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Abstract

Introduction: Carriage of high-risk APOL1 genetic variants is associated with increased risks for 

kidney diseases in people of African descent. Less is known about the variants’ associations with 

blood pressure or potential moderators.

Methods: We investigated these associations in a pregnancy cohort of 556 women and 493 

children identified as African American. Participants with two APOL1 risk alleles were defined as 

having the high-risk genotype. Blood pressure in both populations was measured at the child’s 

4–6 years visit. We fit multivariate linear and Poisson regressions and further adjusted for 

population stratification to estimate the APOL1-blood pressure associations. We also examined 

the associations modified by air pollution exposures (particulate matter ≤2.5μm in aerodynamic 
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diameter [PM2.5] and nitrogen dioxide) and explored other moderators such as health conditions 

and behaviors.

Results: Neither APOL1 risk alleles nor risk genotypes had a main effect on blood pressure in 

mothers or children. However, each 2-μg/m3 increase of four-year average PM2.5 was associated 

with a 16.3 (95%CI: 5.7, 26.9) mmHg higher diastolic blood pressure in mothers with the APOL1 
high-risk genotype, while the estimated effect was much smaller in mothers with the low-risk 

genotype (i.e., 2.9 [95%CI: −3.1, 8.8] mmHg; Pinteraction=0.01). Additionally, the associations 

of APOL1 risk alleles and the high-risk genotype with high blood pressure (i.e., SBP and/or 

DBP≥90th percentile) were stronger in girls vs. boys (Pinteraction=0.02 and 0.005, respectively).

Conclusion: This study sheds light on the distribution of high blood pressure by APOL1 genetic 

variants and informs regulatory policy to protect vulnerable population subgroups.

Keywords

APOL1 genetic variants; blood pressure; hypertension; air pollution exposures; child health; 
Gene–environment interaction

Introduction:

Adult hypertension is the most common chronic disease leading to office visits and the 

use of prescription drugs in the U.S (CDC, 2020; Whelton Paul K. et al., 2018) and is a 

major risk factor for adverse cardiovascular and renal outcomes (Flint et al., 2019; Tang 

et al., 2018). In children, elevated blood pressure may persist over time and progress to 

clinical hypertension in adulthood (Chen and Wang, 2008). Persistent racial disparities exist 

in many aspects of hypertension: compared to Whites, African Americans develop high 

blood pressure (HBP) earlier in life with a higher average blood pressure (Goulding et 

al., 2021; Wright et al., 2011). They are also disproportionally affected by complications 

attributed to hypertension, particularly chronic kidney disease (CKD) (Writing Group 

Members et al., 2016). Along with well-established risk factors for this health concern, 

including socioeconomic status and lifestyle factors, heritability estimates indicate that 

genetic polymorphisms also contribute to blood pressure traits in people of African descent.

Approximately half of African Americans carry at least one kidney disease-associated 

risk variant (G1 or G2 vs. G0) in the apolipoprotein L1 gene (APOL1) on chromosome 

22, and 12-15% carry two risk variants (Friedman et al., 2011). APOL1 G1 (rs73885319/

rs60910145) and G2 (rs71785313) risk alleles, found only in people of African descent, 

confer resistance to some forms of African trypanosomiasis (Genovese et al., 2010a). 

Adult and pediatric data suggest individuals with two variant alleles are at higher risk 

for albuminuria and various forms of glomerular kidney disease (Kopp et al., 2011; Ekulu 

et al., 2019; Genovese et al., 2010b; Zahr et al., 2019; Ashley-Koch et al., 2011; Kopp, 

2013). However, the role of APOL1 risk variants in hypertension is unclear. To the best 

of our knowledge, only four studies, three in the U.S. and one in South Africa, have 

characterized this association in adults, with inconclusive results (Chen Teresa K. et al., 

2020; Chen et al., 2017; Matsha et al., 2015; Nadkarni et al., 2017). The one pediatric study 

published to date reported a positive association between the APOL1 high-risk genotype and 
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uncontrolled hypertension in American children with focal segmental glomerulosclerosis 

(FSGS) (Woroniecki et al., 2016). This relationship has not previously been examined in the 

general pediatric population.

