for further optimizations. 

V1.1 V1.2 V1.3 V1.4 V1.5

V2.1 V2.2

V3.1

V5.1

V4.1 V4.2

V2.3

V1.6
B1

B5

B2

B4

B3

nowT1

V6.1

B6

T2 T3 T4 T5 T6 T7 T8 T9 T10
 

Figure 25: Example of Version Tree 

The novel problems in supporting c-branching are emanated from its sharing of data: 

the same original data can evolve in parallel under different branches. To provide 

efficient access and storage in a branched environment, we use different structures to 

maintain the evolution of schema versions and their underlying data. Since schema 

changes are much less frequent, we adopt an XML-based model that enables complex 

querying (BMV-Document). In contrast, the data evolution over time creates large 

amounts of historical, disk-resident data, so our focus is on branched column tables (BC-

Tables) and efficient index methods. 
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5.4 BMV-Document and BC-Tables 

5.4.1 BMV-Document 

db

name tables

table

name columns

column

name

column

……

……

table

Bi:ts Bi:te

validity

… …

Bi:ts Bi:te

validity

… …

Bi:ts Bi:te

validity

… …

 

Figure 26: Illustration of BMV-Document 

The BMV-Document is an extension of the MV-Document for storing the branched 

evolving schema versions in an XML-based representation. The main upgrades are: (i) 

branch identifier bid is needed, because a single timestamp cannot uniquely identify the 

appropriate schema version. (ii) The BMV-Document refers only to the schema-level 

storage, and does not detail the data level. (iii) The BMV-Document uses a sharing 

strategy between versions with various update options and a validity interval (bid:ts, 

bid:te) is thus required, as shown in Figure 26. When a c-branching is created, the child 

branch may only modify a relatively small part of its parent schema. Simply copying the 

schemas of all live tables and their columns from the parent version would incur storage 

overhead. 
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Schema Sharing. Consider the c-branching on B1 that creates a new branch B2 in Fig. 

1(b). B2’s creation time is the start time of its first version, namely V2.1, which emanated 

from V1.5 by applying some SMOs. 

One approach for schema sharing is full-mark which adds new (B2:ts, B2:te) interval to 

all corresponding tables and their columns explicitly for the new branch. While this is 

better than copying all tables and columns, it still requires update work, especially when 

there are many current tables and columns. To archive better efficiency, we develop a 

lazy-mark approach, which adds a new (B2:ts, B2:te) interval to the db node only, and 

leaves all shared tables and columns unchanged. If the c-branching partially updated the 

parent schema, besides adding a validity interval on the db node, the lazy-mark approach 

updates only the modified tables and columns (based on the corresponding table-level 

and column-level SMOs). 

Therefore, the lazy-mark approach can be summarized as: For each update the path to 

the corresponding level (db, table or column) is visited and the related nodes are updated. 

Later on, SMOs can update the BMV-Document within a branch as well, and we re-mark 

those lazy-marked nodes. As a result, the complexity of each schema update for the lazy-

mark sharing strategy remains constant per SMO. 

Schema Querying. While using schema sharing and lazy-mark to save updating time 

and storage space, the BMV-Document can still provide efficient access to all branched 

schema versions. A typical schema query is: “show the schema version at time t for 

branch Bi”. This implies finding the valid tables, as well as their columns, at time t for 

branch Bi. The procedure of checking whether a table is valid at a given time is shown in 
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Algorithm 1. The interesting case is if table node T does not have a validity interval for 

Bi; the algorithm should then check whether this table is shared from one of Bi’s ancestor 

branches through lazy marking (line 7-16). For example, consider the case when branch 

B2 is created at time T6 by adding a status attribute in empbio table (Figure 24(b)). Due 

to lazy-marking, the table empbio has only the B1 branch id in its interval. However, 

when we check it for branch B2, following Algorithm 5.1, we determine that it has been 

inherited from B1 and shared by B2 at time T6. 

