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Abstract. This paper investigates isomorphisms of Bergman fans of matroids respecting
different fan structures, which we regard as matroid analogs of birational maps. We show
that isomorphisms respecting the fine fan structure are induced by matroid isomorphisms.

We introduce Cremona automorphisms of the coarse structure of Bergman fans, which
are not induced by matroid automorphisms. We show that the automorphism group of the
coarse fan structure is generated by matroid automorphisms and Cremona maps in the case
of rank 3 matroids which are not parallel connections and for modularly complemented
matroids.
Keywords. Matroids, birational geometry
Mathematics Subject Classifications. 14T20, 52B40, 14E07

1. Introduction

This paper investigates the following question: What are the isomorphisms of Bergman fans
of matroids with some choice of fan structures? Some, but not all, isomorphisms of Bergman
fans of matroids arise from isomorphisms of matroids. For matroids which are realizable as an
essential hyperplane arrangement in projective space, birational morphisms which are regular
on the arrangement complement give rise to invertible linear maps between supports of the cor-
responding Bergman fans. Therefore we regard isomorphisms of Bergman fans as examples of
matroid analogs of birational maps.

Recently, there have been exciting breakthroughs in matroid theory motivated by algebraic
geometry. In [AHK18, ADH23, AP20] a framework of Hodge theory for matroids was developed
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with applications to deep open combinatorial problems. For an overview see [Ard18]. One key
ingredient in these results is the study of Bergman fans and the Chow rings of matroids. These
tools also play a decisive role in the present paper.

To be precise, let M and M ′ be matroids on ground sets E and E ′ respectively. For k ∈ E,
let vk ∈ ZE be the canonical basis vector associated to k. The Bergman fan of M is de-
noted B(M) and is viewed as a subset of RE/R1, where 1 =

∑
k∈E vk. We use the nota-

tion B∗(M) to denote a chosen fan structure, see Section 2. We mostly investigate the coarse
and fine fan structures, denoted Bc(M) and Bf (M) respectively, as defined in Section 2.

Let M and M ′ be simple matroids. An isomorphism of Bergman fans B∗(M) and B∗(M
′),

where ∗ denotes choices of fan structures, is a linear map ϕ : RE/R1 → RE′
/R1 derived

from a lattice isomorphism ZE/Z1 → ZE′
/Z1, such that ϕ restricts to an isomorphism of

fans B∗(M) → B∗(M
′), see Definition 2.5. For realizable matroids associated to essential

hyperplane arrangements, any automorphism of the hyperplane complement induces an auto-
morphism of the Bergman fans in this sense, as we show in section 3.

Note that for simple matroids M1, M2 of rank 2, every isomorphism between their Bergman
fans (where all fan structures coincide) is obviously induced by a matroid isomorphism. Our first
main theorem establishes the analogous claim for simple matroids of all ranks, if we consider
the fine structure:

Theorem (6.3). Let M1 and M2 be simple matroids such that neither is totally disconnected.
If ϕ : Bf (M1) → Bf (M2) is an isomorphism of fans, then ϕ is induced by a matroid isomor-
phism.

If M is a loop-free, but not simple matroid on the ground set E, let M̂ denote its simplifi-
cation on the ground set Ê. Note that the affine Bergman fan of M lives in a vector subspace V
of RE which is determined by the parallel elements of M and which is isomorphic to RÊ . More-
over, the coordinate projection RE → RÊ restricts to an isomorphism V → RÊ which induces
an isomorphism of the Bergman fan of M in V with the Bergman fan of its simplification M̂ in
the sense of Definition 2.5. We exclude these types of maps in the above theorem by assuming
that M1 and M2 are simple.

Moreover, the connectedness assumption in Theorem 6.3 is essential as the following exam-
ple shows.

Example 1.1. If M is totally disconnected and simple, then M = Un+1,n+1, so that the lattice
of flats is the Boolean lattice on n + 1 elements. Let ϕ : RE → RE be the linear map send-
ing v 7→ −v. This map descends to a fan automorphism ϕ : Bf (M) → Bf (M) which does not
arise from a matroid automorphism.

The proof of Theorem 6.3 is based on the observation thatϕ induces an isomorphism of Chow
rings. In Section 4, we review the Chow ring of fans and the degree map in the case of matroid
fans, see [AHK18] and more generally [AP20]. We show that an isomorphism of Bergman fans
of matroids with arbitrary fan structures induces an isomorphism of the respective Chow rings
which is compatible with the degree map, see Proposition 4.4. This isomorphism and Eur’s
degree formula [Eur20] are the main tools used to prove Theorem 6.3.
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In Section 5, we show that the existence of isomorphisms of Bergman fans implies that the
underlying matroids have the same characteristic polynomials. It is an open question, which non-
isomorphic matroids have the same characteristic polynomials. As an example, the operation of
parallel connection discussed in Section 2 produces examples of non-isomorphic matroids with
the same characteristic polynomials [EF99]. In Section 5, we also conclude that the Chern–
Schwartz–MacPherson classes of matroids from [LdMRS20] are preserved under matroid fan
isomorphisms, see Proposition 5.5.

We then consider our main question for coarse fan structures. In rank 3 we show that there
are no isomorphisms ϕ : Bc(M1) → Bc(M2) for non-isomorphic matroids M1 and M2, see The-
orem 9.1. However, the situation is different from rank 4 on. In Section 7, we show that there
are non-isomorphic matroids arising from parallel connections with isomorphic coarse Bergman
fans, see Corollary 7.3. The hyperplane arrangement analogue of the operation of parallel con-
nection produces non-isomorphic arrangements with diffeomorphic complements [EF99].

We then switch perspective to automorphisms of a single Bergman fan and ask: What can
be said of the automorphism group of a Bergman fan of a matroid with a fixed fan structure?
Inspired by birational geometry, we introduce and study Cremona maps for matroids. These are
automorphisms of the coarse Bergman fan not induced by matroid automorphisms. The map ϕ
from Example 1.1 is the first simple example of a Cremona map, and is the tropicalization of
the standard Cremona map on projective space. For connected matroids, we provide an intrinsic
definition of Cremona maps. As an example, we describe in Section 3 the automorphism group
of the coarse Bergman fan of the braid arrangement matroid. Note that the Bergman fan of the
braid arrangement in dimension n is the moduli space of tropical genus zero curves with (n+2)-
marked points. It was shown in [AP18], that the automorphism group of this tropical moduli
space is isomorphic to the symmetric group Sn+2. We show in Proposition 3.2, that this implies
that the automorphism group of the coarse Bergman fan of the braid arrangement matroid is
generated by the matroid automorphisms and a single Cremona map. Theorem 6.3 implies that
in this example the automorphism group of the coarse fan structure is strictly larger than the
automorphism group of the fine fan structure.

In general, we define Cremona maps as follows. IfM is a simple matroid on the ground setE
with a basis b = {b0, . . . , bd}, we define the flat Bj as the closure of b\{bj} and
put vBj

=
∑

k∈Bj
vk ∈ RE . Then we define the Z-linear map Cremb : RE → RE by vbj 7→ vBj

for the basis elements bj , and vk 7→ vk for all k ∈ E\b. If Cremb maps the line R1 to itself,
we also write Cremb : RE/R1→RE/R1 for the quotient map. We then prove the following
necessary and sufficient criterion for the map Cremb to be an automorphism of the coarse fan
structure of the Bergman fan.

Theorem (8.3). Let b be a basis of a simple connected matroid M . For any pair of ele-
ments i, j ∈ E, let Fij be the rank 2 flat which is the closure of i and j. The map Cremb de-
scends to a linear map Cremb : RE/R1 → RE/R1 mapping B(M) to itself, if only if the
sets {Fij\{i, j}}i,j∈b partition the set E\b into pairwise disjoint subsets.

We then focus on the case of rank three matroids in Section 9. A previous result of the
first author states that if there exists an isomorphism ϕ : Bc(M1) → Bc(M2) for simple rank 3
matroids, then M1 and M2 are isomorphic. However, this does not mean that ϕ is induced by a
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matroid isomorphism. We fully describe the automorphism group of Bc(M) for a simple rank 3
matroid M . When the matroid is not a parallel connection, the description is strikingly similar
to that of the Cremona group of the projective plane.

Theorem (9.2). The automorphism group of Bc(M) for a simple rank 3 matroid M which is not
a non-trivial parallel connection is generated by matroid automorphisms and Cremona maps.

If M is connected, simple, of rank 3, and a non-trivial parallel connection, then the auto-
morphism group of Bc(M) is isomorphic to the automorphism group of a complete bipartite
graph.

We conclude the paper by studying modularly complemented matroids. A simple modularly
complemented matroid of rank at least 4 is either a sufficiently big submatroid of projective
space or a Dowling matroid associated to a finite group G. For the modularly complemented
submatroids of projective space we prove in Section 10 that the automorphism group of Bc(M)
is equal to the group of matroid automorphisms. For Dowling matroids however, we find Cre-
mona transformations in the automorphism group of the coarse Bergman fan. This leads to the
following theorem, combining Proposition 3.2, Proposition 10.2 and Proposition 10.3.

Theorem 1.2. For every simple modularly complemented matroid M of rank at least 4, the
automorphism group of Bc(M) is generated by Cremona maps and matroid automorphisms.

Based on our results, one might ask: under which conditions is the automorphism group
of the coarse Bergman fan of a simple matroid M generated by matroid automorphisms and
Cremona maps?

2. Matroids and Bergman fans

A matroid is a pair M = (E, r) where E is a finite set and r : P(E) → Z⩾0 is a rank function
satisfying the axioms

1. r(A) ⩾ 0 for all A ⊆ E and r(∅) = 0,

2. For A,B ⊆ E we have r(A ∪B) + r(A ∩B) ⩽ r(A) + r(B),

3. For any i ∈ E and A ⊆ E, we have r(A) ⩽ r(A ∪ {i}) ⩽ r(A) + 1.

The rank of a matroid M is r(E) and is denoted r(M). A flat of a matroid M is a sub-
set F ⊆ E which is closed under the rank function, which means that for all i /∈ F the rank
of F ∪ {i} is strictly greater than the rank of F . The flats are ordered by inclusion and form
a lattice, in the sense of partially ordered sets. For every subset S of E we write cl(S) for the
inclusion minimal flat containing S.

A circuit of a matroid is a minimally dependent subset in the sense of inclusion. A loop
of a matroid M = (E, r) is a element i ∈ E such r({i}) = 0. A pair of elements i, j ∈ E
are parallel if neither i nor j is a loop and r({i, j}) = 1. A matroid is simple if it contains no
loops or parallel elements. A connected component of a matroid is an equivalence class under the
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relation defined by i ∼ j if i and j are contained in a circuit. Each connected component forms a
matroid and a matroid decomposes into a direct sum of its connected components. A matroid M
is totally disconnected if all of its connected components have rank less than or equal to one. The
parallel connection Pp(M1,M2) of two matroids M1 and M2 such that E(M1)∩E(M2) = {p}
is a matroid on the set E(M1)∪E(M2), see [Oxl11, Section 7.1]. We say that M is a non-trivial
parallel connection along p ∈ E(M) if there exist matroids M1 and M2, which are both of rank
at least two, so that M is isomorphic to Pp(M1,M2). We say that M is a non-trivial parallel
connection, if there exists some p ∈ E(M) such that M is a non-trivial parallel connection
along p.