Only some individuals with two APOL1 risk variants develop hypertension and/or overt 

kidney disease, suggesting a possible role for gene-environment interactions (Langefeld 

et al., 2018). Mounting evidence from animal and human adult studies implicate air 

pollution in adverse cardiovascular and kidney outcomes (Brook et al., 2010; Wu et al., 

2020). Particular attention has been directed toward ambient particulate matter ≤2.5μm 

in aerodynamic diameter (PM2.5) and nitrogen dioxide (NO2) (Giorgini et al., 2016; Li 

et al., 2020; Ni et al., 2021). To date, only one study in New York City has estimated 

the association between one-year average PM2.5 and CKD by APOL1 genotypes in older 

African Americans, and reported a significantly stronger association in the high-risk APOL1 
group (Paranjpe et al., 2020). However, there are no published data examining this APOL1-

air pollution exposure interaction on blood pressure.

In the present study, we investigated associations between APOL1 genetic variants and 

blood pressure in African American mothers and children, and we assessed modification 

of these associations by air pollution exposures, using data from a community-based 

pregnancy cohort in Southern U.S. Further, we explored potential modifications of the 

APOL1-blood pressure associations by history of hypertensive disorders in pregnancy, 

obesity, and smoking history in mothers, and the potential modifications by sex, preterm 

birth, prenatal smoking exposures, and obesity in children.

Methods:

Subjects

Study subjects were African American mothers and children from the Conditions Affecting 

Neurocognitive Development and Learning in Early Childhood (CANDLE) study in 

Memphis, Tennessee. Participants were pregnant women with a singleton low risk 

pregnancy, aged 16-40, recruited at 16-27 weeks of gestation, residing in Shelby County, 

Tennessee. More details of the sampling, recruitment and data collection have been 

described elsewhere (Sontag-Padilla et al., 2015). Written informed consent was obtained 

from all participants at enrollment. All CANDLE research activities were approved by the 

Institutional Review Board of the University of Tennessee Health Sciences Center, and 

this secondary analysis was approved by the University of Washington Human Subjects 

Division.

We defined the study population using self-reported race, as only a subset of participants had 

the entire set of genotype data available to determine ancestry. Starting with 999 mothers 

who self-identified as African American, we excluded those without DNA genotyping 

(N=83) or valid blood pressure measurements at the child 4-6 years visit (N=313), and 

further excluded those who were pregnant at blood pressure assessment (N=47). Among 786 

parental-identified African American children, we excluded 141 without DNA genotyping 

and 152 without valid blood pressure measurement. The final analytic sample comprised 556 

mothers and 493 children.
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APOL1 genotype assessment

Maternal DNA was extracted from buffy coat specimens, separated from whole blood by 

centrifuging at 3000 rpm for 10 minutes and aliquoted to 500 μl in cryovials. Child DNA 

was isolated from either the buffy coat blood sample (N=289) or cells collected by buccal 

swabs (N=204). TaqMan assays (ThermoFisher Scientific, Waltham, MA) were used for 

DNA genotyping. The APOL1 G1 allele is composed of two missense variants in very 

high linkage disequilibrium, rs73885319 (G1g) and rs60910145 (G1m), and we considered 

it sufficient to use only the G1g variant to define this risk allele (Kopp et al., 2011). The 

APOL1 G2 allele consists of rs717185313, a 6 bp in-frame deletion. To examine whether 

allele dropout resulted in an excess of G2 homozygosity, we performed quality control 

measures of repeated PCR with and without a preamplification step, Sanger sequencing, and 

manual visualization of genotype clusters (Baak-Pablo et al., 2010). The results supported 

the robustness and reproducibility of our genotype assignments. We obtained the counts of 

APOL1 risk alleles for each participant as follows: zero risk allele: G0/G0; one risk allele: 

G1/G0 or G2/G0; two risk alleles: G1/G1, G1/G2, or G2/G2. High-risk genotypes were 

further defined as those containing two high-risk alleles (G1/G1, G1/G2, or G2/G2), and 

low-risk genotypes were defined as those containing zero or one risk allele.

