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Coordinate transformation methodology for simulating quasistatic
elastoplastic solids

Nicholas M. Boffi1,* and Chris H. Rycroft 1,2,†

1John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
02138, USA

2Computational Research Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA

Molecular  dynamics  simulations  frequently  employ  periodic  boundary  conditions
where  the  positions  of    the  periodic  images  are  manipulated  in  order  to  apply
deformation to the material sample. For example, Lees-Edwards conditions use moving
periodic images to apply simple  shear.  Here, we examine the problem  of precisely
comparing  this  type  of  simulation  to  continuum  solid  mechanics.  We  employ  a
hypoelastoplastic  mechanical  model,  and  develop  a  projection  method  to  enforce
quasistatic equilibrium. We introduce a simulation framework that uses a fixed Cartesian
computational grid on a reference domain, and which imposes deformation via a time-
dependent  coordinate transformation to the physical  domain.  As a test  case for our
method, we consider the evolution of shear bands in a bulk metallic glass using the
shear transformation zone theory of amorphous plasticity. We examine the growth of
shear bands in simple shear and pure shear conditions  as  a  function  of  the  initial
preparation of the bulk metallic glass.

I. INTRODUCTION

Molecular  dynamics  (MD)  simulations,
whereby  atoms  or  molecules  are  individually
simulated according  to  Newton’s  laws [1],  are
widely used across the physical sciences [2–5].
Open source software packages such as LAMMPS

[6,7] and  GROMACS  [8]  have enabled simulations
to  be  performed  with  millions  of  particles  on
modern  parallel  computer  hardware.  MD
simulations  provide  a  detailed  view  of  the
material  physics  and  are  able  to  capture

discrete  particle-level  effects  [9,10]. Despite
these advantages, MD simulations are compu-
tationally  expensive,  and  it  is  usually  only
possible  to  sim-  ulate  microscopic  material
samples.  Furthermore,  since  the  simulations
must resolve rapid interaction timescales
between  particles, the applied deformation
rates in MD are often orders of magnitude larger
than deformation rates in laboratory tests [11–
13].

Because MD simulations simulate microscopic
domains,

it  is  difficult  to  apply  deformation  via  moving
walls,  as  simulation data may be affected by
finite-size effects [14,15]. Instead, the standard
approach  is  to  apply  periodic  boundary
conditions, but manipulate the periodic images
of the primary  simulation  domain  to  achieve
different applied deformations. For example, in
three-dimensional  Lees-Edwards  boundary
conditions,  the  periodic  images  have  a

horizontal velocity proportional to their z position
in order to impose simple shear [16] [Fig.  1(a)].
The  Kraynik-Reinelt  boundary  condi-  tions  [17–
20], plus a recent generalization by Dobson [21],
use a combination of moving periodic images and
domain remapping in order to simulate different
extensional flows.

A  complementary  approach  to  MD  is  to  use
continuum  modeling,  which  has  the  ability  to
simulate large system

*boffi@g.harvard.edu
†chr@seas.harvard.edu



sizes and long, physically realistic timescales.
However,  continuum-scale theories involve a
substantial theoretical hur-  dle,  in  that  the
transition  from  a  particle-level  theory  to  a
continuum  theory  involves  a  coarse-graining
procedure.  The  coarse-graining  procedure
defines  a  representative  volume  element
(RVE)  [22,23]  throughout  which  local
deviations of  material  field values from their
average  within  the  RVE  are  neglected.  The
fundamental  assumption  of  every  continuum
theory is that such an RVE is well defined, and
that neglecting the discrepancy between the
relevant  system  variables  and  their  mean
within an RVE is well justified [24,25].

In  effect,  coarse-graining  reduces  the
complex  many-body  system of interacting
particulate constituents to a much lower
degree-of-freedom system well described by a
set of nonlinear  partial  differential  equations
(PDEs).  This  reduction  in  com-  plexity  is
primarily  responsible  for  the  well-behaved
scaling  with  system  size  in  continuum
simulations, in that all the classical techniques
of  numerical  analysis  become  available  for
evolving the system  over  time.  However,  the
process of coarse graining to the continuum is
difficult  in  general,  and  has  primarily  been
successful  when  tailored  to  specific  phe-
nomena.  The  coarse-graining  procedure
introduces  internal  state  variables  that
summarize  the  many  particulate  degrees  of
freedom,  and  accurate  initial  conditions  for
such inter-    nal  variables can be difficult  to
construct.  Some  equilibrium  systems  are
amenable to rigorous approaches by explicitly
averaging  over  unwanted degrees of freedom
in  the  system partition function [26,27], but
these approaches are intractable  for  many
out-of-equilibrium systems.

To quantitatively explore the effect of coarse-
graining MD

to  the  continuum,  it  is  therefore  useful  to
perform the two types of simulation using the
same  geometry  and  conditions.  However,
precisely  recreating  the  boundary  conditions
from  MD  for  use  in  continuum  simulations
poses  some  numerical  challenges.  Consider
the  Lees-Edwards  boundary  conditions  and
suppose that the primary simulation domain is
discretized
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FIG. 1. (a) Lees-Edwards boundary conditions in three dimensions where the z coordinate points upward. The
system of interest is shown in yellow and outlined in black dashed lines; other periodic copies are shown in
brown. Periodic copies of the system above and below are set to move with a specific velocity, imposing a
specific strain rate  γ˙ on the system. (b) A graphical depiction of a domain transformation  T(t  ) that maps a
fixed reference domain X to a sheared physical domain x.

on  a  Cartesian  grid.  Because  the  periodic
images are moving, their grids will generally not
align  with  the  primary  domain.  This  could  be
handled numerically  via interpolation,  but  grid
points  near  the  boundary  will  incur  different
discretization  errors.  If  the  continuum  model
involves  an  elliptic  problem,  then  the  shifted
grids  will  result  in  a  complex  connectivity
structure in the associated linear system, which
is  less  well  suited  to  some  numerical  linear
algebra techniques.

In this work, we address this problem by
developing a con-  tinuum solid mechanics
simulation that permits MD boundary conditions
to  be  recreated  precisely.  We  use  the
hypoelasto-  plasticity model [28] in which the
deformation rate tensor D is  decomposed
additively into a sum of elastic and plastic parts
[29].  There  are  a  number  of  different
frameworks  for  simu-  lating  elastoplastic
materials [30], but the hypoelastoplastic model
is  well  suited  for  problems  that  involve  large
plastic deformation.  This regime is appropriate
for matching to typi- cal MD simulations, where
large total strain may be applied.

Combining the additive decomposition of D
with Newton’s  second  law  results  in  a  closed
hyperbolic  system of  PDEs  for  the  velocity  v
and  stress  σ,  plus  coupling  to  evolution
equations for any internal state variables. Due
to the small size of MD simulations, it is usually
a good approximation  to say that elastic waves
are fast compared to the simulation timescale,
allowing for Newton’s second law to be replaced
by  the  constraint  that  the  stresses  remain  in
quasistatic equi- librium, σ 0.

The resulting constrained PDE system has a
mathematical correspondence to the

incompressible Navier-Stokes equa- tions,
where the fluid velocity must satisfy the

constraint that v 0. For incompressible
fluids, a standard numerical technique is the

projection method of Chorin [31,32]. By
exploiting the mathematical correspondence, a

new projection method for quasistatic

hypoelastoplasticity was recently intro-
duced [33] and extended to three dimensions [34]
(Sec. II).

To  match  the  MD  boundary  conditions,  we
introduce a coordinate transformation framework
for the quasistatic hypoelastoplastic system. It is
based on an abstract linear mapping T(t ) from a
reference domain to the physical domain  [Fig.
1(b)].  Lees-Edwards  conditions  can  be
implemented in  the  continuum setting  with this
methodology  by  imposing  shear  through  a
transformation,  and  additionally  enforcing
periodic boundary conditions in all directions.
Effectively,



our method decouples the application of
material deformation from the application of a
specific boundary condition.

In  addition  to  Lees-Edwards  boundary
conditions,  the  transformation  framework  is
flexible, and enables simple im- plementation
of  otherwise  potentially  difficult  deformation,
such as pure  shear.  Any applied deformation
that can be written as a linear transformation
of  a  reference  domain  can  be  implemented
just by implementing the matrix and  its time
derivatives.  We  show  that  the  projection
method  for  hypoelastoplasticity  can  be
generalized to simulate this  case by working
with transformed velocities and stresses in the
reference domain.  The projection step in the
method requires solving an elliptic problem for
the  velocity,  and  the  resulting  linear  system
has  a  simple  mathematical  structure  that  is
well  suited  for  solution  via  numerical  linear
algebra  techniques  such  as  the  geometric
multigrid method [35,36].

The new  method is capable of simulating a
wide  range    of  elastoplastic  materials,  but
here  we  consider  the  example  of  a  bulk
metallic  glass  (BMG),  a  new  type  of  alloy
where  the  atoms  have  a  random  and
amorphous arrangement,  in contrast  to most
metals  [37].  BMGs  have  attracted  consid-
erable  research  interest  during  the  past  two
decades.  They  have  many  favorable
properties,  such  as  high  strength  and  wear
resistance,  that  make  them  attractive  for  a
variety  of  applications  [38].  However,  the
amorphous arrangement of atoms makes the
study  of  dynamic  mechanical  phenomena  in
these materials, such as deformation and
failure, exceptionally challenging [39].

To date, a general theory of the microscopic
origins  of  plastic  deformation  in  amorphous
solids has remained elu- sive. However, several
prominent  theories  capable  of  making
accurate qualitative and quantitative
predictions have been de-  veloped,  such  as
free-volume  based  theories  [40–43]  and  the
shear  transformation  zone  (STZ)  theory  [44–
48]. Ultimately, free-volume theories and the
STZ  theory  are  flow-defect  theories  that
attempt  to  connect  microscopic
rearrangements  of  groups  of  atoms  with
macroscopic  plastic  deformation,  in  rough
analogy to the dislocation-mediated theory of
plasticity in crystalline materials [49].

We employ an elastoplastic model of a BMG
based on  the STZ theory. A key feature of the
model is the effective temperature (Sec. II C),
which  characterizes  the  amorphous  particle
structure via a continuum field [50–53]. The
effective
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temperature can be measured indirectly [54], 
but there is currently no complete method to 
connect it to the microscopic

the Truesdell derivative1

D      σ      dσ T

particle configuration. This was recently explored by Hinkle
et al. [55], who directly compared continuum 
and MD sim-

Dt 
=

dt 
− L σ − σL + tr(L)σ, (2)

ulations,  and  examined  how  measurable
features of MD such
as the coarse-grained atomic potential energy
are connected to  the effective temperature. A
key limitation of this study is that  the  MD
simulations  use  Lees-Edwards  conditions,
whereas  the  deformation  was  imposed  in  the
continuum  simulation  using  moving  parallel
plates,  meaning  that  the  two  could    not  be
exactly  compared.  The  numerical  techniques
that we develop here remove this limitation.

