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Partial-wave projection of relativistic three-body amplitudes
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We derive the integral equations for partial-wave projected three-body scattering amplitudes, starting
from the integral equations for three-body amplitudes developed for lattice QCD analyses. The results,
which hold for generic three-body systems of spinless particles, build upon the recently derived partial-
wave projected one-particle exchange, a primary component of the relativistic framework proven to satisfy
S matrix unitarity. We derive simplified expressions for factorizable short-distance interactions, K3, in two
equivalent formalisms—one symmetric under particle interchange and one asymmetric. For the
asymmetric case, we offer parametrizations useful for amplitude analysis. Finally, we examine toy
models for 3π systems at unphysically heavy pion masses with total isospins 0, 1, and 2.

DOI: 10.1103/PhysRevD.111.036029

I. INTRODUCTION

Presently, there is a community-wide effort to have
faithful representations for three-hadron scattering ampli-
tudes. This is being driven by three major thrust areas in
nuclear and hadronic physics: hadron spectroscopy, bf
nuclear structure, and fundamental symmetries. Before
discussing the details of this program, we briefly discuss
some of the needs for three-body scattering amplitudes for
the subfields above. Most states in the hadron spectrum are
unstable resonances whose existence can only be recon-
structed by studying the analytical properties of the
amplitudes of its byproducts, which normally involve
two and/or more multihadron states. Notable examples
include the recently observed Tcc [1], the Xð2370Þ, which
was recently hypothesized to be a glueball candidate by the
BESIII Collaboration [2], and the spin-exotic π1 resonance
being searched for at the GlueX experiment [3]. To have an

accurate determination of the nuclear spectrum and its
response to electroweak probes, it is critical to have a robust
determination of three-nucleon dynamics [4], which would
preferably be constrained directly from quantum chromo-
dynamics (QCD). Finally, several electroweak heavy-
meson decays to multimeson states may present signals
for possible physics beyond the standard model (BSM).
These include recent large CP violations observed in the
LHCb experiment [5–9] in rare heavy-meson decays to
three light hadrons (π’s and K’s). Currently, it is not
understood if these are evidence of new sources of CP
violation or dynamical enhancement due to final state
interactions [10–15]. In other words, the inability to have
precise and accurate determinations of the QCD contribu-
tions of such decays limits our ability to claim evidence for
BSM physics confidently.
The current effort toward determining three-hadron

scattering amplitudes has two parallel tracks. One track
aims to have representations of scattering amplitudes that
satisfy the principles of the S matrix, such as enforcing
unitarity and including as much of the correct analytic
structure as possible [16–24]. Such a representation can be
achieved up to a class of unknown functions, which can at
least be proved to be real for physical energies. Different
practitioners give these functions different names; here, we
will refer to these as K matrices as is common in hadron
spectroscopy. In parallel, there is an ambitious program

*Contact author: rbriceno@berkeley.edu
†Contact author: costa@jlab.org, costa@lbl.gov
‡Contact author: awjackura@wm.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 111, 036029 (2025)

2470-0010=2025=111(3)=036029(23) 036029-1 Published by the American Physical Society

https://ror.org/01an7q238
https://ror.org/02jbv0t02
https://ror.org/02vwzrd76
https://ror.org/02jbv0t02
https://orcid.org/0000-0002-3249-5410
https://ror.org/03hsf0573
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.111.036029&domain=pdf&date_stamp=2025-02-21
https://doi.org/10.1103/PhysRevD.111.036029
https://doi.org/10.1103/PhysRevD.111.036029
https://doi.org/10.1103/PhysRevD.111.036029
https://doi.org/10.1103/PhysRevD.111.036029
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


toward constraining these K matrices directly from QCD
using lattice QCD [25–30]. Scattering observables cannot
be determined directly from lattice QCD. As a result, this
program relies on the derivation of nonperturbative rela-
tions between the lattice QCD observables and the physical
K matrices [17,31–47].1
In this work, we start from the relativistic integral

equations presented in Refs. [17,20,38] and the partial-
wave projection of the one-particle exchange diagram
presented in Ref. [19], to derive a set of nonperturbative
integral equations that relativistic three-particle scattering
amplitudes with definite parity and arbitrary angular
momentum must satisfy.2 In Sec. II, we do this for two
equivalent types of formalism, distinguished by whether the
K matrix is asymmetric [20,39] or symmetric [17] under
the interchange of the particles. Details of the derivation
are presented in Appendix A. In Sec. II D, we provide a
prescription for any system composed of three spinless
particles, including any number of coupled channels as well
as the particles having flavor isospin symmetry.
In Sec. III, we consider the consequence of parametriza-

tions of the K matrix that are factorizable in terms of the
initial/final kinematic variables, and we derive simplified
expressions for the integral equations presented in Sec. II. In
Sec. IV, we provide further implications for theories that
include two-body bound states. In particular, we show how
the Lehmann–Symanzik–Zimmermann (LSZ) formalism
can be used to provide two-particle scattering amplitudes
with definite parity and arbitrary angular momentum, where
one of the particles in the initial and final states is a bound
state. In Sec. V, we consider the numerical solutions of these
integral equations for toy models of 3π system with total
isospin 2, 1 and 0, which have nonzero angular momentum
and involve multiple open channels. After providing a
numerical prescription, which is a simple generalization
from the prescriptions presented in Refs. [18,88] for J ¼ 0
angular momentum, we find that for all models considered,
the numerical solutions satisfy unitarity below the three-
particle threshold, as expected [36,89].
In addition to Appendix A, which discusses details

needed for performing the partial-wave projection of
integral equations, Appendix B discusses freedom in the
definition of the two-body phase space appearing in the
integral equations for three-body scattering amplitudes.
Reference [90] showed that this freedom can be used to
generalize previously existing formalism for relating finite-
volume spectra of three-particle systems to K matrices [32]

to accommodate the presence of two-body bound states
and/or resonances. Although such formalism will not be
used in this work, in Appendix B, we explain how the shifts
in the phase space can be incorporated in the partial-wave
projected integral equations.

II. PARTIAL-WAVE PROJECTED AMPLITUDES

We consider the elastic scattering of three spinless
particles, which we denote as φ, with no internal quan-
tum numbers. We make a partial generalization to coupled
spinless systems, e.g., including flavor isospin, in
Sec. II D. We kinematically describe the reaction as one
involving pairs, where two of the particles form a dimer of
relative angular momentum l, recoiling against spectators
with some momentum. With this description, the relative
momentumbetween the pair constituents is removed, and the
system is described by themagnitudes3 of the initial and final
spectatormomenta k andp, respectively, as well as the three-
body total center-of-momentum (CM) frame energy,

ffiffiffi
s

p
.

Note that k andp are also defined in the three-body total CM
frame. The effective reaction is denoted

φk þ ½φk1φk2 �l → φp þ ½φp1
φp2

�l0 : ð1Þ

The momentum k serves to label the initial spectator, while
the pair ½φk1φk2 �l has additional labels k1 and k2 to indicate
the first and second particle of the pair, respectively.A similar
notation holds for the final state. We take the mass of the
initial and final state particles to be mk, mk1 , mk2 , and mp,
mp1

, mp2
, respectively.