Blood pressure assessment

At the child age 4-6 years visit, maternal and child blood pressure measurements were 

obtained using a blood pressure monitor (model BPM-100 from BpTRU Medical Devices, 

Coquitlam, BC, Canada), according to a standardized protocol (NHANES 2015-2016 

Procedure Manuals). Arm circumference was measured to select the correct cuff size. 

Following at least two minutes of rest in a quiet room, blood pressure was measured twice 

in the right arm at heart level. In mothers, measurements were repeated up to four times if 

there was a greater than 10 mmHg discrepancy in systolic blood pressure (SBP) and/or a 

greater than 6 mmHg discrepancy in diastolic blood pressure (DBP). Final blood pressure 

values were calculated by averaging the measurements within a 10-mmHg difference in 

SBP and a 6-mmHg difference in DBP among measurements. Maternal hypertension was 

defined as ≥130 mmHg SBP and/or ≥80 mmHg DBP (Whelton Paul K. et al., 2018). In 

children, up to four measurements were taken if there was a discrepancy >5 mmHg in either 

SBP or DBP. Final blood pressure values were calculated by averaging the measurements 

within a 5-mmHg difference among measurements. Following recommendations of the 

American Academy of Pediatrics 2017 Clinical Practice Guideline, we calculated sex-, age- 

and height specific blood pressure percentile based on the U.S. pediatric population with 

normal weight, and further characterized HBP as SBP and/or DBP at 90th percentile and 

above (Flynn et al., 2017).

Effect modifiers

Using participants’ residential address history, point-based PM2.5 and NO2 exposures were 

estimated from a well-validated advanced spatiotemporal model (mean square error-based 

R2: 0.80-0.93 for the PM2.5 model and 0.74-0.89 for the NO2 model) (Keller et al., 

2015; Kirwa et al., 2021). The model was informed by monitoring data from regulatory 

networks and was further enhanced by air pollution measurements from intensive research 
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cohort-specific monitors. We used a geographic information system to identify covariates 

representing land-use characteristics that could reflect spatial variability in air pollution 

distribution, and the dimension-reduced regression covariates were obtained using partial 

least squares. The space-time features of pollution concentrations were decomposed into 

spatially varying long-term averages, spatially varying seasonal and long-term trends, and 

spatially correlated but temporally independent residuals. These components were fitted 

jointly in a likelihood-based spatiotemporal extension of universal kriging. Biweekly NO2 

and PM2.5 predictions were estimated from region-specific models and were aggregated over 

the whole pregnancy and the postnatal windows from childbirth to four years old.

Other potential effect modifiers were also explored. History of hypertensive disorders 

in pregnancy was collected from both medical records and questionnaires. Mothers who 

reported smoking at enrollment or had urinary cotinine concentrations ≥200 ng/mL in the 

third trimester were classified as positive for pregnancy smoking (Benowitz et al., 2009). 

Maternal smoking history was determined using questionnaires that were administered from 

enrollment to the child age 4-6 years visit, combined with urinary cotinine aforementioned. 

Maternal and child body mass index (BMI) were derived from height and weight measured 

at the visit of outcome assessment. We characterized mothers as obese if they had a BMI 

≥30 kg/m2, and classified children as obese at or above the BMI 95th percentile in the 

pediatric population of the same age and sex (Grummer-Strawn et al., 2010; Jensen et al., 

2014). Child sex was obtained from birth records, and preterm birth was defined as birth 

before 37 completed weeks of gestation.

