
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Query Processing on Temporally Evolving Social Data

Permalink
https://escholarship.org/uc/item/7t78t5r4

Author
Huo, Wenyu

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7t78t5r4
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Query Processing on Temporally Evolving Social Data

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Wenyu Huo

June 2013

Dissertation Committee:

Dr. Vassilis J. Tsotras, Chairperson

Dr. Eamonn Keogh

Dr. Vagelis Hristidis

Copyright by

Wenyu Huo

2013

The Dissertation of Wenyu Huo is approved:

 Committee Chairperson

University of California, Riverside

iv

Acknowledgements

This dissertation is based on my research work at UC Riverside. I have been very

lucky to receive the support and guidance from many remarkable people. It is my

pleasure to give thanks to them.

First and foremost, I would like to thank my advisor, Professor Vassilis J. Tsotras. I

have had the very good fortune to work with and learn from him. He taught me how

research is done and especially what makes an influential research. He spent numerous

hours with me discussing research ideas and editing paper drafts. I have truly appreciated

all the advice and support he has have given me throughout my research study.

I would also like to thank other committee members, Professor Eamonn Keogh and

Professor Vagelis Hristidis, for their valuable feedbacks on this dissertation.

Many people helped to make my years at UCR a very enjoyable experience. I

especially thank the Chinese Ph.D. folks at UCR CS, which include Qiang Zhu, Chen

Huang, Jilong Kuang, Zi Feng, and Jianxia Ning. The weekly poker nights have made

this Ph.D. career much more tolerable. My thanks also go to the members of the database

research group, including Jian Wen, Michael Rice, Md. Mahbub Hasan, Marcos R.

Vieira, and Mariam S. Salloum. They have offered valuable discussion and inspiring

insights.

I would like to give my special thanks to my parents, Zhisheng Huo and Weihong Liu.

They raised me up and always gave me unconditional support.

v

Finally, I am deeply indebted to my beautiful wife, Peihui Zhang. She willingly chose

to marry and support me through all the ups and downs of graduate lift. Her love, care,

and trust has been the source of my strength and courage. My son, Jiachen, was born

during my Ph.D. years. His smile and happiness cheered me up every day.

vi

ABSTRACT OF THE DISSERTATION

Query Processing on Temporally Evolving Social Data

by

Wenyu Huo

Doctor of Philosophy, Graduate Program in Computer Science

University of California, Riverside, June 2013

Dr. Vassilis J. Tsotras, Chairperson

 The continuous growth of the internet and the popularity of social networks have

created a huge amount of social media data. This includes social networks like users’

friendships, as well as users’ contributed content such as tags, blogs, posts, tweets, and

etc. In addition, other collaborating applications also generate large data, such as the

versioned textual documents created in a collaborative authoring environment like

Wikipedia. In a dynamic world, the social media data is continuously evolving with time.

In December 2004, Facebook had about 1 million users; but by October 2012, Facebook

has over 1 billion active users. The dynamically changing and rapidly growing data bring

us critical challenges: how to store, how to query, and how to use it in different

application domains. This dissertation examines four related problems. First, we consider

the large historical evolving graphs created from a social network, and examined various

temporal shortest-path queries (e.g., find the shortest-path between two nodes as of

certain time in the past). For this environment we proposed an efficient storage model,

and fast query processing algorithms that take advantage of appropriate speed-up

vii

indexing techniques. For second problem examined, deals with social tagging websites,

where users post and share items like bookmarks, videos, photos etc., along with

comments and tags. Within this environment, we presented a study of top-k search that

utilizes the temporal information as well as a user’s participation in multiple social

networks; our results show an improved search performance. Third, we examined the

problem of temporal top-k keyword search in versioned textual collections; we compared

different approaches and proposed novel methods that utilize multi-version access

methods to improve the search. Finally, we considered applications that support multi-

version schema evolutions; we explored scenarios for branching and merging, and

proposed efficient indexing structures along with query processing optimizations.

viii

Table of Contents

Acknowledgements……………………………………………………………………...iv

Table of Contents………………………………………………………………………viii

List of Figures…………………………………………………………………………..xii

List of Tables…………………………………………………………………………...xiv

1 Introduction…………………………………………………………………………….1

2 Efficient Temporal Shortest Path Querying on Evolving Social Graphs…………..6

2.1 Introduction………………………………………………………………………...7

2.1.1 Related Work and Our Contributions……………………………………….8

2.2 Temporally Evolving Graph……………………………………………………....10

 2.2.1 Graph Data Model………………………………………………………….10

 2.2.2 Temporal Query Definitions……………………………………………….12

2.3 Fundamental Solution……………………………………………………………..14

 2.3.1 Dijkstra’s Algorithm on Time Point SP Queries……..……………………14

 2.3.2 Dijkstra’s Algorithm on Time Interval SP Queries…..……………………15

2.4 Speed-up Techniques..…………………………………………………………….19

 2.4.1 Bidirectional Search………………………………………………………..19

 2.4.2 Contraction Hierarchies……………………………………………………20

 2.4.3 Landmark-based A* Search………………………………………………..24

ix

2.5 Temporal Partition………………………………………………………………...27

 2.5.1 Storage Graph Model………………………………………………………27

 2.5.2 Indexing……………………………………………………………………30

2.6 Experimental Evaluation………………………………………………………….31

 2.6.1 Datasets…………………………………………………………………….31

 2.6.2 Setup of CH and ALT Indexing……………………………………………32

 2.6.3 Experimental Results………………………………………………………33

 2.7 Conclusion………………………………………………………………………...39

3 Temporal Top-k Keyword Search in Social Tagging Websites Using Multiple

Social Networks……………………………………..40

 3.1 Introduction………………………………………………………………………..41

 3.2 Related Work……………………………………………………………………...42

3.3 Data Model………………………………………………………………………...44

 3.3.1 Tagging Behavior…………………………………………………………..44

 3.3.2 Social Networks……………………………………………………………44

 3.3.3 Problem Statement…………………………………………………………46

3.4 Scoring Function…………………………………………………………………..46

 3.4.1 Multiple Social Network Components……………………………………..46

 3.4.2 User Classification…………………………………………………………48

 3.4.3 Temporal Scoring Functions……………………………………………….50

 3.5 Temporal Ranking Algorithm……………………………………………………..52

3.6 Experimental Evaluation…………………………………………………………..55

x

 3.6.1 Data Collections……………………………………………………………55

 3.6.2 Top-k result lists…………………………………………………………...56

 3.6.3 NDCG Measurements……………………………………………………...59

 3.7 Conclusion………………………………………………………………………...63

4 A Comparison of Top-k Temporal Keyword Querying over Versioned Text

Collections……………………………………………………………………………….65

 4.1 Introduction………………………………………………………………………..66

4.2 Preliminaries and Related Work…………………………………………………..68

 4.2.1 Definitions………………………………………………………………….68

 4.2.2 Previous Methods…………………………………………………………..70

4.3 Novel Approaches…………………………………………………………………74

 4.3.1 Rank Based Partitioning…………………………………………………...76

 4.3.2 Using Multiversion List……………………………………………………78

4.4 Top-k Time Interval Queries……………………………………………………...82

 4.4.1 Classic Top-k Time-Interval Query………………………………………..82

 4.4.2 Document Aggregated Top-k Time-Interval Query……………………….83

 4.4.3 Consistent Top-k Time-Interval Query…………………………………….84

4.5 Experimental Evaluation…………………………………………………………..85

 4.5.1 Datasets and Methods Implemented……………………………………….85

 4.5.2 Comparison Results………………………………………………………..86

 4.6 Conclusion………………………………………………………………………...91

5 Querying Transaction-Time Databases under Branched Schema Evolution…….92

xi

 5.1 Introduction………………………………………………………………………..93

5.2 Preliminaries………………………………………………………………………95

 5.2.1 A Linear Evolution Example………………………………………………95

 5.2.2 XML Representation of a Linear Schema Evolution………………………96

 5.3 Branched Schema Evolution………………………………………………………98

5.4 BMV-Document and BC-Tables………………………………………………...100

 5.4.1 BMV-Document………………………………………………………….100

 5.4.2 BC-Tables………………………………………………………………...102

5.5 Query Processing………………………………………………………………...104

 5.5.1 Queries within a Single Branch…………………………………………..105

 5.5.2 Data Queries over Multiple Branches…………………………………….107

5.6 Merging of Branches……………………………………………………………..110

 5.6.1 Merging in BMV-Documents…………………………………………….111

 5.6.2 Merging in BC-Tables……………………………………………………111

 5.6.3 Query Processing…………………………………………………………112

5.7 Experimental Evaluation…………………………………………………………113

 5.7.1 BMV-Documents…………………………………………………………114

 5.7.2 BC-Tables………………………………………………………………...115

 5.7.3 Branched Schema Evolution with Merging……………………………....119

 5.8 Conclusion……………………………………………………………………….120

6 Conclusions…………………………………………………………………………..122

Bibliography…………………………………………………………………………...124

xii

List of Figures

Figure 1: Example of temporal evolving graph .. 10

Figure 2: The TEG example and its nodes and edges ... 12

Figure 3: Different scenarios for updating the previous distance and priority queue 19

Figure 4: Example of contraction hierarchies on temporal evolving graph 24

Figure 5: Example of temporal partition for storage graph model 27

Figure 6: Example of overlapped solution for temporal partition 29

Figure 7: Performance of 5-day time-interval all queries for CH and ALT partitions 36

Figure 8: Average performance of 15-day temporal queries for CH and ALT partitions 37

Figure 9: Four-factor data model for temporal tagging behaviors 44

Figure 10: Monthly number of tags as "kdd" of three top results 51

Figure 11: Top-10 results for different decay factor a. (a) a = 1; (b) a = 0; (c) a = 0.5 ... 57

Figure 12: Top-10 results of different weights (a) w1 = 1; (b) w2 = 1; (c) w3 = 1; (d)

recommended .. 58

Figure 13: Average NDCG results for different decay factor a .. 61

Figure 14: Distributions of the size of users' social networks .. 61

Figure 15: Average NDCG for different weight assignments across six classes 62

Figure 16: Average NDCG for different recommendations across four classes 63

Figure 17: Example of versioned documents with scores for one term 69

xiii

Figure 18: Time Interval Based Slicing sub-list examples ... 72

Figure 19: Stencil-based partitioning with 3 levels and b = 2 .. 73

Figure 20: Temporal sharding example .. 74

Figure 21: The Score-Time view of the versioned documents ... 75

Figure 22: Ranking position based partitioning .. 77

Figure 23: The Multiversion list method for different ratio a using the US and World

news datasets ... 89

Figure 24: Linear evolution and branching ... 98

Figure 25: Example of Version Tree .. 99

Figure 26: Illustration of BMV-Document ... 100

Figure 27: Visited pages ... 105

Figure 28: Data pages with links .. 106

Figure 29: A part of version tree ... 107

Figure 30: Schema evolution with branching and merging .. 110

Figure 31: Space saving in BMV-Documents .. 114

Figure 32: pace saving in employee_title table... 116

Figure 33: Snapshot Querying .. 117

Figure 34: Vertical interval querying .. 118

Figure 35: Vertical interval querying .. 119

Figure 36: Querying with merging added ... 120

xiv

List of Tables

Table 1: Statistics of real datasets ... 32

Table 2: Preprocessing time, extra space, and performance of time-point querying 34

Table 3: Performance of time-interval querying ... 34

Table 4: Preprocessing time, extra space, and time-point querying for temporal partition

... 35

Table 5: Comparing different partition-level options for CH and ALT 37

Table 6: Comparing different split strategies for CH and ALT .. 38

Table 7: Overlapped temporal index partitioning for CH ... 39

Table 8: Popular social tagging websites .. 41

Table 9: 100 randomly collected users in del.icio.us .. 49

Table 10: User classification ... 49

Table 11: Recommendation of weight assignments ... 62

Table 12: The space usage (in GB) for the 256 terms used in the queries 87

Table 13: The page I/O cost of top-20 temporal keyword queries for US news 88

Table 14: The page I/O cost of top-100 temporal keyword queries for US and World

news .. 88

Table 15: A linearly evolving employee database .. 96

1

Chapter 1

Introduction

The continuous growth of the internet and the popularity of social networks have

created huge amount of data. Typical social media includes the social networks like

users’ friendships, as well as users’ contributed contents such as tags, blogs, posts,

tweets, and etc. Similarly, collaborating social applications also data, such as the

versioned textual documents created in a collaborative authoring environment like

Wikipedia. In a dynamic world, such data is continuously evolving with time. Taking the

number of users as an example, in December 2004, Facebook had about 1 million users;

by October 2012, Facebook has over 1 billion active users. The dynamic evolutions of

social media data bring us critical challenges: how to store, how to query, and how to use

it in different application domains. In this dissertation, we consider problems related to

temporal querying over social data applications. The four problems we studied can be

summarized as: (i) temporal shortest-path querying over evolving social graphs, (ii) top-k

search in social tagging websites by using multiple networks and temporal information,

(iii) temporal top-k keyword search in versioned textual collections from social

2

collaborating applications, and (iv) temporal querying for applications supporting

branched schema evolutions.

Query evaluation over evolving social graphs is important and challenging. Different

from traditional studies of shortest-path queries on a single graph, our main objective is

to efficiently answer temporal shortest-path queries within the evolving graph’s history.

Considering an evolving social graph over a large temporal period (years), an example

query would be to find the shortest-path between two users as of some past time. Note

that the evolving graph is not stored as a separate snapshot at each time (this would

require even more space), neither as a sequence of deltas (which would result in long

query times). Rather, the space used to store such a graph is typically linear to the

changes in the graph evolution but can still support fast query times. Shortest-path

queries are a basic component for many other graph-related queries (trend analysis etc.)

For example, using temporal shortest path queries in an evolving social network we can

discover how close two given users were in the past, and how this closeness was changed

over time.

Our work on the temporal shortest-path query is distinguished from previous studies in

four ways: (1) In order to reduce the storage overhead and to efficiently support time-

interval querying as well, we store the graph evolution into one “integrated” temporal

graph, instead of a sequence of snapshots or deltas. (2) Our temporal shortest-path

queries can be specified for any given time-point or time-interval, while past works have

considered querying over the whole graph life-time. (3) We explore preprocessing index

techniques, which are very effective and efficient. (4) Further enhancements like

3

temporal partitioning and their effects on the shortest-path query processing are

discussed. To demonstrate our algorithms and optimizations, we do experimental

evaluations on real-world social network datasets collected over long time periods.

With their increasing popularity, social tagging sites store valuable information like

user-generated items, user social networks, and user tags. Such information can be used

to improve services such as hot-lists, recommendations and web search; top-k search in

social tagging sites has thus attracted research interest from both academia and industry.

Here we focus on temporal top-k search in social tagging sites. When compared to

other works, our contributions are: (1) we apply multiple components to score an item

with respect to a particular user’s different social networks and assign weights to each

component based on the classification of that user’s participation in those networks. (2)

We take into consideration the temporal information of tagging behaviors, in order to

enhance popularity and freshness of the top-k results. (3) Last, we provide a variation of

the classic top-k algorithm which works efficiently for our user-dependent temporal

scoring functions. Experimental evaluations on real social tagging datasets show that our

framework works well in practice.

Versioned text collections are textual documents that retain multiple versions as time

evolves. Numerous such collections are available today and a well-known example is a

collaborative authoring environment, such as Wikipedia. If a text collection does not

retain past documents, then a search query ranks only the documents as of the most

current time. Even if the collection contains versioned documents, a search typically

considers each version of a document as a separate document and the ranking is taken

4

over all documents independently to the document’s version (creation time). There are

applications however, where this approach is not adequate. Consider the following

example: in order for a company to analyze consumer comments on a specific product

before some event occurred (new product, advertisement campaign etc.), a temporal

constraint may be very useful. For example, to view opinions on iphone4, a time-window

within 06/07/2010 (announce date) and 10/04/2011 (announce date of iphone4s) could be

a fair choice. Many investigation scenarios also require combining the keyword search

with a time-window of interest. For example, while considering a financial crime, an

investigator may need to identify what information was available to the accused as of a

specific time instant in the past.

To answer that question, we need queries that can identify the top-k result with both

keyword and temporal constraints over versioned textual documents. In particular: (1)

We propose novel data organization and indexing solutions: The first approach partitions

the temporal data based on their ranking positions, while the other maintains the full rank

order using a multi-version ordered list. (2) In addition to top-k time-point keyword based

search, we also consider two time-interval variants, namely “aggregation ranking” and

“consistent” top-k querying. (3) We present experimental evaluations comparing our

approaches to previous solutions, using large-scale real-world datasets.

Due to the collaborative nature of web applications, information systems experience

evolution not only on their data content but also under different schema versions. For

example, Wikipedia has experienced more than 170 schema changes in its 4.5 years of

lifetime. In many applications, the schema may change into multiple branches. For

5

instance, in a collaborative design environment, an initial schema may be branched into a

number of parallel schemas whose data can evolve concurrently.

We address the issues to examine both data and schema evolution in a branched

evolution environment. In particular: (1) We utilize a sharing strategy with lazy-mark

updating, to save space and update time when maintaining the schema branching. (2) We

employ branched temporal indexing structures and link-based algorithms to improve

temporal query processing over the data. (3) Moreover, we propose various optimizations

for two novel temporal queries involving multiple branches, the vertical and horizontal

queries. (4) We further examine how to support version merging within the branched

schema evolution environment. Our experiments show the space effectiveness of our

sharing strategy while the optimized query processing algorithms achieve great data

access efficiency.

6

Chapter 2

Efficient Temporal Shortest Path Queries on

Evolving Social Graphs

Graph-like data is widely used in many applications, such as social networks, internet

hyperlinks, roadmaps, bioinformatics, etc. In most of these applications, graphs are

dynamic (evolving) as changes are applied through time. In this work, we study the

problem of efficient shortest-path query evaluation on evolving social graphs. Our

shortest-path queries are “temporal”: they can refer to any time point or time interval in

the graph’s evolution, and corresponding valid answers should be returned. To efficiently

support this type of temporal query, we extend the traditional Dijkstra’s algorithm to

compute shortest-path distance(s) for a time-point or a time-interval. To speed up query

processing, we explore the bi-directional search method as well as preprocessing index

techniques such as Contraction Hierarchies (CH) and Goal-directed Landmark-based A*

search (ALT). Moreover, we examine how to maintain the evolving graph along with the

indexing. Experimental evaluations on real world datasets demonstrate the feasibility and

efficiency of our proposed algorithms and optimizations.

7

2.1 Introduction

Graphs have been used as a general data structure to model numerous modern

applications, such as social networks, internet hyperlinks, roadmaps, bioinformatics, etc.

For example, in a social network application like Facebook, registered users can be

considered as vertices with edges representing friendships between them. In a dynamic

world, users and friendships are continuously evolving with time. In December 2004,

Facebook had about 1 million users; by October 2012, the number of active Facebook

users had increased to 1 billion. Similarly, edges are continuously added or deleted as

new friendships are formed or old ones are broken. This dynamically changing

environment brings critical challenges: how to store the evolution of large-scale graphs

and how to efficiently support query evaluations.

The shortest-path query is among the fundamental operations on graph data, as the

shortest-path distance is important in measuring “closeness” between nodes. In social

networks, users may be comfortable with adding close users as their friends, and users

may be interested in finding contents from users that are close to them in the social graph.

Computing the shortest-path distances efficiently is thus crucial for a variety of

applications.

Different from traditional studies of shortest-path queries on a single graph, our main

objective is to efficiently answer temporal shortest-path queries within the graph

evolving histories. Such temporal queries can be viewed as being issued on certain

historical graph snapshot(s). This type of temporal query is not only essential for

8

searching and retrieving histories, but also useful for trend analysis. For example,

temporal shortest-path queries in a social network can discover how close two given

users were in the past and how their closeness evolved over time. However, in many

scenarios, even a single snapshot graph is already very large; maintaining the evolving

graph history has much greater volume in data storage and brings more challenges in

querying.

2.1.1 Related Work and Our Contributions

In recent years, plenty of research work has studied efficient shortest-path querying of

large graph data. To improve query times, several preprocessing indexes have been

proposed; a survey of route planning is provided by [18]. Nearly all of these techniques

rely on some variant of the classical Dijkstra’s algorithm [19]. These existing researches

on preprocessing indexes can be classified into three general categories: hierarchical

methods, goal-directed searches, and combinations of the two. Hierarchical methods

(such as Highway Hierarchies [48], Transit Node Routing [7], and Contraction

Hierarchies [22]) seek to order the nodes and/or edges within the graph into

hierarchically nested levels. Goal-directed techniques (such as arc-flags [28] and ALT

[24]) try to direct the shortest-path search toward certain explicit target nodes. However,

most previous works focus only on a single (i.e. non-temporal) graph snapshot. There is

also recent work on query processing techniques for time-dependent graphs [20] and

dynamic graphs [14], but are different from our problem that computes temporal shortest-

path distances on evolving graphs.

9

To the best of our knowledge, the most relevant works are [35, 45]. In particular, [35]

addressed the problem of evaluating historical queries on graphs. Its temporal query

types, namely the point and range queries, are very close to our time-point and time-

interval query definitions. However, its storage model maintains the current graph and

deltas to previous time snapshots; as a result, the first step of evaluating a historical

shortest-path query is to first reconstruct the corresponding snapshot or snapshots that

relate to the query’s temporal predicate. Such a reconstruction phase can be costly;

moreover, traditional speed-up preprocessing techniques such as CH and ALT are very

difficult to incorporate in this storage framework.

Another storage approach was proposed in [45], namely, the historical evolving graph

sequence (EGS). Various snapshots and deltas are explicitly stored, but in addition,

temporally close snapshots are clustered together. Graph-based queries (like shortest-path

and closeness centrality) are answered for the whole graph history (not a single time point

or small time interval); this is done efficiently with the help of a Find-Verify-Fix (FVF)

framework [45].

Our work is distinguished from previous studies in various ways: 1) In order to reduce

storage overhead and support time-interval querying efficiently, we store the historical

evolution in one “integrated” temporal graph instead of a sequence of snapshots or

clusters and their deltas. 2) We explore preprocessing index techniques for the temporal

evolving graph query processing, which are very effective and efficient. 3) We explore

further enhancements like temporal partitioning.

10

The rest of this chapter is organized as follows. In section 2.2, the temporal evolving

graph model is proposed along with temporal shortest-path querying definitions. In

section 2.3, the fundamental solutions are explored as the extensions of Dijkstra’s

algorithms, while section 2.4 describes speedup techniques such as the bi-directional

search method and preprocessing indexes like CH and ALT. Section 2.5 discusses further

optimizations, in particular how temporal partitioning affects the processing of temporal

queries. Section 2.6 presents our experimental analysis and section 2.7 concludes the

chapter with future work.