Algorithm 5.1:    CheckTable (T, t, Bj) 

Check whether table node T is valid at time t for branch 

Bi, where t is later than Bi’s start time. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

if T has a validity interval for Bi then 

if Bi:ts = null then return false; 

else 

if Bi:ts <= t < Bi:te then return true; 

else return false; 

else 

Bh = Bi’s parent; Bg = Bi; 

while (Bh != null) 

if T has a validity interval for Bh then 

if Bh:ts = null then return false; 

else 

tt = Bg’s start time; 

if Bh:ts<tt<Bh:te then return true; 

else return false; 

Bg = Bh; Bh = Bg’s parent; 

end while 

 

5.4.2 BC-Tables 

While the BMV-Document maintains the branched schema versions, the BC-Tables 

are used to store the underlying evolving data changes. Like H-Table [56], each BC-

Table stores the (history of) values for a certain attribute of a base relation. A BC-Table 

starts from a particular time and may span over multiple schema versions. However, there 
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are considerable improvements: (i) a BC-Table can be shared by multiple branches; (ii) 

each data record carries only the start time of its time interval; (iii) suitable branched 

temporal indexing methods are built on top of BC-Tables. 

For indexing a BC-Table we facilitate the branched temporal index ([34, 49]) which is 

a directed acyclic graph over data and index pages. Data pages (which are at the leaf 

level) contain temporal data, while index pages contain the searching information to 

lower level pages. In data pages, due to data sharing, a compact data representation <key, 

data, ts> is used, where ts corresponds to the record’s start time (which will be a bid:time 

in our BC-Tables) of the original record. In an index page, an entry referencing a child 

page C is of the form <KR(C), TI(C), address(C)>, where KR is the key-range of the 

child page, and TI is a list of temporal interval(s) for the shared multiple branches of C. 

Splitting occurs when a page becomes full. However, unlike in B+-tree page splitting, 

when a temporal split happens, the data records currently valid are copied to a new page. 

Thus data records are in both the old page and the new page. The motivation for copying 

valid data from the full page is to make the temporal query efficient. Splits (temporal-

split, key-split, and consolidation) cluster data in pages so that when a data page is 

accessed, a large fraction of its data records will satisfy the query. 

Index page splits and consolidations are similar to those of data pages. Since in index 

page temporal splits, children entries can be copied, this creates multiple parents for these 

children. As a result, the branched-temporal index is a DAG, not a tree [34]. 
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When the search for a given key k, branch Bi and time t, is directed to a particular data 

page P through the index page(s), the algorithm checks all the records in P with key k, 

and finds the record with the largest start time ts, such that ts <= Bi:t. 

Nevertheless, page P may have been shared by branch Bi, in which case some of its Bi 

related entries may not contain the Bi interval. Those entries are inherited from Bi’s 

ancestor branches. Therefore, we need to extend the search algorithm of the branched-

temporal index [34, 49]. In particular, we extend the meaning of the “<” comparison 

when comparing bid:time tokens. Given two tokens Bi:Ti and Bj:Tj the comparison Bi:Ti 

< Bj:Tj is satisfied whether (Bi=Bj Ti<Tj) or (Bi:Ti < Par(Bj):Ts(Bj)”), where Par(Bj) is 

the parent branch of Bj in the version tree, and Ts(Bj) is the start time of Bj. 

For example, assume that a data page is shared by branch B1 and B2, having entries: <a, 

v1, B1:t1>, <b, v2, B1:t2>, <c, v3, B1:t3>, <b, v4, B2:t14>, <c, v5, B1:t15>, and let branch B2 

be created from B1 at time t10. So the valid data entries for B1 at time t15 are <a, v1, B1:t1>, 

<b, v2, B1:t2>, <c, v5, B1:t5>; while the valid data entries for B2 at time t15 are <a, v1, 

B1:t1>, <b, v4, B2:t14>, <c, v3, B1:t3>. 

5.5 Query Processing 

Data queries are temporal queries on the data records (stored in the BC-Tables and 

indexed by the branched temporal index). As with traditional temporal queries [53], a 

user may ask for: (i) a snapshot query, or (ii) a time interval query. In a linear schema 

evolution, snapshot or interval queries deal with a single branch. In a branched schema 

evolution, the following multiple-branch queries (first introduced in [37]) are also of 
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interest: (i) vertical query and (ii) horizontal query. We first discuss how to process 

temporal snapshot and interval queries within one branch, and then proceed to vertical 

and horizontal queries over multiple branches. 

5.5.1 Queries within a Single Branch 

In this case, the temporal constraint (time snapshot or interval) falls within the lifetime 

of branch Bi. For a snapshot query, the target schema version that stores the queried data 

is unique and can be identified easily (from the BMV-Document). The corresponding 

BC-Tables are then accessed through their branched temporal indices. 