Covariates

Several maternal and child characteristics, mostly socioeconomic indicators, were 

considered precision variables in this study. Maternal characteristics included age at 

blood pressure assessment, income adjusted by household size (Burniaux et al., 1998), 

education, and insurance coverage. Child characteristics included age and height at outcome 

assessment, and current use of medication that may increase blood pressure, including 

albuterol, methylphenidate, and glucocorticoids. Other covariates included recruitment site 

and time splines of birthday date and visit date. Considering that African Americans 

manifest substantial population substructure, a well-established confounder in genetic 

association studies, we used standard protocols to apply principal component analysis 

(PCA) to a subset of study participants with complete genome-wide association study 

(GWAS) data to determine population stratification (Jolliffe, 2002). PCA was conducted 

using EIGENSOFT (Patterson et al., 2006; Price et al., 2006), and outliers were identified 

and removed before eigenvectors and eigenvalues were generated.

Statistical analysis

We summarized the maternal and child characteristics overall and by APOL1 genetic 

variants and estimated the distributions of genetic polymorphisms and blood pressure 

measurements. Using the complete data, we performed linear regressions with robust 

standard error to estimate the associations of APOL1 risk allele counts and APOL1 risk 

genotypes with blood pressure in mothers and blood pressure percentiles in children. We 

performed Poisson regressions with robust standard error to quantify the relative risk (RR) 
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of hypertension in mothers and HBP in children. A hierarchical adjustment approach using 

two models for each population was implemented. In mothers, Model 1 (the minimally 

adjusted model) controlled for age and BMI at outcome assessment, overall smoking history, 

and recruitment site; Model 2 (the fully adjusted model) was additionally adjusted for 

education, income adjusted by household size, and insurance coverage. In children, Model 

1 controlled for age, height, and BMI z-score at outcome assessment, sex, gestational age, 

medication use that may increase blood pressure, and recruitment site. Model 2 extended 

Model 1 and included maternal education levels, income adjusted by household size, and 

maternal insurance coverage.

In the secondary analyses of effect modifications, we included cross-product terms of each 

APOL1 indicator (APOL1 risk allele counts and APOL1 risk genotypes) and the individual 

effect modifier in the fully adjusted models. To enable comparisons across studies, PM2.5 

and NO2 were rescaled to two-unit increments of the predictions in each window, which 

were close to interquartile ranges (IQR) for exposures across different windows in Memphis, 

Tennessee. The other effect modifiers were treated as binary variables. In all the interaction 

models with air pollutions, time splines of visit date with 1 degree of freedom per year 

(df/year) were further adjusted to capture secular trends of blood pressure. In children, we 

extensively included time splines of conception date (4 df/year for prenatal PM2.5; 1 df/year 

for NO2 in each window and postnatal PM2.5) to account for enrollment patterns.

In the first sensitivity analysis, we repeated the primary and secondary analyses with an 

additional adjustment of population stratification in Model 2 in 427 mothers and 290 

children with available GWAS data. We were able to capture the majority of variation across 

the subpopulations by incorporating the first four principal components in the models of 

mothers, and the first three principal components in the models of children. Additionally, to 

verify that the observed associations were not biased by unmeasured CKD, we performed 

a deterministic sensitivity analysis to estimate an external CKD-adjusted RR of the APOL1 
high-risk genotype on maternal hypertension upon specification of three hypothetical values 

for the bias parameters, including the RR of CKD on hypertension, the prevalence of 

CKD in the APOL1 high-risk and low-risk genotype groups (Greenland, 1996). Finally, 

we performed a post-hoc analysis to estimate linearity of the association between DBP 

and four-year average PM2.5 by APOL1 risk genotype in mothers using fully adjusted 

generalized additive models, and further truncated PM2.5 at 9-11 μg/m3. The analyses were 

conducted in R 3.6.1 (R Core Team) and Stata 15 (StataCorp).

Results

Characteristics of the study population

The retention of the CANDLE study from enrollment to the child 4-6 years visit as well as 

the sample sizes for primary and sensitivity analyses are illustrated in Figure 1. The analytic 

sample of 556 African American mothers was on average 30.5 (SD: 5.3) years old (Table 1). 