The STZ theory has proven useful for
examining the failure properties of BMGs.  The
elastoplastic  model  that  we  employ  has  been
used  to  explain  the  large  experimental
variations  in  notched  fracture  toughness  of
BMGs [56]. This was subse- quently extended to
make predictions about BMG fracture toughness
for a range of parameters [57]. Recent
experimental  work  suggests  that  these
predictions are broadly correct [58]. BMGs also
exhibit  shear  bands,  a  strain-softening
instability  characterized  by  the  localization  of
shear strain along a thin band [59], which can
be the precursor to failure [60–62].      In our
simulations,  we  examine  how   shear  bands
nucleate   as  a  function  of  the  initial
inhomogeneities  in  the  effective  temperature
field.

The paper is organized as follows. In Sec.  II,
we  de-  scribe  the  equations  of  quasistatic
hypoelastoplasticity and provide an introduction
to the physics of the STZ theory of amorphous
plasticity. In Sec. III, we introduce the coordinate
transformation methodology and develop the
transformed pro- jection method. In Sec. IV, we
provide numerical experiments  demonstrating
convergence  of the solution of the transformed
method to the original quasistatic method in
physically equiv-  alent situations as the grid
spacing is decreased. In Sec. V, we study shear
banding  in  a  bulk  metallic  glass  subject  to
simple  shear, Lees-Edwards, and pure shear
boundary conditions. We highlight differences in
results between Lees-Edwards and simple shear
boundary conditions and examine how the shear
band formation depends on the initial effective
temperature.

II. MATHEMATICAL PRELIMINARIES

A. Quasistatic hypoelastoplasticity

We  consider  an  elastoplastic  material  with
Cauchy stress tensor σ (x, t ) and velocity field
v(x, t ). We denote by L  v the velocity gradient
tensor and  D  1 (L LT  ) the rate of deformation

tensor.  We  adopt  the  framework  of  hypoelasto-
plasticity, which assumes the rate of deformation
tensor can be additively decomposed into a sum
of elastic and plastic parts, D = Del + Dpl. Writing
linear elasticity in rate form yields

D      σ      (      x      ,         t     )  pl
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with    d  ∂ v denoting the advective 
derivative. The
velocity field satisfies a continuum version of 
Newton’s sec- ond law

dv
ρ 

dt 
= ∇ · σ,

(3)

with  ρ  the  material  density.  Taken together,
Eqs.  (1)  and  (3)  form  a  closed  hyperbolic
system  that  could  form  the  basis  of  a
numerical  method.  However,  an  explicit
numerical  method used to  solve  this  system
will resolve elastic waves. Stable resolution of
elastic waves places a limit on the simulation
time  step  according  to  the  well-known
Courant-Friedrichs-
Lewy (CFL) condition [63]. The CFL condition 
requires b.. t (
 h where ce is a typical elastic wave speed and h 
is the grid
spacing.

In  metals  and  other  materials  of  interest,
the elastic wave speed ce can be large, and the
grid  spacing  h  needed  to  resolve  fine-scale
features  such  as  shear  bands  can be  small.
The  CFL  condition  thus  poses  a  prohibitive
limit  on  the  time  step  for  probing  realistic
timescales  and  system  sizes,  and  the
development  of  alternative  simulation
approaches that  avoid  resolving elastic  waves
is necessary. It is often appropriate to take the

long-timescale and small-velocity limit, in which
the material acceleration is negligible and Eq.
(3) can be replaced by the constraint

∇ · σ = 0, (4)

which states that the stresses remain in
quasistatic equilibrium and conveniently  avoids
the  description  of  elastic  waves.  In  this
quasistatic limit, Eq. (1) depends on the material
velocity  field  through  D,  but  the  evolution
equation  for  the  velocity  field has been
exchanged for the constraint in Eq. (4). It is thus
unclear how to solve Eq. (1) subject to the
global constraint in Eq. (4).

B. Projection method

As noted by Rycroft et al. [33], Eqs. (1) and (3)
have a close mathematical correspondence with 
the Navier-Stokes equations for incompressible 
fluid flow. The incompressible Navier-Stokes 
equations consist of an explicit partial differ- 
ential equation for the fluid velocity along with a 
constraint that the velocity must be divergence 
free. Much like Eqs. (1) and (4), the constraint on
the velocity field is obtained from   a limiting 
procedure applied to an explicit partial 
differential

1This expression is typically presented with L 
transposed with respect to the definition here. We 
adopt the convention that (∇f )ij =

Dt
= C : (D − D  ),
(1)

where C is the stiffness tensor. For simplicity,  
the material  is taken to be isotropic and 
homogeneous, so that  Cijkl λδijδkl μ(δikδ jlδil δ jk )
where λ is Lamé’s first parameter and μ is the 
shear modulus. The time derivative  in Eq. (1) is

∂i f  j for a vector field, i.e., partial derivatives go row-
wise in gradients
of vector fields. Typically,  the symbol L    v  is used
to denote     the Jacobian or Fréchet  derivative of  v,
which formally is the trans- pose of the gradient [71].
The transformation formalism developed in this work
involves  both  Jacobians  and  vector  field  gradients,
and for physically consistent answers it is necessary
to make this distinction.
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equation for the pressure, and the equation for
the velocity still depends on the pressure after
this limit has been taken.

In  this  setting,  a  well-established  numerical
technique  is  the  projection  method  of  Chorin
[31,32].  In  Chorin’s  pro-  jection  method,  the
update  for  the  velocity  field  is  split  into  two
steps. In the first step, an intermediate velocity
field  is  computed which does not obey the
divergence-free constraint. In the second step, a
linear  system is  solved  for  the  pressure  field
which simultaneously projects the intermediate
velocity field onto the manifold  of divergence-
free solutions.

By  using  the  correspondence  between
quasistatic  hypoe-  lastoplasticity  and
incompressible fluid flow, Rycroft et al.
[33] developed a new projection method for
quasistatic elasto-  plasticity.  Consider  taking  a
time step of size !1t , and use superscripts of n
and n 1 to denote the simulation fields be- fore
and  after  the  step,  respectively.  To  begin,  an
intermediate stress σ∗ is computed by dropping
the C : D term in Eq. (1) to obtain

rangements are assumed to be driven entirely
by external me-  chanical forces. Thermal
theories introduce an additional cou-  pling
between  the  configurational  subsystem
governing  the  rearrangements  that  occur  at
STZs,  and  a  kinetic/vibrational  subsystem
governing  the  thermal  vibrations  of  atoms  in
their  cage  of  nearest  neighbors  [64].  Such
thermal  theories,  with  an  additional  field
tracking the thermodynamic temperature which
evolves according to a diffusion equation, could
in principle be incorporated into our framework.

Each rearrangement corresponds to a
transition in the configurational energy

landscape; these transitions are usually toward a
lower-energy configuration, but there is a small

probability for a reverse transition. Before the
application of external shear, the material

sample sits at a local minimum. External shear
alters the shape of the energy landscape, and

can make transitions to other states considerably
more likely. The density of STZs in space follows

a Boltzmann dis- tribution in an effective disorder
temperature denoted by χ

σ∗ − 
σn n  T   n n    n n n [50–53]. χ governs the out-of-equilibrium 

configurational

!1t
= (L ) σ + σ L

n n

− tr(L
)σ

pl n

degrees of freedom of the material and has manyproperties
of the usual temperature: it is measured in Kelvin, 
and it can

− (v  · ∇)σ  − C : (D  ) .

(5)

If the velocity vn+1 were known, and hence if the
total deformation rate Dn+1 could be calculated,
then the final stress would be given by

be  obtained  as  the  derivative  of  a
configurational  energy  with  respect to a
configurational entropy [39]. χ is distinct from
the thermodynamic  temperature  T  ,  though  it
plays  the  same  role  for the configurational
subsystem as T does for the kinetic and
vibrational subsystem.

σn+1 σ∗

!1t
= C

:
Dn+

1

.

(6)

We  define the deviatoric stress tensor σ0 σ
1 tr(σ )I. 

The total rate of plastic deformation tensor is 
proportionalto  the  deviatoric  stress  Dpl  = Dpl σ  0 ,  where  s¯2  
= 1 σ0,i j σ0,i j 

Taking the divergence of this equation and enforcing that ∇ · s¯ 2

σn+1 = 0 yields

!1t ∇ · (C : Dn+1) = −∇ · σ∗. (7)

is a local scalar measure of the total deviatoric
stress. The STZ theory provides the magnitude
of the plastic rate of deformation as

After finite-difference expansion of the definition
of Dn+1,

Eq. (7) forms a linear system for the velocity 
field vn+1 with

Dpl  = e−e /k  χ e−!1/k  T  cosh 

( 
  0  s¯ 

 (

1

− 
sY  
 

(8)

source term given  by the known vector σ∗,
and it can
be solved via standard techniques of numerical
linear algebra. After solution of Eq. (7), σn+1 can
be computed according  to Eq. (6), which can be
shown  to  orthogonally  project  σ∗ onto the
manifold of quasistatic solutions. In this manner,
the
two-step projection method enables solving Eq.
(1) subject to the global constraint (4) despite
the dependence of Eq. (1) on

when  s¯  >  sY and  zero  otherwise.  τ0 is  a
molecular vibration timescale, ez is a typical STZ
formation energy, kB is the Boltzmann constant,
T  is  the  thermodynamic  temperature,  !1  is  a
typical  energetic  barrier  for  a  transition,   is  a
typical   STZ  volume,  and  0 is  a  typical  local
strain. The effective temperature satisfies a heat
equation [45,53,65–67]

v. We refer the reader to papers by Rycroft et al.
[33], and Boffi and Rycroft [34] for complete 
details on this method.

dχ
0 

dt

(Dpl :
σ0 )

sY

(χ∞ − χ ) + l2∇ · 
(Dpl

∇χ ). (9)

τ
0

,
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C. Plasticity model

As our plasticity model for a bulk metallic
glass, we use an  athermal  form of  the  shear
transformation zone (STZ) theory of amorphous
plasticity suitable for studying glassy materials
below the glass transition temperature [45,47].
The STZ the- ory postulates that ephemeral and
localized fluctuations of the  configurational
bath,  STZs,  occur  sporadically  throughout  an
otherwise  elastic  material.  The  STZs  may  be
conceptualized as clusters of atoms susceptible
to  shear-induced  configura-  tional
rearrangements when local stresses surpass the
material  yield  stress  sY .  Each  such
rearrangement  leads  to  a  small  increment  of
plastic  strain,  and  many  such rearrangements
conspire  to  bring  about  macroscopic  plastic
deformation.

