
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Towards Enhanced Reasoning in Large Language Models

Permalink
https://escholarship.org/uc/item/7t63t1z9

Author
Ling, Zhan

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7t63t1z9
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Towards Enhanced Reasoning in Large Language Models

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Zhan Ling

Committee in charge:

Professor Hao Su, Chair
Professor Taylor Berg-kirkpatrick
Professor Jingbo Shang
Professor Zhuowen Tu

2024



Copyright

Zhan Ling, 2024

All rights reserved.



The Dissertation of Zhan Ling is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2024

iii



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Reasoning with Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of Techniques and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Deductive Verification of Chain-of-Thought Reasoning . . . . . . . . . . . . . . 2
1.2.2 LLMs as Hierarchical Policy for Improved Exploration . . . . . . . . . . . . . . 3
1.2.3 Synthetic Long-Context Reasoning Data via Context Expansion . . . . . . . 3

1.3 Additional Work Done During my Doctoral Career . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Deductive Verification of Chain-of-
Thought Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Motivation and Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Deductively Verifiable Chain-of-Thought Reasoning . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Decomposition of Deductive Verification Process . . . . . . . . . . . . . . . . . . . 12
2.4.2 Natural Program Deductive Reasoning Format . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Integrating Deductive Verification with Unanimity-Plurality Voting . . . . 15

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.1 Zero-Shot vs. Few-Shot Full Reasoning Chain Verification Without

Step-by-Step Decomposition or Natural Program Format . . . . . . . . . . . . . 20
2.6.2 Zero-Shot vs. One-Shot Deductive Verification with Step-by-Step De-

composition and Natural Program Format . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.3 Deductive Verification with Vicuna Models . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Additional Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iv



Chapter 3 Language Model As Hierarchical Policy For Improved Exploration on
Challenging Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Language Model as a Hierarchical Policy for Exploration . . . . . . . . . . . . . . . . . . . 32
3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Do We Enhance the Discovery and Visibility of Correct Solutions? . . . . 37
3.4.2 Do We Improve Final Answer Accuracy for Challenging Reasoning

Problems? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.1 Failure Example Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.2 Evaluation on GSM8K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Additional Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Further Analysis and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 4 Long-Context Reasoning Synthesis through Context Expansion . . . . . . . . . . 50
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Our Benchmark: LongReason . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Long-context Reasoning Question Construction via Context Expansion . 56
4.3.2 The Statistics of LongReason . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Exerperiments & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.3 Further Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Model Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Hyperparameters for LongReason Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7 Conclusion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 5 Finale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

v



LIST OF FIGURES

Figure 2.1. Illustration of Natural Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.2. Natural Program-based deductive reasoning verification. . . . . . . . . . . . . . . . 8

Figure 3.1. Overview of our approach, which frames language models as a hierarchical
policy for exploration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.2. A detailed illustration of our approach that frames language models as a
hierarchical policy for exploration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.3. Illustration of the partitioning of the reasoning chain space based on the
high-level tactics employed in the solution. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.4. Statistics for the “CoT Sampling + Majority Voting” baseline. . . . . . . . . . . 38

Figure 4.1. Overview of our pipeline for constructing LongReason. . . . . . . . . . . . . . . . . 53

Figure 4.2. An illustrative example in LongReason. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.3. The number of reasoning steps in the ground-truth analysis for questions
in LongReason. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.4. Performance of the Qwen2.5 series on LongReason, with model sizes
ranging from 7B to 72B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 4.5. Comparison of the long-context reasoning performance between Gemini-
1.5 Pro and Claude 3.5-Sonnet across different task categories. . . . . . . . . . . 63

Figure 4.6. An example where Gemini-1.5 Pro provide a incorrect reasoning given
the long-context question while the s. The key difference in reasoning is
underlined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



LIST OF TABLES

Table 2.1. An example question from GSM8K with a generated CoT reasoning path
with GPT-3.5 (turbo). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Table 2.2. Zero-shot reasoning chain verification accuracy for GPT-3.5-turbo (Chat-
GPT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Table 2.3. Final answer accuracy comparison on GPT-3.5-turbo (ChatGPT). . . . . . . . . 17

Table 2.4. Deductive verification accuracy of reasoning chains for GPT-3.5-turbo (Chat-
GPT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 2.5. Impact of different values of k′ on the verification accuracy of reasoning
chains using our Unanimity-Plurality Voting strategy. Experiments are
performed on AddSub using GPT-3.5-turbo (ChatGPT). . . . . . . . . . . . . . . . . 19

Table 2.6. ChatGPT generates the correct final answer but provides incorrect premise
numbers for grounding the first reasoning step. . . . . . . . . . . . . . . . . . . . . . . . 19

Table 2.7. An example question with ambiguous wordings. . . . . . . . . . . . . . . . . . . . . . . . 20

Table 2.8. Comparison of reasoning chain verification accuracy for GPT-3.5-turbo with
zero / two-shot prompting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 2.9. Comparison between zero-shot and one-shot accuracy of deductive verifi-
cation for GPT-3.5-turbo (ChatGPT) with step-by-step decomposition and
Natural Program format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 2.10. One-shot Deductive Verification Accuracy of Vicuna-7B and Vicuna-13B. . 23

Table 2.11. Hyperparameters for finetuning Vicuna models with our deductive verifica-
tion dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Table 2.12. Regular Expression for extracting the final answers of different kinds of
questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 3.1. An example problem from the MATH dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 3.2. Comparison of the Grouped-Majority Recall (“GMR”) and the final answer
accuracy (“Acc.”) between the CoT sampling + Voting baseline and our two
exploration approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



Table 3.3. Comparison of the Grouped-Majority Recall (“GMR”) and the final answer
accuracy (“Acc.”) on our 1047-question MATH Level-5 evaluation set using
GPT-3.5 as the language model for the CoT Sampling + Voting baseline
along with the low-level follower policy in our approaches. . . . . . . . . . . . . . . 42

Table 3.4. (a) Comparison of the Grouped-Majority Recall and the final answer accu-
racy on three of the challenging STEM subjects from the MMLU dataset.
(b) Final answer accuracy of WizardMath-7B-V1.1 on our 140-question
MATH level-5 evaluation set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 3.5. Ablation on using (a) different models and different k (numbers of compari-
son repetitions); (b) different temperatures (T ) during our tournament-based
reasoning chain selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 3.6. Effect of majority voting and our tournament-based reasoning chain selec-
tion on the final-answer accuracy of the CoT + Sampling baseline and our
hierarchical policy approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 3.7. A failure case in which the GPT-4 high-level leader generates a highly-
relevant hint for the question. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 3.8. A failure case in which a very similar question along with its ground truth
solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 3.9. A failure case in which the GPT-4 high-level leader generates an irrelevant
hint, resulting in wrong answer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 3.10. Final answer accuracy on GSM8K. We adopt GPT-3.5 as the low-level
follower, and we sample 32 reasoning chains per problem. . . . . . . . . . . . . . . 47

Table 3.11. Cost comparison between our approach and the CoT + Sampling Baseline
on our 140-question MATH Level-5 evaluation set. . . . . . . . . . . . . . . . . . . . . 47

Table 3.12. Comparison on the number of input and output tokens per-question between
our approach and the CoT + Sampling Baseline on our 140-question MATH
Level-5 evaluation set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 4.1. Comparison of LongReason with other long-context benchmarks. . . . . . . . . 51

Table 4.2. Performance (%) of selected LLMs on LongReason. . . . . . . . . . . . . . . . . . . . 60

Table 4.3. Ablation study on the position of the final inquiry for selected models
evaluated at context lengths ranging from 8K to 128K. . . . . . . . . . . . . . . . . . 62

Table 4.4. Information of evaluated and analyzed models in LongReason. . . . . . . . . . . 65

viii



ACKNOWLEDGEMENTS

I want to express my deepest gratitude to Prof. Hao Su for his invaluable guidance and

unwavering support throughout my Ph.D. journey.

My heartfelt thanks to Prof. Su, who has been a guiding light from my undergraduate

years through my Ph.D. journey, especially during moments when I felt lost. I am especially

grateful for the opportunity you provided to pursue research as a Ph.D. student at UC San Diego,

which has been instrumental in shaping the foundation of my aspirations. Your encouragement

and mentorship helped me find my path and pursue my dreams. Your guidance and support have

helped me build essential skills, strengthen my abilities, and prepare for future challenges. I

deeply appreciate the time and effort you invested in my growth as a researcher.

I am deeply grateful to my Ph.D. committee members, Prof. Taylor Berg-Kirkpatrick,

Prof. Jingbo Shang, and Prof. Zhuowen Tu, for their insightful contributions and steadfast

support throughout this journey. Their guidance has been invaluable and instrumental in shaping

my work.

I would also like to extend my heartfelt thanks to my collaborators, including my labmates,

colleagues, and friends, whose inspiration and support have significantly enriched my research

experience. In particular, I am profoundly grateful to Zhiao Huang, Tongzhou Mu, Xuanlin Li,

and Yunhao Fang for their encouragement and collaboration. Furthermore, I am immensely

thankful to Roland Memisevic, Mingu Lee, Reza Pourreza, Jiecao Chen, and Kang Liu for

their insightful mentorship during my internships at Qualcomm and ByteDance, which played a

pivotal role in deepening my understanding of reasoning with large language models.

Lastly, I owe a special debt of gratitude to my parents for their unwavering and uncondi-

tional support. Their love and belief in me have been my guiding light through every challenging

moment, especially during the COVID-19 pandemic. Thank you for standing by me and for your

endless encouragement.

Chapter 2, in full, is a reprint of the material published in the 2023 Neural Information

Processing Systems (NeurIPS): “Deductive Verification of Chain-of-Thought Reasoning” (Zhan

ix



Ling*; Yunhao Fang*; Xuanlin Li; Zhiao Huang; Mingu Lee; Roland Memisevic; Hao Su). The

dissertation author was the primary investigator and author of this paper.

Chapter 3, in full, is a reprint of material from the publicly available preprint: “Unleashing

the Creative Mind: Language Model As Hierarchical Policy For Improved Exploration on

Challenging Problem Solving” (Zhan Ling; Yunhao Fang; Xuanlin Li; Tongzhou Mu; Mingu

Lee; Reza Pourreza; Roland Memisevic; Hao Su). The dissertation author was the primary

investigator and author of this paper.

Chapter 4, in full, is a reprint of a work currently under preparation for submission:

“LongReason: A Synthetic Long-Context Reasoning Benchmark via Context Expansion” (Zhan

Ling, Kang Liu, Kai Yan, Yifan Yang, Weijian Lin, Ting-Han Fan, Lingfeng Shen, Zhengyin Du,

Jiecao Chen). The dissertation author was the primary investigator and author of this paper.

x



VITA

2015–2019 Bachelor of Engineering, Tsinghua University

2019–2023 Master of Science, University of California San Diego

2019–2024 Doctor of Philosophy, University of California San Diego

PUBLICATIONS

1. Fangchen Liu, Zhan Ling, Tongzhou Mu, Hao Su. State Alignment-based Imitation
Learning. ICLR 2020.

2. Tongzhou Mu*, Zhan Ling*, Fanbo Xiang*, Derek Yang*, Xuanlin Li*, Stone Tao, Zhiao
Huang, Zhiwei Jia, Hao Su. ManiSkill: Generalizable Manipulation Skill Benchmark with
Large-Scale Demonstrations. NeurIPS Track 2021.

3. Xiaoshuai Zhang*, Rui Chen*, Ang Li**, Fanbo Xiang**, Yuzhe Qin**, Jiayuan Gu**,
Zhan Ling**, Minghua Liu**, Peiyu Zeng**, Songfang Han***, Zhiao Huang***,
Tongzhou Mu***, Jing Xu, Hao Su. Close the Visual Domain Gap by Physics-Grounded
Active Stereovision Depth Sensor Simulation. T-RO & IROS 2023.

4. Xinyue Wei*, Minghua Liu*, Zhan Ling, Hao Su. Approximate Convex Decomposition
for 3D Meshes with Collision-Aware Concavity and Tree Search. SIGGRAPH 2022.

5. Zhiwei Jia, Xuanlin Li, Zhan Ling, Shuang Liu, Yiran Wu, Hao Su. Improving policy
optimization with generalist-specialist learning. ICML 2022.

6. Minghua Liu*, Xuanlin Li*, Zhan Ling*, Yangyan Li, Hao Su. Frame Mining: a Free
Lunch for Learning Robotic Manipulation from 3D Point Clouds. CoRL 2022.

7. Jiayuan Gu*, Fanbo Xiang*, Xuanlin Li**, Zhan Ling**, Xiqiang Liu**, Tongzhou
Mu**, Yihe Tang**, Stone Tao**, Xinyue Wei**, Yunchao Yao**, Xiaodi Yuan, Pengwei
Xie, Zhiao Huang, Rui Chen, Hao Su. ManiSkill2: A Unified Benchmark for Generalizable
Manipulation Skills. ICLR 2023.

8. Minghua Liu, Yinhao Zhu, Hong Cai, Shizhong Han, Zhan Ling, Fatih Porikli, Hao
Su. PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained Image-
Language Models. CVPR 2023.

9. Zhiao Huang, Litian Liang, Zhan Ling, Xuanlin Li, Chuang Gan, Hao Su. Reparameter-
ized Policy Learning for Multimodal Trajectory Optimization. ICML 2023 Oral.

10. Zhan Ling*, Yunchao Yao*, Xuanling Li, Hao Su. On the Efficacy of 3D Point Cloud
Reinforcement Learning. arXiv:2306.06799

xi



11. Xuanlin Li*, Yunhao Fang*, Minghua Liu, Zhan Ling, Zhuowen Tu, Hao Su, Distilling
Large Vision-Language Model with Out-of-Distribution Generalizability. ICCV 2023.

12. Zhan Ling*, Yunhao Fang*, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic,
Hao Su. Deductive Verification of Chain-of-Thought Reasoning. NeurIPS 2023.

13. Zhan Ling, Yunhao Fang, Xuanlin Li, Tongzhou Mu, Mingu Lee, Reza Pourreza, Roland
Memisevic, Hao Su. Unleashing the Creative Mind: Language Model As Hierarchical
Policy For Improved Exploration on Challenging Problem Solving. Arxiv: 2311.00694

14. Ying Su, Zhan Ling, Haochen Shi, Cheng Jiayang, Yauwai Yim, Yangqiu Song. ActPlan-
1K: Benchmarking the Procedural Planning Ability of Visual Language Models in House-
hold Activities. EMNLP 2024 Main.

15. Zhan Ling, Kang Liu, Kai Yan, Yifan Yang, Weijian Lin, Ting-Han Fan, Lingfeng
Shen, Zhengyin Du, Jiecao Chen. LongReason: A Synthetic Long-Context Reasoning
Benchmark via Context Expansion. In submission.

FIELDS OF STUDY

Major Field: Computer Science (Natural Language Processing, Robotics, Reinforcement Learn-
ing)

xii



ABSTRACT OF THE DISSERTATION

Towards Enhanced Reasoning in Large Language Models

by

Zhan Ling

Doctor of Philosophy in Computer Science

University of California San Diego, 2024

Professor Hao Su, Chair

Large Language Models (LLMs) have demonstrated remarkable progress across diverse

natural language tasks. Recently, Chain-of-Thought methods have been introduced to enhance

reasoning by generating detailed and comprehensive reasoning processes. However, challenges

such as hallucinations, error accumulation, and limited exploration hinder their effectiveness on

complex tasks. Additionally, the near-exhaustion of high-quality natural language data on the

internet poses a significant barrier to further improving the reasoning capabilities of LLMs.

To address these challenges, this dissertation investigates two key directions: enhancing

inference techniques and synthesizing reasoning data to strengthen LLM reasoning capabilities.

First, it introduces a deductive verification method that enables self-verification of reasoning

xiii



chains generated by LLMs, ensuring more rigorous and accurate reasoning during inference.

Second, it addresses the limitations in exploring diverse reasoning strategies by framing reasoning

as a hierarchical policy, where high-level tactics guide detailed low-level problem-solving through

in-context learning with LLMs. In addition, it explores data synthesis for long-context reasoning

tasks, which is particularly challenging even for human and very rare natural data on the internet.

It proposes a novel data synthesis method that can generate long-context reasoning data with

diverse and realistic reasoning patterns. The evaluation of the generated long-context reasoning

dataset using this method reveals that even state-of-the-art LLMs struggle to perform robustly,

highlighting the potential of the synthetic data strategy for enhancing LLM training.

This dissertation contributes to advancing LLM reasoning abilities through novel methods

that address critical limitations in both training and inference. These advancements provide

valuable insights and pave the way for stronger and more reliable reasoning in LLMs.

xiv



Chapter 1

Introduction

1.1 Reasoning with Large Language Models

Large language models (LLMs) [91, 101, 5, 120], trained on vast amounts of high-

quality internet data and incorporating knowledge accumulated by humanity, have demonstrated

remarkable capabilities in understanding human language and solving natural language tasks.

Recently, the chain-of-thought (CoT) prompting [125, 65] has been introduced, enabling LLMs

to reason through multiple steps. This significantly enhances their performance on tasks requiring

reasoning abilities, such as math word problems and logical inference.

Despite these advancements, LLMs continue to face significant challenges when handling

complex reasoning tasks during inference. While CoT prompting allows models to generate

detailed reasoning processes, it can inadvertently lead to issues such as hallucinations and

compounded errors in intermediate reasoning steps—particularly when addressing problems

requiring numerous reasoning stages. Another major limitation is their constrained exploration

ability for solving challenging reasoning tasks. Even with techniques like sampling [123] or

search-based methods [133], LLMs often fail to explore diverse strategies, which may result in

the inability to sample any correct reasoning paths. This limitation persists even when human

intervention is available to select the best path as the final output, rendering the models ineffective

in such scenarios.

Moreover, while current LLMs are trained on nearly all available high-quality internet

1



data, their performance remains constrained on some challenging reasoning tasks. The scarcity

of high-quality data tailored to complex reasoning may impede the models’ ability to learn

intricate reasoning patterns, making it difficult to further enhance their reasoning capabilities.

1.2 Overview of Techniques and Contributions

This dissertation aims to tackle the challenge of enhancing reasoning capabilities in LLMs

from both inference and training perspectives. First, we explore methods to improve the accuracy

and reliability of reasoning chains generated by LLMs through self-verification. In Chapter 2,

we present an approach for step-by-step verification of reasoning chains to ensure their validity.

Second, we focus on enhancing the exploration capabilities of LLMs by framing reasoning as a

hierarchical policy. In Chapter 3, we introduce techniques to encourage LLMs to sample more

diverse reasoning strategies, particularly within the tactical space. Lastly, we propose a novel data

synthesis method to address the scarcity of rare reasoning data in current datasets. Specifically,

in Chapter 4, we detail how to synthesize long-context reasoning question-answering data by

leveraging existing short-context data. These contributions are comprehensively discussed in the

following chapters.

1.2.1 Deductive Verification of Chain-of-Thought Reasoning

In ”Deducting Verification of Chain-of-Thought Reasoning” [67], we first propose a

novel framework, Natural Program, that enables LLMs to perform explicit and rigorous deductive

reasoning while ensuring the trustworthiness of their processes through self-verification. Natural

Program decomposes reasoning verification into step-by-step subprocesses, enhancing the preci-

sion and grounding of reasoning steps. This approach enables models to perform self-verification

at each stage, significantly improving correctness and trust in solving complex reasoning tasks.

2



1.2.2 LLMs as Hierarchical Policy for Improved Exploration

In ”Unleashing the Creative Mind: Language Model As Hierarchical Policy For Improved

Exploration on Challenging Problem Solving” [67], we address LLMs’ limitations in exploring

diverse reasoning strategies by framing them as a hierarchical policy via in-context learning.

This framework consists of a visionary “leader” proposing diverse high-level problem-solving

strategies, followed by a “follower” executing detailed reasoning processes guided by the leader’s

instructions. By sampling multiple reasoning chains and using a tournament-based approach

to evaluate and select the best solutions, we enhance exploration and improve the accuracy of

solutions to challenging problems.

1.2.3 Synthetic Long-Context Reasoning Data via Context Expansion

In ”LongReason: A Synthetic Long-Context Reasoning Benchmark via Context Expan-

sion”, we propose a new dataset, LongReason, generated through a novel data synthesis method

that expands shorter reasoning problems into long-context scenarios. We evaluate various LLMs

on LongReason and demonstrate that it poses significant challenges, even for state-of-the-art

models. This highlights the potential of our synthetic dataset to serve as a valuable resource for

improving yeLLMs’ reasoning capabilities.

1.3 Additional Work Done During my Doctoral Career

My dissertation primarily focuses on enhancing reasoning abilities in large language

models. Beyond this, I have been fortunate to explore diverse topics within artificial intelligence,

contributing to areas such as robotics, reinforcement learning, imitation learning, computer

vision, and vision foundation models.

I have devoted significant effort to generalizable robot manipulation. I co-led the Man-

iSkill [89] project and served as a primary contributor in ManiSkill2 [40], which are unified

simulation platforms designed for studying and improving generalizable robot manipulation

3



skills. Additionally, I contributed to developing algorithms that build more realistic simula-

tion environments for robot manipulation [126, 138]. My work also explores integrating 3D

representation with deep reinforcement learning, studying the effects of 3D representation, 3D

augmentation [69], and frame selection [73] to improve sample efficiency in reinforcement

learning.

Beyond robotics, I have collaborated on developing new reinforcement learning and

imitation learning algorithms. In [50], we proposed a generalist-specialist learning framework

for deep reinforcement learning. In [70], we introduced a state-alignment-based imitation

learning algorithm capable of cross-modality imitation. In [48], we explored a novel model-

based reinforcement learning algorithm leveraging multimodal representations for enhanced

exploration capabilities. In the field of computer vision, I have contributed to distilling vision

foundation models [63], developing part detection methods [74], and evaluating vision-language

models [116]. These efforts have broadened my expertise and deepened my understandijianyng

across various areas of AI.

4



Chapter 2

Deductive Verification of Chain-of-
Thought Reasoning

Large Language Models (LLMs) significantly benefit from Chain-of-thought (CoT)

prompting in performing various reasoning tasks. While CoT allows models to produce more

comprehensive reasoning processes, its emphasis on intermediate reasoning steps can inadver-

tently introduce hallucinations and accumulated errors, thereby limiting models’ ability to solve

complex reasoning tasks. Inspired by how humans engage in careful and meticulous deductive

logical reasoning processes to solve tasks, we seek to enable language models to perform explicit

and rigorous deductive reasoning, and also ensure the trustworthiness of their reasoning process

through self-verification. However, directly verifying the validity of an entire deductive reasoning

process is challenging, even with advanced models like ChatGPT. In light of this, we propose

to decompose a reasoning verification process into a series of step-by-step subprocesses, each

only receiving their necessary context and premises. To facilitate this procedure, we propose

Natural Program, a natural language-based deductive reasoning format. Our approach enables

models to generate precise reasoning steps where subsequent steps are more rigorously grounded

on prior steps. It also empowers language models to carry out reasoning self-verification in a

step-by-step manner. By integrating this verification process into each deductive reasoning stage,

we significantly enhance the rigor and trustfulness of generated reasoning steps. Along this

process, we also improve the answer correctness on complex reasoning tasks.

5



2.1 Introduction

The transformative power of large language models, enhanced by Chain-of-Thought

(CoT) prompting [125, 54, 144, 111], has significantly reshaped the landscape of information

processing [35, 76, 124, 136, 34, 135, 58, 80], fostering enhanced abilities across a myriad of

disciplines and sectors. While CoT allows models to produce more comprehensive reasoning

processes, its emphasis on intermediate reasoning steps can inadvertently introduce hallucina-

tions [14, 82, 41, 49] and accumulated errors [14, 127, 6], thereby limiting models’ ability to

produce cogent reasoning processes.

In fact, the pursuit of reliable reasoning is not a contemporary novelty; indeed, it is an

intellectual endeavor that traces its roots back to the time of Aristotle’s ancient Greece. Motivated

by the desire to establish a rigorous reasoning process, in his ”Organon,” Aristotle introduced

principles of logic, in particular, syllogism, a form of logical argument that applies deductive

reasoning to arrive at a conclusion based on two or more propositions assumed to be true. In

disciplines that rigorous reasoning is critical, such as judical reasoning and mathematical problem

solving, documents must be written in a formal language with a logical structure to ensure the

validity of the reasoning process.

We yearn for this sequence of reliable knowledge when answering questions. Our goal is

to develop language models that can propose potential solutions through reasoning in logical

structures. Simultaneously, we aim to establish a verifier capable of accurately assessing the

validity of these reasoning processes. Despite recent significant explorations in the field, such

as [123]’s emphasis on self-consistency and [78, 19]’s innovative use of codes to represent

the reasoning process, these approaches still exhibit considerable limitations. For example,

consistency and reliability are not inherently correlated; as for program codes, they are not

powerful enough to represent many kinds of reasoning process, e.g., in the presence of quantifiers

(“for all”, “if there exists”) or nuances of natural language (moral reasoning, “likely”, . . . ).