Processing a time interval query is more complicated because of two challenges: (i) the 

time interval may have multiple target schema versions (thus even for a single attribute, 

multiple BC-Tables may be accessed); (ii) in one BC-Table, many data pages may 

intersect with the time interval, so the search algorithm needs to avoid duplications. The 

first challenge also appeared in PRIMA [40]: the original temporal query should be 

reformulated by query rewriting into different sub temporal interval queries for each 

related BC-Table and the final results are merged from those BC-Tables. 

1 2

3 4 5

6 7 8

… …

 

Figure 27: Visited pages 
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For the second challenge, even in one BC-Table with branched temporal indexing, the 

naïve depth-first traversal strategy leads to two problems: first, the response set can 

contain duplicates (due to page splitting copies); second, the same directory entry can be 

accessed more than once while a query is evaluated. This effect is illustrated in Figure 27 

where the gray-colored rectangles display the pages of the branched temporal index 

visited for a time-interval query. The naïve algorithm would visit pages 1, 2, 5 once, 

pages 3, 4, 7 twice, page 8 thrice and page 6 four times. 

key

timet1 t2 t3 t4 t5

A

B

C
D

E J

H

IF

G

t0
 

Figure 28: Data pages with links 

Traditional duplicate elimination methods such as hashing or sorting may require 

storage/time overhead, and they are not easy to solve index entry duplication. Therefore, 

we adopt the Linkbased algorithm proposed in [12] for (linear) multi-version index 

structures. The BC-Tables’ data pages are equipped with external links pointing to their 

temporal predecessors. 

An example is presented in Figure 28 where each page is viewed as the time-key 

rectangle of the records it contains. A key-range time-interval query (the grey rectangle) 

intersects pages B, C, D, E, G and H. The Linkbased algorithm consists of two steps. First, 
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the right border of the query rectangle is used to perform a key-range snapshot query. In 

Figure 28, this snapshot query will access data pages H and E. Second, for each 

qualifying page obtained in step 1, its temporal predecessor pages are checked to see 

whether they contain an answer. If they do, the corresponding pages are put into the 

buffer, answers are reported and the process is repeated. If the left border of the page is 

already earlier than the left border of the query rectangle, then we do not proceed further. 

The worst-case performance of LinkBased is O(logBn + a/B + u/B) where B is the page 

capacity, n is the number of records at right-border time t, a is the number of answers, 

and u denotes the number of updates in the query time period. 

5.5.2 Data Queries over Multiple Branches 

Vertical Query. The vertical query is an extension of a single branch query, seeking 

information for a given branch and its ancestors. An example of a vertical query is: “find 

the data within a key range KR for a given branch Bi and its ancestor branches, at a time 

stamp t” (or “during a time interval I”). The time stamp t or interval I must be no later 

than the end time of branch Bi. 

 

Figure 29: A part of version tree 
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For a vertical snapshot query of branch Bi and at time t, if t is earlier than the start time 

of Bi, then the result conceptually lies in one of Bi’s ancestors Bj, whose lifetime covers 

time t. For a vertical interval query, the time interval may span multiple branches along a 

path in the version tree. For example, in Figure 29, to find titles of employees within a 

range KR for branch B4 and its ancestors in a time interval [T5, T10), we need to access 

data from branches B4, B2 and B1. 

To process a vertical interval query, we first divide the whole query interval I for 

branch Bi into multiple smaller adjacent sub-intervals {I1, I2,…, Ik}, one for each ancestor 

branch along the path {Bi1, Bi2,…, Bik} (where Bi1 = Bi, Bi2 = Bi’s parent and so on). In 

the above example, querying for B4 with a time interval I = [T5, T10), I should be divided 

to [T8, T10) for B4, [T6, T8) for B2 and [T5, T6) for B1 (depicted as the thick lines in Figure 

29).  Then we process the vertical interval query by answering multiple interval queries 

for each branch and merge the results together. 

However, certain sub-intervals from different branches may be sharing the same BC-

Tables, hence a BC-Table could be processed multiple times by different sub-queries. 