More than 70% had a high school education or less, and the median annual income adjusted 

for household size was $8,300. More than half were classified as obese, 22% had ever 

smoked, and 14% developed hypertensive disorders in previous pregnancies. The aggregated 

PM2.5 and NO2 from childbirth to age 4 were on average 10.0 (SD: 0.5) μg/m3 and 9.7 (SD: 
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1.9) ppb, respectively. Most mothers had zero (43%) or one (46%) APOL1 allele, and only 

58 (10%) had the APOL1 high-risk genotype with two risk alleles. Average SBP and DBP 

were 118.9 (SD: 14.8) and 77.5 (SD: 10.9) mmHg, respectively (Appendix Figure A.1). 

There were 231 (42%) mothers classified as hypertensive.

The 493 CANDLE children were on average 4.1 (SD: 0.5) years old, with an equal sex 

distribution (Table 2). Of these children, 12% had prenatal smoking exposures, 9% were 

born preterm, and 17% were classified as obese at the age 4-6 years visit. The average 

PM2.5 in the overall pre- and postnatal period were 10.8 (SD: 0.9) and 10.0 (0.5) μg/m3, 

respectively. Pre- and postnatal NO2 had a corresponding average of 9.1 (SD: 2.5) and 

9.7 (SD: 2.0) ppb. The proportions of children with zero, one, or two APOL1 risk alleles 

were 43%, 42%, and 15%, respectively. SBP percentile was relatively normally distributed 

(Appendix Figure A.2), with an average of 49.8 (SD: 26.2), while DBP percentile was left 

skewed with a median of 83 (IQR: 29). There were 154 (31.2%) children with a SBP and/or 

DBP ≥90th percentile classified as HBP.

Primary associations between APOL1 and blood pressure

We did not find statistically significant evidence to support an overall association of APOL1 
risk allele counts or APOL1 risk genotypes with blood pressure, as assessed by multivariate 

linear and Poisson regressions, in either mothers or children (Figure 2 and Appendix Table 

A.1). The associations with the greatest magnitude were found in the recessive models in 

children: the APOL1 high-risk genotype was associated with a higher SBP percentile (β: 

1.57, 95%CI: −5.41, 8.85), but a lower DBP percentile (β: −2.62, 95%CI: −8.27, 3.03), and 

these results had large statistical uncertainty as shown. The rest of the point estimates were 

very closer to null.

Effect Modification Analyses

There was a minor correlation between PM2.5 and NO2 (Spearman correlation: 0.28). We 

investigated whether these two air pollutants modified the associations between APOL1 and 

blood pressure (Table 3). To enhance communication of findings, we present the results as 

the associations between air pollution exposures and blood pressure modified by APOL1 
risk variants. Significant interactions of PM2.5 averaged from birth to four-year-old birthday 

with maternal APOL1 risk genotypes were found for DBP: each 2-μg/m3 higher PM2.5 

was associated with a 16.33 (95%CI: 5.73, 26.94) mmHg and a 2.85 (95%CI: −3.10, 

8.79) mmHg higher DBP in mothers with the APOL1 high-risk and low-risk genotypes, 

respectively (Pinteraction: 0.01). We did not find similar interactive effects between APOL1 
risk alleles and PM2.5 on the associations with either maternal SBP or DBP. Likewise, 

the APOL1-blood pressure associations were not modified by four-year average NO2 

in mothers. Similarly, the APOL1-air pollution exposure interactions did not affect the 

associations with blood pressure in children.

We further examined other potential effect modifiers, including history of hypertensive 

disorders in previous pregnancies, obesity and smoking history in mothers, and sex, obesity, 

preterm birth, and prenatal smoking exposure in children (Appendix Table A.2). The results 

suggested that there were sex-specific associations of HBP with APOL1 risk alleles and risk 
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genotypes in children. The RR comparing those with one count increase of APOL1 risk 

alleles to one count lower was 1.33 (95%CI: 0.95, 1.86) in girls and 0.82 (95%CI: 0.65, 

1.04) in boys (Pinteraction: 0.02). There was a 0.87 (RR: 1.87, 95%CI: 1.16, 3.03) higher 

risk of HBP in girls comparing those with the high-risk genotype to those with low-risk 

genotype, but a 0.34 (RR: 0.66, 95%CI: 0.38, 1.13) reduced risk in boys (Pinteraction: 0.005). 