Definition 2.1. Let M1 = (E1, r1) and M2 = (E2, r2) be two matroids. A matroid iso-
morphism f : M1 → M2 is a bijection f : E1 → E2 such that for every subset I ⊆ E1 we
have r2(f(I)) = r1(I).

Since we are interested in Bergman fans, we will generally assume that our matroids are
loopfree. Suppose M = (E, r) is a matroid containing no loops. For every subset F ⊆ E,
define a vector vF :=

∑
i∈F vi ∈ RE . We also write vE = 1.

The (affine) Bergman fan B̃(M) associated to a loopfree matroid M is defined as the subset
of RE consisting of all vectors

∑
i aivi such that for each circuit C of M the minimum of the

set {ai : i ∈ C} is attained twice, see e.g. [FS05]. It is invariant under scaling by the vector 1.
We will mostly work with the projective Bergman fan B(M), which is defined as the image of
the affine Bergman fan under the quotient map RE/R1.
Remark 2.2. Given a polyhedral fan Σ in a vector space Rn we may ask if Σ is equal to the
Bergman fan of a matroid with some fan structure up to a transformation in GLn(Z). Studying
the collection of such transformations in GLn(Z) provides an alternative point of view to our
main question. If A,B ∈ GLn(Z) are such that A(Σ) and B(Σ) are both Bergman fans of ma-
troids with some fan structures, then there is an isomorphism of Bergman fans ϕ : A(Σ)→B(Σ).
The underlying matroids of these two fans need not be the same.

Tropical manifolds are locally modelled on matroid fans up to coordinate changes
in GLn(Z) [MR]. Therefore, answering our main question also has applications to tropical
geometry.

The set B(M) carries several interesting fan structures which have been investigated by
Feichtner and Sturmfels [FS05]:

i) We denote by Bc(M) the natural fan structure as a subfan of the normal fan of the matroid
polytope [FS05, Proposition 2.5]. We refer to it as the coarse structure, since it is the coarsest
fan structure on the set B(M), see [MS15, Section 4.2] or [Ham14, Proposition 3.4.1].

ii) The minimal nested set structure, which we denote by Bm(M). The rays of the minimal
nested set fan structure on B(M) correspond to flats of M which are connected. A flat is
connected if M |F is connected. The cones of Bm(M) correspond to nested collections of
connected flats. A collection S of connected flats is called nested if for any subcollection
of incomparable flats F1, . . . , Ft ∈ S with t ⩾ 2, the join is not connected.
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iii) The fine structure which we denote by Bf (M). This subdivision was first described
in [AK06]. Here the building set in the sense of [FS05] consists of all flats, i.e. it is maxi-
mal. We can describe the cones in the fine structure as follows: They are induced by flags
of flats

F := ∅ ⊊ F1 ⊊ F2 ⊊ · · · ⊊ . . . Fk ⊊ E

as the rational cones
ρF := ⟨vF1 , vF2 , . . . , vFk

⟩R⩾0
.

iv) We write B∗(M) for an arbitrary fan structure. In this case, the rays of B∗(M) need not
correspond to flats of M . Unimodular fan structures on Bergman fans of matroids are stud-
ied in [AP20]. Another example of such a fan structure is the conormal variety of a matroid
from [ADH23].

Note that by [FY04, Proposition 2], the Bergman fan of a matroid from any building set
provides a fan structure on B(M) which is unimodular. This implies that Bm(M) and Bf (M)
are both unimodular fans. The following result by Feichtner and Sturmfels will be useful to study
isomorphisms of Bergman fans with the coarse structure.

Lemma 2.3 ([FS05, Theorem 5.3]). The minimal nested set fan structureBm(M) coincides with
the coarse fan structure Bc(M) on the Bergman fan, if the matroid M |G/F is connected for all
flats F,G such that G is connected and contains F .

For a polyhedral fan Σ in Rn and a point w ∈ |Σ| we define the star of Σ at w to be the subset
of

starw(Σ) = {x ∈ Rn | ∃ϵ > 0 s.t. ∀0 < δ < ϵ, w + δx ∈ |Σ|}.
If the fan is an affine Bergman fan of a matroid B̃(M), and vF is the indicator of a flag of
flats F = {∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fk ⊊ Fk+1 = E} of M then by [FR13, Lemma 2.2]
and [AK06, Proposition 2.2] the star is the support of another affine Bergman fan, namely

starvF (B̃(M)) = B̃(M |F1/F0)× · · · × B̃(M |Fk+1/Fk). (2.1)

It follows from this that the star of the projective Bergman fan starvF (B(M)) is then also a
matroid fan B

(⊕k+1
i=1 M |Fi/Fi−1

)
.

Lemma 2.4. Let M be a simple matroid, and let i be an element of E = E(M). The ray ⟨vi⟩R⩾0

is not a cone of some fan structure B∗(M) if and only if M is a non-trivial parallel connection
along i.

Proof. It suffices to consider the coarse fan structure. Suppose that ⟨vi⟩R⩾0
is not a cone

in Bc(M). Then the star fan of Bc(M) in direction vi has lineality space of dimension at least
two. By Formula (2.1), the star of B(M) at vi is the matroid fan B(M/i ⊕ M |i). By [FR13,
Lemma 2.3], the dimension of the lineality space is one less than the number of connected com-
ponents of the matroid M/i ⊕M |i. The matroid M |i is a single coloop and hence connected.
Therefore, the ray ⟨vi⟩R⩾0

is not in Bc(M) if and only if M/i is disconnected. By [Oxl11, Propo-
sition 7.1.15 iii) and 7.1.16 ii)], the matroid M/i is disconnected if and only if M is a non-trivial
parallel connection along i. This completes the proof.
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Note that for simple M , every i ∈ E gives rise to a ray in Bm(M) and Bf (M). If B∗(M)
comes from a building set, then all rays of the fan come from flats of M . In this case, we define
the rank of a ray in B∗(M) as the rank of the associated flat. We use the same terminology for
rays in the coarse structure Bc(M).

Definition 2.5. Let N1 and N2 be lattices and Σ1 and Σ2 be rational polyhedral fans in N1 ⊗ R
and N2⊗R, respectively. A morphism of rational polyhedral fans ϕ : Σ1 → Σ2 is the restriction
of a linear map induced by a lattice morphism N1 → N2, which sends cones of Σ1 to cones
of Σ2. A morphism of fans is an isomorphism if it is a bijective morphism induced by a lattice
isomorphism N1 → N2.

We write Aut(Σ) for the group of automorphisms of Σ in this sense.

Note that in the sense of Definition 2.5, an isomorphism ϕ : Σ1 → Σ2 of polyhedral fans
spannning N1 ⊗R and N2 ⊗R, respectively, is induced by a lattice isomorphism N1 → N2. In
particular, for simple matroidsM andM ′, an isomorphism of Bergman fansB∗(M) → B∗(M

′),
where ∗ denotes choices of fan structures, is given by a linear map ϕ : RE/R1 → RE′

/R1
derived from a lattice isomorphism ZE/Z1 → ZE′

/Z1 such that ϕ restricts to an isomorphism
of fans B∗(M) → B∗(M

′).
Let M1,M2 be loopfree matroids on ground sets E1 and E2, respectively. Note that any

isomorphism of matroids f : M1 → M2 gives rise to a Z-linear map ϕf : RE1 → RE2 satis-
fying ϕf (vi) = vf(i). The isomorphism descends to the quotients, and the map ϕf induces an
isomorphism of the fine Bergman fans ϕf : Bf (M1) → Bf (M2) and also of the coarse Bergman
fans ϕf : Bc(M1) → Bc(M2). In particular, there is a map

Iso(M1,M2) → Iso(B∗(M1), B∗(M2))

for ∗ denoting either the coarse or fine fan structure. If both matroids are simple, the map is
injective.

More generally, if there is a matroid isomorphism f : M1 → M2, then given any fan struc-
ture B∗(M1) on B(M1) there is a compatible fan structure B∗(M2) on B(M2) such that the
induced map ϕf : B∗(M1) → B∗(M2) is a fan isomorphism.

3. Realizable matroids

If the matroid M arises from an arrangement of hyperplanes A with trivial intersection in pro-
jective space over some field, its Bergman fan is given by the tropicalization of the associated
hyperplane complement ΩA (over a trivially valued ground field), which is a very affine variety
sitting in the intrinsic torus. In this case, every fan structure on the Bergman fan gives rise to a
compactification ofΩA by taking the closure in the toric variety associated to the fan, see [Tev07,
Proposition 2.3]. In this way, the minimal nested set fan induces the (minimal) wonderful com-
pactification introduced by de Concini and Procesi [DCP95]. It is shown in [KW19] that for
essential and connected hyperplane arrangements every dominant morphism f : ΩA → ΩA
extends to an endomorphism of the visible contour compactification, which is induced by the
coarse structure on the Bergman fan. Hence it extends to an endomorphism of the (minimal)
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wonderful compactification whenever the criterion in Lemma 2.3 by Feichtner and Sturmfels is
satisfied. In fact, the proof of [KW19, Theorem 5.1] shows that every dominant endomorphism f
of ΩA extends to a endomorphism of the intrinsic torus which is a homomorphism up to trans-
lation. Hence by passing to the tropicalization we get a linear map preserving the Bergman
fan, i.e. an endomorphism of Bc(M) in the sense of Definition 2.5. Therefore we regard linear
maps preserving the different fan structures on the Bergman fan as examples of analogs of bira-
tional maps between matroids. Example 3.3 considers the converse situation and shows that an
automorphism of the tropicalization of ΩA does not necessarily lift to an automorphism of ΩA.

We will now look at an interesting example of a realizable matroid, namely the matroid given
by the An type root system:

Example 3.1. The braid arrangement. The root hyperplanes of the root system of type An

for n ⩾ 2 induce (after passing to the quotient by their intersection) the essential arrangement
in Pn−1

K (where K is any algebraically closed field) given by the hyperplanes V (xi)
for i = 0 . . . , n − 1 and V (xi − xj) for i < j in {0, . . . , n − 1}. This arrangement A is
called the braid arrangement. Mapping the class of a point (p1, . . . pn−1) ∈ ΩA ⊂ Gn−1

m,K to
the points p1, . . . , pn−1, 1, 0,∞ in P1

K induces an isomorphism between the associated hyper-
plane complement ΩA in Gn−1

m,K and the moduli space M0,n+2 of n + 2-pointed curves of genus
zero. The minimal wonderful compactification of ΩA is isomorphic to the Deligne–Mumford
compactification M0,n+2. It is shown in [BM13] that the automorphism group of M0,n+2 is iso-
morphic to Sn+2 and hence equal to the automorphism group of ΩA. The new transpositions in
the symmetric group are realized by Cremona automorphisms.

The matroid M(A) induced by this arrangement is isomorphic to the graphic matroid given
by the complete graph Kn+1. This implies that the automorphism group of M(A) is equal to
the symmetric group Sn+1, i.e. the Weyl group of the root system. The Bergman fan of the
matroid M(A) can be identified with the moduli space M trop

0,n+2 of tropical genus zero curves
with n + 2 marked points, see [AK06], chapter 4 and [FR13], Example 7.2. In [AP18] it is
shown that the automorphism group of M trop

0,n+2 (and also the automorphism group of its com-
pactification) is equal to Sn+2, i.e. it is the same as the automorphism group in the algebraic
case. This implies that Aut(Bc(M(A))) is Sn+2.