We propose leveraging the power of natural language to achieve the deductive reasoning

6



There are 53 maple trees currently in 
the park. Park workers will plant maple 
trees today. When the workers are 
finished there will be 64 maple trees 
in the park. How many maple trees did 
the workers plant today?

Question

# 1. There are 53 maple trees currently 
in the park.
# 2. After the workers plant trees, 
there will be 64 maple trees in the park.
# 3. The workers plant some maple trees.
# 4. How many maple trees did the 
workers plant today?

Question-Related Premises

# 5. (by #2 #1) Step 1: 
Calculate the number of 
maple trees the workers 
will plant. Number of maple 
trees the workers will 
plant: 64 - 53 = 11

Reasoning

# 6. (by #4 #5) Final Step: The original 
question is #4. How many maple trees did the 
workers plant today? We do not miss 
information on the rewritten labels. So the 
answer to this question is the workers planted 
11 maple trees today.

Reasoning

…

Here is some information: "There are 53 maple trees currently in the park.
After the workers plant trees, there will be 64 maple trees in the park."

Based on the given information, here is a reasoning process: "Calculate 
the number of maple trees the workers will plant. Number of maple trees 
the workers will plant: 64 - 53 = 11"

Double-check the reasoning process, let's analyze its correctness, and 
end with "yes" or "no".

Verification

Figure 2.1. Illustration of Natural Program (bottom 3 boxes), a natural language-based deductive
reasoning format for LLM reasoning chain generation. Natural Program allows individual
reasoning steps (an example in purple) along with their minimal set of premises (an example in
yellow) to be easily extracted, which facilitates the verification of deductive reasoning processes.

emphasized in ancient Greek logic, introducing a “natural program”. This involves retaining

natural language for its inherent power and avoiding the need for extensive retraining with large

data sets. A natural program represents a rigorous reasoning sequence, akin to a computer

program. We expect implementations of the idea to have two properties: 1) that natural programs

are generated with minimal effort from an existing language model capable of CoT reasoning,

preferably through in-context learning; 2) that the natural program can be easily verified for

reliability in the reasoning process.

Through a step-by-step investigation, we discovered that large language models have

the potential to meet our expectation. Naı̈ve CoT prompts like ”Let us think step by step.” has

many flaws, and entrusting the entire verification process to a large model like ChatGPT can still

lead to significant error rates. However, we found that, if the reasoning process is very short,

and only based on necessary premises and contexts, the verification of existing large language

models is already quite reliable. Therefore, our approach is to design prompts that induce CoT

processes comprised of rigorous premises/conditions and conclusions with statement labels, and

verification can be done by gradually isolating very few statements within the long thought chain.

Experimentally, we found that nearly all reasoning that passed the verification was rigorous, and

7



Avery needs to buy a 3 
piece place setting 
(dinner & salad plate 
and a bowl) for her 
holiday dinner.  She’s 
having 12 people over 
for dinner.  If the 
dinner plates cost $6.00 
each and bowls each cost 
$5.00 and the salad 
plates cost $4.00, how 
much will she spend on 
place settings?

Question

# 1. Avery needs to buy a 3 piece place 
setting (dinner & salad plate and a bowl) for 
her holiday dinner.
# 2. She’s having 12 people over for dinner.
# 3. Dinner plates cost $6.00 each, bowls each 
cost $5.00, and salad plates cost $4.00.
# 4. How much will she spend on place settings?

Question-Related Premises

# 5. (by #2) Step 1: 
Calculate the total 
number of place 
settings needed.
Total number of 
place settings: 12 * 
3 = 36

Reasoning

# 1. Avery needs to buy a 3 piece place 
setting for her holiday dinner.
# 2. Avery is having 12 people over for dinner.
# 3. The cost of each dinner plate is $6.00.
# 4. The cost of each bowl is $5.00.
# 5. The cost of each salad plate is $4.00.
# 6. How much will Avery spend on place 
settings?

Question-Related Premises

# 1. Avery needs to buy a 3 piece place 
setting for 12 people.
# 2. The place setting consists of a dinner 
plate, a salad plate, and a bowl.
# 3. The cost of a dinner plate is $6.00.
# 4. The cost of a bowl is $5.00.
# 5. The cost of a salad plate is $4.00.
# 6. Avery needs to calculate the total cost 
of the place settings.

Question-Related Premises

…

…

# 7. (by #2) Step 1: 
Calculate the total 
number of place 
settings Avery needs 
to buy. Total number 
of place settings: 
12 * 3 = 36

Reasoning

# 7. (by #1) Step 1: 
Calculate the total 
number of place 
settings Avery needs 
to buy. Total number 
of place settings 
needed: 12

Reasoning

#8. (by #4 #7) Final Step: The 
original question is #4. How 
much will she spend on place 
settings? We do not miss 
information on the rewritten 
labels. So the answer to this 
question is Avery will spend 
$540.00 on place settings.

Reasoning

#10. (by #6 #9) Final Step: The 
original question is #6. How 
much will Avery spend on place 
settings? We do not miss 
information on the rewritten 
labels. So the answer to this 
question is Avery will spend 
$540.00 on place settings.

Reasoning

…

#10. (by #6 #9) Final Step: The 
original question is #6. How 
much will Avery spend on place 
settings? We do not miss 
information on the rewritten 
labels. So the answer to this 
question is Avery will spend 
$180.00 on place settings.

Reasoning

…

Reasoning Error Grounding Error

Figure 2.2. Through our Natural Program-based deductive reasoning verification approach, we
alleviate LLM’s reasoning and grounding errors in problem solving steps, thereby enhancing the
rigorousness, trustworthiness, and interpretability of generated reasonings.

nearly all that did not pass had elements of imprecision in the reasoning process, even if they

occasionally arrived at correct answers.

It is worth emphasizing that, we are not looking for a method to just maximize the

correctness rate of final answers; instead, we aspire to generate a cogent reasoning process,

which is more aligned with the spirit of judical reasoning. When combined with sampling-based

methods, our method can identify low-probability but rigorous reasoning processes. When

repeated sampling fails to yield a rigorous reasoning process, we can output ”unknown” to

prevent hallucinations that mislead users.

We demonstrate the efficacy of our natural program-based verification approach across

a range of arithmetic and common sense datasets on publicly-available models like OpenAI’s

GPT-3.5-turbo (175B). Our key contributions are as follows:

1. We propose a novel framework for rigorous deductive reasoning by introducing a

“Natural Program” format (Fig. 2.1), which is suitable for verification and can be generated by

8



just in-context learning;

2. We show that reliable self-verification of long deductive reasoning processes written in

our Natural Program format can be achieved through step-by-step subprocesses that only cover

necessary context and premises;

3. Experimentally, we demonstrate the superiority of our framework in improving

the rigor, trustworthiness, and interpretability of LLM-generated reasoning steps and answers

(Fig. 2.2).

2.2 Related work

Reasoning with large language models. Recent large language models (LLMs) [13, 23,

137, 121, 106, 45, 24, 105] have shown incredible ability in solving complex reasoning tasks.

Instead of letting LLMs directly generate final answers as output, prior work have shown that

by encouraging step-by-step reasoning through proper prompting, such as Chain-of-Thought

(CoT) prompting [125] and many others [54, 144, 141, 113, 123, 145, 75, 134], LLMs exhibit

significantly better performance across diverse reasoning tasks. To further improve the step-by-

step reasoning process, some recent studies have investigated leveraging external solvers such

as program interpreters [107, 19, 78], training and calling external reasoning modules [26], or

performing explicit search to generate deductive steps [11, 118]. Parallel to these works, we do

not rely on external modules and algorithms, and we directly leverage the in-context learning

ability of LLMs to generate more precise and rigorous deductive reasoning steps.

Large language models as verifiers. Using language models to evaluate model genera-

tions has been a long standing idea [56, 104, 109, 14]. As LLMs exhibit impressive capabilities

across diverse tasks, it becomes a natural idea to use LLMs as evaluation and verification tools.

For example, [25, 26, 95] finetune LLMs to verify solutions and intermediate steps. LLMs

aligned with RLHF [94, 91, 123] have also been employed to compare different model genera-

tions. In addition, recent works like [112, 128, 79, 20] leverage prompt designs to allow LLMs

9



to self-verify, self-refine, and self-debug without the need for finetuning. However, these works

do not focus on the rigorousness and trustworthiness of the deductive reasoning processes at

every reasoning step. In this work, we propose a natural language-based deductive reasoning

format that allows LLMs to self-verify every intermediate step of a deductive reasoning process,

thereby improving the rigorousness and trustfulness of reasoning

2.3 Motivation and Problem Formulation

A reasoning-based question-answering (QA) task can be defined as a tuple (Q,C,O,

A) [103], where Q is the target question; C is the context of a question, such as the necessary

background for answering a question; O = (o1,o2, · · · ,ck) are optional answer choices if Q is

a K-way multiple choice problem; and A is the ground-truth answer. Given Q and C as inputs,

large language models (LLMs) [13, 23, 121] generate a sequence of tokens T = (t1, t2, · · · , tn)

to answer the question. Recent works like Chain-of-Thought (CoT) [125, 54] leverage prompt

engineering in the context C to encourage models to generate the intermediate reasoning process

in T , which benefits LLM performance across diverse reasoning tasks. In this case, T consists of

a set of m intermediate reasoning steps, which we denote as S = (s1,s2, · · · ,sm) . Each step si

can be represented by a subsequence of the generated tokens (tli, tri)⊆ T . In much prior work, a

generated solution is “correct” if and only if the predicted final answer in sm matches the ground

truth A, which we call answer correct(ness).

We observe that for all cases where LLMs produce erroneous final answers, there exists

at least one mistake among the intermediate reasoning steps S. Moreover, even when the

final answer is correct, there might still exist some mistakes among S. This phenomenon, as

illustrated in Tab. 2.1, occurs for all LLMs we tested, including state-of-the-art models such

as ChatGPT [94]. Since later reasoning steps are conditioned on prior reasoning steps, these

mistakes often initiate a snowball effect, causing subsequent mistakes to compound. This

significantly diminishes the likelihood of correct problem-solving and impedes the progress

10



Table 2.1. An example question from GSM8K with a generated CoT reasoning path with
GPT-3.5 (turbo), where the output provides a wrong reasoning chain with the correct answer.

Question: Jerry is rolling a six-sided die. How much more likely is it (expressed as a percentage)
that he rolls a number greater than $3 than that he rolls two even numbers in a row?
Ground Truth: There are 3 numbers greater than 3 on the dice, so the chances of rolling one
of them are 3 / 6 = 50%. The chance of rolling one even number is 50%, so the chance of rolling
two in a row is 50% * 50% = 25%. The difference between these two probabilities is 50% - 25%
= 25%. #### 25

Output: There are two possible outcomes for rolling a number greater than 3 out of 6 total
outcomes, so the probability is 2 / 6 or 1 / 3. For rolling two even numbers in a row, there are
three possible outcomes (2-4, 4-6, 6-2) out of 36 total outcomes, so the probability is 3 / 36 or
1 / 12. To find the difference in probability, we subtract the probability of rolling two even
numbers in a row from the probability of rolling a number greater than 3: 1 / 3 - 1 / 12 = 1 / 4.
This means that it is 25% more likely to roll a number greater than 3 than to roll two even
numbers in a row.

towards achieving human-level complex reasoning.

Therefore, in this work, we place significant emphasis on ensuring the validity of every

reasoning step, not just the correctness of the final answer. In particular, we focus on the validity

of deductive reasoning, an essential component of a logical reasoning process. In deductive

reasoning, we are given a (premise, conclusion) pair, and we are interested in determining whether

the conclusion follows from the premises. In the context of reasoning-based QA tasks, for each

reasoning step si, we define its deductive validity V (si) as a binary variable. A reasoning step is

deductively valid (V (si) = 1) if and only if si can be logically deduced from its corresponding

premises pi, which consist of the context C, the question Q, and all the previous reasoning steps

s j( j < i). Then, we can also define the deductive validity for the entire reasoning chain S as

V (S) = ∧M
i=1V (si). Compared to evaluating answer correctness, which can be accomplished

by simple functions such as exact string match, evaluating deductive validity is a lot more

challenging. Thanks to the recent progress on LLMs, which demonstrate impressive in-context

learning capabilities across diverse scenarios, we propose to use LLMs to examine reasoning

chains and predict the deductive reasoning validity.

11



Table 2.2. Zero-shot reasoning chain verification accuracy for GPT-3.5-turbo (ChatGPT). To
generate verification inputs, for each dataset, we perform Chain-of-Thought (CoT) prompting
and randomly sample 50 resulting reasoning chains providing correct answers and 50 reasoning
chains providing wrong answers. We then prompt the model with “Do you think the above

reasoning process is correct?Let’s think step by step” such that the model out-
puts whether any mistake exists in the input reasoning process. We observe that when given
an entire reasoning process, where the deductive graphs for all reasoning steps are entangled
together, it is challenging even for strong language models like ChatGPT to verify its validity.

Answer Correctness GSM8K AQuA MATH AddSub Date Last Letters

Correct 0.98 0.96 1.00 0.98 0.98 1.00
Wrong 0.04 0.06 0.04 0.02 0.04 0.04

(Average) 0.51 0.51 0.52 0.50 0.51 0.52

2.4 Deductively Verifiable Chain-of-Thought Reasoning

In this section, we introduce our specific approaches to performing deductive verification

of reasoning chains. Specifically, we first introduce our motivation and method for decomposing

a deductive verification process into a series of step-by-step processes, each only receiving

contexts and premises that are necessary. Then, we propose Natural Program, a natural

language-based deductive reasoning format, to facilitate local step-by-step verification. Finally,

we show that by integrating deductive verification with unanimity-plurality voting, we can

improve the trustworthiness of reasoning processes along with final answers. An overview of our

approach is illustrated in Fig. 2.1 and Fig. 2.2.

2.4.1 Decomposition of Deductive Verification Process

Given a reasoning chain S = (s1,s2, · · · ,sn), a straightforward idea to verify its deductive

validity is to ask LLMs to examine the entire reasoning chain at once. We thus conduct a

preliminary experiment: for a dataset problem and its reasoning chain S generated by ChatGPT,

we instruct ChatGPT to determine whether there exists any mistake among any reasoning step

in S. Note that the model does not need to output the specific reasoning step that is mistaken,

and only needs to output an overall ”yes/no”. However, as demonstrated in Tab. 2.2, ChatGPT

12



struggles at finding out mistaken reasonings, and it persistently outputs ”Correct” for most

reasoning chain queries regardless of their actual validity.

We conjecture that such phenomenon is caused by the abundance of irrelevant premise

for each reasoning step. Recall that a premise pi for a reasoning step si consists of the question

Q, the question context C, along with the prior reasoning steps s≤ j = {s j : j < i}. For Q

and C, we can further extract and decompose Q∪C into a set of “question-related premises”

QC = {qc1,qc2, · · · ,qcm}, where qci is a premise or condition inferred from Q∪C. Then, it is

often the case that most elements of pi = QC∪ s≤ j are irrelevant to the validity of si, leading to

erroneous language model. An example is illustrated in Appendix. A very recent work [110]

also observes a similar phenomenon where LLMs are easily distrcted by irrelevant context.

Therefore, we propose to decompose the reasoning chain verification process into a

series of step-by-step processes, each receiving only the premises that are necessary. Recall that

the validity of the entire reasoning chain is defined as V (S) = ∧M
i=1V (si), so we can naturally

decompose V (S) into {V (si)}. For each si ∈ S, we would like to ensure that it explicitly lists the

minimal subset of premises p̄i ⊆ pi necessary for its deductive reasoning. This motivates us to

introduce a natural-language based deductive reasoning format in Sec.2.4.2.

2.4.2 Natural Program Deductive Reasoning Format

As previously mentioned in Sec. 2.4.1, we desire LLMs to output deductive reasoning

processes that can be easily verified by themselves, specifically by listing out the minimal set of

necessary premises pi at each reasoning step si. To accomplish its goal, we propose to leverage

the power of natural language, which is capable of rigorously representing a large variety of

reasoning processes and can be generated with minimal effort. In particular, we introduce

Natural Program , a novel deductive reasoning format for LLMs. More formally, Natural

Program consists of the following components:

• An instruction for models to extract question-related premises QC. We use the following in-

struction: “First, let’s write down all the statements and relationships

13



in the question with labels”.

• A numbered-list of question-related premises, each prefixed with “#{premise number}”.

• An instruction for models to generate the reasoning chain S based on the question-related

premises QC. We use the following instruction: “Next, let’s answer the question

step by step with reference to the question and reasoning process”.

• A list of prefixed reasoning steps Si. The prefix has the following format:

#{number} (by {list of premises used}). Here “number” equals |QC|+ i, and

“list of premises used” consists of numbers from the smallest subset of premises among

QC∪ s≤ j that are used for the deductive reasoning of si. In addition, for the last reasoning

step sm, we ensure that it (1) includes a special tag Final Step; (2) refers to the premise

number of the target question to be answered; (3) explicitly gives the final answer to a

question.

Given that LLM’s reasoning outputs follow the Natural Program format, we can then

verify the deductive validity of a single reasoning step si through the a prompt that consists of

(1) the full descriptions of premises used for the reasoning of si; (2) the full description of si;

(3) an instruction for validity verification, such as “Double-check the reasoning process,

let’s analyze its correctness, and end with "yes" or "no".” Note that through-

out this verification process, we only keep the minimal necessary premise and context for si,

thereby avoiding irrelevant context distraction and significantly improving the validation efficacy.

An illustration of model’s deductive reasoning chain in the Natural Program reasoning

format, along with the corresponding deductive verification process, is presented in Fig. 2.1.

We also illustrate a one-shot prompt for Natural Program in the Appendix, which we use in our

experiments. Through Natural Program, we will show that LLMs are capable of performing

explicit, more rigorous, and more cogent deductive reasoning. Moreover, Natural Program facili-

tates LLMs to more effectively self-verify their reasoning processes, leading to better reliability

14



and trustworthiness in the generated responses.

2.4.3 Integrating Deductive Verification with Unanimity-Plurality
Voting

Given that we can effectively verify a deductive reasoning process, we can naturally

integrate verification with LLM’s sequence generation strategies to enhance the trustworthiness

of both the intermediate reasoning steps and the final answers. In this work, we propose

Unanimity-Plurality Voting, a 2-phase sequence generation strategy described as follows. Firstly,

similar to prior work like [123], we sample k multiple reasoning chain candidates along with

their final answers. In the unanimity phase, we perform deductive validation on each reasoning

chain. Recall that a chain S is validated (i.e., V (S) = 1) if and only if all of its intermediate

reasoning steps are validated (i.e., ∀i,V (si) = 1). For each intermediate reasoning step si, we

perform majority voting over k′ sampled single-step validity predictions to determine its final

validity V (si). We then only retain the verified chain candidates {S : V (S) = 1}. In the plurity

voting stage, we perform majority-based final answer voting among the verified chain candidates.

We will show that our approach improves the reliability and the correctness of final answers.

2.5 Experiments

In this section, we perform evaluations to demonstrate the effectiveness of our Natural

Program-based deductive reasoning verification approach over diverse reasoning datasets. We

first show that by integrating our deductive verification strategy with Unamimity-Plurality Voting

(Sec. 2.4.3), we can simultaneously enhance answer correctness on challenging benchmarks.

Next, we assess the accuracy of our deductive reasoning verification approach on reasoning

chains.

15



2.5.1 Experimental Setup

Benchmarks. We evaluate the deductive verification accuracy and the answer correctness

of reasoning chains over a diverse set of reasoning tasks: arithmetic reasoning, symbol manipula-

tion, and date understanding. For arithmetic reasoning, we utilize the following benchmarks:

1) AddSub [46]; 2) GSM8K [25]; 3) MATH [44]; 4) AQuA [66]. Among these benchmarks, the

AddSub and GSM8K datasets involve middle school-level multi-step calculations to arrive at a

single number as the final answer. The MATH dataset presents more challenging problems that

require expressing the answer as a mathematical expression in LaTeX format. These problems

involve concepts from linear algebra, algebra, geometry, calculus, statistics, and number theory.

AQuA also features similarly challenging problems, except that questions are in a multiple-choice

format. For symbol manipulation, we use Last Letter Concatenation [125], where the model

is tasked with concatenate the last letters of all the words provided in the question. For date

understanding, we use the one from BIG-bench [114]

Deductive verfication evaluation setup. For each of the above benchmarks, we select

100 reasoning chains, where 50 of them are deductively valid and 50 of them exhibit reasoning

mistakes. The ground-truth deductive validity of each reasoning chain is determined by human

annotators. To validate each reasoning step, we follow the format in Natural Program, except

that in different experiments, the premises for a reasoning step si can be the entire pi = QC∪ s≤ j

or only the smallest subset of premises p̄i ⊆ pi necessary.

Answer extraction. To extract answers from reasoning solutions, we first perform text

split based on answer prefix patterns such as ”answer is” or ”option is”. Based on each problem

type, we then use regular expressions to extract the final answer. To extract the validity results

from deductive verification processes, we only keep the last sentence of model response. Then,

we extract the validity answer with regular expressions to obtain attitude words, e.g., ”yes” or

”no”. Sometimes, the language models may not provide a direct answer and instead output

phrases like ”not applicable” at the end of the response. In such cases, we set the answer from

16



Table 2.3. Final answer accuracy comparison on GPT-3.5-turbo (ChatGPT).

Arithmetic Commonsense

Methods GSM8K AQuA MATH∗ AddSub Date Last Letters

CoT + Voting 87.62% 53.18% 35.93% 92.36% 69.97% 81.60%
Faithful CoT + Voting 75.80% 53.50% 31.78 88.35% 73.50% -

Ours (Natural Program + NP + UPV) 87.05% 70.34% 36.75% 93.67% 72.49% 92.98%

the model as ”yes”. Please refer to Appendix for more details.

Model. We conduct our main experiments with GPT-3.5-turbo (ChatGPT) [94]. We

also present results for the LLama model-family [121]) in Appendix. For ChatGPT, we use a

generation temperature of T = 0.7. For Unanimity-Plurality Voting, we set k = 10 and k′ = 3 by

default. We use 1-shot prompting for both reasoning chain generation and deductive verification

(except reasoning chain generation for the date understanding task where we use 2-shot). See

Appendix for more details.

2.5.2 Results

Answer correctness. Following Sec. 2.4.3, we integrate our Natural Program (NP)-

based deductive verification approach with Unanimity-Plurality Voting (UPV) with the hope of

improving the reliability and correctness of final answers. As a reference, we also report the

performance of Chain-of-Thought (CoT) [125] and Faithful CoT [78] on different reasoning

tasks. For these baselines, we perform simple answer-based majority voting with k = 10 for

fair comparison. Results are shown in Tab. 2.3. Though our major goal is to improve the

trustworthiness and reliability of deductive reasoning, we also observe on-par or better final

answer accuracy than baselines over reasoning tasks, demonstrating the effectiveness of our

approach.

Reasoning chain deductive verification accuracy. We then evaluate the reasoning chain

verification accuracy of our approach introduced in Sec. 2.4. A higher verification accuracy

reflects better model reliability and trustworthiness. Results are shown in the second row of

17



Table 2.4. Deductive verification accuracy of reasoning chains for GPT-3.5-turbo (ChatGPT).
To validate each reasoning step, we follow the format of our Natural Program, except that we
either use the full premises pi = QC∪S≤ j or the minimal subset of premises p̄i ⊆ pi necessary.
For each dataset, we randomly sample 50 reasoning chains that are deductively valid and 50
reasoning steps exhibiting incorrect reasonings.

Premise Context Reasoning Correctness GSM8K AQuA MATH AddSub Date Last Letters

Full Premises
Correct 64% 54% 58% 95% 26% 96%
Wrong 56% 68% 56% 24% 76% 5%

Minimal Premises
Correct 84% 72% 70% 95% 90% 96%
Wrong 84% 62% 76% 40% 56% 6%

Tab. 2.4. We observe that our approach exhibits good reasoning verification accuracy across most

datasets. Notably, our approach is capable of identifying erroneous reasoning in many faulty

reasoning chains, while maintaining a low rate of false positives for reasoning chains that are

already valid. Though, our approach’s efficacy is limited on tasks such as “Last Letters”. We

hypothesize that this is due to the nature of the task, where each subsequent reasoning step is

conditioned on all previous steps. This results in a significant number of dependent premises for

later steps, presenting greater challenges for reasoning verification.

Ablation Study. In addition, we perform several ablation studies to gain further insights

into our approach. In Tab. 2.4, we compare two different approaches to verify a single reasoning

step si ∈ S following our Natural Program format. The first approach utilizes all of pi for

verification regardless of their relevance to si, potentially introducing irrelevant contexts. The

second approach follows our design in Sec. 2.4.1 and only includes the necessary context

and premises for si. We observe that removing irrelevant premises significantly improves the

reasoning chain verification accuracy on many datasets, highlighting the importance of this

technique.