We did not find evidence to support a role for other modifiers.

Sensitivity Analysis

After additionally adjusting for population stratification, the effect estimates for the APOL1-

blood pressure associations were mostly augmented in children but were unchanged for 

mothers, although all the confidence intervals included null (Appendix Table A.3). In 

addition, significant interactive effects between PM2.5 averaged from childbirth to four-year-

old birthday and maternal APOL1 risk genotypes on DBP remained (Appendix Table A.4). 

Sex-specific associations of child HBP with APOL1 risk allele and risk genotypes were 

also identified (Appendix Table A.5). In the deterministic sensitivity analysis, we assumed 

that the prevalence of CKD was 6.7% and 1.7% in the APOL1 high-risk and low-risk 

genotype group, respectively, based on the previous literature (Foster et al., 2013). When 

varying the RR of CKD on hypertension at 1.54 (Stage I CKD vs. non-CKD), 2.06 (Stage 

II CKD vs. non-CKD), 2.57 (Stage III CKD vs. non-CKD), and 3.61 (Stage IV CKD vs. 

non-CKD) (Tedla et al., 2011), the external CKD-adjusted RR of the APOL1 high-risk 

genotype on maternal hypertension were 0.98, 0.96, 0.94, and 0.90, respectively, compared 

to the observed univariate RR of 1.01. In the post-hoc analysis with generalized additive 

model (Appendix Figure A.3), we observed an imprecise upward trend of SBP along with 

increasing PM2.5 levels in mothers with the APOL1 high-risk genotype (P: 0.08) but a flat 

inverted U-shape association in the low-risk genotype group (P: 0.83). After PM2.5 being 

truncated at 9-11 μg/m3, we still visualized an upward trend of PM2.5-DBP associations in 

mothers with the APOL1 high-risk genotype, with the possibility that the association was 

driven by the high PM2.5 exposures.

Discussion

Using prospective data from the CANDLE cohort, we found no associations of APOL1 
risk alleles and APOL1 risk genotypes with blood pressure in African American mothers 

or children. Analyses with and without population stratification adjustments both suggested 

two findings. First, four-year average PM2.5 exposure was related to a greater increase in 

DBP in the mothers with the APOL1 high-risk genotype, compared to their counterparts 

with the APOL1 low-risk genotype. Second, girls with APOL1 risk alleles or the high-risk 

genotype had a higher risk of HBP than boys with the same APOL1 risk variants.

The null results for associations between APOL1 risk variants and blood pressure in mothers 

are consistent with the two multi-site U.S. studies by Chen et al. (2017 and 2020), one 

from the Coronary Artery Risk Development in Young Adults cohort, and another from 

the Multi-Ethnic Study of Atherosclerosis study of an elderly population (Chen Teresa K. 

et al., 2020; Chen et al., 2017). However, another U.S. study using data from the BioMe 
discovery cohort reported a positive association between APOL1 risk alleles and SBP in the 
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20 to 39 year age group (Nadkarni et al., 2017). Similarly, a study of mixed-ancestry South 

Africans found relationships between the APOL1 G2 risk allele and SBP, more pronounced 

in adults with diabetes (Matsha et al., 2015). The only analysis based on pediatric data, from 

the Chronic Kidney Disease in Children study, showed a higher prevalence of uncontrolled 

hypertension in the APOL1 high-risk genotype group, but this study was limited to children 

with FSGS (Woroniecki et al., 2016).