Proposition 3.2. Let M(A) be the matroid given by the braid arrangement. Then the automor-
phism group of the coarse Bergman fan Bc(M(A)) is generated by the matroid automorphisms
and a combinatorial Cremona map.

Proof. We have to make some of the identifications discussed above explicit. Let M = M(A)
be the matroid given by the braid arrangement for An. First of all, let us identify E = E(M)
with the set [

(
n+1
2

)
] = {1, . . . ,

(
n+1
2

)
} (where we write two-element subsets as ordered pairs) by

the following map:

Hij 7→ (i+ 1, j + 1) for all i < j in {0, . . . , n− 1}

and
Hi 7→ (i+ 1, n+ 1) for all i in {0, . . . , n− 1}.
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The elements bi = (i, n + 1) for i = 1, . . . n form a basis of M , which satisfies the condition
from Theorem 8.3. Hence Cremb is an automorphism of Bc(M).

The identification of Bc(M) with M trop
0,n+2 (e.g. spelled out in [CHMR16, Section 2.1.2])

now shows that Cremb induces the transposition of n+1 and n+2 in the natural action of Sn+2

on M trop
0,n+2. Moreover, the automorphism group Sn+1 of M acts on M trop

0,n+2 as permutation of the
first n+ 1 markings. This implies our claim.

Example 3.3. Notice that in general not all automorphisms of B(M(A)) lift to automorphisms
of ΩA. Consider for example the arrangement A = {0, 1,∞, p} on P1. The automorphism
group of B(M(A)) is the symmetric group S4. On the other hand, any automorphism of ΩA
extends to an automorphism of P1 and is therefore contained in PGL2 and thus preserves the
cross ratio of (0, 1,∞, p). On the other hand, for appropriate choices of permutations in S4 and
points p the cross ratio will not be preserved. Hence automorphisms of Bergman fans do not
always arise from automorphisms of complements.

4. Chow rings of matroids

Let Σ be a rational polyhedral fan in NR = N ⊗ R where N is a rank n lattice. Let N∗ denote
the dual lattice.

Definition 4.1. The combinatorial Chow ring of Σ is the ring

A∗(Σ) =
Z[xρ | ρ ∈ Σ1]

I + J
,

where I is the ideal generated by squarefree monomials coming from non-faces of Σ, i.e.

I = (xρ1 . . . xρk | ρ1, . . . , ρk ∈ Σ1 pairwise distinct, not spanning a cone )

and J is the ideal
J =

( ∑
ρ∈Σ1

m(vρ)xρ | m ∈ N∗),
where vρ is the primitive integer vector in direction ρ.

An analogous ring was introduced by Danilov in [Dan78] as the Chow ring of a complete
non-singular toric variety. The combinatorial Chow ring is the Chow ring of a non-singular toric
variety of a unimodular fan Σ even when the fan is not complete by [Bri96, Section 3.1]. When
the fan Σ is unimodular, quasi-projective, and has support B(M) the ring A∗(Σ) has Poincaré
duality, Hard Lefschetz, and satisfies the Hodge Riemann bilinear relations [AP20].

Proposition 4.2. An isomorphism of rational polyhedral fans ϕ : Σ1 → Σ2 induces an isomor-
phism of Chow rings ϕ∗ : A

∗(Σ1) → A∗(Σ2).

Proof. Denote the Chow rings of Σi by

A∗(Σi) =
Z[xρ | ρ ∈ Σ1

i ]

Ii + Ji
,
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where the ideals Ii and Ji are described above.
The map ϕ maps rays of Σ1 bijectively to rays of Σ2 which induces a bijection between

the generators of the two Chow rings. Moreover, the ideal I1 from the non-faces of Σ1 is
sent exactly to the corresponding ideal I2 of Σ2. To show that J1 maps to J2 consider a re-
lation

∑
ρ∈Σ1

1
m(vρ)xρ for some m ∈ N∗. Then∑

ρ∈Σ1
1

m(vρ)xϕ(ρ) =
∑
ρ′∈Σ1

2

m(ϕ−1vρ′)xρ′ =
∑
ρ′∈Σ1

2

ϕ∗m(vρ′)xρ′ ,

therefore ϕ(J1) ⊆ J2. Reversing the argument shows that ϕ(J1) = J2. Hence the map on the
Chow rings induced by ϕ is an isomorphism.

Let us now consider the fine fan structure on a Bergman fan of a loopfree matroid M . For
brevity we will call the Chow ring of Bf (M) simply the Chow ring of the matroid M and denote
it by A∗(M). In terms of generators and relations this ring is

A∗(M) =
⟨xF | F proper flat of M⟩Z

I + J
,

where I is the ideal generated by the monomials xFxG for F ̸⊆ G and G ̸⊆ F .
Set E = {0, . . . , n}, then a basis for N is {v1, . . . , vn}, where vk ∈ N is the image of the

standard basis vector of ZE under the quotient. We claim the ideal J is generated by the degree 1
polynomials ∑

i∈F

xF −
∑
0∈G

xG,

for all i ∈ E\0. Recall that the matroid fan Bf (M) is defined with respect to the
lattice N = ZE/Z1. A collection of generators of the ideal J is obtained by considering the
relations in Definition 4.1 coming from a basis of N∗. The relation above is obtained by tak-
ing v∗k ∈ N∗ in Definition 4.1.

This ring is the Chow ring of the maximal wonderful compactification of the complement
of a hyperplane arrangement in projective space when M is representable over C, see [DCP95,
FY04]. The maximal wonderful compactification is obtained from projective space by blowing
up all intersections of the hyperplanes in A starting from the intersections which are points and
proceeding by dimension.

If M is a simple matroid of rank d + 1, then by [AHK18, Proposition 5.10] there is an
isomorphism

deg : Ad(M) → Z

such that deg(xF1 . . . xFd
) = 1 whenever F1 ⊊ · · · ⊊ Fd is a maximal flag of flats.

Moreover, there is the following formula for the degree map on monomials from [Eur20] in
terms of the coefficients of the characteristic polynomial of a matroid. We write the reduced
characteristic polynomial of a loopfree matroid M as

χ̃M(t) = µ0(M)trankM−1 − µ1(M)trankM−2 + · · · ± µrankM−1(M),
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denoting its k-th unsigned coefficient by µk(M). The reduced characteristic polynomial is al-
ways monic, hence µ0 = 1. Moreover, if a matroid has parallel elements, its characteristic
polynomial coincides with the characteristic polynomial of its simplification.

Theorem 4.3. [Eur20, Theorem 3.2] Let F1 ⊊ F2 ⊊ · · · ⊊ Fk denote a flag of proper flats
of M where ri = r(Fi) then for all di ⩾ 0 with r(M)− 1 = d =

∑k
i=1 di

deg(xd1
F1

. . . xdk
Fk
) = (−1)d−k

k∏
i=1

(
di − 1

d̃i − ri

)
µd̃i−ri(M |Fi+1/Fi) (4.1)

where d̃i =
∑i

j=0 dj

For more general unimodular fan structures Σ on B(M), the Chow ring of Σ still satis-
fies Ad(Σ) ∼= Z where d + 1 is the rank of M [GS21, Theorem A], [AP20, Theorem 1.2].
Moreover, the isomorphism is given by the degree map

deg : Ad(Σ) → Z

sending xρ1xρ2 . . . xρd to 1, whenever ρ1, . . . , ρd ∈ Σ1 are rays of a d-dimensional face of Σ,
see [AP20, Section 3.4].

Proposition 4.4. Let M1 and M2 be simple matroids, and let Σ1,Σ2 be unimodular fans of
dimension d whose supports are respectively B(M1) and B(M2). If ϕ : Σ1 → Σ2 is an isomor-
phism of fans then there exists an isomorphism of Chow rings ϕ∗ : A

∗(Σ1) → A∗(Σ2) which is
compatible with the degree maps. More precisely, for any α ∈ Ad(Σ1) we
have deg(α) = deg(ϕ(α)).

Proof. By Proposition 4.2, the isomorphism ϕ of fans induces an isomorphism
ϕ∗ : A

∗(Σ1) → A∗(Σ2) of Chow groups. The map ϕ∗ is compatible with the degree map since
rays ρ1, . . . , ρd of Σ1 generate a d-dimensional face of Σ1 if and only if the rays ϕ(ρ1), . . . , ϕ(ρd)
generate a d-dimensional face of Σ2.

5. Orlik–Solomon algebra and the characteristic polynomials of matroids

From the previous section and the intersection formula in Equation 4.3, we see that the reduced
characteristic polynomials of minors of M determine the intersection numbers in A∗(M). By
Proposition 4.2, these intersection numbers must be preserved under an isomorphism of fine fan
structures. In fact, we show in this section that if an isomorphism between any fan structures
exists the matroids must have the same characteristic polynomial.

The following proposition describes the coefficients of the reduced characteristic polynomial
in terms of the support of the Bergman fan of M . We define

Fp(B(M)) =
∑

σ⊂B∗(M)

p∧
⟨σ⟩ ⊂

p∧
(RE/R1),

where ⟨σ⟩ ⊂ RE/R1 denotes the linear span of the cone σ, and B∗(M) denotes the choice of
any fan structure on B(M). We set F0(B(M)) = R.
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Proposition 5.1. If M is a loopfree matroid, then

µp(M) = dimFp(B(M)).

Proof. By [Zha13, Theorem 4], the dual of Fp(B(M)) is isomorphic to OSp(M)
where OS∗(M) denotes the Orlik–Solomon algebra of M over R. Moreover, by [OT92] the
reduced characteristic polynomial of M is

χ̃M(t) =

r(M)−1∑
p=0

(−1)r(M)−p−1 dimOSp(M)tr(M)−p−1.

This completes the proof.

Example 5.2. We can use Proposition 5.1 to determine the coefficient µ1(M) for any sim-
ple matroid M . Since M has no parallel elements, the vectors vi are contained in B̃(M) for
any i ∈ E. Upon taking the projective Bergman fan we have dimF1(M) = |E| − 1. Therefore,
we have µ1(M) = |E| − 1.

Proposition 5.3. If ϕ : B(M1) → B(M2) is an isomorphism of supports of Bergman fans,
then dimFp(B(M1)) = dimFp(B(M2)) for all p, and M1 and M2 have the same reduced
characteristic polynomial.

Proof. The map ϕ induces isomorphisms on the exterior powers ϕ∗ :
∧pRE1 →

∧p RE2 . More-
over, since ϕ preserves the supports of the fans it sends the generators of Fp(B(M1)) to the
generators of Fp(B(M2)) for all p. This proves the claim about the dimensions. This claim
regarding the characteristic polynomial follows from Proposition 5.1.

Non-isomorphic matroids with the same characteristic polynomials have been studied
in [EF99]. There are known examples of combinatorially equivalent arrangements of lines
in CP 2 with non-homotopic complements [Ryb11]. Since they are combinatorially equivalent,
the arrangements define the same matroid, and hence have the same characteristic polynomial.
The above proposition implies that classifying matroids up to isomorphisms of their fans is a
priori a finer notion of equivalence than up to equality of their characteristic polynomials.