Notice that the sub-intervals are adjacent and the shared data pages are connected by 

backward links (Linkbased approach). Therefore, an optimized processing on vertical 

interval query is to unite the multiple adjacent sub-queries for the same BC-Table into 

one “super-query”. This optimization, called reunion, can guarantee that each BC-Table 

is processed only once for any vertical interval query. 

In the above query example, “find the title of employees within a KR for B4 and its 

ancestors during [T5, T10)”, we assume that the employee_title table schema is never 
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changed by any branches after it was created at T5. With the naïve method, we need to 

process this table three times for three branches with three time intervals as [B4:T8, 

B4:T10), [B2:T6, B2:T8) and [B1:T5, B1:T6). When utilizing the optimized method, the three 

sub-queries are united into one super-query with an interval [B1:T5, B4:T10). 

Horizontal Query. The Horizontal query accesses temporal information for a given 

branch and its descendants. An example is: “find data within a key range KR for a given 

branch Bi and its descendants, at time point t” (or during “a time period I”). The time 

stamp t or interval I must be no earlier than the start time of branch Bi. 

A horizontal snapshot query can be visualized as a snapshot of multiple relevant 

branches from a sub-tree of the version tree. For example, the query: “find data for 

branch B2 and its descendants at time now”, corresponds to the vertical dash line in 

Figure 29, involving branches B2, B4 and B6. To process a horizontal snapshot query on 

time t, we first determine which descendants of branch Bi (including itself) are valid at t, 

and then issue multiple vertical snapshot queries, one for each branch. 

A horizontal interval query can be visualized as a branch-time rectangle on a sub-tree 

of the version tree. For example, the query: “find data for branch B2 and its descendants 

during time interval [T7, now)”, corresponds to the grey rectangle in Figure 29, involving 

branches B2, B4 and B6. To process a horizontal snapshot query on time t, we again first 

issue multiple vertical interval queries, one for each descendant branch. 

However, this naïve processing method for the horizontal interval query will not be 

efficient if the multiple vertical interval queries have common parts. In the above 

example, the vertical interval queries for B2, B4 and B6 during interval [T7, now) have 
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common parts: [B2:T7, B2:T8) and [B4:T8, B4:T10), as depicted in Figure 29 by the thick 

orange line inside the grey rectangle. 

As a result, for the multiple vertical interval queries, instead of using the same original 

query time interval I, we should use different intervals for those descendant branches. For 

each descendant branch Bj, the new query time interval Ij is the intersection of [STj, SEj) 

with I, where STj and SEj is the start time and end time of branch Bi. For the above 

example, the optimized vertical interval queries are: [B6:T10, B6:now), [B4:T8, B4:now), 

and [B2:T7, B2:now). This rearrange optimization can improve horizontal interval 

querying by preventing multiple visits of common parts. 

5.6 Merging of Branches 

V1.1 V1.2 V1.3 V1.4 V1.5

V2.1

V3.1

V4.1

V5.1

V1.6 V1.7 V1.8

V2.3

V6.1

V3.2

V4.2

V2.2

nowT1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

B1

B5

B2

B4

B3

B6

 

Figure 30: Schema evolution with branching and merging 

Since branching is allowed for schema evolution, it is quite natural for us to consider 

the possibility of merging multiple branches. Branching and merging are two key aspects 

in many modern environments, such as web-based information systems, collaborative 
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framework, and software development managing tools. Branching provides isolation and 

parallelism, while merging provides subsequent integration. In this section, we consider 

how to support current version merging (c-merging). 

With c-branching, any currently alive version can create a branch; for a c-merging, the 

currently alive version of branch Bi can merge to another currently alive version from a 

different branch Bj by creating a new common schema version.  In the example shown in 

Figure 30, both branching and merging are applied. Such schema evolution will form a 

Version Graph instead of a version tree. 

5.6.1 Merging in BMV-Documents 

When branch Bi’s latest version Bi.x merges to branch Bj’s latest version Bj.y at time t, 

the branch Bi and version Bi.x should be ended and a new version Bj.y+1 should be created 

for branch Bi. The branch and version termination can be achieved by updating the end 

time for corresponding nodes and the lazy-mark process can be utilized for only updating 

the db and table nodes without reaching to column nodes. After figuring out which 

elements are discarded from Bj.y to Bj.y+1, and which are added from Bi.x to Bj.y+1, we 

apply the updates for the corresponding tables and columns. Suitable schema duplication 

elimination and conflict resolution are applied. 