In  the  athermal  theory  used  here,  thermal
fluctuations  of  the  atomic  configurations  are
neglected, and molecular rear-

The interdependence of Eqs. (8) and (9) enables
the  develop-  ment  of  shear  bands  through  a
positive feedback mechanism, as increasing one
of χ or Dpl also leads to an increase in the other
[65,67].

III. COORDINATE TRANSFORMATION 
FRAMEWORK

Let T(t ) denote a time-varying mapping from a 
reference domain X to the physical domain of 
interest x such that

x = TX, (10)

as   shown   in   Fig.   1(b). Here,  X [aX , bX ]
[aY , bY ] [aZ , bZ ].

Since BMGs typically undergo small volumetric 
deformations,  we  restrict  to cases  where  det 
T(t ) 1, al- though the 
framework can be extended to incorporate 
dilation in the transformation. We will use 
capital letters to denote
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quantities  in  the  reference  frame,  and  lower
case letters to denote quantities in the physical
frame. X and x will denote spatial differentiation
in the reference and physical frame,

In Eq. (18), D 1 (L LT ) refers to the physical 
quantity. L
can be computed in terms of the transformed 
variables as

respectively.  We emphasize that  X  exists in a
fixed  frame  on  which  the  quasistatic
hypoelastoplastic  equations  denote  be  solved,
and not in the Lagrangian frame of coordinates.
To

L T−T ∂TT

∂t T−T∇XVTT
. (19)

clarify this point, let R = (X, Y, Z ) denote a set 
of fixed

Dpl = Dpl 
σ  0  

appears in Eq. (18), and its form 
depends on

Lagrangian  coordinates.  For an Eulerian frame
(x, y, z), we define the Eulerian displacements

ui = xi − Ri.

(11)
We then define the Eulerian velocities vi ∂  u  i  . The
same  procedure can be performed in the
reference frame, as we now  show.  We  first
define the physical displacements

u = TX − R.

(12)

the plasticity model through the constant Dpl. As
reviewed  in Sec.  II A, the STZ theory provides
an expression given by Eq. (8). Dpl is defined and
must  be  computed  in  terms  of  the  physical
deviatoric stress σ0. In line with the definition of
, we can apply the contravariant pullback to σ0

and write

T−1σ0T−T =    − 1 [T−1 tr(T TT )T−T]I. (20)

Using the natural definition    0 =    − 1  tr (   )I
and  solving

Taking a time derivative of both sides of Eq. (12)
at fixed Lagrangian coordinates , we arrive at an
expression for the physical velocity

v
∂  T  

X TV.

(13)
∂t

Above,  we  have  identified  the  transformed
velocity V

∂t . Equation (13) can be used to compute the
physical  velocity v from the transformed
velocity V, if V is known. By inversion, it can
also be used as a definition of the transformed
velocity

for σ0, we can rewrite Eq. (20) as

σ0 = T  0TT + 1 [T tr (   )TT − tr(T TT )]I.
(21)

Equation (21) enables the computation of σ0

entirely in terms of transformed quantities.  We
compute s  ̄by first computing the entire tensor
σ0 using  Eq.  (21)  and  then  compute  its
Frobenius norm.

The  equation  for  the  effective  temperature
must  also  be  transformed,  though  we  do  not
define a transformed effective temperature. This
can  be  accomplished  by  transforming  the
derivatives

V = T−1

(

v − 
∂  T  

X

  

.

(14)

c0 
∂χ
∂t

= −c0(V · ∇X )χ 
+

(Dpl :
σ0 )
sY

(χ∞ − χ )

Using the chain rule, spatial derivatives are 
transformed as

∇x = T−T∇X.

(15)

+ l2T−T∇X · (DplT−T∇Xχ ). (22)

Taking an  advective  time  derivative of Eq. (14),
using Eq. (3)  for v˙, and transforming physical
spatial derivatives to trans-  formed  spatial
derivatives,  the  transformed  velocity  evolves
according to the transformed generalization of
Newton’s sec- ond law:

For brevity, Dpl, σ0, and Dpl  refer to the physical
quantities in Eq. (22) and must be computed in
terms  of  the  transformed  variables  in  an
implementation.  Transformation  of  the  diffu-
sive  term ensures  that  diffusion  occurs  in  the
physical  frame  despite  being  implemented  in
the reference frame.

Equation  (18)  demonstrates  that  our
transformation

∂V 
= −(V · ∇X )V

+

∂T−1 

TV

∂t

methodology,  leaves  the  Truesdell  rate  
invariant  and only
affects the deformation rate term C : (D − Dpl ). 
This high-

−1

( 
1 −T

+



∂t

 
∂  

=

∂t

∂t+   · ∇ = + · ∇

+ T ∂2T ∂  T      lights a benefit of using the Truesdell rate, as 
opposed to

T
ρ 

T ∇X · (T T ) − 
∂t 2 

X − 
∂t V

.
(16
)

using alternative rates (e.g., Green-Naghdi or Jaumann)  that
employ physical approximations to achieve a 
simpler form.
For example, the Jaumann stress rate is based 
upon the ap-

In  Eq.  (16),  we  have  rewritten  the  advectivederivative in
the reference frame,  ∂   v     x V  X.  The  proof
of  this  identity  for  an arbitrary  transformation
T(t  )  is  shown in  Appendix A. In Eq. (16), we
have also defined the transformed stress tensor
via the contravariant pullback

  = T−1σT−T.

(17)

To derive an evolution equation for , we now use
the linear elastic relation in Eq. (1).  Taking  an
advective time derivative of the relation σ T  TT

and   inverting,   the   transformed stress  then
obeys  the  transformed  generalization  of  the
linear elastic constitutive law. After expansion of
the Truesdell rate,

proximation that the effect of material stretch is
much smaller
than the effect of rotation, so that the Jaumann
formula  only  involves the material spin rather
than the full velocity gradient  tensor.   If  the
Jaumann rate is used in the physical frame,      it
will  not  perfectly  transform  into  the  Jaumann
rate  in  the  reference  frame,  as  neglecting
stretch in the physical frame is not equivalent to
neglecting stretch in the reference frame.

The  transformed  system  of  equations  has
connections  to  the  principle  of  material  frame
indifference  [68,69]  which  states  that  “the
constitutive  laws  governing  internal  interac-
tions  between the  parts  of  the  system should
not  depend  on  whatever external frame of
reference is used to describe them”

∂ 
= −(V · ∇X ) − tr(L) + ∇XV

[70]. Mathematically, this is done by considering a
transfor- mation of the form x = R(t )[X − X0(t )] 
where X0(t ) is a  

+ (∇XV)T  + T−1[C : (D − Dpl )]T−T.

(18)

time-dependent vector and R(t ) is a time-
dependent rotation
[71]. If we restrict our transformation in Eq. (10) 
to the case



= =
=

+  ∇

= ∇ = ∇

matrices cancel because C is isotropic. Hence, 
our coordinate transformation is consistent with 0

0 1
0

0 0

(

n n n n n
n

when T(t ) is a rotation, then Eq. (18) is identical
to Eq. (2), but in terms of transformed variables.
The  first  four  terms  of  Eq.  (18)  are  always
identical, and the final term involvingpl

specific cases of  simple shear  and pure  shear
are shown in Appendices B and C, respectively.
The update for the effective  temperature is
handled through an explicit forward Euler step

C : (D − 
D

) is also identical in this case since the
rotation χn+1 − 

χn

!
1t

[
(Dpl )n : σn

]

s
Y

It  is  worth considering  how  the transformed
system  of  equations  differs  from  the  original
system. A particular  case of interest  is  simple
shear,  given  the  immediate  application  to
implementation  of  Lees-Edwards  boundary
conditions.  This  physical  situation  is  described
by the transformation

⎛

⎝
1 0 Ubt 

⎞

⎠

+ l2(T−T )n∇X · [(Dpl)n(T−T )n∇Xχn]. (28)

B. Numerical discretization, 
parallelization, and 
multigrid solver

The explicit update for the transformed stress 
(24) depends on transformed spatial derivatives 
of the transformed velocity

through L. Similarly, the source term in the 
linear system for the transformed velocity (26) 

with Ub a boundary shear velocity. Restriction to
a  two-  dimensional  plane-strain  formulation
reveals that the compo- nents of Eqs. (16) and
(18)  retain  their  original  form  with
untransformed  quantities  replaced  by
transformed  quantities,  in addition to several
new terms proportional to powers of Ubt .

A. Transformed projection method

We  now  formulate  the projection method of
Sec.  II  B in  the  reference frame. This  method
enables  solving  for  V  and  subject to the
constraint in Eq. (4). In the first step [analogous
to Eq. (5)], the C : D term in Eq. (18) is
neglected to compute
the intermediate transformed stress ∗,

derivatives of the transformed stress. We exploit
this  structure  through  a  staggered  grid
arrangement  in  the  reference  frame  with
uniform spacing !1x !1y !1z h. The stress tensor
  and effective temperature χ are stored at cell
centers and indexed by half-integers, while the
velocity  V is stored at cell corners and indexed
by integers. Further discussion of the staggered
grid arrangement can be found in Ref. [34].

Let (∂ f /∂X )i, j,k denote the partial derivative of a
field

f with respect to X evaluated at grid point (i, j, k ). 
The staggered centered difference is

∂   f     
∂X  i+ 1 , j+ 1 ,k+ 1

 ∗ − n

!1t = −
(V

· ∇X ) − tr(L ) + (∇XV)

2 2 2

1
= 

4h 
( fi+1, j,k − fi, j,k + fi+1, j+1,k

− f

i, j+1,k

((   XV)T )n  n (T−1 )nC : (Dpl )n(T−T )n.
(24)

If the transformed velocity at the next time step 
Vn+1 were known, we could compute Ln+1  via Eq.
(19), compute Dn+1,

+ fi+1, j,k+1 − fi, j,k+1 + fi+1, j+1,k+1 − fi, j+1,k+1 ). 
(29)

Equation  (29)  averages  four  edge-centered
centered differ- ences to obtain a  derivative  at
the cell center and has a dis- cretization error of
size O(h2 ). The derivative at a cell corner
is obtained by the replacement (i, j, k ) → (i − 1 , j
− 1 , k −

and complete the transformed Euler step via 1
2 2

 n+1 − 
∗

−1 n n+1 −T n 2 ). The diffusive term appearing in the effective 
temperature
update in Eq. (28) is computed by expanding the 
divergence

!1t
= (T

) (C : D )(T ) ,(25) term

which is analogous to Eq. (6). To compute this 
correction, we need to use the physical 
constraint (4). Enforcing that
∇x · σn+1 = 0 leads to the linear system Eq. (7) 
for v in the

T−T∇X · (DplT−T∇Xχ )
= (∇XDpl ) · [(T−1T−T )∇Xχ ]

physical domain.
Because T−1σ∗T−T∗ and x T−T 

X, the 
right- hand side of Eq. (7) transforms according 
to

−∇x · σ∗ = −Tn∇X ·  ∗. (26)

nc
0

= −c0(V · ∇X )χ 
+

(χ∞ − χn

)

T 
=

,



∇ ∇

(

∇
∇ ∇

(

(

+ Dpl[(T−1T−T ) : (∇X∇Xχ )].