The Chern–Schwartz–MacPherson (CSM) cycles of a matroid were introduced
in [LdMRS20]. Here they are defined as Minkowski weights supported on the matroid fan
equipped with the fine structure. Recall that a k-dimensional Minkowski weight on a fan Σ
is an assignment w : Σk → Z satisfying a balancing condition on all faces of codimension
one [FS97]. In [LdMRS20], the CSM cycles of matroids are defined as Minkowski weights on
the fine fan structure of Bergman fans. Moreover, the weights of the cones are described in terms
of invariants of the underlying matroid in the following way. Let F={∅⊊F1⊊ . . .⊊Fk⊊E}
be a flag of flats of a rank d + 1 matroid M , then the k-th CSM cycle of M is the weight func-
tion wcsmk(M) : B(M)

(k)
f → Z given by

wcsmk(M)(σF) = (−1)d−k

k∏
i=1

β(M |Fi/Fi−1), (5.1)
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where β denotes the beta invariant of M , namely β(M) = (−1)dχ̃M(1). The above formula
determines the underlying matroid M and a priori the weight of a face may be different in the
presence of matroid fan isomorphisms. Moreover, the above definition of the CSM cycle is only
a Minkowski weight for the fine fan structure.

The next lemma provides an alternative formula for the weights of the CSM cycles, and shows
they can be recovered from the support of the fan. Hence this recipe produces CSM cycles as
Minkowski weights on B∗(M) where ∗ denotes any fan structure. This recipe also allows us
to consider the CSM cycles of matroids as fan tropical cycles. Tropical cycles are equivalence
classes of Minkowski weights [AR10]. Two Minkowski weights w1 : Σ

k
1 → Z and w2 : Σ

k
2 → Z

are equivalent and hence represent the same tropical cycle if there exists a fan Σ3 which refines
both Σ1 and Σ2 and a Minkowski weight w3 : Σ3 → Z such that w1(σ1) = w2(σ2) = w3(σ3) if
both σ1 and σ2 lie in a common face σ3 of Σ3.

To alternatively define the CSM cycles, first set

χ̃σ(t) =
d∑

p=0

(−1)d−p dimFp(B(M)(σ))td−p,

where Fp(B(M)(σ)) =
∑

σ′⊃σ

∧p⟨σ′⟩. This differs from the definition of the vector
space Fp(B(M)) in that it only takes into account faces containing σ. Notice again that the
vector spaces Fp(B(M)(σ)) are not dependent on the fan structure chosen and can be defined
using any point x ∈ int(σ).

Now let B∗(M) be an arbitrary fan structure on B(M) for some loopfree matroid M . Then
set

wcsmk(B∗(M)(σ) =
χ̃σ(t)

(1− t)k
|t=1. (5.2)

The following lemma will also appear in [LdMRS]. We include the proof here for complete-
ness.

Lemma 5.4. LetM be a loopfree matroid andBf (M) be the Bergman fan with fine fan structure.
Then

wcsmk(M)(σF) = wcsmk(Bf (M))(σF)

for all flags of flats F of M .
Moreover, for another fan structure B∗(M) on B(M) the Minkowski weights wcsmk(M)

and wcsmk(B∗(M)) define the same tropical cycles.

Proof. The first statement follows from the descriptions of the CSM weights in Equation 5.1,
together with the facts that the beta invariant of a matroid is equal to β(M) = (−1)dχ̃M(1)
and χM1(t)χM2(t) = χM1⊕M2(t), where χM(t) denotes the non-reduced characteristic polyno-
mial, that is (1− t)χ̃M(t) = χM(t).

For the second statement, if B∗(M) is another fan structure on B(M) then there exists a
common refinement of B∗(M) and Bf (M), which we denote ΣM . Since the recipe for the
weight wcsmk(ΣM )(σ) depends only on the support of B(M) locally about σ the CSM Minkowski
weights of all three fans are equivalent.
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Proposition 5.5. If ϕ : B∗(M1) → B∗(M2) is an isomorphism of fans where ∗ denotes arbitrary
fan structures, then ϕ sends csmk(M1) to csmk(M2) for all k.

Proof. To shorten notation let Σi = B∗(Mi). Since ϕ is an isomorphism of fans it sends cones
of dimension k of Σ1 to cones of dimension k of Σ2. It suffices to prove that the weight of a
face σ∈Σk

1 in csmk(M1) is the same as the weight of ϕ(σ)∈Σk
2 in csmk(M2). By the same proof

as for Proposition 5.3, for all p we have dimFp(Σ1(σ)) = dimFp(Σ2(ϕ(σ))). The statement
now follows from the formula for the weights of faces in CSM classes in Equation 5.2.

6. Isomorphisms preserving the fine structure

The goal of this section is to prove Theorem 6.3 which states that every isomorphism between
Bergman fans preserving the fine structure is induced by a matroid isomorphism if the matroids
are not totally disconnected.

Lemma 6.1. If M is a loopfree matroid of rank d+ 1, then the following are equivalent:

1. M is totally disconnected.

2. M does not contain a circuit of size greater than or equal to 3.

3. M/F is totally disconnected for every rank 1 flat F .

4. B(M) is a linear space of dimension d.

5. the unsigned constant term of the (reduced) characteristic polynomial µd(M) is 1.

Proof. We first show the equivalence of statements 1) and 2). The circuits of a matroid which
is totally disconnected are all of size less than or equal to 2. Conversely, if M is not totally
disconnected then there must be a connected component of M which contains a circuit of size
at least 3. This circuit is also a circuit of M .

Statement 1) implies 3) directly. Suppose statement 3) holds and letC be a circuit ofM . IfC
is contained in a rank 1 flat of M , then |C|=2. Therefore, suppose C={i1, . . . , ik} with ij∈Fj

where Fj are distinct rank 1 flats of M and k ⩾ 3. Then rM/Fk
({i1, . . . , ik−1}) = k − 1

since M/Fk is totally disconnected and Fk is of rank 1. This implies that
r(C) = rM/Fk

({i1, . . . ik−1}) + r(Fk) = k contradicting the fact that C is a circuit. There-
fore, all circuits of M have size less than or equal to 2 so 3) implies 2).

The equivalence of 1) and 4) follows from the fact that the dimension of the lineality space
of a Bergman fan is one less than the number of connected components of the corresponding
matroid, Proposition [FR13, Lemma 2.3]. The equivalence of 4) and 5) follows from Proposi-
tion 5.1. This completes the proof.
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Lemma 6.2. Let M1 and M2 be simple matroids, and let i be in E(M1). Suppose
ϕ : Bf (M1) → Bf (M2) is a isomorphism mapping the ray associated to the flat {i} to a ray of
a corank one flat in M2. Then M1/{i} is totally disconnected.

Proof. Let d+ 1 be the rank of M1 and M2. By Formula 4.3, we can compute

deg xd
i = (−1)d−1µd−1(M1/{i}) and deg xd

F = (−1)d−1µ0(M2/F ) = (−1)d−1,

where rankF = d. By Proposition 4.4 the isomorphism ϕ induces an isomorphism of Chow
rings which is compatible with the degree map. Therefore, we must have µd−1(M1/{i}) = 1. It
follows from Lemma 6.1 part 5), that the matroid M1/{i} is totally disconnected.

Theorem 6.3. Let M1 and M2 be simple matroids such that neither is totally disconnected.
If ϕ : Bf (M1) → Bf (M2) is an isomorphism of fans, then ϕ is induced by a matroid isomor-
phism.

Proof. Note that if there exists an isomorphism of their Bergman fans, then M1 and M2 must
have the same rank, which we denote by d + 1. If M1 and M2 are of rank 2, then the sim-
plicity assumption implies that both are isomorphic to U2,n for some n. Hence we may assume
that d ⩾ 2.

Since ϕ maps rays to rays, we get a bijective correspondence ϕ between the flats of M1

and the flats of M2 preserving adjacency, i.e. if F1 ⊊ F2 is a flag of flats in M1, we find that
either ϕ(F1) ⊊ ϕ(F2) or ϕ(F2) ⊊ ϕ(F1).

We begin by showing that flats of rank d of M1 must be mapped to flats of rank d of M2.
Let F be a flat of rank d in M1. As in the proof of Lemma 6.2, we deduce from Theorem 4.3
that we have deg(xd

F ) = (−1)d−1 in the Chow ring of M1. If F ′ is a flat of rank k in M2, find
again by Theorem 4.3 that

deg(xd
F ′) = (−1)d−1

(
d− 1

d− k

)
µd−k(M2/F

′).

By Proposition 4.4, the isomorphism ϕ induces an isomorphism of Chow rings compatible with
the degree map. If ϕ(F ) is a flat of rank k, we deduce that deg(xd

ϕ(F )) = (−1)d−1, which
implies

(
d−1
d−k

)
µd−k(M2/ϕ(F )) = 1. In particular, k must be equal to d or to 1.

Assume that k = 1, so that ϕ(F ) = {i} for some i ∈ E(M2). In this case we
find µd−1(M2/{i}) = 1, which implies by Lemma 6.2 that the matroid M2/{i} is totally dis-
connected.

Consider any j ∈ F , then by Theorem 4.3 we have deg(xjx
d−1
F ) = (−1)d−2. Suppose that j

is sent to the flat G of M2. Then we must have deg(xd−1
i xG) = (−1)d−2. However, the degree

of the product xd−1
i xG contains the factor µd−2(M2|G/i). The rank of the matroid M2|G/i is

rank(G) − 1, since i is not a loop. So if rank(G) < d, then µd−2(M2|G/i) = 0, hence the
degree of xd−1

i xG would be zero, see also [Eur20, Proposition 3.12]. Hence every j ∈ F must
be sent to a flat of rank d of M2. Carrying on, we see that all rank d flats of M1 which contain
any j ∈ F must be sent to rank 1 flats of M2.
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Now take any rank d flat F ′′ inM1. We can always find a rank d flat F ′ inM1 such that F ∩F ′

and F ′ ∩ F ′′ are non-empty, which implies that ϕ(F ′′) also has to have rank one. Reasoning
as above we find that every rank d flat in M1 is mapped to a rank one flat in M2. Note that
conversely every rank one flat in M2 is in fact the image of a rank d flat in M1: Any rank one
flat G in M2 is of the form ϕ(F ) for some flat F in M1. Suppose F is properly contained in a
rank d flat Fd, then ϕ(F ) and ϕ(Fd) must be comparable. However, they are both of rank one so
this is impossible.

Therefore we find by Lemma 6.2 applied to ϕ−1 that M2/{i} is totally disconnected for
all i ∈ E(M2) and by Lemma 6.1 that M2 is totally disconnected which contradicts our hypoth-
esis. Therefore we conclude that all flats of rank d in M1 are sent to flats of rank d in M2.

Now we show by downward induction that for all k = 2, . . . , d the map ϕ maps flats of rank k
to flats of rank k. Assume that the claim is true for all l > k, where k is between 2 and d − 1.
Then ϕ induces a map between the set of flats of M1 and M2 of rank less than or equal to k.
In particular, it gives a map between the lattice of flats of the truncation matroids trk+1(M1)
and trk+1(M2). Recall that k + 1-truncation trk+1(M) of a matroid M is a rank k + 1 matroid
with the same ground set as M whose flats consist of the ground set E together with the flats
of M whose rank is less than or equal to k. Assume that ϕ maps a flat of rank k to a flat of rank
strictly less than k. We apply the argument above to the truncated matroids. Replacing d by k
we find that trk+1 M2/{i} is totally disconnected for all i ∈ E(M2). So again by Lemma 6.1,
the truncation trk+1M2 is totally disconnected. However, any truncation of a loopfree matroid
is connected and we arrive at a contradiction.