We also ablate on our Unanimity-Plurality Voting strategy by investigating the impact

of different k′. Recall that k′ determines the number of votes to produce validity predictions of

single-step reasoning. Results are shown in Tab. 2.5. We observe that increasing k′ generally

enhances reasoning validation accuracy, though we note that this is at the expense of more

18



Table 2.5. Impact of different values of k′ on the verification accuracy of reasoning chains
using our Unanimity-Plurality Voting strategy. Experiments are performed on AddSub using
GPT-3.5-turbo (ChatGPT).

Answer Correctness k′ = 1 k′ = 3 k′ = 5 k′ = 10

Correct 86% 90% 90% 92%

Wrong 38% 38% 38% 40%

Table 2.6. ChatGPT generates the correct final answer but provides incorrect premise numbers
for grounding the first reasoning step. In ”Step 1”, the correct premise numbers should be #1
and #2 for deduction. Our deductive reasoning verification approach effectively identifies these
reasoning errors, enhancing the trustworthiness of the reasoning process. It is worth noting that
removing a correct answer from the candidate reasoning chains can slightly impact the overall
final answer correctness.

Question: In March it rained 0.81 inches. It rained 0.35 inches less in April than in March.
How much did it rain in April?
Ground Truth: It rained 0.81 - 0.35 = 0.46 inches.

GPT-3.5-turbo (ChatGPT):
Question-related premises:
#1. It rained 0.81 inches in March.
#2. It rained 0.35 inches less in April than in March.
#3. How much did it rain in April?
The first reasoning step:
#4. (by #2) Step 1: Calculate how much it rained in April by subtracting the difference of 0.35
inches from the amount in March.
Amount of rain in April: 0.81 - 0.35 = 0.46 inches

compute.

Qualitative Analysis. We perform qualitative analysis to illustrate the effectiveness of

our deductive reasoning verification framework. Tab. 2.6 shows an example, where ChatGPT

generates the correct final answer but provides incorrect premise numbers to ground the first

reasoning step. We note that for many of such cases, our approach effectively identifies these

reasoning errors, thereby enhancing the reliability and trustfulness of LLM’s reasoning processes.

Though, it is worth noting that since we remove a correct answer from the candidate reasoning

chains, this has a slightly negative impact on the overall final answer correctness.

19



Table 2.7. The term ”pennies” in this question can be interpreted as either a type of coin or a
unit of currency. In this particular question, ”pennies” is treated as a type of coin. However, the
initial reasoning step by ChatGPT mistakenly treats ”pennies” as a unit of currency, resulting
in the conversion of all Melanie’s money into ”pennies” (highlighted in red). Consequently, all
subsequent reasoning steps follow this flawed logic, leading to an incorrect reasoning trace. Our
deductive verification is not yet able to detect such errors.

Question: Melanie had 10 quarters and 17 pennies in her bank. Her dad gave her 27 pennies
and her mother gave her 19 pennies. How many pennies does Melanie have now?
Ground Truth: Melanie have 17 + 27 + 19 = 63 pennies.

ChatGPT’s reasoning step:
#5. (by #1) Step 1: Calculate the number of pennies Melanie had initially.
Number of pennies in 10 quarters: 10 * 25 = 250
Number of pennies initially: 250 + 17 = 267

2.6 Additional Results

2.6.1 Zero-Shot vs. Few-Shot Full Reasoning Chain Verification Without
Step-by-Step Decomposition or Natural Program Format

In Table 2 and Section 4.1, we demonstrated the impracticability of zero-shot verification

of a complete reasoning chain S without decomposition. To complement this result, we conduct

a few-shot reasoning chain verification experiment. We use two-shot examples generated by

GPT-4, where one example verifies a correct reasoning chain and another example verifies an

incorrect reasoning chain. However, as shown in Tab. 2.8, the verification accuracy is 50% for

most datasets, and GPT-3.5 tends to output ”yes” for the correctness of deductive reasoning

all the time. Thus, it’s still challenging to directly verify complex reasoning chains without

decomposing them into step-by-step processes, even with two-shot demonstrations.

2.6.2 Zero-Shot vs. One-Shot Deductive Verification with Step-by-Step
Decomposition and Natural Program Format

In this section, we conduct an ablation study where we use zero-shot vs. one-shot

prompting for the deductive verification of reasoning chains using the process we introduced

in Section 4.2 and Figure 1 of the main paper. In our one-shot prompting example (which is

20



Table 2.8. Comparison of reasoning chain verification accuracy for GPT-3.5-turbo with
zero / two-shot prompting. The entire reasoning chain is verified at once without step-by-
step decomposition and without our Natural Program (complementing our results in Table 2 of
the main paper). For each of the 6 datasets, we perform Chain-of-Thought (CoT) prompting
and randomly sample 50 resulting reasoning chains providing correct answers and 50 reasoning
chains providing wrong answers for verification.

Prompting Reasoning Correctness GSM8K AQuA MATH AddSub Date Last Letters

Zero-shot
Correct 0.98 0.96 1.00 0.98 0.98 1.00
Wrong 0.04 0.06 0.04 0.02 0.04 0.04

(Average) 0.51 0.51 0.52 0.50 0.51 0.52

Two-shot
Correct 0.98 0.96 1.00 0.92 1.00 0.96
Wrong 0.02 0.04 0.0 0.06 0.26 0.06

(Average) 0.50 0.50 0.50 0.49 0.63 0.51

Table 2.9. Comparison between zero-shot and one-shot accuracy of deductive verification
for GPT-3.5-turbo (ChatGPT) with step-by-step decomposition and Natural Program format.
For each dataset, we randomly sample 50 reasoning chains that are deductively valid and 50
reasoning steps exhibiting incorrect reasonings.

Method Reasoning Correctness GSM8k AQuA MATH AddSub Date Last Letters Overall

Zero-shot
Correct 84% 78% 90% 96% 90% 12% 75%
Wrong 26% 12% 28% 20% 20% 80% 31%

(Average) 55% 45% 59% 58% 55% 46% 53%

One-shot
Correct 84% 72% 70% 95% 90% 96% 85%
Wrong 84% 62% 76% 40% 56% 6% 54%

(Average) 84% 67% 73% 68% 73% 51% 69%

also used in our main paper), for more effective verification, we prompt the model to check the

deductive validity from three perspectives: ungrounded information, erroneous reasoning, and

wrong calculation. Any failure from any of these perspectives results in failure in verification

result.

The zero-shot vs. one-shot comparison results are shown in Table 2.9. We observe that

our one-shot prompt significantly improves the deductive verification accuracy. Notably, we

discover many more reasoning errors for reasoning chains containing mistakes, while maintaining

a low rate of false positives among reasoning chains that are already correct.

21



2.6.3 Deductive Verification with Vicuna Models

We further explore the efficacy of deductive verification for open-source models. We

select two popular models: Vicuna-7B and Vicuna-13B [22]. These models are fine-tuned

versions of LLaMA-7B and LLaMA-13B [121] using the ShareGPT data1. We use the same

one-shot verification method we used in Appendix 2.6.2 and Table 4 of the main paper. Results

are shown in the first and the third rows of Table 2.10. We observe for the original Vicuna models

without finetuning, Vicuna-7B exhibits poor performance in deductive verification and fails to

find out reasoning mistakes, while the larger Vicuna-13B exhibits better verification accuracy.

We therefore conduct an additional experiment to investigate if the verification accuracy of

Vicuna models can be improved by fine-tuning. To this end, we generate a deductive verification

dataset, which consists of 2000 reasoning steps evenly distributed between correct and incorrect

categories. We automatically generate this dataset using GPT-3.5-turbo since it exhibits a very

high accuracy of single-step verification. We first use GPT-3.5-turbo to generate solutions for

problems in GSM8K’s training set. We then execute step-by-step deductive verification on these

solutions using GPT-3.5-turbo. For solutions that result in correct final answers, we retain the

reasoning steps that pass deductive verification. For solutions that yield incorrect final answers,

we retain the reasoning steps that cannot pass deductive verification. After constructing our

dataset, we then fine-tune the Vicuna models using the verifications of the 2000 reasoning steps.

Models were fine-tuned with 4 A100-80GB over 3 epochs. Training parameters are shown in

Table 2.11.

As shown in Tab. 2.10, we observe that fine-tuning with our dataset can enhance the

deductive verification accuracy of Vicuna models not only on the dataset where the training

dataset is constructed (GSM8K), but also on many other datasets. However, the accuracy is still

worse than non-finetuned GPT-3.5, which suggests that model capacity has a significant impact

on deductive verification capabilities.

1https://github.com/domeccleston/sharegpt

22



Table 2.10. One-shot Deductive Verification Accuracy of Vicuna-7B and Vicuna-13B. The
models are evaluated without finetuning or with finetuning on our deductive verification dataset.
For each dataset, we randomly sample 50 reasoning chains that are deductively valid and 50
reasoning steps exhibiting incorrect reasonings.

Models Reasoning Correctness GSM8K AQuA MATH AddSub Date Last Letters Overall

Vicuna-7B
Correct 80% 86% 96% 98% 96% 80% 89%
Wrong 14% 22% 16% 6% 20% 34% 19%

(Average) 47% 54% 56% 52% 58% 57% 54%

Vicuna-7B
(fine-tuned)

Correct 68% 48% 46% 76% 46% 32% 53%
Wrong 72% 86% 54% 60% 72% 68% 69%

(Average) 70% 67% 50% 68% 61% 50% 61%

Vicuna-13B
Correct 86% 82% 92% 96% 72% 74% 84%
Wrong 32% 36% 20% 20% 34% 30% 29%

(Average) 59% 59% 56% 58% 53% 52% 57%

Vicuna-13B
(fine-tuned)

Correct 74% 50% 56% 86% 72% 12% 58%
Wrong 72% 76% 72% 68% 62% 96% 74%

(Average) 73% 63% 64% 77% 67% 54% 66%

GPT-3.5
Correct 84% 72% 70% 95% 90% 96% 85%
Wrong 84% 62% 76% 40% 56% 6% 54%

(Average) 84% 67% 73% 68% 73% 51% 69%

Table 2.11. Hyperparameters for finetuning Vicuna models with our deductive verification
dataset.

Hyperparameters Value

Optimizer AdamW
Learning rate 1×10−5

Weight decay 0.00
Num epochs 3

Batch size 64
Learning rate schedule Linear

2.7 Additional Implementation Details

In this section, we describe our process to extract the final answer from language models’

responses. The process begins by selecting the last three non-empty lines. Then, these lines are

processed through the following pipeline:

23



1. Firstly, we use a list of regular expressions to identify ”No-Answer” patterns within the

text, such as ”we cannot answer (this—the) question”. This process helps us ascertain

whether the model can provide a conclusive answer. If any such patterns appear in the text,

we mark ”No answer!” as the final answer. However, if we don’t detect these patterns, we

proceed to the next steps for extracting the final answer.

2. Secondly, if any ”Answer-Split” patterns are found in the text, we divide the text into

several blocks using the identified pattern. The last block of text is then utilized for

extracting the answer.

3. Lastly, we use regular expressions, as outlined in Tab. 2.12, to scan the remaining text for

possible final answers. If multiple matches are found for the pattern, we select the first

match as the final answer. If no pattern matches are found in the remaining text, we default

the final response to ”No answer!”.

“No-Answer” Patterns: ”we cannot provide an answer to this question with (this|the)

given information”, ”we cannot answer (this|the) question”, ”we cannot determine”, ”we can’t

determine”, ”we do not have enough information to answer (this|the) question”, ”we do not have

enough information to provide a definitive answer to (this|the) question”, ”the answer(.*?)is

unknown”, ”answer is not listed among the answer choices”.

“Answer-Split” Patterns: ”answer is”, ”final answer:”, ”answer to the question is”,

”answer to this question is”, ”concatenated letters are”, ”concatenate the letters -”, ”The answer

of ”.

2.8 Limitations

While we have demonstrated the effectiveness of Natural Program-based deductive

reasoning verification to enhance the trustworthiness and interpretability of reasoning steps and

final answers, it is important to acknowledge that our approach has limitations. In this section,

24



Table 2.12. Regular Expression for extracting the final answers of different kinds of questions.

Answer Type Regular Expression

Number (-?\d[\d,\. ]*)
Fractional number (-?\(\d+\/\d+\)\/\d+|-?\d+\/\d+)

Date (\d\d\/\d\d\/\d\d\d\d)
Yes or No (?:Yes|No|yes|no|NO|YES)

we analyze a common source of failure cases to gain deeper insights into the behaviors of our

approach. The failure case, as shown in Tab. 2.7, involves the ambiguous interpretation of the

term “pennies,” which can be understood as either a type of coin or a unit of currency depending

on the context. The ground truth answer interprets “pennies” as coins, while ChatGPT interprets

it as a unit of currency. In this case, our deductive verification process is incapable of finding

such misinterpretations. Contextual ambiguities like this are common in real-world scenarios,

highlighting the current limitation of our approach.

2.9 Conclusion

In this paper, we aim to enable Large Language Models (LLMs) to perform explicit and

rigorous deductive reasoning while ensuring the trustworthiness of their reasoning processes

through self-verification. To this end, we have proposed a novel framework based on “Natural

Program”, a natural language-based deductive reasoning format that facilitates reasoning ver-

ification and can be easily generated through in-context learning. Within this framework, we

decompose the verification process of complex reasoning chains into step-by-step subprocesses

that focus solely on necessary context and premises, allowing us to significantly enhance the

accuracy of verification. Additionally, we introduce a Unanimity-Plurality Voting strategy to fur-

ther improve verification accuracy and simultaneously enhance the correctness of final answers

in complex reasoning tasks. Experimentally, we demonstrate the superiority of our framework in

improving the rigor, trustworthiness, and interpretability of reasoning steps and answers.

25



Acknowledgements

Chapter 2, in full, is a reprint of the material published in the 2023 Neural Information

Processing Systems (NeurIPS): “Deductive Verification of Chain-of-Thought Reasoning” (Zhan

Ling*; Yunhao Fang*; Xuanlin Li; Zhiao Huang; Mingu Lee; Roland Memisevic; Hao Su). The

dissertation author was the primary investigator and author of this paper.

26



Chapter 3

Language Model As Hierarchical Policy
For Improved Exploration on
Challenging Problem Solving

Large Language Models (LLMs) have achieved tremendous progress, yet they still often

struggle with challenging reasoning problems. Current approaches address this challenge by

sampling or searching detailed and low-level reasoning chains. However, these methods are

still limited in their exploration capabilities, making it challenging for correct solutions to stand

out in the huge solution space. In this work, we unleash LLMs’ creative potential for exploring

multiple diverse problem solving strategies by framing an LLM as a hierarchical policy via

in-context learning. This policy comprises of a visionary leader that proposes multiple diverse

high-level problem-solving tactics as hints, accompanied by a follower that executes detailed

problem-solving processes following each of the high-level instruction. The follower uses each

of the leader’s directives as a guide and samples multiple reasoning chains to tackle the problem,

generating a solution group for each leader proposal. Additionally, we propose an effective and

efficient tournament-based approach to select among these explored solution groups to reach the

final answer. Our approach produces meaningful and inspiring hints, enhances problem-solving

strategy exploration, and improves the final answer accuracy on challenging reasoning datasets

across different domains, such as the MATH dataset and the STEM subjects from MMLU.

27



3.1 Introduction

Large language models (LLMs) [13, 23, 121, 91] have demonstrated remarkable poten-

tial across a myriad of disciplines such as common sense understanding [43, 114] and code

generation [17, 61]. Yet, LLMs often struggle with challenging reasoning tasks, such as writing

mathematical proof and solving advanced reasoning problems. These tasks are inherently cre-

ative, as the path to a solution isn’t immediately evident, requiring the exploration of numerous

problem-solving tactics before discovering a successful path towards the end goal.

While recent works have investigated enhancing LLMs’ exploration ability in problem

solving through sampling and search [123, 133, 10], these approaches still exhibit consider-

able limitations. Before we describe such limitations, let’s think of how humans approach

mathematical proofs: one typical methodology is that we begin by connecting the target proof

statement to our prior experiences such as proofs with similar routines (e.g., divide-and-conquer)

or relevant techniques (e.g., root-finding). From this reservoir of knowledge and familiarity,

humans try multiple “high-level” proof tactics that possess the potential to reach the goal, and

subsequently develop detailed “low-level” proof details based on them. It should be noted that

the quality of “high-level” strategies and thinking processes can exert a substantial impact on the

effectiveness, efficiency, and likelihood of successfully solving these problems, as illustrated

in Tab. 3.1. In cognitive science, such advanced higher-order thinking skills are referred to as

Metacognition [30, 84, 9]. It is widely acknowledged that metacognition ability leads people to

effective problem-solving strategies and successful task completion [117, 2].

Compared to human exploration of complex problem solution spaces, the aforementioned

sampling and search methods in NLP have primarily focused on delving into the detailed, “low-

level” reasoning steps, often overlooking the “high-level” strategies and cognitive processes.

We, therefore, aspire to unleash LLMs’ potential for creative exploration of high-level tactics

and hints, enabling them to tackle challenging reasoning problems with similar ingenuity and

proficiency as humans.

28



To this end, we draw inspiration from the concept of a “hierarchical policy” in the

decision-making literature [7, 64, 55], and we propose to define LLM as a hierarchical policy

for problem solving, which consists of a visionary high-level leader policy and a low-level

follower policy. In our framework, the high-level leader establishes connections between the

target problem and the LLM’s extensive knowledge and prior problem-solving experiences. It

leverages this information to propose various high-level problem-solving tactics and directions

for exploration. The low-level follower policy then utilizes each of these hints as an in-context

guidance throughout the detailed step-by-step problem-solving processes. Furthermore, we

desire implementations of this idea to be achieved through minimal effort. Indeed, this can be

achieved by leveraging off-the-shelf pretrained LLMs and in-context learning. Finally, after

we obtain an array of diverse reasoning chains through LLM’s creative exploration process, we

propose an effective and efficient tournament-based method to select among these chains to

reach the final answer. An overview of our approach is shown in Fig. 3.1.

Experimentally, we demonstrate that our high-level leader policy is capable of exploring

and producing meaningful and inspiring hints and guidance for the low-level follower policy,

thereby making it easier for correct reasoning chains and answers to stand out. Our reasoning

chain selection approach effectively identifies desired reasoning chains, enhancing the final

answer accuracy on challenging reasoning tasks. Our key contributions are as follows:

1. To effectively explore expansive solution spaces in complex problems, we propose

framing language models as a hierarchical policy, encompassing both “high-level” and “low-level”

cognitive processes, facilitating a more efficient exploration of distinct high-level ideas.

2. Within our hierarchical policy, we present two effective approaches for the visionary

high-level leader to generate diverse tactics and hints that guide the low-level follower during

exploration.

3. We propose an effective and efficient tournament-based approach for selecting desired

reasoning chains among those generated during exploration, facilitating the attainment of the

final answer.

29



Language Model

Compute the sum of
roots: !! + 2 = 3!

Quadratic Formula

Vieta’s Formula

Factorization Method

! High-level Thoughts

…

…

! ⋅ # Low-level
Reasoning Chains

…

…

…

…

…

Majority
Voting

A
nsw

ers

High-level Leader Low-level Follower

…

…

! Group-Majority Answers

Tournam
ent

Answer Selection

Figure 3.1. Overview of our approach, which frames language models as a hierarchical policy
for exploration. The visionary high-level leader connects the target problem with the LLM’s
knowledge, proposing multiple diverse tactics and hints for exploration. The low-level follower
leverages these hints as in-context guidance to execute detailed problem-solving processes.
Finally, we employ an tournament-based approach to select the desired reasoning chains and
reach the final answer.

4. Experimentally, we demonstrate that our approach produces high-level hints and

guidance that are meaningful and inspiring, enhances problem-solving strategy exploration, leads

to better discovery and visibility of correct solutions, and improves the final answer accuracy on

challenging reasoning problems across different datasets and domains, such as MATH and the

STEM subjects from MMLU.

3.2 Related Work

Reasoning and Exploration with Language Models. Recent large language models

(LLMs) have demonstrated remarkable potentials in solving complex reasoning tasks. A key

strategy is to encourage LLMs to generate detailed step-by-step reasoning processes through

in-context learning techniques, including but not limited to Chain-of-Thought (CoT) prompt-

ing [125] and numerous other approaches [54, 144, 141, 113, 123, 145, 75, 143, 134]. For many

challenging reasoning tasks such as mathematical problem solving, proof writing, and inductive

reasoning, it is often challenging for LLMs to obtain the correct solution in a single attempt.

Therefore, to further enhance LLMs’ problem solving capabilities, it is highly beneficial to

encourage LLMs to search and explore over diverse problem-solving strategies and reasoning

30



Table 3.1. An example problem from the MATH dataset, which can be solved through two
distinct high-level approaches: (1) Identify when the discriminant is a perfect square; (2) Apply
Vieta’s formulas and the factorization trick. The first high-level approach does not effectively
reduce the problem into a simpler form, as solving for all a where a2 −20a is a perfect square
remains a highly challenging task, which causes the problem solving process to become stuck.
Conversely, adopting the second strategy leads to an elegant solution.

Question: For how many integer values of a does the equation x2 +ax+5a = 0 have integer solutions
for x?
Ground Truth Solution (High level approach: Vieta’s Formulas + Factorizing Trick): Suppose
the roots of the quadratic are given by m and n. Note that (x−m)(x−n) = x2 − (m+n)x+mn = x2

+ax+5a, and setting coefficients equal, it follows that m+n =−a and mn = 5a (This also follows
directly from Vieta’s formulas.) Notice that the a can be canceled by either dividing or noting that 0
= 5a+5 · (−a) = mn+5(m+n). Simon’s Favorite Factoring Trick can now be applied: mn+5m+
5n+25 = (m+5)(n+5) = 25. It follows that m+5 and n+5 are divisors of 25, whose pairs of
divisors are given by ±{(1,25),(5,5),(25,1)}. Solving, we see that (m,n) is in the set {(−4,20),
(0,0),(20,−4),(−6,−30),(−10,−10),(−30,−6)}. However, the two pairs of symmetric solutions
yield redundant values for a, so it follows that the answer is 4.

Example Reasoning from GPT-4 (High level approach: Discriminant is a perfect square):
First, we note that the discriminant of a quadratic equation must be a perfect square for the roots of
the equation to be integers. The discriminant of our equation x2 +ax+5a = 0 is a2 −20a. Setting
this equal to k2 for some integer k, we get a2 −20a− k2 = 0. This is a quadratic equation in a, and
its roots are a = 10±

√
100+ k2. Again, for a to be an integer,

√
100+ k2 must be an integer. Let√

100+ k2 = m. Then m2 = 100+ k2 =⇒ k2 = m2 −100. This means that m2 −100 must be a
perfect square. The possible values of m which satisfy this condition are m = 10,11,12,13,14,15,
20. For each of these 7 values of m, we get 2 values of a (one with the + sign and one with the −
sign). However, we have to be careful with m = 10, because in this case k = 0, and we get only one
value of a = 10. So, the total number of integer values of a for which the equation x2 +ax+5a = 0
has integer solutions for x is 2×6+1 = 13.

steps. Recent works like [11, 118, 132, 27] perform step-by-step search to construct deductive

natural language proofs given premises. [123] samples and explores multiple reasoning chains,

then performs majority voting to obtain the final answer. [128, 65, 67] introduce verification

filtering to the reasoning chain exploration. [133] and [10] perform tree-based and graph-based

search over reasoning steps with backtracking and refinement. However, much prior work limits

reasoning exploration to specific and detailed reasoning steps, and the high-level strategies and

thinking processes are often overlooked. In this study, we frame LLMs as hierarchical policies,

enhancing problem-solving by exploring diverse high-level strategies and tactics.

Hierarchical Policy. The concept of hierarchical policy was originally proposed in rein-

31



How many whole numbers 
less than 18632  are 
congruent to 23 (mod 37)?

Question

Counting Principles

High-Level Thought 2

See Appendix.

Prompt

Modular Arithmetic

High-Level Thought 1

See Appendix.

Prompt

To find the number of whole 
numbers less than 18632 that are 
congruent to 23 (mod 37), we need to 
find the largest multiple of 37	
that is less than 18632	 and then 
count the number of multiples of 
37 up to that number.

The largest multiple of 37	 less 
than 18632 is 37 ⋅ 503 = 18611.

To find the number of multiples of 
37 up to $18611$, we can divide 
18611 by 37. We get !"#!!$% = 503.

Therefore, there are 123 whole 
numbers less than 18632	 that are 
congruent to 23 (mod 37).

Low-level Reasoning Chain 1

To find the whole numbers less than 18632	
that are congruent to 23 (mod 37) , we need to 
find the largest multiple of 37 that is less 
than 18632 and then count the number of 
multiples of 37 that are less than or equal 
to this largest multiple.

The largest multiple of $37$ that is less 
than 18632 is 37×502 = 18674, since 37×503 =
18611	 is less than 18632.