5.6.2 Merging in BC-Tables 

When merging is applied in BC-Tables at the data level records, we still can use the 

same sharing strategy with the branched temporal index but with special extensions. 

Assume branch Bi merges to Bj at time t. For both branches, some data records have 
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remained while others are removed (especially when there are conflicts). In BC-Tables, 

we only delete the removed records by adding null values and keep the remained records 

unchanged, which is consistent with our sharing method in section 5.5. Data duplication 

elimination and conflict resolution are applied as well. 

For data accessing, certain extensions should be implemented for merging, since 

merging integrates data records from two branches into one. Exploring of a branch’s 

ancestors due to lazy mark is extended from one single path to multiple paths with depth-

first or breath-first search along the version graph. Meanwhile, the branched temporal 

indexing can be adapted for merging with certain modifications. 

5.6.3 Query Processing 

Here we concentrate on data querying within multiple branches. For vertical queries 

seeking temporal information for a given branch and its ancestor branches, the ancestors 

include not only the ones formed by branching but also those by merging. So even for a 

snapshot querying, the vertical query may need to traverse multiple paths along the 

version graph by DFS or BFS. For example, assume that in the example of Figure 30, we 

want to find some records for branch B1 and its ancestors at time T10. Traversing the 

version graph backward for B1 from now to T10, we meet two merging points at time T12 

and T11. Hence the final result unites the response records from not only branch B1 but 

also B5, B6 and B3 at time T10. 

To process a vertical interval query we access data from multiple parallel paths which 

may have common parts. The rearrange optimization proposed for horizontal querying 

under branching can be used here. For example, as shown in Figure 30, assume we want 
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to find some data for branch B1 and its ancestors during time interval [T9, T13). From the 

version graph, we know that B3 and B5 merged to B1 at time T12 and B6 merged to B1 at 

time T11. We can avoid visiting the common paths [B1:T12, B1:T13) four times and [B1:T11, 

B1:T12) twice by utilizing rearrange to make querying intervals as [B1:T9, B1:T13), [B3:T9, 

B3:T12), [B5:T9, B5:T12), and [B6:T9, B6:T11). 

5.7 Experimental Evaluation 

To illustrate the efficiency of our framework we present several experiments based on 

the running example of the employee DB in Figure 25. First, we extend it with more 

schema versions and branches. The first ten schema changing points (from T1 to T10) are 

shown in Fig 2. After that, we make another ten schema changing points (from T11 to T20) 

in two rounds. In each round, there are five schema changes: the first two are linear 

schema evolutions followed by one schema version branching and two linear schema 

evolutions. For each linear schema evolution, we choose 50% of the existing branches 

and make new schema versions for them updating 20% tables and 20% columns in those 

tables. For each schema branching, we chose all existing branches and make a new 

branch for each by updating 20% tables and columns. In the end, we have 20 schema 

changing points with 24 branches of 104 schema versions. 

In addition to linear and branched schema evolution, we also create content-level data 

changes. From T1 to T20, after each schema changing point, we update the record-level 

data value 500 times. For each time, we update all existing branches, and for each branch 

we update 0.2% of all employees for salary, title, and some other randomly chosen 
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attributes. In the end, we have 10,000 time instants of content-level data updates. The 

Employee DB schema is initialized with 1,000 tables and average 5 columns in each table. 

We also produce 10,000 employees with 100 titles and other relevant information. For 

both schema changes and data changes, the tables, attributes and tuples are chosen 

randomly with a uniform distribution. The page size of our system is 4KB and we set the 

data page capacity as B = 100 records. 

5.7.1 BMV-Documents 
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Figure 31: Space saving in BMV-Documents 

The sharing strategies among multiple branches and the lazy-mark approach are 

advantageous in space saving for the BMV-Document without sacrificing querying 

efficiency. We store the branched schema versions, in XML-based BMV-Documents 

with three different options when branching occurs: (i) copy the schema without any 

sharing (Non-Shared); (ii) use the sharing strategy and full-mark approach (Shared); (iii) 

use the sharing strategy and lazy-mark approach (Lazy-mark). Figure 31 depicts the size 

per branch (total size / number of versions) of the documents under certain schema 
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changing points: T10 (6 branches), T15 (12 branches), and T20 (24 branches). The options 

using sharing strategies use much less space than the non-shared option. Compared to the 

full-mark, the lazy-mark approach is more efficient. 