Corollary 6.4. Let W1 and W2 be the maximal wonderful compactifications of the comple-
ments ΩA1 and ΩA2 of two essential and connected hyperplane arrangements A1, A2. Any
isomorphism ΩA1 → ΩA2 extending to the maximal wonderful compactifications gives rise to a
map of Bergman fans which is induced by an isomorphism of matroids M(A1) → M(A2).

Proof. As in the proof of [KW19, Theorem 5.1] we see that an isomorphism f : ΩA1 → ΩA2

induces an isomorphism between the intrinsic tori and hence via tropicalization a Z-linear iso-
morphism mapping B(M(A1)) to B(M(A2)).

If f : ΩA1 → ΩA2 extends to the maximal wonderful compactifications, it induces an iso-
morphism between the boundaries. The boundary of the maximal wonderful compactification
of ΩAi

is the union of divisors associated to the flats in the fine structure of the Bergman fan
associated to M(Ai). Since two divisors meet if and only if the associated flats are nested, f
induces an isomorphism between the two Bergman fans with their fine structure. Hence our
claim follows from Theorem 6.3.

Corollary 6.5. Every finite group G occurs as the automorphism group of the Bergman
fan Bf (M) for some simple matroid M of rank 3.

Proof. This follows from Theorem 6.3 together with the main statement of [BK94] which shows
that every finite group is the automorphism group of a simple rank 3 matroid.



combinatorial theory 3 (2) (2023), #17 17

7. Isomorphisms of coarse fan structures

In this section we investigate isomorphisms between Bergman fans endowed with the coarse
structure for loopfree matroids of higher rank. The following trivial example shows that we
need to make some connectedness assumptions to get interesting results.

Example 7.1. For the totally disconnected matroid M = Un,n on n ⩾ 3 elements the Bergman
fan B(M) is simply Rn/R1. Hence the automorphism group of Bc(M) is isomorphic
to GLn−1(Z).

If Bergman fans decompose in a product of fans, automorphisms can be defined component-
wise. We will show now that such a product decomposition only happen for matroids which are
non-trivial parallel connections.

Theorem 7.2. Let M be a simple matroid of rank at least 3. If M is a non-trivial parallel
connection of matroids M1 and M2, then the Bergman fan Bc(M) is isomorphic to the prod-
uctBc(M1)×Bc(M2). On the other hand, ifBc(M) is isomorphic to a productBc(M1)×Bc(M2)
of two Bergman fans for matroids Mi of rank at least two, then M is a non-trivial parallel con-
nection.

Proof. We begin with the first statement. Consider two matroids M1 and M2 on the ground
sets E1 and E2, and suppose that M is the parallel connection of M1 and M2 along p.
Hence E = E(M) = E1 ∪ E2 and E1 ∩ E2 = {p}.

If p is a coloop of either M1 or M2, then the parallel connection along p is a disconnected
matroid and the first statement follows from [FR13, Lemma 2.1] after quotienting the affine
Bergman fan of M by 1E .

Hence we may assume that p is neither a loop nor a coloop in either M1 or M2. We will show
that the support of the fan Bc(M) can be mapped bijectively to

Bc(M1)×Bc(M2) ⊂ RE1/R1E1 × RE2/R1E2 .

We use the notation wi for the canonical basis element of ZE1 or ZE2 when i is in E1 or E2.
The element p in the intersection E1 ∩ E2 gives rise to vectors wpE1

∈ RE1 and wpE2
∈ RE2 .

Now consider the map

ϕM : RE1∪E2/R1E1∪E2 → RE1/R1E1 × RE2/R1E2 (7.1)

given by vi 7→ wi for i ̸= p and vp 7→ wpE1
+ wpE2

. This map is an isomorphism of vector
spaces, and the inverse is given by wi 7→ vi for i ∈ E1 ∪ E2, i ̸= p and wpEi

7→ −vEi\{p}.

Recall that the affine Bergman fan B̃(M) consists of points
∑

aivi ∈ RE such thatmaxi∈C ai
is attained at least twice for all circuits C of M . Since p is not a loop or coloop in either M1 or
M2, we find by [Oxl11, Proposition 7.1.4], that the circuits of the parallel connection M of M1

and M2 along p are of the form C = Ci where Ci is a circuit of Mi or C = C1\{p} ∪ C2\{p}
where Ci is a circuit of Mi containing p. A direct check shows that x ∈ Bc(M) if and only
if ϕM(x) ∈ Bc(M1)×Bc(M2).
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Conversely, suppose that Bc(M) is isomorphic to the product of two Bergman fans Bc(M1)
and Bc(M2) via a linear isomorphism ϕ : RE/R1E → RE1/R1E1 × RE2/R1E2 respect-
ing the lattices, where Mi is a matroid of rank di + 1 on a ground set Ei with |Ei| = ni.
Suppose |E| = n + 1 and M has rank d. Then d = d1 + d2 and n + 1 = n1 + n2 − 1.
Assume that every i ∈ E gives rise to a ray in the coarse fan structure. Since Bc(M) is a prod-
uct, each of its rays corresponds to a ray of either Bc(M1) or Bc(M2). This produces a partition
of the rank 1 rays of Bc(M), which equivalently defines a partition of E = R1 ⊔R2.

Again let vk denote the standard basis vector of RE corresponding to k ∈ E. The map ϕ
sends ϕ(vi) to RE1/R1E1 ×0 for i ∈ R1 and ϕ(vj) to 0×RE2/R1E2 . Since n+1 = n1+n2−1,
either |R1| ⩾ n1 or |R2| ⩾ n2, so that either the vectors {ϕ(vi) | i ∈ R1} are linearly dependent
in RE1/R1E1 , or the vectors {ϕ(vj) | j ∈ R2} are linearly dependent in RE2/R1E2 . However,
there is only one linear dependency among the vectors vk for k ∈ E, namely

∑
k∈E vk = 0 and

the map ϕ is an isomorphism. Therefore, our assumption that every i ∈ E gives rise to a ray
in the coarse fan structure is false. It follows from Lemma 2.4, that the matroid M must be a
parallel connection along the element i.

The next result shows that Bergman fans of non-isomorphic parallel connection matroids
may be isomorphic.

Corollary 7.3. Let M and M ′ be two simple matroids on a set E of size n + 1 obtained as the
non-trivial parallel connection of M1 and M2 along possibly different pairs of elements. Then
there exists an isomorphism from Bc(M) to Bc(M

′).

Proof. It suffices to compose ϕM and ϕ−1
M ′ from Equation 7.1 for two parallel connections M

and M ′ of the same matroids M1, M2 along different elements.

We will now show that for matroids with a certain connectedness property, automorphisms
of the coarse Bergman fan can map rays to rank k only to rays of rank or corank k.

Theorem 7.4. Suppose M and M ′ are simple matroids and ϕ : Bc(M) → Bc(M
′) is an iso-

morphism. Let F be a flat of M of rank k giving rise to a ray in the coarse structure. Suppose
neither M |F nor M/F are non-trivial parallel connections, then ϕ sends the ray of Bc(M) in
direction F to a ray of rank k or corank k in Bc(M

′).

Proof. By Formula 2.1, for any flat F of any matroid M , we have

starvF (B̃(M)) = B̃(M |F )× B̃(M/F ).

The above fan has a two dimensional lineality space spanned by 1E and vF . Therefore, taking
the quotient of the star of the projective Bergman fan by vF gives,

starvF (B(M))

⟨vF ⟩
∼= B(M |F )×B(M/F ),

where dimB(M |F ) = rank(F )−1 = k−1 as well as dimB(M/F ) = rank(M)−rank(F )−
1 = rank(M)− k.
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Suppose the ray generated by vF is a ray in the coarse structure, which is mapped by ϕ to the
ray generated by vF ′ for a flat F ′ of M ′. Then the above quotient of the star fan of Bc(M) at vF
must be sent to the corresponding quotient of the star fan of Bc(M

′) at vF ′ . The star fan at vF is
the Bergman fan of a matroid which may possibly have parallel elements. The map ϕ induces a
map between the fans of the corresponding matroid simplifications of the star fans. Hence, we
can apply Theorem 7.2 to see that the star of B(M ′) at vF ′ must be a product of Bergman fans
of the same dimensions. Therefore, F ′ is of rank or corank k.

In Section 10, we will apply this result in the following situation.

Corollary 7.5. Let ϕ be an automorphism of the coarse Bergman fan Bc(M) of a simple ma-
troid M with ground set E. Suppose that for every element of the ground set i ∈ E the ma-
troid M/i is not a non-trivial parallel connection. Then ϕ maps rays of rank 1 to rays of rank 1
or of corank 1.

Proof. The statement is an immediate specialisation of Theorem 7.4 in the case k = 1.

8. Cremona maps

Let M be a matroid of rank d + 1 on a ground set E of n + 1 elements. As in Section 2, we
write vF =

∑
i∈F vi or every subset F ⊆ E. Recall that 1 = vE .

Definition 8.1. Consider a basis b = {b0, . . . , bd} of a simple matroid M . For each basis ele-
ment bj in b we define a flat Bj by

Bj := cl{b0, . . . , b̂j, . . . , bd},

where b̂j indicates that bj is left out.
We define the Z-linear map Cremb : RE → RE by vbj 7→ vBj

for the basis elements bj ,
and vk 7→ vk for all k ∈ E\b.

If Cremb maps the line R1 to itself, we also write Cremb : RE/R1→RE/R1 for the quotient
map.

We wish to know under what conditions on the matroid M the map Cremb preserves the
coarse Bergman fanBc(M). This is the case if and only ifCremb mapsR1 to itself and preserves
the support of the (projective) Bergman fan, which we denote by B(M).

Recall the Cremona map CremE : B(Un+1,n+1) → B(Un+1,n+1) from Example 1.1. This
map is defined by vi → −vi for all i ∈ E. We can consider the action of this map CremE

restricted to Bergman fans B(M) for any matroid M on the ground set E.

Lemma 8.2. LetM be a loopfree matroid of rank d+1 on the ground setE. The image ofB(M)
under CremE is the support of a Bergman fan B(M ′) if and only if M is totally disconnected.

Proof. Suppose |E| = n + 1. We use the description of the reduced characteristic polyno-
mial of Huh and Katz [HK12] in terms of intersection theory of Minkowski weights on the
n-dimensional permutahedral toric variety. This is the toric variety defined by the complete
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fan B(Un+1,n+1). The map CremE is an automorphism of the fan B(Un+1,n+1) and hence pro-
duces an automorphism of its Chow ring compatible with the degree map by Proposition 4.4.
Hence we also have an automorphism of the ring of Minkowski weights.

By [HK12, Lemma 6.1], there is a Minkowski weight α such that for all i, we
have µi(M) = αd−i∪CremE(α)

i∪B(M), where ∪ denotes the intersection product and µi(M)
is the i-th unsigned coefficient of the reduced characteristic polynomial of M . Since the
map CremE gives an automorphism of the ring of Minkowski weights we have

αd ∪B(M) = CremE(α)
d ∪B(M).