Now we need to count the number of multiples 
of $37$ that are less than or equal to 18674 . 
To do this, we divide 18674 by 37 and round 
down to the nearest whole number:

!"#%&
$% = 502 .

Therefore, there are 126 whole numbers less 
than $18632$ that are congruent to 23 (mod 37).

Low-level Reasoning Chain 2

We want to count the number of 
whole numbers less than $18632$ 
that are congruent to 23 (mod 37). 

To solve this, we can start by 
finding the smallest whole 
number that is congruent 
to 23 (mod 37). This can be done 
by finding the remainder when 23 
is divided by 37. Since 23 < 37 , 
the number itself is congruent 
to 23 (mod 37). 

...... (too long)

Therefore, there are 89:	 whole 
numbers less than 18632 that are 
congruent to 23 (mod 37).

Low-level Reasoning Chain 1

To find the whole numbers less 
than 18632 that are congruent 
to 23 (mod 37), we can start by 
finding the smallest whole 
number that is congruent to
23 (mod 37). This can be done by 
adding multiples of 37 to 23 
until we reach a number greater 
than 18632.

...... (too long)

Therefore, there are 8;9 whole 
numbers less than 18632 that are 
congruent to 23 (mod 37).

Low-level Reasoning Chain 2

Question:
How many three-digit 
positive integers < satisfy 
39=8 + 89: ≡ (mod 63)?

Answer:
{Ground truth answer from 
MATH training dataset}

High-Level Thought X

High-level thoughts
can also be a retrieved
QA example

Substitution

Figure 3.2. A detailed illustration of our approach that frames language models as a hierarchical
policy for exploration. In this example, “Modular Arithmatic” is highly relevant to the target
question, and the low-level follower successfully finds the correct answer in some generated
reasoning chains. On the other hand, “Counting Principles” is irrelevant to the target question,
and the low-level follower struggles to reach the correct solution. Later, we propose an effective
and efficient approach to select the desired reasoning chains from those generated by the low-
level follower.

forcement learning (RL) and imitation learning (IL) as a multi-level decision-making approach

to tackle complex, long-horizon tasks [7, 64, 55, 90, 42, 99]. In hierarchical RL, a high-level

policy proposes latent features and subgoals that guide low-level policy actions. Prior work

has also investigated enhancing the exploration abilities of hierarchical policies [59, 37, 98, 48].

However, few prior works has framed LLMs as hierarchical policies through in-context learning

to improve their exploration capabilities in problem solving, which is the main focus of our work.

3.3 Language Model as a Hierarchical Policy for Explo-
ration

A natural language reasoning process can be defined as a tuple (Q,T,A), where Q is

the target question; A is the ground-truth answer in the format of a number, an answer choice,

32



or a statement to proof or conclude; T is the set of locally-valid reasoning chains that reach

the ground-truth answer, i.e., T = {τ = (τ1,τ2, . . . ,τs) : valid(τ) = 1,τ1 = Q,τs = A}. A large

language model (LLM), denoted as π , takes a question Q and a prompt P as input to generate

a step-by-step reasoning chain τ = π(P,Q) that attempts to solve the problem. In the quest to

improve LLMs’ exploration abilities in problem solving, much prior work focuses on exploring,

sampling, and searching for specific reasoning steps [123, 133, 10]. Yet, these methods tend

to neglect the higher-order cognitive processes inherent in human problem solving. Successful

problem-solving often relies on a guiding strategy and hint, and overlooking this aspect could

potentially lead to inefficient and ineffective exploration.

To address these limitations, we propose to formulate LLM as a hierarchical policy

π = (πhigh,πlow) for problem solving through in-context learning. Following the convention

of Markov Decision Process, π , πhigh, and πlow are probabilities over token sequences. The

visionary high-level leader policy πhigh takes in a question Q and a prompt Phigh as input and

returns a set of possible high-level tactics and hints H = {h1 . . .hn}, where H ∼ πhigh(Phigh,Q)

(we emphasize that a sample from πhigh returns a tactic set instead of a single tactic; we will also

use tactic / hint interchangably from here on). Then, the low-level follower policy πlow utilizes

each hi as an in-context guidance to execute specific problem-solving processes by sampling

or searching reasoning chains, yielding a group of reasoning chains Ti = {ti,1, . . . , ti,m}, where

ti, j ∼ πlow(hi,Q).

To instantiate our hierarchical approach, there are two crucial design components we

need to address: (1) How to encourage the leader πhigh to generate appropriate tactics and hints

H that serve as the guidance for the follower πlow; (2) Given groups of reasoning chains {Ti}n
i=1

generated by πlow, how to effectively and efficiently choose the desired reasoning chains to

obtain the final answer.

Generating high-level tactics and hints for exploration. Given a question Q, our goal

is to encourage the leader πhigh to effectively establish the connection between Q and relevant

language model knowledge, from which it proposes high-level hints and directions that holds

33



significant potential for reaching the goal. We would also like to limit irrelevant hints that

potentially mislead the low-level policy, since previous work [110] has shown that LLMs can

be brittle to irrelevant context. We therefore propose two approaches for πhigh to generate

high-level problem-solving tactics and hints (an illustration in Fig. 3.2):

(a) Prompt an LLM, such as GPT-4, to generate a list of relevant techniques and concepts

for a target question. We aim for these hints to be clear, concise, and easily interpretable, e.g.,

“Angle Bisector Theorem”, “Minimization with Derivatives”, such that they can serve as effective

guidance for the low-level policy πlow. See Appendix for detailed prompts.

(b) Use a sequence-embedding language model, such as SentenceBERT [102], to retrieve

a set of relevant problems with their step-by-step solutions. Each relevant problem and solution

then inspires πlow to utilize similar tactics and strategies when exploring and generating reasoning

chains.

Probablistic Interpretation: Next, we build a connection between our method and

hierarchcial policies in the Markov Decision Process (MDP) framework, and we use the MDP

framework to explain the improved exploration ability. To make it intuitive, we use Fig. 3.3 to

illustrate the idea. In the low-level reasoning chain space T = {t1, t2, . . .} given Q, we group

reasoning chains based on the high-level tactics they employ. For example, t1,1 and t1,2 both

employ tactic h1. Here, the size of the region corresponds to the marginal conditional probability

of h given Q when we sample the low-level reasoning chain without providing a high-level

tactic prompt. We denote this marginal probability as Pr(h|Q). Note that the tactic with the

highest Pr(h|Q) may not necessarily lead to the correct reasoning chains. This should not be

counter-intuitive, especially for hard reasoning problems that require out-of-the-box thinking.

In practice, for a specific reasoning question that receives an incorrect answer from GPT-3.5/4,

we have observed that the generated reasoning chains frequently rely predominantly on a single

tactic. Instead, our leader-follower strategy takes two steps to generate the low-level reasoning

34



Reasoning Chain Space

h1 h2

h3

…

t1,1

t1,2

t2,1
t2,2

t ,1
t ,2

3
3

Figure 3.3. Illustration of the partitioning of the reasoning chain space based on the high-level
tactics employed in the solution.

chain, which can be formulated using the marginal probability formula:

Pr(A|Q) = ∑
h

Pr(A|h,Q) ·Unif(h ∈ H) ·Pr(H|Q)

Here, Pr(A|h,Q) corresponds to πlow, Pr(H|Q) corresponds to πhigh, and Unif(h ∈ H) denotes a

unform distribution among h ∈ H. Note that Unif(h ∈ H) ·Pr(H|Q) ̸= Pr(h|Q). To illustrate with

Fig. 3.3, suppose H = {h1,h2,h3} and Pr(H;πhigh) = 1, then sampling by Pr(hi|Q) corresponds

to sampling by the area of hi, whereas sampling by Unif(h ∈ H) · Pr(H|Q) corresponds to

uniformly sampling among h1, h2, and h3, i.e., regarding them as if they were having the same

area. For general cases, our strategy samples all the different hints returned by πhigh

with equal probabilities. Our strategy, therefore, aligns with the spirit of common practice in

reinforcement learning to encourage the exploration behavior by making the density of actions

more uniform (e.g., ε-greedy policy reduces the chance of the best action and increases the

chance of worse actions).

Effectively and efficiently selecting final reasoning chains. Given n high-level tactics

and hints {hi}n
i=1 proposed by the leader πhigh, the low-level follower policy πlow produces n

groups of reasoning chains {Ti}n
i=1. Throughout our experiments, we maintain a constant size of

reasoning chains for all groups, i.e., ∀i, |Ti|= m. As it is a common scenario that not all of the

35



suggested tactics are relevant to problem solving, and irrelevant hints could make the low-level

policy more susceptible to reasoning mistakes, we would like to effectively select the desired

reasoning chains among those generated by the low-level policy. We would also like to make the

selection process efficient, reducing the need to invoke a large number of LLM calls.

To this end, we propose the following tournament-based approach to select reasoning

chains: Within each group of reasoning chains Ti, we conduct majority voting to establish the

group-majority answer Ai. Then, for every group, we randomly select a single reasoning chain

from those that reach the group-majority answer, and we add it to a “selection” set S (as a result,

|S|= n). Next, denote the “final” reasoning chain as τfinal, which we initialize as first reasoning

chain of S. We then initiate a “tournament”: Over n−1 iterations, for each iteration i, we prompt

GPT-4 to compare the current τfinal with the (i+1)-th reasoning chain in S to determine which is

better. If the latter is better, we set it as τfinal. Empirically, we also gather comparison results

through majority voting conducted over k repetitions.

The above approach requires a small number of n× k language model calls to select a

desired reasoning chain. For instance, when we have n = 4 reasoning groups, each containing

m = 16 reasoning chains, and we perform k = 3 comparison repetitions, it takes only 12 calls to

GPT-4.

3.4 Experiments

In this section, we perform quantitative and qualitative evaluations to demonstrate the

effectiveness of our approach. We first investigate whether our approach successfully enhances

the discovery and visibility of correct solutions, introducing a quantitative metric for this

assessment. Subsequently, we assess whether our approach improves final answer accuracy

in challenging reasoning problems across various domains including mathematics and science.

Lastly, we conduct ablation studies over torunament-based answer selection and further analyze

our approaches and discuss its limitations.

36



Experiment setup. We conduct our primary analysis on the MATH dataset [43]. We

also demonstrate our approach’s effectiveness on three of most challenging STEM subjects

(high-school chemistry, college physics and machine learning) from the MMLU dataset [43],

as well as GSM8K (refer to Appendix 3.5.2), which includes simpler mathematics problems

compared to the MATH dataset.

For the MATH dataset [43], we adopt its Level-5 test set, i.e., the hardest subset of

questions, to evaluate different approaches. For the high-level policy πhigh, we adopt the two

approaches outlined in Sec. 3.3: (1) prompt GPT-4 to generate at most n relevant hints and tactics

for a target question; (2) use SentenceBERT to retrieve n most-relevant problems from the MATH

training set. For the low-level policy πlow, we adopt either GPT-3.5 or GPT-4. Unless otherwise

specified, we establish the following parameters: n = 4 high-level hints (or reasoning groups)

per question, m = 16 generated reasoning chains per group, and k = 1 comparison repeats for

our tournament-based reasoning chain selection process (which is performed using GPT-4). We

set temperature to be 0.3 during reasoning chain selection and 0.7 otherwise.

Our evaluation set of MATH questions is constructed as follows: For experiments in

Sec. 3.4.1 and the first half of Sec. 3.4.2, we randomly sample 20 questions for each of the 7

categories in the MATH Level-5 test set, resulting in an evaluation set of 140 questions. We

opted for this smaller evaluation set due to the cost associated with evaluating our approach when

either GPT-3.5 or GPT-4 serves as πlow, which amounted to approximately $150 for these 140

questions. Evaluating GPT-4 as πlow on the full test set would be very expensive. Later, in the

second half of Sec. 3.4.2, we employ the entire subset of MATH Level-5 questions (excluding

those requiring visual understanding) to assess our approach when GPT-3.5 serves as πlow. The

findings remain consistent.

3.4.1 Do We Enhance the Discovery and Visibility of Correct Solutions?

In this section, we investigate whether by framing LLMs as a hierarchical policy and

encouraging them to explore multiple diverse problem-solving tactics and hints, we improve

37



1 4 8 16 32 64
# Reasoning Chain Samples

10
20

40

60

80

100
Pe

rc
en

ta
ge

GPT-3.5 Acc
GPT-3.5 Rec

GPT-4 Acc
GPT-4 Rec

(a)

1 2 3 4 5 1-5 6
# Correct Reasoning Chains Among 64 Samples

0

10

20

30

40

50

Pe
rc

en
ta

ge

GPT-3.5
GPT-4

(b)

Figure 3.4. Statistics for the “CoT Sampling + Majority Voting” baseline. (a) Accuracy and
recall as a function of the number of sampled reasoning chains. (b) Percentage of questions
where x ∈ N of the 64 sampled reasoning chains are correct.

the discovery and visibility of desired solutions that reach the correct answers. We compare our

approach with the Chain-of-Thought (CoT) Sampling [125] + Majority Voting [123] baseline,

which samples the same amount of detailed reasoning chains as ours and performs majority

voting to obtain the final answer.

We would like to assess the “visibility” of the correct answers among solutions

generated along the exploration process. A correct answer is “visible” if it not only exists in at

least one of reasoning chains, but also occupies a substantial proportion of them, even though it

might not be the majority answer. An intuitive way of measurement is to compare the accuracy

and recall of correct answers between our approach and the baseline. However, we find that

standard metrics like accuracy and recall do not perfectly align with our goal. In particular,

for our CoT Sampling baseline, as the number of reasoning chains goes up, the recall steadily

improves, but the final-answer accuracy after majority voting plateaus after a few reasoning

chains, as illustrated in Fig. 3.4a. This suggests that the standard recall metric poorly correlates

the prominence of correct answers. On the other hand, the standard accuracy metric does not

reflect the scenarios where LLM identifies correct solutions by a reasonable chance (and does

so multiple times), but these correct answers become submerged during majority voting. Such

scenarios often occur, and we illustrate this phenomenon in Fig. 3.4b. Therefore, the visibility of

desired solutions is not adequately captured by the standard accuracy or recall metric.

38



Table 3.2. Comparison of the Grouped-Majority Recall (“GMR”) and the final answer accuracy
(“Acc.”) between the CoT sampling + Voting baseline and our two exploration approaches
outlined in Sec. 3.3. We use GPT-3.5 or GPT-4 as the language model for the CoT Sampling +
Voting Baseline, along with the low-level follower policy in our approaches. Metrics are obtained
using n = 4 reasoning groups and m = 16 reasoning chains per group on our 140-question MATH
Level-5 evaluation set.

Model Method
Alg. Count. Geom. Int. Alg. Num. Th. Prealg. Precal. Overall

Acc. GMR Acc. GMR Acc. GMR Acc. GMR Acc. GMR Acc. GMR Acc. GMR Acc. GMR

GPT-3.5

CoT Sampling + Voting 30.00 46.67 25.00 32.83 10.00 11.67 15.00 17.50 5.00 29.84 60.00 69.58 10.00 10.31 22.14 31.19
ToT + Voting 15.00 - 0.00 - 5.00 - 20.00 - 0.00 - 49.17 - 0.00 - 13.45 -

Ours - Prompt for Tactics 40.00 41.67 30.00 32.83 15.00 19.38 0.00 15.00 20.00 35.00 65.00 75.00 5.00 10.00 25.00 32.69
Ours - Retrieval 50.00 50.00 25.00 31.98 15.00 15.31 0.00 15.00 30.00 45.31 70.00 72.50 5.00 10.00 27.85 34.23

GPT-4
CoT Sampling + Voting 50.00 62.50 36.25 55.67 47.50 50.00 10.00 24.83 55.00 61.67 75.00 88.75 12.50 12.00 40.89 50.78

Ours - Prompt for Tactics 65.00 65.00 35.00 52.83 40.00 51.25 15.00 29.31 70.00 79.08 80.00 91.25 5.00 12.50 44.29 54.46
Ours - Retrieval 50.00 67.50 45.00 45.00 40.00 53.50 30.00 31.00 50.00 60.17 70.00 95.00 10.00 10.00 42.14 51.73

We thus invent a “microscope” to inspect the visiblity of the correct answers. We propose

the following “Grouped-Majority Recall” metric to better quantify the visibility of correct

solutions. The calculation takes two steps. First of all, recall that our proposed method produces

n groups each containing m reasoning chains. The CoT Sampling baseline can be viewed as

a special case of our method with n = 1 group of empty high-level tactics. To calculate the

Grouped-Majority Recall metric, we first perform majority voting in each group to obtain n

majority answers, and then we calculate the percentage of questions whose ground truth answer

exist in at least one of the n group-majority answers. Sometimes, a group will contain multiple

majority answers, in which case we calculate the expected value of our metric. To compare our

approach with the CoT Sampling baseline, we randomly partition n×m CoT samples into n

groups and calculate our metric.

Intuition behind the Grouped-Majority Recall: In contrast to the standard accuracy metric, rare

correct answers that might be obscured amidst all the n ·m samples could emerge as the majority

in one of the groups, thereby being recognized by our new metric. This occurrence, as noted in

our observations, is not uncommon: when a high-level tactic is accurate yet seldom sampled,

it frequently yields a substantial number of correct low-level solutions that can dominate in a

group, despite remaining a minority among all samples. Our new metric aptly acknowledges

39



such instances. Additionally, in contrast to the standard recall metric, for a correct answer to be

recognized by our new metric, it should not only appear in at least one reasoning chain, but also

take up the majority in a group, necessitating its appearance in multiple reasoning chains.

Results. We report the Grouped-Majority Recall metrics in Tab. 3.2 (“GMR” columns).

We find that our exploration approaches effectively enhance Grouped-Majority Recall when

either GPT-3.5 or GPT-4 serves as our low-level policy, demonstrating that our methods improve

the discovery and visibility of solutions leading to the correct answers. Additionally, we observe

that among our two exploration approaches, using concise technique-based hints underperforms

using retrieved problem-solution hints when GPT-3.5 is used as the follower, but outperforms the

latter for GPT-4. We conjecture that this is caused by the stronger ability for the GPT-4 follower

to understand and effectively utilize the hints in specific problem-solving processes. On the other

hand, for the weaker GPT-3.5 follower, even if the high-level hints are already inspiring and

meaningful, it may not effectively utilize the hint to solve the target problem.

3.4.2 Do We Improve Final Answer Accuracy for Challenging Reason-
ing Problems?

Next, we investigate whether our exploration and tournament-based reasoning chain

selection approach enhance the final answer accuracy on challenging reasoning problems. We

first conduct an experiment on our 140-question Level-5 test set of the MATH dataset, and we

compare our approach with the CoT Sampling + Majority Voting baseline in Tab. 3.2 (“Acc.”

columns). We find that both of our exploration approaches successfully improve the final answer

accuracy, demonstrating that our approach effectively selects among the explored reasoning

chains to retain the high-quality ones.

We also implement Tree-of-Thoughts (ToT) [133] for mathematics problem solving

following the original paper, and present its results on GPT-3.5 as a reference1. We perform

breadth-first search (BFS) in ToT, where at each step we expand 8 children and keep the best

1Running ToT is especially expensive and costs over $100 on GPT-3.5. Running ToT on GPT-4 would incur
thousands of dollars of expense, so we would like to leave it for future work.

40



5 candidates at each depth level. We limit the tree depth to 16. However, we observe that the

final accuracy for ToT is significantly worse than the CoT Sampling + Voting baseline. Upon

further analysis, we find that the average number of reasoning chains ToT produces is 8.41,

which is significantly fewer than the 64 reasoning chains in our baseline, potentially harming its

performance.

Evaluation on a larger set of MATH questions. As stated in our experiment setup,

our experiments in Sec. 3.4.1 and Sec. 3.4.2 were conducted using a smaller sample of 140

questions from the MATH Level-5 test-set due to the cost associated with evaluating GPT-4.

In this section, we expand our evaluation by using GPT-3.5 as the low-level follower πlow and

evaluating on a larger set of 1047 questions from the MATH Level-5 test set. This evaluation set

encompasses all questions from the MATH Level-5 test set, except those that include Asymptote

(a Vector Graphics Language) code in the question or answer, as these questions require visual

comprehension. Additionally, unlike the 140-question evaluation set, which has an equal

distribution of 20 questions from each of the 7 categories, the 1047 questions evaluated in this

section have an uneven distribution among categories.

We present the Grouped-Majority Recall and the final answer accuracy results in Tab. 3.3.

The findings are consistent with those we obtained in Sec. 3.4.1 and Sec. 3.4.2. We also observe

that the overall Grouped-Majority Recall and the final answer accuracy are higher than those

we obtained on the 140-question evaluation set, which is due to the higher portion (429 / 1047)

of algebra and prealgebra questions in our 1047-question evaluation set, which are considered

easier.

Evaluation on STEM subjects from the MMLU dataset. Furthermore, to showcase our

approach’s broad applicability beyond mathematics, we conduct experiments using three of most

challenging STEM subjects (high-school chemistry, college physics and machine learning) from

the MMLU dataset [43]. Results are shown in Tab. 3.4a. We find that our approach continues to

achieve better final-answer accuracy and grouped-majority recall, demonstrating the versatility

and the effectiveness of our approach across diverse domains.

41



Table 3.3. Comparison of the Grouped-Majority Recall (“GMR”) and the final answer accuracy
(“Acc.”) on our 1047-question MATH Level-5 evaluation set using GPT-3.5 as the language
model for the CoT Sampling + Voting baseline along with the low-level follower policy in our
approaches.

Method
Alg. Count. Geom. Int. Alg. Num. Th. Prealg. Precal. Overall

Acc. GMR Acc. GMR Acc. GMR Acc. GMR Acc. GMR Acc. GMR Acc. GMR Acc. GMR

CoT Sampling + Voting 56.73 65.84 26.57 39.97 16.00 19.33 6.56 11.06 23.27 38.75 60.74 69.11 4.49 4.74 32.22 40.63

Ours - Prompt for Tactics 55.00 64.77 33.96 42.84 24.00 26.00 8.61 12.23 32.47 42.47 63.76 71.91 6.74 11.40 35.15 42.58
Ours - Retrieval 57.86 69.81 29.25 40.00 20.00 22.25 11.07 15.26 31.82 43.43 66.44 72.65 5.62 8.87 36.10 44.29

Table 3.4. (a) Comparison of the Grouped-Majority Recall and the final answer accuracy on
three of the challenging STEM subjects from the MMLU dataset. We adopt GPT-3.5 as the
low-level follower, and we sample 32 reasoning chains per problem. For “CoT + Voting”, we
directly perform majority final-answer voting over the 32 reasoning chains. For “Ours - Prompt
for Tactics”, we adopt n = 4 groups, each having m = 8 reasoning chains. (b) Final answer
accuracy of WizardMath-7B-V1.1 on our 140-question MATH level-5 evaluation set. We adopt
WizardMath-7B-V1.1 as the low-level follower, and we sample 32 reasoning chains per problem
with the forementioned setup.

Method
h.-s. chem. c. phys. m. learning
Acc. GMR Acc. GMR Acc. GMR

CoT Samping + Voting 65.02 75.12 66.48 78.02 54.46 63.39
Ours - Prompt for Tactics 73.89 80.75 75.82 84.52 65.18 70.98

(a) Results of three STEM subjects from MMLU

Method CoT Sampling Ours - Tactics Ours - Retrieval

Answer Accuracy 9.88 10.71 13.57
(b) Results of WizardMath-7B-V1.1 on our 140-question MATH Level-5 evaluation set.

Is our approach still effective on smaller, open-source models? Previously, we

conducted our experiments on proprietary language models, including GPT-3.5 and GPT-4. In

this section, we further investigate whether the effectiveness of our approach generalizes to

smaller and open-source models. We conduct our experiments on WizardMath-7B-V1.1 [77],

a finetuned version of Mistral-7B-v0.1 [52]. Results are shown in Tab. 3.4b. We find that our

approaches continue to achieve better final-answer accuracy, demonstrating the effectiveness of

our approach across different model scales.

42



Table 3.5. Ablation on using (a) different models and different k (numbers of comparison repeti-
tions); (b) different temperatures (T ) during our tournament-based reasoning chain selection.

Ours - Retrieval CoT Sampling
Selection Tourn. w/ GPT-3.5 Tourn. w/ GPT-4 Voting

k 1 3 5 1 3 5 -
Accuracy 21.43 22.86 27.14 27.85 27.85 27.85 22.14

(a) Ablation on using different models and different k

Temperature T = 0 T = 0.3 T = 0.7 T = 1.0

Answer Accuracy 27.14 27.85 27.85 27.85
(b) Ablation on using different temperatures (T )

3.4.3 Ablation Study

Ablation on tournament-based reasoning chain selection. We perform ablation studies

on different design decisions of our tournament-based reasoning chain selection approach,

where we adopt GPT-3.5 for the low-level policy and compute the metric over our 140-question

evaluation set. Specifically, a) we conduct an experiment where we use either GPT-3.5 or

GPT-4 to perform our tournament selection process, while varying the value of k, the number of

comparison repetitions, in each of iteration of the tournament. Results are shown in Tab. 3.5a.