Apart from the population heterogeneities across studies, two other factors may contribute 

to our null results. First, none of the known genetic variants associated with CKD, including 

APOL1, appear to fully explain the excess burden of hypertension in African Americans 

(Simino et al., 2012; Trudu et al., 2013; Tu and Pratt, 2013). Second, it remains obscure 

whether blood pressure is a mediator, a potentiator, or an aftereffect for the association 

between APOL1 genetic variants and kidney diseases (Nadkarni and Coca, 2017). We 

conducted an external adjustment of CKD in the deterministic sensitivity analysis and found 

no change in our conclusions. Perhaps the APOL1-blood pressure association exists but 

cannot be detected in a young and low risk population, as exemplified by the CANDLE 

participants. It appears that subclinical APOL1-related nephropathy does not manifest itself 

as elevated blood pressure strongly early in life.

We found a stronger association between four-year average PM2.5 and DBP in mothers 

with the APOL1 high-risk genotype. To date, only one study in New York City has 

estimated similar interactive effects, and it reported a significantly greater risk of CKD 

with higher one-year average PM2.5 exposures in the APOL1 high-risk subgroup of adult 

African Americans (Paranjpe et al., 2020). Several other studies quantified the effects of 

gene-air pollution interactions on various cardiovascular outcomes, and mostly focused 

on individual polymorphisms in the angiotensin pathway or single candidate genes in the 

oxidative stress defense pathway (Mordukhovich et al., 2009; Wilker et al., 2010; Zanobetti 

et al., 2011). Akin to our study, a key feature of these studies is that the estimated effects of 

interaction terms were quite large, with the adverse response to air pollution essentially 

only found in subgroups with the unfavorable polymorphisms. As with other genetic 

variants being investigated, APOL1 risk variants may share biomechanisms influencing 

PM2.5-related cardiovascular outcomes, including inflammasome activation, endothelial 

dysfunction, and altered high-density lipoprotein profiles (Brook and Rajagopalan, 2012; 

Gaio et al., 2019; Lenters et al., 2010). This finding highlights the extra vulnerability 

to future vascular dysfunction and/or CKD in young women with the APOL1 high-risk 

genotype when exposed to air pollution. Further investigations are required to explore the 

potential mechanism for this gene-environmental interaction.

We also detected sex-specific associations between APOL1 risk variants and HBP in 

children from both additive and recessive genetic models, with more pronounced effects 

in girls. Nevertheless, the adult study based on the African American Study of Kidney 

Disease and Hypertension did not find a sex difference in the associations between APOL1 
risk alleles and CKD progression (Chen et al., 2015). Similarly, a South African study of 

mixed-ancestry adults also reported that sex did not modify the relationships of APOL1 
risk variants with blood pressure and kidney functions (Matsha et al., 2015). Adult studies 

indicated that CKD affects more women than men (Carrero et al., 2018). However, national 
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representative data showed a greater proportion of boys with elevated blood pressure 

than girls in the past decade (Al Kibria et al., 2019), but a comparable prevalence of 

hypertension between sex in African American adults (Fryar et al., 2017). Existing data 

have indicated that estrogens alone or combined with progestins may have beneficial 

cardiovascular effects in women (Vitale et al., 2009), although this potential protection can 

be inconsequential in early childhood. The variation in lifestyle factors between boys and 

girls may partially contribute to the sex-specific association found in this analysis. Previous 

studies also suggested that lipid-related genes may have sex-specific effects on metabolism 

of lipoproteins and atherogenesis in women, because the function of their encoded lectin-

like oxidized low-density lipoprotein receptor relies on sex hormones and hormone receptors 

(Wang et al., 2011; Wittrup et al., 2000). At this time, pediatric data are insufficient to draw 

conclusions.

Several other potential modifiers were examined in the current study, such as hypertensive 

disorder in mothers and preterm birth in children, and none were significant. To our 

knowledge, these modifiers have not been previously investigated for the APOL1-blood 

pressure association. However, these factors are well-established determinants of high blood 

pressure and were associated with APOL1 risk variants in several other studies. Reidy 

and Hjorten et al. (2018) reported that fetal, not maternal, APOL1 risk variants increased 

the risk of preeclampsia among young African American women (Reidy and Hjorten et 

al., 2018). Chen et al. (2015) concluded that obesity was associated with lower risk of 

APOL1-related CKD progression, but they found no difference in effect by smoking status 

(Chen et al., 2015). Additionally, the study by Ng et al. (2017) estimated an odds ratio of 4.6 

for preterm birth comparing the APOL1 high-risk genotype to low-risk genotype in African 

American children with glomerular disease (Ng et al., 2017). The current analysis is likely 

underpowered to reveal the modified associations by these factors, and future studies of 

larger cohorts of well-characterized populations are warranted to verify our hypotheses.