(30)

Equation  (30)  is  computed  numerically  by
assembling the gradient vectors  Xχ  and  XDpl  at
cell  centers  using  the  standard  centered
difference formula

Similarly, the left-hand side of Eq. (7) becomes

!1t (T−T )n∇X · C : ((T−T )n(∇XV)n+1(TT )n ),

(27)

∂   f     
∂X i, j,k

   1   
= 

2h( f
i+1, 
j,k

− fi−1, 
j,k

), (31)

where we have omitted X-independent terms as
they will be annihilated by X. Equations (26) and
(27) form a compli- cated linear system for the
transformed velocity Vn+1. The

with  analogous  expressions  for  the  other
directions. We also must assemble the Hessian
matrix X Xχ using the second derivative stencils

appearance of the transformation T in front of 
the gradient operator ∇X ensures that all mixed 
spatial derivatives of all

∂2 f
∂X 2 

i, j,k

   1  
= 

h2 ( fi+1, j,k − 2 fi, j,k + fi−1, j,k ),(32)

components of the velocity appear in each row
of Eq. (27).
Equation (27) is more complex than the linear
system  in  the  original  quasistatic  projection
method,  and  it  is  dependent  on  the specific
form of T. The components of Eq. (27) in the

∂2 f

∂X∂Y i, 
j,k

   1  
= 

h2 ( fi+1, j+1,k − fi+1, j−1,k

− fi−1, j+1,k  + fi−1, j−1,k ). (33)
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f f

otherwise.

=

× ×

y
−  ∇ 

·

=

+
+

++ +
+

2

), and thus they need to be derived on a transformation-
                                                                          

(l,m,q
)

√
=

=
−

−

Analogous  expressions  for  other  second
derivatives are ob- tained through Eqs. (32) and
(33)  by  suitable  replacements.  The  matrix
T−1T−T is computed from its definition.

The  advective  derivative  in Eq. (24) must be
upwinded  for stability; we use the second-order
essentially nonoscilla-

tory (ENO) scheme [72]. With [ fXX ]i,  j,k denoting
the second derivative with respect to X of the
field f at grid point (i, j, k ) computed using Eq.
(32), the ENO derivative is defined in the  X
direction as

( 
∂   f  

   1    

⎧
⎨− fi+2, j,k  + 4 fi+1, j,k  − 3 fi, j,k if Ui, j,k  < 0 and |[ fXX ]i, j,k | > |[ fXX ]i+1, j,k |,

∂X i, j,k = 

2h

3 fi, j,k − 4 fi−1, j,k + fi−2, j,k if Ui, j,k > 0 and |[ fXX ]i, j,k | > |[ fXX
]i−1, j,k |,

i+1, j,k − i−1, j,k

(34)

Above,  Ui, j,k is  the  X  component  of  the
transformed  velocity  at  grid  point  (i,  j,  k  ).
Equation (34) uses the curvature of  f  to switch
between  an  upwinded  three-point  derivative
and    a centered difference. Versions of Eq. (34)
in  the  Y  and  Z  coordinates  are  obtained
analogously.

Despite  its  complexity,  after   spatial
discretization  of Eq. (27), the linear system is of
the  form  Ay    b,  and  can     be solved via
standard techniques of numerical linear algebra.
b  is  given  in block form by the source term in
Eq. (26), bi

T   X     ∗(Xi ), where the index i runs over all
grid points. is also given in block form, so that
y contains the stacked

values of V across all grid points. The matrix A
is sparse, and its degree of sparsity depends on
the specific discretization scheme used. In the
staggered  centered  difference  scheme
described  here,  grid  point  (i,  j,  k  )  is  only
coupled to the 27 grid points in the surrounding
3 3 3 cube.

A is thus most effectively reconstructed using
submatri- ces A(i, j,k) , which give the coefficients
of velocity values  V(l,m,q) appearing in the linear

equation for V(i, j,k). Each

ually. We then used the Mathematica function 
splice to fill in each of these primitives with valid
C code that implements the 
analytically computed expressions. Finally, we 
again used Python to write C code that calls 
the autogenerate C functions to populate the 
submatrices. This metaprogramming scheme 
only needs to be run once to generate the 
needed code, and it does not take any 
meaningful amount of time    to run. Through 
the use of these auto-generated functions, the 
multigrid system is calculated at each time step,
and
new simulation conditions can be immediately
constructed by providing the matrix T(t ) asa3
× 3 matrix class implemented in C++.

IV.NUMERICAL CONVERGENCE TESTS

In this section, we demonstrate  convergence
of  the  trans-  formed projection method to  the
nontransformed method in physically equivalent
situations. In all simulations, a periodic
domain in X and Y is considered, −L ( X < L,
−L ( Y < L

(i, j,k
)
(l,m,q
)

is symmetric. With this construction,
we solve

with L = 1 cm. We consider both periodic and 
nonperiodic

Eq.  (27)  using  a  custom  MPI-based  parallel
geometric multi- grid solver; for further details
of  the  solver,  and  how  it  interfaces  with  the
explicit  updates,  the  reader  is  referred to  the
nontransformed algorithm description [34]. The
explicit steps for χ and in Eqs. (24) and (28) are
also  parallelized  using  MPI  and  domain
decomposition,  with  further  details  in  the
nontransformed work [34].

A highlight of the transformation methodology
is its flexi- bility and  simplicity.  Implementation
of  new  boundary condi-  tions,  as long as they
can be specified in terms of a transfor- mation
T(t  ),  is  only  as  difficult  as  writing  the
transformation

boundary conditions in Z, corresponding to
domains γ L ( Z < γ L and γ L ( Z ( γ L,
respectively. γ 1 in all simu-  lations. We
measure time in terms of the natural unit ts L/
cs

with  cs μ/ρ  the  material  shear  wave  speed.
Boundary conditions in the nonperiodic case are
given by

V(X, Y, ±γ L, t ) = (0, 0, 0). (35)

TABLE I. Material parameters used in this study, for
both  linear  elasticity  and  the  STZ  model  of
amorphous plasticity. The Boltz- mann constant kB is
used to convert energetic values to temperatures.

down. The matrices 
A(i, j,k) do, however, depend on the form

of 
T(t

(l,m,q
)

Parameter Value

by-transformation  basis.  Furthermore,  through their  depen-  dence on T(t ), these submatrices

matrix 



×

(l,m,q
)

are time dependent and thus  need  to  be
recomputed at each time step.

For an arbitrary3 3 transformation with nine
matrix  ele-  ments,  the  analytical  computation
and hand implementation

Young’s modulus E 101 GPa
Poisson ratio ν 0.35
Bulk modulus K 122 GPa
Shear modulus μ 37.4 GPa
Density ρ0 6125 kg m−3

(i, j,k )
(l,m,q) matrices is error prone. To remedy 

this, we
Shear wave speed cs 2.47 km s−1
Yield stress sY 0.85 GPa

developed  a  metaprogramming  scheme  to
autogenerate  the  relevant  code.  We  used
Mathematica  to  analytically  calculate  the
components  of  Eq.  (27)  in  terms  of  arbitrary
matrix ele- ments  Tij (t  ),  and subsequently to
replace  derivatives  by  their  finite-difference
equivalents. Collecting coefficients accord- ingly
in  the  resulting  equation  gives  191  nonzero
coefficients comprising the 27 submatrices A(i,

j,k) . We used Python to
write a skeleton file that contained function
primitives for 191  C++ functions to compute
each of these coefficients individ-

Molecular vibration timescale τ0 10−13 s

Typical local strain 0 0.3
Effective heat capacity c0 0.4
Typical activation barrier !1/kB 8000 K
Typical activation volume  300 Å3

Thermodynamic bath temperature T 400 K
Steady state effective temperature χ∞

STZ formation energy ez/kB                                                                                

900 K
21 000

K

of the 
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this  section  are  run  with  32  processes  on  an
Ubuntu Linux computer with dual 14-core 1.70-
GHz Intel Xeon E5-2650L v4 processors.

The global three-dimensional grid has spacing
h in each direction. The cell-cornered grid points
are indexed accord- ing to i 0 , . . . ,  Q 1, j 0 , . . . ,  M
1 in the  X  and  Y directions. In the  Z direction,
the grid points are indexed according to k 0 , . . . ,
N  and  k  0 , . . . ,  N   1  for  nonpe-  riodic  and
periodic boundary  conditions,  respectively.  The
cell-centered grid points run according to i = 1 , 3

, . . .  Q − 1 ,
j = 1 , 3 , . . .  M − 1 , and k = 1 , 3 , . . .  M − 1 . As 
described

FIG. 2. The initial configuration for the transformed
to nontrans- formed comparison. Here,  a  0.3,  η  1.2,
and χbg 550 K in the opacity function.

Elasticity and plasticity parameters are provided 
in Table I, and for these parameters, ts = 4.05 
μs. All simulations in

in  Sec.  III  B,  and  χ  are  stored at  cell  centers
while  V is stored at cell corners. The additional
grid points (i,  j,  k N  ) in the Z  direction in the
nonperiodic case are ghost points used  for
enforcing the Dirichlet boundary conditions V 0.