We find that when k is small, using GPT-4 for tournament-based reasoning chain selection

leads to a significant improvement compared to using GPT-3.5. Notably, GPT-4 demonstrates

strong performance as a reasoning chain selector even with k = 1, resulting in a noteworthy

enhancement of final answer accuracy over the CoT Sampling baseline. b) We also conduct an

experiment where we vary the decoding temperature (T ) of GPT-4 during our tournament-based

reasoning chain selection process (k = 1 in this experiment). Results are shown in Tab. 3.5b. We

observe that when T ∈ [0,1], different tournament selection temperatures have little effect on the

final answer accuracy.

Does final answer accuracy improvement come from our hierarchical policy frame-

work and / or our tournament selection process? We perform an ablation experiment where

43



Table 3.6. Effect of majority voting and our tournament-based reasoning chain selection on the
final-answer accuracy of the CoT + Sampling baseline and our hierarchical policy approaches.
For “Voting over Samples”, we directly perform majority voting over the 64 sampled reasoning
chains per problem. For “Voting over Groups” and “Tournament”, we adopt n = 4 groups, each
having m = 16 reasoning chains. We use GPT-3.5 for low-level follower and the CoT Sampling
Baseline.

Method CoT Sampling Ours - Tactic Ours - Retrieval

Voting over Samples 22.14 21.79 23.57
Voting over Groups 19.70 20.24 23.39

Tournament 22.86 25.00 27.85

we investigate the impact of our hierarchical policy framework and our tournament-based rea-

soning chain selection process in improving the final answer accuracy. Results are shown in

Tab. 3.6. We find that a) For our hierarchical policy approaches, adopting our tournament-based

reasoning chain selection process yields better final answer accuracy than using majority voting,

demonstrating the effectiveness of our tournament selection process. Intuitively, this is because

not all of the tactics and hints produced by our high-level leader are helpful, and some of

them might mislead the low-level follower, potentially causing it to generate a consistent but

wrong answer under a misleading high-level guidance. By evaluating reasoning chains using

our tournament-based selection approach, we effectively remove those that exhibit reasoning

mistakes and keep those that are more trustful. b) Additionally, for the CoT + Sampling baseline,

adopting our tournament-based reasoning chain selection process does not ourperform our ap-

proaches that employ the hierarchical-policy framework. This shows that our hierarchical policy

plays a significant role in enhancing LLM’s ability to solve challenging problems.

Cost analysis. We present a cost analysis in Appendix. Our approach does not incur

much extra cost compared to baseline approaches like CoT Sampling + Majority Voting.

44



3.5 Additional Results

3.5.1 Failure Example Analysis

In this section, we present failure cases of our approach. This include cases where the

low-level follower fails to effectively follow the high-level tactics (Tab. 3.7)), as well as cases

where the high-level policy fails to provide informative tactics (Tab. 3.9) and demonstrations

(Tab. 3.8).

Table 3.7. A failure case in which the GPT-4 high-level leader generates a highly-relevant hint
for the question, but the GPT-4 low-level follower involves incorrect intermediate steps when
following the high-level hint the and results in wrong answer.

Question: Suppose that the minimum value of f (x) = cos2x−2a(1+ cosx) is −1
2 . Find a.

High-Level Hint: Trigonometric Identities
Guidance: Use principles of “Trigonometric Identities” to approach this question. Ensure you think
step-by-step, presenting a clear, logical solution pathway.

GPT-4 Follower Output: First, we can use the double angle formula cos2x = 1−2sin2 x to express
f (x) all in terms of sinx : f (x) = 1−2sin2 x−2a(1+ cosx) = 1−2sin2 x−2a+2acosx. Then use
the identity sin2 x+ cos2 x = 1 to express f (x) in terms of sinx : f (x) = 1−2sin2 x−2a+2a(1−
sin2 x) = 1−2sin2 x−2a+2a−2asin2 x. Simplify: f (x) = 1−2a−2sin2 x(1+a) = 1−2a−2(1
+a)sin2 x. This is a quadratic in sinx, and we want to find the minimum. This occurs when the
derivative is 0, or when sinx = 0. However, we want the minimum value of f (x), so we need to
consider the endpoints of the interval [−1,1] for sinx. When sinx =±1, f (x) = 1−2a−2(1+a)
(±1)2 = 1−2a−2(1+a) =−a−1. We are given that the minimum value of f (x) is −1

2 , so −a−1

=−1
2 , which gives a =

1
2

.

3.5.2 Evaluation on GSM8K

We also investigate the efficacy of our approach on easier datasets as GSM8K. Results are

shown in Tab. 3.10. We find that while GSM8K features easier mathematics problems than the

MATH Level-5 questions used in our previous experiments, our approach continues to achieve

better final-answer accuracy. This suggests that our approach retains its effectiveness across

datasets with varying degrees of difficulty.

45



Table 3.8. A failure case in which a very similar question along with its ground truth solution
(from the MATH training set) are retrieved and padded as prompt for the GPT-3.5 low-level
follower. The solution of the retrieved example is not closely related to the new question given,
and thus the low-level follower fails to produce a correct final answer.

Retrieved Question: The least common multiple of two numbers is 3780, and the greatest common
divisor is 18. Given that one of the numbers is 180, what is the other number?
Answer: We use the identity gcd(a,b) · lcm[a,b] = ab for all positive integers a and b. We are told
that gcd(a,b) = 18, and lcm[a,b] = 3780, so ab = 18 ·3780. If one number is 180, then the other
number is 18 ·3780/180 = 378 .

Question: What is the smallest integer greater than 200 for which the greatest common divisor of
that integer and 36 is 18?

GPT-3.5 Follower Output: Let the integer be x. We are given that gcd(x,36) = 18. We know that
gcd(a,b) · lcm[a,b] = ab for all positive integers a and b. Since gcd(x,36) = 18, we have lcm[x,36]
36·18

18 = 36. The least common multiple of two numbers is always greater than or equal to the
maximum of the two numbers. Therefore, max(x,36) = 36. Since we want to find the smallest
integer greater than 200, we want to find the smallest value of x such that x > 200. Since max(x,
36) = 36, we have x = 36. However, x = 36 is not greater than 200, so we need to find the next
smallest value of x that satisfies max(x,36) = 36. The next smallest value of x is x = 216 , which
is indeed greater than 200. Pred Answer: 216

Table 3.9. A failure case in which the GPT-4 high-level leader generates an irrelevant hint,
resulting in wrong answer.

Question: Given that n > 1, what is the smallest positive integer n whose positive divisors have a
product of n6?
High-Level Hint: Arithmetic Mean-Geometric Mean Inequality (AM-GM Inequality)
Guidance: Use principles of “Arithmetic Mean-Geometric Mean Inequality (AM-GM Inequality)”
to approach this question. Ensure you think step-by-step, presenting a clear, logical solution pathway.

GPT-4 Follower Output: Let’s denote the positive divisors of n as d1,d2, ...,dk. We are looking for
the smallest n for which k

√
d1d2...dk = n2 (since the geometric mean of the divisors is equal to n2).

Applying the AM-GM inequality, we have d1+d2+...+dk
k > k

√
d1d2...dk, which simplifies to n+d2+...+dk

k
> n2, where d1 = n (since n is a divisor of itself). Rearranging the inequality, we have d2 + ...+dk
> k ·n2 −n. We know that d2, ...,dk are all positive integers, and they are all divisors of n, so the
smallest they can be is 1. Therefore, we have k > k ·n2 −n+1. Since k is the number of divisors
of n, we know it must be at least 2 (since every positive integer has at least two divisors: 1 and itself).
Therefore, we have 2 > 2 ·n2 −n+1, which simplifies to n2 −n+1 ≤ 1. Rearranging the inequality,
we have n2 −n ≤ 0, which simplifies to n(n−1)≤ 0. Since n > 1, we have n−1 > 0, so we must
have n ≤ 0, which is a contradiction. Therefore, no such n exists. However, if we relax the condition
that n must be an integer, the smallest possible value of n is 1

2 , which occurs when n is a perfect
square and all of its divisors are equal to

√
n. So, the smallest integer n whose positive divisors have

a product of n6 is 1 , because 16 = 1 and the product of the divisors of 1 is 1.

46



Table 3.10. Final answer accuracy on GSM8K. We adopt GPT-3.5 as the low-level follower, and
we sample 32 reasoning chains per problem. For ”CoT + Voting”, we directly perform majority
final-answer voting over the 32 reasoning chains. For tournament, we adopt n = 4 groups, each
having m = 8 reasoning chains.

Method CoT + Voting CoT + Tourn. Ours - Retrieval + Tourn.

Answer Accuracy 88.45 88.85 89.91

3.6 Additional Implementation Details

We use “gpt-3.5-turbo-0613” and “gpt-4-0613” as the GPT-3.5 and GPT-4 version used

throughout the experiments in our paper. We set the decoding temperature to 0.3 for tournament-

based reasoning chain selection and 0.7 otherwise (i.e., for hint generation from the high-level

leader, reasoning chain generation from the low-level follower, along with the baselines).

Table 3.11. Cost comparison between our approach and the CoT + Sampling Baseline on our
140-question MATH Level-5 evaluation set. We generate n×m = 4×16 = 64 reasoning chains
per question. GPT-4 is utilized to perform tournament selection in our approaches.

Method CoT Baseline Ours - Tactics Ours - Retrieval CoT Baseline Ours - Tactics Ours - Retrieval
Low-Level Follower GPT-3.5 GPT-3.5 GPT-3.5 GPT-4 GPT-4 GPT-4

Sampling 10.72 11.71 9.83 204.16 191.11 188.47
Tournament None 2.42 4.45 None 4.52 5.92

Total 10.72 14.12 14.28 204.16 195.63 194.39

Table 3.12. Comparison on the number of input and output tokens per-question between our
approach and the CoT + Sampling Baseline on our 140-question MATH Level-5 evaluation set.
We generate n×m = 4×16 = 64 reasoning chains per question. GPT-4 is utilized to perform
tournament selection in our approaches. Tournament tokens are included in the table.

Method CoT Baseline Ours - Tactics Ours - Retrieval CoT Baseline Ours - Tactics Ours - Retrieval
Low-Level Follower GPT-3.5 GPT-3.5 GPT-3.5 GPT-4 GPT-4 GPT-4

Avg. #Input Tokens Per Question 0.11K 0.73K 1.88K 0.11K 0.88K 2.00K
Avg. #Output Tokens Per Question 38.20K 41.61K 34.32K 24.25K 22.85K 22.14K

47



3.7 Further Analysis and Limitations

In this section, we provide a further analysis into the success and failures of our approach,

and we discuss the potential limitations of our approach along this process.

As shown in Fig. 3.2, we observe that our high-level leader policy is capable of producing

many insightful and inspiring hints, even though it sometimes produces irrelevant hints. To

further analyze the quality of generated high-level hints, we perform an experiment, where

we aggregate all the high-level techniques and concepts produced by our first hint generation

approach into a set. For each hint, we obtain its corresponding problem and ground truth

answer, and then prompt GPT-4 to generate 10 “ground-truth hints” given both information.

Subsequently, we calculate the percentage of hints that match at least one of its corresponding

“ground-truth hints”, serving as a measure of hint quality. We find that 94.3% of hints are among

the ground-truth hints, highlighting the effectiveness of our approach in proposing pertinent,

insightful hints.

Next, we delve into the analysis of common sources of failure cases to gain a deeper

understanding of our approach’s behavior (due to space constraints, we present the detailed

examples in Appendix. One significant factor contributing to these failures is that, despite the

high-level leader producing hints being both inspiring and meaningful, the low-level follower

may not closely follow these hints to solve the target problem, resulting in reasoning errors.

Sometimes, it might even ignore the hints. Furthermore, even when the follower effectively

incorporates the hints into its problem-solving processes, reasoning errors can still occur. The

inconsistent adherence to high-level hints and the dependence on the capabilities of the follower

highlight the current limitations of our approach.

3.8 Conclusion

In this work, we propose to frame LLMs as a hierarchical policy to effectively explore

the expansive solution spaces in challenging mathematical reasoning problems. Our hierarchical

48



policy framework consists of a visionary “high-level” leader policy, which establishes connec-

tions between the target problem and the language model knowledge to generate hints, along

with a “low-level” follower policy that leverages these hints as an in-context guidance throughout

detailed problem-solving processes. Within this framework, we introduce two effective approach

for the high-level leader policy to generate a diverse set of problem-solving tactics and hints

for exploration. Additionally, we present an effective and efficient tournament-based method

to select desired reasoning chains among the explored ones to attain the final answer. Through

experiments, we demonstrate that our approach enhances problem-solving strategy exploration,

improves the discovery and visibility of correct solutions, and enhances the final answer accuracy

on challenging problems across different datasets and domains, such as the MATH dataset and

the STEM subjects from MMLU.

Acknowledgements

Chapter 3, in full, is a reprint of material from the publicly available preprint: “Unleashing

the Creative Mind: Language Model As Hierarchical Policy For Improved Exploration on

Challenging Problem Solving” (Zhan Ling; Yunhao Fang; Xuanlin Li; Tongzhou Mu; Mingu

Lee; Reza Pourreza; Roland Memisevic; Hao Su). The dissertation author was the primary

investigator and author of this paper.

49



Chapter 4

Long-Context Reasoning Synthesis through
Context Expansion

Large language models (LLMs) have demonstrated remarkable progress in understanding

long-context inputs. However, benchmarks for evaluating the long-context reasoning abilities of

LLMs fall behind the pace. Existing benchmarks often focus on a narrow range of tasks or those

that do not demand complex reasoning. To address this gap and enable a more comprehensive

evaluation of the long-context reasoning capabilities of current LLMs, we propose a new synthetic

benchmark, LongReason, which is constructed by synthesizing long-context reasoning questions

from a varied set of short-context reasoning questions through context expansion. LongReason

consists of 794 multiple-choice reasoning questions with diverse reasoning patterns across three

task categories: reading comprehension, logical inference, and mathematical word problems.

We evaluate 21 LLMs on LongReason, revealing that most models experience significant

performance drops as context length increases. Our further analysis shows that even state-

of-the-art LLMs still have significant room for improvement in providing robust reasoning across

different tasks. We will open-source LongReason to support the comprehensive evaluation of

LLMs’ long-context reasoning capabilities.

50



Table 4.1. Comparison of LongReason with other long-context benchmarks. LongReason offers
controllable context lengths and incorporating diverse and realistic tasks without the need for
human annotation on long text.

Benchmark Avg
Len

Light
Human Effort

Realistic
Tasks

Broad
Tasks

Controllable
Context

ZeroSCROLLS [108] ∼10K ✗ ✓ ✓ ✗

L-Eval [3] ∼8K ✗ ✓ ✓ ✗

BAMBOO [32] ∼16K ✗ ✓ ✓ ✗

LongBench [8] ∼8K ✗ ✓ ✓ ✗

LooGLE [60] ∼20K ✗ ✓ ✓ ✗

InfiniteBench [139] ∼200K ✗ ✓ ✓ ✗

Loong [122] ∼250K ✗ ✓ ✓ ✗

Needle-in-a-haystack [53] any ✓ ✗ ✗ ✓

RULER [47] any ✓ ✗ ✓ ✓

LongReason (Ours) any ✓ ✓ ✓ ✓

4.1 Introduction

In recent years, large language models (LLMs) [91, 101, 5, 83, 52, 120] have demon-

strated remarkable advances in diverse natural language processing tasks. The ability to

comprehend and reason over long inputs is essential for downstream applications, includ-

ing multi-turn conversations [119], document understanding [81] retrieval-augmented genera-

tion [134, 131], and language agents [142, 140]. Meanwhile, extensive efforts in deep learning

system [29, 28, 21, 100] research have been devoted to optimizing computational overhead to

support increasing numbers of input tokens, which has led to growing attention on long-context

LLMs. Now, both proprietary and open-source LLMs can support up to millions of input

tokens [101, 86, 38].

However, despite the rapid development of long-context language models, benchmarks

have lagged behind. One of the key challenges is dataset construction, as long-context question-

answering data is relatively scarce on the internet. To address this, prevalent long-context bench-

marks have utilized synthetic tasks like passkey retrieval [88], needle-in-a-haystack (NIAH) [53,

51



142], and variable tracking [47] to evaluate long-context LLMs. However, these tasks are often

unrealistic and involve reasoning processes that differ significantly from those in real-world

applications. Alternatively, some research efforts have involved human annotation of realistic

questions and gold answers over one or multiple long documents [33, 122, 60]. However, cre-

ating realistic long-context tasks from extensive texts is both challenging and time-consuming,

even for human experts [122]. This limitation restricts the expansion of datasets to accommodate

arbitrary context lengths and the ability to support controllable context. As shown in Table 4.1,

existing benchmarks either rely on a limited number of synthetic tasks, demand significant

human effort to read long contexts, or lacking controllable contexts and support for arbitrary

context lengths. Furthermore, existing datasets [33, 122, 60] often utilize documents from

specific domains, such as financial reports or legal cases, as input, which can inherently limit the

diversity of task categories. Consequently, they tend to focus on a narrow set of tasks, such as

comparison or classification, rather than evaluating more complex and challenging tasks that

require chain-of-thought reasoning.

To address these challenges, we introduce a new long-context reasoning benchmark,

LongReason, featuring diverse and realistic reasoning tasks to assess the long-context reasoning

abilities of LLMs. To create the dataset efficiently and effectively, we first had human annotators

collect short reasoning questions from the internet, cleaning them to avoid data contamination

and forming the seed dataset. This seed dataset contains reasoning questions with diverse patterns

from three major task categories: reading comprehension, logical inference, and mathematical

word problems. We chose to use multiple-choice problems for easy evaluation, avoiding the use of

LLMs or inaccurate metrics like Rouge score and F1 to assess the correctness of reasoning. Then,

we utilize an automatic pipeline that synthesizes multi-hop long-context reasoning questions

from the collected short-context problems. To ensure quality, we leverage LLMs to automatically

verify the generated questions, ensuring they retain the same logic as their shorter counterparts.

Ultimately, we retain 794 questions that pass these checks. For each question, we can generate

long-context versions of arbitrary lengths; however, since most existing models support contexts

52



Figure 4.1. Overview of our pipeline for constructing LongReason. Givem a short reasoning
question Qshort, the pipeline first separates it into a background context Cshort and a final question I.
Next, multiple paragraphs are synthesized from the background context Cshort. These synthesized
paragraphs are then embedded within irrelevant passages to create a long-context background.
Finally, the constructed context is combined with the final question to generate the long-context
reasoning question Qlong.

up to 128K tokens, we focus our evaluation within this limit. This synthetic pipeline supports

converting one short reasoning question into different lengths, enabling fine-grained assessment

of LLMs across various context lengths and reasoning tasks.

To assess the current progress in the long-context reasoning abilities of existing LLMs,

we evaluated 21 models of varying scales and architectures, sourced from both open-source and

closed-source communities. While most of these models achieve near-saturated performance on

previous synthetic tasks such as NIAH, nearly all exhibit significant performance degradation

on LongReason as the context length increases. Further analysis reveals that even state-of-

the-art LLMs show varying degrees of performance decline across different task categories,

underscoring the importance of evaluating diverse reasoning tasks to fully understand the long-

context reasoning capabilities of LLMs.

Our key contributions are summarized as follows:

• We present LongReason, a new synthetic long-context reasoning benchmark that encom-

passes a diverse range of task categories and supports controllable context lengths.

53



• We propose an innovative synthesis algorithm that generates long-context reasoning

questions from existing short questions, reducing the need for labor-intensive human

annotation for long-context data.

• We perform an extensive analysis of current LLMs, benchmarking their performance in

long-context reasoning and offering valuable insights to enhance long-context reasoning

capabilities.

4.2 Related Work

Long-Context Large Language Models Recent advancements in deep learning system

have significantly propelled the development of long-context large language models (LLMs).

One of the key challenges in scaling these models is the quadratic time and space complexity

inherent in computing self-attention over long sequences. To mitigate this computational burden,

efficient self-attention algorithms [29, 28, 71] have been introduced, reducing memory overhead,

and novel training methods [62, 21] facilitate the training of these long-context models. As

Rotary Position Embedding (RoPE) [115] is widely used for positional encoding in many open-

source models [83, 120, 85], recent research [18, 130, 97, 72, 31, 146] has focused on adapting

RoPE from pre-trained short-context models to effectively handle longer sequences. Moreover,

new architectures [39, 96, 16, 15, 12] have been developed to efficiently process long-context

inputs. Consequently, state-of-the-art language models [93, 92, 101, 4, 83, 85, 120, 38] now

support context windows ranging from 128K to millions of tokens, enabling the exploration of

reasoning abilities over extensive contexts with LLMs.

Long-Context Benchmarks As the context window of current LLMs expands rapidly,

numerous benchmarks have been proposed to evaluate their capabilities. In early benchmarks

such as ZeroSCROLLS [108], L-Eval [3], BAMBOO [33], LongBench [8], and LooGLE [60],

the average input length remains under 25K tokens, which is far shorter than the context window

size supported by existing LLMs. Recently, some research has begun to explore using synthetic

54



Figure 4.2. An illustrative example in LongReason. The original question is first decomposed
into a separate background passage and an inquiry based on it. The inquiry includes keywords
such as “Jack’s father’s age” and a time reference like “on a sunny afternoon” from the back-
ground passage, ensuring a clear connection to the passage. Subsequently, the background
passage is expanded into multiple independent materials while preserving these key keywords.
Finally, these independent materials are combined with some unrelated passages to create the
final long-context reasoning question.

datasets, which can support controllable context lengths, to evaluate the long-context abilities of

LLMs. Needle-in-a-Haystack and its variants [53, 142] primarily evaluate retrieval abilities by

inserting relevant information into extensive irrelevant corpora and testing the LLMs’ capacity

to extract it. Additionally, RULER [47] constructs synthetic tasks based on code-like flexible

configurations to assess LLM performance over long contexts. While synthetic tasks can support

the evaluation of arbitrarily long contexts, they are limited in scope, focusing on a narrow set

of tasks and failing to comprehensively evaluate the reasoning abilities of LLMs in realistic

scenarios. Other benchmarks like InfiniteBench [139] and Loong [122] use human annotations

to create questions from given long texts, which contain more diverse tasks but are both time-

consuming and costly. Our proposed benchmark, LongReason, focuses on evaluating the

long-context reasoning abilities of LLMs, which are created automatically from short reasoning

questions without heavy human effort in reading the long context. We conduct a detailed

comparison with existing benchmarks in Table 4.1.

55



4.3 Our Benchmark: LongReason

In this section, we provide a detailed overview of LongReason, our synthetic long-context

reasoning benchmark. This includes the problem formulation, the dataset construction process,

and an analysis of the statistics of LongReason.

4.3.1 Long-context Reasoning Question Construction via Context
Expansion

Problem Formulation The primary goal of LongReason is to assess the long-context

reasoning abilities of LLMs. To achieve this, we first define the reasoning task as follows: Given

a reasoning question Q, LLMs to need reason over Q to produce a reasoning chain S that leads

to the final answer A. In this work, the focus is on scenarios where the question Q can be divided

into a background context C and a final inquiry I based on that context, denoted as Q = (C, I). In

LongReason, the context C can be long, comprising multiple paragraphs from diverse sources,

while only a small subset of the information in the context C is directly relevant to answering

I. To simplify evaluation, LongReason employs close-ended multiple-choice questions for I.

The dataset construction begins with a set of questions Qshort, consisting of questions Qshort with

relatively short question statements. For each Qshort, our proposed context expansion pipeline

utilizes LLMs to automatically generate a long-context version of the question, Qlong = (Clong, I).

The detailed construction pipeline is illustrated in Figure 4.1.

Short-Context Reasoning Question Collection We begin by asking human annotators to create

a dataset Qshort, comprising short questions Qshort across various domains and diverse task

categories. Annotators collect example questions from the internet and utilize an LLM to refine

these questions, ensuring they are free from data contamination. To ensure that each short

question require reasoning, we prompt an LLM to evaluate the number of reasoning steps in its

corresponding ground-truth reasoning chain, denoted as S̄. We include only those questions that

require at least two reasoning steps to arrive at the final answer in LongReason, thereby filtering

56



out straightforward common-sense problems that lack significant reasoning depth.

Automatic Short-Context Reasoning Question Decomposition with LLMs For each short

reasoning question Qshort, we prompt an LLM to decompose the question into a background

context Cshort and an inquiry I. This decomposition needs to ensure that the final inquiry I is

clearly linked to the background context Cshort , enabling the LLM to relate them and answer

the inquiry based on the context. To have the better performance, we prompt the LLM to

perform the decomposition in a chain-of-thought manner. Specifically, the LLM first extracts

key elements such as keywords, time, main characters, and event names from the original short

question and incorporates them into both the background context Cshort and the final inquiry I

during the decomposition process. To ensure the quality of the decomposition, we introduce

a self-verification stage after generating the decomposed question. We ask the LLM to verify

whether the decomposed question, Qdecomposed = (Cshort, I), retains the same meaning as the

original question Qshort. For each question, we use a sampling temperature of 0.7 and generate

up to 5 decompositions with the LLM. We retain only the decomposition that successfully passes

the self-verification process conducted by the LLM. In our experiments, we found that over

99.34% of questions could be successfully decomposed within 5 samples, demonstrating the

effectiveness of our question decomposition pipeline.

