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Abstract
People use environmental knowledge to maintain a sense of direction in daily life. This knowledge is typically measured by 
having people point to unseen locations (judgments of relative direction) or navigate efficiently in the environment (short-
cutting). Some people can estimate directions precisely, while others point randomly. Similarly, some people take shortcuts 
not experienced during learning, while others mainly follow learned paths. Notably, few studies have directly tested the 
correlation between pointing and shortcutting performance. We compared pointing and shortcutting in two experiments, one 
using desktop virtual reality (VR) (N = 57) and one using immersive VR (N = 48). Participants learned a new environment 
by following a fixed route and were then asked to point to unseen locations and navigate to targets by the shortest path. Par-
ticipants’ performance was clustered into two groups using K-means clustering. One (lower ability) group pointed randomly 
and showed low internal consistency across trials in pointing, but were able to find efficient routes, and their pointing and 
efficiency scores were not correlated. The others (higher ability) pointed precisely, navigated by efficient routes, and their 
pointing and efficiency scores were correlated. These results suggest that with the same egocentric learning experience, 
the correlation between pointing and shortcutting depends on participants’ learning ability, and internal consistency and 
discriminating power of the measures. Inconsistency and limited discriminating power can lead to low correlations and 
mask factors driving human variation. Psychometric properties, largely under-reported in spatial cognition, can advance our 
understanding of individual differences and cognitive processes for complex spatial tasks.

Keywords  Direction estimation · Wayfinding · Individual differences · Psychometrics

Introduction

Learning the layout of a new environment, that is spatial 
knowledge acquisition, is a fundamental cognitive func-
tion. Humans rely on spatial knowledge to maintain a sense 
of direction while locomoting through different environ-
ments and planning routes to goal locations. Environmental 
spatial knowledge encompasses different kinds of knowl-
edge, including landmark, route, and configural knowledge 
(McNamara, 2013; Siegel & White, 1975). Configural 
knowledge is assumed to integrate all spatial information 
into a globally consistent mental representation. Com-
pared to landmark and route knowledge, acquiring con-
figural knowledge shows the largest individual differences 
(Ishikawa & Montello, 2006; Peer et al., 2021; Weisberg 

& Newcombe, 2018). It is critical to investigate these indi-
vidual differences using valid and reliable measures (New-
combe et al., 2023) to advance our understanding of con-
figural knowledge.

Configural knowledge acquisition is typically measured 
by direction estimation or shortcutting tasks after giving par-
ticipants a controlled experience of learning routes through 
a new environment from an egocentric perspective. In 
direction estimation tasks, participants are asked to point to 
unseen target locations from different locations and perspec-
tives in the newly learned environment (judgments of rela-
tive direction). The fidelity of configural knowledge is meas-
ured by average absolute pointing error, that is, the angular 
disparity between the correct direction and the participant’s 
estimate, averaged across trials (e.g., Ishikawa & Montello, 
2006; Meilinger et al., 2014; Schinazi et al., 2013). In short-
cutting tasks, participants are asked to take the shortest path 
to goal locations in the environment, and the measure of 
performance is wayfinding efficiency, or directness of the 
path, measured by comparing the path taken to the optimal 

 *	 Chuanxiuyue He 
	 c_he@ucsb.edu

1	 University of California, Santa Barbara, CA, USA

http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-023-02266-6&domain=pdf
http://orcid.org/0000-0002-5819-7171


1803Psychonomic Bulletin & Review (2023) 30:1802–1813	

1 3

(shortest) traversable path to the goal location, again aver-
aging over trials (e.g., Gagnon et al., 2016, 2018; Gallistel, 
1990; Hartley et al., 2003; He et al., 2019; Tolman, 1948). 
Note that knowledge of the route that people learn during 
the learning phase is not sufficient to perform either of these 
tasks, so they measure how well participants have inferred 
configural knowledge from the egocentric learning experi-
ence. Moreover, in some research paradigms, the walls dis-
appear during wayfinding, so “shortcutting” means straight-
line navigation (e.g., Chrastil & Warren, 2013; Foo et al., 
2005; Warren et al., 2017). In others, participants cannot 
go through the walls, and shortcutting means route-based 
shortcutting (e.g., Chrastil & Warren, 2015; Hartley et al., 
2003; He et al., 2021). In the present study, we use the term 
shortcutting to refer to route-based shortcutting.

