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A measure of neural function provides unique insights into 
behavioral deficits in acute stroke
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Havenon, MD3, Ramesh Srinivasan, PhD4, Steven C. Cramer, MD1,5

1Dept. Neurology, University of California, Irvine

2Dept. Pediatric Rehabilitation Medicine, Spaulding Rehabilitation Hospital and Harvard Medical 
School; Boston, MA

3Dept. Neurology, Yale University

4Dept. Cognitive Science, University of California, Irvine

5Dept. Neurology, UCLA; California Rehabilitation Institute, Los Angeles

Abstract

Background: Clinical and neuroimaging measures incompletely explain behavioral deficits in 

the acute stroke setting. We hypothesized that EEG-based measures of neural function would 

significantly improve prediction of acute stroke deficits.

Methods: Patients with acute stroke (n=50) seen in the Emergency Department of a university 

hospital from 2017–2018 underwent standard evaluation followed by a 3-minute recording of 

EEG at rest using a wireless, 17-electrode, dry-lead system. Artifacts in EEG recordings were 

removed offline then spectral power was calculated for each lead pair. A primary EEG metric was 

DTABR, calculated as a ratio of spectral power: [(Delta*Theta)/(Alpha*Beta)]. Bivariate analyses 

and LASSO regression identified clinical and neuroimaging measures that best predicted initial 

NIHSS score. Multivariable linear regression was then performed before vs. after adding EEG 

findings to these measures, using initial NIHSS score as the dependent measure.

Results: Age, diabetes status, and infarct volume were the best predictors of initial NIHSS score 

in bivariate analyses, confirmed using LASSO regression. Combined in a multivariate model, 

these three explained initial NIHSS score (adjusted r2=0.47). Adding any of several different 
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EEG measures to this clinical model significantly improved prediction; the greatest amount of 

additional variance was explained by adding contralesional DTABR (adjusted r2= 0.60, p<0.001).

Conclusion: EEG measures of neural function significantly add to clinical and neuroimaging for 

explaining initial NIHSS score in the acute stroke Emergency Department setting. A dry-lead EEG 

system can be rapidly and easily implemented. EEG contains information that may be useful early 

after stroke.

Graphical Abstract

Introduction

Understanding the pathophysiology of acute stroke informs clinical decision-making. 

Measures of infarct volume incompletely explain acute behavioral deficits1,2 and are usually 

unavailable in some settings, e.g., prehospital evaluation. We previously reported that 

high-dimension EEG data recorded during the initial days after stroke onset are strongly 

correlated with acute stroke behavioral deficits3. The current study aimed to determine 

whether EEG measures are related to acute deficits in the initial hours post-stroke using a 

dry-lead EEG system that is rapidly4 applied to the scalp. We examined the extent to which 

clinical and neuroimaging measures predict initial NIHSS score, hypothesizing that adding 

EEG measures would significantly improve this prediction.

Methods

Patients:

Patients were recruited as part of a larger study investigating the ability of EEG to 

distinguish acute stroke from non-stroke4. In that study, patients presenting to the ED at 

the UC Irvine Medical Center with suspected or definite stroke were offered enrollment 

(1/30/2017–7/1/2018); 100 patients with suspected stroke were enrolled, 50 with acute 
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stroke and 50 with stroke mimics. The current report is focused on the 50 patients with a 

final diagnosis of acute stroke. Final diagnosis was based on discharge summary. Patients 

or surrogates provided informed consent as approved by the IRB. This study is reported 

in compliance with STROBE guidelines. Data will be shared with other investigators as 

possible.

EEG acquisition:

The Quick-20 (Cognionics, Inc., San Diego, CA, USA) EEG system uses dry-contact 

electrodes and is supported by a local active amplifier plus Faraday cage. The current system 

used a 17-lead array (Figure 1A), with reference and ground electrodes adjacent to Fp1 and 

Fp2, respectively. Three minutes of eyes-open, resting-state brain activity were recorded at 

the bedside.

EEG pre-processing:

EEG data were exported to MATLAB 2015a 7.8.0 for offline analysis. A second-order 50 

Hz low-pass Butterworth filter and 0.2 Hz high-pass Butterworth filters were applied. Visual 

inspection was used to identify then remove channels and one-second epochs containing 

artifact.