The  cell-centered  grid  points  on   the   top
boundary (i, j, N 1 ) contain linearly extrapolated
and  χ  values to ensure that and χ remain free
on the top boundary. In the

FIG. 3. Snapshots of the effective temperature field χ (x, t ) for the (a), (c), (e) nontransformed and (b), (d),
(f)  transformed  simulation.  Simple shear deformation is imposed via a domain transformation. The initial



condition in χ corresponds to a helix of elevated χ as described in Eq. (39) and depicted in Fig. 2. χbg = 550 K in
the opacity function in all panels. (a), (b) t = 2.88 × 105ts, a = 0.7, η = 1.25. (c), (d) t = 4.02 × 105ts, a = 0.8, η
= 1.35. (e), (f) t = 6 × 105ts, a = 0.9, η = 1.5.
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⎛

⎞
1 0

t

±
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are used to hold the wrapped values of (i, j, 1 ) and
χ(i, j, 1 ). At χ∞−χbg χ∞−χbg 4

FIG. 4. L2 norm of the χ , v, and σ simulation field differences between the transformed and nontransformed
methods computed using Eq. (40) in a simple shear simulation.  (Top left) A comparison of the three different
field  norms  on  a  grid  of  size  256  256  128.  (Top  right,  bottom left,  bottom right)  The  velocity,  effective
temperature, and stress norm differences, respectively, for varying levels of discretization  N = Nx = Ny = 2Nz.

periodic case, the grid points (i, j, k = N ) hold 
the velocity

dimensionally, we use a custom opacity function

valu
es

V(i, 
j,0)

, and the corresponding cell-centered 
grid points

[( χ     (  x  )  −  χ  bg 
)

if χ   (  x  )  −  χ  bg > 3 ,
− η

2 2

the simulation boundaries in the X and Y
exp 

[
−a

(  χ∞    χbg 
)  ]

otherwise,

directions, ghostpoints leaving the simulation domain are filledwith values
that wrap around, so that the ghost point
corresponding to grid
point (Q, j, k ) is filled with the real values from
grid point (0, j, k ). Similarly, values at points (i,
M, k ) are filled using values from (i, 0, k ).

A. Qualitative comparison between the
transformed  and
nontransformed methods

We now demonstrate the qualitative similarity
of solutions computed with the transformed and
the  standard  quasistatic  methods.  In  the
following  subsection,  this  comparison  is  made
quantitatively rigorous.  To  visualize the results
three

χ (x)−χbgwhere χbg is a background χ value. By choice of aand
η, the most physically relevant features in three-
dimensional visualizations of the  χ  field can be
revealed.

To  compare  the  transformed  and
nontransformed  meth-  ods,  a  physically
equivalent  situation  is  now  constructed.  We
employ  nonperiodic  Dirichlet  boundary
conditions in the Z direction and enforce V(X, Y,
γ L) (0,  0,  0). To impose deformation, we use a
shear transformation T(t ) correspond- ing to

Ub

γ L
T 0 1 0 . (37)

0 0 1

TABLE II. Timing details for the two simulation approaches with helical initial conditions in χ . “T” specifies the
transformed simulation and “NT” the nontransformed simulation. The transformed method takes longer than
the nontransformed method in general due to an increased number of multigrid V-cycles required to achieve
convergence. The average time spent per V-cycle is roughly the same in the two approaches. Each simulation
uses 32 processes.

         N    =     64                N    =     96               N    =     128             N    =     160             N    =     192               N    =     256       

T NT T NT T NT T NT T NT T NT

Total time (hours) 0.063
3

0.034
3

0.562
3

0.286
3

2.428
3

1.198
1

3.305
8

1.789
0

8.528
5

4.578
7

33.32
39

20.01
78

V-cycle time (hours) 0.045
2

0.028
0

0.413
0

0.243
4

1.784
5

1.036
5

2.197
6

1.325
1

5.724
2

3.439
8

21.22
68

15.24
32

No. of V-cycles 5544 3603 1248 8106 2218 1440 3465 2250 4991 3240 73164 5760

O(x) 
=

(36
)



1 1 2 8 2 3 4 0
Time/V-cycle 
(seconds)

0.029
4

0.028
0

0.119
1

0.108
1

0.289
6

0.259
1

0.228
2

0.212
0

0.412
9

0.381
0

1.044
4

0.952
7
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FIG. 5. The initial conditions for the cylindrical
inclusion numer- ical  experiments.  χbg 600 K,  a  0.3,
and η 1.2 in the opacity function.

Boundary conditions in the nontransformed 
simulation corre- spond to shearing between two
parallel plates v(x, y, γ L) (Ub, 0, 0). An initial 
linear velocity gradient is imposed in the 
nontransformed frame, so that

v(x, t = 0) = 

(
U  B  z   

, 0, 0

  

. (38)

Equation  (38)  ensures  equivalent  initial
conditions  in  both  methodologies,  and  also
prevents the introduction of  large gradients  in
the  deformation  rate  near  the  boundary.  To
create interesting dynamics, an initial condition
in  χ  corresponding  to  a  helix  oriented
perpendicular to the direction of shear is

FIG. 6. Snapshots of the effective temperature distribution χ (X, t ). Simple shear deformation is imposed via
a domain transformation. The initial condition in  χ  corresponds to a cylindrical inclusion as described in Sec.
VA1 and shown in Fig.  5.  On the left, clamped boundary conditions in Z are used, while on the right, Lees-
Edwards boundary conditions are used. χbg = 600 K in the opacity function in all subfigures. (a), (b) t = 5 ×
105ts. a = 0.3, and η = 1.2. (c), (d) t = 1.25 × 106ts. a = 0.45 and η = 1.55. (e), (f) t = 2 × 106ts. a = 0.55 and η
= 1.6.
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TABLE III. Timing details for the randomly initialized simulations with nonperiodic boundary conditions and
simple shear deformation.  The number of  required multigrid V-cycles  decreases  as the background  χ  field
increases, likely due to more homogeneous dynamics. Each simulation uses 32 processes.

μχ = 450 K μχ = 500 K μχ = 525 K μχ = 550 K μχ = 575
K

μχ = 600 K

Total time (hours) 95.2948 89.7239 76.9704 82.7853 71.7865 69.1593
V-cycle time (hours) 65.7853 60.5694 48.6470 53.4612 41.7683 40.4283
No. of V-cycles 34846 30663 26628 24991 22649 20735
Time/V-cycle (seconds) 6.7964 7.1111 6.5749 7.7012 6.6390 7.0195

Dual 10-core Dual 10-
core

Dual 10-core Dual 14-
core

Dual 8-
core

Dual 10-core

Processor details
2.20 GHz

2.20 GHz 2.20 GHz 1.70 GHz 2.40 GHz 2.20 GHz
Intel Xeon Intel Xeon Intel Xeon Intel Xeon Intel Xeon Intel 

Xeon
E5-2630 v4 E5-2630

v4
Silver 4114 E5-2650L

v4
E5-2630

v3
E5-2630 v4

considered. This is 
represented as

B. Quantitative comparison between the
transformed and 
nontransformed methods

x
δx = 

L −

z
δz = 

L −

y
   1  

8
− 

16 
,

y
   1  

8
− 

16 
,

Having demonstrated the qualitative
similarity between the  solutions  computed  by
the transformed and nontransformed methods,
we now present a rigorous quantitative compar-
ison.  We  utilize the same simulation  geometry,
boundary conditions, shear transformation, and
initial conditions as in Sec. IV A. We introduce a
norm over simulation fields,χ (x, t = 0) = 600 K + (200 K)e−750(δ2 +δ2 ). (39)           

x       z

1 γ L L LEquation (39) is written for the nontransformed simulation,
but the same initial conditions are used in the 
transformed

 f (t ) =
8γ L3

dZ

dY−γ L −L
dX f (X, t ) 2, (40)−L

simulation  with  the  substitution  x  X.  The
configuration is
visualized in the physical frame in Fig. 2.

The simulations are conducted on two grids of
size 256

256    128  with  a  quasistatic  time  step  !1t
31.25ts and with a value of Ub 10−7 L .  Snapshots
at  three  representative time points are shown
in Fig.  3. In Figs.  3(a) and 3(b) at        t  2.88
105ts, shear band nucleation has not begun, and
there  is  an  increase  in  the  χ  field  across  the
entire domain. At  t  4.02 105ts  in Figs.  3(c) and
3(d), shear bands have begun to nucleate along
the top and bottom planes of the helices. At t 6
105ts in  Figs.  3(e)  and  3(f),  the  bands  have
grown sharper, stronger, and span the system.
In all cases, the qualitative agreement is  very
good.

where the integral in Eq. (40) runs over the entire
simulation
domain and is numerically computed using the
trapezoid rule.  The  appearance  of    in  Eq.
(40)   is   interpreted   as  the  two-norm  for
vectors,  absolute  value  for  scalars,  and  the
Frobenius norm for matrices.  With  subscript NT
denoting  “nontransformed”  and  subscript  T
denoting  “transformed,”  Eq.  (40)  is  applied to
the quantities  v(X, t )NT    v(X, t )T,   σ (X, t )NT

σ (X, t )T, and χ (X, t )NT  χ (X, t )T. The phys-
ical  field  values  are  compared  across  the
reference  grid,  a  procedure  that  involves  two
subtleties.

In  the  transformed  simulation,  this
comparison requires computing  σ  from   and  v
from   V    using   Eqs.   (17)    and  (14),
respectively, at all reference grid points. In the

TABLE IV. Timing details for the randomly initialized simulations with Lees-Edwards boundary conditions. The
number  of  required  multigrid  V-cycles  decreases  as  the  background  χ  field  increases,  likely  due  to  more
homogeneous dynamics. Each simulation uses 32 processes.

μχ = 450 K μχ = 500 K μχ = 525
K

μχ = 550 K μχ = 575 K μχ = 600 K

Total time (hours) 91.4188 93.9238 81.7296 94.3549 72.8395 68.4994
V-cycle time (hours) 63.5750 64.8320 51.2489 62.8451 44.4758 39.9291
No. of V-cycles 34915 30467 26658 24697 22256 20495
Time/V-cycle (seconds) 6.5551 7.6606 6.9209 9.1607 7.1941 7.0137
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FIG. 7. Snapshots of the effective temperature field at  t  =  0ts.  All  simulations use nonperiodic boundary
conditions in Z and apply  simple shear deformation. For all plots, values of a = 0.25 and η = 1.3 are used. χbg
is set to μχ − 25 K in each pane. (a)–(f) have          μχ = 450, 500, 525, 550, 575, and 600 K, respectively.

nontransformed  simulation,  it  is  necessary  to
compute  the  nontransformed field values at
reference grid points. Because  the  reference
grid maps to a sheared physical grid, these val-
ues may not be defined in the nontransformed
simulation. We  handle  this  via  the  following
procedure. The nontransformed simulation grid
point  x(X)  corresponding to the reference grid
point X is first computed. If x(X) does not lie on
the  nontransformed grid, adjacent grid points
are linearly interpo-  lated  to  compute  an
approximate field value at x. This incurs an O(h2

)  error,  which is the same order of accuracy as
the  centered  differences  used  for  spatial
discretization in the two methods. As the sizes
of  the  simulation  grids  are  increased,  the
discrepancy in solutions will decrease.