2.2 Temporally Evolving Graph

2.2.1 Graph Data Model

a

b

e

d

c

f

2

3 3

5

4 6

a

b

e

d

c

f

2

3 3

5

4 6

7 8
a

b

e

d

c

f

2

3 3

5

4 6

7 8

g
5 2

a

b

e

d

c

f

2

3 3

5

4 6

8

g
5 2

6

8

a

b

e

d

c

f

2

3 3

5

4 4

g
5 2

6

8

(a) G1 at t1 (b) G2 at t2 (c) G3 at t3

(d) G4 at t4 (e) G5 at t5

Figure 1: Example of temporal evolving graph

A single static graph, either directed or undirected, can be modeled as G = (V, E),

where V is the set of nodes and E is the set of edges. If G is a weighted graph, there is a

weight function w : E → R+
 mapping edges in G to a positive, real-valued weight. An

11

edge is represented as a triplet <n1, n2, w > : i.e., this edge is from node n1 to node n2 with

weight w. If the graph evolves with time, a different graph snapshot exists logically at

each time. For example, as shown in Figure 1(a), the graph G1 at time t1 had six nodes

and six directed edges. From then, until the latest time t5, there are five graph snapshots

with four updates. Each update may contain multiple operations including: node

insertion, node deletion, edge insertion, edge deletion, and edge weight adjustment. This

graph evolution creates a Graph Sequence (GS), GS = (G1, G2, G3, G4, G5). To maintain

this graph sequence in a space-efficient way, we use the Temporally Evolving Graph

(TEG).

In a TEG = (V, E, w, ts, te), besides the nodes, edges and weights, we add two temporal

attributes ts and te to restrict the nodes and edges. Each node is represented in a triplet as

<n, ts, te> which implies that node n appears in the graph snapshots during the time

interval [ts, te). When a node is first created, its te is initialized with the special symbol

“now”, noting a currently existing (‘alive’) node in the current snapshot of the graph.

Each edge in a TEG is represented as <n1, n2, w, ts, te> noting that this edge runs from

node n1 to node n2 with weight w during the time interval [ts, te). Figure 2(a) shows the

TEG of the graph sequence in Figure 1. Its nodes and edges are listed in Figure 2 (b) and

(c). Given that most graphs do not change drastically over time, adding a temporal

interval for each node and edge ever created allows the integrated temporal evolving

graph to save storage space significantly.

12

<a, t1, now>
<b, t1, now>
<c, t1, now>
<d, t1, now>
<e, t1, now>
<f, t1, now>
<g, t3, now>

<a, b, 2, t1, now>
<a, c, 3, t1, now>
<b, d, 5, t1, now>
<c, d, 3, t1, now>
<d, e, 4, t1, now>
<e, f, 6, t1, t5>
<a, d, 7 t2, t4>
<d, f, 8, t2, t5>
<d, g, 5, t3, now>
<g, f, 2, t3, now>
<b, g, 8, t4, now>
<c, e, 6, t4, now>
<e, f, 4, t5, now>

(b) Nodes (c) Edges

a

b

e

d

c

f

g

(a) TEG

Figure 2: The TEG example and its nodes and edges

Note that in a TEG there may exist parallel edges connecting two nodes (such edges,

however, have non-intersecting time intervals). For example, in Figure 2(a), between

nodes e and nodes f, there are two separate edges <e, f, 6, t1, t4> and <e, f, 4, t5, now>.

However, between the same pair of nodes, there is only one unique valid edge at any

given time point.

2.2.2 Temporal Query Definitions

In addition to the given source node ns and target node nt, a temporal shortest-path

query requires a time constraint, such as a time-point tq, or a time-interval [tsq, teq), which

restricts the candidate nodes and edges within a specific part of the whole temporal graph

TEG.

Definition 1. The sub-graph of a temporal evolving graph TEG = (V, E, w, ts, te) for a

time-point constraint tq is defined as sub-TEG(TEG, tq) = (sub-V, sub-E, w, ts, te), where

∀v∈sub-V : (v∈V ∧ ts(v) ≤tq ∧ te(v) > tq) and ∀e∈sub-E : (e∈E ∧ ts(e) ≤tq ∧ te(e) > tq),

13

representing the graph snapshot at time tq. Similarly, the sub-graph of a temporal

evolving graph TEG for a time interval constraint [tsq, teq) is defined as sub-TEG(TEG,

tsq, teq) = (sub-V, sub-E, w, ts, te), where ∀v∈sub-V : (v∈V ∧ ts(v) < teq ∧ te(v) > tsq) and

∀e∈sub-E : (e∈E ∧ ts(e) < teq ∧ te(e) > tsq), representing the graph snapshots during time

interval [tsq, teq).

Definition 2. A Time Point Shortest Path query TPSP(TEG, ns, nt, tq) returns the

distance of a path p(e1,…,ek) for query time tq, which is the shortest-path from a source

node ns to a target node nt, and all edges in p are valid at query time tq. In another words,

path p satisfies: n1(e1) = ns ∧ n2(ek) = nt ∧ ∀ei∈p : (ts(ei) ≤ tq ∧ te(ei) > tq); and ∀p’⊆ sub-

TEG(TEG, qt) from ns to nt : dist(p’) ≥ dist(p).

For any time point shortest-path query, since the corresponding historical graph

snapshot is unique, there is a single distance returned. However, for the time interval

query, the distance from source to target may change within this time interval. For

example, during time interval [t2, t5), the shortest-path from node a to node f has three

different distances, namely: {14, (a, c, d, f), [t2, t3)}, {13, (a, c, d, g, f), [t3, t4)}, and {12,

(a, b, g, f), [t4, t5)}. We thus define two different time interval queries for shortest paths in

a TEG: the first variation returns all the shortest distances during the time interval, while

the second query variation returns an aggregated result over these distances.

Definition 3. A Time Interval Shortest Path “all” query TISP-all(TEG, ns, nt, tsq, teq)

returns a set of distances for paths P = {p1,…,pm} which contains all the shortest distance

paths from source node ns to target node nt during the query time interval [tsq, teq). Each

14

path pi ∈ P is associated with a time interval [tspi, tepi) and there is no other path shorter

than pi from ns to nt during this time interval [tspi, tepi).

For the aggregated time interval query, we could utilize the minimum, maximum, or

average; without loss generality, here we outline the minimum as a representative.

Definition 4. A time interval shortest path “min” query TISP-min(TEG, ns, nt, tsq, teq)

returns the path p which is the minimum shortest path from source node ns to target node

nt during the query time interval [tsq, teq).

Based on definitions 3 and 4, it is clear that: TISP-min(TEG, ns, nt, tsq, teq) =

min(TISP-all(TEG, ns, nt, tsq, teq)).

2.3 Fundamental Solution

Dijkstra’s algorithm [19] is the classic solution for the point-to-point shortest path

query. Here, we discuss how to process a temporal shortest path query by extending the

traditional Dijkstra’s algorithm.

2.3.1 Dijkstra’s Algorithm for Time Point SP Queries

For the time point shortest path (TPSP) query on a temporal evolving graph, there is a

straightforward adaption of Dijkstra’s algorithm using a priority queue PQ, as presented

in Algorithm 1. In particular, we need to verify if an edge e’s time interval [ts(e), te(e)) is

valid at time tq (i.e., ts(e) ≤ tq < te(e)) before relaxing this edge in the search (Algorithm

2.1, line 13).

15

Algorithm 2.1: TPSP-Dijkstra(TEG, ns, nt, tq)

Input: Temporal evolving graph TEG = (V, E, w, ts, te),

ns, nt ∈ sub-V(tq), and query time tq

Output: Distance of the shortest path p ⊆ sub-TEG(TEG, tq)

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

PQ ← ∅

for all v ∈ V ∧ ts(v) ≤ tq ∧ tq < te(v) do

 d[v] ← ∞

end for

d[ns] ← 0

PQ.Insert(ns, d[ns])

while !PQ.empty() do

u ← PQ.ExtractMin()

if u = nt then

 return d[nt]

end if

for all e = (u, v) ∈ E do

 if ts(e) ≤ tq ∧ tq < te(e) ∧ d[u] + w(e) < d[v] then

 d[v] ← d[u] + w(e)

 if v ∉ PQ then

 PQ.Insert(v, d[v])

 else

 PQ.DecreaseKey(v, d[v])

 end if

 end if

end for

end while

return ∞

An optimization we used here is to store the adjacent edges of a given node sorted first

by their target and then by their start time. This is helpful in pruning temporally invalid

edges; when a target node or an edge is accessed whose start time is later than the query

time-point, any remaining edges can be skipped. This edge pruning optimization can be

utilized for time-interval queries as well.

2.3.2 Dijkstra’s Algorithm on Time Interval SP Queries

 For the time interval shortest path “all” (TISP-all) query, the naïve method is to

perform the TPSP-Dijkstra for all time points within the query interval [qts, qte).

Therefore, for a query time interval with k time instants, this approach would run TPSP-

16

Dijkstra k times, which will not be as efficient. An improved approach is to run Dijkstra’s

algorithm once and return all the qualified answers for the TISP-all query.

Algorithm 2.2: TISP-all-Dijkstra(TEG, ns, nt, tsq, teq)

Input: Temporal evolving graph TEG = (V, E, w, ts, te),

sou, tar ∈ sub-V(tsq, teq), and time interval [tsq, teq)

Output: All distances of the shortest path set P ⊆ sub-TEG(TEG, tsq, teq)

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

[tsqin, teqin) ← [ts(ns), te(ns)) ∩ [ts(nt), te(nt)) ∩ [tsq, teq)

if ∅ = [tsqin, teqin) then return ∞

dout ← ∞ with time interval(s) [tsq, teq) - [tsqin, teqin)

PQ ← ∅; done ← ∅
for all v ∈ V ∧ ts(v) < teqin ∧ te(v) ≥ tsqin do

 D[v] ← {d[v, tsqin, teqin] ← ∞}

end for

D[ns] ← {d[ns, tsqin, teqin] ← 0}

PQ.Insert(<ns, tsqin, teqin >, d[ns, tsqin, teqin])

while !PQ.empty() do

<u, tsui, teui> ← PQ.ExtractMin()

if u = nt then

 Done ← Done + [tsui, teui)

 if Done = [tsqin, teqin) then

 return D[nt] ∪ dout

 end if

end if

for all e = (u, v) ∈ E do

 if ts(e) < teui ∧ te(e) > tsui then // [ts(e), te(e)) overlaps with [tsui, teui)

 [tl, tr) ← [ts(e), te(e)) ∩ [tsui, teui)

 for all d[v, tsvj, tevj] ∈ D[v] and tsvj < tr ∧ tevj > tl do

 if d[u, tsui, teui] + w(e) < d[v, tsvj, tevj] then

 Updating

 end if

 end for

 for all dj[v, tsvj, tevj] ∈ D[v], ordered by tsvj do

 if dj = dj-1 then

 merge dj-1’s time interval into dj; remove dj-1

 end if

 end for

 end if

end for

end while

return D[tar] ∪ dout

The TISP-all-Dijkstra’s algorithm, as presented in Algorithm 2.2, is different than the

traditional TPSP in three aspects. First, the algorithm cannot stop until the confirmed

17

shortest path distance covers the whole query interval. As a result, we need to record the

parts that are done as well as undone. Second, the distance from the source to a given

node v within the query interval is not a single value d, but a set of values D with

different time aspects (due to parallel edges). Last, updating the distance set D and

priority queue PQ is more complex. We present the details in Algorithm 2.3.

Algorithm 2.3: Updating

This is the updating function in Algorithm 2.2, line 23. The new distance of

node v with time interval [tl, tr) is dnew = d[u, tsui, teui] + w(e). The overlapped

previous distance with a larger value holds time interval [tsvj, tevj).

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

if tl ≤ tsvj ∧ tr ≥ tevj then

 d[v, tsvj, tevj] ← dnew

PQ.DecreaseKey(<v, tsvj, tevj >, d[v, tsvj, tevj])

else if tl ≤ tsvj ∧ tr < tevj then

D[v] = D[v] + {d[v, tsvj, tr] ← dnew}

PQ.Insert(<v, tsvj, tr >, d[v, tsvj, tr])

D[v] = D[v] + {d[v, tr, tevj] ← d[v, tsvj, tevj]}

PQ.Insert(<v, tr, tevj >, d[v, tr, tevj])

 D[v] = D[v] - {d[v, tsvj, tevj]}

PQ.Delete(<v, tsvj, tevj >, d[v, tsvj, tevj])

else if tl > tsvj ∧ tr ≥ tevj then

D[v] = D[v] + {d[v, tl, tevj] ← dnew}

PQ.Insert(<v, tl, tevj >, d[v, tl, tevj])

 D[v] = D[v] + {d[v, tsvj, tl] ← d[v, tsvj, tevj] }

PQ.Insert(<v, tsvj, tl >, d[v, tsvj, tl])

D[v] = D[v] - {d[v, tsvj, tevj]}

PQ.Delete(<v, tsvj, tevj >, d[v, tsvj, tevj])

else if tl > tsvj ∧ tr < tevj then

D[v] = D[v] + {d[v, lt, rt] ← dnew}

PQ.Insert(<v, lt, rt >, d[v, lt, rt])

D[v] = D[v] + {d[v, tsvj, tl] ← d[v, tsvj, tevj] }

PQ.Insert(<v, tsvj, tl >, d[v, tsvj, tl])

D[v] = D[v] + {d[v, tr, tevj] ← d[v, tsvj, tevj]}

PQ.Insert(<v, tr, tevj >, d[v, tr, tevj])

D[v] = D[v] - {d[v, tsvj, tevj]}

PQ.Delete(<v, tsvj, tevj >, d[v, tsvj, tevj])

end if

At the beginning, we consider the “inter” query time interval [tsqin, teqin), which is the

intersection of the time intervals of source node ns, target node nt, and query time interval

[tsq, teq). Outside of this “inter” query time interval, there is no valid path from ns to nt

18

within the original query time interval. Hence, we focus on the “inter” interval to

compute the shortest-path distances, which can reduce the search space. When we extract

a node u from the priority queue, and u is the target node nt, we check if the whole “inter”

query interval is done (Algorithm 2.2, line 12). If not, the search for the “all” shortest-

path distances should be continued.

As shown in Algorithm 2.2 (lines 18-32), when relaxing a valid edge e(u, v) from the

node u (whose time-interval is [tsui, teui)), it may contribute a new distance(s) value for

node v within an intersected time-interval [tl, tr). For any temporally overlapped distance

of node v, if the new distance dnew = d[u, tsui, teui] + w(e) is smaller than the previous

value (whose time-interval is [tsvj, tevj)), we need to update the distance set of v and the

priority queue.

As demonstrated in Figure 3 and Algorithm 3, there are three different cases to be

considered. First, if the new distance’s time interval covers the whole old distance’s time

interval (Figure 3(a)), we replace the old value with the new and decrease its key in the

priority queue (Alg. 3, lines 1-3). Second, if the new distance’s time interval covers the

head (or tail) of the old distance’s time interval (Figure 3(b, c)), we split the old interval

into two parts. The covered one is updated with the new value while the uncovered one

retains the old value (Alg. 3, lines 4-17). Third, if the new distance’s time interval is

totally inside of the old one’s (Figure 3(d)), the old interval is split into three parts. The

middle part is updated with the new value while the head and tail retain the old value

(Alg. 3, lines 18-26). Each time, we only update one temporally overlapped distance

19

value d[v, tsvj, tevj]. After all distances are updated, we run a post-process to merge the

adjacent identical distances for node v.

tl tsvj tevj tr

new distance dnew new distance dnew

new distance dnewnew distance dnew

(a) (b)

(c) (d)

tl tsvj tevj tr

tsvj tl tevj tr tsvj tevjtl tr

Figure 3: Different scenarios for updating the previous distance and priority queue

For the TISP-min query, the evaluation process is similar to the TISP-all-Dijkstra’s

algorithm. The only difference is that the algorithm can be stopped once the first shortest

path is settled for the target node, without exploring all the candidates. The first

discovered shortest path is guaranteed to be the minimum due to the Dijkstra’s algorithm.

2.4 Speed-up Techniques

Here, we propose some speed-up techniques for the temporal shortest path algorithms.

Besides the commonly used bidirectional search approach, we analyze the utilization of

preprocessing indexes, such as hierarchical methods and goal-directed search algorithms.

2.4.1 Bidirectional Search

The bidirectional search method [42] utilizes the Dijkstra’s algorithm for both forward

and backward searches, and proceeds in two phases. In the first phase, we alternate

20

between two unidirectional searches: one forward search from source s growing a

spanning tree S, and the other backward search from target t growing a spanning tree T.

When the forward and backward searches reach the same vertex v0, we move on to the

second phase, in which the shortest path is found.

For the TPSP query, the bidirectional Dijkstra’s algorithm can be straightforwardly

extended from the unidirectional TPSP-Dijkstra. However, the case of the TISP-all query

requires attention. In the unidirectional TISP-all-Dijkstra algorithm, we start by finding

the “inter” interval [tsqin, teqin) which is the intersection of source and target node time

intervals with the query interval [tsq, teq). In phase 1, we can adopt the TISP-all-Dijkstra

for both the forward and backward search alternately. When we meet a vertex labeled in

both S and T, we can move on to phase 2. A shortest path distance for the intersection

time interval can be found if the intersection is not empty. Then we go back to phase 1

and continue the bidirectional search until the whole “inter” interval [tsqin, teqin) is done in

phase 2.

2.4.2 Contraction Hierarchies

Hierarchical methods (such as HH [48], TNR [7], and CH [22]) seek to order the nodes

and/or edges within the graph to hierarchically nested levels, based on some measure of

overall graph structure. One of the most efficient methods to date is the contraction

hierarchies (CH [22, 23]). The effectiveness of the CH search technique comes from the

use of the newly-added shortcut edges, which allow Dijkstra’s search to effectively

bypass irrelevant nodes during the search, without invalidating correctness.

21

Node Contracting. Certain absolute ordering ϕ of the vertices is established in the

graph, according to some notion of relative importance; then the CH is constructed by

“contracting” one vertex at a time in increasing order. When a vertex v is contracted, it is

removed from the current graph. For any pair of remaining vertices, u and w, adjacent to

v in the original graph whose only shortest u-w path is <u, v, w>, a so-called shortcut

edge (u, w) must be added with the weight of the original shortest path cost through v. A

local witness search for v (from and to all its neighbors) is required to determine the

shortcuts.

Querying. Once all necessary shortcuts E’ are added to the graph G for a given

ordering, shortest path queries may then be carried out using a bidirectional Dijkstra

search variant which performs a simultaneous forward search in the upward graph G↑ =

(V, E↑), where E↑ = {(v, w) ∈ E ∪ E’ | ϕ(v) < ϕ(w)}, and backward search in the

downward graph G↓ = (V, E↓), where E↓ = {(u, v) ∈ E ∪ E’ | ϕ(u) > ϕ(v)}. A tentative

shortest path cost is maintained and is updated only when the two search frontiers meet to

form a shorter path. Once the minimum key from the priority queue exceeds the distance

of the best path for both directions, the search is finished.

Node Ordering. Note that a good node ordering is one of the most crucial aspects of

CH. The computation of an optimal node ordering (i.e. shortcut minimal or query search

space minimal) is NP-hard. The heuristic solution here is to consider several different

ordering metrics, along with several different combinations of weighted coefficients for

each metric tested. Work [23] establishes several metrics including edge difference,

contracted neighbors, original edges, and so on.

22

Incorporating CH into TEG

Here, we analyze how to incorporate the contraction hierarchies into our temporal

evolving graph. Since the CH indexing adds shortcuts on the original graph, in a form of

extra edges, we can extend the contraction hierarchies by adding temporal information on

the shortcut edges as well. Now we discuss how to construct a global CH for the whole

TEG based on a node ordering within the whole graph lifetime.

When contracting a vertex v, one way we can do it is to perform a local witness search

for each pair of neighbors, which is a total of |Iv
↓
|*|Ov

↑
| separate local searches (where Iv

↓

= {(u, v) ∈ E : ϕ(u) > ϕ(v)} and Ov
↑
 = {(v, w) ∈ E : ϕ(v) < ϕ(w)}). In practice, a better way is to

perform a single forward shortest-path search from the source node u of each incoming

edge e↓ = (u, v) ∈ Iv
↓
, ignoring node v until all nodes in the set W = {w ∈ V | (v, w) ∈ Ov

↑
}

have been settled. When a target node w is “settled”, it means its distances are settled for

the whole “local search time-interval” [tse↓, tee↓) of the incoming edge e↓. We can also

stop the search from u when it has reached a distance of w(e↓) + max{w(e↑) | e↑ ∈ Ov
↑
}.

This task can be achieved efficiently with the help of our TISP-all-Dijkstra query

processing algorithm without a specified target, and all the “witness” shortest-path

distances are stored in set D. Then we compare them against the distance of path

u→v→w as dist = w(e↓) + w(e↑) within time-interval [tse↓, tee↓). If dist is smaller than

some value in D of a time interval [tsi, tei), then we need to add a shortcut (u, w) with a

weight dist and a time interval [tsi, tei). More details about node contracting in CH on

TEG are shown in Algorithm 2.4.

23

Algorithm 2.4: TEG-CH-Contraction(TEG, ϕ)

Input: Temporal evolving graph TEG = (V, E, w, ts, te),

and node ordering function ϕ: V→{1, …, |V|}

Output: Augmented temporal evolving graph TEG’ = (V, E∪E’, w, ts, te), where E’

represents newly added shortcut edges

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

TEG’ ← TEG ; E’ ← ∅

for all v ∈ V ordered by ϕ do

for all e↓ = (u, v) ∈ E ∪ E’ : ϕ(u) > ϕ(v) do

 maxOutDist ← 0; W ← ∅

 for all e↑ = (v, w) ∈ E ∪ E’ : ϕ(v) < ϕ(w) do

 if ∅ ≠ [tse↓, tee↓) ∩ [tse↑, tee↑) then

 W ← W ∪ {w}

 maxOutDist ← max(w(e↑), maxOutDist)

 end if

 end for

 TEG’v ← TEG’[{z ∈ V | ϕ(v) < ϕ(z)}]

 do local search D ← TISP-all-Dijkstra(TEG’v, u, ∅, tse↓, tee↓) until

 W fully settled for [tse↓, tee↓) or distance w(e↓)+maxOutDist reached

 for all d(wi) ∈ D with time-interval [tswi, tewi) do

 for all e↑ = (v, wi) overlaps with time-interval [tswi, tewi) do

dist ←w(e↓) + w(e↑)

if dist < d(wi) then

 e’← (u, wi) ; w(e’) ← dist

 [tse’, tee’) ←[tse↓, tee↓) ∩ [tse↑, tee↑) ∩ [tswi, tewi)

 E’ ← E’ ∪ {e’}
 TEG’ ← TEG’ ∪ E’

 end if

 end for

 end for

end for

end for

return TEG’

The CH on TEG of our running example in Figure 1 is shown in Figure 4, based on an

example importance ordering as b < c < d < a < e < f < g. Since the shortcuts are also

certain types of “edges” in the pre-processed graph, the shortcuts of CH on TEG have

two new features inherited from the properties of TEG’s edges: i) each shortcut has a

time interval validity [ts, te], and ii) parallel shortcuts are supported as well. There are

24

two pairs of parallel shortcuts in our TEG-CH example: <a, e, 10, t1, t3, d> / <a, e, 10, t1,

t3, d> and <a, g, 11, t3, t3, d> / <a, g, 10, t4, now, b>.