Our goal is to construct and study the amplitude for this
reaction projected to definite JP, where J is the total
angular momentum of the system and P is its parity. We
work in the spin-orbit basis of coupled angular momenta,
thus for a given energy

ffiffiffi
s

p
and spin parity JP, the amplitude

is a matrix in the orbital angular momentum L between the
spectator and dimer pair and the intrinsic spin S of the pair.
Since we restrict our attention to only spinless particles, we
have the trivial identity that S ¼ l and S0 ¼ l0. We denote
matrix elements of this partial-wave projected amplitude as
MJP

3;L0S0;LSðp; kÞ, leaving the dependence on s implicit
throughout this work.
The partial-wave projection of this amplitude and its

integral equations [17,20] have been discussed in the
simplest case J ¼ S ¼ S0 ¼ 0 [18,29]. Here, we show that
in general, the partial-wave projected MJP

3 can be decom-
posed into two terms [17,20,39],

MJP
3 ðp; kÞ ¼ DJPðp; kÞ þMJP

3;dfðp; kÞ; ð2Þ
1These works build from an even large literature that has

been dedicated to develop such formalism for two-body systems
[48–57] as well as performing state of the art lattice QCD
calculations [58–84]. We point the reader to recent reviews on
this topic [85,86].

2During the publication process, Ref. [87] appeared, which
also discusses an application of three-body scattering for nonzero
partial waves.

3The system also depends on the orientations of the initial and
final spectator momenta. Since our discussion is concentrated on
partial wave amplitudes, we ignore this dependence as it is
eventually removed.
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where D contains three-body physics driven by long-range
exchanges between pairwise interactions andM3;df is driven
by short-distance three-body interactions, i.e., the three-body
K matrix.4 Each of these objects is a matrix in angular
momentum space of the given quantum number JP; i.e.,

½MJP
3 ðp; kÞ�L0S0;LS ¼ MJP

3;L0S0;LSðp; kÞ:
For example, consider low-energy 3π scattering in JP ¼ 1þ
isotensor channel. The dominant low lying waves are
associated with S ¼ 1, corresponding to the dipion pair
being in a resonant P wave state, i.e., the ρ resonance. For
these quantum numbers, the orbital angular momentum
between the spectator pion and dipion pair can be S or D
wave; thus, the JP ¼ 1þ amplitude is a 2 × 2 matrix in LS
space. We will revisit the 3π case in detail in Sec. V.
We present the details of the partial wave integral

equations for both DJP and MJP
3;df in the subsequent

subsections. There are two main classes of representation
for M3;df, which emerge from whether the three-body K
matrix, K3, has or has not been symmetrized over all
possible spectators; see, for example, Refs. [17,20,32,39].
We call these representations the symmetric and asymmet-
ric representations. These two representations lead to the
same physical amplitude, but the paths toward performing
analyses differ due to a choice in parametrization of K3.
After presenting the partial wave formalism for both
representations, we discuss their differences in Sec. III
and present general procedures for data analysis. We
comment on generalizations to other systems, e.g., systems
with flavor isospin, in Sec. II D.

A. Partial-wave projection for D

We first present the amplitude DJP as it is required for
both symmetric and asymmetric representations of M3;df .
To project D to the LS basis, we follow the steps presented
in Ref. [19]. We start with the helicity-basis definition of
the D amplitude, colloquially called the ladder amplitude,
which functionally looks identical to what was presented in
Ref. [17],5

Dl0λ0;lλðp;kÞ ¼ −M2;l0 ðσpÞGl0λ0;lλðp;kÞM2;lðσkÞ

−M2;l0 ðσpÞ
X
l00;λ00

Z
d3k0

ð2πÞ32ωk0

× Gl0λ0;l00λ00 ðp;k0ÞDl00λ00;lλðk0;kÞ: ð3Þ
Here, k and p are the initial and final spectator momenta,
while λ and λ0 denote the helicity of the initial and final state

pair, respectively. The scattering amplitude for the pair,
M2;l, is a diagonal matrix in the l space and depends
on the squared invariant mass of the pair, σk. In the total
three-particle CM frame, σk is related to the spectator

momentum via σk¼ð ffiffiffi
s

p
−ωkÞ2−k2, where ωk¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

k

q
and k ¼ jkj.
The remaining quantity to define is the one-particle

exchange (OPE) propagator, G. The partial-wave projection
of this object was the main focus of Ref. [19], and we will
only review the points necessary from that work. In the
helicity basis, the G propagator for a spinless particle with
mass me can be written as

Gl0λ0;lλðp;kÞ

¼
�
k⋆p
q⋆p

�
l0 4πHðp;kÞY�

l0λ0 ðk̂⋆
pÞYlλðp̂⋆

k Þ
ð ffiffiffi

s
p

−ωp−ωkÞ2− ðpþkÞ2−m2
eþ iϵ

�
p⋆
k

q⋆k

�
l
;

ð4Þ

where H is a generic cutoff function that must be equal to
unity in the physical region. The coordinate system is
described in detail in Ref. [19]. Three key points relevant
for our discussion are the following: (i) The vector p⋆

k is
equal to the value of p after boosting it to the CM frame of
the pair labeled by k. (ii) q⋆k is the magnitude of p⋆

k when
the exchange particle is placed on shell. Similar definitions
hold for k⋆

p and q⋆p . (iii) Finally, the spherical harmonics
are defined to have the z axis aligned along the direction of
the momentum of the two-particle pair labeled by the
subscript of the argument.
The main result of Ref. [19] shows that the partial-wave

projection of the OPE to definite JP takes the form

GJP
L0S0;LSðp; kÞ ¼ Hðp; kÞ½KJP

G;L0S0;LSðp; kÞ
þ CJ

P

L0S0;LSðp; kÞQ0ðζpkÞ�; ð5Þ

where Q0ðzÞ is the zeroth-degree Legendre function of the
second kind, and ζpk, KJP

G , and CJ
P6 are known kinematic

functions given in Ref. [19]. The ζpk is the same for all
partial waves, while the other two must be generated for
each specific channel. The KG and C functions have been
tabulated for low-lying spins in Ref. [19].
Following the steps in Ref. [19], which are outlined in

Appendix A, one can show that the partial-wave projected
DJP must satisfy the integral equation,

DJPðp;kÞ¼DJP
0 ðp;kÞ−M2ðσpÞ ·

Z
k0
GJPðp;k0Þ ·DJPðk0;kÞ;

ð6Þ
4There is a technical detail we omit in this discussion regarding

summing over all possible spectators. We comment on this
technicality in Sec. II B.

5Reference [17] quantizes the pair angular momentum along
some fixed z axis, while Ref. [19] discussed the advantage of using
helicity quantization for constructing the partial-wave projection.

6In Ref. [19], the function CJ
P
was called T JP . We change the

notation to avoid confusion with Eq. (11).
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where we introduce the notation that the product AJP · BJP

has the LS space matrix element

½AJP · BJP �L0S0;LS ≡
X
L00;S00

AJP
L0S0;L00S00B

JP
L00S00;LS: ð7Þ

In LS space, the matrix element for the 2 → 2 amplitude is
½M2�L0S0;LS ¼ δL0LδS0SM2;S. The driving term DJP

0 for the
ladder equation is given by the OPE amplitude

½DJP
0 ðp; kÞ�L0S0;LS

¼ −M2;S0 ðσpÞGJP
L0S0;LSðp; kÞM2;SðσkÞ: ð8Þ

Also, we have introduced the compact notation

Z
k
≡
Z

∞

0

dk
k2

ð2πÞ2ωk
; ð9Þ

for the integral and measure, which will be used throughout
this work.
Although the integral over k0 runs to infinity, theH cutoff

function ensures that the argument has only finite support.
Given a target JP and two-body scattering amplitudes,
Eq. (6) represents a set of coupled integral equations in the
partial waves. In Sec. V, we show how these can be
numerically solved along with examples from 3π scatter-
ing. For numerical applications, it is convenient to intro-
duce an amputated ladder amplitude, dJ

P
, which removes

the singularities associated with 2 → 2 subprocesses in the
initial and final states. This is defined by

DJPðp; kÞ≡M2ðσpÞ · dJPðp; kÞ ·M2ðσkÞ: ð10Þ

Using this definition and Eq. (6), it is straightforward to
write an integral equation that dJ

P
must satisfy, which we

explicitly give in Sec. V.