Now the left hand side is µ0(M) = 1 and the right hand side is equal to µd(M). By Lemma 6.1,
the coefficient µd(M) is equal to one if and only if M is totally disconnected.

We will now prove a criterion about the existence of Cremona maps (with respect to a suitable
basis) acting as automorphisms of the Bergman fan with the coarse structure. Let M be a simple
matroid. For any pair of elements i, j ∈ E we denote byFij be the rank 2 flat which is the closure
of i and j.

Theorem 8.3. Let b be a basis of a simple connected matroid M . The map Cremb descends to a
linear map Cremb : RE/R1 → RE/R1 mapping B(M) to itself if only if the
sets {Fij\{i, j}}i,j∈b partition the set E\b into pairwise disjoint subsets.

We will need the following lemma in the proof.

Lemma 8.4. Assume that b is a basis of a simple matroid M , such that the sets {Fij\{i, j}}i,j∈b
partition E\b. Then Cremb descends to a linear automorphism on the quotient RE/R1.

For all subsets a ⊂ b we define an associated flat Fa = cl{bi : bi ∈ a}. Then each flat G
of M decomposes into the disjoint union of the two flats Fb∩G and G ∩ Fb\G which might be
empty. Moreover,

Cremb(vG∩Fb\G) = vG∩Fb\G and Cremb(vFb∩G
) = vFb\G ∈ RE/R1.

Proof. Note that the partition hypothesis implies that every element a ∈ E\b is contained in
precisely d − 1 of the sets Bj := cl{b0, . . . , b̂j, . . . , bd}. Therefore the Cremona automor-
phism Cremb of RE maps 1 to

∑d
i=0 vBi

+
∑

a/∈b va = d1, hence it descends to the quotient
space RE/R1 as the endomorphism Cremb from Definition 8.1.

Let G be any flat in M and consider the subflat Fb∩G ⊂ G. Let h ∈ G\Fb∩G. By assumption,
h ∈ cl{bi, bj} for some i, j. The basis vector bi cannot be contained in G, since this would
imply bj ∈ cl{h, bi} ⊂ G, and therefore h ∈ Fb∩G. For the same reason the basis vector bj
cannot be contained in G. Hence h ∈ Fb\G. This implies that G\Fb∩G = G∩Fb\G. Therefore G
is the disjoint union of the two flats Fb∩G and G ∩ Fb\G.

To prove the remaining statements, note that G ∩ Fb\G does not intersect b. Therefore, the
map Cremb fixes the vector vG∩Fb\G . Next put g = |b ∩G| and consider the action of Cremona:

Cremb(vFb∩G
) =

∑
bi∈b∩G

Cremb(vbi) + vFb∩G\b =
∑

bi∈b∩G

vBi
+ vFb∩G\b.
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We write Cpq = Fbp,bq\{bp, bq}. By our assumption on the matroid M the set Fb∩G\b is the
union of all Cpq for bp and bq in b ∩G, so that vFb∩G\b =

∑
bp,bq∈b∩G vCpq . Similarly, Bi\b is the

union of all Cpq for all bp and bq both not equal to bi, so that vBi\b =
∑

bp ̸=bi,bq ̸=bi
vCpq .

Hence we can calculate∑
bi∈b∩G

vBi
= g

∑
bj∈b\G

vbj + (g − 1)
∑

bj∈b∩G

vbj+

(g − 2)
∑

bp,bq∈G

vCpq + (g − 1)
∑

either bp or bq∈G

vCpq + g
∑

bp,bq /∈G

vCpq ,

so that
Crem(vFb∩G

) = vFb\G + (g − 1)1.

This proves the lemma.

Proof of Theorem 8.3. Let b be a basis such thatCremb descends toRE/R1 and preservesB(M).
Put C = E\b. We consider the matroid M |b which is the same as the matroid M\C and
isomorphic to the uniform matroid Ud+1,d+1 for d + 1 = rk(M). For each k ∈ C, consider the
rank d + 1 matroid M\{C\k}. This matroid is loopfree since M is assumed to be loopfree.
Therefore, M\{C\k}/k is a matroid of rank d on the ground set b.

Since M is simple, an element i ∈ b and k cannot be parallel in M , so that i is not a
loop of M\{C\k}/k, and we can consider its Bergman fan in Rb/1b. It must be preserved
under Cremb acting on Rb/1b, since the Cremona map commutes with coordinate projections
and the Bergman fans of matroid minors of M can be determined from the coordinate projec-
tions [Sha13, Proposition 2.22].

By Lemma 8.2, the matroid M/k\{C\k} must be totally disconnected for all k. Since it is
a rank d loopfree matroid on the d + 1 elements of b, by the pigeon hole principle there must
exist a unique pair of elements in b, say {i, j}, which are parallel elements in M/k\{C\k}.
This implies that k ∈ Fi,j\{i, j} and we have a partition of E\b given by the sets Fi,j\{i, j}
for i, j ∈ b.

For the other direction assume that b is a basis of M such that the sets {Fij\{i, j}}i,j∈b
partition E\b. For simplicity we write again Cij := Fij\{i, j}. Then C =

⋃
p,q Cpq.

Note that if k ∈ E\b, then vk is fixed by Cremb. If bi ∈ b, we have

Crem2
b(vbi) = Cremb(vBi

) =
∑
j ̸=i

vBj
+

∑
p ̸=i,q ̸=i

vCpq

= dvbi + (d− 1)
∑
j ̸=i

vbj + (d− 1)
∑
k∈C

vk,

so that under the above hypothesisCrem2
b(vbi) = vbi+(d−1)1.Therefore,Cremb is an involution

on RE/R1.
We have to show that Cremb preserves the support B(M) of the Bergman fan. Since we

are only interested in the support of the fan, the fan structure we consider on it does not matter.
Therefore it suffices to show that for every maximal cone γ in Bf (M) (with respect to the the
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fine fan structure), the image Cremb(γ) is contained in a cone in Bm(M) (with respect to the
minimal nested set structure). Namely this implies Cremb(B(M) ⊂ B(M), and since Cremb is
an involution, equality of sets follows.

Again write Fa = cl{bi : bi ∈ a} for all subsets a of our basis b. Hence Fij = F{bi,bj}.
Let G := ∅ ⊊ G1 ⊊ . . . ⊊ Gd be a flag of pairwise different flats in E, giving rise to the
maximal cone ρG := ⟨vG1 , vG2 , . . . , vGd

⟩R⩾0
in the fine subdivision of B(M).

For every j ∈ {1, . . . , r} we write Gj as the union of the two flats Fb∩Gj
and Gj ∩ Fb\Gj

as
in the proof of Lemma 8.4.

We decompose every flat Gj ∩ Fb\Gj
into its connected components. All those components

for all Gj form a finite set of connected flats K1, . . . , Ks of M , such that each Ki is contained
in E\b. Now we look at the sets b\Gj . If b\Gj is non-empty, we decompose Fb\Gj

into its
connected components C(j)

k . Note that for j < j′ we have b\Gj′ ⊂ b\Gj , so that for every C
(j′)
k

there exists some C(j)
l containing C

(j′)
k .

We claim that the set of flats F consisting of all these C
(j)
k and all Ki is nested for the

minimal nested set structure of M . Consider a subset S of F consisting of at least two pairwise
incomparable elements. We have to show that the flat cl(

⋃
S∈S S) is disconnected.

Assume first thatS only contains flats of the formKi. EachKi is contained in someGj(i). We
can find some Gj containing all of them, so that at least one of the Ki is contained in Gj ∩Fb\Gj

.
Since Gj decomposes into the two flats Fb∩Gj

and Gj ∩ Fb\Gj
, we find

cl{S : S ∈ S} = (cl{S : S ∈ S} ∩ Fb∩Gj
) ∪ (cl{S : S ∈ S} ∩Gj ∩ Fb\Gj

)

If at least one of the elements Ki in S is contained in the first set, then this decomposition shows
that the flat cl{S : S ∈ S} is disconnected. If all Ki in S are contained in Gj ∩ Fb\Gj

which
is the disjoint union of some of the flats Kq by construction, we find that cl{S : S ∈ S} is a
disconnected subflat of Gj ∩ Fb\Gj

.
Let us now assume that S contains at least one component of the form C

(j)
k , and choose j

to be minimal. If C(j′)
k′ is another element in S, then j ⩽ j′, and we find that C(j′)

k′ is contained
in a component C(j)

l of Fb\Gj
different from C

(j)
k . For every Ki in S there exists some Gj(i)

containing Ki, i.e. Ki ⊂ Gj(i) ∩ Fb\Gj(i)
. If j(i) ⩽ j, we find that Ki is contained in the flat Gj ,

which is the disjoint union of Fb∩Gj
andGj∩Fb\Gj

. HenceKi is either contained in a component
of Fb\Gj

disjoint from C
(j)
k or in Fb∩Gj

. If j(i) > j, we find that Ki ⊂ Fb\j(i) ⊂ Fb\j is contained
in a component of Fb\Gj

disjoint from C
(j)
k . Therefore we can decompose

cl{S : S ∈ S} = (cl{S : S ∈ S} ∩ Fb∩Gj
) ∪

⋃
l

(cl{S : S ∈ S} ∩ C
(j)
l )

into at least two disjoint non-empty flats, so that the flat on the left hand side is indeed discon-
nected. This concludes the proof that the set of flats F defined above is nested for the minimal
nested set structure.

Hence the image ρF of the positive cone generated by all v
C

(j)
k

and all vKi
in RE/R1 is a

cone in the minimal nested set structure of the Bergman fan.
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By Lemma 8.4, we have vGj
= vFb∩Gj

+ vGj∩Fb\Gj
, and

Cremb(vGj
) = vFb\Gj

+ vGj∩Fb\Gj
+ R1.

Since Gj ∩Fb\Gj
is the union of some Ki, and Fb\Gj

is the union of the C(j)
k , we deduce that the

image of the cone ρG under Cremb is contained in ρF , and hence in B(M).

9. The Cremona group of a matroid in rank 3

For matroids of rank 3, there is the following strong result:

Theorem 9.1. [Sha15, Theorem 2.8] If M1 and M2 are simple matroids of rank 3 and there
exists an isomorphism ϕ : Bc(M1) → Bc(M2), then M1 and M2 are isomorphic.

The original statement of the above theorem in [Sha15] is in terms of equality of supports of
fans of distinct matroids defined with respect to distinct lattice bases. The equivalence of these
formulations follows from the discussion in Remark 2.2.

Notice that the above statement asserts that M1 and M2 are isomorphic, however this does
not mean that ϕ is necessarily induced by a matroid isomorphism. We have seen in the last
section, that there are Cremona automorphisms preserving Bergman fans and these do not come
from matroid automorphism. A concrete example to keep in mind is the matroid M of the braid
arrangement A3, see Example 3.1. In this case, we have Aut(M) ⊊ Aut(B(M)) = S5. The
following statement fully describes the automorphism group of a simple matroid of rank 3.

Theorem 9.2. The automorphism group of Bc(M) for a simple rank 3 matroid M which is not
a non-trivial parallel connection is generated by matroid automorphisms and Cremona maps.

If the connected, simple, rank 3 matroid M is a non-trivial parallel connection, then the
automorphism group of Bc(M) is isomorphic to the automorphism group of a complete bipartite
graph.