Automatic Background Context Decomposition with LLMs To evaluate the ability to ag-

gregate key information and reason across different positions within a long context, we further

decompose the background context Cshort in the question Qdecomposed into multiple informa-

tion pieces. Specifically, we use an LLM to first analyze all key information points within

Cshort and then, for each information point, generate an independent and complete passage C′.

These generated passages retain certain keywords similar to those used during the question

decomposition stage, ensuring that all passages are closely related to the final inquiry I. This

process results in Cexpanded = (C′
1,C

′
2, · · ·) , where the passages are coherent and can be correctly

associated with the final inquiry I. To ensure the quality of the expanded context, we introduce

a self-verification stage. After generating the expanded question Qexpanded = (Cexpanded, I), we

57



prompt the LLM to verify whether Qexpanded retains the same meaning as the original question

Qshort. For the background in the each question, we use a sampling temperature of 0.7 and

generate up to 5 decompositions with the LLM. Only the decompositions that successfully pass

the self-verification process are retained. In our experiments, we observed that over 94.67% of

the background contexts were successfully decomposed within 5 samples.

Automatic Background Decomposition with LLMs To evaluate the ability to aggregate key

information and reason across different positions within a long context, we further decompose

the background context Cshort in the question Qdecomposed into multiple information pieces.

Specifically, we use an LLM to first analyze all key information points within Cshort and then,

for each information point, generate an independent and complete passage C′. These generated

passages retain certain keywords similar to those used during the question decomposition stage,

ensuring that all passages are closely related to the final inquiry I. This process results in

C̄expanded = (C1
e ,C

2
e , · · ·) , where the passages are coherent and can be correctly associated with

the final inquiry I. To ensure the quality of the expanded context, we introduce a self-verification

stage. After generating the expanded question Qexpanded = (C̄expanded, I), we prompt the LLM

to verify whether Qexpanded retains the same meaning as the original question Qshort. For the

background context in the each question, we use a sampling temperature of 0.7 and generate

up to 5 decompositions with the LLM. Only the decompositions that successfully pass the

self-verification process are retained. In our experiments, we observed that over 94.67% of the

background contexts were successfully decomposed within 5 samples.

Long-Context Reasoning Question Construction Through Context Expansion Finally, we

construct the long-context version of each question by embedding each passage Ci
e from the

expanded context C̄expanded at random positions within a set of irrelevant passages C̄irrelevant,

forming the final long-context reasoning questions. To create C̄irrelevant , we first collect pas-

sages from the Pile [36] and use an LLM to rewrite each passage to minimize stylistic differences

between the synthesized background passages and the irrelevant passages. These rewritten

passages are then compiled to form the set of irrelevant passages C̄irrelevant. In LongReason,

58



2 3 4 5 6 7 8 9 10
Number of reasoning steps in analysis

0

50

100

150

200

Nu
m

be
r o

f q
ue

st
io

ns

Figure 4.3. The number of reasoning steps in the ground-truth analysis for questions in Lon-
gReason.

GPT-4 is used for all data synthesis and self-verification. For each question, we evaluate multiple

versions of the synthesized question for comparison, including the original question Qshort, the

expanded version Qexpanded, and long-context versions with context lengths ranging from 8K

to 128K. Furthermore, similar to NIAH [53], our pipeline is capable of generating reasoning

questions with even longer contexts by incorporating additional irrelevant information.

4.3.2 The Statistics of LongReason

LongReason comprises 794 multiple-choice reasoning questions encompassing diverse

reasoning patterns across three task categories: 280 reading comprehension questions, 347

logical inference questions, and 167 mathematical word problems. We only keep the questions

that require at least 2 reasoning steps, the reasoning steps of the questions range from 2 to more

than 10 reasoning steps. The average reasoning steps of the questions is 4.47. More detailed

statistics of the number of the reasoning steps are shown in Figure 4.3.

59



Table 4.2. Performance (%) of selected LLMs on LongReason. All the scores are computed by
averaging the accuracy across 794 questions in LongReason. Q-O represents the performance of
the original short question Qshort, and Q-E denotes the performance of the expanded question
Qexpanded mention in Section 4.3.1. For long-context questions, the final inquiry is placed after
the background context, positioning it at the end of the context. The average score (Avg.)
represents the mean performance across context lengths spanning from 8K to 128K.

Models Length Q-O Q-E 8K 16K 32K 64K 128K Avg.

Random - 25.21 25.21 25.21 25.21 25.21 25.21 25.21 25.21
closed-source models

Gemini-1.5 Pro - 90.42 84.11 77.81 79.70 77.81 78.94 78.81 78.56
Gemini-1.5 Flash - 90.16 80.20 75.91 76.29 75.79 75.66 76.92 75.91
GPT-4o - 90.42 85.62 77.30 76.80 74.91 74.02 73.39 75.76
GPT-4o mini - 79.95 74.40 68.73 66.83 65.45 62.67 61.66 65.92
Claude-3.5 Sonnet - 84.36 78.18 73.01 70.11 68.47 68.22 65.95 69.95
Claude-3.5 Haiku - 77.05 71.75 64.44 64.44 63.93 60.03 59.90 63.21

open-source models
Llama-3.1-70B 128K 80.83 74.27 68.22 66.46 61.16 63.30 48.30 64.78
Llama-3.1-8B 128K 58.13 57.12 53.47 51.20 51.45 49.94 46.53 51.52
Mistral Large 2 128K 83.73 81.97 72.89 70.11 64.69 52.46 0.00 65.04
Mixtral 8x22B 64K 64.69 63.30 50.95 52.21 49.31 48.68 - 50.29
Mistral Nemo 1M 56.12 52.96 50.57 43.00 42.37 38.21 29.51 43.54
Mistral Small 32K 50.32 64.94 56.75 50.32 37.70 - - 48.26
Mistral-7B 32K 41.61 40.86 44.77 43.25 42.75 - - 43.59
Qwen2.5-72B 128K 89.16 85.75 76.67 77.43 74.27 74.53 69.48 75.72
Qwen2.5-32B 128K 84.24 81.59 78.44 74.91 72.76 71.75 67.34 74.46
Qwen2.5-14B 128K 84.11 76.17 71.88 70.87 68.10 66.20 62.30 69.26
Qwen2.5-7B 128K 76.42 73.01 66.33 62.42 62.17 58.76 54.22 62.42
Qwen2.5-3B 32K 61.29 58.76 49.81 49.56 45.65 - - 48.34
Phi-3.5-MoE 128K 65.32 66.46 48.42 56.37 53.72 48.80 49.56 51.83
Phi-3.5-mini 128K 55.99 60.53 50.69 48.80 49.81 45.40 24.97 48.68
glm-4-9b 128K 59.90 63.43 48.68 46.15 44.14 38.97 39.60 44.48

4.4 Exerperiments & Results

We conduct a comprehensive set of experiments to evaluate a broad set of LLMs using

LongReason. In this section, we present the experimental setup, main results, and additional

analysis.

60



4.4.1 Experimental setup

Models & Inference Setup We select a set of representative LLMs that support long context

windows, including 6 closed-source models from 3 model families (GPT, Gemini and Claude) and

15 open-source models spanning a wide range of model sizes (3B to 123B) and claimed context

lengths (8K to 2M). Detailed information about these models can be found in Appendix 4.5.

For open-source models, we utilize vLLM [57], which enables efficient KV cache memory

management during inference time. All inferences are performed using bfloat16 precision on 8

NVIDIA A100 GPUs with greedy decoding (temperature=0).

Evaluation setup We evaluate all models on LongReason, which comprises 794 questions, each

featuring multiple variations, including the original version, expanded versions, and long-context

versions with context lengths of 8K, 16K, 32K, 64K, and 128K. Each input is constructed using a

predefined zero-shot chain-of-thought template that combines the background context, followed

by the corresponding final inquiry. To assess the reasoning performance of the LLMs, we extract

the predicted choice by identifying the first character sequence following the phrase “the answer

is” and compare it to the ground-truth option for accuracy.

4.4.2 Main Results

The results of 21 LLMs are presented in Table 4.2. From the table, we first observe a

significant performance drop across nearly all models when evaluated on Qexpanded compared

to Qshort. To ensure this decline is not caused by the quality of the synthetic questions, we

manually examine 20 failure cases from Gemini-1.5 Pro, where correct answers on Qshort turn

incorrect on Qexpanded. Only 3 cases involve ambiguity or errors introduced by context expansion.

Similarly, when comparing Qexpanded to Q8K , a large performance drop persists. Among 20

failure cases from Gemini-1.5 Pro where correct answers on Q8K turn incorrect on Qexpanded, only

2 cases are affected by added irrelevant information. For long-context reasoning performance,

Gemini-1.5 Pro outperforms all other closed-source models, exhibiting negligible performance

61



Table 4.3. Ablation study on the position of the final inquiry for selected models evaluated at
context lengths ranging from 8K to 128K. I-L represents questions where the final inquiry is
placed after the background context, while I-F represents questions where the inquiry is placed
before the background context.

Model 8K 16K 32K 64K 128K

I-L I-F I-L I-F I-L I-F I-L I-F I-L I-F
GPT-4o 77.30 75.41 76.80 72.89 74.91 69.10 74.02 65.32 73.39 65.95
Gemini-1.5 Pro 77.81 68.22 79.70 70.37 77.81 68.60 78.94 66.96 78.81 66.71
Claude-3.5 Sonnet 73.01 68.60 70.11 67.84 68.47 66.46 68.22 64.69 65.95 66.20

drop when extending the context length from 8K to 128K. In contrast, the long-context reasoning

capabilities of open-source LLMs lag behind those of the most advanced closed-source models in

LongReason. For example, the best-performing open-source model, Qwen2.5-72B, experiences a

significant performance drop (5.05%) when the input context length increases from 64K to 128K.

Furthermore, a comparison of Qwen2.5 models of different sizes, shown in Figure 4.4, reveals

that performance declines at a similar rate across all model sizes as context length increases.

Smaller models perform worse overall, primarily due to their weaker reasoning abilities, even in

shorter-context scenarios.

4.4.3 Further Analysis

We conduct further analysis on LongReason to provide a deeper understanding of the

long-context reasoning performance of existing LLMs.

Does the position of the final inquiry influence model performance? As shown in Table 4.3,

the performance of state-of-the-art language models is highly sensitive to the position of the final

inquiry. Although Gemini-1.5 Pro demonstrates excellent long-context reasoning performance

when the final inquiry is placed after the background context, it still struggles when the inquiry

is positioned at the beginning of the input, before the background context. Meanwhile, GPT-4o

demonstrates similar performance in both cases, particularly when the context length is short.

However, as the input length increases, GPT-4o’s performance declines significantly for questions

with the final inquiry is placed before the background context.

62



Q-
O

Q-
E 8K 16
K

32
K

64
K

12
8K

0
20
40
60
80

100

Ac
cu

ra
cy

Overall

7B
14B
32B
72B

Figure 4.4. Performance of the Qwen2.5 series on LongReason, with model sizes ranging from
7B to 72B.

Q-O Q-E 8K 16
K

32
K

64
K

12
8K

50
60
70
80
90

100

Ac
cu

ra
cy

Reading Comprehension

Q-O Q-E 8K 16
K

32
K

64
K

12
8K

Logic
Q-O Q-E 8K 16

K
32

K
64

K
12

8K

Math

Q-O Q-E 8K 16
K

32
K

64
K

12
8K

Overall

Gemini-Single-Hop Gemini-Multi-Hop Claude-Single-Hop Claude-Multi-Hop

Figure 4.5. Comparison of the long-context reasoning performance between Gemini-1.5 Pro
and Claude 3.5-Sonnet across different task categories. In the figure, the dotted line represents
the single-hop version of the synthesized questions, where all clues are placed together in the
context. The solid line represents the multi-hop version, which is the standard format used in
LongReason, where clues are distributed separately throughout the context.

Do LLMs have similar long-context reasoning performance over different tasks and clue

placement in LongReason? As shown in Figure 4.5, both Gemini-1.5 Pro and Claude 3.5

demonstrate strong long-context reasoning performance on reading comprehension problems.

However, for logic and math problems, Claude 3.5 significantly underperforms compared to

Gemini. Additionally, we observe that for these problem types, Claude 3.5 shows much lower

performance when the clues are distributed separately throughout the context, compared to when

the clues are grouped together.

63



Figure 4.6. An example where Gemini-1.5 Pro provide a incorrect reasoning given the long-
context question while the s. The key difference in reasoning is underlined.

Error Cases Analysis We further analyze the error cases of Gemini-1.5 Pro when the context

extends to 128K. We find that most errors stem from reasoning errors. After examining 20 failure

cases, we identify only 3 instances where the errors are due to missing critical information in the

background context during reasoning. A detailed example is provided in Figure 4.6.

4.5 Model Information

We select in total 21 large language models (LLMs) for evaluation and analysis. We

only include the aligned models including 6 clouse-source models like GPT-4o, Gemini-1.5, and

Claude-3.5 and also 17 open-source models with dense and MoE architectures like Llama and

Mixtral using LongReason.

64



Table 4.4. Information of evaluated and analyzed models in LongReason.

Model Aligned Size Context Length Huggingface [129] / API

GPT-4o [93] ✓ - 128K gpt-4o-2024-08-06

GPT-4o-mini [92] ✓ - 128K gpt-4o-mini-2024-07-18

Gemini-1.5-Pro [101] ✓ - 2M gemini-1.5-pro-002

Gemini-1.5-Flash [101] ✓ - 2M gemini-1.5-flash-002

Claude-3.5-Sonnet[4] ✓ - 200K claude-3-5-sonnet-20240620

Claude-3.5-Haiku[4] ✓ - 200K claude-3-5-haiku-20241022

Mistral-Large2 [85] ✓ 123B 128K mistralai/Mistral-Large-Instruct-2407
Mixtral-8×22B [51] ✓ 39B/8×22B 64K mistralai/Mixtral-8x22B-Instruct-v0.1
Mistral-Small [87] ✓ 22B 32K mistralai/Mistral-Small-Instruct-2409
Mistral-Nemo [86] ✓ 12B 1M mistralai/Mistral-Nemo-Instruct-2407
Mistral-7B [52] ✓ 7B 32K mistralai/Mistral-7B-Instruct-v0.3
Llama3.1 [83] ✓ 70B 128K meta-llama/Meta-Llama-3.1-70B-Instruct
Llama3.1 [83] ✓ 8B 128K meta-llama/Meta-Llama-3.1-8B-Instruct
Qwen2.5 [120] ✓ 72B 128K Qwen/Qwen2.5-72B-Instruct
Qwen2.5 [120] ✓ 32B 128K Qwen/Qwen2.5-32B-Instruct
Qwen2.5 [120] ✓ 14B 128K Qwen/Qwen2.5-14B-Instruct
Qwen2.5 [120] ✓ 7B 128K Qwen/Qwen2.5-7B-Instruct
Qwen2.5 [120] ✓ 3B 32K Qwen/Qwen2.5-3B-Instruct
GLM4-9B [38] ✓ 9B 128K THUDM/glm-4-9b-chat
Phi3.5-MoE [1] ✓ 6.6B/16×3.8B 128K microsoft/Phi-3.5-MoE-instruct
Phi3.5-mini [1] ✓ 14B 128K microsoft/Phi-3.5-mini-instruct

4.6 Hyperparameters for LongReason Construction

In LongReason, we utilize GPT-4o-08-06 to synthesize our dataset, with the total cost of

creating the datasets being under $200.

4.7 Conclusion and Limitations

In this work, we introduce LongReason, a synthetic reasoning benchmark designed

to evaluate the long-context reasoning capabilities of large language models (LLMs). Using

LongReason, we evaluate the long-context reasoning performance of 21 LLMs across context

sizes ranging from 8K to 128K. Our experiments and analyses reveal that existing LLMs still

have significant room for improvement in delivering robust long-context reasoning. Additionally,

several limitations of LongReason remain, as discussed below.

Lack of evaluation for complex reasoning Current LongReason primarily focuses

65



on evaluating reasoning questions that require only a few reasoning steps. However, this

is insufficient to fully understand the performance of LLMs when dealing with challenging

problems that demand many reasoning steps over a long context.

Lack of evaluation for tasks requiring full context Similar to most existing work,

LongReason focuses on tasks that do not require understanding the entire contexts for finishing

the tasks. All the questions in LongReason are derived from short reasoning problems that can

be solved by examining only a small portion of the context.

Acknowledgements

Chapter 4, in full, is a reprint of a work currently under preparation for submission:

“LongReason: A Synthetic Long-Context Reasoning Benchmark via Context Expansion” (Zhan

Ling, Kang Liu, Kai Yan, Yifan Yang, Weijian Lin, Ting-Han Fan, Lingfeng Shen, Zhengyin Du,

Jiecao Chen). The dissertation author was the primary investigator and author of this paper.

66



Chapter 5

Finale

This dissertation summerizes my research in improving the reasoning abilities of large

language models (LLMs) from both training and inference perspectives. To address hallucinations

and errors in reasoning chains generated by LLMs, we proposed a deductive verification method

that enables self-verification of reasoning chains, ensuring more rigorous and accurate reasoning

during inference. To enhance the exploration capabilities of LLMs, we modeled reasoning as a

hierarchical policy, where high-level tactics guide detailed low-level problem-solving through

in-context learning with LLMs. Furthermore, we investigated data synthesis for long-context

reasoning tasks.

I believe these efforts have established a strong foundation for future advancements in

developing more capable LLMs. In this dissertation, I also outline several key directions for

future research.

1. Generative Self-Verifier with LLMs: As discussed in my deductive verification pa-

per [67], a strong generative self-verifier can be used to improve the accuracy of reasoning

chains generated by large language models. However, the current self-verifier remains

limited in its ability to verify complex reasoning chains generated by the model, even

with the proposed deductive verification method. Developing a more advanced generative

self-verifier is essential and should be enhanced during the pre-training stage to ensure it is

trained on a diverse range of tasks. Additionally, the generative self-verifier could serve as

67



a more robust reward signal generator, producing high-quality data to train better reward

models and enhance overall model performance through reinforcement learning.

2. Enhancing Exploration Capabilities with LLMs: Current language models remain

limited in exploring diverse reasoning strategies. While the hierarchical policy framework

proposed in my paper [68] has shown promising results, further research is needed to

enhance these capabilities. For instance, more advanced high-level leader strategies could

be developed to propose a wider range of creative and diverse reasoning strategies. Fur-

thermore, the objectives of existing reinforcement learning frameworks often compromise

the diversity of generated outputs, especially in reasoning tasks, where models tend to

collapse into choosing the most common strategies seen in the training data. A better

approach is needed to enable the model to learn a broad range of high-level strategies and

select the most appropriate one for a given problem.

3. Synthesize Data for Stronger Reasoning Abilites: The web data is inherently incomplete

and does not encompass all possible reasoning patterns. For instance, tool-use data is not

naturally available on the internet. Consequently, it is crucial to develop more advanced

data synthesis methods capable of generating diverse and realistic reasoning patterns that

are absent from the training data. Such efforts would enable LLMs to acquire more robust

reasoning abilities and improve their generalization to unseen tasks. Current strategies,

such as the context expansion approach employed in LongReason, leverage human prior

knowledge to synthesize specific types of reasoning patterns. Future research should focus

on developing more sophisticated data synthesis techniques that can produce a broader

range of reasoning patterns while rigorously evaluating their impact on enhancing LLM

reasoning capabilities.

68



Bibliography

[1] Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah,
Hany Hassan Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Singh
Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck, Sebastien Bubeck, Martin Cai, Caio
C’esar Teodoro Mendes, Weizhu Chen, Vishrav Chaudhary, Parul Chopra, Allison Del
Giorno, Gustavo de Rosa, Matthew Dixon, Ronen Eldan, Dan Iter, Abhishek Goswami,
Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Jamie Huynh, Mojan
Javaheripi, Xin Jin, Piero Kauffmann, Nikos Karampatziakis, Dongwoo Kim, Young Jin
Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Chen
Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik Modi,
Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid
Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olli Saarikivi,
Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma,
Xianmin Song, Olatunji Ruwase, Praneetha Vaddamanu, Xin Wang, Rachel Ward, Guan-
hua Wang, Philipp Witte, Michael Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang,
Ziyi Yang, Donghan Yu, Cheng-Yuan Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna
Zhang, Yi Zhang, Yunan Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable
language model locally on your phone. ArXiv, abs/2404.14219, 2024.

[2] Joyce M Alexander, Martha Carr, and Paula J Schwanenflugel. Development of metacogni-
tion in gifted children: Directions for future research. Developmental review, 15(1):1–37,
1995.

[3] Chenxin An, Shansan Gong, Ming Zhong, Mukai Li, Jun Zhang, Lingpeng Kong, and
Xipeng Qiu. L-eval: Instituting standardized evaluation for long context language models.
In ICLR, 2024.

[4] Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/claude-3-5-sonnet, 2024.

[5] Anthropic. Introducing the next generation of claude, 2024.

[6] Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and Jackie Chi Kit Cheung. Why
exposure bias matters: An imitation learning perspective of error accumulation in language
generation. arXiv preprint arXiv:2204.01171, 2022.

69

https://www.anthropic.com/news/claude-3-5-sonnet


[7] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In
Proceedings of the AAAI conference on artificial intelligence, volume 31, 2017.

[8] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengx-
iao Du, Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Long-
bench: A bilingual, multitask benchmark for long context understanding. arXiv preprint
arXiv:2308.14508, 2023.

[9] Bernadette Berardi-Coletta, Linda S Buyer, Roger L Dominowski, and Elizabeth R
Rellinger. Metacognition and problem solving: A process-oriented approach. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 21(1):205, 1995.

[10] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and
Torsten Hoefler. Graph of thoughts: Solving elaborate problems with large language
models. In AAAI Conference on Artificial Intelligence, 2023.

[11] Kaj Bostrom, Zayne Sprague, Swarat Chaudhuri, and Greg Durrett. Natural language
deduction through search over statement compositions. arXiv preprint arXiv:2201.06028,
2022.

[12] Aleksandar Botev, Soham De, Samuel L Smith, Anushan Fernando, George Muraru,
Ruba Haroun, Leonard Berrada, Razvan Pascanu, Pier Giuseppe Sessa, Robert Dadashi,
L’eonard Hussenot, Johan Ferret, Sertan Girgin, Olivier Bachem, Alek Andreev, Kathleen
Kenealy, Thomas Mesnard, Cassidy Hardin, Surya Bhupatiraju, Shreya Pathak, L. Sifre,
Morgane Rivière, Mihir Kale, J Christopher Love, Pouya Dehghani Tafti, Armand Joulin,
Noah Fiedel, Evan Senter, Yutian Chen, Srivatsan Srinivasan, Guillaume Desjardins,
David Budden, Arnaud Doucet, Sharad Vikram, Adam Paszke, Trevor Gale, Sebastian
Borgeaud, Charlie Chen, Andy Brock, Antonia Paterson, Jenny Brennan, Meg Risdal, Raj
Gundluru, Nesh Devanathan, Paul Mooney, Nilay Chauhan, Phil Culliton, Luiz GUStavo
Martins, Elisa Bandy, David W. Huntsperger, Glenn Cameron, Arthur Zucker, Tris Brian
Warkentin, Ludovic Peran, Minh Giang, Zoubin Ghahramani, Cl’ement Farabet, Koray
Kavukcuoglu, Demis Hassabis, Raia Hadsell, Yee Whye Teh, and Nando de Frietas.
Recurrentgemma: Moving past transformers for efficient open language models. ArXiv,
abs/2404.07839, 2024.

[13] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Ma teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. ArXiv, abs/2005.14165, 2020.

70



[14] Sebastien Bubeck, Varun Chandrasekaran, Ronen Eldan, John A. Gehrke, Eric Horvitz,
Ece Kamar, Peter Lee, Yin Tat Lee, Yuan-Fang Li, Scott M. Lundberg, Harsha Nori, Hamid
Palangi, Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence:
Early experiments with gpt-4. ArXiv, abs/2303.12712, 2023.

[15] Aydar Bulatov, Yuri Kuratov, and Mikhail S Burtsev. Scaling Transformer to 1M tokens
and beyond with RMT. arXiv:2304.11062, 2023.

[16] Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer.
Advances in Neural Information Processing Systems, 35:11079–11091, 2022.

[17] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan,
Harrison Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, David W. Cummings,
Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William H.
Guss, Alex Nichol, Igor Babuschkin, Suchir Balaji, Shantanu Jain, Andrew Carr, Jan
Leike, Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew M. Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code. ArXiv, abs/2107.03374, 2021.