B. Partial-wave projected forMdf with asymmetricK3

Once DJP is known, we reconstruct MJP
3;df via a second

set of equations [17,20]. One aspect we have neglected thus
far is the choice of spectators in the amplitudes of Eq. (2).
In principle, the full scattering amplitude must include the
sum over all spectator-pair combinations. In the literature,
e.g., Refs. [17,20,32,39], one distinguishes a specific

spectator-pair amplitude as Mðu;uÞ
3 , where the superscript

ðu; uÞ references the “unsymmetrized” nature of the initial
and final states since a particle has been chosen to be the
“spectators” in both states. Equation (2) is technically that
of the ðu; uÞ amplitude projected to definite JP. In this
work, we will not consider the symmetrization of partial-
wave projected amplitudes. As a result, to improve read-
ability, we will drop the superscript on the amplitudes.

For the intermediate amplitude Mðu;uÞ
3;df , one has a choice

to construct it from a symmetric K matrix K3, as originally
presented in Refs. [17,32], or that of an asymmetric K
matrix as presented in Refs. [20,39]. To distinguish the
intermediate amplitudes between these two constructions,
we will label the amplitude associated with the symmetric

K matrix as Mðu;uÞ
3;df , while the one coming from an

asymmetric K matrix as M̂ðu;uÞ
3;df . It is important to empha-

size that these two intermediate amplitudes, Mðu;uÞ
3;df and

M̂ðu;uÞ
3;df , are closely related. Which is chosen in the analysis

is a matter of choice, and after symmetrization, they are
identical [20,39]. In this section, we consider the integral
equations for the amplitudes with asymmetric K matrix

[20,39], that is M̂ðu;uÞ
3;df .

As mentioned, we drop the ðu; uÞ superscript since we
only consider the partial-wave projection for a given
spectator-pair amplitude. Therefore, we make the following

replacements: Mðu;uÞ
3;df → M3;df and M̂ðu;uÞ

3;df → M̂3;df .
Similarly, to distinguish the symmetric K3 from its asym-
metric counterpart, we will label the latter as K̂3. This
notation will be used to distinguish the various intermediate
functions that will appear in defining M̂3;df and closely
related observables.
Having discussed the notation that will be used, we can

proceed to define M̂3;df . Again, we leave the definition of
this in the helicity basis to Appendix A 2. Following the
steps shown in Appendix A, one arrives at

M̂JP
3;dfðp; kÞ ¼

Z
p0

Z
k0
L̂JPðp; p0Þ · T̂ JPðp0; k0Þ · R̂JPðk0; kÞ;

ð11Þ

which is a matrix in LS space where R̂JP and L̂JP are initial
and final state rescattering functions,

½L̂JPðp; kÞ�L0S0;LS

¼ ½1 −M2;S0 ðσpÞρ̃ðσpÞ�δL0LδS0S
ð2πÞ2ωk

k2
δðp − kÞ

−M2;S0 ðσpÞGJP
L0S0;LSðp; kÞ −DJP

L0S0;LSðp; kÞρ̃ðσkÞ

−
X
L00;S00

Z
k0
DJP

L0S0;L00S00 ðp; k0ÞGJP
L00S00;LSðk0; kÞ; ð12Þ

½R̂JPðp; kÞ�L0S0;LS

¼ ½1 − ρ̃ðσkÞM2;S0 ðσkÞ�δL0LδS0S
ð2πÞ2ωp

p2
δðp − kÞ

− GJP
L0S0;LSðp; kÞM2;SðσkÞ − ρ̃ðσpÞDJP

L0S0;LSðp; kÞ

−
X
L00;S00

Z
p0
GJP
L0S0;L00S00 ðp; p0ÞDJP

L00S00;LSðp0; kÞ: ð13Þ
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Here, we have introduced ρ̃ as7

ρ̃ðσkÞ ¼ −iHðσkÞρðσkÞ; ð14Þ

where H again regulates the improper integral with the
condition that it is unity for physical σk, and ρðσkÞ is the
two-body phase space factor defined as

ρðσkÞ ¼
ξq⋆k

8π
ffiffiffiffiffi
σk

p ; ð15Þ

where ξ is a symmetry factor of the particles in the pair, for
which ξ ¼ 1=2 if the particles are identical and ξ ¼ 1
otherwise, and q⋆k is the relative momentum of the particles
in the pair in its CM frame. The relative momentum can be
expressed in terms of the Källén triangle function,
λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ acþ bcÞ, as

q⋆k ¼ 1

2
ffiffiffiffiffi
σk

p λ1=2ðσk; m2
k1
; m2

k2
Þ: ð16Þ

As a matrix in LS space, ρ̃ is proportional to the
identity, ½ρ̃ðσkÞ�L0S0;LS ¼ δL0LδS0Sρ̃ðσkÞ.
Physically, the rescattering functions characterize all

possible initial and final state interactions of the three
particles, which do not involve three-body short-distance
dynamics. We identify the first line of Eq. (12) with either
no rescatterings or the scattering of two of the particles, the
second and third lines with two particles scattering through
any number of possible exchanges; see the discussion
in Ref. [20].
Finally, the amplitude T̂ JP contains all information on

short-distance three-body interactions. It is the solution of
the integral equation

T̂ JPðp; kÞ ¼ K̂JP
3 ðp; kÞ

−
Z
p0

Z
k0
K̂JP

3 ðp; p0Þ · F̂ JPðp0; k0Þ · T̂ JPðk0; kÞ;

ð17Þ

where K̂JP
3 is the previously discussed 3 → 3 K matrix,8

defined to be free of unitarity singularities in a region near
the three-body threshold, and F JP characterizes all inter-
mediate state pairwise rescatterings,

F̂ JPðp;kÞ≡ ρ̃ðσpÞL̂JPðp;kÞþ
Z
k0
Gðp;k0Þ · L̂JPðk0;kÞ: ð18Þ

C. Partial-wave projection for Mdf with symmetricK3

The general structure of MJP
3;df with a symmetric K3 is

similar to Eq. (11),

MJP
3;dfðp; kÞ ¼

Z
p0

Z
k0
LJPðp; p0Þ · T JPðp0; k0Þ ·RJPðk0; kÞ;

ð19Þ

with the only difference being in the definitions of the
different building blocks. The LJP and RJP rescattering
functions are given by

½LJPðp;kÞ�L0S0;LS¼
�
1

3
−M2;S0 ðσpÞρ̃ðσpÞ

�
δL0LδS0S

ð2πÞ2ωk

k2

×δðp−kÞ−DJP
L0S0;LSðp;kÞρ̃ðσkÞ; ð20Þ

½RJPðp;kÞ�L0S0;LS¼
�
1

3
− ρ̃ðσkÞM2;S0 ðσkÞ

�
δL0LδS0S

ð2πÞ2ωp

p2

×δðp−kÞ− ρ̃ðσpÞDJP
L0S0;LSðp;kÞ; ð21Þ

and T JP satisfies the integral equation,

T JPðp;kÞ¼KJP
3 ðp;kÞ

−
Z
p0

Z
k0
KJP

3 ðp;p0Þ · ρ̃ðσ0pÞLJPðp0;k0Þ ·T JPðk0;kÞ:

ð22Þ

We leave details associated with the derivation of these
expressions to Appendix A.
It is worth commenting on the close resemblance

between these equations and the corresponding ones for
the asymmetric functions, Eqs. (12), (13), and (17).
Qualitatively, one can understand these differences
by remembering that ρ̃δ̃þ G is equivalent to 3ρ̃δ̃
when acting on a symmetric quantity, like K3, where

δ̃ ¼ ð2πÞ2ωk

k2 δðp − kÞ; see, e.g., Refs. [20,36,39,91]. Using
this identity, if one replaces K̂3 in (17) with K3=3, one
would find that M̂3;df is exactly equal to M3;df .