To  ensure  that  issues  with  temporal
discretization do not affect the comparison, it is
also  necessary  to  scale  the  qua-  sistatic  time
step as the grid size is decreased. Because the
spatial order of accuracy is O(h2  ), we keep the
ratio  !1t/h2  fixed  across  all  simulations.  We

perform comparisons across grids of size N × N ×
N with N = 64, 96, 128, 160, 192, and
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256.  Respectively,  these  correspond  to  grid
spacings  L/32,  L/48,  L/64,  L/80,  L/96,  and
L/128. The quasistatic time step is taken to be
!1t  500ts for the coarsest simulation,  leading
to quasistatic time steps !1t 222.14, 125, 80,
55.55,  and  31.25,  respectively,  for  the  finer
simulations. The dif- fusion length scale in the
effective  temperature equation is taken to be
zero in all simulations for the purpose of the
comparison.

The results for the quantitative comparisons
are shown   in Fig.  4. In Fig.  4 (top left), the
three L2 norm curves are plotted together for a
value  of  N    256,  where each curve     is
normalized by a representative value in order
to  plot  on      a  comparable  dimensionless
scale.  The  effective  temperature  norm
increases  rapidly  early  on  in  the  simulation,
but then saturates around 10−4. The  σ  norm
stays around machine precision until the onset
of plasticity, when it rapidly increases and then
saturates around 10−3.  Similarly,  the  v  norm
stays below 10−13  until the onset of  plasticity,
when it  rapidly increases and then saturates
around 10−4. The agreement up to
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FIG. 8. Snapshots of the effective temperature field at t 4 105ts. All simulations use 
nonperiodic boundary conditions in Z and apply simple shear deformation. For all plots, values  of a 0.45 and 
η 1.75 are used. χbg is set  to μχ 25 K in each pane. (a)–(f) 
have μχ 450, 500, 525, 550, 575, and 600 K, respectively.

machine precision prior to the onset of plasticity
is expected, and validates the accuracy of the
derivation  of  the  equations  in  the  reference
frame.

In Fig. 4 (top right), the effective temperature
norm  curves  are shown for all values of N .
Here, there is a steady increase  in the
discrepancy before the onset of plasticity due to
advec- tion across the grid. After plasticity is
activated around t
1.2  105ts,  there is a period of saturation in all
curves,  fol-  lowed  by  a  period  of  increase
beginning  around  t  3 105ts,  where some
simulation curves cross and end at roughly
equal  values.  As  expected,  the  discrepancies
generally  decrease  as  the  grid  spacing  is
decreased.

In Fig. 4 (bottom left), the velocity norm
curves are shown as a function of time for all
discretization levels. In all cases, the difference
between the simulation methods is on the order

of machine precision until the onset of  plasticity,
when there is a sharp and immediate jump. The
size of the jump decreases with the discretization
level as expected.
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In  Fig.  4  (bottom  right),  the  stress  norm
curves  are  shown.  These  curves  display  a
combination of the trends in the velocity and
effective  temperature plots.  Before the onset
of  plasticity,  the error in all simulations is on
the  order  of  ma-  chine  precision.  After  the
onset of plasticity, there is a sharp jump in all
simulations,  and  the  size  of  the  jump
decreases with higher resolution. Past around t
2  105ts,  the curves begin to cross, all ending
at roughly equivalent values.

To compare the computational efficiency of
the two meth- ods, we  have  reported timing
statistics  for  all  simulations     in  Table   II.
Displayed are the total time, the total number
of  multigrid  V-cycles,  the  total  time spent  in
multigrid  V- cycles, and the average time per
V-cycle for the  transformed
(T) and  nontransformed  (NT)  methods.  As  is
clear  from the table, the transformed method
incurs  a  mild  increase  in  computational
expense. The average time spent per V-cycle
is roughly the same, but the total number of
multigrid V-cycles is higher for the transformed
method. This is likely due to the  increased
complexity of the linear system required for
the
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= ×FIG. 9. Snapshots of the effective temperature field at t 6 105ts. All simulations use 
nonperiodic boundary conditions in Z and apply simple shear deformation. For all plots, values  of a 0.45 and 
η 1.75 are used. χbg is set  to μχ 25 K in each pane. (a)–(f) 
have μχ 450, 500, 525, 550, 575, and 600 K, respectively.

stress projection in the transformed method 
when compared to the nontransformed method.

V.NUMERICAL EXAMPLES

A. Simple  shear  and  the  effect  of
Lees-Edwards  boundary
conditions

As  a  first  example  application  of  the
transformation method, we consider connecting
a  continuum-scale  model  to  typical  discrete
molecular dynamics simulations. A signifi- cant
difference  between  continuum  simulation  and
molecu-  lar  dynamics  is  in  the  boundary
conditions.  Molecular  dy-  namics simulations
commonly employ Lees-Edwards bound-  ary
conditions, where periodic copies of the system
are placed above and below with a prescribed
horizontal velocity.

Continuum-scale  boundary  conditions  usually
set  a  shear  velocity on the top and bottom
boundaries to achieve the same effect.

Lees-Edwards  boundary  conditions  can  be
implemented in the continuum through the use
of the coordinate transfor- mation methodology
presented  here,  by  combining  a  shear
transformation  T(t  )  as  in  Eq.  (23)  with
periodicity  in  the  Z  direction. In the following
sections, we present several numer-  ical
examples using Lees-Edwards and nonperiodic
boundary conditions. Particular attention is paid
to  differences  in  shear  banding dynamics
produced by these two choices of boundary
conditions.

1.Cylindrical inclusion

We  first  consider  an  initial  condition
corresponding  to  a  cylindrical  defect  in  the
material. Accordingly, the effective temperature



field is initially  elevated throughout a cylinder
of
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FIG. 10.  Snapshots of the effective temperature field at t 106ts. All simulations use 
nonperiodic boundary conditions in Z and apply simple shear deformation. For all plots, values of a 0.75 and 
η 2  are used. χbg  is set to μχ 25 K in each pane. (a)–(f) have
μχ 450, 500, 525, 550, 575, and 600 K, respectively.

finite length oriented along the 
direction of shear:

χ (X, t = 0)[

550 K (200 K)e−500

( 
Z  2   

+ Y 2 
)

if X

[ 
1 1 

]
,

total  V-cycles  are  required.  The  Lees-Edwards
simulation  takes  10.082  total  hours  when  run
with 32 processes on an Ubuntu Linux computer
with  dual  10-core  2.20-GHz  Intel  Xeon  Silver
4114 processors. The total time spent in multi-

grid V-cycles is 7.393 hours and 28 293 total V-
cycles are

0

otherwise.
(41
)

required.
Results for Lees-Edwards and nonperiodic 

boundary con- ditions are shown in Fig. 6, on the 
right and left, respectively.

The initial condition is shown in Fig. 5. The 
diffusion length
scale is set to l = 3 h and the quasistatic time
step is set

The shear banding dynamics in this case is simple,
and corresponds to outward nucleation of a single 
band from the

2to !1t = 200t × 256 × 128. The localized cylinder. At t = 5 × 105t in Figs. 6(a) and 6(b),
s. The grid is of size 256

simulation  is  performed  to  a  final  value  of  t
2    106ts.  To  induce  shear  banding,  a  shear
transformation  of  the  form (23) is used with a
value  of  Ub 10−7L/ts,  and  both  clamped  and
Lees-Edwards  boundary  conditions  are  consid-

ered. The clamped simulation takes 13.851 total
hours when run with 32 processes on an Ubuntu
Linux computer with dual 10-core 2.20-GHz Intel
Xeon E5-2630 v4 processors.
10.452  hours  are  spent  in  multigrid  V-cycles
and  28 293

=
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=

s

nucleation of the shear band has begun, and
there is some spreading in the χ field visible at
the caps of  the  cylinder.  By  t  1.25 106ts,  a
prominent  system-spanning  shear  band  has
formed, as displayed in Figs.  6(c)  and 6(d). In
Figs. 6(e) and 6(f) at t 2 106ts, the shear band
continues to grow stronger and thicker. In this
case, the dynamics is virtually identical for the
Lees-Edwards  and  nonperiodic  boundary
conditions.
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σχ − X−R 2 −2 R 2 conditions. The diffusion length scale is set to l 

= 3 h, and the

FIG. 11. Snapshots of the effective temperature field at t = 0ts. All simulations use Lees-Edwards boundary 
conditions. For all plots, values of a = 0.25 and η = 1.3 are used. χbg is set to μχ − 25 K in each pane. (a)–(f) 
have μχ = 450, 500, 525, 550, 575, and 600 K, respectively.

2.A  randomly  fluctuating  effective
temperature field

We now consider a randomly distributed initial
condition in the effective temperature field χ (X,
t 0).  We  first populate the grid and a shell  of
ghost points with random variables   χζ (X) using
the Box-Muller  algorithm.  With  μχ and  σχ ,  re-
spectively,  denoting  the  desired  mean  and
standard deviation, we perform the convolution

computational  feasibility,  we  choose  a  cutoff
length  of  5lc,  so  that  the  Gaussian  kernel  is
considered  to  be  zero  past  this  point.  In  the
following  studies,  a  value  of  lc 5h  is  used,
leading to an additional 25 ghost points padding
the grid for the purpose of the convolution.

Simulations are performed for mean values μχ

450, 500, 525, 550, 575, and 600 K with a fixed
value of

 σχ = 15 K for both nonperiodic and Lees-Edwards 
boundary

(X) 
= N

e
R∈V  

c χζ (R) + μχ , N 
=

e
R∈V

c    ,

(42
)

quasistatic time step is set to !1t = 200ts. The
simulations are all conducted on a 512 × 512 ×
256 cell  grid  to  a  final  value  of  t  =  106ts.  To
induce shear banding, a shear transformation

where  V  denotes the set of  grid points and  V
denotes  the  extended  set  of  grid  points  and
ghost  points.  Equation  (42)  ensures  that  the
effective  temperature  value  at  each  point  is
normally distributed with mean μχ and standard
deviation  σχ . In practice, the sums in Eq. (42)
are performed with      a cutoff length  scale

specified  as  a  multiplicative  factor  of  the
convolution  length  scale  lc,  and  the  number  of

ghost points in V is set by the choice of cutoff
length scale. For

χ

          



of the form (23) with a value of  Ub 10−7L/ts is
imposed on
the domain. Timing details for the nonperiodic
simulations are shown in Table III, while timing
details for the Lees-Edwards  simulations  are
shown in Table IV.

The results for this sequence of simulations
in the case of nonperiodic boundary conditions
are  shown  in  Figs.  7–10.  Each  figure
corresponds to a single snapshot in time, and
the  mean  increases  with  the  alphabetical
labeling. The initial
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FIG. 12.   Snapshots of  the effective temperature field at  t   4   105ts.  All  simulations use Lees-Edwards
boundary conditions. For all   plots, values of a   0.45 and η    1.75 are used. χbg  is set to μχ    25 K in each pane.
(a)–(f) have μχ    450, 500, 525, 550, 575, and    600 K, respectively.

conditions for the effective temperature field are
shown  in  Fig.  7.  At  t 0,  all  simulations  look
essentially  the  same.  The  realization  of  the
noise in each configuration is identical, and each
pane  is  obtained  from  the  previous  by  a
constant shift  in χ .