The present study has several strengths. First, it is one of the very few population studies 

to examine the associations between APOL1 risk variant and blood pressure, particularly 

including general pediatric data. Second, to our knowledge, this is the first study to 

investigate several modifiable moderators for the APOL1-blood pressure associations, 

including spatiotemporally resolved PM2.5 and NO2 estimated from a well-validated 

advanced model. Third, we conducted PCA with a strict protocol to maximally remove 

linkage disequilibrium and capture population substructure.

There are also a few major limitations to be acknowledged. Firstly, we had a limited 

statistical power to detect effect modifiers, particularly in the analysis with population 

stratification adjustments, which caused a large uncertainty in our findings. Moreover, 

although the CANDLE study recruited women with a low-risk pregnancy, it is possible 

that some women developed chronic diseases such as hypertension and diabetes, and/or 

drug addiction during follow-up. Failure to account for these factors and their treatments/

interventions due to data unavailability may distort the associations of interest. In addition, 

measurement of maternal and child blood pressure was performed at one time point 

(at child 4–6 years visit). As such, the ascertainment of hypertension and HBP do not 

meet the clinical definition, and potential misclassification may have occurred (Du et 
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al., 2019; Gillman and Cook, 1995; Pickering et al., 2005). Furthermore, we did not 

include longitudinal measurements of blood pressure and biomarkers of kidney function 

in this analysis, which could have provided additional insights to support the mechanistic 

hypotheses that APOL1 risk variants contribute to CKD development with the involvement 

of increased blood pressure. Longitudinal blood pressure measurements may also reduce 

random error from outcome assessments on a single occasion. Lastly, our findings in 

the effect modifier analyses need to be interpreted with caution owing to the multiple 

comparisons.

Despite these limitations, our study concludes that APOL1 risk variants are not associated 

with maternal or child blood pressure in a community-based cohort in the U.S. Importantly, 

there was suggestive evidence of gene-environmental interactions between APOL1 risk 

variants and PM2.5 in mothers and sex-specific associations in girls, and this finding 

warrants further exploration.
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df degree of freedom

FSGS focal segmental glomerulosclerosis

GWAS genome-wide association study

HBP high blood pressure

IQR interquartile ranges

NO2 nitrogen dioxide

PCA principal component analysis

PM2.5 particulate matter ≤2.5μm in aerodynamic diameter

RR relative risk

SBP systolic blood pressure
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Figure 1. Inclusion Flowchart between enrollment and the child 4-6 years visit as well as sample 
sizes for the two analytic samples in CANDLE participants
Shown are the CANDLE cohort retention between enrollment and the child 4-6 years visit as 

well as sample sizes for the two analytic samples.
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Figure 2. Estimated effects of APOL1 on blood pressure in the study population of the CANDLE 
cohort
Shown are the estimated effects of APOL1 risk alleles and risk genotype on blood pressure 

in the CANDLE study population. The additive model was used for APOL1 risk alleles, 

and the recessive model was used for APOL1 risk genotype. In mothers, Model 1 was 

controlled for age and BMI at outcome assessment, overall smoking history and recruitment 

site; Model 2 was additionally adjusted for education levels, income adjusted by household 

size and insurance coverage. In children, Model 1 was controlled for age, height and BMI z 

score at outcome assessment, sex, gestational age, medication use that potentially increased 

blood pressure and recruitment site; Model 2 was extensively included maternal education 

levels, income adjusted by household size and maternal insurance coverage. Triangle/circle 

represent the effect estimates, error bars are 95% CIs, and dotted lines show null values. 

Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; HBP, high blood 

pressure; RR, relative risk
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