D. Generalizations: Flavor isospin
and multichannel systems

Here, we comment on how the above identities can be
generalized, focusing on systems with additional quantum
numbers like flavor isospin used in hadronic reactions, and
multichannel systems of three scalar particles. Consider
first the incorporation of isospin into the above equations
for isosymmetric QCD. Let I be the total isospin of the
initial pair and I0 the isospin of the final pair. Since strong
isospin is conserved in hadronic processes, the 2 → 2
amplitude is a diagonal matrix in isospin, whose diagonal
components we will denote as M2;IS. However, for the

7This is the minimal definition of ρ̃. In Appendix B, we discuss
a more general definition of ρ̃, introduced in Ref. [90].

8This has been denoted asKðu;uÞ
3;df in works such as Refs. [39,20],

where “df” stands for “divergence free.” Here, we drop this
notation as the K matrix must be defined to be free of on-shell
singularities in a region near the three-body threshold.
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3 → 3 amplitude, only total isospin, which we denote as T,
is conserved. Thus, for a given TðJPÞ, the amplitude is a
matrix in LSI space,

½MTðJPÞ
3 ðp; kÞ�L0S0I0;LSI ¼ MTðJPÞ

3;L0S0I0;LSIðp; kÞ: ð23Þ

All building blocks involving two-body systems only will
be diagonal in I space. The OPE function is the only object
that nontrivially mixes isospin [19,92],

GTðJPÞ
L0S0I0;LSI ≡ GJP

L0S0;LShð½ikie�I0; ipÞ; Tjð½ipie�I; ikÞTi; ð24Þ

where hð½ikie�I0; ipÞ; Tjð½ipie�I; ikÞTi is the three-body
recoupling coefficient, cf., Ref. [92]. This matrix element
relates the coupling of a pair (with constituent isospins ip
and ie) to isospin I, which subsequently couples to the
spectator isospin ik to form a total isospin T in the initial
state, to a final state with pair I0 (constituents ik and ie)
coupled to spectator ip to definite T.9 For example,
consider 3π → 3π scattering, such that ip ¼ ik ¼ ie ¼ 1

and I; I0 ¼ 0, 1, 2 and T ¼ 0, 1, 2, 3. Thus, the recoupling
coefficient is

hI0; TjI; Ti≡ hð½11�I0; 1Þ; Tjð½11�I; 1ÞTi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2I0 þ 1Þð2I þ 1Þ

p �
1 1 I

1 T I0

�
; ð25Þ

where f� � �g is the Wigner 6 − j symbol. Bose symmetry
further constrains which partial wave matrix elements are
nonzero; see Table I in Ref. [19] for the 3π → 3π example.
Given this additional factor, we can generalize all the

expressions above as follows. First, as previously dis-
cussed, we enhance the index space in which the matrices
above exist. For simplicity, we use Greek letters to denote
the product space of isospin, orbital angular momentum,
and spin, e.g., α ¼ LSI. Second, we replace the matrix
product in Eq. (7), with

½ATðJPÞ · BTðJPÞ�βα ≡
X
γ

ATðJPÞ
βγ BTðJPÞ

γα ; ð26Þ

where α ¼ LSI, γ ¼ L00S00I00, and β ¼ L0S0I0. Third, we
introduce a Kronecker-δ in this space, defined by

δαβ ≡ δLL0δSS0δII0 : ð27Þ

Using these relations, all expressions in the previous
sections are easily modified. For example, Eq. (12)
becomes

½L̂TðJPÞðp;kÞ�βα¼ ½1−M2;αðσpÞρ̃ðσpÞ�δβα
ð2πÞ2ωk

k2
δðp−kÞ

−M2;βðσpÞGTðJPÞ
βα ðp;kÞ

−DTðJPÞ
βα ðp;kÞρ̃ðσkÞ; ð28Þ

where we define M2;α ≡M2;IS as it is independent of L.
Given that this prescription leads to a simple modification
of all the expressions above, we avoid rewriting them on
this basis.
Let us now consider the generalization to multiple three-

body scattering channels. We focus strictly on spinless
systems, e.g., πππ → πππ; KK̄π. We have thus far pre-
sented the partial wave integral equations for general
masses, and Ref. [19] shows GJP for arbitrary masses.
Let us still consider each particle has definite isospin;
therefore, we aim to enlarge the matrix space of the
preceding discussion. We introduce the channel space
index a ¼ 1;…Nch, where Nch is the number of partici-
pating three-body channels. The three particles in a specific
pair-spectator configuration in a channel a have masses
fma;k; ma;k1 ; ma;k2g, where ma;k is the mass of the spectator
particle in the a channel, andma;k1 andma;k2 are the masses
of the two particles that form the corresponding pair in this
channel. Here, k denotes the momentum of the spectator
particle, while k1 and k2 represent the momenta of the
particles in the pair in channel a.
We can define the phase space as a diagonal matrix in

this channel space,

½ρðσkÞ�ab ¼ δab
ξaq⋆k a

8π
ffiffiffiffiffi
σk

p ; ð29Þ

where ξa is a symmetry factor associated with the two-
particle subsystems. If this pair is composed of identical
particles ξa ¼ 1=2, otherwise ξa ¼ 1. If the particles are not
necessarily identical, but they have been projected to a
definite isospin state, e.g., πþπ− → ½ππ�I¼1, then ξa ¼ 1.
The relative momenta, q⋆k a, is then

q⋆k a ¼
λ1=2ðσk; m2

a;k1
; m2

a;k2
Þ

2
ffiffiffiffiffi
σk

p ; ð30Þ

where λ is the Källén function as before in Eq. (16). The
2 → 2 amplitude is now a dense matrix in channel space,

½M2;IS�ba ¼ MIS
2;ba; ð31Þ

and all remaining functions receive a channel index
trivially. To simplify the notation, we again write generic
matrix indices α as α ¼ aðLSIÞ, where L, S, and I are the
orbital angular momentum, spin, and isospin for channel a.
Following the same extensions presented for including
isospin, we then can write our partial wave integral

9The notation is chosen to coincide with the OPE as presented
in Ref. [19].
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equations in this enlarged angular momentum, isospin, and
channel space. Revisiting the extension for Eq. (12) as an
example, we have

½L̂TðJPÞðp;kÞ�βα ¼ ½1−M2;βαðσpÞρ̃αðσpÞ�
ð2πÞ2ωk

k2
δðp− kÞ

−
X
γ

M2;βγðσpÞGTðJPÞ
γα ðp;kÞ

−DTðJPÞ
βα ðp;kÞρ̃αðσkÞ; ð32Þ

where the sum on γ must exist as M2 can transition to
different channels.

III. SEPARABLE PARAMETRIZATIONS

In this section, we consider a special class of para-
metrizations, where the asymmetric K matrix, K̂3, can be
written as a separable function. For such parametrizations,
we will show that the integral equations for T̂ in Eq. (17)
have an algebraic solution. We subsequently comment on
separable parametrizations for the symmetric K matrix. We
begin this section by first defining this class of para-
metrizations. As discussed in Sec. II D, incorporating
features like isospin leads to a straightforward modification
of all the expressions after performing the partial-wave
projection. As a result, here we focus in deriving the
building blocks in the LS-basis for our elastic scattering
process and leave the expressions in an enlarged α
introduced in Sec. II D implicit.