5.7.2 BC-Tables 

Space Saving. In addition to the shared BC-Tables (SBT), we use a non-shared 

method which simply copies alive records from the parent branch when a c-branching 

happens. The non-shared copying method (NSC) utilizes the MVBT ([9]) to store data in 

each branch separately, so that each single branch has its own data pages and index 

structure. The total sizes of data pages and index pages for all tables of all 24 branches 

are: NSC 71.4 GB and SBT 54.9 GB; clearly, the shared BC-Tables provide significant 

space saving. Nevertheless, the querying performance of the non-shared method will be 

better than the fully shared BC-Tables since data has been fully materialized at each 

branch. Therefore, we consider a trade-off between space and querying performance by 

applying an enforced copying method (EC), which only allows at most p branches that 

can be shared in one BC-Table. If a shared BC-Table already reaches this number p, then 

for a later c-branching, we enforce copying (make a new BC-Table for the newly branch) 

instead of sharing. The fully shared BC-Tables and non-shared method are two extreme 

situations for this enforced copying (p = 1 corresponds to the non-shared method). In our 

experiments we implemented an enforced copying method EC with p = 12 (EC-12) and p 

= 6 (EC-6). 

In order to factor out the query reformulating, we choose one particular BC-Table 

employee_title, whose schema never changes from the beginning and is shared by all 
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branches. To compare space usage of the employee_title table by the four methods (NSC, 

SBT, EC-12 and EC-6), we depict a normalized space usage. Since NSC has the largest 

storage usage (data pages + index pages), the normalized space is computed by 

(methodi’s space) / (NSC’s space). As shown in the Figure 32, the shared employee_title 

BC-Table provides the best space savings followed by EC-12 and EC-6. 
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Figure 32: pace saving in employee_title table 

Snapshot querying. We use the following query: “find titles of all employees whose 

ids are within a key range of size 100, for branch Bi at time t” and test on all 24 branches. 

For each branch, we randomly pick 100 time instants which are in the lifespan of that 

branch and measure the average snapshot querying time. The average results of all 24 

branches are calculated and depicted as normalized page I/O (Figure 33). The SBT 

method has the largest I/O usage, so the normalized page I/O is computed by (methodi’s 

I/O) / (SBT’s I/O). The non-shared copying method has a better snapshot querying 

performance because data records are stored separately for each branch. However, 

considering the space saved, shared BC-Tables are performing relatively well on query 
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time. The trade-off methods (EC) gain better querying performance while controlling the 

space overhead. 
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Figure 33: Snapshot Querying 

Interval Query Processing. For interval query processing we implement the LinkBased 

algorithm along with the reunion and rearrange optimizations in shared BC-Tables. First, 

we test vertical interval queries involving multiple branches: “find titles of employees 

whose ids are within a key range of size 100 for branch B24 and its ancestors in the time 

interval I”. Five different time intervals are used and their coverage rates with respect to 

the whole temporal data lifetime are 5%, 10%, 20%, 50%, and 100% correspondingly. 

Two methods are implemented here: one is the basic solution (Basic) which divides the 

query interval into multiple sub-intervals for each branch. The other is the optimized 

reunion method (Reunion) that unites the sub-intervals into one super-interval if they are 

sharing the same BC-Table. The I/O ratio of these two methods (Reunion’s I/O) / 

(Basic’s I/O) is shown in Figure 34. Clearly the reunion optimization can improve the 
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vertical interval querying, and the improvements are more significant when the query 

interval covers more ancestor branches. 
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Figure 34: Vertical interval querying 

    Then we consider horizontal interval queries involving multiple branches: “find titles 

of employees whose ids are within a key range of size 100 for branch B1 and its 

descendants in the time interval I”. The different interval I coverage rates are used as 

same as above. We again implement two methods: one is the basic solution (Basic) that 

issues multiple vertical queries with the same query interval for each descendant branch, 

and the other is the optimized rearrange method (Rearrange) that arranges different 

query intervals for each descendant branch to achieve querying efficiency. The I/O ratio 

of these two methods (Reunion’s I/O) / (Basic’s I/O) is shown in Figure 35. As seen, the 

rearrange optimization can effectively improve the horizontal interval querying 

especially when the query interval covers more common parts. 
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Figure 35: Vertical interval querying 