To examine individual differences in acquiring con-
figural knowledge, researchers have typically used either 
shortcutting efficiency (e.g., Gallistel, 1990; Hartley et al., 
2003) or angular error1 (e.g., Hegarty et al., 2006; Ishikawa 
& Montello, 2006; Meilinger et al., 2014; Weisberg et al., 
2014; Weisberg & Newcombe, 2018), or have measured 
pointing and shortcutting performance based on different 
environments (e.g., Malanchini et al., 2020). Even when 
both pointing and shortcutting were measured after learning 
the same environment (e.g., He et al., 2019, 2021; Labate 
et al., 2014), researchers under-reported the relationship 
between these measures. It is assumed that they are equally 
valid and perhaps interchangeable measures of configural 
knowledge. However, the cognitive demands of estimating 
the direction to a goal location and of taking the shortest 
path to that location may not be equivalent. In a route-based 
shortcutting paradigm, path choices are constrained by the 
street or path network of an environment (Pagkratidou et al., 
2020). In some instances, the shortest path to a goal loca-
tion may involve temporarily turning away from the direc-
tion to the target. Moreover, the ability to point accurately to 
a goal location is not necessary for efficient wayfinding. For 
example, participants can take advantage of wormholes to 
take shortcuts without realizing the physical impossibility 
of the environment (Muryy & Glennerster, 2018; Warren 
et al., 2017).

Examining the differential cognitive demands and indi-
vidual differences in two tasks can thus inform debates on 
the nature of configural knowledge. One view is that configu-
ral knowledge is metrically accurate and globally consistent 
(Carpenter et al., 2015; Gallistel, 1990; O’Keefe & Nadel, 

1978; Siegel & White, 1975; Tolman, 1948), like a physical 
or cartographic map. Another view is that configural knowl-
edge is labeled graph knowledge, in which close locations are 
connected with coarse, local metric information (direction 
and distance) but not metrically consistent across the whole 
environment (Chrastil & Warren, 2015; Foo et al., 2005; War-
ren, 2019). Other views are that this distinction is subject to 
individual differences (Weisberg & Newcombe, 2018) or that 
map-based knowledge and graph-based knowledge coexist, 
with the use of different types of knowledge depending on 
environmental characteristics and navigational demands (Peer 
et al., 2021). Chrastil and Warren (2015) have proposed that 
the route-based shortcutting task measures graph-based knowl-
edge and the pointing task measures map-based knowledge.

Here, we examine the correlations between pointing and 
shortcutting after the same learning experience to address 
the question of whether they are interchangeable measures 
of configural knowledge. To address this question, the first 
step is to examine the psychometric properties of the two 
measures, as this may affect the correlation between the 
measures. Based on classical test theory (Novick, 1966; 
Wilson, 2005), previous researchers have assumed equal dif-
ficulty and adequate discriminating power across the items 
in these measures. The equal difficulty or internal consist-
ency assumption is that participants’ performance on one 
trial can predict their performance on the other trials. Note 
that internal consistency is one type of measurement reli-
ability. The adequate discriminating power assumption is 
that the test items can effectively distinguish people with a 
high trait level from people with a low trait level. However, 
the difficulty across trials and discriminating power may 
vary due to differential availability and saliency of naviga-
tion cues such as landmarks and street structure in different 
trials (Caduff & Timpf, 2008; Röser et al., 2012; Sorrows & 
Hirtle, 1999), and people may be differentially susceptible 
to these factors (Andersen et al., 2012; Barhorst-Cates et al., 
2021; Coutrot et al., 2022; He et al., 2021; Lawton, 2001; 
Weisberg & Newcombe, 2016). Ignoring reliability may 
mislead researchers to conclude a dissociation between the 
abilities measured by two tasks based on a low correlation, 
when, in fact, that low correlation is due to the low reliability 
of the individual measures (Ackerman & Hambrick, 2020; 
Hedge et al., 2018; Parsons et al., 2019; Newcombe et al., 
2023). Ignoring inadequate discriminating power leads to 
the pitfall that the reported results are only applicable to a 
subset of the population, whereas others are out of scope due 
to ceiling or floor effects (Cramer & Howitt, 2005; Kang & 
MacDonald, 2010; Newcombe et al., 2023).