A. Separable K matrix parametrizations

In order to justify the separable parametrizations of K̂3,
we begin by outlining some minimal properties it must
satisfy. Above threshold, K̂3 is a purely real function.
Because of the spurious singularities of the spherical
harmonic at threshold, the partial-wave projected K̂3 must
include barrier factors that exactly cancel these singular-
ities. These barrier factors, BLSðk; sÞ, need to cancel the
singularities associated with the threshold of the pair sub-
system as well as the threshold associated with the pair-
spectator system. Because of this, we define the barrier
factors as

BLSðk; sÞ ¼ kLq⋆Sk : ð33Þ

The remaining part of the K matrix is meromorphic in the
remaining energy variables, allowing us to choose the
separable parametrization as

K̂J
3;L0S0;LSðp; kÞ ¼ BL0S0 ðp; sÞfL0S0 ðp2ÞK̃J

3;L0S0;LSðsÞ
× fLSðk2ÞBLSðk; sÞ: ð34Þ

This definition ensures that the remainder functions, K̃3

and fLS, are real and free of on-shell singularities in a

domain near the three-body threshold of the complex
(s, σk, σp)-hyperplane. Consequently, one can parametrize
these by Taylor expansions in this region. Note, since σk ¼
σkðs; k2Þ, we can freely choose to have the expansion in
either σk, σp variables or in terms of k2, p2, and we have
chosen the latter.
The functions fLSðk2Þ include residual subchannel

momentum dependence, which we are free to choose, e.g.,

fLSðk2Þ ¼
Xn
j¼0

αðjÞLSk
2j; ð35Þ

for some n and real parameters αLS. Finally, the reduced K
matrix K̃3 is a function of s only; thus, we can write it
as, e.g.,

K̃JP
3;L0S0;LSðsÞ ¼

Xn0
j¼0

βJ
PðjÞ

L0S0;LS

sðjÞ0 − s
þ
Xn00
j¼0

γJ
PðjÞ

L0S0;LSs
j; ð36Þ

for real parameters βJ
P

L0S0;LS and γJ
P

L0S0;LS for some n0 and
n00. For convenience, we write the matrix elements of
Eq. (34) as

½K̂JP
3 ðp; kÞ�L0S0;LS ¼ ½hðpÞ�L0S0 ½K̃JP

3 ðsÞ�L0S0;LS½hðkÞ�LS; ð37Þ

where the h functions contain both the barrier factors and
any residual spectator momentum dependence.
This class of separable parametrizations can be gener-

alized to include a sum over any number of terms of the
form of Eq. (37), called degenerate from Fredholm theory,

½K̂JP
3 ðp;kÞ�L0S0;LS ¼

X
j

½hðpÞ�L0S0;j½K̃JP
3 ðsÞ�L0S0;LS;j½hðkÞ�LS;j:

ð38Þ

This additional index can be absorbed by enlarging the
space in which h and K̃3 can be considered matrices.

B. Algebraic solution for separable T̂
for asymmetric representation

The separable K matrix allows us to solve the integral

equation for T̂ JP analytically, as it factorizes the momen-

tum dependence such that T̂ JP becomes separable,

½T̂ JPðp; kÞ�L0S0;LS ¼ ½hðpÞ�L0S0 ½T̃ JPðsÞ�L0S0;LS½hðkÞ�LS; ð39Þ

which leads to a system of algebraic equations. The
solution of Eq. (17) is then

T̃ JPðsÞ ¼ 1

1þ K̃JP
3 ðsÞ · F̃ JPðsÞ

· K̃JP
3 ðsÞ; ð40Þ
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where each object is a matrix in LS space. Here, we have defined

F̃ JPðsÞ≡
Z
p

Z
k
hðpÞ · F̂ JPðp; kÞ · hðkÞ;

¼
Z
p

Z
k
hðpÞ · ΓJPðp; kÞ · hðkÞ −

Z
p

Z
k

Z
k0
hðpÞ · ΓJPðp; k0Þ ·M2ðσk0 Þ · ΓJPðk0; kÞ · hðkÞ

−
Z
p

Z
k

Z
p0

Z
k0
hðpÞ · ΓJPðp; p0Þ ·DJPðp0; k0Þ · ΓJPðk0; kÞ · hðkÞ; ð41Þ

which can be found by direct substitution of Eq. (12) into
(18) and defining the matrix

ΓJPðp; kÞ ¼ ð2πÞ2ωk

k2
δðp − kÞρ̃ðσpÞ þ GJPðp; kÞ: ð42Þ

Therefore, for a separable K̂JP
3 , the 3 → 3 amplitude is

given by Eq. (2) with DJP the solution of the ladder
equation (6), and MJP

3;df given by

M̂JP
3;dfðp; kÞ ¼ L̃JPðp; sÞ · T̃ JPðsÞ · R̃JPðs; kÞ; ð43Þ

with

L̃JPðp; sÞ≡
Z
k
L̂JPðp; kÞ · hðkÞ;

¼ hðpÞ −
Z
k
M2ðσpÞ · ΓJPðp; kÞ · hðkÞ

−
Z
k

Z
k0
DJPðp; k0Þ · ΓJPðk0; kÞ · hðkÞ; ð44Þ

R̃JPðs; kÞ≡
Z
p
hðpÞ · R̂JPðp; kÞ;

¼ hðkÞ −
Z
p
hðpÞ · ΓJPðp; kÞ ·M2ðσkÞ

−
Z
p

Z
p0
hðpÞ · ΓJPðp; p0Þ ·DJPðp0; kÞ: ð45Þ

In practice, to reduce the number of computations, it is
useful to note that F̃ can be obtained from either L̃ or R̃,

F̃ JPðsÞ ¼
Z
p

Z
k
R̃JPðs; pÞ · ΓJPðp; kÞ · hðkÞ

¼
Z
p

Z
k
hðpÞ · ΓJPðp; kÞ · L̃JPðk; sÞ: ð46Þ

We can further reduce these L̃ and R̃ functions to remove
the δ function contributions from ΓJP and express them in
terms of dJ

Pðp; kÞ, defined in Eq. (10),

L̃JPðp; sÞ ¼ ½1 −M2ðσpÞρ̃ðσpÞ� · hðpÞ þM2ðσpÞ ·
Z
k
dJ

Pðp; kÞ · ½1 −M2ðσkÞρ̃ðkÞ� · hðkÞ; ð47Þ

R̃JPðs; kÞ ¼ hðkÞ · ½1 − ρ̃ðσkÞM2ðσkÞ� þ
Z
p
hðpÞ · ½1 − ρ̃ðσpÞM2ðσpÞ� · dJPðp; kÞ ·M2ðσkÞ: ð48Þ

Using Eq. (46) on these expressions, we can get a potentially more efficient form for calculating F̃ ,

F̃ JPðsÞ ¼
Z
p
hðpÞ · ρ̃ðσpÞ · ½1 −M2ðσpÞρ̃ðσpÞ� · hðpÞ þ

Z
p

Z
k
hðpÞ · ρ̃ðσpÞM2ðσpÞ · dJPðp; kÞ · ½1 −M2ðσkÞρ̃ðσkÞ� · hðkÞ

þ
Z
p

Z
k

Z
k0
hðpÞ · Gðp; kÞ ·M2ðσkÞ · dJPðk; k0Þ · ½1 −M2ðσ0kÞρ̃ðσ0kÞ� · hðk0Þ: ð49Þ

C. Algebraic solution for separable T
for symmetric representation

The expressions derived in Sec. III B have assumed a
separable parametrization for K̂3 of the form presented in
Sec. III A. For the symmetric formalism, we cannot
immediately impose the class of parametrizations presented

in Sec. III A. Instead, one must construct a parametrization
of K3 that is symmetric under the interchange of the
particles and then perform a partial-wave projection of
this. Depending on the parametrization, it should be
straightforward for low energies to write the resultant
KJP