Importance ordering:

b < c < d < a < e < f < g

<a, d, 6, t1, now>
<a, e, 10, t1, t4>
<a, f, 14, t2, t3>
<a, g, 11, t3, t4>
<a, e, 9, t4, now>
<a, g, 10, t4, now>

a

b

e

d

c

f

2

3 3

5

4 6/4

7 8

g

5 2

6

8

10/11

6

9/10
14

<a, t1, now>
<b, t1, now>
<c, t1, now>
<d, t1, now>
<e, t1, now>
<f, t1, now>
<g, t3, now>

Nodes

<a, b, 2, t1, now>
<a, c, 3, t1, now>
<b, d, 5, t1, now>
<c, d, 3, t1, now>
<d, e, 4, t1, now>
<e, f, 6, t1, t5>
<a, d, 7 t2, t4>
<d, f, 8, t2, t5>
<d, g, 5, t3, now>
<g, f, 2, t3, now>
<b, g, 8, t4, now>
<c, e, 6, t4, now>
<e, f, 4, t5, now>

Edges

Shortcuts

Figure 4: Example of contraction hierarchies on a temporally evolving graph

Once the construction phase of CH on TEG is finished, the shortest path queries can be

carried out. The algorithm employed on the corresponding CH for TEG is similar to the

bidirectional Dijskra’s algorithm on CH for traditional shortest path queries. For each

upward and downward search, our proposed TPSP-Dijkstra and TISP-Dijkstra algorithms

can be utilized. For example, consider the time-interval “all” query of [t2, t5) from a to f.

The upward search from a extracts the following distances in order: <e, 9, t4, t5>, <e, 10,

t2, t4>, <g, 10, t4, t5>, <g, 11, t3, t4>, and <f, 14, t2, t3>, while the downward search from f

only extracts the distance <g, 2, t3, t5>. So the “all” shortest path distances from a to f

with [t2, t5) are: <14, t2, t3> (a→f), <13, t3, t4> (a→g→f), and <12, t4, t5> (a→g→f).

2.4.3 Landmark-based A* Search

Goal-directed search techniques (such as arc-flags [11] and ALT [5]) try to “direct” the

shortest-path search toward some explicit target node (i.e., the “goal”), in order to speed

25

up the overall query time. One of the most effective goal-directed search techniques is the

ALT algorithm [5], using A* search in combination with Landmarks and the Triangle

inequality.

The ALT algorithm is primarily based on A* search [12], which works like Dijkstra’s

algorithm except that at each step it selects a labeled vertex v to scan, with the smallest

value of k(v) = ds(v) + πt(v), where the potential function πt(v) gives an estimate on the

distance from v to the search target t. For bidirectional A* search, we assume πt and πs

give lower bounds to the target and from the source, respectively. As suggested, we use

an average potential function defined as pt(v) = (πt(v) – πs(v)) / 2 for the forward

computation and pt(v) = (πs(v) - πt(v)) / 2 = - pt(v) for the reverse one. They are feasible

and consistent for bidirectional A* search.

ALT involves preprocessing, which selects a small set of vertex as landmarks L, and

for each vertex in the graph, pre-computes the shortest-path distance to and from every

landmark. For any node v, with target node t, the triangle inequality provides two lower

bounds for each landmark, l ∈ L: d(l, t) - d(l, v) ≤ dist(v, t) and d(v, l) - d(t, l) ≤ dist(v, t).

The maximum of these lower bounds over all landmarks is used to get the tightest lower

bound. The original implementation of ALT uses, for each shortest path querying, only a

subset of active landmarks, those that give the best lower bounds on the s-t distance.

Incorporating ALT into TEG

The ALT method also can be extended for the temporal shortest path problems in TEG

by solving the two key steps in preprocessing phase: landmark selection and distance

computation.

26

Finding good landmarks is critical for the overall performance of lower-bounding

algorithms. Selecting the optimal set of landmarks is an NP-hard problem [44]; however,

several strategies are described in [24]. The simplest way to select landmarks is at

random. The farthest greedy algorithm works as follows. Pick a start vertex at random

and find a vertex v that is farthest from it. Add v to the set of landmarks. Proceed in

iterations, always adding to the set the vertex that is farthest from it.

The main problem of previous landmark selection strategies all focus on a static graph

and measure the distance based on the graph structure. If we just simply utilize them, the

selected landmarks may not be suitable for the general temporal shortest path querying.

For example, at a given query time, there may be few landmarks valid at all, which could

downgrade the performance of ALT. Therefore, we should take consideration of the

temporal information of the vertex. Without loss of generality, we adopt the farthest

landmark selection in this work and extend it by choosing a set of global landmarks with

a combination of “farthest” and “longest.” The “longest” term refers to the lifetime of the

selected nodes.

In the distance computation step, for each vertex in the graph, we calculate the

shortest-path distances to and from every landmark in the whole TEG graph lifetime. The

computation can be efficiently achieved with the help of the proposed TISP-all-Dijkstra

algorithm and its bidirectional version. Thus for each landmark, the distances are stored

along with their time intervals. When computing the lower bounds in ALT search

algorithm for time-point querying, we pick the unique temporally valid distance for the

corresponding querying time point. When computing the lower bounds for time-interval

27

queries, due to multiple temporally valid distances, we choose the minimum triangle

inequality lower bound value to and from each landmark, and then use the maximum of

these lower bounds over all landmarks as the tightest estimation.

2.5 Temporal Partition

2.5.1 Storage Graph Model

For historical evolving graphs, as we mentioned earlier, there are two data models. One

is Graph Sequence (GS), storing all the graph snapshots for each time instance, and the

other is our Temporal Evolving Graph (TEG) model with a super-graph containing all

histories. The GS model is optimal for time-point querying, but it causes huge storage

overhead and is not efficient for time-interval querying. On the other hand, the TEG

model is optimal in space saving and efficient for time-interval querying (especially large

intervals); however, its time-point querying performance is downgraded due to skipping

plenty of temporally invalid edges. The trade-off solution is to make temporal partitions

for one huge TEG along the time axis. For example, if the whole TEG has n time

instances, and we create a partition for each m time instance, then we will get n/m

partitions, as shown in Figure 5.

……

……

Graph Sequences:

Temporal Evolving Graph:

Partitions of TEG:

n snapshots

One huge graph

n/m partitions

n

m

Figure 5: Example of a temporal partition for the storage graph model

28

The temporal partitioning indeed brings some duplicates between the partitions, but it

reduces the size of queried TEG(s). The temporal shortest path queries (either a time-

point or a time-interval) are issued on the corresponding TEG partition(s) instead of the

original “super” TEG, which may speed up the query process. However, a long time-

interval query may go across multiple partitions, which results in multiple runs of TISP-

all querying.

For temporal partitioning, how to split is important. Here, we propose a simple and

efficient split strategy called fixed-time-window (fix): each partition has a time-window

with a fixed length. For example, as we presented in Figure 5, the fixed time-window

length is m. The advantage of fix strategy is that: for a time-window length m any time-

interval query with a length l, we need to access at least ⌈l/m⌉ and at most ⌈l/m⌉+1

partitions.

Another applicable split strategy is called graph-edit-distance (ged). This is borrowed

from a clustering idea in [45]: similar snapshots are grouped together based on the

symmetric difference of the graph’s edge sets. During some time the graph may change

more dramatically than other times, so the ged strategy may result in more balanced

partitions from a storage point of view. However, ged’s time-lengths of partitions is

different compared to a fixed one in fix.

The basic temporal partition approach to split the whole graph into a set of disjointed

adjacent partitions has an obvious drawback: even for a small time-interval query, if it

goes over the borders of the partitions, we still need multi-partition accesses. For

example, for a fix-10 temporal partition with time-window length as 10 (shown in Fig. 6),

29

small time-interval query q1 and q2 both have a length of 5; since q2 is over the border

between partition p2 and p3 in the disjointed partition set (set-1), we need to access both

p2 and p3 to get the correct “all” query answers. Therefore, we propose an overlapped

partition solution: for partition pi (i>1), it is overlapped with previous partition pi-1 with

a factor f (0≤ f <1). For example, in Fig. 6, we make another set of “overlapped”

partitions (set-2) with f = 50%. We can see that partition p2 starts from time t6 by

overlapping half of p1. Thus, the partition borders are covered by the overlaps. For a

small time-interval like q2 (across the partition borders in set-1), it fits in one partition p4

of the set-2.

t1 t11

…….p1 p2 p3

t21 t31

t26

q1 [t3, t8) q2 [t18, t23)

set-1:

set-2:
t1

t11

…….

p1

p3
t6

p2

t16

p4

p5

t21

f = 50%

q3 [t13, t28)

Figure 6: Example of an overlapped solution for a temporal partition

The overlapped partition solution increases the storage space by a factor of 1/(1-f);

however, it improves the performance for time-interval queries by reducing the

probability of multi-partition accessing for small time-interval queries. For example,

assume a fix temporal partitioning with time-window length of m; we create the

overlapped partition set by using f = 50% (overlap half). For any time-interval query

30

length l <= (m/2)+1, we just need to access one partition, while in the original disjointed

partitioning, we have the probability of (l-1)/m to access two partitions. For time-interval

query length (m/2)+1 < l <= m, we have the probability of [(l-1)-(m/2)]/m to access two

partitions, which is much smaller than the probability of (l-1)/m in a disjointed partition

set. Even for longer time-interval query whose l > m, we still have a larger probability to

access fewer numbers of partitions in the overlapped partition solution than in disjointed

partitioning. This is because the overlapped partition set with f = 50% is a superset of the

disjointed adjacent partition set. For example, in Fig. 6, for a long time-interval query q3

of 15-day length, it can be processed by accessing two partitions p3 and p5 (excluding

partition p4).

2.5.2 Indexing

The temporal partition idea can be used on preprocessing indexes as well. For both CH

and ALT, their performance is highly related to certain key feature in their construction

phase, like the node ordering for CH and the landmark selection for ALT. One global

choice may not be the best for any single temporal query. Therefore we explore the

opportunities to maintain different index structures for different time period partitions.

To implement temporal partition on indexing, there are two options: i) “partition both

graph and index” by splitting the index along with the temporal evolving graph together;

or ii) “partition only index” without actual graph-level splitting. For “partition both graph

and index” option, we first partition the TEG based on certain splitting strategy. Then for

CH (or ALT), we compute the node ordering and construct local CH (or select the

landmarks and calculate the local distances) for each sub-TEG partition.

31

The “partition only index” option saves space for actual graph-level splitting; we need

to access the original edges from the global TEG. For ALT, since the landmarks and their

pre-computed distances are a set of separated structures from the original graph, this

option seems favorable. For the whole graph lifetime, we split it into multiple sub-time-

intervals, one for each virtual partition. Then for each sub-time-interval, we select its

local landmark set and pre-compute the local distances from and to those landmarks.

Multiple local landmark sets can achieve better querying performances than the single

global landmark set. For CH, we can implement this option in a similar way. In addition

to the original TEG-graph and newly-added temporal partitioned shortcut sets, we need to

store extra information such as the partitioning sub-time-intervals along with the node

ordering for each partition.

For temporal index partitioning of CH or ALT, in addition to fix and ged, other

sophisticated split strategies can be explored, such as shortcut-edit-distance (sed) based

on the symmetric differences among CH’s shortcut sets or landmark-edit-distance (led)

based on the symmetric differences of the selected landmarks.

2.6 Experimental Evaluations

All experiments have been done on an Intel® Core™ i5-2400S CPU at 2.50GHz with

8 GB RAM. Our implementation was written in C++ and compiled by gcc version 4.4.3.

2.6.1 Datasets

 In our experiments, we used social network graphs from YouTube and Flickr, as

provided by socialnetworks.mpi-sws.org. The properties of the real datasets are given in

32

Table 1. The storage space for different data models are listed in that table as well. In

addition to Graph Sequence and Temporally Evolving Graph, we also present the storage

space of the snapshot-delta model proposed in FVF work [45] as a comparison.

Table 1: Statistics of real datasets

Dataset YouTube Flickr

Graph type Undirected Directed

Number of snapshots 165 104

Date of last snapshot 2007-07-23 2007-05-08

|V| of first Snapshot 1,402,949 1,620,392

|V| of last Snapshot 3,218,658 2,570,535

Vertex growth 129% 58%

|E| of first snapshot 6,783,917 17,034,807

|E| of last snapshot 18,524,095 33,140,018

Edge growth 173% 63%

|E|/|V| of first snapshot 4.84 10.51

|E|/|V| of first snapshot 5.75 12.89

Size of TEG 451.2 MB 776.4 MB

Size of FVF 997.7 MB 1.6 GB

Size of GS 49.7 GB 59.7 GB

2.6.2 Setup of CH and ALT Indexing

For CH, node ordering is important. In this work, we consider three classic ordering

metrics from [23]: edge difference, contracted neighbors, and original edges, and two

novel priority terms: lifetime length and new parallel-edge. Lifetime represents the time

interval length of a node; new parallel-edge represents the number of new parallel-edges

introduced during the contraction of a node. For both the YouTube and Flickr dataset, we

achieve fairly good performances by using edge difference and original edges with

weight 2 and 1 respectively. Therefore, we use this setup in the following experiments.

33

To speed up the preprocessing phase of CH, especially for local witness searches, we

use the hop-limit optimization: limit the depth of the shortest-path tree of the local search

to 5. Note that this has no influence on the correctness of CH as long as we make sure to

always insert a shortcut when we have not found a path witnessing that the shortcut is

unnecessary. Meanwhile, we also use the core nodes optimization to reduce the

preprocessing time. Node contracting is stopped when the number of remaining un-

contracted nodes reaches a threshold, and the un-contracted nodes are left as core nodes.

The size of core nodes we used here is 10k.

For ALT, landmark selection is crucial. In this work, we use our temporal optimized

“farthest + longest” algorithm. Meanwhile, for a set of landmarks we use 32 nodes, and

for each individual temporal query, we choose at most 6 active landmarks as a subset. A

larger number of landmarks can gain better querying performance, but it also results in

considerable storage overhead. For example, the storage space for 64 landmarks is about

double the size of that for 32 landmarks.

2.6.3 Experimental Results

 Time-Point Shortest-Path Query. For time-point queries, we get the average query

performance time by running the shortest-path algorithms on every dataset day. And for

each tested day, we choose 1000 uniformly random s-t pairs. The results are reported in

Table 2. We can see that both CH and ALT index get more improvement in querying

performance than bidirectional search. Meanwhile, CH is better than ALT with much

smaller extra space usage by using more time in preprocessing. The YouTube and Flickr

34

datasets have similar result patterns and we will show the results on the YouTube dataset

for the following experiments.

Table 2: Preprocessing time, extra space, and performance of time-point querying

YouTube TPSP-Dijkstra Bidir CH ALT

Preprocessing 0 0 3h47m 1h12m

Extra Space (MB) 0 0 54.1 724.5

Query Time (ms) 2159 1283 340 384

Flickr TPSP-Dijkstra Bidir CH ALT

Preprocessing 0 0 4h19m 1h26m

Extra Space (MB) 0 0 97.2 817.5

Query Time (ms) 3647 1994 620 672

Table 3: Performance of time-interval querying

“all” query Multi-TPSP One-TISP Bidir CH ALT

5-day 10.8s 6.3s 3.9s 1056ms 1163ms

15-day 32.4s 15.1s 9.4s 3039ms 3375ms

25-day 54.1s 25.9s 16.7s 4961ms 5428ms

“min” query Multi-TPSP One-TISP Bidir CH ALT

5-day 10.8s 5.9s 3.4s 962ms 1039ms

15-day 32.4s 13.7s 7.8s 2665ms 2981ms

25-day 54.1s 23.4s 13.8s 4308ms 4846ms

Time-Interval Shortest-Path Query. For time-interval querying, we tested on

different query interval lengths of 5-day (3% of graph lifetime), 15-day (9% of graph

lifetime), and 25-day (15% of graph lifetime). For each length, we randomly chose 100

time-intervals within the dataset lifetime. The querying performance time is also

averaged by 500 uniformly random s-t pairs for each query time-interval. The results on

the YouTube dataset are reported in Table 3. It can be seen that, for both time-interval

“all” and time-interval “min” querying, the one-time run of TISP-Dijkstra’s algorithm is

35

much better than multiple runs of TPSP-Dijkstra’s algorithm. And the average

performance can be further improved by using CH or ALT index.

Temporal Partitioning. First, we demonstrate some results by utilizing the fixed-

time-window (fix) split strategy. Different time-window lengths are tested as 10 days, 20

days, and 30 days. Therefore, for the YouTube dataset, the numbers of partitions are 17,

9, and 6, respectively. The last partition does not necessarily have a full fix-time length.

Here, for both CH and ALT, we use the “partition only index” option. The preprocess

time, extra space (refers to the space of index, while graph space is 451.2MB), and

performance of time-point queries for different time-window lengths (CH-30 stands for

CH index with 30-day time-window partition) are presented in Table 4. For temporal

partitioning, the extra storage spaces have increased while time-point querying

performances have improved. And smaller time-window length can bring in more time-

point querying benefit, by requiring more space usage as well.

Table 4: Preprocessing time, extra space, and time-point querying for temporal partition

YouTube Preprocessing Extra space (index) Query time

Bidir 0 0 1283 ms

CH 3h47m 54.1 MB 342 ms

CH-30 17h42m 234.7 MB 315 ms

CH-20 26h3m 362.4 MB 280 ms

CH-10 49h37m 687.0 MB 247 ms

ALT 1h12m 724.5 MB 384 ms

ALT-30 6h7m 6.8 GB 353 ms

ALT-20 9h11m 9.7 GB 311 ms

ALT-10 17h25m 18.6 GB 269 ms

We also test the temporal partition for time-interval “all” and “min” queries (“min”

queries have similar results). Since one query time-interval may go across multiple

36

partitions, we report the query performance by issuing multiple sub-queries (one for each

overlapped partition) and merging the final results. The results of 5-day time-interval

queries for CH temporal partitioning and ALT temporal partitioning are shown in Figure

7. We can see that, if the query time-interval is inside of a single partition, then the

querying performance is better than using one global index. However, if the query time-

interval goes across multiple partitions, the query performance is worse than on a global

index solution due to multiple runs of all candidate partitions.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Query time (ms) for CH

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Query time (ms) for ALT

Figure 7: Performance of 5-day time-interval all queries for CH and ALT partitions

Since the 5-day query has a relatively small query interval length, its average

performance is improved for all three different partition lengths. For each query, we need

to visit at most two partitions. However, if the query interval is longer, it would have

more chances to go across several partitions. The average results for 15-day queries (9%

of the graph lifetime) are shown in Figure 8. We can see that, for 15-day all queries, the

temporal partitioned indexes have worse performances on average than one global index

without partitioning and small time-window length (10-day) partitioning, which is best

for time-point querying but has the worst performance for both CH and ALT.

37

0

1000

2000

3000

4000

5000

6000

One-CH CH-10 CH-20 CH-30 One-ALT ALT-10 ALT-20 ALT-30

15-day query time (ms)

Figure 8: Average performance of 15-day temporal queries for CH and ALT partitions

Then, we compare the two different partition-level options: “partition only index (oi)”

and “partition both graph and index (gi)” on fixed-time-window (fix) splitting for both

CH and ALT speed-up techniques. Average results for time-point, time-interval “all”, and

time-interval “min” queries are reported in Table 5. We can see that partition option gi

gains a little improvement in average querying performance rather than oi by using much

more space to store the partitioned graph and index structures (especially for CH). Thus,

for our YouTube dataset, the “partition only index” may be the desirable option.

Table 5: Comparing different partition-level options for CH and ALT

YouTube CH CH-20-oi CH-20-gi ALT ALT-20-oi ALT-20-gi

Preprocess 3h47m 26h3m 27h18m 1h12m 9h11m 10h26m

Total space 504.8MB 813.6MB 3.3GB 1.2GB 10.1GB 12.6 GB

TPSP 341ms 280ms 264ms 384ms 311ms 288ms

5-day-all 1056ms 999ms 928ms 1163ms 1087ms 1019ms

5-day-min 962ms 902ms 844ms 1039ms 984ms 933ms

15-day-all 3039ms 3905ms 3525ms 3375ms 4284ms 4007ms

15-day-min 2665ms 3280ms 2974ms 2981ms 3790ms 3525ms

Next, we compare different splitting strategies on the “partition only index” option. For

fixed-time-window (fix), we use the 20-day length, resulting in 9 partitions, for both CH

38

and ALT. The graph-edit-distance (ged) is also used for both CH and ALT by generating

9 partitions. Meanwhile, shortcut-edit-distance (sed) is used for CH and landmark-edit-

distance (led) is used for ALT, both with 9 partitions. Since the time to compute each

snapshot CH or ALT is too long, our sed or led splitting strategies compute the CH or

ALT for every 5-day period; this results in 33 preprocessing computations. The average

time-point and time-interval “all” querying results are shown in Table 6. Since our

YouTube dataset has a smooth evolving pattern (without dramatic changes), the different

splitting strategies have very similar performances. By considering the preprocessing

time, fix split strategy may be the best choice.

Table 6: Comparing different split strategies for CH and ALT

YouTube CH-fix CH-ged CH-sed ALT-fix ALT-ged ALT-led

Preprocess 26h3m 27h37m 138h49m 9h11m 10h18m 46h20m

Total space 813.6MB 732.5MB 747.2MB 10.1GB 10.6GB 11.3GB

TPSP 280ms 264ms 272ms 311ms 295ms 302ms

5-day-all 999ms 937ms 952ms 1087ms 1004ms 1025ms

5-day-min 902ms 843ms 859ms 984ms 889ms 906ms

15-day-all 3905ms 4008ms 4061ms 4284ms 4332ms 4308ms

15-day-min 3280ms 3392ms 3424ms 3790ms 3872ms 3839ms

At last, we test the “overlapped partition” solution for fix-time-window splitting

strategy. When we set overlap factor f = 0, it is the same as disjointed partitioning we

used above. The results for “partition index only” option on CH indexing with time-

window length as 10-day and 20-day, along with overlap factor f as 0, 30% and 50%, are

shown in Table 6. The extra space here refers to the space for index storage (while the

graph space is 451.2MB). We can see that when set f as 30%, it is only good for time-

39

point and small time-interval queries; when we set f as 50%, we can get fairly good

performances for both small time-interval and large time-interval queries.