A secondary goal of the present study was to study the 
generalizability of our findings across navigation scenarios 
with and without body-based senses. Previous research has 
highlighted the importance of body-based internal sensory 
cues (i.e., proprioception, vestibular system, and motor 

1  Map reconstruction and straight line distance estimation are also 
common individual differences measures in environmental learn-
ing studies (Ishikawa & Montello, 2006; Ruginski et al., 2019; Schi-
nazi et al., 2013; Weisberg et al., 2014), but these two measures are 
beyond the scope of this paper.
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efference) in acquiring map-based configural knowledge. For 
example, Anastasiou and colleagues (2022) suggested that 
without body-based cues, people may just acquire graph-
based knowledge, whereas, with these cues, and correspond-
ing path integration processes, people gain more precise 
knowledge including metric distance and direction.

In the present study, we examined the internal consistency 
and discriminating power of pointing and shortcutting meas-
ures after people learned the layout of environments, how 
these psychometric properties influence correlations between 
the measures, and the interpretation of these correlations. We 
also examined psychometric properties and correlations sepa-
rately for more and less able spatial learners. We conducted 
two experiments, one in a desktop virtual environment, in 
which people used a mouse and keyboard to navigate, and 
one in an ambulatory immersive virtual environment.

The present studies

Method

Participants

Desktop virtual reality study   Seventy-two undergraduate 
students (38 female) participated in this study for course 
credit. Eight female participants were unable to complete 
the task due to motion sickness, two were excluded because 
they failed to reach the target on more than 30% of trials, and 
five male participants were excluded due to technical issues. 
Fifty-seven (28 female, median age 19 years, range 18–25 
years) were included in the final analysis.

Immersive virtual reality study   Fifty-one undergraduate stu-
dents (27 female) participated in this study for course credit. 
Three female participants were unable to complete the task 
due to technical issues or misinterpreting the instructions. 
Forty-eight participants (24 female, median age 19 years, 
range 18–25 years) were included in the final analysis.

A statistical power analysis showed that with N = 48, we 
could detect a correlation of .4 (a medium effect size: Cohen, 
1988) with alpha = .05 and power = 0.80.

Materials

Desktop virtual reality study 
Virtual maze

 The 11 × 11 m experimental maze, as shown in Fig. 1a 
and b, was taken from Boone et al. (2019) (Maze 1). Twelve 
landmarks were placed in alcoves in the maze (see Fig. 1a). 

During the learning phase, people learned the environment 
by taking a fixed tour of the maze five times.

The experiment was administered using a Dell XPS with a 
GeForce GTX 1070 graphics card. The environment was 
presented using Unity3D and displayed on a 24-in. LCD 
monitor (289.9 × 531.4 mm display area), with a refresh 
rate of 60 Hz at a resolution of 1,920 × 1,080 and a viewing 
distance of approximately 1 m.

Direction estimation task

 The direction estimation task was conducted using 
E-prime 2.0 (Schneider et al., 2012) and was administered 
twice for each participant, once before the shortcutting 
task (Pointing Phase I) and once after the shortcutting task 
(Pointing Phase II). On each trial, participants were shown 
an image of a landmark (starting landmark) on the left half 
of the screen. An arrow circle was displayed on the right half 
of the screen (see Fig. 2a). Participants were instructed to 
imagine being in the maze and facing the starting landmark 
and to indicate the direction to another (target) landmark 
(which was not visible from the current location). For exam-
ple, in one trial, participants were shown a picture of the 
chair and were asked to point to the well (see Fig. 2a). They 
indicated the target landmark by dragging a line (a rotating 
“pointer”) on the displayed arrow circle. There were 27 tri-
als, and the score on this task was the average angular error 
across trials (Pointing Error). Twenty of these trials used the 
same starting and target landmarks as the shortcutting task.2

Shortcutting task

 In the shortcutting task, participants were positioned at 
different locations in the maze and instructed to navigate 
to target landmarks using the shortest path. There were 20 
shortcutting trials, which were presented in random order. 
The shortest path on each trial was at least 25% and on aver-
age 51% shorter than the learned route. Participants had 40 
seconds to complete each trial. At the end of each trial (find-
ing the target or timing out), participants were transported 
to the starting location of the next trial.