5.7.3 Branched schema evolution with merging 

    Finally, we employ schema merging into the branched system as well. The branched 

schema versions and datasets are extended as follows: We randomly insert 5 schema 

merging points into the 20 schema changing points, and for each such schema merging 

point, we randomly pick some existed branches to do the merges. A parameter mr (0 ~ 1) 

is used to control the merging rate. For example, if mr = 50%, we randomly pick half of 

existed branches to do the merges. The content-level data changes are generated as 

before: the data is updated 500 times after each schema changing point (evolving, 

branching and merging). The total number of time instants with data updates is increased 

from 10,000 to 12,500. 

Here we only show results for the horizontal interval querying for branch B1. We set 

up five different querying interval coverage rates as same as above with two different 

merging rates as mr = 50% and mr = 100%. The methods we test include (i) the basic 

method (Basic) without avoiding the common sub-paths and (ii) the optimized method 
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(Optimized) with both reunion and rearrange implemented. The I/O ratio of these two 

methods (Optimized’s I/O) / (Basic’s I/O) is shown in Fig 36 for the two mr rates. The 

optimized method has an advantage in interval querying processing, and this becomes 

more apparent for larger merging rates and longer query intervals. 
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Figure 36: Querying with merging added 

5.8 Conclusion 

We addressed branched schema evolution for transaction-time databases. To the best 

of our knowledge, this is the first attempt to examine both data and schema evolution in a 

branched environment. Efficient schema sharing strategies with smart lazy-mark updates 

are used. Schema versions are stored in XML-based documents for ease of querying. 

Data records are stored in relational column tables with branched and temporal indexing. 

We also explored temporal querying optimizations, especially for vertical and horizontal 

interval queries. The feasibility of supporting schema merging was also examined. In 
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future research, we will investigate temporal joins and aggregations under schema 

evolution with branching and merging. 



 

122 

 

Chapter 6 

Conclusions 

This dissertation discusses problems related to temporal query processing over social 

media data and related applications. For evolving graphs in social networks, we proposed 

efficient algorithms and index structures to process temporal shortest-path queries. For 

top-k search in social tagging websites, we presented an experimental study by utilizing 

multiple social networks and temporal information of tagging behaviors. For the temporal 

top-k query over versioned text collections, we compared previously proposed methods, 

as well as introduced novel approaches that facilitate multi-version indexing to improve 

query performance. Meanwhile, we also studied how to archive, manage, and query 

temporal data over a branched schema evolution. 

Evaluating historical queries, such as shortest-path queries, over a temporally evolving 

graph is an important tool for further analyzing graph properties over time. Based on our 

newly proposed data model and query definitions, we extended the traditional Dijkstra’s 

algorithm for both time-point and time-interval queries. We investigated how to 

incorporate index structures such as CH and ALT to speed-up shortest-path query 
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processing. To analyze trade-off and explore further enhancement, we analyzed temporal 

partition ideas. Finally, the efficiency of our methods and optimizations was shown using 

real-world social network datasets. 

Then we presented a study of top-k search in social tagging websites using three main 

types of social networks, friendship, common interest networks, and global connections. 

For weight assignment of each social network component, a user classification method is 

proposed. To improve the popularity and freshness of ranking results, the timestamps of 

tagging behaviors are recorded and temporal scoring functions are formed by giving 

higher weights to more recent time slices. Experimental evaluation on real datasets 

showed that our framework and methodology work well in practice. 

We also presented an experimental comparison of indexing methods over versioned 

text collections for top-k temporal keyword queries. In addition to previous methods, we 

proposed novel solutions that partition the data based on the score-time view. 

Experimental evaluation on real-world data showed that the multi-version list method 

provided the most robust performance considering space usage and query time efficiency 

for both time-point and time-interval queries. 

Last, we addressed branched schema evolution for transaction-time databases. 

Efficient sharing strategies with lazy-mark updating were implemented. Data records 

were stored in relational column tables with branched and temporal indexing. Temporal 

query optimizations were explored for vertical and horizontal queries. The feasibility of 

supporting schema merging were also analyzed and examined. 
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