Table 7: Overlapped temporal index partitioning for CH

 CH 10-0% 10-30% 10-50% 20-0% 20-30% 20-50%

of partitions 0 17 24 33 9 12 17

Preprocess 3h47m 49h37m 73h29m 99h42m 26h3m 37h40m 51h18m

Extra space 54.1MB 687.0MB 892.2MB 1.2GB 362.4MB 530.4MB 774.8MB

TPSP 341ms 247ms 245ms 240ms 280ms 276ms 271ms

5-day-all 1056ms 1007ms 902ms 761ms 999ms 887ms 865ms

10-day-all 2042ms 2542ms 2932ms 1946ms 2285ms 1945ms 1674ms

15-day-all 3039ms 4504ms 5973ms 3960ms 3905ms 4510ms 3905ms

2.7 Conclusion

In this work, we studied the problem to answer temporal shortest-path distance queries

on historical evolving graphs. Based on our newly proposed data model and query

definitions, we extended the traditional Dijkstra’s algorithm for both time-point and time-

interval queries, in order to process the shortest-path querying efficiently. Moreover, we

investigated how to incorporate preprocessing index structures such as CH and ALT to

speed-up query processing. To analyze trade-offs and explore further optimizations, we

proposed temporal partitioning, with multiple split strategies and partition-level options.

To demonstrate our algorithms and optimizations, we performed experimental

evaluations on real-world social-network datasets.

40

Chapter 3

Temporal Top-k Keyword Search in Social

Tagging Websites Using Multiple Social Networks

The advent of Web 2.0 has facilitated the growth of online communities and

applications such as blogs, wikis, online social networks and social tagging sites. In

social tagging sites, users are provided easy ways to create social networks, to post and

share items like bookmarks, videos, photos or articles, along with comments and tags. In

this chapter, we present an experimental study of top-k search in social tagging sites by

utilizing multiple social networks and temporal information of tagging behaviors. In

particular, besides the global connection, we consider two main social networks, namely

the friendship and common interest networks in our scoring functions. Based on the

degree of participation in various networks, users can be categorized into specific classes

that differ in their weights on each scoring component. Temporal information, usually

ignored by previous works, can enhance the popularity and freshness of the ranking

results. Experiments and evaluations on real social tagging datasets show that our

framework works well in practice and give useful and intuitive results.

41

3.1 Introduction

 With the advent and popularity of Web 2.0, the World Wide Web has become

increasingly open for everyone. Successful Web 2.0 applications include blogs, wikis,

online social networks, and social tagging sites. In social tagging sites, such as

del.icio.us, Flickr and CiteULike (Table 8), user-generated data is the core feature. Once

a user is logged in, he/she can easily edit his/her own personal profile, build social

networks with friends, and contribute content by posting bookmarks, videos, photos, or

articles. He/she can also annotate those items with arbitrary labels— the so-called tags.

Social tagging sites are free, fun, and functional, attracting more and more people to

register as users.

Table 8: Popular social tagging websites

URL www.delcious.com www.flickr.com www.citeulike.org

Type Online social

bookmarking

Photo sharing and

Photo networking

Social bookmarking

of academic articles

Owner Yahoo! Inc Yahoo! Inc Oversity Ltd

Launched Sep 2003 Feb 2004 Nov 2004

Statistics Over 180 million

bookmarked URLs

Over 6 billion

images

Over 3 million

articles bookmarked

With their increasing popularity, social tagging sites have formed and stored valuable

information like user-generated items, user social networks, and user tags. How to make

good use of this information to improve services such as hot-lists, recommendations and

web search is an open and attractive challenge for both academia and industry.

42

In this work, we focus on temporal ranking and personal search in social tagging sites.

When compared to other works, our contributions are: First, we apply multiple

components to score an item with respect to a particular user’s different social networks

and assign weights to each component based on the classification of that user’s

participation in those networks. Then, we take into consideration the temporal

information of tagging behaviors, in order to enhance popularity and freshness of the top-

k results. Last, we provide a variation of the classic top-k algorithm which works

efficiently for our user-dependent temporal scoring functions. Moreover, experimental

evaluations on real social tagging datasets show that our framework works well in

practice.

The rest of this chapter is organized as follows: in section 3.2 we review previous work

on social tagging and web search. Section 3.3 describes the data model, user social

networks and problem statement while section 3.4 demonstrates our user-based temporal

scoring functions. The temporal top-k algorithm appears in section 3.5. Section 3.6

provides experimental results on real social tagging datasets while conclusion appears in

section 3.7.

3.2 Related Work

Social tagging has become a hot research topic recently. Much work has investigated

in related areas such as recommendation systems and web search.

Recommendation systems use information filtering (IF) techniques to present

information items (movies, music, books, news, images, web pages, etc.) which are likely

43

of interest to the users [36]. A highly-automated novel framework for real-time tag

recommendation is proposed in [51]. [57] uses explanation-based diversity to explore

compromises between accuracy and diversity in recommender systems.

An empirical analysis of how social bookmarking can influence web search is provided

in [27], with both positive and negative insights. Various ranking methods have been

developed and many of them are inspired by the well-known PageRank [13] method for

web link analysis. They model the entities in social networks as a “social-content graph”

and use a “random surfer” traversing the graph to compute the ranking of nodes to a

user’s query. [29] proposes FolkRank to identify important users, data items, and tags. [6]

introduces SocialSimRank which calculates the similarity between social annotations and

web queries, and SocialSimRank which captures the popularity of web pages.

Recently, some studies expand traditional top-k algorithms [21] to do search in social

tagging. An incremental top-k algorithm is developed in [50] with two expansions: the

social expansion considers the strength of relations among users, and the semantic

expansion considers the relations of different tags. A network-aware search is presented

in [2] to incorporate social behavior into searching content in social tagging sites. It

extends traditional top-k algorithms to bounds-based algorithms, and explores clustering

users as a way to achieve a balance between processing time and space consumption.

However, neither of them considers temporal information or the combining of multiple

social networks.

44

3.3 Data Model

3.3.1 Tagging Behavior

Previous work in social tagging mostly ignores timestamps, and treats a tagging

behavior as a three-factor tuple: <User, Item, Tags>, which indicates that a user u

annotated one item i with arbitrary tags.

To take into account the temporal information, we extend the tagging behavior tuple by

adding timestamps (Figure 9). In the following, we first demonstrate the model of social

networks and static scoring functions without timestamps, and then explore a method to

incorporate temporal information into ranking.

Figure 9: Four-factor data model for temporal tagging behaviors

3.3.2 Social Networks

In social tagging sites, users are generally participating in multiple social networks.

Aside from the global connection, meaning that everyone can connect with anyone else

45

on the whole web, here we consider two other kinds of social networks, namely,

friendship and common interest networks.

Friendship is a kind of explicit social network. One user can choose to add any other

users as friends. Most of them could be acquaintances in real life—friends, schoolmates,

business contacts, etc; some may be known through the internet. We use Friends(u) to

represent all the users in a friendship with user u.

Most social tagging sites have a service enabling users to create and join special groups.

Users can post messages and share content to the group. This social network is also an

explicit one, since members in the same group have direct connections with each other.

Thus, for our purpose, we categorize group members into Friends as well.

We also consider another kind of social network called common interest network [2]. It

is different from the traditional explicit social networks which are built up by adding

friends or joining groups. The common interest network is implicit in nature, and is

formed based on similar tagging behaviors. The items posted by a person and the tags

used can be considered indicators of that person’s interests. Linking people together

whose tagging behaviors overlap significantly can implicitly form common interest

networks. Users do not necessarily add each other as Friends when they have common

interests. However, this social network may bring more relevant and interesting search

results to the user.

The common interest network can be computed by considering the overlap in tagged

items between users. Let Items(u) be the set of items tagged by the user u with any tag.

Using Links(u) to represent the common interest network for the user u, we could define

46

that another user v is in Links(u) iff a large fraction of the items tagged by u are also

tagged by v, as follows: | () () | / | () |Items u Items v Items u   , where  is a given threshold.

The social networks we used in this chapter, namely friendship (Friends) and common

interest networks (Links), are both very important social networks among social tagging

sites. Different websites may have different names or forms; however, most of their

social networks typically fall into these two main categories.

Naturally, different users have different social networks. As a result, when searching

within a user’s particular social networks, the top-ranked answers will be user-dependent.

3.3.3 Problem Statement

Given a query Q = t1,…,tn with n terms, issued by user u, and a number k, we want to

efficiently return the top-k items with the highest overall scores. Our search strategy is

user-focused, giving different results to different users, even when the query is the same.

Our search strategy considers the user’s multiple social networks. Moreover, the top-k

results returned take into account the tagging behaviors’ temporal information. For

simplicity, tags and keywords are treated the same, and our framework deals with exact

string matching.

3.4 Scoring Function

We first demonstrate how to score the items for a user’s specific query. The static

scoring functions for each social network component are initially discussed without

timestamps, and are combined together to form an overall scoring function. A method for

combining weight assignments based on user classification is then discussed. Finally,

47

temporal information of tagging behaviors is added and temporal scoring functions are

examined.

3.4.1 Multiple social network components

The overall static scoring function needs to aggregate three social network

components: friendship (Friends), common interest network (Links), and global

connection (Global).

Given a user u, the friendship component score of an item i for a tag t is defined as the

number of users in u’s Friends who tagged i with tag t:

(, ,) | () { | (, ,)}|Friendsscore i u t Friends u v Tagging v i t 

(1)

Similarly, the score from common interest network is defined as the number of users in

u’s Links who tagged i with tag t:

(, ,) | () { | (, ,)}|Linksscore i u t Links u v Tagging v i t 

(2)

Besides the above two score component from a user’s social networks, we also

consider the global effect on scoring. Not everyone is an active participant and/or has

large personal social networks; if we only use the local social network scoring, the search

effectiveness may decrease. The Global score is defined as the total number of users in

the whole website tagged item i with tag t:

(,) |{ | (, ,)}|Globalscore i t v Tagging v i t

(3)

48

The global score is thus user-independent; it is only related to the corresponding item

and tag, so for the same item and tag, the Global component score is the same for all

users.

As a result, the static overall score of item i for user u with one tag t is an aggregate

function of the weighted scores from the three components:

1 2 3(, ,) * (,) * (, ,) * (, ,)Overall Global Friends Linksscore i u t w score i t w score i u t w score i u t  

(4)

where wi is the weight of each component and 3

1
1ii

w




Since a query contains multiple tags, we also define the static overall SCORE of item i

for user u with the whole query Q = t1,…,tn as the sum of the scores from individual tags,

which is a monotone aggregation function:

1
(,) (, ,)

n

Overall jj
SCORE i u score i u t


 (5)

3.4.2 User Classification

Different weight assignments of components can generate different overall scores.

Meanwhile, users may have different trusts on each component of the scoring function.

So finding an efficient approach to set the weights is far from trivial.

There are several ways to assign component weights. Machine learning methods can

be used to get “optimal” solutions. However, these need the definition of “optimal” and a

large amount of user feedback data for training. Also, statistics algorithms need user log

records and exploring data in the website, which are not easy to access either. For

simplicity, here we use a user classification method based on the social networks size and

recommend weight assignments for each class.

49

Users in social tagging sites have different usage patterns and degrees of participation

in their social networks. Some users have many friends, while some may only have few.

Also, for tagging, some users do frequent tagging and thus have a lot of tagged items;

while others may not tag as much. As an example, we randomly collected 100 users in

del.icio.us as shown in Table 9. A user can bookmark a URL with several tags in

del.icio.us, and the friendship social network is called “Network”. One can observe huge

differences of usage pattern among the del.icio.us users.

Table 9: 100 randomly collected users in del.icio.us

 Maximum Minimum Average Standard

deviation

Bookmarks 29942 52 1769.38 4272.27

Network 100 0 15.82 21.19

In our general framework, we use three categories for each social network component,

described as: many, some and few; nine classes are shown in Table 3. The users in the

same class have similar usage patterns and degrees of participation, as their social

networks have similar sizes.

Table 10: User classification

User Friends

many some few

L
in

ks
 many Class 1 Class 2 Class 3

some Class 4 Class 5 Class 6

few Class 7 Class 8 Class 9

Within this classification, we assume that users in the same class have similar degree

of trust on each social network scoring component. Then we can give a recommendation

50

of weight assignments for users in each class. For example, a user in Class 1 has a large

common interest network and has a lot of directly added friends. In Class 1, then, w1 and

w2 could be set higher than w3, because this user may wish to get more relevant and

attractive information from his/her Friends and Links. In another example, a user in Class

7 only has a small common interest network, but he/she has a lot of friends. So such user

may trust more on his/her Friends and have a high weight value w2.

3.4.3 Temporal Scoring Functions

We believe that ranking results will be more attractive to users not only based on their

relevance, but also on popularity and freshness; hence the temporal information of

tagging behaviors is important. For example, one item may be more interesting if it is

recently added. In this case, a simple interpretation of freshness is the first date the item

was posted. However, not all new posts are popular, and not all popular posts are new. A

more subtle way may consider how many recent tagging behaviors have targeted an item.

Our basic approach is to divide the tagging behaviors into multiple time slices, based

on their time stamps for our scoring functions. We use m to denote the number of time

slices and adjust the weights of different time slices based on their recency (or freshness).

A higher weight is set to tagging behaviors occurring in the current time slice, and a

lower weight to tagging behaviors in earlier time slices.

We use decay factor a (0 < a < 1) to penalize the count score from old time slices.

Thus, the temporal score of Global component of item i with tag t can be defined as:

1
- (,) (, ,)*

m m s

Global Globals
T score i t score i t s a 




(6)

51

where (, ,)Globalscore i t s is the global score of item i with tag t at time slice s, with s = m

being the current time slice.

We demonstrate the importance of temporal information for search with a real

example. We used tag “kdd” as keyword in a search on del.icio.us on June 1
st
, 2009,

using the search function provided, and got the top-5 results including “KDD Cup 2007”,

“KDD 2008” and “KDD 2009”1. The search revealed the three results in that order

because the static total number of tags as “kdd” added to each item, which were 24, 16

and 15 respectively. When we looked at the timestamps of these tagging behaviors, we

found that “KDD Cup 2007” has many “old” tags, although it has the biggest total

number of tags as “kdd”. The details are shown in Figure 10.

0

1

2

3

4

2
0

0
7

 J
a

n

2
0

0
7

 M
a

r

2
0

0
7

 M
a

y

2
0

0
7

 J
u

l

2
0

0
7

 S
e

p

2
0

0
7

 N
o

v

2
0

0
8

 J
a

n

2
0

0
8

 M
a

r

2
0

0
8

 M
a

y

2
0

0
8

 J
u

l

2
0

0
8

 S
e

p

2
0

0
8

 N
o

v

2
0

0
9

 J
a

n

2
0

0
9

 M
a

r

2
0

0
9

 M
a

y

#
 o

f
ta

g
s

a
s

"k
d
d
"

KDD Cup 2007

KDD 2008

KDD 2009

Figure 10: Monthly number of tags as "kdd" of three top results

Using temporal ranking in this example, we can set a = 0.5, m = 5, and separate the

time slices with a length of 6-month for each. Then the temporal global component scores

(T-scoreGlobal) for “KDD Cup 2007” “KDD 2008” and “KDD 2009” are 5, 6.75 and 11

1 The other two results in top-5 are “UCI KDD Archive” and “KDnuggest”

52

respectively. The ranking order will be changed as “KDD 2009”, “KDD 2008” and

“KDD Cup 2007” which reflects the tag freshness.

The temporal scoring functions for Friends and Links components are defined

similarly with the temporal factors in Global:

1
- (, ,) (, , ,)*

m m s

Friends Friendss
T score i u t score i u t s a 


 (7)

1
- (, ,) (, , ,)*

m m s

Links Linkss
T score i u t score i u t s a 


 (8)

The temporal overall scoring function of item i for user u with tag t is:

1 2 3- (, ,) * - (,) * - (, ,) * - (,)Overall Global Friends LinksT score i u t w T score i t w T score i u t w T score i t  

(9)

Therefore, the temporal scoring for whole query is:

1
- (,) - (, ,)

n

Overall jj
T SCORE i u T score i u t


 (10)

 3.5 Temporal Ranking Algorithm

To compute the top-k items with query tags for a particular user, items are organized in

inverted lists with some information pre-computed, so that the well-known top-k

algorithm can be adapted.

Typically, one inverted list is created for each keyword and each entry contains the

identifier of a document along with its score for that keyword [5]. For our framework,

when the query is composed of multiple tags, we need to access multiple lists and apply

the top-k processing algorithms.

One straightforward method is to have one inverted list for each (tag, user) pair and

sort items in each list according to the temporal overall score (T-scoreOverall) for the tag t

and user u. However, there are a lot of users in social tagging sites (del.icio.us has over 5

53

million users). If we create inverted lists per keyword for each user, there will be too

many inverted lists and thus large space is required.

Another solution is to factor out the user from each inverted list by using upper-bound

scores [2]. Since we use the number of users as the static score without normalization and

set all three social network component with the same temporal factors for a query, for the

same item i with the same tag t, no matter which user, we have T-scoreFriends<=T-

scoreGlobal and T-scoreLinks<=T-scoreGlobal.

As a result, temporal global score is an upper-bound of temporal overall score for all

the users, because T-scoreOverall=w1*T-scoreGlobal+w2*T-scoreFriends+w3*T-scoreLinks

<=w1*T-scoreGlobal+w2*T-scoreGlobal+w3*T-scoreGlobal=T-scoreGlobal. Since the global

component scoring is user-independent, we can create only one list for each keyword

along with the temporal global scores (T-scoreGlobal) as an upper-bound of the user-based

temporal overall scores (T-scoreOverall).

In our framework, the temporal factor is designed as adjustable for users. It is

impossible to know a user’s choice in advance, so the temporal factors may also need to

be factored out from the inverted lists. The static global scores (scoreGlobal) is an upper-

bound for the temporal global scores (T-scoreGlobal), since the static scores correspond to

the temporal ones with a = 1. Therefore, the final upper-bound scores used in our

inverted lists are the static global scores. The entries of lists have a form:

<item, {(user1, time1), (user2, time2),…}, scoreGlobal >

which includes item ID, all users who tagged the item with that tag along with

timestamps, and the static global score.

54

We can thus extend Fagin’s classic top-k TA algorithm [21] to rank the items listed in

the order of static global scores scoreGlobal as the upper-bound for temporal overall scores

in Algorithm 3.1. Given a user u, query Q and k, Friends(u), Network(u), weights w1, w2,

and w3 for that user’s class are identified. We access the relevant inverted lists

sequentially in parallel. When an item o is seen for the first time, we compute its exact

temporal overall score (T-scoreOverall) with a “local” aggregation function of three

component temporal scores. For every item entry, we have all the IDs of tagging users

and timestamps, so we can compute T-scoreGlobal directly, and T-scoreFriends, T-scorelinks

by checking with user’s Friends and Links. Then, we do the random access to other lists

and perform computation of T-scoreOverall. When at least one of T-scoreOverall = 0, we set

T-SCORE = 0 for that item. This means an item must include all query tags; otherwise it

will be scored 0 for T-SCORE. After that, we can have the exact temporal overall score T-

SCORE of this item for the whole query Q and check whether it can be swapped into top-

k sorted heap. Meanwhile, a Thres, the sum of bottom bounds of all lists is recorded and

updated. The algorithm stops whenever the score of the kth item in the heap is no less

than the Thres, and outputs the top-k results.

Other top-k algorithms like NRA can easily be extended in a similar way. We also

notice that the upper-bound scores can be coarse at times. [2] explores the use of

clustering to save processing time. This methodology could be adapted into our

framework as well; however it is left as future work.

55

Algorithm 3.1 Temporal Top-k Ranking Algorithm

Require: User u, Query Q, and k

1: Get Friends(u), Links(u), weights w1, w2, w3, and temporal factors;

Open inverted lists for each keyword tQ;

2: while score of kth heap item <= Thres do

3: Do sequential access in parallel to each of the list Li;

4: Once a new object o is seen, get the exact T-ScoreOverall of o in that list;

5: Do random access to the other lists, and get the T-ScoreOverall of o;

6: if at least one the T-ScoreOverall = 0 then

7: Set the exact T-SCORE of o to be 0;

8: end if

9: else

10: Compute T-SCORE by sum up T-ScoreOverall;

11: if o’s T-SCORE > kth score in top-k heap then

12: Replace kth item with o; keep heap sorted;

13: end if

14: end else

15: Update Thres as sum of bottom bounds of all lists;

16: end while

17: Output the heap as top-k results

3.6 Experimental Evaluation

Below we evaluate our proposed framework and method for the temporal top-k search

problem using various real datasets. An extended collection of our experiments and

evaluations appears in [30].

3.6.1 Data Collections

To evaluate the effectiveness of our scoring functions and query process methods, we

collected datasets from CiteULike (http://www.citeulike.org), an academic article social

tagging site.

In CiteULike, articles are stored with their metadata, abstracts, and links to the papers

at the publishers’ websites. Users can add their academic papers to their online library

56

with tags and personal comments. Friendship and social networks can be created between

users through “Connections”. In addition, CiteULike also allows a user to set up and join

groups that share academic or topical interests. Many other services, such as “Watchlist”

and “Neighbours”, are also offered.

CiteULike provides some datasets from their core database.2 However, to get more

recent data, we further crawled datasets before 2009.7.1. After filtering, our datasets

comprised approximately 104,000 unique articles posted by approximately 4,600 unique

users using approximately 35,000 unique tags.

3.6.2 Top-k result lists

We proceed with experimental top-k results based on different temporal factors and

weight assignments.

We first evaluate the effects of temporal information; we search for top-k results, and

only consider the global scoring functions. Figure 11 depicts the top-10 results for the

search query “social tagging” of two tags, “social” and “tagging”. We divide the time

range of our datasets into six-month periods, starting from the most recent 2009.1.1 –

2009.6.30 to earlier time slices, which will remain the same throughout this work.

Changes of temporal factors differentiate the top-k lists. If the decay factor a = 1, then

the scoring function is the same as the static scoring function, and the results are ranked

by the total number of users who tagged the item with the query keywords, without

considering any temporal information. On the other hand, with decay factor a = 0, the

query considers recency and shows the ranking of the number of tagging behaviors only

2 http://www.citeulike.org/faq/data.adp

57

in the most recent time slice. A balanced decay factor a = 0.5, is neither too high to miss

the temporal information and freshness, or too low to lose classic popular items. The top-

10 results are shown in Figure 11 in ranking order, along with the items’ Ids, Names and

Years they published.

Figure 11: Top-10 results for different decay factor a. (a) a = 1; (b) a = 0; (c) a = 0.5

These three lists reveal some interesting observations. First, when the decay factor a

decreases from 1 to 0, the average “age” of the top-10 items becomes younger. Second,

some recently popular articles improve their rating when a decreases, such as I13 and I7.

Meanwhile, some classic items, due to their “old age”, rank down dramatically. However,

when a = 0.5, the top-10 lists include both classic and fresh popular items. Last, some

58

articles (such as I12, I28, I3, I13, and I8) show up in all three lists. These articles are very

important and stay in top-10 lists despite the decay factor changes.

We further show the top-10 results as related to different weight assignments of the

three social network components, Global, Friends and Links. Here the temporal factors

remain unchanged using the same query: “social tagging”.

CiteULike has an explicit friendship social network called “Connections”, however,

due to privacy reasons such data is not available. It also has the “Groups” friendship, so

we use Friends(u) to include all users who are members in the user u’s Groups.