EEG analysis:

Power in each lead pair (Figure 1A) was calculated in delta (1–3 Hz), theta (4–6 Hz), 

alpha (7–12 Hz), and beta (13–30 Hz) bands. DTABR [(Delta*Theta)/(Alpha*Beta)] was 

calculated. Ipsilesional leads were designated as odd numbers. Based on prior EEG studies 

in acute stroke from our group3,5, primary analysis focused was on increased delta power, 

decreased beta power, and increased DTABR.

Infarct volume:

Infarct volume was measured on the first MRI or CT scan that demonstrated the index 

stroke, ordered as standard of care.

Clinical variables:

Clinical and demographic data were extracted from the medical record.

Statistical analyses:

Parametric statistical methods were used, as measures were either normally distributed 

or could be transformed to be so. Bivariate analyses screened each of eight clinical and 

radiological measures (Table 1) as a predictor of initial NIHSS score using linear regression 

models; in this screening step, a threshold of p<0.1 was used, akin to the approach used 

in the screening stage of stepwise modeling. As a secondary approach, the same eight 

clinical and radiological measures were entered into a LASSO model6, run with 10-fold 

cross-validation and 100 lambdas.

A baseline multivariable linear regression model was run with initial NIHSS score as the 

dependent measure and predictors with a bivariate p<0.1, identified in the above screening 
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stage, as independent measures. To determine the amount of variance in initial NIHSS score 

that was explained by the baseline model, adjusted r2 was calculated, which appropriately 

penalizes the addition of variables. To understand if the EEG measures improved predictive 

value, we individually added them to the baseline model and compared the resulting 

adjusted r2value to that of the baseline multivariable model using the likelihood ratio test. 

Bonferroni correction accounted for use of nine (Table 2) analyses and thus set significance 

at p=0.006. The BIC for each model is also reported. All models were checked for 

multicollinearity by establishing that the variance inflation factor was <5 for individual 

covariates. The link test was used to determine if the model was specified correctly. 

Marginal effects were used in multivariable regression models to show the predicted initial 

NIHSS score by the EEG exposure with the highest adjusted r2 value while holding 

covariates constant.

Results

Subject Characteristics:

The 50 subjects (Table S1) had age 65.6±17.7 years (mean ± SD), with 40% female. A 

total of 82% were White, 14% Asian, and 4% African American. Ethnicity was Hispanic 

in 26%. There were 43 subjects with ischemic stroke and 7 with intracerebral hemorrhage. 

Infarcts were on the right in 54% and had mean volume of 24.5±44.4 cc. Median [IQR] 

initial NIHSS score was 4 [1–8]; NIHSS subscores appear in Table S2. Time from last 

known well to EEG was 10.6 hours [5.4–16.5]. There were no missing data. Across the 50 

EEG recordings, 76±35.3 (mean±SD) of the 180 epochs per EEG exam were retained for 

subsequent analysis after visual inspection.

Bivariate Correlations and LASSO regression:

To define the best clinical predictor model, each clinical and radiological measure was 

examined with respect to initial NIHSS score. Three measures met the threshold (p<0.1): 

age, diabetes status, and infarct volume (Table 1, “Bivariate analysis”). LASSO regression 

identified the same three measures as the most important predictors.

Linear regression:

The baseline multivariate clinical model using age, diabetes status, and infarct volume 

as predictors had adjusted r2=0.47, indicating that 47% of the variance in initial NIHSS 

score was explained by these three measures. Adding EEG measures to this clinical model 

significantly improved prediction, indicated by a lower BIC and higher adjusted r2 (Table 2). 

Compared to other primary (Table 2) and secondary (Table S3) EEG variables, the greatest 

amount of additional variance was explained by adding contralesional DTABR (adjusted 

r2= 0.60, p<0.001). For each measure in Table 2, adding contralesional EEG data improved 

NIHSS score prediction more than adding ipsilesional or whole brain values for that EEG 

metric. Findings among only patients with ischemic stroke (n=43) were largely concordant 

(Table S4).

The relationship between the initial NIHSS score and contralesional DTABR appears 

in Figure 1B. In Figure 1C, the predicted initial NIHSS score is seen in relation to 
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contralesional DTABR after adjusting for age, diabetes, and infarct volume, highlighting 

that an EEG measure (contralesional DTABR) has predictive ability even after adjusting for 

the clinical/radiological measures that predict NIHSS score.