We deal with the two cases of the above theorem separately. The first case will be proved
in Theorem 9.5. The second case for non-trivial parallel connections is proved in the following
lemma. Notice that a simple connected matroid which is a non-trivial parallel connection of
rank 3 must be a parallel connection of U2,k and U2,l for some k, l ⩾ 3.

Lemma 9.3. The automorphism group of Bc(M), where M is a non-trivial parallel connection
of U2,k and U2,l for k, l ⩾ 3, is the automorphism group of the complete bipartite graph Kk,l.

Proof. The fan Bc(M) of a rank 3 parallel connection of the matroids U2,k and U2,l is a product
of two one dimensional fans having k and l rays respectively. Therefore, the fan is the cone over
a complete bipartite graph Kk,l. Hence any automorphism of the fan induces an automorphism
of the complete bipartite graph. Conversely, any automorphism of this complete bipartite graph
yields an integer linear map which preserves the Bergman fan of the matroid.
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Example 9.4. As in the proof of the previous lemma, consider the parallel connection M of U2,k

and U2,l along a common element 0 contained in both ground sets for k and l at least 3. By
Lemma 9.3, the automorphism group of Bc(M) is isomorphic to the automorphism group of
the bipartite graph Kk,l. By Lemma 2.4, the element 0 ∈ E is such that v0 is not a ray of the
coarse fan structure.

The parallel connection M has exactly two connected flats of rank 2. These are the only
connected rank 2 flats containing 0. These produce two rays in the coarse fan structure Bc(M)
of rank 2. We claim that an automorphism of Kk,l which fixes the first vertex set, yet acts freely
on the other vertex set cannot be obtained by composing matroid automorphisms and Cremona
maps. Notice that such an isomorphism necessarily fixes one of the two connected rank 2 rays
and sends the other rank 2 ray to a ray of rank 1. A matroid isomorphism preserves the ranks of
rays, thus such an isomorphism either leaves the two rays of rank 2 fixed or it may swap them if
we are in the case k = l. Any basis b of M containing 0 gives a Cremona map Cremb which is an
automorphism of the coarse Bergman fan of M and hence of Kk,l. These are the only bases for
which Cremona maps are possible. Applying the Cremona map swaps the two rays of rank 2 for
two rays of rank 1. Thus this example shows that it is not possible to obtain all automorphisms
of Bc(M) from Cremona maps and matroid isomorphisms.

Theorem 9.5. LetM be a simple matroid of rank 3which is not a non-trivial parallel connection.
Any automorphism ϕ : Bc(M) → Bc(M) is either induced by a matroid automorphism or the
composition of a Cremona map and matroid automorphism.

To prove the above theorem we will require some calculations in the Chow ring of the coarse
fan structure on B(M). Note that for a rank 3 matroid M which is not a non-trivial parallel
connection, the coarse fan structure and the minimal nested set structure of the Bergman fan
coincide by Lemma 2.3. It is possible to prove Theorem 9.1 using the Chow ring of a matroid
along the lines of the proof of Theorem 9.5.

Lemma 9.6. LetA∗
c(M) denote the Chow ring of the coarse subdivision of the fan of a rank 3 sim-

ple matroid M which is not a non-trivial parallel connection of two rank 2 matroids.
Let F, F ′ be flats of rank 2 of M which produce rays in Bc(M). Let deg denote the isomor-
phism A2

c(M) → Z. Then

1. deg xkxF = 1 if k ∈ F , for all k ∈ E,

2. deg x2
k = 1− |{F | k ∈ F, |F | > rankF = 2}|,

3. deg x2
F = −1,

4. deg xFx
′
F = 0 for F ̸= F ′.

Proof. To simplify notation let Σ denote Bc(M). We recall that the degree map is defined
on A2

c(M) by deg xkxF = 1 if k ∈ F [AP20]. Recall from Section 4 that

xk − xl +
∑
k∈F

xF −
∑
l∈G

xG ∈ J, (9.1)
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where F and G denote connected flats of rank 2. Thus this sum is 0 in A1
c(M). Therefore, for

any l ∈ E not equal to k we have

x2
k = xk(xl +

∑
l∈G

xG −
∑
k∈F

xF ). (9.2)

There are two cases to consider, either cl{l, k} = {l, k} or not. If cl{l, k} = {l, k}, then the
rays ρl, ρk, corresponding to l and k respectively, span a face of Σ and there is no face spanned
by ρk and ρG for rank 2 connected flats G with l ∈ G. Then the product becomes

deg x2
k = 1− |{F | k ∈ F, |F | > rankF = 2}|,

as claimed. If Flk = cl{l, k} ⊋ {l, k}, then there is a ray for Flk in the coarse subdivision.
Moreover, we have the products deg xlxk = 0 and deg xkxFlk

= 1. Therefore the product
in (9.2) still has degree

1− |{F | k ∈ F, |F | > rankF = 2}|.

Using the relation (9.1), we obtain

x2
F = xF [xl +

∑
{l}⊊G

xG − (xk +
∑

k∈F ′,F ′ ̸=F

xF ′)],

without loss of generality we can assume that l ̸∈ F , in which case, x2
F = −xFxk which has

degree −1.
Lastly, if F ̸= F ′ and both are of rank 2, then F and F ′ are not nested hence their corre-

sponding rays do not span a cone of Bc(M). This implies that deg xFx
′
F = 0.

Proof of Theorem 9.5. By Lemma 2.4, every ray of rank 1 is in Bc(M). Any connected flat of
rank 2 of M induces a ray of Bm(M) and hence of Bc(M). Now if ϕ is not induced by a matroid
automorphism, then there is a ray of rank 1 in Bc(M) which is sent to a ray of rank 2 in Bc(M)
by ϕ. Let Ẽ, P̃ be the subsets of the ground set E, and rank two connected flats P , respectively,
whose ranks are changed by ϕ. In particular, the map ϕ also induces a bijection between Ẽ
and P̃ and so the two sets have the same size. Let G be the graph with vertex set V = Ẽ ∪ P̃
and with edges between two vertices if and only if the corresponding rays span a face of Bc(M).
We will prove that this is a bipartite cycle graph with 6 vertices and with vertex partition given
by V = Ẽ ∪ P̃ .

Claim 1: If k ∈ Ẽ then every connected rank 2 flat F ∋ k must be in P̃ . Otherwise
if ϕ∗(xk) = xF ′ and ϕ∗(xF ) = xF ′′ then deg(xkxF ) = 1 yet deg(xF ′xF ′′) = 0 by Lemma 9.6.
This contradicts that ϕ induces a ring automorphism A∗

c(M) → A∗
c(M) compatible with the

degree map.
Claim 2: If k ∈ Ẽ then |{F | k ∈ F, |F | > rankF = 2}| = 2. By Proposition 4.4 the map ϕ

induces a Chow ring isomorphism compatible with the degree map. If ϕ∗(xk) = xF ′ then
deg(x2

k) = deg(x2
F ′) = −1 and by Lemma 9.6 we have |{F | k ∈ F, |F | > rankF = 2}| = 2.

Claim 1 and 2 together imply that every vertex in Ẽ has valency 2 in G. Repeating the
argument for the inverse map of ϕ proves the same assertion for P̃ . Notice that this also implies
that |P̃ | ⩾ 2 and hence that |Ẽ| ⩾ 2.
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Claim 3: If k, l ∈ Ẽ then F = cl {k, l} ∈ P̃ . In particular, cl {k, l} must be a ray in the
minimal subdivision. This proves that the graph G is bipartite and connected.

Therefore, the graph G is a connected 2-regular bipartite graph with 2m vertices,
where m = |Ẽ| = |P̃ |. Hence it must be the cycle graph C2m. If the graph is C2m, then
there are m elements in Ẽ and by Claim 3 a vertex in Ẽ would have valency m − 1. Since the
graph is 2-regular we have m = 3. Moreover, this shows that the map ϕ sends j, k, l to rank 2
flats of M where Ẽ = {j, k, l}. All other elements of E are sent to elements of E.

First notice that rank(Ẽ) = 3, therefore this set is a basis. We prove that the Cremona
map CremẼ preserves the fan by using Theorem 8.3.

To apply the theorem we must show that every p ∈ E\{j, k, l} is contained in one of the
flats cl {k, l}, cl {j, l}, cl {k, j}. Suppose otherwise, then the ray corresponding to p ∈ E spans
two dimensional cones with the rays of j, k, and l. This is because the closure of p and any one
of j, k, or l must be disconnected, as there are only two connected rank 2 flats containing any
one of j, k, l and they are among cl {k, l}, cl {j, l}, cl {k, j}.

By Lemma 9.6, for any singleton i in a rank 3 matroid M we have in Ac(M),

deg(x2
i ) = 1− |{F | F flat of M,F ∋ i, |F | > rankF = 2}|.

Yet since p ̸∈ Ẽ its ray is sent to a rank one ray in the fan of M corresponding to p′ ∈ E.
However, the elements j, k, l are sent to connected rank 2 flats of M2 containing p′, so that
there are three more rank two flats contributing to deg(x2

p′) than to deg(x2
p), which contradicts

Proposition 4.4.
Hence every p ∈ E\{j, k, l} is contained in one of cl {k, l}, cl {j, l}, cl {k, j} and the Cre-

mona map CremẼ preserves the fan. Moreover, the composition of CremẼ and ϕ sends all rank
1 rays to rank 1 rays and hence is induced by a matroid automorphism. Therefore, the map ϕ is
the composition of a Cremona map and a matroid automorphism.

It is an interesting question under which hypotheses an analogous statement to Theorem 9.5
is true for matroids of higher rank. In Section 10, we prove an analogous statement for modularly
complemented matroids.

10. Modularly complemented matroids

For matroids M1 and M2 of rank bigger than 3, the determination of the fan isomorphisms
between Bc(M1) and Bc(M2) is much more involved. In the present section we will determine
the automorphism groups of Bc(M) for modularly complemented matroids of rank at least 4.

Let us recall some definitions from [Oxl11, Section 6.9]. Two flats X and Y in a matroid M
form a modular pair if

r(X) + r(Y ) = r(X ∪ Y ) + r(X ∩ Y ).

A flat X is called modular, if and only if for all flats Y the pair (X, Y ) is a modular pair. A ma-
troid is modular, if every flat is modular. This is a very restrictive condition. In fact, a connected
simple modular matroid is either the free matroid U1,1 or a finite projective geometry [Oxl11,
Proposition 6.9.1].
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We will now deal with the case that M is a finite projective geometry of rank at least 3,
i.e. M = PG(n, q) for some n ⩾ 2 is the matroid on the set E(M) of all one-dimensional
subspaces of the vector space Fn+1

q , with rank function given as the dimension of the linear
span of a subset of E. Hence the flats in M correspond to the linear subspaces of Fn+1

q . The
matroid M = PG(n, q) is isomorphic to the matroid represented by the hyperplane arrange-
ment A in Pn

Fq
consisting of all Fq-rational hyperplanes. It is shown in [RTW13] that every

automorphism of the complement ΩA extends to Pn
Fq

, so that the automorphism group of ΩA
is PGL(n+ 1,Fq).

Proposition 10.1. Let M = PG(n, q) be a finite projective geometry with n ⩾ 2. Then every
automorphism of Bc(M) is induced by a matroid automorphism.