Immersive virtual reality study 
Virtual maze

 The 7 × 6.5 m experimental maze, as shown in Fig. 1c–d, 
had a similar structure to the desktop study and the same 

2  For the analysis only including the corresponding subsets, see the 
Online Supplementary Materials (OSM). The conclusions do not 
change.
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12 landmarks. However, given the physical space constraint 
of the laboratory, it has a smaller scale and we replaced 
the 3D objects with pictures of these objects on the walls. 
Condensing the structure leads to higher visibility, compared 
to the desktop environment, which means participants can 
gain more visual information about the structure of the 
environment at some locations. To make this environment 
more comparable to the desktop study, we added fog (see 
Fig. 1d). The fog obscured vision beyond 2.5 m and the 
clarity decreased linearly between 1 and 2.5 m.

The immersive virtual environment was displayed using 
an HTC VIVE Pro Eye VR head-mounted display (HMD) 
with a Dual OLED 3.5-in. diagonal display (1,440 × 1,600 
pixels per eye or 2,880 × 1,600 pixels combined), a 90-Hz 
refresh rate, and a 110° field of view capable of delivering 
high-resolution audio through removeable headphones. In 
addition to the HMD, the VR interface included two HTC 
VIVE wireless handheld controllers for interacting with 

the experiment and four HTC Base Station 2.0 infrared 
tracking sensors for large-scale open space tracking. The 
system was equipped with wireless room tracking via a 
60-GHz WiGig VIVE Wireless adapter and was run on an 
iBuyPower desktop computer powered by an eight-core, 
3.60 GHz Intel core i9-9900K central processing unit 
(CPU), an NVIDIA GeForce RTX 2070 Super graphics 
processing unit (GPU) with 16 GB of system memory. 
Participants physically walked in the environment while 
wearing the HMD.

Direction estimation task

 As shown in Fig. 2b, the direction estimation task in 
the immersive VR study was similar to the desktop study 
and was run on the desktop, except that the task was pro-
grammed in Unity and had 24 trials in total. The 24 trials 
had the same landmark combinations as the shortcutting 
task but switched the starting and target landmarks. For 

(a) (b)

(c) (d)

Fig. 1   a Map of the virtual environment used by Boone et al. (2019), 
the red dashed line indicates the route people use to learn the envi-
ronment during the learning phase. b Participants’ view of the desk-

top environment. c  Map of the immersive virtual environment, the 
red line indicates the route for learning. d  Participants’ view of the 
immersive virtual environment
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example, in the shortcutting task, participants were asked 
to start from the bookshelf to navigate to the plant, but in 
the direction estimation task, participants were asked to face 
the plant and point to the bookshelf. We implemented this 
change to reduce the impact of the direction estimation task 
on the shortcutting task. On each trial (as shown in Fig. 2b), 
participants were instructed to imagine being in the maze 
and facing the starting landmark, and to indicate the direc-
tion to another (target) landmark. They indicated the target 
landmark by dragging a line (a rotating “pointer”) on the 
displayed arrow circle (see Fig. 2b). The score on this task 
was the average angular error across trials (Pointing Error).

Shortcutting task

 The shortcutting task was similar to the desktop study 
except that participants physically walked in the environment 
and had 24 trials. Participants had 30 seconds for each trial. 
Between trials, to disorient participants from the previous 
trial and relocate participants to a new starting location, they 
were placed in an empty space with floor and visual check-
points. They were asked to walk to a random checkpoint and 
then to another checkpoint, placing them in the position and 
orientation to start a new trial. The 24 trials were selected 
to ensure the following criteria: (1) each landmark was the 

Fig. 2   a The sample item on the instruction screen for the direction estimation task in the desktop study. b The sample item for the direction esti-
mation task in the immersive study
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start location twice; (2) each landmark was the target at least 
once but no more than three times, and (3) the shortest path 
on each trial was at least 30% and on average 49% shorter 
than the learned route.

Procedure

The local Institutional Review Board (IRB) reviewed and 
approved both studies as adhering to ethical guidelines. In 
the desktop study, all participants completed the experiment 
in a lab cubicle alone, with an experimenter giving instruc-
tions. In the immersive study, all participants completed 
the experiment in the immersive VR lab alone, with one 
experimenter giving instructions and one experimenter han-
dling the computers. For both studies, after giving informed 
consent, participants were trained to use the digital arrow 
circle on the computer screen to indicate directions. Their 
comprehension of how to indicate directions was checked 
by having them use the arrow circle to point to two visible 
objects in the experiment room.