[18] Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context
window of large language models via positional interpolation. In ICLR, 2023.

[19] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts
prompting: Disentangling computation from reasoning for numerical reasoning tasks.
arXiv preprint arXiv:2211.12588, 2022.

[20] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language
models to self-debug. arXiv preprint arXiv:2304.05128, 2023.

[21] Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya
Jia. Longlora: Efficient fine-tuning of long-context large language models. arXiv preprint
arXiv:2309.12307, 2023.

[22] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin
Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P.
Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality,
March 2023.

[23] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,

71



Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam M. Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari,
Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Hen-
ryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiri-
donov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai,
Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan
Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathleen S. Meier-Hellstern,
Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling
with pathways. ArXiv, abs/2204.02311, 2022.

[24] Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Dasha Valter, Sharan
Narang, Gaurav Mishra, Adams Wei Yu, Vincent Zhao, Yanping Huang, Andrew M. Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny
Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language models. ArXiv,
abs/2210.11416, 2022.

[25] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. ArXiv,
abs/2110.14168, 2021.

[26] Antonia Creswell and Murray Shanahan. Faithful reasoning using large language models.
arXiv preprint arXiv:2208.14271, 2022.

[27] Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Ex-
ploiting large language models for interpretable logical reasoning. arXiv preprint
arXiv:2205.09712, 2022.

[28] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning.
arXiv preprint arXiv:2307.08691, 2023.

[29] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Re. Flashattention: Fast
and memory-efficient exact attention with io-awareness. Advances in Neural Information
Processing Systems, 35:16344–16359, 2022.

[30] Janet E Davidson, Rebecca Deuser, and Robert J Sternberg. The role of metacognition in
problem solving. Metacognition: Knowing about knowing, 207:226, 1994.

[31] Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang

72



Xu, Fan Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million
tokens. arXiv preprint arXiv:2402.13753, 2024.

[32] Zican Dong, Tianyi Tang, Junyi Li, Wayne Xin Zhao, and Ji-Rong Wen. Bamboo: A
comprehensive benchmark for evaluating long text modeling capacities of large language
models. arXiv preprint arXiv:2309.13345, 2023.

[33] Zican Dong, Tianyi Tang, Junyi Li, Wayne Xin Zhao, and Ji-Rong Wen. Bamboo: A
comprehensive benchmark for evaluating long text modeling capacities of large language
models. arXiv:2309.13345, 2023.

[34] Danny Driess, F. Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian
Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Ho Vuong, Tianhe Yu, Wenlong Huang,
Yevgen Chebotar, Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke,
Karol Hausman, Marc Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Peter R.
Florence. Palm-e: An embodied multimodal language model. In International Conference
on Machine Learning, 2023.

[35] Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, Nathan Scales, Xinying Song, Xinyun
Chen, Olivier Bousquet, and Denny Zhou. Compositional semantic parsing with large
language models. arXiv preprint arXiv:2209.15003, 2022.

[36] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster,
Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy.
The pile: An 800gb dataset of diverse text for language modeling. ArXiv, abs/2101.00027,
2020.

[37] Jonas Gehring, Gabriel Synnaeve, Andreas Krause, and Nicolas Usunier. Hierarchical
skills for efficient exploration. Advances in Neural Information Processing Systems,
34:11553–11564, 2021.

[38] Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas,
Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie
Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu,
Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi
Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu,
Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang,
Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li,
Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu
Hou, and Zihan Wang. Chatglm: A family of large language models from glm-130b to
glm-4 all tools, 2024.

[39] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state
spaces. arXiv:2312.00752, 2023.

73



[40] Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Z. Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang,
Stone Tao, Xinyue Wei, Yuan Yao, Xiao Yuan, Pengwei Xie, Zhiao Huang, Rui Chen, and
Hao Su. Maniskill2: A unified benchmark for generalizable manipulation skills. ArXiv,
abs/2302.04659, 2023.

[41] Nuno M Guerreiro, Duarte Alves, Jonas Waldendorf, Barry Haddow, Alexandra Birch,
Pierre Colombo, and Andre FT Martins. Hallucinations in large multilingual translation
models. arXiv preprint arXiv:2303.16104, 2023.

[42] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay
policy learning: Solving long-horizon tasks via imitation and reinforcement learning.
In Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura, editors, Proceedings of
the Conference on Robot Learning, volume 100 of Proceedings of Machine Learning
Research, pages 1025–1037. PMLR, 30 Oct–01 Nov 2020.

[43] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song,
and Jacob Steinhardt. Measuring massive multitask language understanding. arXiv
preprint arXiv:2009.03300, 2020.

[44] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset. arXiv preprint arXiv:2103.03874, 2021.

[45] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai,
Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark,
Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc,
Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and L. Sifre. Training compute-optimal large language models. ArXiv, abs/2203.15556,
2022.

[46] Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman.
Learning to solve arithmetic word problems with verb categorization. In EMNLP, pages
523–533, 2014.

[47] Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei
Jia, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

[48] Zhiao Huang, Litian Liang, Zhan Ling, Xuanlin Li, Chuang Gan, and Hao Su. Reparame-
terized policy learning for multimodal trajectory optimization. 2023.

[49] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin
Bang, Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language
generation. ACM Computing Surveys, 55(12):1–38, 2023.

74



[50] Zhiwei Jia, Xuanlin Li, Zhan Ling, Shuang Liu, Yiran Wu, and Hao Su. Improving policy
optimization with generalist-specialist learning. In International Conference on Machine
Learning, pages 10104–10119. PMLR, 2022.

[51] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary,
Chris Bamford, Devendra Singh Chaplot, Diego de Las Casas, Emma Bou Hanna, Florian
Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, L’elio Renard Lavaud,
Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang,
Szymon Antoniak, Teven Le Scao, Theophile Gervet, Thibaut Lavril, Thomas Wang,
Timothee Lacroix, and William El Sayed. Mixtral of experts. ArXiv, abs/2401.04088,
2024.

[52] Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Deven-
dra Singh Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume
Lample, Lucile Saulnier, L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothee Lacroix, and William El Sayed.
Mistral 7b. ArXiv, abs/2310.06825, 2023.

[53] Greg Kamradt. Needle in a haystack - pressure testing llms. https://github.com/gkamradt/
LLMTest NeedleInAHaystack, 2023.

[54] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.

[55] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchi-
cal deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation.
Advances in neural information processing systems, 29, 2016.

[56] Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. Learning to auto-
matically solve algebra word problems. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 271–281,
Baltimore, Maryland, June 2014. Association for Computational Linguistics.

[57] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao
Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for
large language model serving with paged attention. In Proc. of the ACM SIGOPS 29th
Symposium on Operating Systems Principles, 2023.

[58] Andrew Lampinen, Ishita Dasgupta, Stephanie Chan, Kory Mathewson, Mh Tessler,
Antonia Creswell, James McClelland, Jane Wang, and Felix Hill. Can language models
learn from explanations in context? In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 537–563, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics.

75

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack


[59] Chengshu Li, Fei Xia, Roberto Martin-Martin, and Silvio Savarese. Hrl4in: Hierarchical
reinforcement learning for interactive navigation with mobile manipulators. In Conference
on Robot Learning, pages 603–616. PMLR, 2020.

[60] Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan Zhang. Loogle: Can long-context
language models understand long contexts? arXiv preprint arXiv:2311.04939, 2023.

[61] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii
Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade,
Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin,
Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Nourhan Fahmy,
Urvashi Bhattacharyya, W. Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim
Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
Schlesinger, Hailey Schoelkopf, Jana Ebert, Tri Dao, Mayank Mishra, Alexander Gu,
Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor,
Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean M. Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
Starcoder: may the source be with you! ArXiv, abs/2305.06161, 2023.

[62] Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang You. Se-
quence parallelism: Long sequence training from system perspective. arXiv preprint
arXiv:2105.13120, 2021.

[63] Xuanlin Li, Yunhao Fang, Minghua Liu, Zhan Ling, Zhuowen Tu, and Hao Su. Distilling
large vision-language model with out-of-distribution generalizability. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 2492–2503, 2023.

[64] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning
from visual demonstrations. Advances in neural information processing systems, 30,
2017.

[65] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step.
arXiv preprint arXiv:2305.20050, 2023.

[66] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by
rationale generation: Learning to solve and explain algebraic word problems. arXiv
preprint arXiv:1705.04146, 2017.

[67] Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic,
and Hao Su. Deductive verification of chain-of-thought reasoning. arXiv preprint

76



arXiv:2306.03872, 2023.

[68] Zhan Ling, Yunhao Fang, Xuanlin Li, Tongzhou Mu, Mingu Lee, Reza Pourreza, Roland
Memisevic, and Hao Su. Unleashing the creative mind: Language model as hierarchical
policy for improved exploration on challenging problem solving. 2023.

[69] Zhan Ling, Yunchao Yao, Xuanlin Li, and Hao Su. On the efficacy of 3d point cloud
reinforcement learning. arXiv preprint arXiv:2306.06799, 2023.

[70] Fangchen Liu, Zhan Ling, Tongzhou Mu, and Hao Su. State alignment-based imitation
learning. arXiv preprint arXiv:1911.10947, 2019.

[71] Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers
for near-infinite context. arXiv preprint arXiv:2310.01889, 2023.

[72] Jiaheng Liu, Zhiqi Bai, Yuanxing Zhang, Chenchen Zhang, Yu Zhang, Ge Zhang, Jiakai
Wang, Haoran Que, Yukang Chen, Wenbo Su, Tiezheng Ge, Jie Fu, Wenhu Chen, and
Bo Zheng. E2̂-llm: Efficient and extreme length extension of large language models.
ArXiv, abs/2401.06951, 2024.

[73] Minghua Liu, Xuanlin Li, Zhan Ling, Yangyan Li, and Hao Su. Frame mining: a free lunch
for learning robotic manipulation from 3d point clouds. arXiv preprint arXiv:2210.07442,
2022.

[74] Minghua Liu, Yinhao Zhu, Hong Cai, Shizhong Han, Zhan Ling, Fatih Porikli, and Hao Su.
Partslip: Low-shot part segmentation for 3d point clouds via pretrained image-language
models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 21736–21746, 2023.

[75] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham
Neubig. Pre-train, prompt, and predict: A systematic survey of prompting methods in
natural language processing. ACM Computing Surveys, 55(9):1–35, 2023.

[76] Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu,
Oyvind Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning
via thought chains for science question answering. Advances in Neural Information
Processing Systems, 35:2507–2521, 2022.

[77] Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo
Geng, Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering
mathematical reasoning for large language models via reinforced evol-instruct. arXiv
preprint arXiv:2308.09583, 2023.

[78] Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna

77



Apidianaki, and Chris Callison-Burch. Faithful chain-of-thought reasoning. arXiv preprint
arXiv:2301.13379, 2023.

[79] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bod-
hisattwa Prasad Majumder, Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-
refine: Iterative refinement with self-feedback. ArXiv, abs/2303.17651, 2023.

[80] Ana Marasović, Iz Beltagy, Doug Downey, and Matthew E. Peters. Few-shot self-
rationalization with natural language prompts, 2022.

[81] Ahmed Masry and Amir Hajian. Longfin: A multimodal document understanding model
for long financial domain documents. arXiv preprint arXiv:2401.15050, 2024.

[82] Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness
and factuality in abstractive summarization. arXiv preprint arXiv:2005.00661, 2020.

[83] Meta.AI. Llama 3.1 model card. 2024.

[84] Janet Metcalfe and Arthur P Shimamura. Metacognition: Knowing about knowing. MIT
press, 1994.

[85] Mistral.AI. Large enough, 2024.

[86] Mistral.AI. Mistral nemo, 2024.

[87] Mistral.AI. Mistral technology, 2024.

[88] Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite
context length for transformers. arXiv preprint arXiv:2305.16300, 2023.

[89] Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xuanlin Li, Stone Tao, Zhiao
Huang, Zhiwei Jia, and Hao Su. Maniskill: Generalizable manipulation skill benchmark
with large-scale demonstrations. arXiv preprint arXiv:2107.14483, 2021.

[90] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient
hierarchical reinforcement learning. Advances in neural information processing systems,
31, 2018.

[91] OpenAI. Gpt-4 technical report, 2023.

[92] OpenAI. Gpt-4o mini: advancing cost-efficient intelligence. https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/, 2024.

78

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/


[93] OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024.

[94] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob
Hilton, Fraser Kelton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder,
Paul Francis Christiano, Jan Leike, and Ryan J. Lowe. Training language models to follow
instructions with human feedback. ArXiv, abs/2203.02155, 2022.

[95] Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert
West, and Boi Faltings. Refiner: Reasoning feedback on intermediate representations.
arXiv preprint arXiv:2304.01904, 2023.

[96] Bo Peng, Eric Alcaide, Quentin G. Anthony, Alon Albalak, Samuel Arcadinho, Stella
Biderman, Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, G Kranthikiran,
Xingjian Du, Xuming He, Haowen Hou, Przemyslaw Kazienko, Jan Kocoń, Jiaming Kong,
Bartlomiej Koptyra, Hayden Lau, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito,
Xiangru Tang, Bolun Wang, Johan Sokrates Wind, Stansilaw Wozniak, Ruichong Zhang,
Zhenyuan Zhang, Qihang Zhao, Peng Zhou, Jian Zhu, and Rui Zhu. Rwkv: Reinventing
rnns for the transformer era. ArXiv, abs/2305.13048, 2023.

[97] Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context
window extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

[98] Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. Ase: Large-
scale reusable adversarial skill embeddings for physically simulated characters. ACM
Transactions On Graphics (TOG), 41(4):1–17, 2022.

[99] Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with
learned skill priors. In Conference on robot learning, pages 188–204. PMLR, 2021.

[100] Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Inbal Magar, Omri Abend, Ehud
Karpas, Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. Parallel context
windows for large language models. arXiv preprint arXiv:2212.10947, 2022.

[101] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P. Lillicrap,
Jean-Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrit-
twieser, Ioannis Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew M. Dai, Katie
Millican, Ethan Dyer, Mia Glaese, Thibault Sottiaux, Ben jamin Lee, Fabio Viola, Mal-
colm Reynolds, Yuanzhong Xu, James Molloy, Jilin Chen, Michael Isard, Paul Barham,
Tom Hennigan, Ross McIlroy, Melvin Johnson, Johan Schalkwyk, Eli Collins, Eliza
Rutherford, Erica Moreira, Kareem W. Ayoub, Megha Goel, Clemens Meyer, Gregory
Thornton, Zhen Yang, Henryk Michalewski, Zaheer Abbas, Nathan Schucher, Ankesh
Anand, Richard Ives, James Keeling, Karel Lenc, Salem Haykal, Siamak Shakeri, Pranav
Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer, Eren Sezener, Luke

79

https://openai.com/index/hello-gpt-4o/


Vilnis, Oscar Chang, Nobuyuki Morioka, George Tucker, Ce Zheng, Oliver Woodman,
Nithya Attaluri, Tomas Kocisky, Evgenii Eltyshev, Xi Chen, Timothy Chung, Vittorio
Selo, Siddhartha Brahma, Petko Georgiev, Ambrose Slone, Zhenkai Zhu, James Lottes,
Siyuan Qiao, Ben Caine, Sebastian Riedel, Alex Tomala, Martin Chadwick, J Christopher
Love, Peter Choy, Sid Mittal, Neil Houlsby, Yunhao Tang, Matthew Lamm, Libin Bai,
Qiao Zhang, Luheng He, Yong Cheng, Peter Humphreys, Yujia Li, Sergey Brin, Albin
Cassirer, Ying-Qi Miao, Lukas Zilka, Taylor Tobin, Kelvin Xu, Lev Proleev, Daniel Sohn,
Alberto Magni, Lisa Anne Hendricks, Isabel Gao, Santiago Ontan’on, Oskar Bunyan,
Nathan Byrd, Abhanshu Sharma, Biao Zhang, Mario Pinto, Rishika Sinha, Harsh Mehta,
Dawei Jia, Sergi Caelles, Albert Webson, Alex Morris, Becca Roelofs, Yifan Ding, Robin
Strudel, Xuehan Xiong, Marvin Ritter, Mostafa Dehghani, Rahma Chaabouni, Abhijit
Karmarkar, Guangda Lai, Fabian Mentzer, Bibo Xu, YaGuang Li, Yujing Zhang, Tom Le
Paine, Alex Goldin, Behnam Neyshabur, Kate Baumli, Anselm Levskaya, Michael Laskin,
Wenhao Jia, Jack W. Rae, Kefan Xiao, Antoine He, Skye Giordano, Lakshman Yagati,
Jean-Baptiste Lespiau, Paul Natsev, Sanjay Ganapathy, Fangyu Liu, Danilo Martins,
Nanxin Chen, Yunhan Xu, Megan Barnes, Rhys May, Arpi Vezer, Junhyuk Oh, Ken
Franko, Sophie Bridgers, Ruizhe Zhao, Boxi Wu, Basil Mustafa, Sean Sechrist, Emilio
Parisotto, Thanumalayan Sankaranarayana Pillai, Chris Larkin, Chenjie Gu, Christina
Sorokin, Maxim Krikun, Alexey Guseynov, Jessica Landon, Romina Datta, Alexander
Pritzel, Phoebe Thacker, Fan Yang, Kevin Hui, A.E. Hauth, Chih-Kuan Yeh, David Barker,
Justin Mao-Jones, Sophia Austin, Hannah Sheahan, Parker Schuh, James Svensson, Ro-
han Jain, Vinay Venkatesh Ramasesh, Anton Briukhov, Da-Woon Chung, Tamara von
Glehn, Christina Butterfield, Priya Jhakra, Matt Wiethoff, Justin Frye, Jordan Grimstad,
Beer Changpinyo, Charline Le Lan, Anna Bortsova, Yonghui Wu, Paul Voigtlaender,
Tara N. Sainath, Charlotte Smith, Will Hawkins, Kris Cao, James Besley, Srivatsan
Srinivasan, Mark Omernick, Colin Gaffney, Gabriela de Castro Surita, Ryan Burnell,
Bogdan Damoc, Junwhan Ahn, Andrew Brock, Mantas Pajarskas, Anastasia Petrushk-
ina, Seb Noury, Lorenzo Blanco, Kevin Swersky, Arun Ahuja, Thi Avrahami, Vedant
Misra, Raoul de Liedekerke, Mariko Iinuma, Alex Polozov, Sarah York, George van den
Driessche, Paul Michel, Justin Chiu, Rory Blevins, Zach Gleicher, Adrià Recasens, Alban
Rrustemi, Elena Gribovskaya, Au rko Roy, Wiktor Gworek, S’ebastien M. R. Arnold,
Lisa Lee, James Lee-Thorp, Marcello Maggioni, Enrique Piqueras, Kartikeya Badola,
Sharad Vikram, Lucas Gonzalez, Anirudh Baddepudi, Evan Senter, Jacob Devlin, James
Qin, Michael Azzam, Maja Trebacz, Martin Polacek, Kashyap Krishnakumar, Shuo yiin
Chang, Matthew Tung, Ivo Penchev, Rishabh Joshi, Kate Olszewska, Carrie Muir, Mateo
Wirth, Ale Jakse Hartman, Joshua Newlan, Sheleem Kashem, Vijay Bolina, Elahe Dabir,
Joost R. van Amersfoort, Zafarali Ahmed, James Cobon-Kerr, Aishwarya B Kamath,
Arnar Mar Hrafnkelsson, Le Hou, Ian Mackinnon, Alexandre Frechette, Eric Noland,
Xiance Si, Emanuel Taropa, Dong Li, Phil Crone, Anmol Gulati, S’ebastien Cevey, Jonas
Adler, Ada Ma, David Silver, Simon Tokumine, Richard Powell, Stephan Lee, Michael B.
Chang, Samer Hassan, Diana Mincu, Antoine Yang, Nir Levine, Jenny Brennan, Mingqiu
Wang, Sarah Hodkinson, Jeffrey Zhao, Josh Lipschultz, Aedan Pope, Michael B. Chang,
Cheng Li, Laurent El Shafey, Michela Paganini, Sholto Douglas, Bernd Bohnet, Fabio
Pardo, Seth Odoom, Mihaela Rosca, Cicero Nogueira dos Santos, Kedar Soparkar, Arthur

80



Guez, Tom Hudson, Steven Hansen, Chulayuth Asawaroengchai, Ravichandra Addanki,
Tianhe Yu, Wojciech Stokowiec, Mina Khan, Justin Gilmer, Jaehoon Lee, Carrie Grimes
Bostock, Keran Rong, Jonathan Caton, Pedram Pejman, Filip Pavetic, Geoff Brown,
Vivek Sharma, Mario Luvci’c, Rajkumar Samuel, Josip Djolonga, Amol Mandhane,
Lars Lowe Sjosund, Elena Buchatskaya, Elspeth White, Natalie Clay, Jiepu Jiang, Hyeon-
taek Lim, Ross Hemsley, Jane Labanowski, Nicola De Cao, David Steiner, Sayed Hadi
Hashemi, Jacob Austin, Anita Gergely, Tim Blyth, Joe Stanton, Kaushik Shivakumar,
Aditya Siddhant, Anders Andreassen, Carlos L. Araya, Nikhil Sethi, Rakesh Shivanna,
Steven Hand, Ankur Bapna, Ali Khodaei, Antoine Miech, Garrett Tanzer, Andy Swing,
Shantanu Thakoor, Zhufeng Pan, Zachary Nado, Stephanie Winkler, Dian Yu, Moham-
mad Saleh, Lorenzo Maggiore, Iain Barr, Minh Giang, Thais Kagohara, Ivo Danihelka,
Amit Marathe, Vladimir Feinberg, Mohamed Elhawaty, Nimesh Ghelani, Dan Horgan,
Helen Miller, Lexi Walker, Richard Tanburn, Mukarram Tariq, Disha Shrivastava, Fei Xia,
Chung-Cheng Chiu, Zoe Ashwood, Khuslen Baatarsukh, Sina Samangooei, Fred Alcober,
Axel Stjerngren, Paul Komarek, Katerina Tsihlas, Anudhyan Boral, Ramona Comanescu,
Jeremy Chen, Ruibo Liu, Dawn Bloxwich, Charlie Chen, Yanhua Sun, Fangxi aoyu
Feng, Matthew Mauger, Xerxes Dotiwalla, Vincent Hellendoorn, Michael Sharman, Ivy
Zheng, Krishna Haridasan, Gabriel Barth-Maron, Craig Swanson, Dominika Rogozi’nska,
Alek Andreev, Paul Kishan Rubenstein, Ruoxin Sang, Dan Hurt, Gamaleldin Elsayed,
Ren shen Wang, Dave Lacey, Anastasija Ili’c, Yao Zhao, Woohyun Han, Lora Aroyo,
Chimezie Iwuanyanwu, Vitaly Nikolaev, Balaji Lakshminarayanan, Sadegh Jazayeri,
Raphael Lopez Kaufman, Mani Varadarajan, Chetan Tekur, Doug Fritz, Misha Khalman,
David Reitter, Kingshuk Dasgupta, Shourya Sarcar, T. Ornduff, Javier Snaider, Fantine
Huot, Johnson Jia, Rupert Kemp, Nejc Trdin, Anitha Vijayakumar, Lucy Kim, Christof
Angermueller, Li Lao, Tianqi Liu, Haibin Zhang, David Engel, Somer Greene, Anais
White, Jessica Austin, Lilly Taylor, Shereen Ashraf, Dangyi Liu, Maria Georgaki, Irene
Cai, Yana Kulizhskaya, Sonam Goenka, Brennan Saeta, Kiran Vodrahalli, Christian Frank,
Dario de Cesare, Brona Robenek, Harry Richardson, Mahmoud Alnahlawi, Christopher
Yew, Priya Ponnapalli, Marco Tagliasacchi, Alex Korchemniy, Yelin Kim, Dinghua Li,
Bill Rosgen, Kyle Levin, Jeremy Wiesner, Praseem Banzal, Praveen Srinivasan, Hongkun
Yu, cCauglar Unlu, David Reid, Zora Tung, Daniel F. Finchelstein, Ravin Kumar, Andre
Elisseeff, Jin Huang, Ming Zhang, Rui Zhu, Ricardo Aguilar, Mai Gim’enez, Jiawei
Xia, Olivier Dousse, Willi Gierke, Soheil Hassas Yeganeh, Damion Yates, Komal Jalan,
Lu Li, Eri Latorre-Chimoto, Duc Dung Nguyen, Ken Durden, Praveen Kallakuri, Yaxin
Liu, Matthew Johnson, Tomy Tsai, Alice Talbert, Jasmine Liu, Alexander Neitz, Chen
Elkind, Marco Selvi, Mimi Jasarevic, Livio Baldini Soares, Albert Cui, Pidong Wang,
Alek Wenjiao Wang, Xinyu Ye, Krystal Kallarackal, Lucia Loher, Hoi Lam, Josef Broder,
Daniel Niels Holtmann-Rice, Nina Martin, Bramandia Ramadhana, Daniel Toyama, Mri-
nal Shukla, Sujoy Basu, Abhi Mohan, Nicholas Fernando, Noah Fiedel, Kim Paterson, Hui
Li, Ankush Garg, Jane Park, Donghyun Choi, Diane Wu, Sankalp Singh, Zhishuai Zhang,
Amir Globerson, Lily Yu, John Carpenter, Felix de Chaumont Quitry, Carey Radebaugh,
Chu-Cheng Lin, Alex Tudor, Prakash Shroff, Drew Garmon, Dayou Du, Neera Vats,
Han Lu, Shariq Iqbal, Alexey Yakubovich, Nilesh Tripuraneni, James Manyika, Haroon
Qureshi, Nan Hua, Christel Ngani, Maria Abi Raad, Hannah Forbes, Anna Bulanova,