Figure 12: Top-10 results of different weights (a) w1 = 1; (b) w2 = 1; (c) w3 = 1; (d) recommended

59

Moreover, CiteULike has a service named “Neighbours” which is quite similar to our

common interest network in social tagging. Neighbours of u are the users who have

bookmarked the same articles as u. To remove the “long tail”, it only shows neighbors

who share at least the median number of articles. As a result, we used the “Neighbours”

as our Links social network component for our experiments.

We picked up a specific user from our user dataset who uses the tags “social” and

“tagging” very frequently. This user has 13 Friends and 23 Links, and is then categorized

into Class 2 in the users classification. We gave a recommended weight assignment for

this class as w1 = 0.1, w2 = 0.3, and w3 = 0.6. The temporal scoring functions use the

decay factor a = 0.5, while the time slices remain as six months. The top-10 results for

different weight assignments are shown in Figure 12.

The first three lists are generated using only one social network component each time.

As seen, some articles, I3, I12, I7, and I8, stay in top-10 among all three lists. Note that

the top-10 list with our recommended weights for the three social networks also includes

these important articles with relatively high ranking positions. Therefore, our top-k

search framework using multiple social networks can embrace manifold opinions without

losing any important items.

3.6.3 NDCG Measurements

We now proceed with an evaluation of our framework using the NDCG standard for

measuring the search quality. Classical IR metrics, namely NDCG, MRR, and MAP [38]

are widely used for measuring search quality. Here we use the NDCG (normalized

60

discounted cumulated gain) measurement [33] to evaluate the performance of our

experiments.

Every item in top-k lists is given a corresponding human judgment scoring from 0 to 3

(0=Bad, 1=Fair, 2=Good, 3=Excellent). The cumulated gain is computed by summing up

and the discounted cumulated gain vector is defined recursively as:

2

[1], if 1

[1] [] / log , otherwise

G i
DCG

DCG i G i i


 

 

The DCG vectors can be normalized by dividing them by the corresponding ideal DCG

vectors (all score 3), so the normalized value ranges in [0, 1]: [] [] / []IdealNDCG i DCG i DCG i

Our human judgments of top-10 results are based on relevance and attractiveness

(popularity and freshness) for particular query tags. Since it is difficult to ask real users,

we elicit the help of graduate student volunteers to provide us with their educated

judgments. Different queries may prefer different temporal factor settings. We thus used

two different sets of popular query tags, and ask three volunteers to judge each query. For

set-1, the queries are “social-network” and “tagging”. These are popular and very hot

recently. For set-2, we use “algorithm” and “database” as queries, because they are very

popular and classic.

We change the decay factor a from 1 to 0 with the same time slice division as six

months. Meanwhile, we only evaluate the global temporal scoring (T-scoreGlobal) to factor

out user diversity. The average NDCG results are shown in Figure 13. From this figure,

we observe that different kinds of queries have different preferences. Hot queries may

prefer recent tagging behaviors much more than classic queries. And for classic queries,

61

the total number is a very important factor for search. But for both sets, the average

NDCG peaks when a is neither too high nor too low.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a

N
D

C
G Set-1

Set-2

Figure 13: Average NDCG results for different decay factor a

Here we evaluate the NDCG of different user classes with different weight

assignments for each social network. The users are classified based on the size of their

social networks. The distributions of our user dataset are shown in Figure 14. We set few

as 0~5, some as 6~15, and many as 15+ for both Friends and Links.

0%

10%

20%

30%

40%

50%

60%

0 1-10 11-20 21-30 31-40 40-50 51-75 76-

100

101-

200

201-

300

(a) Number of Friends

0%

10%

20%

30%

40%

50%

60%

0-5 6-10 11-15 16-20 21-25 26-30 31-40 41+

(b) Number of Links

Figure 14: Distributions of the size of users' social networks

62

Based on the user classification in Table 10, we provided an example recommendation

of weight assignments for six representative classes as listed in Table 11. The decay

factor was set as a = 0.5 and the time slices were six months. We tested two queries—

“tagging” and “algorithm”, picked up two users from our dataset for each class, and used

two volunteers to evaluate. Then we extracted the average NDCG.

Table 11: Recommendation of weight assignments

Class Recommendation Class Recommendation

1 r1: w1 = 0.1, w2 = 0.45, w3 = 0.45; 5 r5: w1 = 0.2, w2 = 0.4, w3 = 0.4;

2 r2: w1 = 0.1, w2 = 0.3, w3 = 0.6; 6 r6: w1 = 0.2, w2 = 0.3, w3 = 0.5;

3 r3: w1 = 0.1, w2 = 0.1, w3 = 0.8; 9 r9: w1 = 0.4, w2 = 0.3, w3 = 0.3;

First we examined whether our multiple social network components method works

better than using only one component. As shown in Figure 15, in all six representative

classes, our multiple-component method produced better NDCG than any other one-

component method.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Class 1 Class 2 Class 3 Class 5 Class 6 Class 9

N
D

C
G

w1 = 1

w2 = 1

w3 = 1

Recommend

Figure 15: Average NDCG for different weight assignments across six classes

63

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Class 1 Class 2 Class 3 Class 9

N
D

C
G

r1

r2

r3

r9

Figure 16: Average NDCG for different recommendations across four classes

Then we tested if our respective weight assignments recommended for each class were

performing better than other multiple component assignments. In this experiment, our

recommended weight assignments were r1 for Class 1, r2 for Class 2, r3 for Class 3, and

r9 for Class 9. We tested all these four assignments for each class. As seen in Figure 16,

our recommended weight assignments performed better than the other assignments for

each specific class. For example, when running assignments r1, r2, r3, and r9 for Class 1,

r1 performed better. Similarly, r2 performed better for Class 2, r3 for Class 3, and r9 for

Class 9.

3.7 Conclusions

In this chapter, we presented an experimental study of temporal top-k search in social

tagging sites using two main types of social networks, friendship and common interest

networks, to model the scoring functions along with the global component. To set the

weights of each scoring component for different users, a classification of users is

proposed based on the size of users’ social networks. To improve the popularity and

64

freshness of ranking results, the timestamps of tagging behaviors are recorded and

separated into multiple time slices. Then temporal scoring functions are formed by giving

higher weights to more recent time slices. In addition, an efficient temporal top-k

algorithm for ranking is proposed which stores inverted lists for each tag with static

global scores as upper-bound of each item. Experimental evaluation on real social

tagging website datasets shows that our framework and methodology work well in

practice.

65

Chapter 4

A Comparison of Top-k Temporal Keyword

Querying over Versioned Text Collections

As the web evolves over time, the amount of versioned text collections increases

rapidly. Most web search engines will answer a query by ranking all known documents at

the (current) time the query is posed. There are applications however (for example

customer behavior analysis, crime investigation, etc.) that would need to efficiently query

these sources as of some past time, that is, retrieve the results as if the user was posing

the query in a past time instant, thus accessing data known as of that time. Ranking and

searching over versioned documents considers not only keyword constraints but also the

time dimension, most commonly, a time point or time range of interest. In this chapter,

we deal with top-k query evaluations with both keyword and temporal constraints over

versioned textual documents. In addition to considering previous solutions, we propose

novel data organization and indexing solutions: the first one partitions data along ranking

positions, while the other maintains the full ranking order through the use of a multi-

version ordered list. We present an experimental comparison for both time point and time

66

interval constraints. For time-interval constraints, different querying definitions, such as

aggregation functions and consistent top-k queries are evaluated. Experimental

evaluations on a large real world dataset demonstrate the advantages of the newly

proposed data organization and indexing approaches.

4.1 Introduction

Versioned text collections are textual documents that retain multiple versions as time

evolves. Numerous such collections are available today and a well-known example is the

collaborative authoring environment, such as Wikipedia (http://en.wikipedia.org/), where

textual content is explicitly version-controlled. Similarly, web archiving applications

such as the Internet Archive (http://www.archive.org) and the European Archive

(http://europarchive.org/) store regular crawls over time of web pages on a large scale.

Other time-stamped textual information such as, weblogs, micro-blogs, even feeds and

tags, as also create versioned text collections.

If a text collection does not retain past documents, then a search query ranks only the

documents as of the most current time. If the collection contains versioned documents, a

search typically considers each version of a document as a separate document and the

ranking is taken over all documents independently to the document’s version (creation

time). There are applications however, where this approach is not adequate. Consider the

following example: in order for a company to analyze consumer comments on a specific

product before some event occurred (new product, advertisement campaign etc.), a

temporal constraint may be very useful. For example, to view opinions on iphone4, a

67

time-window within 06/07/2010 (announce date) and 10/04/2011 (announce date of

iphone4s) could be a fair choice. Many investigation scenarios also require combining the

keyword search with a time-window of interest. For example, while considering a

financial crime, an investigator may need to identify what information was available to

the accused as of a specific time instant in the past.

Providing “as-of” queries is a challenging problem. First is the data volume. Document

collections like Wikipedia and Internet Archive, are already huge even if only their most

recent snapshot is considered. When searching in their evolutionary history, we are faced

with even larger data volumes. Moreover, how to quickly return the top-k temporally

ranked candidates is another new challenge. Note that returning all qualified results

without temporal constraints would not be efficient since two extra steps are required: (i)

filtering out results later than the query specified time constraint, and, (ii) ranking the

remaining results so as to provide the top-k answers.

We present an experimental evaluation of the top-k query over versioned text

collections, comparing previously proposed as well novel approaches. In particular the

key contributions can be summarized as:

1. Previous methods related to versioned text keyword search are suitably extended

for top-k temporal queries.

2. Novel approaches are proposed in order to accelerate top-k temporal queries. The

first approach partitions the temporal data based on their ranking positions, while

the other maintains the full rank order using a multiversion ordered list.

68

3. In addition to top-k time-point keyword based search, we also consider two time-

interval (or time-range) variants, namely “aggregation ranking” and “consistent”

top-k querying.

4. Experimental evaluations with large-scale real-world datasets are performed on

both the previous and newly proposed methods.

The rest of this chapter is organized as follows. Preliminaries and related work are

introduced in section 4.2. Our novel approaches appear in section 4.3. Different query

definitions of time-interval top-k queries are presented in section 4.4. All techniques are

comprehensively evaluated and compared in a series of experiments in section 4.5 while

the conclusions appear in section 4.6.

4.2 Preliminaries and Related Work

4.2.1 Definitions

The data model for versioned document collections was formally introduced in [11],

and used by later works [10, 3, 4]. Let D be a set of n documents d1,d2,…,dn where each

document di is a sequence of mi versions: 1 2
{ , , ..., }i

m

i i i i
d d d d . Each version has a semi-

closed validity time-interval (or lifespan)
 () [,)

j

i s e
life d t t . Moreover, it is assumed that

different versions of the same document have disjoint life spans. An example of five

documents and their versions appears in Figure 17; each document corresponds to a

colored line, while segments represent different versions of a document.

69

The inverted file index is the standard technique of text indexing for keyword queries,

deployed in many search engines. Assuming a vocabulary V, for each term v in V, the

index contains an inverted list Lv consisting of postings of the form (d, s) where d is a

document-identifier and s is the so-called payload score. There are numerous existing

relevance scoring functions, such as tf-idf [5], language models [43] and Okapi BM25

[47]. The actual scoring function is not important for our purposes; for simplicity we

assume that the payload score contains the term frequency of v in d.

d1, 0.6, t0, t6

d2, 0.7, t0, t1

d3, 0.5, t0, t8

d4, 1, t0, t1

d2, 0.95, t1, t4

d4, 0.7, t1, t3

d4, 0.4, t3, t6

d5, 0.75, t3, t8

d2, 0.9, t4, t8

d4, 0.25, t6, t8

d4, 1, t0, t1

d2, 0.95, t1, t4

d2, 0.9, t4, t8

d5, 0.75, t3, t8

d2, 0.7, t0, t1

d4, 0.7, t1, t3

d1, 0.6, t0, t6

d3, 0.5, t0, t8

d4, 0.4, t3, t6

d4, 0.25, t6, t8

score-order ts-order

t0 t1 t2 t3 t4 t5 t6 t7 t8

d1

d2

d3

d4

d5

0.6

0.7 0.95 0.9

0.5

0.41 0.7

0.75

time

docID

0.25

Figure 17: Example of versioned documents with scores for one term

In order to support temporal queries, the inverted file index must also contain temporal

information. Thus [11] proposed adding the temporal lifespan explicitly in the index

postings. Each posting includes the validity time-interval of the corresponding document

version: (di, s, ts, te) where the document di had payload score s during the time interval

[ts, te).

If the document evolution contains few changes over time, the associated score of most

terms is unchanged between adjacent versions. In order to reduce the number of postings

70

in an index list, [11] coalesces temporally adjacent postings belonging to the same

document that have identical (or approximate identical) scores.

A general keyword search query Q consists of a set of x terms q = (v1, v2,…,vx) and a

temporal interval [lb, rb]. Without loss of generality, we use the aggregated score of a

document version for keyword query q is the sum of the scores from each term v. The

time-interval [lb, rb] restricts the candidate document versions as a subset of the original

collection:

[,]

{ | [,] () }
lb rb j j

i i
D d D lb rb life d     . When lb = rb holds, the query time interval

collapses into a single time point t. For simplicity we first concentrate on time-point

query and more complex time-interval queries are discussed in section 4 with related

variations.

The answer R to a Top-K Time-Point keyword query TKTP = (q, t, k) over collection

D is a set of k document versions satisfying:

{ | (:) ()
j j j t

i i i
d R v q v d d D       (() : () ())}

t j

i
d D R s d s d    

where { | ()}
t j j

i i
D d D t life d   . The first condition presents the keyword constraint, the

second condition the temporal constraint, while the third implies that the top-k scored

document versions are returned. Now we present how to answer query TKTP using

previous methods based on temporal inverted indexes.

4.2.2 Previous methods

The straightforward way (referred to as basic) to solve query TKTP uses exactly one

inverted list for each vocabulary term v with the posting (di, s, ts, te). To answer the top-k

71

queries, corresponding inverted lists are traversed and postings are fetched. When a

posting is scanned, it is also verified for the time point specified in TKTP.

The sort-order of the index lists is also important. One natural choice is to sort each list

in score order. This method (score-order) enables the classical top-k algorithms [21] to

stop early after having identified the k highest scores with qualified lifespan. Another

suitable sorting choice is to order the lists first by the start time ts and then by score (ts-

order) which is beneficial for checking the temporal constraint. However, this approach is

not efficient for top-k querying, especially when the query includes multiple terms. Fig. 1

shows the score-order and ts-order lists for a specific term.

Note that the efficiency of processing a top-k temporal query is influenced adversely

by the wasted I/O due to read but skipped postings. We proceed with various

materialization ideas of the slice the whole list of a term into several sub-lists or

partitions thus improving processing costs.

Interval Based Slicing splits each term list along the time-axis into several sub-lists,

each of which corresponds to a contiguous sub-interval of the time spanned by the full

list. Each of these sub-lists contains all coalesced postings that overlap with the

corresponding time interval. Note that index entries whose validity time-interval spans

across the slicing boundaries are replicated in each of the spanned sub-lists.

The selection of the corresponding time-intervals where the slices are created is vital as

discussed in [10, 3]. One obvious strategy is to eagerly slice sub-lists for all possible time

instants (and adjacent identical lists can be merged). This will create one sub-list per time

instant; this will provide ideal query performance for a TKTP query since only the

72

postings in the sub-list for the query time point will be accesses. We refer to this method

as elementary.

Note that the basic and elementary methods are two extremes: the former requires

minimal space but requires more processing at query time since many entries irrelevant to

the temporal constraint are accessed; the latter provides the best possible performance

(for time-point query) but is not space-efficient (due to copying of entries among sub

lists). To explore the trade-off between space and performance, [3] employs a simple but

practical approach (referred to as Fix) in which a partition boundary is placed after a

fixed time window. The window size can be a week, a month, a year, or other flexible

choices. Figure 18 shows the Fix-2 and Fix-4 sub-lists of our running example from

Figure 17, with the partition time window size as 2 and 4 time instants respectively.

Nevertheless, all variations of the interval based slicing suffer from an index-size blowup

since entries whose valid-time interval spans across the slicing boundaries are replicated.

[t0, t2):

d4, 1, t0, t1

d2, 0.95, t1, t4

d2, 0.7, t0, t1

d4, 0.7, t1, t3

d1, 0.6, t0, t6

d3, 0.5, t0, t8

[t2, t4):

d2, 0.95, t1, t4

d5, 0.75, t3, t8

d4, 0.7, t1, t3

d1, 0.6, t0, t6

d3, 0.5, t0, t8

d4, 0.4, t3, t6

[t4, t6):

d2, 0.9, t4, t8

d5, 0.75, t3, t8

d1, 0.6, t0, t6

d3, 0.5, t0, t8

d4, 0.4, t3, t6

[t6, t8):

d2, 0.9, t4, t8

d5, 0.75, t3, t8

d3, 0.5, t0, t8

d4, 0.25, t6, t8

Fix-4:

[t0, t4):

d4, 1, t0, t1

d2, 0.95, t1, t4

d5, 0.75, t3, t8

d2, 0.7, t0, t1

d4, 0.7, t1, t3

d1, 0.6, t0, t6

d3, 0.5, t0, t8

d4, 0.4, t3, t6

[t4, t8):

d2, 0.9, t4, t8

d5, 0.75, t3, t8

d1, 0.6, t0, t6

d3, 0.5, t0, t8

d4, 0.4, t3, t6

d4, 0.25, t6, t8

Fix-2:

Figure 18: Time Interval Based Slicing sub-list examples

Stencil Based Partitioning. Another index partitioning method along the time-axis

was proposed in [26]. It is distinguished from the interval based slicing by using a multi-

level hierarchical (vertical) partitioning of the lifespan. The inverted list of term v, at

73

level L0 contains the entire lifespan of this list, while level Li+1 is obtained from Li by

partitioning each interval in Li into b sub-intervals. Such a partitioning is called a stencil;

each index posting is placed into the deepest interval in the multi-level partitioning that

fits its range. A stencil-based partition of three levels with b = 2 for the running example

(from Figure 17) is shown in Figure 19.

Comparing to the time interval based slicing, the stencil based partitioning has

significant advantage in space because each posting falls into a single list, the deepest

sub-interval that it fits. Nevertheless, for a time-point query stencil based partitioning has

to fetch multiple sub-lists, one from each level.

t0 t1 t2 t3 t4 t5 t6 t7 t8

d1, 0.6

d2, 0.95

d3, 0.5

d4, 0.4

d5, 0.75

time

d2, 0.9

d4, 0.7

d4, 0.25d4, 1

d2, 0.7

L0

L1

L2

Figure 19: Stencil-based partitioning with 3 levels and b = 2

The sort-order of each sub-list is again important. Since the temporal partitioning

already shreds one full list into several sub-lists along the time-axis, a more appropriate

choice for top-k queries is score-ordering.

Temporal Sharding. The approach proposed in [4] is to shard (or horizontally

partition) each term list along the document identifiers instead of time. Entries in a term

list are thus distributed over disjoint sub-lists called shards, and entries in a shard are

74

ordered according to their start times ts. So as to eliminate wasteful reads, within a shard

gi, entries satisfy a staircase property: , , () () () ()
i

p q g ts p ts q te p te q     . An optimal

greedy algorithm for creating this partitioning is given in [4]; an example of temporal

sharding for the term list from Figure 17 is shown in Figure 20.

t0 t1 t2 t3 t4 t5 t6 t7 t8
time

docID

d1

d2

d3

d4

d5
Shard_1:

e1: d2, 0.7, t0, t1

e2: d4, 1, t0, t1

e3: d1, 0.6, t0, t6

e4: d3, 0.5, t0, t8

e5: d5, 0.75, t3, t8

e6: d2, 0.9, t4, t8

e7: d4, 0.25, t6, t8

Shard_2:

e1: d4, 0.7, t1, t3

e2: d2, 0.95, t1, t4

e3: d4, 0.4, t3, t6

e1

e2

e3

e4

e1

e2

e3

e5

e6

e7

Figure 20: Temporal sharding example

As with the stencil based approach, the space usage for temporal sharding is optimal

since there are no replications of index entries. However, for query processing, all shards

for each term need to be accessed, resulting in multiple sub-list readings. Moreover, the

entries in each shard can only be time-ordered (based on start time ts). Thus the benefit of

score-ordering for ranked queries cannot be achieved, because all temporal valid entries

have to be fetched.

4.3 Novel Approaches

A common characteristic of existing works is that they only consider the versioned

documents on the time- and docID-axes, and try to partition the data along either

direction. Instead, we view the index entries from a new angle -- namely, their score over

75

time, and create index organizations to improve the performance of top-k querying. The

score-time view of the example from Figure 17 is shown in Figure 21.

t0 t1 t2 t3 t4 t5 t6 t7 t8

d1

d2

d3

d4

d5

0.6

0.7 0.95 0.9

0.5

0.41 0.7

0.75

time

docID

0.25

score

1

time

0.95
0.9

0.750.7 0.7

0.6

0.5

0.4

0.25

d1 d2 d3 d4 d5

t0 t1 t2 t3 t4 t5 t6 t7 t8

Figure 21: The Score-Time view of the versioned documents

Recall that to answer a TKTP query we should be able to quickly find the top-k scores

of a term at a given time instant. The main idea behind the score-time view is to maintain

an index that will provide the top scores per term at each time instant. For example, at

time t0, the term depicted in Fig.5 had scores 1 (from d4), 0.7 (from d2), 0.6 (from d1) and

0.5 (from d3). These orderings change as time proceeds; for example at time t2, the top

score is 0.95 from d2, etc. In rank-based partitioning (section 4.3.1), we first discuss a

simplistic approach (SPR) where an index is created for each rank position of a term. For

example, there is an index that maintains the top score over time, then one for the second

top score, etc. More practical is the group ranking approach (GR) where an index is

created to maintain the group of the top-g scores (g is a constant), then the next top-g etc.

We also consider temporal indexing methods (section 4.3.2). One solution is to use the

Multiversion B-tree and maintain the whole ranked list in order over time. We realize

however that these ranked lists are always accessed in order, so a better solution is

76

provided (multiversion list) that links appropriately the data pages of the temporal index,

without overhead of the index nodes.

4.3.1 Rank Based Partitioning

The Single Position Ranking (SPR) approach creates a separate temporal index for

each ranking position of a term. Thus, for the i-th ranking position (i = 1,2,…), a sub-list

is maintained that contains all the entries that ever existed on position i over time.

Together with each entry we maintain the time interval during which this entry occupied

that position. All sub-list entries are ordered based on their recorded starting time; a

B+tree built on the start times can easily locate the appropriate entry at a given time. The

SPR of our running example (from Figure 17) is shown in Figure 22(a). Space can be

saved by using only the start time of each entry but for simplicity we show the end times

as well (the end time is needed only if there is no entry in a particular position, but this is

true only at the last position).

Using the SPR approach, to process a TKTP query about time t, the first k sub-lists

have to be accessed for each relevant term; from each sublist the B+tree will provide the

appropriate score (and document id) of this term at time t. If each sub-list has m items on

average, the estimated time complexity is O(k∙logBm) (here B corresponds to the page

size in records). Many sub-list accesses can degrade querying performance; moreover, in

this simple SPR method the same posting can be duplicated in multiple ranking position

sub-lists. This unavoidable replication may result in storage overhead.