Participants then practiced using the active navigation 
controls (Desktop: keyboard and mouse; Immersive: headset 
and controllers) in a training maze.3 Next, participants were 
placed in the experiment environment maze with red arrows 
and followed these arrows to learn a route through the virtual 
environment five times, saying the name of each object aloud 
as it came into view the first time. After participants followed 
this route five times, three spatial tasks were administered 
in a fixed order: (1) direction estimation task – Phase I, (2) 
shortcutting task, and (3) direction estimation task – Phase 
II, see Fig. 3.4 Finally, participants were debriefed.

All analyses were carried out using Python scripts.

Results

Overall performance

Descriptive statistics, including the internal consistency of the 
measures, are presented in Table 1. Participants were gener-
ally successful in reaching the target within the time limit in 
both the desktop and immersive VR studies, except for one 
trial in the desktop study in which 17 of the 57 participants 
(30%) were unsuccessful; this trial was excluded from way-
finding analyses. Participants were successful on 92.9% of 
the remaining trials in the desktop study and on 94.5% of the 
trials in the immersive study. Travel Efficiency was defined as 
the ratio of the distance traveled to the distance of the shortest 
traversable path on each trial. If a participant took the short-
est path on every trial, their efficiency would be 1, and if they 
took the learned path on every trial, their efficiency would be 
2.54 on average for the desktop VR maze (i.e., the average 
learned route efficiency) and 2.19 for the immersive VR maze. 
Travel efficiency for the unsuccessful trials was replaced by 
the average learned route efficiency.5

As shown in Table 1, the average pointing error (angu-
lar error) in Phase I direction estimation was 74.71° (SD = 
23.22) and 64.58° (SD = 27.45), respectively, for the desktop 
and immersive environments. Although relatively poor, aver-
age performance across all participants was significantly bet-
ter than chance (90°), one-sample t(56) = -5.30, p < 0.001, d 
= -.70, 95% CI = [67.54, 79.87] in Desktop and one-sample 
t(47) = -6.42, p < 0.001, d = -.93, 95% CI = [56.61, 72.55] 
in Immersive.

The average travel efficiency score across trials was 
1.81 for the desktop VR environment and 1.56 for the 

Fig. 3   The order of tasks in the two experiments

3  The training mazes had different structure to the mazes used in the 
tasks and had no landmarks. In the desktop study, participants prac-
ticed using mouse and keyboard to follow arrows along the floor until 
comfortable. In the immersive study, participants practiced walking 
to three gray bubbles and using the controllers to click bubbles. They 
were also given the time to freely explore the training maze until 
comfortable.
4  We also included an onsite direction estimation task (pointing in 
the environment) for the desktop study after pointing Phase II for 
exploratory analyses, which are not included in this paper.

5  Note that using this substituting method, participants get a penalty 
(or their efficiency was deflated) if they fail to locate a target, because 
taking the learned route is an inefficient method in the current para-
digm. Another method is removing both the unsuccessful shortcut-
ting trials in calculating efficiency and the corresponding trials in 
the pointing task. The conclusions do not change if we use this alter-
native method. Detailed results based on the alternative method are 
shared online (https://​github.​com/​Carol​HeChu​anxiu​yue/​Confi​gural​
Spati​alKno​wledg​eMeas​ureme​nt.​git).

https://github.com/CarolHeChuanxiuyue/ConfiguralSpatialKnowledgeMeasurement.git
https://github.com/CarolHeChuanxiuyue/ConfiguralSpatialKnowledgeMeasurement.git
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immersive VR environment. Therefore travel distance was, 
on average, significantly shorter than the learned route 
(Desktop: one-sample t test (56) = -14.02, p < 0.001, d 
= -1.86, 95% CI = [1.71, 1.91]; Immersive: one-sample t 
test (47) = -10.99, p < 0.001, d = -1.59, 95% CI = [1.45, 
1.68]). Notably, in the shortcutting trials, most partici-
pants took paths that were shorter than the learned route, 
although their pointing performance was relatively poor. 
This is illustrated in Fig. 4 in which the horizontal line 
indicates chance-pointing performance and the vertical red 
line indicates the efficiency score of a person who always 
takes the learned route.