By t = 4 × 105ts in Fig. 8, the simulations with 
the two

9(d) show the development of several flat and

thin shear bands centered around Z 0.
Figure  10  (t    106ts)  displays  clear  shear

banding  across   all  values  of  μχ ,  and  makes
clear  the  dependence  of  shear  banding
structure  on  μχ .  There  is  one  primary  band
in
Fig. 10(a), with a split near around  X  ≈ −0.5 not
present in

lowest values of μχ exhibit clear shear bands 
with curvature in

L
Fig. 10(b). Figure 10(b) also displays an additional 
thin band

both the X and Y directions. The simulation with
μχ 450 K
in Fig. 8(a) displays two shear bands that cross
each other diagonally near X  0.5. The simulation
with  μχ  500 K in Fig.  8(b)  displays only one of
these bands, though the second has begun to
nucleate.  This  single  band  is  also  apparent  in
Fig.  8(c),  but it  is significantly  weaker.  A third
nascent band near Z 0 may also be observed.

More  details  are  clear  at  t  6   105ts  in  Fig.
9.  Fig- ure 9(a) is similar to Fig. 8(a), whereas

Fig. 9(b) shows further development of the shear
bands in Fig. 8(b). Figures 9(c) and
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L

near  Z 0.0 that has not formed in Fig.  10(a).
Figure  10(c) displays several additional bands
near  Z 0  that  form  a  complex  branching
pattern. Figure 10(d) resolves more fine-
scale structure in the band near  Z      0.25 when
compared to
Figs.  10(a)–10(c),  and  has  more  bands  near
lower  values  of   Z .  Figures  10(e)  and  10(f)
show  several  additional  thin  bands  when
compared to the previous panels, but they are
earlier in their formation and less prominently
displayed.

Taken  together,  Figs.  7–10 provide
qualitative  insight into how macroscopic shear
banding dynamics and structure
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= ×FIG. 13.   Snapshots of  the effective temperature field at  t   6   105ts.  All  simulations use Lees-Edwards
boundary conditions. For all   plots, values of a   0.45 and η    1.75 are used. χbg  is set to μχ    25 K in each pane.
(a)–(f) have μχ    450, 500, 525, 550, 575, and    600 K, respectively.

reflect  the  underlying  effective  temperature
distribution.  In  a  simulation with small mean,
there are few regions susceptible  shear band
nucleation, most clearly displayed in the
formation  of  only  a  single  band in  the  lowest
mean simulation. These nucleation points must
connect to form a band, as indicated by the mild
curvature seen in the bands in Figs.  10(a) and
10(b).  As  μχ is increased, additional  regions of
sufficiently  high χ exist for band nucleation,
curvature decreases, and the number of bands
increases.  This  first  presents  itself,  as  seen in
Figs. 7(d)–10(d), as an existing band splitting
into multiple. The gap in the split grows with μχ ,
as seen in Figs. 7(d)–10(d) and 7(e)–10(e), until
it eventually breaks off into its  own band.  With
high  μχ as  in  Figs.  7(e)–10(e) and  7(f)–10(f),
shear  bands  can  nucleate  in  many  different
locations  without  curvature.  The  timescale  for
shear band development is also more rapid in
simulations with low background χ field.

The  results  for  an  identical  sequence  of
simulations in the

case  of  Lees-Edwards  boundary  conditions  are
displayed in Figs. 11–14. The initial conditions are
displayed in Fig.  11, which differ from those in
Fig. 7, as the convolution used
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to  generate  the  initial  distribution  wraps
around  over  the  boundary  in  Z  to  enforce
periodicity.

By t  4   105ts in Fig. 12(a), a single vertical
shear  band  has  formed,  along  with  an
additional, weaker vertical band and a similar
horizontal  band. These bands are also visible
in  Fig.  12(b) earlier  in  their  development.
Vertical  shear bands do not typically  form in
continuum  simulations  with  nonperiodic
boundary conditions in Z, but are frequently
seen in MD simulations [73,74], indicating that
the  orientation  of  shear bands could be
strongly related to the specific boundary
conditions used.

Further progression is clear at t 6 105ts in Fig.
13.

Figure 13(a) is similar to Fig. 12(a). Figure
13(b) displays sig-  nificant  strengthening  of
the  early-stage  bands  in  Fig.  12(b).  Figures
13(c)  and  13(d)  show the initiation of several
shear bands.

Figure  14 shows  the  results  for  t  106ts.
Figure  14(a) displays  a  horizontal  band
perpendicular to the vertical band that exhibits
significant  curvature.  Figure  14(b)  shows  a
sim-  ilar  result,  with  a  thinner  vertical  band
and a thicker, flatter



= = −
=

=FIG. 14. Snapshots of the effective temperature field at t  106ts.  All simulations use Lees-Edwards boundary
conditions. For all plots, values of a  0.75 and η  2 are used. χbg  is set to μχ  25 K in each pane. (a)–(f) have μχ

450, 500, 525, 550, 575, and 600 K,   respectively.

horizontal  band.  Figure  14(c) shows  similar
features,  but  also displays the development of
several additional horizontal bands extending to
the  bottom  of  the  simulation  domain.
Furthermore,  the  thick  horizontal  band  in  Fig.
14(b)  can be seen to split and fracture. In Fig.
14(d),  the  vertical  band  has  been  almost
entirely washed out,  and a complex branching
pattern of horizontal bands is seen. Figures
14(e) and 14(f) are  similar to Fig. 14(d), but
they are earlier in their development and some
of the fine-scale features are washed out due to
the  high background χ field. The agreement
with the nonperiodic  simulations  increases
strongly as μχ is increased.

Figure  14  clearly demonstrates the effect of
increasing μχ with periodic boundary conditions.
In the simulations with lower  μχ , nucleation of
vertical shear bands is more  likely,  and curved
horizontal bands develop later in the simulation
than  vertical  bands.  As  μχ is  increased,  the
vertical  bands  begin  to  disappear.  As  in  the

nonperiodic case, the curvature in the horizontal
bands decreases with μχ . As μχ is increased



further, the vertical bands disappear
altogether. In this regime,  increasing  μχ

increases the number of horizontal bands, and
the qualitative agreement with the nonperiodic
results is good. These results suggest that, for
higher μχ , the effect of period- icity in the  Z
direction is less significant.

B. Pure shear

As  a  second  example  transformation,  we
now  consider  pure  shear  deformation.  In
metallic  glasses,  experimental  evidence
indicates that pure shear is the primary failure
mode under  compressive stress,  and several
recent  experi-  ments  have  been  conducted
probing  BMGs  under  pure  shear  conditions
[75–78]. Pure shear is particularly interesting
due to the simplicity of its implementation in
the transformation  methodology.  To  simulate
pure  shear  on  a  physical  grid,  it  would  be
necessary  to  impose  traction  boundary
conditions  on the top, bottom, and sides,
which poses computational
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FIG. 15. Snapshots of the effective temperature distribution χ (X, t ) for a quasistatic simulation. Pure shear
deformation is imposed via a domain transformation with an initial condition corresponding to a sequence of
blips of elevated χ lying roughly along the superdiagonal of the simulation domain. This simulation uses periodic
boundary conditions in all three directions. χbg = 550 K in the opacity function for
all panels. (a) t = 0ts, a = 0.75, η = 1.2. (b) t = 5 × 104ts, a = 0.75, η = 1.2. (c) t = 8 × 104ts, a = 0.75, η = 1.25. 
(d) t = 105ts, a = 0.75,
η = 1.25. (e) t = 2 × 105ts, a = 0.4, η = 1.6. (e) t = 4 × 105ts, a = 1.1, η = 2.45.

difficulties. Within the transformation 
framework, pure shear can be implemented 
using the transformation

⎛
A(t ) 0 0 

⎞

1.Gaussian defects

To  gain some physical  intuition about  shear
banding dy-  namics with pure shear boundary
conditions, we first consider an example initial
condition in χ corresponding to localized defects
in the material. It is expected that diagonal
shear bands

T(t ) = 
⎜
⎝

0 1 0 .
(43)

    1   
A(t )

will nucleate outward from the imperfections. We 
first define the quantities

X1 = L × (−0.3, −0.3, 0.2),

A(t  )  can  be  chosen  as  any  monotonically
increasing  function  of  time.  In  the  following
studies,  we  choose  A(t  ) eξt  ,  where  ξ is  a
simulation  parameter  that  sets  the  rate  of
extension and compression of the x and z axes,
respectively.  For  numerical  stability, it is
important to choose ξ small, so that large
stresses  do  not  cause  divergences  in  the

simulation fields.  In our simulations,
we choose ξ as a fraction of t f ,
which effectively  sets  the  strain  at
the end of the simulation.

0



X2 = L × (0.3, 0.3, −0.2),
X3 = L × (−0.1, −0.1, 0.1),
X4 = L × (0.1, 0.1, −0.1),
X5 = L × (0, 0, 0), δ1 = δ2 = 
δ5 = 200, δ3 = δ4 = 150,
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FIG. 16. Snapshots of the effective temperature distribution χ (X, t ) for a quasistatic simulation. Pure shear
deformation is imposed via a domain transformation with an initial condition corresponding to a sequence of
blips  of  elevated  χ  lying  roughly  along  the  superdiagonal  of  the  simulation  domain.  This  simulation  uses
nonperiodic boundary conditions in Z and is periodic in the X and Y directions. χbg = 550 K
in the opacity function in all panels. (a) t = 0ts, a = 0.75, η = 1.2. (b) t = 5 × 103ts, a = 0.75, η = 1.2. (c) t = 
104ts, a = 0.75, η = 1.45.
(d) t = 1.5 × 104ts, a = 0.75, η = 1.45. (e) t = 4 × 105ts, a = 1.75, η = 1.75.

and then take the initial condition in χ to be

χ (X, t = 0) = 550 K + (200 K) e−δi 

X − 
Xi  2 

. (44)
i=1

Simulations  are  performed  with  periodic  and
nonperiodic boundary conditions in  Z  on grids
of size 256  256   128. The X and Y dimensions
use periodic boundary conditions  in both cases.
The diffusion length scale is set to l  = 3h and
the quasistatic time step is !1t = 200ts. ξ in Eq.
(43) is set

is 3.283 hours, and the total number of V-cycles
is 11 596. The nonperiodic simulation is run with
32 processes on an Ubuntu Linux computer with
dual  10-core  2.20-GHz  Intel  Xeon  E5-2630
processors.  The total  time is  8.832 hours,  the
total  time spent  in  multigrid  V-cycles is  6.506
hours,  and the  total  number  of  V-cycles is  11
075.