Group Ranking (GR). In order to save space and improve querying performance, GR

maintains an index not for a single ranking position, but for a group of positions. Let the

77

group size be g. For example, the first g ranked elements are in group gr1, the next g

ranked elements are in group gr2, etc. Thus, compared to the n sub-lists maintained in

SPR for n ranking positions, GR uses instead n/g sub-lists. With respect to the I/O of top-

k querying, we only need k/g random accesses (each of them still logarithmic).

1

d4, 1, t0, t1

d2, 0.95, t1, t4

d2, 0.9, t4, t8
2 3 4

d2, 0.7, t0, t1

d4, 0.7, t1, t3

d5, 0.75, t3, t8

d1, 0.6, t0, t6

d3, 0.5, t0, t8

d3, 0.5, t0, t8

d4, 0.25, t6, t8
5 d4, 0.4, t3, t6

gr1

d4, 1, t0, t1

d2, 0.7, t0, t1

d2, 0.95, t1, t4

d4, 0.7, t1, t3

d5, 0.75, t3, t8

d2, 0.9, t4, t8

gr2

d1, 0.6, t0, t6

d3, 0.5, t0, t8

d4, 0.25, t6, t8
gr3 d4, 0.4, t3, t6

SPR

GR (g = 2)

(a)

(b)

Figure 22: Ranking position based partitioning

As with the SPR each member within a group also records the time interval that the

member was in the group. For example, assume that group gri maintains ranking

positions (i-1)g+1 through ig. If at time ts the score of a particular term falls within these

positions, this score is added to the group, with an interval starting at ts. As long as this

score falls within the ranking positions of this group, it is considered part of the group; if

at time te it falls out of the group, the end time of its interval is updated to te.

To save on update time, within each group we do not maintain the rank order. That is,

each group is treated as an unordered set of scores that evolves over time. To answer a

TKTP query that involves a particular group gr at time t, we need to identify what

members group gr had at time t. Since the size of the group is fixed, we can easily sort

these member scores and provide them to the TKTP result in rank order. However, it is

guaranteed that given time t, the members in gri have no lower scores than those in group

78

grj where 1 (/)i j n g   . The GR approach for the above example (from Figure 17) with

g = 2 is shown in Figure 22(b).

An interesting question is what index to employ for maintaining each group over time.

Different than SPR, each group at a given time may contain multiple entries; thus a

B+index on the temporal start times is not enough. Instead, temporal index structures that

maintain and reconstruct efficiently an evolving set over time, like the snapshot index

[52] can be used to accelerate temporal querying.

Note that when implementing GR in practice, each group may have a different size g.

It is preferable to use smaller g for the top groups and larger g for the lower groups (since

the focus is on top-k, the few top groups will be accessed more frequently and thus we

prefer to give faster access). For simplicity however, we use the same g for all groups.

4.3.2 Using a Multiversion List

Consider the ordered list of scores that a term has over all documents at time t; as time

evolves, this list changes (new scores are added, scores are promoted, demoted or even

removed, etc). Temporal indexing methods have addressed a more general problem: how

to maintain an evolving set of keys over time. This set is allowed to change by adding,

deleting or updating keys; the main temporal query supported is the so called: temporal-

range query: “given t, provide the keys that were in the set at time t, and are within key

range r”. The Multiversion B-tree (MVBT) proposed in [9], is an asymptotically optimal

(in terms of I/O accesses under linear space) solution to the temporal range query.

Assuming that there were a total of n changes that occurred in the set evolution, then the

MVBT uses linear space (O(n/B)). Consider a range temporal query that specifies range r

79

and time t, and let at denote the number of keys that were within range r at time t (i.e., the

number of keys that satisfy the query); the MVBT answers the above query using

O(logBn + at/B) page I/Os, which is optimal in linear space [9].

In order for the MVBT to maintain order among the keys, it uses a B+tree to index the

set. As the set evolves, so does the B+-tree. Conceptually the MVBT contains all B+-

trees over time; for a given query time t the MVBT provides access to the root of the

appropriate B+-tree, etc. Of course, the MVBT does not copy all B+-trees (as this would

result in quadratic space). Instead it uses clever page update policies. In particular, when

a key k is added to the evolving set at time t a record is inserted in the (leaf) data page

whose range contains k; this record stores key k and a time interval of the form: [t, *).

The ‘*’ denotes that key k has not been updated yet. If later at time t’ this key is removed

from the set, its record is not physically deleted. Instead this change is represented by

changing the ‘*’ to t’ in this record’s interval. A record is called “alive” for all time

instants in its interval. Given a query about time t, the MVBT tree identifies all data

pages that contain alive records for that time t. In contrast to a regular B+-tree that deals

with pages that get underutilized due to record deletions, the MVBT pages cannot get

underutilized because no record is ever deleted. Like the B+-tree pages can get full of

records and need to be split (page overflow). However, the MVBT needs to also

guarantee that the number of “alive’ records in a page do not fall below a lower threshold

l (weak version underflow) and also do not go over an upper threshold u (strong version

overflow)- note that l and u are O(B). If a page overflows, a time-split occurs, that copies

the alive records of the overflown page (at the time of the overflow) to a new page. If

80

there are too few alive records, the page is merged with a sibling page that is also first

time-split. If there are too many alive records, a key split is first applied (among the alive

records) [9].

Using the MVBT for our purposes means that the scores play the role of “keys”. That

is, the MVBT will maintain the order of scores over time. Since however term records are

accessed by the docID they belong to, a hashing index is also needed that, for a given

docID, it provides the leaf page that holds the record with this term’s current score. This

hashing scheme need only maintain the most current scores (i.e., it does not need to

maintain past positions).

Nevertheless, the above MVBT approach has a significant overhead. In particular, it is

built to answer queries about any range of scores. This is achieved by starting from an

appropriate root of the MVBT and follow index nodes until the leaf data pages in the

query range are accessed. For top-k processing however, we only access scores in

decreasing order, starting with the largest score at a particular time instant. Thus, what we

actually need, is a way to access the leaf page that has the highest scores at a particular

time, and then follow to its sibling leaf page (with the next lower scores) at that time, etc.

We still maintain the split policies among the leaf pages, but we do not use the MVBT’s

index nodes. Effectively we maintain a multiversion list (MList), i.e., of the leaf data

pages over time.

To access the leaf data page that has the highest scores at a given time, we maintain an

array A with records of the form (t, p) where t is a time instant and p is a pointer to the

leaf page with the highest scores at time t. If later at time t’ another page p’ becomes the

81

leaf page with the highest scores, array A is updated with a record (t’, p’). If this array

becomes too large for main memory, it can easily be indexed by a B+-tree on the

(ordered) time attribute.

For the above “list of leaf pages” idea to work, each leaf page needs to “remember” the

next sibling leaf page (with lower scores) at each time. (Note: the MVBT does not require

the sibling pointers, since access to siblings is done through the parent index nodes). One

could still use the array approach (one array responsible to keep access to the second leaf

page, one for the third etc.) but this would require many array look-ups at query time

(each such lookup taking O(logBn) page I/Os. Instead, we propose to embed these arrays

within the page structure. That is, within each leaf page, we allocate a space of c records

(where c is a constant) for the sibling page pointer records (also of the form (t,p)). As a

result, each leaf page has now space for B-c score records. Since however, the sibling

page can change over time, it is possible that for a leaf page p the sibling will change

more than c times. If this happens at time t, page p is “time split”, that is, a new leaf page

p’ is created containing only the currently alive records of page p and with an empty

array for sibling pointers. Moreover, p’ replaces p in the list. If before t, the list of leaf

pages contained pages (in that order) m  p  v, a new record (t, p’) is added in the

array of page m, and the array of page p’ is initialized with a record (t,v). If p was the first

page, the record (t,p’) is added to array A.

The advantage of the Mlist approach is apparent at query processing time. A search is

first performed within array A for time t (in O(logBn) page I/Os). This will provide access

to the page with the highest scores at time t. Find the next sibling page at time t however

82

will be provided by looking among the c records of this page, etc. That is, the top-k

scores at time t will be accessed in O(logBn + k/B) page I/Os. The justification is that

after the access to array A, each leaf page (except possibly the last one) will provide O(B)

of the top-k scores (since we are using the MVBT splitting policies within the B-c space

of each leaf page and c is a constant, each page is guaranteed to provide at least l=O(B)

scores that were valid at the query time t.

4.4 Top-k Time Interval Queries

Until now we focused on the top-k time point (TKTP) querying, and analyzed different

index structures for solving it. We proceed with the time interval top-k query. The main

difference is that in the TKTP, each document has at most one valid version at the given

time point t; while for an interval querying, each document may have multiple versions

valid during the given time interval [lb, rb]. As a result, there are different variations,

depending on how the top-k is defined (which of the valid scores per document

participate in the top-k computation). Here, we summarize the different definitions of

top-k time-interval queries and discuss how to process them efficiently within the

proposed index structures.

4.4.1 Classic Top-k Time-Interval Query

This query definition is a straight forward extension from the top-k time point query.

For a Top-K Time Interval keyword query TKTI = (q, lb, rb, k) over collection D, we

require the answer R be a set of k document versions satisfying: { | (:)
j j

i i
d R v q v d   

83

[,] [,]
() (() : () ())}

j lb rb lb rb j

i i
d D d D R s d s d        where [,]

{ | [,] () }
lb rb j j

i i
D d D lb rb life d     . This definition

only changes the time constraints from a time point t to a time range [lb, rb]. The

returned top-k answers are different versions, which may be from the same document,

that is, we consider each document version as an independent object.

Processing a TKTI query is similar to processing a TKTP query. For some of the

described index methods, multiple sub-lists have to be accessed instead of one. For

example in time interval based slicing and stencil based partitioning, all the sub-lists (or

stencils) overlapping with the query time-interval should be checked in order to find the

correct top-k results. The multiple parallel sub-lists can be accessed in a round-robin

fashion which is compatible with top-k algorithms.

4.4.2 Document Aggregated Top-k Time-Interval Query

Another possibility is to treat each document as one object, that is, a document appears

at most once in the result. There are various approaches in aggregating relevance scores

of the document versions that existed at any point in the temporal constraint [lb, rb] to

obtain a document relevance score drs(di, lb, rb). Three aggregation relevance models are

mentioned in [11]:

MIN. This model judges the relevance of a document based on the minimum score. It

is formally defined as: (, ,) min{ () | [,] () }
j j

i i i
drs d lb rb s d lb rb life d    . The MIN scores of our

five-document example for interval [t0, t8) are d2=0.7, d3=0.5, d4=0.25, d1=0, d5=0.

84

MAX. In contrast, this model takes the maximum score as an indicator. It is formally

defined as: (, ,) max{ () | [,] () }
j j

i i i
drs d lb rb s d lb rb life d   . MAX scores of our five-document

example for interval [t0, t8) are d4=1, d2=0.95, d5=0.75, d1=0.6, d3=0.5.

TAVG. Finally, the TAVG model assigns the score to each document using a temporal

average among all its valid versions. Since score ()
j

i
s d is piecewise-constant in time,

drs(di, lb, rb) can be efficiently computed as a weighted summation of these segments.

TAVG scores of our five-document example for interval [t0, t8) are d2=0.89, d4=0.51,

d3=0.5, d5=0.47, d1=0.45.

After the aggregation mechanism has been defined, one can consider the Aggregated

Top-K Time-Interval keyword query TKTI
A
 = (q, lb, rb, k) over collection D, that finds

the top k documents with aggregated scores over all their valid document versions. To

process the aggregated top-k time-interval query, we need to extend the traditional top-k

algorithms (such as TA and NRA) by recording the bookkeeping information and

computing the scores and thresholds with candidates at document-level. The relevance

score of a document in the query temporal-context depends on the scores of its version

that are valid during this period.

4.4.3 Consistent Top-k Time-Interval Query

The consistent top-k search finds a set of documents that are consistently in the top-k

results of a query throughout a given time interval. The result of this query has size 0 to k;

queries can have empty results if k is small or the rankings change drastically. A relaxing

consistent top-k query utilizes a relax factor r, 0 < r <= 1, and seeks for documents that

85

are in the top-k for at least r ×(rb – lb) time in the [lb, rb] interval. For a Consistent Top-

K Time Interval keyword query TKTI
C
 = (q, lb, rb, k) over collection D, the documents

in the answer R are in the top-k for at least r ×(rb – lb) time in the [lb, rb] interval. The

consistent top-3 query of our five-doc example for time-interval [t0, t8) has only one

result as d2 if r = 1, and has three results as d1, d2 and d5 if r = 0.6.

In [54] several algorithms were introduced to answer the consistent top-k query; the

most efficient ones are based on the assumption that there is a list containing all versions

satisfying the keyword and time interval constraints and the list is ordered by score. This

assumption coincides with the purpose of our proposed index structures, thus we can

access the qualified entries and execute the consistent top-k time interval query using the

proposed approaches in [54].

4.5 Experimental Evaluations

4.5.1 Dataset Description and Methods Implemented:

We used news-like articles as our primary versioned document collection. We

collected US and world-wide English newspaper websites and treated each URL as a

single document. Then their historical homepage versions were retrieved by crawling the

Internet Archive from 1997.1.1 until 2011.12.31. We created two different datasets with

daily unit time granularity. The US based news had many frequent updates. The size of

raw data is about 0.2 TB, with 12,649 documents and 1,542,893 versions; thus on

average there are 122 versions per document in the US dataset. For the world-wide news

86

websites, the size of raw data is about 50 GB, with 5,046 documents and 275,981

versions, so on average there are 55 versions per document. Previous related works create

query workloads by extracting frequent queries from the AOL query logs. In addition to

this traditional query workload, we use popular keywords (such as “twitter”, “iphone”,

“lady gaga” etc.) from the Google Zeitgeist (http://google.com/zeitgeist/) annual reports

from 2001 until 2011. Overall, we formed 200 queries with 265 terms for both classic

and popular keywords.

We organize the data into term inverted list(s) using the previous and novel approaches.

In the basic method with score-ordering (referred to as Basic-s) we create one inverted

list per term. The second method is elementary time-interval slicing with a merging of

adjacent identical sub-lists (Ele). For the Fix approach we used a time-window length of

30 days (Fix-30). The stencil based partitioning was implemented with 3 levels and b = 4

(Stencil). Temporal sharding is referred as Shard, while the single position ranking

model appears as SPR. Two group ranking methods were implemented with group sizes

of 25 and 50 (GR-25 and GR-50). For comparison purposes we also included the MVBT

index (with the appropriate hashing secondary index).The multiversion list approach

(MList) uses a factor a = c / B to present the ratio of the number of pointer records to the

number of all records in a page. More details can be found in [31].

4.5.2 Comparison Results

First, the space usage for all implemented methods on both the US-news and World-

news datasets is presented in Table 12. The page size is 4 Kbytes while B = 100 records.

The table presents the space consumed (in GB) to implement the index methods for the

87

256 terms used in our experiments. Clearly, the elementary time-interval slicing has a

huge space overhead while the Stencil and Shard methods present substantial space

savings. As expected, the Basic-s approach has the minimal space requirements. Fix-30

uses more space since a record may appear in more partitions while in Stencil and Shard,

each record appears once. The additional space that Stencil and Shard use wrt Basic-s is

due to the additional structures they utilize. Among the rank-based partitioning methods,

SPR uses more space than the GR approaches; this is because the SPR approach has to

maintain one index per ranked position. GR-25 uses more space than GR-50 since it uses

more index structures (one per group). For the MList method, we show the results of a =

7% and a = 10% (referred to MList-7 and MList-10). The MList approaches also use

linear space (but due to the copying of records at page splits, the space is more than the

Stencil and Shard approaches). MList uses slightly more space than the MVBT because

of the use of sibling pointers and the splits they create.

Table 12: The space usage (in GB) for the 256 terms used in the queries

Methods Basic-s Ele Fix-30 Stencil Shard SPR GR-25 GR-50 MVBT MList-7 MList-10

US 1.93 213.34 4.26 2.24 2.31 6.65 6.12 5.93 3.79 4.02 3.95

World 0.35 38.6 0.78 0.41 0.43 1.21 1.12 1.06 0.69 0.75 0.78

The top-k temporal queries include both time-point (in our dataset this corresponds to

one day) and time-interval queries. For each temporal keyword query, we randomly

choose 50 time constraints from the 15-year lifespan from 1997 to 2011, and record the

average performance. For TKTI
A
, we use TAVG scoring; for TKTI

C
, we use r = 1. The

page I/O costs for top-20 queries using the US-news dataset are shown in Table 13 (the

best performance for each query is shown in bold). For time interval queries, the time-

88

interval lengths used were 15 days, 30 days, and 60 days. We also present the I/O costs

for top-100 queries on both US-news and World-news datasets in Table 14 for both time-

point query and 30-day time-interval queries.

Table 13: The page I/O cost of top-20 temporal keyword queries for US news

Methods Basic-s Ele Fix-30 Stencil Shard SPR GR-25 GR-50 MVBT MList-7 MList-10

TKTP 49.16 3.74 7.44 11.16 87.5 33.24 6.26 7.8 5.34 5.58 5.02

TKTI-15 65.32 56.22 13.9 16.5 90.64 40.74 14.92 17.26 11.46 11.7 11.18

TKTI-30 81.76 108.7 16.48 20.42 93.58 45.9 19.32 22.88 15.74 16.22 15.28

TKTI-60 105.6 195.82 31.26 35.8 95.22 49.66 23.06 26.14 22.38 22.9 21.7

TKTIA-15 74.16 67.84 20.8 24.12 96.54 48.38 20.42 22.8 18.68 19.54 16.92

TKTIA-30 89.84 126.4 23.18 27.84 98.3 50.1 25.78 26.2 21.9 23.84 21.42

TKTIA-60 112.96 209.56 41.06 46.76 103.86 60.22 31.14 33.84 30.32 30.82 29.68

TKTIC-15 68.48 60.6 17.42 19.48 92.82 44.34 16.68 19.12 14.04 14.58 13.74

TKTIC-30 83.52 110.58 19.5 22.38 96.04 47.48 21.5 24.04 18.18 20.36 17.44

TKTIC-60 108.34 201.42 35.74 39.22 98.72 53.82 26.7 27.98 25.6 26.24 24.18

Table 14: The page I/O cost of top-100 temporal keyword queries for US and World news

US Basic-s Ele Fix-30 Stencil Shard SPR GR-25 GR-50 MVBT MList-7 MList-10

TKTP 93.4 10.14 25.74 38.7 102.68 162.4 29.64 21.18 20.72 21.84 19.12

TKTI-30 157.84 315.3 48.62 70.22 114.2 233.94 92.82 62.94 46.92 49.38 46.24

TKTIA-30 171.8 336.44 53.5 79.18 118.24 241.48 115.74 75.32 52.1 55.92 51.48

TKTIC-30 163.52 324.86 50.26 73.42 115.7 236.5 101.36 67.28 49.06 52.06 48.2

World Basic-s Ele Fix-30 Stencil Shard SPR GR-25 GR-50 MVBT MList-7 MList-10

TKTP 85.44 9.96 23.36 37.52 98.8 156.44 27.5 20.84 20.12 18.22 18.84

TKTI-30 143.32 306.58 45.74 69.62 110.28 228.36 83.34 54.62 45.32 44.78 45.1

TKTIA-30 152.7 322.36 50.82 77.84 115.66 237.02 103.6 70.7 51.16 49.82 50.56

TKTIC-30 147.24 311.92 47.78 72.16 112.72 231.84 91.76 62.58 47.24 46.3 46.82

The elementary time-interval slicing has the best snapshot querying performance for

both top-20 and top-100 queries. This is to be expected since the answer is basically

prepared for each time instant (at the cost of huge storage requirements). Among the

other methods, the newly proposed approaches (GR, MList) outperform the previous

methods (Stencil and Shard). The best performance is provided by the MList-10 method.

It has better performance than the MVBT given it accesses the answer faster (by avoiding

89

the MVBT index traversal). Considering its low space requirements, this approach

provides the overall best performance for TKTP queries.

For time-interval queries, the Ele method’s performance degrades drastically,

especially for longer time-interval. The group ranking method’s performance is related to

its group size g as it relates to k. For top-20 querying, a group size of 25 works better than

a group size of 50 (the answer can be found by accessing the first group only); while for

top-100 querying, GR-50 is a better choice (only two groups need to be accessed instead

of four for GR-25, thus less index accesses). For top-20 interval queries, the MList-10

had consistently the best performance for each query.

0

5

10

15

20

25

30

35

40

45

50

4% 7% 10% 13% 16%

Pa
ge

 I/
O

a

US/TKTP

0

10

20

30

40

50

60

70

80

90

100

4% 7% 10% 13% 16%

Pa
ge

 I/
O

a

US/TKTI-30

0

5

10

15

20

25

30

35

40

45

50

4% 7% 10% 13% 16%

Pa
ge

 I/
O

a

World/TKTP

0

10

20

30

40

50

60

70

80

90

100

4% 7% 10% 13% 16%

Pa
ge

 I/
O

a

World/TKTI-30

Figure 23: The Multiversion list method for different ratio a using the US and World news

datasets

90

Interestingly, for the top-100 interval queries the MList-7 shows better performance for

the World-news dataset. The reason for that is that this dataset has fewer updates. As a

result, there will be fewer pointer changes in the ordered list, thus a smaller a will provide

enough space to hold the pointer structure. This can also be seen in the space

requirements for this dataset: the fewer pointer splits mean that MList-7 uses less space

than MList-10 (and thus the lists are shorter and the query performance better). The

above observation implies that the performance of the multiversion list method is related

to the value of a. There are two opposing factors affecting the query performance with

respect to a. For a given page size, a small a implies that the area allocated to sibling

pointers is small; thus few sibling page changes can cause the page to split. More splits

use more space and the query time increases. On the other hand, a large a implies that the

space allocated for the regular records in a page is small, thus the page can split faster due

to the record updates. This also increases space and query time. The optimized value of a

depends on the dataset characteristics. Figure 7 depicts the page I/O for the top-100

results returned by point (TKTP) and interval (TKTI-30) queries for the US and World-

news datasets. For the US-news dataset, a = 10% has the best average performance for

both time-point querying (TKTP) and 30-day time-interval querying (TKTI-30) while for

the World-news dataset (which has less update frequency), the performance is optimized

for a = 7% .

91

4.6 Conclusion

We presented an experimental comparison of indexing methods over versioned text

collections for top-k temporal keyword queries. In addition to previous methods, we

proposed novel solutions that partition the data along the score-time axes. Among all

methods, the multiversion list provided the most robust performance considering space

usage and query time efficiency for both time-point and time-interval queries. We

examined variations of the time-interval queries, including the document-level

aggregated top-k queries and consistent top-k queries. The performance of the

multiversion list is affected by the value of a, the percentage of a data page allocated to

hold sibling pointers. As future work, we plan to devise a model that can optimize the

value of a based on the frequency of updates, the size of the page and other factors.