The observed and disattenuated correlations between 
the measures are shown in Table 2. Disattenuated correla-
tions take the internal consistency (i.e., permutation-based 
split-half estimation)6 of the measures into account using 
Formula (1) (Parsons et al., 2019; Spearman, 1904) where 
robserved is the observed correlation between two measures, 
rxx and ryy are internal consistency scores of two measures 
and rdisattenuated is calculated as follows:

Participants who were more accurate at pointing at 
both phases were also more efficient in shortcutting trials, 
and this relationship is particularly strong in the case of 
the disattenuated correlations, which correct for internal 
consistency. However, these results mask individual dif-
ferences between participants, which are presented in the 
next section.

Individual differences: Low‑spatial participants 
versus high‑spatial participants

A K-means clustering analysis was conducted on three 
measures (efficiency, Phase I, and Phase II pointing errors) 
to categorize participants as having low or high-spatial 

(1)rdisattenuated =
robserved

√

rxx × ryy

ability.7 Note that two was the optimal number of clusters 
based on the elbow and the silhouette method (see Online 
Supplemental Materials (OSM) for additional information). 
Descriptive statistics and internal consistency for each meas-
ure are shown in Table 3, separately for these two groups.8

For low-spatial participants, in the desktop study (N = 37), 
the average pointing error before the shortcutting task (Phase I 
pointing) (86.32°, SD = 13.01°), was not significantly different 
from chance (90°), one-sample t (36) = -1.72, p = 0.09, d = 
-0.28, 95% CI = [81.98, 90.66]. Moreover, these participants’ 
pointing performance across trials was not reliable (internal 
consistency = 0.40). However, their average travel efficiency 
score was 2.04, which was significantly shorter than the 
learned route (Efficiency = 2.54), one-sample t(36) = -12.77, 
p < 0.001, d = -2.1, 95% CI = [1.96, 2.12], suggesting some 
ability to take novel paths that were more efficient than the 
learned route, even though they pointed at chance and their 
pointing performance was not consistent across trials. Simi-
larly, in the immersive study (N = 24), low-spatial participants’ 
pointing performance (85.14°, SD = 11.16°) was better than 
chance, one-sample t (23) = -2.13, p = 0.04, d = -0.44, 95% 
CI = [80.42, 89.85], but close to chance. Their pointing per-
formance was also not reliable (internal consistency = 0.12). 
However, their average travel efficiency (1.89) was signifi-
cantly more efficient than the learned route (2.19), one-sample 
t (23) = -5.25, p < .001, d = -1.07, 95% CI = [1.77, 2.01], 
suggesting some ability to find shorter paths than the learned 
route, even though their pointing performance was close to 
chance and was not consistent across trials.

As shown in Fig. 5, for low-spatial participants, the observed 
correlations between Pointing Error (Phase I) and shortcut-
ting are not significant (Desktop: r(35) = 0.00, t(35) = 0.02, 

Table 1   Descriptive statistics for pointing error and efficiency for all participants

Study Mean SD Min Max Skewness Kurtosis # of Trials Reliability

Pointing Error (Phase I) Desktop 73.71 23.22 18.85 105.26 -0.69 -0.27 27 0.83
Immersive 64.58 27.45 8.21 102.97 -0.67 -0.69 24 0.87

Efficiency Desktop 1.81 0.39 1.00 2.51 -0.32 -0.93 19 0.72
Immersive 1.56 0.39 1.04 2.58 0.61 -0.48 24 0.87

Pointing Error (Phase II) Desktop 65.37 23.40 15.89 104.67 -0.25 -0.83 27 0.84
Immersive 52.90 28.11 12.49 99.97 0.07 -1.46 24 0.90

6  Data are repeatedly randomly split into two halves 5,000 times. The 
final internal consistency is the average of the 5000 split-half reliabil-
ity estimates. (Parsons et al., 2019).

7  An alternative way to group participants is using a median split on 
their pointing performance in the first phase, however, the main con-
clusions of the paper do not change if we use this method.
8  The low-spatial groups were unsuccessful in finding the target on 
more trials (2.04 trials in the desktop; 2.08 trials in the immersive 
version) than the high-spatial groups (0.10 trials in the desktop; 0.54 
trials in the immersive version). The efficiency score captures these 
differences as described in the method section, so we only examined 
the efficiency scores in the following analysis.
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p = .98, 95% CI = [-.32, .33]; Immersive: r(22) = .05, t(22) = 
0.23, p = .82, 95% CI = [-.36, .44]). These correlations were 
partially driven by the low internal consistency of both meas-
ures, suggesting that individual-level correlation coefficients 
were attenuated by measurement variance unrelated to true 
between-individual variances. After correcting for the internal 
inconsistency of the measure, the disattenuated correlations 
between the Pointing Error (Phase I) and shortcutting were 
still not significant (see Fig. 5); that is, low-spatial partici-
pants’ pointing performance cannot predict their shortcutting 
performance.