Discussion

The relationship between acute stroke injury and behavioral deficits is incompletely 

understood1,2, as extent of cerebral injury does not completely explain inter-subject 

differences in acute stroke deficits. We hypothesized that EEG-based measures of neural 

function provide further insights. Current findings, rapidly acquired using a 17-lead dry-lead 

EEG system, support this hypothesis, as EEG measures of brain function significantly added 

to demographics and infarct volume for explaining initial NIHSS score in acute stroke 

patients in the Emergency Department.

Convergent evidence suggests that the best clinical and radiological predictive measures 

were identified for the clinical model, as the three measures identified in bivariate 

correlations (age, diabetes status, and infarct volume) were independently confirmed using 

LASSO regression; together these comprised the baseline clinical model, which explained 

47% of the variance in initial NIHSS score. Several EEG measures when added to this 

baseline clinical model significantly improved prediction, showing higher adjusted r2 and 

lower BIC values, the most powerful of which was contralesional DTABR which when 

added to the model explained 60% of the variance. DTABR has previously been reported to 

be the strongest EEG predictor of functional outcome7. Together these findings suggest that 

an EEG measure such as contralesional DTABR provides unique and significant information 

about acute stroke deficits, beyond what can be learned from clinical and radiological 

measures; in the future, acute stroke care might include an EEG assessment to capture this 

information and thereby improve clinical decision making.

Bilateral EEG changes early after unilateral stroke have been described for decades and may 

reflect the immediate, widespread, and lasting changes in cortical inhibition that are seen 

bilaterally after unilateral stroke8. Contralesional changes are the strongest EEG measures 

that correlate with infarct volume in the acute stroke setting5 and are not attributable 

to mass effect3, indicating that EEG captures significant information about acute stroke 

effects not available from MRI. The reasons for contralateral predominance for explaining 

initial NIHSS score is unclear but may include reduced ipsilesional signal-to-noise due 

to substantial diaschisis in the region of the infarct, or disruption of interhemispheric 

projections from the ipsilesional to contralesional hemisphere; note that the predictive 

strength of ipsilesional EEG changes was also substantial.

Limitations of this study include a modest sample size, overall mild-moderate stroke severity 

among enrollees, and enrollment of mainly White patients. As such, the current cohort may 

not be fully representative of the overall population of patients with stroke.

Electrical changes have long been known to be sensitive to injury effects, even prior to 

cerebral infarction9. Current findings suggest that EEG may be useful to understand the 
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pathophysiology of acute stroke effects on the brain and may contain data useful to clinical 

decision making.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
[A] EEG recording montage. [B] Scatterplot with line of best fit and 95% CI of initial 

NIHSS score in relation to contralesional DTABR values. [C] Predicted NIHSS score from 

contralesional DTABR after adjusting for age, diabetes, and infarct volume.
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Table 1.

Linear regression fit for predicting initial NIHSS score

Variable
Bivariate analysis Multivariate analysis

Coefficient (95% CI) p Coefficient (95% CI) p

Age 0.02 (−0.002, 0.04) 0.078 0.01 (−0.005, 0.03) 0.177

Male sex −0.36 (1.07, 0.34) 0.306

Hypertension 0.14 (−0.67, 0.96) 0.728

Hyperlipidemia −0.17 (−0.87, 0.54) 0.634

Diabetes −0.83 (−1.64, −0.03) 0.043 −0.52 (−1.16, 0.12) 0.107

Right hemisphere 0.34 (−0.36, 1.03) 0.336

Hours since last well −0.01 (−0.08, 0.07) 0.887

Infarct volume 0.88 (0.58, 1.17) <0.001 0.84 (0.56, 1.12) <0.001
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Table 2.

Effect of adding EEG variables to the baseline clinical model to predict initial NIHSsS score

Model Adjusted r2 BIC p

Clinical model (age, diabetes, infarct volume) 0.47 141.0

Clinical model + Whole brain delta 0.54 137.0 0.005

Clinical model + Ipsilesional delta 0.51 140.4 0.034

Clinical model + Contralesional delta 0.57 133.5 <0.001

Clinical model + Whole brain beta 0.56 134.0 0.001

Clinical model + Ipsilesional beta 0.53 137.9 0.008

Clinical model + Contralesional beta 0.59 130.6 <0.001

Clinical model + Whole brain DTABR 0.57 133.9 0.002

Clinical model + Ipsilesional DTABR 0.53 138.0 0.009

Clinical model + Contralesional DTABR 0.60 129.7 <0.001

Higher r2 and lower BIC values indicate better model fit.
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