92

Chapter 5

Querying Transaction-time Databases under

Branched Schema Evolution

Transaction-time databases have been proposed for storing and querying the history of

a database. While past work concentrated on managing the data evolution assuming a

static schema, recent research has considered data changes under a linearly evolving

schema. An ordered sequence of schema versions is maintained and the database can

restore/query its data under the appropriate past schema. There are however many

applications leading to a branched schema evolution where data can evolve in parallel,

under different concurrent schemas. In this work, we consider the issues involved in

managing the history of a database that follows a branched schema evolution. To

maintain easy access to any past schema, we use an XML-based approach with an

optimized sharing strategy. As for accessing the data, we explore branched temporal

indexing techniques and present efficient algorithms for evaluating two important queries

made possible by our novel branching environment: the vertical historical query and the

horizontal historical query. Moreover, we show that our methods can support branched

93

schema evolution which allows version merging. Experimental evaluations show the

efficiency of our storing, indexing, and query processing methodologies.

5.1 Introduction

Due to the collaborative nature of web applications, information systems experience

evolution not only on their data content but also under different schema versions. For

example, Wikipedia has experienced more than 170 schema changes in its 4.5 years of

lifetime [16]. Schema evolution has been addressed for traditional (single-state) database

systems and issues on how data is efficiently transferred to the latest schema have been

examined [15]. Consider however the case where the application maintains its past data

(typically for archiving, auditing reasons etc.) which may have followed different

schemas. A temporal database can be facilitated to manage the historical data, but issues

related to how data can be queried under different schemas arise. The pioneering work in

PRIMA system [40] addresses the issues of maintaining a transaction-time database

under schema evolution by introducing: (i) an XML-based model for archiving historical

data with evolving schemas, (ii) a language of atomic schema modification operators

(SMOs), and (iii) query answering and rewriting algorithms for complex temporal queries

spanning over multiple schema versions. Nevertheless, PRIMA considers only a linear

evolution: a new schema is derived from the latest schema and at each time there is only

one current schema.

In many applications, however, the schema may change in a more complex way. For

instance, in a collaborative design environment, an initial schema may be branched into a

94

number of parallel schemas whose data can evolve concurrently. Another common case

of non-linear evolution is in software development management. Revision control

enables the modifications and developments happening in parallel along multiple

branches. The release history of Mozilla Firefox shows that 10 branches of versions have

been developed and 4 more branches are on the way.

In this chapter we address the issues involved in archiving, managing and querying a

branched schema evolution. In particular, we maintain the branched schema versions in

an XML-based document (BMV-document) using schema sharing. This choice was made

because the number of schema changes is relatively smaller than data changes and the

hierarchal structure of XML allows for easy schema querying. The data level changes are

stored in column-like tables (BC-Tables), one table for each temporal attribute, with the

support of applicable temporal indexing. To the best of our knowledge, this is the first

work to examine both data and schema evolution in a branched environment ([32]). Our

contributions can be summarized as:

1. We utilize a sharing strategy with lazy-mark updating, to save space and update

time when maintaining the schema branching.

2. We employ branched temporal indexing structures and link-based algorithms to

improve temporal query processing over the data. Moreover, we propose various

optimizations for two novel temporal queries involving multiple branches, the

vertical and horizontal queries.

3. We further examine how to support version merging within the branched schema

evolution environment.

95

4. Our experiments show the space effectiveness of our sharing strategy while the

optimized query processing algorithms achieve great data access efficiency.

The rest of this chapter is organized as follows. Section 5.2 summarizes work on linear

schema evolution (PRIMA). Section 5.3 introduces branched schema evolution while

section 5.4 presents the BMV-Document for storing schema versions and the BC-Tables

for storing the underlying data changes (with the support of branched temporal indexing).

Section 5.5 provides algorithms and optimizations for efficient processing of temporal

queries. The merging challenges are discussed in section 5.6 and the experimental

evaluations are presented in section 5.7. Finally, conclusions appear in section 5.8.

5.2 Preliminaries

5.2.1 A linear Evolution Example

Consider the linear schema evolution shown in Table 15 and Figure 24(a), of an

employee database, which is used as the basic running example in this chapter. When the

database was first created at T1, using schema version V1.1, it contains three tables:

engineerpersonnel, otherpersonnel and job. As the company seeks to uniformly

manage the personnel information, the DBA applies first schema modification at T2,

which merges two tables engineerpersonnel and otherpersonnel, producing schema

V1.2. Each schema version is valid for all times between its start-time Ts and its end-time

Te (the time it was updated to a new schema). The rest schema versions and their

respective time intervals appear as well until the latest schema V1.5. A special value

“now” is used to represent the always increasing current time.

96

Schema changes are represented by Schema Modification Operators (SMOs) [15];

each operator performs an atomic action on both the schema and the underlying data, like

CREATE/MERGE/PARTITION TABLE, ADD/DROP/RENAME COLUMN. For example, two

tables in V1.1 were merged to one table by a MERGE TABLE operation in V1.2. In the

following discussion we will use the term SMO to denote a change operator applied to

one schema without detailing which SMO was actually used.

Table 15: A linearly evolving employee database

5.2.2 XML Representation of a Linear Schema Evolution

The history of the relational database content and its schema evolution can be

published in the form of XML, and viewed under a temporally grouped representation

whereby complex temporal queries can be easily expressed in standard XQuery [40, 41].

The MV-Document [40] intuitively represents both schema versions and data tuples

using XPath notation, as: /db/table-name/row/column-name. Each of the nodes,

representing respectively: databases, tables, tuples, and attributes, has two more

97

attributes, start-time (ts) and end-time (te), respectively representing the (transaction-)

time in which the element was added to and removed from the database.

Consider our running example: when the three-table schema in version V1.1 was

created, three table nodes with names engineerpersonnel, otherpersonnel and job were

created in the MV-Document, each with interval [T1, “now”). Similarly, the nodes for

their attributes etc., were added in the XML document. In V1.2 the schema evolved into

the two tables employee and job; these changes were updated in the MV-Document by

changing the end-time of engineerpersonnel and otherpersonnel to T2 (as well as the

intervals of their attribute and tuple nodes). Meanwhile, a new table node for employee is

added with interval [T2, “now”). Since the job relation continues in the new version,

there is no update on that table node.

To make the storage and querying of MV-Documents more scalable, [41] uses

relational databases and mappings between the XML views and the underlying database

system. This is facilitated by the use of H-Tables, firstly introduced in [56]. Consider the

employee (id, title, deptno, salary) relation of schema V1.5 in Table 1. Its history is

stored in four H-Tables, namely: (i) a key table, employee_key (id, ts, te), that stores the

interval (ts, te) during which tuple with key id was stored in the corresponding relation.

(ii) three attribute history tables: employee_title (id, title, ts, te), employee_deptno (id,

deptno, ts, te) and employee_salary (id, salary, ts, te) that maintain how the individual

attributes of a tuple (identified by id) changed over time, and (iii) an entry in the global

relation table relations (relationname, ts, te) which records the time spans covered by

the various relations in the database.

98

5.3 Branched Schema Evolution

Many modern complex applications need to support schema branching; examples

include scientific databases, collaborative design environment, web-based information

systems, etc. With branched schema evolution enabled, a new branch can be created by

updating the schema of a parent version Vp. If version Vp is a current schema version and

the data populating the first schema of the new branch is adapted from the currently alive

data of Vp, we have a current branching (c-branching). An example of c-branching

appears in Figure 24(b) where the most current version of branch B1 is V1.5. At the

current time T6 branch B2 is created out of V1.5 (i.e., the B2 creation time is T6) by

applying SMOs on the relations that V1.5 has at T6. For example, under branch B2 a new

attribute status was added in empbio to describe the marital status of employees. As a

result, data can start evolving concurrently under two parallel schemas, V1.5 and V2.1. A

real life scenario leading to c-branching is the case when a company establishes a

subsidiary. These two companies share the same historical database (branch B1 from T1

to T6) but in the future their schema and data evolve independently. Note that a version

can start from any past version (h-branching). Here we concentrate on c-branching due to

the challenges of the parallel evolving it imposes.

employee (id, title, deptno, salary)

dept (deptno, deptname, managerid)

empbio (id, name, sex, status)

Branch B1

Branch B2

(b) c-branching

V1.1 V1.2 V1.3 V1.4 V1.5 The only branch

(a) linear schema evolution

V1.1 V1.2 V1.3 V1.4 V1.5

V2.1

T1
T2 T3 T4 T5 T1 T2 T3 T4 T5

T6

Figure 24: Linear evolution and branching

99

As more branches occur, effectively the different schema versions create a Version

Tree; an example (assuming c-branching) with six branches is shown in Figure 25, which

is an extension of the branched employee DB example from Figure 24(b). Such version

tree can easily display the parent-child relationship among versions and branches; this

relationship information is very useful for further optimizations.

V1.1 V1.2 V1.3 V1.4 V1.5

V2.1 V2.2

V3.1

V5.1

V4.1 V4.2

V2.3

V1.6
B1

B5

B2

B4

B3

nowT1

V6.1

B6

T2 T3 T4 T5 T6 T7 T8 T9 T10

Figure 25: Example of Version Tree

The novel problems in supporting c-branching are emanated from its sharing of data:

the same original data can evolve in parallel under different branches. To provide

efficient access and storage in a branched environment, we use different structures to

maintain the evolution of schema versions and their underlying data. Since schema

changes are much less frequent, we adopt an XML-based model that enables complex

querying (BMV-Document). In contrast, the data evolution over time creates large

amounts of historical, disk-resident data, so our focus is on branched column tables (BC-

Tables) and efficient index methods.

100

5.4 BMV-Document and BC-Tables

5.4.1 BMV-Document

db

name tables

table

name columns

column

name

column

……

……

table

Bi:ts Bi:te

validity

… …

Bi:ts Bi:te

validity

… …

Bi:ts Bi:te

validity

… …

Figure 26: Illustration of BMV-Document

The BMV-Document is an extension of the MV-Document for storing the branched

evolving schema versions in an XML-based representation. The main upgrades are: (i)

branch identifier bid is needed, because a single timestamp cannot uniquely identify the

appropriate schema version. (ii) The BMV-Document refers only to the schema-level

storage, and does not detail the data level. (iii) The BMV-Document uses a sharing

strategy between versions with various update options and a validity interval (bid:ts,

bid:te) is thus required, as shown in Figure 26. When a c-branching is created, the child

branch may only modify a relatively small part of its parent schema. Simply copying the

schemas of all live tables and their columns from the parent version would incur storage

overhead.

101

Schema Sharing. Consider the c-branching on B1 that creates a new branch B2 in Fig.

1(b). B2’s creation time is the start time of its first version, namely V2.1, which emanated

from V1.5 by applying some SMOs.

One approach for schema sharing is full-mark which adds new (B2:ts, B2:te) interval to

all corresponding tables and their columns explicitly for the new branch. While this is

better than copying all tables and columns, it still requires update work, especially when

there are many current tables and columns. To archive better efficiency, we develop a

lazy-mark approach, which adds a new (B2:ts, B2:te) interval to the db node only, and

leaves all shared tables and columns unchanged. If the c-branching partially updated the

parent schema, besides adding a validity interval on the db node, the lazy-mark approach

updates only the modified tables and columns (based on the corresponding table-level

and column-level SMOs).

Therefore, the lazy-mark approach can be summarized as: For each update the path to

the corresponding level (db, table or column) is visited and the related nodes are updated.

Later on, SMOs can update the BMV-Document within a branch as well, and we re-mark

those lazy-marked nodes. As a result, the complexity of each schema update for the lazy-

mark sharing strategy remains constant per SMO.

Schema Querying. While using schema sharing and lazy-mark to save updating time

and storage space, the BMV-Document can still provide efficient access to all branched

schema versions. A typical schema query is: “show the schema version at time t for

branch Bi”. This implies finding the valid tables, as well as their columns, at time t for

branch Bi. The procedure of checking whether a table is valid at a given time is shown in

102

Algorithm 1. The interesting case is if table node T does not have a validity interval for

Bi; the algorithm should then check whether this table is shared from one of Bi’s ancestor

branches through lazy marking (line 7-16). For example, consider the case when branch

B2 is created at time T6 by adding a status attribute in empbio table (Figure 24(b)). Due

to lazy-marking, the table empbio has only the B1 branch id in its interval. However,

when we check it for branch B2, following Algorithm 5.1, we determine that it has been

inherited from B1 and shared by B2 at time T6.

Algorithm 5.1: CheckTable (T, t, Bj)

Check whether table node T is valid at time t for branch

Bi, where t is later than Bi’s start time.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

if T has a validity interval for Bi then

if Bi:ts = null then return false;

else

if Bi:ts <= t < Bi:te then return true;

else return false;

else

Bh = Bi’s parent; Bg = Bi;

while (Bh != null)

if T has a validity interval for Bh then

if Bh:ts = null then return false;

else

tt = Bg’s start time;

if Bh:ts<tt<Bh:te then return true;

else return false;

Bg = Bh; Bh = Bg’s parent;

end while

5.4.2 BC-Tables

While the BMV-Document maintains the branched schema versions, the BC-Tables

are used to store the underlying evolving data changes. Like H-Table [56], each BC-

Table stores the (history of) values for a certain attribute of a base relation. A BC-Table

starts from a particular time and may span over multiple schema versions. However, there

103

are considerable improvements: (i) a BC-Table can be shared by multiple branches; (ii)

each data record carries only the start time of its time interval; (iii) suitable branched

temporal indexing methods are built on top of BC-Tables.

For indexing a BC-Table we facilitate the branched temporal index ([34, 49]) which is

a directed acyclic graph over data and index pages. Data pages (which are at the leaf

level) contain temporal data, while index pages contain the searching information to

lower level pages. In data pages, due to data sharing, a compact data representation <key,

data, ts> is used, where ts corresponds to the record’s start time (which will be a bid:time

in our BC-Tables) of the original record. In an index page, an entry referencing a child

page C is of the form <KR(C), TI(C), address(C)>, where KR is the key-range of the

child page, and TI is a list of temporal interval(s) for the shared multiple branches of C.

Splitting occurs when a page becomes full. However, unlike in B+-tree page splitting,

when a temporal split happens, the data records currently valid are copied to a new page.

Thus data records are in both the old page and the new page. The motivation for copying

valid data from the full page is to make the temporal query efficient. Splits (temporal-

split, key-split, and consolidation) cluster data in pages so that when a data page is

accessed, a large fraction of its data records will satisfy the query.

Index page splits and consolidations are similar to those of data pages. Since in index

page temporal splits, children entries can be copied, this creates multiple parents for these

children. As a result, the branched-temporal index is a DAG, not a tree [34].

104

When the search for a given key k, branch Bi and time t, is directed to a particular data

page P through the index page(s), the algorithm checks all the records in P with key k,

and finds the record with the largest start time ts, such that ts <= Bi:t.

Nevertheless, page P may have been shared by branch Bi, in which case some of its Bi

related entries may not contain the Bi interval. Those entries are inherited from Bi’s

ancestor branches. Therefore, we need to extend the search algorithm of the branched-

temporal index [34, 49]. In particular, we extend the meaning of the “<” comparison

when comparing bid:time tokens. Given two tokens Bi:Ti and Bj:Tj the comparison Bi:Ti

< Bj:Tj is satisfied whether (Bi=Bj Ti<Tj) or (Bi:Ti < Par(Bj):Ts(Bj)”), where Par(Bj) is

the parent branch of Bj in the version tree, and Ts(Bj) is the start time of Bj.

For example, assume that a data page is shared by branch B1 and B2, having entries: <a,

v1, B1:t1>, <b, v2, B1:t2>, <c, v3, B1:t3>, <b, v4, B2:t14>, <c, v5, B1:t15>, and let branch B2

be created from B1 at time t10. So the valid data entries for B1 at time t15 are <a, v1, B1:t1>,

<b, v2, B1:t2>, <c, v5, B1:t5>; while the valid data entries for B2 at time t15 are <a, v1,

B1:t1>, <b, v4, B2:t14>, <c, v3, B1:t3>.

5.5 Query Processing

Data queries are temporal queries on the data records (stored in the BC-Tables and

indexed by the branched temporal index). As with traditional temporal queries [53], a

user may ask for: (i) a snapshot query, or (ii) a time interval query. In a linear schema

evolution, snapshot or interval queries deal with a single branch. In a branched schema

evolution, the following multiple-branch queries (first introduced in [37]) are also of

105

interest: (i) vertical query and (ii) horizontal query. We first discuss how to process

temporal snapshot and interval queries within one branch, and then proceed to vertical

and horizontal queries over multiple branches.

5.5.1 Queries within a Single Branch

In this case, the temporal constraint (time snapshot or interval) falls within the lifetime

of branch Bi. For a snapshot query, the target schema version that stores the queried data

is unique and can be identified easily (from the BMV-Document). The corresponding

BC-Tables are then accessed through their branched temporal indices.

Processing a time interval query is more complicated because of two challenges: (i) the

time interval may have multiple target schema versions (thus even for a single attribute,

multiple BC-Tables may be accessed); (ii) in one BC-Table, many data pages may

intersect with the time interval, so the search algorithm needs to avoid duplications. The

first challenge also appeared in PRIMA [40]: the original temporal query should be

reformulated by query rewriting into different sub temporal interval queries for each

related BC-Table and the final results are merged from those BC-Tables.

1 2

3 4 5

6 7 8

… …

Figure 27: Visited pages

106

For the second challenge, even in one BC-Table with branched temporal indexing, the

naïve depth-first traversal strategy leads to two problems: first, the response set can

contain duplicates (due to page splitting copies); second, the same directory entry can be

accessed more than once while a query is evaluated. This effect is illustrated in Figure 27

where the gray-colored rectangles display the pages of the branched temporal index

visited for a time-interval query. The naïve algorithm would visit pages 1, 2, 5 once,

pages 3, 4, 7 twice, page 8 thrice and page 6 four times.

key

timet1 t2 t3 t4 t5

A

B

C
D

E J

H

IF

G

t0

Figure 28: Data pages with links

Traditional duplicate elimination methods such as hashing or sorting may require

storage/time overhead, and they are not easy to solve index entry duplication. Therefore,

we adopt the Linkbased algorithm proposed in [12] for (linear) multi-version index

structures. The BC-Tables’ data pages are equipped with external links pointing to their

temporal predecessors.

An example is presented in Figure 28 where each page is viewed as the time-key

rectangle of the records it contains. A key-range time-interval query (the grey rectangle)

intersects pages B, C, D, E, G and H. The Linkbased algorithm consists of two steps. First,

107

the right border of the query rectangle is used to perform a key-range snapshot query. In

Figure 28, this snapshot query will access data pages H and E. Second, for each

qualifying page obtained in step 1, its temporal predecessor pages are checked to see

whether they contain an answer. If they do, the corresponding pages are put into the

buffer, answers are reported and the process is repeated. If the left border of the page is

already earlier than the left border of the query rectangle, then we do not proceed further.

The worst-case performance of LinkBased is O(logBn + a/B + u/B) where B is the page

capacity, n is the number of records at right-border time t, a is the number of answers,

and u denotes the number of updates in the query time period.

5.5.2 Data Queries over Multiple Branches

Vertical Query. The vertical query is an extension of a single branch query, seeking

information for a given branch and its ancestors. An example of a vertical query is: “find

the data within a key range KR for a given branch Bi and its ancestor branches, at a time

stamp t” (or “during a time interval I”). The time stamp t or interval I must be no later

than the end time of branch Bi.

Figure 29: A part of version tree

108

For a vertical snapshot query of branch Bi and at time t, if t is earlier than the start time

of Bi, then the result conceptually lies in one of Bi’s ancestors Bj, whose lifetime covers

time t. For a vertical interval query, the time interval may span multiple branches along a

path in the version tree. For example, in Figure 29, to find titles of employees within a

range KR for branch B4 and its ancestors in a time interval [T5, T10), we need to access

data from branches B4, B2 and B1.

To process a vertical interval query, we first divide the whole query interval I for

branch Bi into multiple smaller adjacent sub-intervals {I1, I2,…, Ik}, one for each ancestor

branch along the path {Bi1, Bi2,…, Bik} (where Bi1 = Bi, Bi2 = Bi’s parent and so on). In

the above example, querying for B4 with a time interval I = [T5, T10), I should be divided

to [T8, T10) for B4, [T6, T8) for B2 and [T5, T6) for B1 (depicted as the thick lines in Figure

29). Then we process the vertical interval query by answering multiple interval queries

for each branch and merge the results together.

However, certain sub-intervals from different branches may be sharing the same BC-

Tables, hence a BC-Table could be processed multiple times by different sub-queries.

Notice that the sub-intervals are adjacent and the shared data pages are connected by

backward links (Linkbased approach). Therefore, an optimized processing on vertical

interval query is to unite the multiple adjacent sub-queries for the same BC-Table into

one “super-query”. This optimization, called reunion, can guarantee that each BC-Table

is processed only once for any vertical interval query.

In the above query example, “find the title of employees within a KR for B4 and its

ancestors during [T5, T10)”, we assume that the employee_title table schema is never

109

changed by any branches after it was created at T5. With the naïve method, we need to

process this table three times for three branches with three time intervals as [B4:T8,

B4:T10), [B2:T6, B2:T8) and [B1:T5, B1:T6). When utilizing the optimized method, the three

sub-queries are united into one super-query with an interval [B1:T5, B4:T10).

Horizontal Query. The Horizontal query accesses temporal information for a given

branch and its descendants. An example is: “find data within a key range KR for a given

branch Bi and its descendants, at time point t” (or during “a time period I”). The time

stamp t or interval I must be no earlier than the start time of branch Bi.

A horizontal snapshot query can be visualized as a snapshot of multiple relevant

branches from a sub-tree of the version tree. For example, the query: “find data for

branch B2 and its descendants at time now”, corresponds to the vertical dash line in

Figure 29, involving branches B2, B4 and B6. To process a horizontal snapshot query on

time t, we first determine which descendants of branch Bi (including itself) are valid at t,

and then issue multiple vertical snapshot queries, one for each branch.

A horizontal interval query can be visualized as a branch-time rectangle on a sub-tree

of the version tree. For example, the query: “find data for branch B2 and its descendants

during time interval [T7, now)”, corresponds to the grey rectangle in Figure 29, involving

branches B2, B4 and B6. To process a horizontal snapshot query on time t, we again first

issue multiple vertical interval queries, one for each descendant branch.

However, this naïve processing method for the horizontal interval query will not be

efficient if the multiple vertical interval queries have common parts. In the above

example, the vertical interval queries for B2, B4 and B6 during interval [T7, now) have

110

common parts: [B2:T7, B2:T8) and [B4:T8, B4:T10), as depicted in Figure 29 by the thick

orange line inside the grey rectangle.

As a result, for the multiple vertical interval queries, instead of using the same original

query time interval I, we should use different intervals for those descendant branches. For

each descendant branch Bj, the new query time interval Ij is the intersection of [STj, SEj)

with I, where STj and SEj is the start time and end time of branch Bi. For the above

example, the optimized vertical interval queries are: [B6:T10, B6:now), [B4:T8, B4:now),

and [B2:T7, B2:now). This rearrange optimization can improve horizontal interval

querying by preventing multiple visits of common parts.