For high-spatial participants (Desktop: N = 20; Immer-
sive: N = 24), pointing performance in the first phase was 
highly correlated with shortcutting. (Desktop: r(14) = .60, 
t(14) = 3.03, p = .01, 95% CI = [.15, .85]; Immersive: r(22) 
= .75, t(22) = 5.35, p < .001, 95% CI = [.50, .89]) with 
higher correlations after correcting for the internal inconsist-
ency (see Fig. 5). The disattenuated correlations for the high 
and low-spatial groups were significantly different (Desktop: 
Fisher’s z = 4.43, p < .001, Zou’s 95% CI = [-1.28,-0.38]; 
Immersive: z = 7.95, p < .001, Zou’s 95% CI = [-1.22,-0.44]).

Note that in the immersive study, the internal consist-
ency for shortcutting was 0.57, which is relatively low. The 
relatively low internal consistency, in this case, was driven 
by the close-to-ceiling performance. That is, the variance for 
each trial was determined by a small number of participants 
who did not get the perfect efficiency score (efficiency of 1) 
and so there was limited variance to correlate between trials.

General discussion

We examined the relation between pointing and short-
cutting performance after the same egocentric learning 
experience in two studies, one using desktop VR and the 
other using immersive VR. The results of these studies 
are consistent. In both studies, the correlation between 
shortcutting and pointing depends on participants’ learn-
ing ability, as well as the internal consistency and discrim-
inating power of the measures. The high-spatial groups 
across studies were generally good at both shortcutting 
and pointing and the correlation between shortcutting and 
pointing was high for these groups; the low-spatial groups 

(a)Desktop (b)Immersive

Fig. 4   Scatter plots for the Pointing Error (Phase I) in the direction esti-
mation task Phase I and Travel Efficiency in the shortcutting task in the 
desktop study (a) and in the immersive study (b). The red horizontal 

line indicates the chance level performance: 90°. The red vertical line 
indicates the average efficiency of taking learned routes on every trial: 
2.54 (a: in the desktop study) and 2.19 (b: in the immersive study)

Table 2   The observed and disattenuated correlation table for all par-
ticipants

Values below the diagonal, in the bottom left are the observed cor-
relations and values above the diagonal in the top right are the disat-
tenuated correlations corrected using Eq. (1). *** indicates p <.001

Disattenuated Travel Efficiency Pointing 
Error - 
Phase I

Pointing 
Error - 
Phase II

Observed

Desktop
  Travel Efficiency - .92*** .97***
  Pointing Error - 

Phase I
.71*** - .93***

  Pointing Error - 
Phase II

.76*** .78*** -

Immersive
  Travel Efficiency - 0.86*** 0.90***
  Pointing Error - 

Phase I
0.74*** - 0.88***

  Pointing Error - 
Phase II

0.79*** 0.78*** -
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had poor pointing performance but took novel and efficient 
routes, and shortcutting and pointing were not significantly 
correlated for these groups.

Relations between shortcutting and pointing were affected 
by both the discriminability and internal consistency of the 
measures. In terms of discriminability, we observed a ten-
sion between the difficulty of the pointing task for the low-
spatial group and the difficulty of the shortcutting task for 
the high-spatial group (see Fig. 5). The desktop environment 
was relatively difficult to learn, given the amount and type 

of learning experience given in these studies, such that we 
observed a floor effect for the low-spatial group in the point-
ing task. The immersive environment was easier to learn, but 
resulted in a close-to-ceiling effect for the high-spatial group 
in the shortcutting task. Given the wide range of individual 
differences in large-scale spatial cognition, we recommend 
that future researchers examine the discriminating power of 
their measures and use measures that can distinguish across 
the full range of ability. They may need to combine multiple 
measures to assess all levels of environmental learning ability.