Proof. Note that for all connected non-nested flats F1 and F2 in M , the closure of F1 ∪ F2 is
strictly bigger than F1 ∪ F2, hence it is not disconnected. Therefore the minimal nested set
structure and the fine structure on the Bergman fan coincide. Moreover, by Lemma 2.3 the
minimal nested set structure is the coarsest fan structure on B(M). Hence our claim follows
from Theorem 6.3.

Let us next investigate matroids which satisfy the weaker property of being modularly com-
plemented. A matroid M is modularly complemented if and only if every flat X in M has a
modular complement Y , i.e. Y is a modular flat such that r(X ∪ Y ) = d+ 1 and X ∩ Y = ∅.

Note that in a connected modularly complemented matroidM of rank d, there exist dmodular
flats H1, . . . , Hd of rank d − 1 such that H1 ∩ . . . ∩ Hd = ∅, and such that the intersection of
any d− 1 of them is a element of E(M). Let us write

{bi} = H1 ∩ . . . ∩Hi−1 ∩Hi+1 ∩ . . . ∩Hd.

Then b1, . . . , bd is a basis of M , and every flat generated by a subset of this basis is modular
(see [KK86, p. 244]).

For matroids of rank at least 4 there is the following classification of modularly comple-
mented matroids: By [KK86], a connected simple modularly complemented matroid of rank
at least 4 is either a Dowling matroid Qd(G) or a certain submatroid of the projective geome-
try PG(d, q).

We will deal with Dowling matroids below. Let us first investigate the case that M is a
submatroid of some PG(d, q) for d ⩾ 3 such that the ground set E contains all internal elements
of PG(d, q), i.e. all lines in Fd+1

q contained in one of the coordinate hyperplanes {xi = 0},
where (xi)i is the dual basis of the canonical basis of Fd+1

q .

Proposition 10.2. Let M be a submatroid of PG(d, q) for d ⩾ 3 containing all internal ele-
ments. Then every automorphism of Bc(M) is induced from a matroid automorphism.

Proof. Every flat of rank at least 2 in PG(d, q) corresponds to a subspace W of Fd+1
q of di-

mension at least 2. A straightforward argument shows that W has a basis consisting only of
vectors in Fd+1

q which lie in one of the coordinate hyperplanes. Hence every flat of rank at
least 2 in PG(d, q) is also a flat in M .
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Applying Lemma 2.3, we find that the minimal nested set structure on B(M) coincides with
the coarse structure. Let φ be an automorphism of Bc(M). By looking at circuits of size 3, one
can check that M/i is not a non-trivial parallel connection for all i. Hence by Corollary 7.5 rays
of rank or corank 1 are mapped by φ to rays of rank or corank 1 (i.e. rank d− 1).

Let us assume that φ sends the corank 1 ray associated to a coordinate hyperplanes
Hi = {xi = 0} to the rank one ray associated to the element l. To shorten notation, call this
hyperplane H . It contains qd−1

q−1
many one-dimensional subspaces, which all give rise to inter-

nal elements of PG(d, q). Hence there are qd−1
q−1

many rays of rank one in Bm(M) which are
neighbors of the ray associated to H in the minimal nested set fan structure. Applying φ, we
find that the ray associated to l has precisely qd−1

q−1
many neighbor rays of rank 1 or corank 1 in

the minimal nested set structure. On the other hand, the one-dimensional subspace given by l

in Fd+1
q is contained in qd−1

q−1
hyperplanes. Therefore its ray cannot have any rank 1 neighbor in

the minimal nested set structure.
Every element of E(M) contained in H gives therefore rise to a ray which is mapped to a ray

of corank 1 under φ. This in turn implies that all corank 1 rays are mapped to rank 1 rays by φ,
since every hyperplane intersectsH non-trivially. NowM contains all corank 1 flats ofPG(d, q).
Since all associated rays map to rank one rays, M must contain all points from PG(d, q). Since
this contradicts Proposition 10.1, our assumption must be false, which means that φ maps the
corank 1 rays associated to H1, . . . , Hd+1 to corank 1 rays.

This implies that all rays corresponding to internal points are mapped to rank 1 rays. It
suffices to show that the rays associated to the non-internal points in E(M) are also mapped to
rank 1 rays, since this implies that φ is induced by a matroid automorphism.

If l is any element in E(M), then we find a corank 1 flat F containing both l and an internal
point p. If the ray associated to l is mapped to a corank 1 ray, the ray associated to F is mapped to
a rank one ray given by the element m. Applying the previous discussion to φ−1, we find that m
is not an internal point. Now the ray associated to p is mapped by φ to a rank 1 ray given by a
point q. Since m is not internal, the linear span of q and m contains an additional internal vector,
hence the rays associated to m and q cannot be neighbors in the minimal nested set structure,
contradicting our assumption that the ray for l is sent to a corank one ray. Therefore φ is indeed
induced by a matroid automorphism.

We will now discuss the second class of modularly complemented matroids, namely the
Dowling matroids associated to arbitrary finite groups G. Let d ⩾ 4, and put [d] = {1, . . . , d}.
We recall the definition of the Dowling matroid Qd(G), which is a simple matroid of
rank d on E(Qd(G)) = B ∪ Γ where B = {b1, . . . , bd} is the set of coordinate points, and
Γ = {gij : g ∈ G, 1 ⩽ i < j ⩽ d} is the set of non-coordinate points. For simplicity, let us
write x1 ∨ . . . ∨ xd for the closure of {x1, . . . , xd} in M .

Putting gij = g−1
ji whenever i > j, we can list the flats of rank 2 of Qd(G) as follows: The

rank 2 flats are precisely the coordinate flats of the form

bi ∨ bj = {bi, bj} ∪ {gij : g ∈ G} for i ̸= j

and the non-coordinate flats of the form

{gij, hjk, (gh)ik} for g, h, gh ∈ G and i, j, k pairwise different in [d].
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A subset F of E(Qd(G)) is a flat if and only if it is line-closed, which means that for every two
different elements x, y in F the flat x ∨ y is also contained in F .

Note that a Dowling matroid Qd(G) is realizable over a field F if and only if G is isomorphic
to a subgroup of F ∗, see [Oxl11, Theorem 6.10.10]. The matroid automorphisms of Qd(G) are
determined in [Bon95].

Moreover, the Dowling matroidQd({1}) of the trivial group is isomorphic to the graphic ma-
troid associated to the complete graph Kd+1. Hence the associated Bergman fan is the Bergman
fan given by the braid arrangement whose automorphism group we studied in Proposition 3.2.

Let us now determine the automorphism group the Bergman fan of a Dowling geome-
try Qd(G) equipped with the coarse fan structure. In order to determine the minimal nested
set structure, we have to study the decomposition of flats into connected components. Note that
every flat F of Qd(G) is a product of flats in graphic matroids associated to complete graphs and
at most one Dowling matroid on a subset of B, see [Oxl11, Proposition 6.10.18]. In particular
the only connected corank 1 flats inQd(G) are the coordinate flats of the form b1∨. . .∨b̂i∨. . . bd,
i.e. the closure of B\{bi}, and the non-coordinate flats of the form g

(1)
i1 ∨ . . . ∨ ĝ

(i)
ii ∨ . . . ∨ g

(n)
in

for some i ∈ [d] and some elements g(1), . . . , g(d) of the group G.

Proposition 10.3. Let φ : Bc(Qd(G)) → Bc(Qd(G)) be a linear automorphism of the Bergman
fan of a Dowling matroid of rank at least 4 and |G| > 1with its coarse structure. Thenφ is either
induced by a matroid automorphism of Qd(G) or φ is of the form φ = CremB ◦µ, where µ is a
matroid automorphism Qd(G) and CremB is the Cremona map for the basis B = {b1, . . . , bd}.

Proof. First of all note that by Theorem 8.3 the Cremona map CremB preserves indeed the
support of the Bergman fan.

The matroid Qd(G) is obviously not a non-trivial parallel connection, and by [Oxl11, Propo-
sition 6.10.18 (i)] we find that for every x ∈ E(Qd(G)) the simplification of Qd(G)/x is again
a Dowling matroid of rank at least 3. Hence Qd(G)/x is not a non-trivial parallel connection,
so that we can apply Corollary 7.5 to deduce that φ maps any ray of rank 1 to a ray of rank or
corank 1.

Let F be a connected flat in Qd(G). By [Oxl11, Proposition 6.10.18 (ii)], the restric-
tion Qd(G)|F is either isomorphic to Qr(G) for some r ⩽ d or to the cycle matroid M(Ks)
of a complete graph Ks. Moreover, if F is any flat of rank k in Qr(G), by [Oxl11, Section 6.10,
exercise 1], the simplification of Qr(G)/F is isomorphic to Qr−k(G) and hence connected. It is
easy to see that for every flat F in M(Ks) the simplification of M(Ks)/F is the cycle matroid
associated to a complete graph and hence also connected. We deduce that the matroid Qd(G)
satisfies the criterion in Lemma 2.3, so that the coarse structure on the Bergman fan of Qd(G)
coincides with the minimal nested set structure. We consider the following two cases.

Case 1: φ maps all rays of rank 1 to rays of rank 1. Then it is induced by a matroid automor-
phism of Qd(G).

Case 2: There exists a rank 1 ray mapping to a corank 1 ray. Let F be such a flat of rank 1
such that the associated ray is mapped to the ray associated to the corank 1 flat F ′. We claim
that F must be a coordinate flat {bi}. If F was a non-coordinate rank 1 flat, the ray of any non-
coordinate corank 1 flat containing it would be mapped to a rank 1 ray by ϕ. Every connected
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non-coordinate corank 1 flat is of the form g
(1)
i1 ∨ . . . ∨ ĝ

(i)
ii ∨ . . . ∨ g

(d)
id for some i and some

elements g(1), . . . , g(d) of the group G. This flat contains
(
d
2

)
rank 1 flats, and hence this number

counts the neighbor rays of rank 1 or corank 1 in the minimal nested set structure. Since |G| ⩾ 2,
a straightforward counting argument shows that for every rank 1 ray in Qd(G) the number of
neighbor rays of either rank or corank equal to 1 is strictly bigger than

(
d
2

)
.

Therefore every rank 1 ray mapping to a corank 1 ray is indeed associated to some {bi},
whereas ϕ maps non-coordinate rank 1 rays to rank 1 rays. Let H be a coordinate hyperplane
containing bi. The ray associated to H is mapped by φ to a coordinate rank 1 ray associated
to some bk. Now H contains

(
d−1
2

)
|G| non-coordinate rank 1 flats. Their rays are all mapped

to rank 1 neighbors of the ray given by bk. Since this ray has precisely
(
d−1
2

)
|G| many rank 1

neighbors, the rays of all coordinate vectors in H must map to corank 1 rays.
Hence we deduce that φ maps every coordinate rank 1 ray to a coordinate corank 1 ray.
Since every permutation on [d] induces a matroid automorphism of Qd(G), we deduce that

there exists a matroid automorphism µ1 such thatφ◦µ1 maps each rank 1 flat {bi} to the corank 1
flat b1 ∨ . . . ∨ b̂i ∨ . . . bd. Hence CremB ◦φ ◦ µ1 maps every ray of rank 1 to itself. Therefore it
is induced by a matroid automorphism µ2, and our claim follows.
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