5.6 Merging of Branches

V1.1 V1.2 V1.3 V1.4 V1.5

V2.1

V3.1

V4.1

V5.1

V1.6 V1.7 V1.8

V2.3

V6.1

V3.2

V4.2

V2.2

nowT1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

B1

B5

B2

B4

B3

B6

Figure 30: Schema evolution with branching and merging

Since branching is allowed for schema evolution, it is quite natural for us to consider

the possibility of merging multiple branches. Branching and merging are two key aspects

in many modern environments, such as web-based information systems, collaborative

111

framework, and software development managing tools. Branching provides isolation and

parallelism, while merging provides subsequent integration. In this section, we consider

how to support current version merging (c-merging).

With c-branching, any currently alive version can create a branch; for a c-merging, the

currently alive version of branch Bi can merge to another currently alive version from a

different branch Bj by creating a new common schema version. In the example shown in

Figure 30, both branching and merging are applied. Such schema evolution will form a

Version Graph instead of a version tree.

5.6.1 Merging in BMV-Documents

When branch Bi’s latest version Bi.x merges to branch Bj’s latest version Bj.y at time t,

the branch Bi and version Bi.x should be ended and a new version Bj.y+1 should be created

for branch Bi. The branch and version termination can be achieved by updating the end

time for corresponding nodes and the lazy-mark process can be utilized for only updating

the db and table nodes without reaching to column nodes. After figuring out which

elements are discarded from Bj.y to Bj.y+1, and which are added from Bi.x to Bj.y+1, we

apply the updates for the corresponding tables and columns. Suitable schema duplication

elimination and conflict resolution are applied.

5.6.2 Merging in BC-Tables

When merging is applied in BC-Tables at the data level records, we still can use the

same sharing strategy with the branched temporal index but with special extensions.

Assume branch Bi merges to Bj at time t. For both branches, some data records have

112

remained while others are removed (especially when there are conflicts). In BC-Tables,

we only delete the removed records by adding null values and keep the remained records

unchanged, which is consistent with our sharing method in section 5.5. Data duplication

elimination and conflict resolution are applied as well.

For data accessing, certain extensions should be implemented for merging, since

merging integrates data records from two branches into one. Exploring of a branch’s

ancestors due to lazy mark is extended from one single path to multiple paths with depth-

first or breath-first search along the version graph. Meanwhile, the branched temporal

indexing can be adapted for merging with certain modifications.

5.6.3 Query Processing

Here we concentrate on data querying within multiple branches. For vertical queries

seeking temporal information for a given branch and its ancestor branches, the ancestors

include not only the ones formed by branching but also those by merging. So even for a

snapshot querying, the vertical query may need to traverse multiple paths along the

version graph by DFS or BFS. For example, assume that in the example of Figure 30, we

want to find some records for branch B1 and its ancestors at time T10. Traversing the

version graph backward for B1 from now to T10, we meet two merging points at time T12

and T11. Hence the final result unites the response records from not only branch B1 but

also B5, B6 and B3 at time T10.

To process a vertical interval query we access data from multiple parallel paths which

may have common parts. The rearrange optimization proposed for horizontal querying

under branching can be used here. For example, as shown in Figure 30, assume we want

113

to find some data for branch B1 and its ancestors during time interval [T9, T13). From the

version graph, we know that B3 and B5 merged to B1 at time T12 and B6 merged to B1 at

time T11. We can avoid visiting the common paths [B1:T12, B1:T13) four times and [B1:T11,

B1:T12) twice by utilizing rearrange to make querying intervals as [B1:T9, B1:T13), [B3:T9,

B3:T12), [B5:T9, B5:T12), and [B6:T9, B6:T11).

5.7 Experimental Evaluation

To illustrate the efficiency of our framework we present several experiments based on

the running example of the employee DB in Figure 25. First, we extend it with more

schema versions and branches. The first ten schema changing points (from T1 to T10) are

shown in Fig 2. After that, we make another ten schema changing points (from T11 to T20)

in two rounds. In each round, there are five schema changes: the first two are linear

schema evolutions followed by one schema version branching and two linear schema

evolutions. For each linear schema evolution, we choose 50% of the existing branches

and make new schema versions for them updating 20% tables and 20% columns in those

tables. For each schema branching, we chose all existing branches and make a new

branch for each by updating 20% tables and columns. In the end, we have 20 schema

changing points with 24 branches of 104 schema versions.

In addition to linear and branched schema evolution, we also create content-level data

changes. From T1 to T20, after each schema changing point, we update the record-level

data value 500 times. For each time, we update all existing branches, and for each branch

we update 0.2% of all employees for salary, title, and some other randomly chosen

114

attributes. In the end, we have 10,000 time instants of content-level data updates. The

Employee DB schema is initialized with 1,000 tables and average 5 columns in each table.

We also produce 10,000 employees with 100 titles and other relevant information. For

both schema changes and data changes, the tables, attributes and tuples are chosen

randomly with a uniform distribution. The page size of our system is 4KB and we set the

data page capacity as B = 100 records.

5.7.1 BMV-Documents

0

5

10

15

20

25

30

35

40

T10 T15 T20

Si
ze

 p
er

 b
ra

nc
h

(M
B

)

Non-Shared Shared Lazy-mark

Figure 31: Space saving in BMV-Documents

The sharing strategies among multiple branches and the lazy-mark approach are

advantageous in space saving for the BMV-Document without sacrificing querying

efficiency. We store the branched schema versions, in XML-based BMV-Documents

with three different options when branching occurs: (i) copy the schema without any

sharing (Non-Shared); (ii) use the sharing strategy and full-mark approach (Shared); (iii)

use the sharing strategy and lazy-mark approach (Lazy-mark). Figure 31 depicts the size

per branch (total size / number of versions) of the documents under certain schema

115

changing points: T10 (6 branches), T15 (12 branches), and T20 (24 branches). The options

using sharing strategies use much less space than the non-shared option. Compared to the

full-mark, the lazy-mark approach is more efficient.

5.7.2 BC-Tables

Space Saving. In addition to the shared BC-Tables (SBT), we use a non-shared

method which simply copies alive records from the parent branch when a c-branching

happens. The non-shared copying method (NSC) utilizes the MVBT ([9]) to store data in

each branch separately, so that each single branch has its own data pages and index

structure. The total sizes of data pages and index pages for all tables of all 24 branches

are: NSC 71.4 GB and SBT 54.9 GB; clearly, the shared BC-Tables provide significant

space saving. Nevertheless, the querying performance of the non-shared method will be

better than the fully shared BC-Tables since data has been fully materialized at each

branch. Therefore, we consider a trade-off between space and querying performance by

applying an enforced copying method (EC), which only allows at most p branches that

can be shared in one BC-Table. If a shared BC-Table already reaches this number p, then

for a later c-branching, we enforce copying (make a new BC-Table for the newly branch)

instead of sharing. The fully shared BC-Tables and non-shared method are two extreme

situations for this enforced copying (p = 1 corresponds to the non-shared method). In our

experiments we implemented an enforced copying method EC with p = 12 (EC-12) and p

= 6 (EC-6).

In order to factor out the query reformulating, we choose one particular BC-Table

employee_title, whose schema never changes from the beginning and is shared by all

116

branches. To compare space usage of the employee_title table by the four methods (NSC,

SBT, EC-12 and EC-6), we depict a normalized space usage. Since NSC has the largest

storage usage (data pages + index pages), the normalized space is computed by

(methodi’s space) / (NSC’s space). As shown in the Figure 32, the shared employee_title

BC-Table provides the best space savings followed by EC-12 and EC-6.

0.5

0.6

0.7

0.8

0.9

1

NSC SBT EC-12 EC-6

N
o

rm
al

iz
e

d
 S

p
a

ce

Figure 32: pace saving in employee_title table

Snapshot querying. We use the following query: “find titles of all employees whose

ids are within a key range of size 100, for branch Bi at time t” and test on all 24 branches.

For each branch, we randomly pick 100 time instants which are in the lifespan of that

branch and measure the average snapshot querying time. The average results of all 24

branches are calculated and depicted as normalized page I/O (Figure 33). The SBT

method has the largest I/O usage, so the normalized page I/O is computed by (methodi’s

I/O) / (SBT’s I/O). The non-shared copying method has a better snapshot querying

performance because data records are stored separately for each branch. However,

considering the space saved, shared BC-Tables are performing relatively well on query

117

time. The trade-off methods (EC) gain better querying performance while controlling the

space overhead.

0.5

0.6

0.7

0.8

0.9

1

NSC SBT EC-12 EC-6

N
o

rm
al

iz
e

d
 P

ag
e

 I
/O

Figure 33: Snapshot Querying

Interval Query Processing. For interval query processing we implement the LinkBased

algorithm along with the reunion and rearrange optimizations in shared BC-Tables. First,

we test vertical interval queries involving multiple branches: “find titles of employees

whose ids are within a key range of size 100 for branch B24 and its ancestors in the time

interval I”. Five different time intervals are used and their coverage rates with respect to

the whole temporal data lifetime are 5%, 10%, 20%, 50%, and 100% correspondingly.

Two methods are implemented here: one is the basic solution (Basic) which divides the

query interval into multiple sub-intervals for each branch. The other is the optimized

reunion method (Reunion) that unites the sub-intervals into one super-interval if they are

sharing the same BC-Table. The I/O ratio of these two methods (Reunion’s I/O) /

(Basic’s I/O) is shown in Figure 34. Clearly the reunion optimization can improve the

118

vertical interval querying, and the improvements are more significant when the query

interval covers more ancestor branches.

0.5

0.6

0.7

0.8

0.9

1

5% 10% 20% 50% 100%

R
e

u
n

io
n

 /
 B

a
si

c

Interval Coverage Rate

I/O ratio

Figure 34: Vertical interval querying

 Then we consider horizontal interval queries involving multiple branches: “find titles

of employees whose ids are within a key range of size 100 for branch B1 and its

descendants in the time interval I”. The different interval I coverage rates are used as

same as above. We again implement two methods: one is the basic solution (Basic) that

issues multiple vertical queries with the same query interval for each descendant branch,

and the other is the optimized rearrange method (Rearrange) that arranges different

query intervals for each descendant branch to achieve querying efficiency. The I/O ratio

of these two methods (Reunion’s I/O) / (Basic’s I/O) is shown in Figure 35. As seen, the

rearrange optimization can effectively improve the horizontal interval querying

especially when the query interval covers more common parts.

119

0.5

0.6

0.7

0.8

0.9

1

5% 10% 20% 50% 100%

R
e

a
rr

a
n

g
e

 /
 B

a
si

c

Interval Coverage Rate

I/O ratio

Figure 35: Vertical interval querying

5.7.3 Branched schema evolution with merging

 Finally, we employ schema merging into the branched system as well. The branched

schema versions and datasets are extended as follows: We randomly insert 5 schema

merging points into the 20 schema changing points, and for each such schema merging

point, we randomly pick some existed branches to do the merges. A parameter mr (0 ~ 1)

is used to control the merging rate. For example, if mr = 50%, we randomly pick half of

existed branches to do the merges. The content-level data changes are generated as

before: the data is updated 500 times after each schema changing point (evolving,

branching and merging). The total number of time instants with data updates is increased

from 10,000 to 12,500.

Here we only show results for the horizontal interval querying for branch B1. We set

up five different querying interval coverage rates as same as above with two different

merging rates as mr = 50% and mr = 100%. The methods we test include (i) the basic

method (Basic) without avoiding the common sub-paths and (ii) the optimized method

120

(Optimized) with both reunion and rearrange implemented. The I/O ratio of these two

methods (Optimized’s I/O) / (Basic’s I/O) is shown in Fig 36 for the two mr rates. The

optimized method has an advantage in interval querying processing, and this becomes

more apparent for larger merging rates and longer query intervals.

0.5

0.6

0.7

0.8

0.9

1

5% 10% 20% 50% 100%

O
p

ti
m

iz
e

d
 /

 B
a

si
c

Interval Coverage Rate

mr = 50%

mr = 100%

Figure 36: Querying with merging added

5.8 Conclusion

We addressed branched schema evolution for transaction-time databases. To the best

of our knowledge, this is the first attempt to examine both data and schema evolution in a

branched environment. Efficient schema sharing strategies with smart lazy-mark updates

are used. Schema versions are stored in XML-based documents for ease of querying.

Data records are stored in relational column tables with branched and temporal indexing.

We also explored temporal querying optimizations, especially for vertical and horizontal

interval queries. The feasibility of supporting schema merging was also examined. In

121

future research, we will investigate temporal joins and aggregations under schema

evolution with branching and merging.

122

Chapter 6

Conclusions

This dissertation discusses problems related to temporal query processing over social

media data and related applications. For evolving graphs in social networks, we proposed

efficient algorithms and index structures to process temporal shortest-path queries. For

top-k search in social tagging websites, we presented an experimental study by utilizing

multiple social networks and temporal information of tagging behaviors. For the temporal

top-k query over versioned text collections, we compared previously proposed methods,

as well as introduced novel approaches that facilitate multi-version indexing to improve

query performance. Meanwhile, we also studied how to archive, manage, and query

temporal data over a branched schema evolution.

Evaluating historical queries, such as shortest-path queries, over a temporally evolving

graph is an important tool for further analyzing graph properties over time. Based on our

newly proposed data model and query definitions, we extended the traditional Dijkstra’s

algorithm for both time-point and time-interval queries. We investigated how to

incorporate index structures such as CH and ALT to speed-up shortest-path query

123

processing. To analyze trade-off and explore further enhancement, we analyzed temporal

partition ideas. Finally, the efficiency of our methods and optimizations was shown using

real-world social network datasets.

Then we presented a study of top-k search in social tagging websites using three main

types of social networks, friendship, common interest networks, and global connections.

For weight assignment of each social network component, a user classification method is

proposed. To improve the popularity and freshness of ranking results, the timestamps of

tagging behaviors are recorded and temporal scoring functions are formed by giving

higher weights to more recent time slices. Experimental evaluation on real datasets

showed that our framework and methodology work well in practice.

We also presented an experimental comparison of indexing methods over versioned

text collections for top-k temporal keyword queries. In addition to previous methods, we

proposed novel solutions that partition the data based on the score-time view.

Experimental evaluation on real-world data showed that the multi-version list method

provided the most robust performance considering space usage and query time efficiency

for both time-point and time-interval queries.

Last, we addressed branched schema evolution for transaction-time databases.

Efficient sharing strategies with lazy-mark updating were implemented. Data records

were stored in relational column tables with branched and temporal indexing. Temporal

query optimizations were explored for vertical and horizontal queries. The feasibility of

supporting schema merging were also analyzed and examined.

124

Bibliography

[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A Hub-Based Labeling

Algorithm for Shortest Paths on Road Networks. In SEA, pages 230-241, 2011.

[2] S. Amer-Yahia, M. Benedikt, L. Lakshmanan, and J. Stoyanovich. Efficient Network-Aware

search in Collaborative Tagging Sites. In VLDB, 2008.

[3] A. Anand, S. Bedathur, K. Berberich, and R. Schenkel. Efficient Temporal Keyword Queries

over Versioned Text. In CIKM, 2010.

[4] A. Anand, S. Bedathur, K. Berberich, and R. Schenkel. Temporal Index Sharding for Space-

Time Efficiency in Archive Search. In SIGIR, 2011.

[5] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.

[6] S. Bao, X. Wu, B. Fei, G. Xue, Z. Su, and Y. Yu. Optimizing Web Search Using Social

Annotations. In WWW, 2007.

[7] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. In transit to constant time

shortest-path queries in road networks. In ALENEX, 2007.

[8] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wagner. Combining

Hierarchical and Goal-Directed Speed-up Techniques for Dijkstra’s Algorithm. In ACM

Journal of Experimental Algorithmics, 2010.

[9] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically optimal

multiversion B-tree. In VLDB Journal, 1996.

[10] K. Berberich, S. Bedathur, T. Neumann, and G. Weikum. A Time Machine for Text Search.

In SIGIR, 2007.

[11] K. Berberich, S. Bedathur, and G. Weikum. Efficient Time-Travel on Versioned Text

Collections. In BTW, 2007.

[12] J. Bercken, B. Seeger. Query Processing Techniques for Multiversion Access Methods.

VLDB 1996.

125

[13] S. Brin and L. Page. The Anatomy of a Large-scale Hypertextual Web Search Engine. In

WWW, 1998.

[14] E. Chan and Y. Yang. Shortest Path Tree Computation in Dynamic Graphs. IEEE

Transactions on Computers, 58(4):541-557, 2009.

[15] C. A. Curino, H. J. Moon, and C. Zaniolo. Graceful Database Schema Evolution. In VLDB,

2008.

[16] C. A. Curino, H. J. Moon, and C. Zaniolo. Managing the history of metadata in support for db

archiving and schema evolution. In ECDM, 2008.

[17] D. Delling and D. Wagner. Landmark-based routing in dynamic graphs. In WEA, pages 52-

65, 2007.

[18] D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route planning algorithms.

In Algorithmics of Large and Complex Networks, 2009.

[19] E. W. Dijskstra. A note on two problems in connextion with graphs. Numerische

Mathematik, 1:269-271, 1959.

[20] B. Ding, J. X. Yu, and L. Qin. Finding time-dependent shortest paths over large graphs. In

EDBT, pages 205-216, 2008.

[21] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algorithms for Middleware. In

PODS, 2001

[22] R.Geisberger. Contraction hierarchies: Faster and simpler hierarchical routing in road

networks. Master’s thesis, Institut fur Theoretische Informatik Universitat Karlsruhe, 2008.

[23] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction Hierarchies: Faster and

Simpler Hierarchial Routing in Road Networks. In WEA, pages 319-333, 2008.

[24] A. V. Goldberg and C. Harrelson. Computing the shortest path: A* search meets graph

theory. In Proc. 16th SCM-SIAM Symposium on Discrete Algorithms, pages 156-165, 2005.

[25] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of

minimum cost paths. In IEEE Transactions on System Science and Cybernetics, volumn 4,

1968.

[26] J. He and T. Suel. Faster Temporal Range Queries over Versioned Text. In SIGIR, 2011.

[27] P. Heymann, G. Koutrika, and H. Garcia-Molina. Can Social Bookmarking Improve Web

Search? In WSDM, 2008.

126

[28] M. Hilger, E. Hohler, R. H. Mohring, and H. Schilling. Fast point-to-point shortest path

computations with arc-flags. In Proc. of the 9
th
 DIMACS Implementation Challenge, pages

73-92, 2006.

[29] A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme. Information Retrieval in Folksonomies:

Search and Ranking. In the Semantic Web: Research and Applications, 411—426, 2006.

[30] W. Huo and V. J. Tsotras. Temporal Top-k Search in Social Tagging Sites Using Multiple

Social Networks. In DASFAA, 2010.

[31] W. Huo and V. J. Tsotras. A Comparison of Top-k Temporal Keyword Querying over

Versioned Text Collections. In DEXA, 2012.

[32] W. Huo and V. J. Tsotras. Querying Transaction-Time Databases under Branched Schema

Evolution. In DEXA, 2012.

[33] K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving highly relevant

documents. In SIGIR, 2000.

[34] L. Jiang, B. Salzberg, D. Lomet, and M. Barrena. The BT-Tree: A branched and temporal

access method. In VLDB, 2000.

[35] G. Koloniari, D. Souravlias, and E. Pitoura. On Graph Deltas for Historical Queries. In

Workshop on Online Social Systems (WOSS), 2012.

[36] J. A. Konstan. Tutorial: Introduction to Recommender Systems. In SIGMOD, 2008.

[37] G. M. Landau, J. P. Schmidt, and V. J. Tsotras. Historical Queries along Multiple Lines of

Time Evolution. In VLDB Jounal, 1995.

[38] C. D. Manning, P. Raghavan, and H. Schutze. Introduction to Information Retrieval.

Cambridge University Press, 2008.

[39] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. Growth of the

Flickr social network. In SIGCOMM Workshop on Social Networks (WOSN’08), pages 25-

30, 2008.

[40] H. J. Moon, C. A. Curino, A. Deutsch, C.-Y. Hou, and C. Zaniolo. Managing and Querying

Transaction-time Databases under Schema Evolution. In VLDB, 2008.

[41] H. J. Moon, C. A. Curino, and C. Zaniolo. Scalable Architecture and Query Optimization for

Transaction-time DBs with Evolving Schemas. In SIGMOD, 2010.

[42] I. Pohl. Bi-directional search. Machine Intelligence, 6:127-140, 1971.

127

[43] J. M. Ponte and W. B. Croft. A Language Modeling Approach to Information Retrieval. In

SIGIR, 1998.

[44] M. Potamias, F. Bonchi, C. Castillo, and Ar. Gionis. Fast Shortest Path Distance Estimation

in Large Networks. In CIKM, 2009.

[45] C. Ren, E. Lo, E. Kao, X. Zhu, and R. Cheng. On Querying Historical Evolving Graph

Sequences. In VLDB, 2011.

[46] M. Rice and V. J. Tsotras. Graph Indexing of Road Network for Shortest Path Queries with

Label Restrictions. In VLDB, 2011.

[47] S. E. Robertson and S. Walker. Okapi/keenbow at TREC-8. In TREC, 1999.

[48] P. Sanders and D. Schultes. Highway Hierarchies Hasten Exact Shortest Path Queries. In

ESA, pages 568-579, 2005.

[49] B. Salzberg, L. Jiang, D. Lomet, M. Barrena, J. Shan, and E. Kanoulas. A Framework for

Access Methods for Versioned Data. In EDBT, 2004.

[50] R. Schenkel, T. Crecelius, M. Kacimi, S. Michel, T. Neumann, J. X. Parreira, and G.

Weikum. Efficient Top-k Querying over Social-tagging Networks. In SIGIR, 2008.

[51] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W. C. Lee, and C. L. Giles. Real-time Automatic

Tag Recommendation. In SIGIR, 2008.

[52] V. J. Tsotras and N. Kangelaris. The Snapshot Index: an I/O Optimal Access Method for

Snapshot Queries. In Information System, vol.20, no. 3, pp237-260, 1995.

[53] V.J. Tsotras, C.S. Jensen, R.T. Snodgrass. An Extensible Notation for Spatiotemporal Index

Queries. In SIGMOD Record 27(1), 1998.

[54] L. H. U, N. Mamoulis, K. Berberich, and S. Bedathur. Durable Top-k Search in Document

Archives. In SIGMOD, 2010.

[55] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution of user interaction

in Facebook. In SIGCOMM Workshop on Social Networks (WOSN’09), pages 37-42, 2009.

[56] F. Wang, C. Zaniolo, and X. Zhou. Archis: An xml-based approach to transaction-time

temporal database systems. In VLDB Journal, 2008.

[57] C. Yu, L. Lakshmanan, and S. Amer-Yahia. It Takes Variety to Make a World:

Diversification in Recommender Systems. In EDBT, 2009.