Table 3   Descriptive statistics and internal consistency for measures

For the desktop study, only including the corresponding trials 19 trials in the pointing tasks do not change the conclusions. See OSM

Spatial Ability Mean SD Min Max Skewness Kurtosis # of Trials Internal 
Consist-
ency

Desktop
  Pointing Error (Phase I) High 50.36 19.62 18.85 83.04 -0.05 -1.11 27 0.80

Low 86.32 13.01 61.74 105.26 -0.13 -1.23 0.40
  Efficiency High 1.38 0.23 1.00 1.85 0.20 -0.68 19 0.65

Low 2.04 0.24 1.52 2.51 -0.24 -0.75 0.01
  Pointing Error (Phase II) High 40.50 14.41 15.89 69.41 0.22 -0.87 27 0.71

Low 78.82 14.60 52.56 104.67 0.10 -1.10 0.51
Immersive

  Pointing Error (Phase I) High 44.02 23.09 8.21 75.34 -0.17 -1.46 24 0.85
Low 85.14 11.16 58.77 102.97 -0.42 -0.24 0.12

  Efficiency High 1.24 0.14 1.04 1.55 0.42 -0.52 24 0.57
Low 1.89 0.28 1.44 2.58 0.76 -0.22 0.57

  Pointing Error (Phase II) High 28.27 12.04 12.49 51.07 0.41 -1.09 24 0.62
Low 77.54 14.25 45.35 99.97 -0.70 -0.09 0.47

Fig. 5   Scatter plots, observed correlation(r), and disattenuated corre-
lation(r

d
 ) between pointing and shortcutting for high- and low-spatial 

groups in the desktop study and the immersive study. Note: For the 
high-spatial participants, indicated by the red (triangular) points, the 
correlations between pointing and shortcutting are almost 1. *** indi-

cates p <.001. However, for low-spatial participants, indicated by the 
blue (circular) points, the correlations were not significantly differ-
ent from zero. The low correlations were partially driven by the low 
internal consistency of the measures. A full correlation table is in the 
OSM TS1
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Low-spatial participants showed low internal consistency 
in their pointing and shortcutting performance, while high-
spatial participants showed relatively low internal consist-
ency in their shortcutting performance in immersive VR, 
which attenuated the observed correlation between the two 
measures (Ackerman & Hambrick, 2020; Hedge al., 2018; 
Parsons et al., 2019). The item-level variance may be driven 
by (1) inconsistent accuracy of mental representations for dif-
ferent locations in the environment (e.g., landmarks near the 
boundary or aligned with specific orientations may be easier 
to learn), (2) differential availability of navigational cues in 
different trials, and (3) participants’ differential sensitivity to 
these cues (e.g., Andersen et al., 2012; Barhorst-Cates et al., 
2021; Coutrot et al., 2022; He et al., 2021, Newcombe et al., 
2023). Investigating the effect of these factors calls for future 
studies. Our study highlights that these underlying cognitive 
processes are masked if researchers do not investigate their 
instruments by first examining measurement reliability.

These analyses help us advance our understanding of the 
nature of configural knowledge, specifically on whether this 
is best characterized as labeled graph knowledge or metrically 
accurate survey knowledge (Foo et al., 2005; Gallistel, 1990; 
Kuipers et al., 2003; O’Keefe & Nadel, 1978; Peer et al., 2021; 
Warren, 2019). Our results show that pointing performance is 
accurate and is correlated with shortcutting for high-spatial par-
ticipants, but pointing performance is less accurate and not cor-
related with shortcutting for low-spatial participants. This sug-
gests that the high-spatial group may have acquired both types 
of knowledge, whereas the low-spatial group only acquired 
graph knowledge with this amount of learning experience.

Our pointing task provided only one view of the environ-
ment in each trial and did not allow people to look around 
before estimating the direction. Low-spatial participants' 
relatively poor performance in pointing might also reflect 
difficulty orienting themselves in the environment based 
on this limited information. Future research, using a more 
immersive pointing measure will help distinguish whether 
poor pointing performance by this group is due to a poor 
cognitive map of the environment or an inability to locate 
themselves in this cognitive map. The present study provides 
one way of examining the measures, and the key point is that 
underlying knowledge measured for different people may 
change if the paradigms and trials are changed.

To conclude, instead of assuming that pointing and 
shortcutting are interchangeable measures of environmen-
tal knowledge, our studies show that it is critical to examine 
psychometric properties, including reliability and discrimi-
nability, before selecting measures or interpreting the cor-
relations. Psychometric properties are largely under-reported 
in the spatial cognition domain but can advance our under-
standing of individual differences and should be an impor-
tant foundation of research on cognitive processes underly-
ing complex spatial tasks.
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