3 matrix in the form of Eq. (38).
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If a given symmetric parametrization can be written
as Eq. (38), we can follow the same steps as in the
asymmetric case to solve Eq. (22) to write T JPðp; kÞ ¼
hðpÞ · T̄ JPðsÞ · hðkÞ. The factorized T̄ matrix is given in
the same form as Eq. (40),

T̄ JPðsÞ ¼ 1

1þ K̄JP
3 ðsÞ · F̄ JPðsÞ · K̄

JP
3 ðsÞ; ð50Þ

where K̄JP
3 is the factorized symmetricK matrix, and F̄ JP is

defined as

F̄ JPðsÞ¼
Z
p0

Z
k0
hJ

Pðp0Þ · ρ̃ðσ0pÞLJPðp0;k0Þ ·hJPðk0Þ;

¼
Z
p0
hJ

Pðp0Þ · ρ̃ðσ0pÞ ·
�
1

3
− ρ̃ðσ0pÞM2ðσ0pÞ

�
·hJ

Pðp0Þ

−
Z
p0

Z
k0
hJ

Pðp0Þ · ρ̃ðσ0pÞDJPðp0;k0Þρ̃ðσ0kÞ ·hJ
Pðk0Þ;

ð51Þ

where LJP has been defined in Eq. (20).
Assuming a KJP

3 matrix in the form of Eq. (38), one can
show that the amplitude MJP

3;df can be written as

MJP
3;dfðp; kÞ ¼ L̄JPðp; sÞ · T̄ JPðsÞ · R̄JPðs; kÞ; ð52Þ

with

L̄JPðp; sÞ≡
Z
k
LJPðp; kÞ · hðkÞ;

¼
�
1

3
−M2;S0 ðσpÞρ̃ðσpÞ

�
· hðpÞ

−
Z
p0
DJPðp; p0Þ · ρ̃ðσp0 Þhðp0Þ; ð53Þ

R̄JPðs; kÞ≡
Z
p
hðpÞ ·RJPðp; kÞ;

¼ hðkÞ ·
�
1

3
−M2;S0 ðσkÞρ̃ðσkÞ

�

−
Z
k0
hðk0Þρðσ0kÞ ·DJPðk0; kÞ: ð54Þ

IV. BOUND-STATE SPECTATOR AMPLITUDES

In this section, we consider the case where the two-
particle pairs can form a bound state. This is worthwhile for
two reasons. First, for sufficiently heavy quark masses,
lattice QCD calculations have found that both the σ and
the ρ appear to be bound [67,75,93,94]. For these unphys-
ical masses, exploratory calculations of scattering proc-
esses involving these states have been performed in

Refs. [76,83], among others. Second, as shown in
Refs. [18,88], the consideration of two-body bound states
provides some of the best checks of the three-body
formalism. In Sec. V, we use this limiting case to provide
some checks on partial-wave projection performed in
Sec. II. As in Sec. III, we consider only amplitudes in
the LS basis. Isospin and multichannel processes can be
incorporated using the steps presented in Sec. II D.
We define the resulting two-body scattering amplitude as

MJP
φb, where b denotes a bound two-body system, and φ is

the remaining third scalar particle. Since we work with
generic scalar particles, each pair combination in principle
has a distinct bound state. Thus, the reaction becomes
bk þ φk → bp þ φp. The amplitude can be written as the
sum of two terms,

MJP
φb ¼ MJP

φb;D þMJP
φb;df ; ð55Þ

where the first comes from following the LSZ prescription
to DJP , and the second comes from MJP

3;df . We begin by
defining the first of these. We make use of Eq. (10), which
we rewrite here for convenience

DJPðp; kÞ ¼ M2ðσpÞ · dJPðp; kÞ ·M2ðσkÞ: ð56Þ

In the presence of two-body bound states, M2 has poles
of the form

M2ðσkÞ ¼ −
g2k;b

σk − σk;b
þOððσk − σk;bÞ0Þ; ð57Þ

where gk;b denotes the residue of the scattering amplitude at
the bound state pole, and σk;b is the pole location. The label
k emphasizes that the bound state is in one of the pairs
associated with spectator k. The bound state mass is thenffiffiffiffiffiffiffiffi
σk;b

p
, and gk;b can be understood as the coupling between

the composite and two-particle scattering states. From
Eq. (56), we see that DJP has these same poles.
Assuming there is only one such bound state in each pair,
we see that

DJPðp; kÞ ¼
�
−

gp;b
σp − σp;b

�
gp;bgk;bdJ

Pðqp;b; qk;bÞ

×
�
−

gk;b
σk − σk;b

�
þ � � � ; ð58Þ

where the ellipses denote terms that are not simultaneous
poles in both σp and σk. We have introduced qk;b as the
relative momentum of the bound state and the spectator,
given by

PARTIAL-WAVE PROJECTION OF RELATIVISTIC THREE- … PHYS. REV. D 111, 036029 (2025)

036029-9



qk;b ¼
1

2
ffiffiffi
s

p λ1=2ðs;m2
k; σk;bÞ: ð59Þ

Having identified the pole structure of DJP , we can
use the LSZ reduction formula to obtain the definition
for MJP

φb;D,

MJP
φb;D ¼ lim

σp→σp;b
σk→σk;b

ðσp − σp;bÞðσk − σk;bÞ
gp;bgk;b

DJPðp; kÞ; ð60Þ

or equivalently,

MJP
φb;D ¼ gp;bgk;bdJ

Pðqp;b; qk;bÞ: ð61Þ

So far, we have only applied the LSZ prescription toDJP .
Next, we will analyze the prescription to the divergent free
part of the amplitude, considering both the symmetric and
asymmetric cases.

A. LSZ for asymmetric representation

In a similar manner, we proceed to derive the M̂JP
3;df

contribution to the bk þ φk → bp þ φp amplitude. By
examining the defining Eqs. (43)–(45) or, equivalently,
Eqs. (47) and (48), we observe that the pole structure of

M̂JP
3;df arises from the poles in M2 and DJP . This leads to

the structure

M̂JP
3;df ¼

�
−gp;b

σp − σp;b

�
L̃JP
φbðqp;b; sÞ · T̃ ðsÞ · R̃JP

φbðs; qk;bÞ

×

�
−gk;b

σp − σk;b

�
þ � � � ; ð62Þ

where again the ellipses denote terms that are not simulta-
neous poles in both σp and σk. The matrix T̃ is given by

Eq. (40), while L̃JP
φb and R̃JP

φb are given by

−
1

gp;b
L̃JP
φbðqp;b; sÞ≡ ρ̃ðσp;bÞhJPðqp;bÞ þ

Z
k
GJPðqp;b; kÞ · hJPðkÞ þ

Z
k
dJ

Pðqp;b; kÞ ·M2ðσkÞ · ρ̃ðσkÞ · hJPðkÞ;

þ
Z
k

Z
k0
dJ

Pðqp;b; k0Þ ·M2ðσk0 Þ · GJPðk0; kÞ · hJPðkÞ; ð63Þ

−
1

gk;b
R̃JP

φbðs; qk;bÞ≡ hJ
Pðqk;bÞρ̃ðσk;bÞ þ

Z
p
hJ

PðpÞ · GJPðp; qk;bÞ þ
Z
p
hJ

PðpÞ · ρ̃ðσpÞ ·M2ðσpÞ · dJPðp; qk;bÞ;

þ
Z
p

Z
p0
hJ

PðpÞ · GJPðp; p0Þ ·M2ðσp0 Þ · dJPðp0; qk;bÞ: ð64Þ

Using the integral equation for dJ
P
(see Sec. V), we can simplify these functions to