Results for periodic and nonperiodic boundary
conditions  are  shown  in  Figs.  15  and  16,
respectively. The initial condi- tions are shown in
Figs.  15(a)  and  16(a).  In  both  Figs.  15(b) and
16(b)  at  t  5   104ts,  some spreading in the  χ
field  is    seen  near  the  defects.  Shortly
thereafter, the dynamics in the

to be   1  
f with t f = 4 × 105ts the total simulation 

duration,
nonperiodic and periodic cases begin to differ 
dramatically.

so  that  A(tf )   e1/4    1.284.  The  periodic simulation is run  with 32 processes on an Ubuntu



= ×
Linux computer with dual 14-core 1.70-GHz Intel
Xeon E5-2650L processors. The total  time  is
4.721 hours, the total time spent in multigrid V-
cycles

At  t  8 104ts in  Fig.  15(c),  three  diagonal
bands   are  seen  connecting  the  defects.  The
bands become more pro- nounced  at  t = 105ts

in  Fig  15(d).  This  continues  into
t = 2×105ts in Fig. 15(e), along with the addition 
of diagonal



= ×
= ×

TABLE V. Timing details for the randomly initialized simulations with periodic boundary conditions and pure
shear deformation. The number of required multigrid V-cycles decreases as the background χ field increases,
likely due to more homogeneous dynamics. Each simulation uses 32 processes.

μχ = 450 K μχ = 500 K μχ = 525 K μχ = 550 K μχ = 575 K μχ = 600 K

Total time (hours) 232.7589 171.3655 159.3944 129.3347 164.1213 206.7765
V-cycle time (hours) 176.7667 125.4595 115.4887 81.0119 114.6882 143.3524
No. of V-cycles 66214 63871 62263 59750 57772 55149
Time/V-cycle (seconds) 9.6107 7.0734 6.6774 4.8811 7.1467 9.3577

Processor
Dual 10-core Dual 10-

core
Dual 10-

core
Dual 16-

core
Dual 14-

core
Dual 14-core

2.20 GHz 2.20 GHz 2.20 GHz 2.10 GHz 1.70 GHz 1.70 GHz
Intel Xeon Intel Xeon Intel Xeon Intel Xeon Intel Xeon Intel Xeon

E5-2630 v4 E5-2630
v4

Silver 4114
v4

E5-2683
v4

E5-2650L
v4

E5-2650L v4

bands perpendicular to the original bands. Both
sets of bands continue  to  grow  larger  and
stronger  by  t  4  105ts  in Fig. 15(f).

The  deformation  dynamics  with  nonperiodic
boundary conditions  is  significantly  different.
By  t   8   104ts   in Fig. 16(c), diagonal bands
have started to nucleate off of each

FIG. 17. Snapshots of the effective temperature field at t = 0ts with pure shear transformation imposed on
the domain. All simulations use periodic boundary conditions. For all plots, a value of a = 0.25 and η = 1.3 is
used in the opacity function, and χbg is set to μχ − 25 K. (a)–(f) have μχ = 450, 500, 525, 550, 575, and 600 K,
respectively.
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FIG. 18.  Snapshots of the effective temperature field at  t  =  3  ×  105ts with a pure shear transformation
imposed on the domain. All simulations use periodic boundary conditions. For all plots, a value of a = 0.55 and
η = 1.5 is used in the opacity function, and χbg is set  to μχ − 25 K. (a)–(f) have μχ = 450, 500, 525, 550, 575,
and 600 K, respectively.

defect  in  a  direction  roughly  perpendicular  to
the  first  bands  formed  in  the  periodic
simulation.  By  t  105ts in  Fig.  16(d),  this
nucleation has grown more prominent, and an
increase in the background χ field is seen across
the simulation. At times t 2 105ts and t 2.5 105ts

in  Figs.  16(e)  and   16(f),  respectively,  the
qualitative structure remains the same,  but  the
background χ field continues to increase. Unlike
in the periodic case, true system-spanning shear
bands do not fully form.

2.A randomly fluctuating effective 
temperature field

In  this  section,  we  consider  the  same
sequence of ran- dom initializations as in Sec.
VA  2,  but   now   subject   to  pure  shear
deformation.  The diffusion length scale is set to
3  h  and the quasistatic  time step is set  to  !1t
200ts.  All  simulations  are conducted on a 512
512     256  cell  grid.     A  pure  shear
transformation of the form (43) is used with  A(t

) = eξt and a value of ξ = 1 with t f = 2 × 106ts so
that



−

=
A(tf )  e1/4  1.284.  Simulations  are  performed
with fully  periodic  boundary  conditions  in  all
directions;  nonperiodic  simulations produce
qualitatively similar differences as in the case
of simple shear.  In all figure panels, χbg  is set
to be    μχ 25 K. Timing data for the simulations
are reported in Table V.

The results are shown in Figs.  17–20, with
the  initial  con-  dition  shown  in  Fig.  17.  All
simulations undergo an increase in χ until the
formation of diagonal shear bands begins.
Much like the defect simulations  seen in the
previous  section,  shear  bands  nucleate
diagonally  at  roughly  45◦  angles  to the  X  -Y
plane.  As  in  the  simple  shear  simulations,
distributions  in  χ  with higher mean values
have slower dynamics. The structural effect of
varying μχ is most easily seen in Fig. 20. As μχ

increases, the number of shear bands vastly
increases, forming  a  cross-hatched  pattern
throughout  the  domain.  The  cross  hatching
becomes more regular and more finely spaced
with higher values of μχ .



FIG. 19.  Snapshots of the effective temperature field at  t  =  6  ×  105ts with a pure shear transformation
imposed on the domain. All simulations use periodic boundary conditions. For all plots, a value of a = 0.75 and
η = 1.6 is used in the opacity function, and χbg is set  to μχ − 25 K. (a)–(f) have μχ = 450, 500, 525, 550, 575,
and 600 K, respectively.

VI. CONCLUSION

In  this  work,  we  derived  the  equations  of
hypoelastoplas-  ticity  on  a  fixed  reference
domain which can be mapped      to a physically
deforming  material  through  a  time-varying
linear transformation T(t ). The difference
between this frame and the Lagrangian frame
was  shown,  and  the  utility  of  this  frame  in
implementing  complex  boundary  conditions
such  as  the  Lees-Edwards conditions  used in
molecular dynam- ics and pure shear in a fully
periodic  setting  was  demon-  strated.  The
quasistatic projection algorithm was derived in
the reference frame and its  convergence to the
standard  method  was  shown  as  the  level  of
discretization  increases.  Several  numerical
examples were considered in the STZ model of
amorphous  plasticity.  In  particular,  for  a
randomly  distributed  initial  condition  in  the
effective  temperature  field,  the dependence of
shear  banding  dynamics  on  the  mean  of  the

distribution  was  discussed  under  conditions  of
simple shear and pure shear. Our work highlights,
for example, that



the direction of  shear bands (e.g.,  horizontal
versus  vertical  in  simple  shear)  can  be
strongly influenced by boundary conditions.

With  the  simple  implementation  of  Lees-
Edwards  condi-  tions  afforded  by  the
transformation method, boundary con- ditions
can  now  be  made  equivalent  in  MD  and
continuum  modeling. The development of a
method to compute a precise  matching
between  atomic  configurations  in  molecular
dy-  namics  and  effective  temperature
distributions  in  continuum  simulations  is  a
promising  direction  of  future  research  which
requires our derivation here. The ability to do
so  would  place  internal  state  variables  in
plasticity  models  (such  as  the  ef-  fective
temperature  in  the  STZ  model)  on  a  firmer
theoretical  footing.  In  addition,  hybrid
computational  approaches  could  be
developed, where an MD simulation could first
be used  to compute an initial condition for a
significantly larger scale continuum simulation.
This  type  of  approach  would  combine  the
physical accuracy of MD with the capability of
continuum  simulations to simulate large
system sizes and long times. As



FIG. 20. Snapshots of the effective temperature field at  t  =  1.5  ×  106ts with a pure shear transformation
imposed on the domain. All simulations use periodic boundary conditions. For all plots, a value of a = 1.35 and
η = 1.5 is used in the opacity function, and χbg is set to μχ − 25 K. (a)–(f) have μχ = 450, 500, 525, 550, 575, and
600 K, respectively.

an added benefit, our approach enables the
study of the effect  of periodic boundary
conditions in general, independent of the
relevance of these settings to MD.

So  far,  our implementations are restricted to
cases  where  the material fills the entire
computational domain, and loading  is  applied
via  planar  boundary  conditions,  or  via  the
coordi-  nate  transformation  framework.
However, the methods pre- sented here could be
generalized to materials with free bound- aries,
using the  level  set method [79,80] to track the
material  boundary.  Methods  to  do  this  have
already  been  implemented  in  two  dimensions
[33,56,81],  and  the  same  methods  could  be
used, in principle, in three dimensions. However,
it is

a  challenging  computational  task  since  it
requires  extensive  modifications to the finite-
difference stencils near the material  boundary.
In particular, since some grid points will lie
outside  the material, the geometric multigrid
method is no longer well suited for solving the
projection step since it relies on a regular
arrangement of grid points. It may be necessary
to  use  al-  gebraic  multigrid  approaches  or
Krylov-based  linear  solvers.  Nevertheless, this
remains a high priority for future work since it
would open up many new directions, such as
studying three-  dimensional  cavitation [11,82],
simulating  mode  III  frac-  ture  [83],  and
predicting  the  topography  of  fracture  surfaces
[84–86].
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APPENDIX A: ADVECTIVE DERIVATIVE CALCULATION

Consider a scalar field φ(x, t ) = φ(TX, t ). We can compute the advective derivative of φ as follows
using the chain rule:
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In the last line, we have used Eq. (14) and the identity ∂T
−1 

= −T−1 ∂T T−1.

APPENDIX B: LINEAR SYSTEM FOR SIMPLE SHEAR

Let V = (U, V, W )T. For a simple shear transformation as given in Eq. (23), C : D takes the form
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The above set of equations leads to the linear system [Eqs. (26) and (27)] for the velocity field
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Discretization of the second-derivative terms in Eqs. (B7)–(B9) using the finite differences in Sec. III B
enables application of the geometric multigrid method to solve for U , V , and W .
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APPENDIX C: LINEAR SYSTEM FOR PURE SHEAR

For a pure shear transformation of the form (43) with A(t ) = eξt as in the main text, C : D takes the 
form

(C : D)11 = λ∇X · V + 2μ
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The above set of equations leads to the linear system [Eqs. (26) and (27)] for the velocity field
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