81



Jeff Stanway, Mukund Sundararajan, Victor Ungureanu, Colton Bishop, Yunjie Li, Balaji
Venkatraman, Bo Li, Chloe Thornton, Salvatore Scellato, Nishesh Gupta, Yicheng Wang,
Ian Tenney, Xihui Wu, Ashish Shenoy, Gabriel Carvajal, Diana Gage Wright, Ben Bariach,
Zhuyun Xiao, Peter Hawkins, Sid Dalmia, Cl’ement Farabet, Pedro Valenzuela, Quan
Yuan, Christoper A. Welty, Ananth Agarwal, Mianna Chen, Wooyeol Kim, Brice Hulse,
Nandita Dukkipati, Adam Paszke, Andrew Bolt, Elnaz Davoodi, Kiam Choo, Jennifer
Beattie, Jennifer Prendki, Harsha Vashisht, Rebeca Santamaria-Fernandez, Luis C. Cobo,
Jarek Wilkiewicz, David Madras, Ali Elqursh, Grant Uy, Kevin Ramirez, Matt Harvey,
Tyler Liechty, Heiga Zen, Jeff Seibert, Clara Huiyi Hu, A. Ya. Khorlin, Maigo Le, Asaf
Aharoni, Megan Li, Lily Wang, Sandeep Kumar, Alejandro Lince, Norman Casagrande,
Jay Hoover, Dalia El Badawy, David Soergel, Denis Vnukov, Matt Miecnikowski, Jiři
Simsa, Anna Koop, Praveen Kumar, Thibault Sellam, Daniel Vlasic, Samira Daruki, Nir
Shabat, John Zhang, Guolong Su, Kalpesh Krishna, Jiageng Zhang, Jeremiah Liu, Yi Sun,
Evan Palmer, Alireza Ghaffarkhah, Xi Xiong, Victor Cotruta, Michael Fink, Lucas Dixon,
Ashwin Sreevatsa, Adrian Goedeckemeyer, Alek Dimitriev, Mohsen Jafari, Remi Crocker,
Nicholas Fitzgerald, Aviral Kumar, Sanjay Ghemawat, Ivan Philips, Frederick Liu, Yannie
Liang, Rachel Sterneck, Alena Repina, Marcus Wu, Laura Knight, Marin Georgiev, Hyo
Lee, Harry Askham, Abhishek Chakladar, Annie Louis, Carl Crous, Hardie Cate, Dessie
Petrova, Michael Quinn, Denese Owusu-Afriyie, Achintya Singhal, Nan Wei, Solomon
Kim, Damien Vincent, Milad Nasr, Ilia Shumailov, Christopher A. Choquette-Choo,
Reiko Tojo, Shawn Lu, Diego de Las Casas, Yuchung Cheng, Tolga Bolukbasi, Katherine
Lee, Saaber Fatehi, Rajagopal Ananthanarayanan, Miteyan Patel, Charbel El Kaed, Jing
Li, Jakub Sygnowski, Shreyas Rammohan Belle, Zhe Chen, Jaclyn Konzelmann, Siim
Poder, Roopal Garg, Vinod Koverkathu, Adam Brown, Chris Dyer, Rosanne Liu, Azade
Nova, Jun Xu, Junwen Bai, Slav Petrov, Demis Hassabis, Koray Kavukcuoglu, Jeffrey
Dean, Oriol Vinyals, and Alexandra Chronopoulou. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. ArXiv, abs/2403.05530, 2024.

[102] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. arXiv preprint arXiv:1908.10084, 2019.

[103] Danilo Neves Ribeiro, Shen Wang, Xiaofei Ma, He Zhu, Rui Dong, Deguang Kong,
Juliette Burger, Anjelica Ramos, William Yang Wang, Zhiheng Huang, George Karypis,
Bing Xiang, and Dan Roth. Street: A multi-task structured reasoning and explanation
benchmark. ArXiv, abs/2302.06729, 2023.

[104] Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413, 2016.

[105] Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid
Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti Datta, Jonathan D. Chang, Mike
Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng-Xin Yong, Harshit

82



Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma,
Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan Teehan, Stella Biderman, Leo
Gao, Tali Bers, Thomas Wolf, and Alexander M. Rush. Multitask prompted training
enables zero-shot task generalization. ArXiv, abs/2110.08207, 2021.

[106] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ili’c, Daniel Hesslow,
Roman Castagn’e, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan
Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammana-
manchi, Thomas Wang, Benoı̂t Sagot, Niklas Muennighoff, Albert Villanova del Moral,
Olatunji Ruwase, Rachel Bawden, Stas Bekman, Angelina McMillan-Major, Iz Beltagy,
Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo Lau-
renccon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan,
Adi Simhi, Aitor Soroa Etxabe, Alham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreis-
berg Nitzav, Canwen Xu, Chenghao Mou, Chris C. Emezue, Christopher Klamm, Colin
Leong, Daniel Alexander van Strien, David Ifeoluwa Adelani, Dragomir R. Radev, Ed-
uardo Gonz’alez Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal Natan, Francesco De
Toni, Gérard Dupont, Germán Kruszewski, Giada Pistilli, Hady ElSahar, Hamza Benyam-
ina, Hieu Trung Tran, Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios,
Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jorg Frohberg,
Josephine Tobing, Joydeep Bhattacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo,
Leandro von Werra, Leon Weber, Long Phan, Loubna Ben Allal, Ludovic Tanguy, Manan
Dey, Manuel Romero Muñoz, Maraim Masoud, Marı́a Grandury, Mario vSavsko, Max
Huang, Maximin Coavoux, Mayank Singh, Mike Tian-Jian Jiang, Minh Chien Vu, Mo-
hammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora Kassner, Nurulaqilla
Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas, Peter Henderson,
Pierre Colombo, Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi Bommasani,
Roberto L’opez, Rui Ribeiro, Salomey Osei, Sampo Pyysalo, Sebastian Nagel, Shamik
Bose, Shamsuddeen Hassan Muhammad, Shanya Sharma, S. Longpre, Somaieh Nikpoor,
S. Silberberg, Suhas Pai, Sydney Zink, Tiago Timponi Torrent, Timo Schick, Tristan
Thrush, Valentin Danchev, Vassilina Nikoulina, Veronika Laippala, Violette Lepercq,
Vrinda Prabhu, Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin Heinzerling, Chenglei
Si, Elizabeth Salesky, Sabrina J. Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea Santilli,
Antoine Chaffin, Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla, Gunjan Chhablani,
Han Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan Fries, Jos Rozen, Leo Gao,
Lintang Sutawika, M Saiful Bari, Maged S. Al-Shaibani, Matteo Manica, Nihal V. Nayak,
Ryan Teehan, Samuel Albanie, Sheng Shen, Srulik Ben-David, Stephen H. Bach, Tae-
woon Kim, Tali Bers, Thibault Févry, Trishala Neeraj, Urmish Thakker, Vikas Raunak,
Xiang Tang, Zheng-Xin Yong, Zhiqing Sun, Shaked Brody, Y Uri, Hadar Tojarieh, Adam
Roberts, Hyung Won Chung, Jaesung Tae, Jason Phang, Ofir Press, Conglong Li, Deepak
Narayanan, Hatim Bourfoune, Jared Casper, Jeff Rasley, Max Ryabinin, Mayank Mishra,
Minjia Zhang, Mohammad Shoeybi, Myriam Peyrounette, Nicolas Patry, Nouamane Tazi,
Omar Sanseviero, Patrick von Platen, Pierre Cornette, Pierre Franccois Lavall’ee, Rémi
Lacroix, Samyam Rajbhandari, Sanchit Gandhi, Shaden Smith, Stéphane Requena, Suraj
Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet Singh, Anastasia Cheveleva, Anne-Laure

83



Ligozat, Arjun Subramonian, Aur’elie N’ev’eol, Charles Lovering, Daniel H Garrette,
Deepak R. Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bog-
danov, Genta Indra Winata, Hailey Schoelkopf, Jan-Christoph Kalo, Jekaterina Novikova,
Jessica Zosa Forde, Xiangru Tang, Jungo Kasai, Ken Kawamura, Liam Hazan, Marine
Carpuat, Miruna Clinciu, Najoung Kim, Newton Cheng, Oleg Serikov, Omer Antverg,
Oskar van der Wal, Rui Zhang, Ruochen Zhang, Sebastian Gehrmann, Shachar Mirkin,
S. Osher Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, Tomasz Limisiewicz, Verena
Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruksachatkun, Yonatan Belinkov,
Zachary Bamberger, Zdenvek Kasner, Zdeněk Kasner, Amanda Pestana, Amir Feizpour,
Ammar Khan, Amy Faranak, Ananda Santa Rosa Santos, Anthony Hevia, Antigona
Unldreaj, Arash Aghagol, Arezoo Abdollahi, Aycha Tammour, Azadeh HajiHosseini,
Bahareh Behroozi, Benjamin Ayoade Ajibade, Bharat Kumar Saxena, Carlos Muñoz
Ferrandis, Danish Contractor, David M. Lansky, Davis David, Douwe Kiela, Duong Anh
Nguyen, Edward Tan, Emi Baylor, Ezinwanne Ozoani, Fatim Tahirah Mirza, Frankline
Ononiwu, Habib Rezanejad, H.A. Jones, Indrani Bhattacharya, Irene Solaiman, Irina
Sedenko, Isar Nejadgholi, Jan Passmore, Joshua Seltzer, Julio Bonis Sanz, Karen Fort,
Lı́via Dutra, Mairon Samagaio, Maraim Elbadri, Margot Mieskes, Marissa Gerchick,
Martha Akinlolu, Michael McKenna, Mike Qiu, Muhammed Ghauri, Mykola Burynok,
Nafis Abrar, Nazneen Rajani, Nour Elkott, Nourhan Fahmy, Olanrewaju Samuel, Ran An,
R. P. Kromann, Ryan Hao, Samira Alizadeh, Sarmad Shubber, Silas L. Wang, Sourav
Roy, Sylvain Viguier, Thanh-Cong Le, Tobi Oyebade, Trieu Nguyen Hai Le, Yoyo Yang,
Zach Nguyen, Abhinav Ramesh Kashyap, Alfredo Palasciano, Alison Callahan, Anima
Shukla, Antonio Miranda-Escalada, Ayush Kumar Singh, Benjamin Beilharz, Bo Wang,
Caio Matheus Fonseca de Brito, Chenxi Zhou, Chirag Jain, Chuxin Xu, Clémentine
Fourrier, Daniel Le’on Perin’an, Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio
Barth, Florian Fuhrimann, Gabriel Altay, Giyaseddin Bayrak, Gully Burns, Helena U.
Vrabec, Iman I.B. Bello, Isha Dash, Ji Soo Kang, John Giorgi, Jonas Golde, Jose David
Posada, Karthi Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa Shinzato, Madeleine Hahn
de Bykhovetz, Maiko Takeuchi, Marc Pàmies, Marı́a Andrea Castillo, Marianna Nezhu-
rina, Mario Sanger, Matthias Samwald, Michael Cullan, Michael Weinberg, M Wolf,
Mina Mihaljcic, Minna Liu, Moritz Freidank, Myungsun Kang, Natasha Seelam, Nathan
Dahlberg, Nicholas Michio Broad, Nikolaus Muellner, Pascale Fung, Patricia Haller,
Patrick Haller, Renata Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline Su, Ruisi
Su, Samuel Cahyawijaya, Samuele Garda, Shlok S Deshmukh, Shubhanshu Mishra, Sid
Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Kumar, Stefan Schweter, Sushil Pratap
Bharati, Tanmay Laud, Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Yanis Labrak,
Yashasvi Bajaj, Y. Venkatraman, Yifan Xu, Ying Xu, Yu Xu, Zhee Xao Tan, Zhongli Xie,
Zifan Ye, Mathilde Bras, Younes Belkada, and Thomas Wolf. Bloom: A 176b-parameter
open-access multilingual language model. ArXiv, abs/2211.05100, 2022.

[107] Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. arXiv preprint arXiv:2302.04761, 2023.

84



[108] Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. ZeroSCROLLS: A
zero-shot benchmark for long text understanding. In EMNLP, 2023.

[109] Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin Jiang, Ming Zhang, and Qun
Liu. Generate & rank: A multi-task framework for math word problems. arXiv preprint
arXiv:2109.03034, 2021.

[110] Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Chi, Nathanael
Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant
context. arXiv preprint arXiv:2302.00093, 2023.

[111] Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason
Wei. Language models are multilingual chain-of-thought reasoners. arXiv preprint
arXiv:2210.03057, 2022.

[112] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with
dynamic memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

[113] Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang Wang, Jianfeng Wang, Jordan
Boyd-Graber, and Lijuan Wang. Prompting gpt-3 to be reliable. arXiv preprint
arXiv:2210.09150, 2022.

[114] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar
Abid, Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso,
Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex
Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish,
Allen Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet
Rahane, Anantharaman S. Iyer, Anders Andreassen, Andrea Madotto, Andrea Santilli,
Andreas Stuhlmuller, Andrew M. Dai, Andrew La, Andrew Kyle Lampinen, Andy Zou,
Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio
Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun
Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut
Erdem, Ayla Karakacs, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartlomiej Bo-
janowski, Batuhan Ozyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden,
Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Stephen Howald, Bryan Orinion,
Cameron Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, C’esar Ferri Ram’irez,
Chandan Singh, Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-
Burch, Chris Waites, Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy
Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina
Garbacea, Damien Sileo, Daniel H Garrette, Dan Hendrycks, Dan Kilman, Dan Roth,
Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Mosegu’i Gonz’alez, Danielle R.
Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa, David Dohan,
David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin, Denis

85



Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar
Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Ekaterina
Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Eliza-
beth P. Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang,
Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan J. Jerzak, Ethan Kim,
Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando
Mart’inez-Plumed, Francesca Happ’e, François Chollet, Frieda Rong, Gaurav Mishra,
Genta Indra Winata, Gerard de Melo, German Kruszewski, Giambattista Parascandolo,
Giorgio Mariani, Gloria Xinyue Wang, Gonzalo Jaimovitch-L’opez, Gregor Betz, Guy
Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi, Harsh
Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schutze, Hiromu Yakura, Hongming
Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, John
Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Simon, James
Koppel, James Zheng, James Zou, Jan Koco’n, Jana Thompson, Janelle Wingfield, Jared
Kaplan, Jarema Radom, Jascha Narain Sohl-Dickstein, Jason Phang, Jason Wei, Jason
Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen
Taal, Jesse Engel, Jesujoba Oluwadara Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang,
Jane W Waweru, John Burden, John Miller, John U. Balis, Jonathan Batchelder, Jonathan
Berant, Jorg Frohberg, Jos Rozen, José Hernández-Orallo, Joseph Boudeman, Joseph
Guerr, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz,
Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert,
Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi, Kory Wallace Mathewson, Kristen
Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria
Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-
Philippe Morency, Luca Moschella, Luca Lam, Lucy Noble, Ludwig Schmidt, Luheng
He, Luis Oliveros Col’on, Luke Metz, Lutfi Kerem cSenel, Maarten Bosma, Maarten
Sap, Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco
Baturan, Marco Marelli, Marco Maru, Maria Jose Ram’irez Quintana, Marie Tolkiehn,
Mario Giulianelli, Martha Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen,
Matyas Schubert, Medina Baitemirova, Melody Arnaud, Melvin McElrath, Michael A.
Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube,
Michal Swkedrowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain,
Mimee Xu, Mirac Suzgun, Mitch Walker, Monica Tiwari, Mohit Bansal, Moin Amin-
naseri, Mor Geva, Mozhdeh Gheini, T MukundVarma, Nanyun Peng, Nathan A. Chi,
Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron,
Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish
Keskar, Niveditha Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar
Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth
Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao,
Percy Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, P. Milkowski,
Piyush S. Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen,
Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco,
Raphael Milliere, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe
Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan Le

86



Bras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov, Ryan Chi, Ryan
Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif Mohammad, Sajant
Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman,
Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghaz-
arian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian
Schuster, Sepideh Sadeghi, Shadi S. Hamdan, Sharon Zhou, Shashank Srivastava, Sherry
Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham
Toshniwal, Shyam Upadhyay, Shyamolima Debnath, Siamak Shakeri, Simon Thormeyer,
Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Bradley
Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Bider-
man, Stephanie Lin, Stephen Prasad, Steven T Piantadosi, Stuart M. Shieber, Summer
Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao
Yu, Tariq Ali, Tatsunori Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild,
Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Titus Tun-
duny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri
Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Venkatesh
Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus,
William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao,
Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman
Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou,
Yu Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang,
and Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the capabilities
of language models. ArXiv, abs/2206.04615, 2022.

[115] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063,
2024.

[116] Ying Su, Zhan Ling, Haochen Shi, Jiayang Cheng, Yauwai Yim, and Yangqiu Song.
Actplan-1k: Benchmarking the procedural planning ability of visual language models in
household activities. arXiv preprint arXiv:2410.03907, 2024.

[117] H Lee Swanson. The relationship between metacognition and problem solving in gifted
children. Roeper Review, 15(1):43–48, 1992.

[118] Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. Proofwriter: Generating implications,
proofs, and abductive statements over natural language. In Chengqing Zong, Fei Xia,
Wenjie Li, and Roberto Navigli, editors, Findings of the Association for Computational
Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021, volume ACL/IJCNLP
2021 of Findings of ACL, pages 3621–3634. Association for Computational Linguistics,
2021.

[119] Cheng Tan, Dongxin Lyu, Siyuan Li, Zhangyang Gao, Jingxuan Wei, Siqi Ma, Zicheng
Liu, and Stan Z Li. Peer review as a multi-turn and long-context dialogue with role-based

87



interactions. arXiv preprint arXiv:2406.05688, 2024.

[120] Qwen Team. Qwen2.5: A party of foundation models, September 2024.

[121] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and
efficient foundation language models. ArXiv, abs/2302.13971, 2023.

[122] Minzheng Wang, Longze Chen, Cheng Fu, Shengyi Liao, Xinghua Zhang, Bingli Wu,
Haiyang Yu, Nan Xu, Lei Zhang, Run Luo, Yunshui Li, Min Yang, Fei Huang, and
Yongbin Li. Leave no document behind: Benchmarking long-context llms with extended
multi-doc qa. ArXiv, abs/2406.17419, 2024.

[123] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-
consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

[124] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud,
Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori
Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities
of large language models. ArXiv, abs/2206.07682, 2022.

[125] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and
Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
arXiv preprint arXiv:2201.11903, 2022.

[126] Xinyue Wei, Minghua Liu, Zhan Ling, and Hao Su. Approximate convex decomposition
for 3d meshes with collision-aware concavity and tree search. ACM Transactions on
Graphics (TOG), 41(4):1–18, 2022.

[127] Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason We-
ston. Neural text generation with unlikelihood training. arXiv preprint arXiv:1908.04319,
2019.

[128] Yixuan Weng, Minjun Zhu, Shizhu He, Kang Liu, and Jun Zhao. Large language models
are reasoners with self-verification. arXiv preprint arXiv:2212.09561, 2022.

[129] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M.
Rush. Huggingface’s transformers: State-of-the-art natural language processing. ArXiv,
abs/1910.03771, 2019.

88



[130] Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou,
Louis Martin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oğuz, Madian Khabsa,
Han Fang, Yashar Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale,
Sergey Edunov, Mike Lewis, Sinong Wang, and Hao Ma. Effective long-context scaling
of foundation models. In North American Chapter of the Association for Computational
Linguistics, 2023.

[131] Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu, Sandeep
Subramanian, Evelina Bakhturina, Mohammad Shoeybi, and Bryan Catanzaro. Retrieval
meets long context large language models. arXiv preprint arXiv:2310.03025, 2023.

[132] Kaiyu Yang, Jia Deng, and Danqi Chen. Generating natural language proofs with verifier-
guided search. arXiv preprint arXiv:2205.12443, 2022.

[133] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language
models. arXiv preprint arXiv:2305.10601, 2023.

[134] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. arXiv preprint
arXiv:2210.03629, 2022.

[135] Eric Zelikman, Jesse Mu, Noah D Goodman, and Yuhuai Tony Wu. Star: Self-taught
reasoner bootstrapping reasoning with reasoning. 2022.

[136] Andy Zeng, Adrian S. Wong, Stefan Welker, Krzysztof Choromanski, Federico Tombari,
Aveek Purohit, Michael S. Ryoo, Vikas Sindhwani, Johnny Lee, Vincent Vanhoucke, and
Peter R. Florence. Socratic models: Composing zero-shot multimodal reasoning with
language. ArXiv, abs/2204.00598, 2022.

[137] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle
Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. Opt: Open pre-trained transformer language models. ArXiv,
abs/2205.01068, 2022.

[138] Xiaoshuai Zhang, Rui Chen, Ang Li, Fanbo Xiang, Yuzhe Qin, Jiayuan Gu, Z. Ling,
Minghua Liu, Peiyu Zeng, Songfang Han, Zhiao Huang, Tongzhou Mu, Jing Xu, and
Hao Su. Close the optical sensing domain gap by physics-grounded active stereo sensor
simulation. IEEE Transactions on Robotics, 39:2429–2447, 2022.

[139] Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai
Hao, Xu Han, Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. ∞bench:
Extending long context evaluation beyond 100k tokens. ArXiv, abs/2402.13718, 2024.

89



[140] Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Ö Arik.
Chain of agents: Large language models collaborating on long-context tasks. arXiv
preprint arXiv:2406.02818, 2024.

[141] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought
prompting in large language models. arXiv preprint arXiv:2210.03493, 2022.

[142] Jun Zhao, Can Zu, Hao Xu, Yi Lu, Wei He, Yiwen Ding, Tao Gui, Qi Zhang, and
Xuanjing Huang. Longagent: Scaling language models to 128k context through multi-
agent collaboration, 2024.

[143] Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu,
Anya Jia, Linqi Song, Mingjie Zhan, and Hongsheng Li. Solving challenging math
word problems using gpt-4 code interpreter with code-based self-verification. ArXiv,
abs/2308.07921, 2023.

[144] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables
complex reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

[145] Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and
Hanie Sedghi. Teaching algorithmic reasoning via in-context learning. arXiv preprint
arXiv:2211.09066, 2022.

[146] Dawei Zhu, Nan Yang, Liang Wang, Yifan Song, Wenhao Wu, Furu Wei, and Sujian Li.
PoSE: Efficient context window extension of LLMs via positional skip-wise training. In
ICLR, 2024.

90


	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Reasoning with Large Language Models
	Overview of Techniques and Contributions
	Deductive Verification of Chain-of-Thought Reasoning
	LLMs as Hierarchical Policy for Improved Exploration
	Synthetic Long-Context Reasoning Data via Context Expansion

	Additional Work Done During my Doctoral Career

	Deductive Verification of Chain-of-Thought Reasoning
	Introduction
	Related work
	Motivation and Problem Formulation
	Deductively Verifiable Chain-of-Thought Reasoning
	Decomposition of Deductive Verification Process
	 Deductive Reasoning Format
	Integrating Deductive Verification with Unanimity-Plurality Voting

	Experiments
	Experimental Setup
	Results

	Additional Results
	Zero-Shot vs. Few-Shot Full Reasoning Chain Verification Without Step-by-Step Decomposition or Natural Program Format
	Zero-Shot vs. One-Shot Deductive Verification with Step-by-Step Decomposition and Natural Program Format
	Deductive Verification with Vicuna Models

	Additional Implementation Details
	Limitations
	Conclusion

	Language Model As Hierarchical Policy For Improved Exploration on Challenging Problem Solving
	Introduction
	Related Work
	Language Model as a Hierarchical Policy for Exploration
	Experiments
	Do We Enhance the Discovery and Visibility of Correct Solutions?
	Do We Improve Final Answer Accuracy for Challenging Reasoning Problems?
	Ablation Study

	Additional Results
	Failure Example Analysis
	Evaluation on GSM8K

	Additional Implementation Details
	Further Analysis and Limitations
	Conclusion

	Long-Context Reasoning Synthesis through Context Expansion
	Introduction
	Related Work
	Our Benchmark: LongReason
	Long-context Reasoning Question Construction via Context Expansion
	The Statistics of LongReason

	Exerperiments & Results
	Experimental setup
	Main Results
	Further Analysis

	Model Information
	Hyperparameters for LongReason Construction
	Conclusion and Limitations

	Finale
	Bibliography