−
1

gp;b
L̃JP
φbðqp;b; sÞ ¼ ρ̃ðσp;bÞhJPðqp;bÞ −

Z
k
dJ

Pðqp;b; kÞ · ½1 −M2ðσkÞ · ρ̃ðσkÞ� · hJPðkÞ; ð65Þ

−
1

gk;b
R̃JP

φbðs; qk;bÞ ¼ ρ̃ðσk;bÞhJPðqk;bÞ −
Z
p
hJ

PðpÞ · ½1 − ρ̃ðσpÞ ·M2ðσpÞ� · dJPðp; qk;bÞ: ð66Þ

From these, one can obtain the M̂JP
φb;df amplitude,

M̂JP
φb;df ¼ lim

σp→σp;b
σk→σk;b

ðσp − σp;bÞðσk − σk;bÞ
gp;bgk;b

M̂JP
3;dfðp; kÞ

≡ L̃JP
φbðqp;b; sÞ · T̃ ðsÞ · R̃JP

φbðs; qk;bÞ: ð67Þ

Combining this result with Eq. (61) in Eq. (55), we find for
the MJP

φb amplitude

MJP
φbðsÞ ¼ gp;bgk;bdJ

Pðqp;b; qk;bÞ
þ L̃JP

φbðqp;b; sÞ · T̃ ðsÞ · R̃JP
φbðs; qk;bÞ: ð68Þ

B. LSZ for symmetric representation

For the symmetric representation of the divergence-free
amplitude, MJP

3;df , the pole analysis follows directly from
Eqs. (52)–(54). The result is

MJP
3;dfðp;kÞ¼

�
−gp;b

σp−σp;b

�
L̄JP
φbðqp;b;sÞ · T̄ ðsÞ · R̄JP

φbðs;qk;bÞ

×

�
−gk;b

σk−σk;b

�
þ��� ; ð69Þ

where
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−
1

gp;b
L̄JP
φbðqp;b; sÞ≡ ρ̃ðσp;bÞhJPðqp;bÞ

þ
Z
p0
dðqp;b; p0Þ ·M2ðσp0 Þ

× ρ̃ðσp0 Þ · hJPðp0Þ; ð70Þ

−
1

gk;b
R̄JP

φbðs; qk;bÞ≡ hJ
Pðqk;bÞρ̃ðσk;bÞ

þ
Z
k0
hJ

Pðk0Þ ·M2ðσk0 Þ

× ρ̃ðσk0 Þ · dðk0; qk;bÞ: ð71Þ

As before, we use the LSZ reduction formula to obtain the
definition of MJP

φb;df , allowing us to write it in the form:

MJP
φb;df ¼ lim

σp→σp;b
σk→σk;b

ðσp − σp;bÞðσk − σk;bÞ
gp;bgk;b

MJP
3;dfðp; kÞ

≡ L̄JP
φbðqp;b; sÞ · T̄ ðsÞ · R̄JP

φbðs; qk;bÞ; ð72Þ

thus, the bound-state spectator amplitude Eq. (55) is

MJP
φbðsÞ ¼ gp;bgk;bdJ

Pðqp;b; qk;bÞ
þ L̄JP

φbðqp;b; sÞ · T̄ ðsÞ · R̄JP
φbðs; qk;bÞ: ð73Þ

V. NUMERICAL INVESTIGATION
FOR THREE-PION SYSTEMS

In this section, we explore the consequence of this
formalism for studying arbitrary ½ππ�Il þ π → ½ππ�I0l0 þ π
reactions. In particular, we consider a scenario at unphys-
ical pion masses such that the σ and ρ resonances are bound
states [67,75,93,94]. We focus on energies

ffiffiffi
s

p
< 3mπ

and use the framework discussed in Sec. IV to construct
effective σπ and ρπ scattering amplitudes for some definite
isospin and spin parity TðJPÞ. While both the asymmetric
and symmetric representations yield the same physical
amplitude, we focus the presentation on the asymmetric K
matrix formalism primarily due to the relative ease at which
one can parametrize K̂3 compared with the symmetric case.
Indeed, adopting this approach follows that in two-body
analyses, where one is agnostic to the parametrization of
the two-body matrix, only requiring it to respect the S
matrix principles and choosing forms that are flexible for
analyses.
After providing a prescription for solving the key set of

integral equations appearing in Secs. II and III, we present
results for the asymmetric formalism for models including
the lowest-lying partial waves for T ¼ 2, 1, 0 three pion
systems. It is worth remarking that we have considered
many models for both the symmetric and asymmetric
formalisms, and for all examples considered, we observed

that unitary is well satisfied for kinematics below the three-
body threshold.

A. Review of numerical technique
for coupled-channel systems

We set to compute MTðJPÞ
σπ and MTðJPÞ

ρπ using the results
of Sec. IV. Our starting point is the extension of Eq. (68),
which describes the desired amplitudes assuming factor-
izable parametrizations, to relations involving isospin,

½MTðJPÞ
φb �

βα
¼ lim

σp→σβ
σk→σα

ðσp−σβÞðσk−σαÞ
gβgα

½MTðJPÞ
3 ðp;kÞ�βα;

¼gβgα½dTðJPÞðqβ;qαÞ�βα
þ½L̃TðJPÞ

φb ðqβ;sÞ · T̃ ðsÞ ·R̃TðJPÞ
φb ðs;qαÞ�βα; ð74Þ

where α; β ¼ LSI and L̃TðJPÞ
φb , and R̃TðJPÞ

φb are simple exten-

sions of L̃JP
φb and R̃JP

φb, defined in Eqs. (63) and (64), in the
LSI basis. Since all particles are identical, we need not
distinguish species type on the bound state poles and residues
and simply label them by α, which indicates which two-body
partial wave they belong to, i.e., I ¼ 0, S ¼ 0 belongs to the
σ, while I ¼ 1, S ¼ 1 belongs to the ρ.
As detailed in the preceding sections, all quantities can

be written in terms of the amputated ladder amplitude,
dTðJPÞ, which is the LSI-space extension of Eq. (10). We
summarize the key steps needed to find numerical solutions
of the integral equation for dTðJPÞ. The integral equation for
dTðJPÞ follows from the generalization of Eqs. (6) and (10)
to the LSI basis,

dTðJPÞðp; kÞ ¼ −GTðJPÞðp; kÞ

−
Z
k0
QTðJPÞðp; k0Þ · dTðJPÞðk0; kÞ; ð75Þ

where the kernel QTðJPÞ is

QTðJPÞ
βα ðp; kÞ ¼ GTðJPÞ

βα ðp; kÞM2;αðσkÞ: ð76Þ

We remind the reader that M2;α ¼ M2;IS in the LSI basis.
Recall from Eq. (5) that the OPE propagator includes a

cutoff function H. This cutoff function effectively sets an
upper limit on the integral above, represented by k0max.
Therefore, the integral Eq. (9) becomes

Z
k0
→

Z
k0max

0

dk0
k02

ð2πÞ2ω0
k

:

Two commonly used options for definingH are a smooth or
a hard cutoff. The smooth cutoff has proven advantageous
when considering the formalism for describing finite-
volume quantities [17,32]. Unfortunately, defining an
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analytic function that is exactly equal to 1 in the physical
region above the three-particle threshold is impossible.
Having an analytic cutoff function is key to be able to
deform contours, which is generally needed for solving
integral equations for M3 [88]. As a result, such a smooth
function breaks the desired analytic properties for scatter-
ing amplitudes.
Alternatively, one can introduce a hard cutoff in momen-

tum space and fixH ¼ 1 everywhere within this domain. In
the following numerical results, we will use this and set the
maximum momentum to ensure that none of the para-
metrizations used for M2 have unphysical singularities.
The minimal but not necessarily sufficient criteria for this
requires that σk ≥ 0.
Equation (75) is a system of Fredholm integral equations

of the second kind, for which algorithms for numerical
solutions are well known; see, e.g., [95]. First, we note that
the kernel has a pole singularity at k0 ¼ qα (or σk ¼ σα)
corresponding to the bound state ofM2. To circumvent this
pole, we use Cauchy’s theorem to deform the integration
path to a contour in the complex k0 plane like that presented
in Ref. [88]. We then follow the Nyström method, which
approximates the integral in Eq. (75) by a quadrature rule
over discrete momenta in the integration interval. Let Nk be
the number of momenta appearing in one channel and Nc
be the total number of channels in LSI space.10 Choosing a
sufficient contour, we replace the integral in Eq. (75) by a
quadrature rule of order Nk. For some target TðJPÞ, this
leads to the approximate equation

dTðJ
PÞ

βα ðp; kÞ ¼ −GTðJPÞ
βα ðp; kÞ

−
X
γ

XNk−1

j¼0

Q̄TðJPÞ
βγ ðp; kjÞdTðJ

PÞ
γα ðkj; kÞ; ð77Þ

where kj are the mesh points in momentum space, and the
modified kernel is

Q̄TðJPÞ
βα ðp; kjÞ≡QTðJPÞ

βα ðp; kjÞ
k2j

ð2πÞ2ωkj

Δj; ð78Þ

with Δj absorbing the weights from the quadrature rule and
the Jacobian from the chosen contour.11 Finally, we
evaluate p and k in Eq. (77) on the momentum partition
fkjgNk−1

j¼0 , transforming the integral equation (75) into a
square linear algebraic system of order Nc × Nk in the
combined channel and momentum space.

Using standard computational linear algebra, we solve
the approximate linear system,

d ¼ −G − Q̄ · d;

¼ −½1þ Q̄�−1 ·G; ð79Þ
where the solutiond is a matrix in the combinedmomentum-
channel space. Specifically, ½d�mn represents an element of
the matrix, where the index m accesses the ith momentum
element of the β channel, while nmaps to the jth momentum
of the α channel; i.e.,

½d�mn ¼ dTðJ
PÞ

βα ðki; kjÞ: ð80Þ

Similarly, ½G�mn¼GTðJPÞ
βα ðki;kjÞ, and ½Q̄�mn ¼ Q̄TðJPÞ

βα ðki; kjÞ
for the same m, n mapping. Given a well-defined contour
and quadrature rule, one can compute the solution d from
Eq. (79) for moderate values of Nk. We have checked a
range of Nk between 30–500 and found convergence to our
desired precision for most systems at Nk ≈ 150. To obtain

dTðJ
PÞ

βα ðp; kÞ for values of p and k not in the momentum
partition, as is neededwhenp → qβ and k → qα in Eqs. (65),
(66), and (74), we use Eq. (77) as an interpolation formula.
Once a solution for dTðJPÞ is obtained, we can compute

all the contributions feed into the expression forMTðJPÞ
φb . In

the next section, we summarize the parametrizations we use
for the two-body subprocesses.

B. Parametrizations considered

Here, we consider a simple class of parametrizations that
can generate a two-body bound state for S ¼ 0 and 1. We
parametrize the amplitude via the phase shift δS;I ,

M2;ISðσkÞ ¼
16π

ffiffiffiffiffi
σk

p
q⋆k cot δS;I − iq⋆k

; ð81Þ

where the symmetry factor of Eq. (15) is 1=2 since the
pions are treated as identical isovector states. As exploited
extensively in previous work [18,90,96], an S-wave leading
order effective range expansion (ERE) can be used to
generate two-body bound states. As a result, we only
consider parametrizations for the S ¼ 0 two-body ampli-
tude defined by

q⋆k cot δ0;I ¼ −
1

a0;I
; ð82Þ

where a0;I is the scattering length in the I ¼ 0 or 2 channel.
For a0;I > 0, the resulting two-body amplitudes would have
a two-body bound state with real value residues.
For a P-wave bound state, the use of a leading order ERE

leads to unphysical residue for bound states in the ampli-
tude. Partial-wave projected amplitudes near threshold
must be kinematically suppressed by barrier factors,

10In general, we can choose different contours and number of
mesh points per channel. In this work, we choose that each
channel has the same contour and mesh.

11We use Gauss-Legendre quadrature, which requires perform-
ing a variable transformation to relate the standard weights to the
form shown in Eq. (78) [88].
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M2;ISðσkÞ ∝ q⋆2Sk : ð83Þ

Near the pole, the amplitude is proportional to g2α, gα being
the bound state coupling of the S ¼ 1, I ¼ 1 channel;
cf. Eq. (57). In order for these two conditions to be
simultaneously satisfied, the couplings must be imaginary,

g2α ∝ q⋆2Sα ¼ ðiκαÞ2S; ð84Þ

where κα is the binding momentum, i.e., Eq. (16) evaluated
at σk ¼ σα. A simple exercise shows that this condition
would not be respected by a P-wave bound state generated
from a leading order ERE parametrization.
Instead, for the isovector P-wave systems, we consider a

Breit-Wigner (BW) parametrization

q⋆k cotδ1;1¼
ðm2

BW−σkÞffiffiffiffiffi
σk

p ΓBW
1 ðσkÞ

; ΓBW
1 ðσkÞ¼

g2BW
6πσk

q⋆2k : ð85Þ

For carefully chosen values of mBW and gBW, one can
ensure that Eq. (84) is satisfied for a P-wave bound state. It
is worth noting that a BW near threshold is equivalent to a
next-to-leading order ERE; that is, the latter would also
have been a reasonable choice.

C. Numerical results

Building on the previous two sections, we consider a
class of toy models for 3π systems where the ρ and σ are

both stable. That is, we compute MTðJPÞ
φb from Eq. (74) for

both ρπ and σπ systems. As previously mentioned, this is a
reasonable jumping-off point for analyses of lattice QCD
results at unphysically heavy quark masses, where the ρ
and σ are bound. Moreover, the technology for computing
dTðJPÞ is identical for investigating systems at physical pion
masses.
We use the BW parametrization for the I ¼ 1 ππ

amplitude, Eq. (85), and fixing the parameters to mBW ¼
1.8mπ and gBW ¼ 5.8. This results in a bound state pole of
σρ ≈ 3.13m2

π with a binding momentum κρ ≈ 0.46mπ , and a

residue of gρ ≈ 4.88imπ , cf., Eq. (57). This pole can be seen
in Fig. 1, which also shows a deeply bound unphysical
pole. To avoid this unphysical state, we fix the hard cutoff
such that σk ≥ 0.5m2

π .
For the I ¼ 0 ππ amplitude, we use the leading order

ERE in Eq. (82). For simplicity, we fix the σ pole to lie at
the same pole location as the ρ; that is σσ ¼ σρ ≈ 3.13m2

π .
This is an arbitrary choice, but it reduces the number of
kinematic thresholds to consider when visualizing the
results. The associated scattering length, a0;0, is determined
by fixing the binding momentum of the σ to that of the ρ
and using the fact that within the leading order ERE, the
binding momentum is fixed by the scattering length,
κσ ¼ 1=a0;0. This results in a0;0mπ ≈ 2.16 and a residue
at the pole of gσ ≈ 18.18mπ .
We also use the leading order ERE for the I ¼ 2 channel.

Since this channel is always weakly repulsive regardless of
the values of the quark masses [94,97,98], we only consider
negative values of the scattering length, a0;2, which have a
small magnitude. The first numerical exploration per-
formed below is a demonstration that in the small a0;2
limit, the T ¼ 2 ρπ amplitudes are indistinguishable if one
solves the coupled set of integral equations with or without
the I ¼ 2 channel present.
In what follows, we limit the orbital momentum L ≤ 2

and the spin of the dipion S ≤ 1. For simplicity, the h vertex
functions, introduced in Eq. (37), will be set exactly equal
to the barrier factor in Eq. (33),

½hðpÞ�LSI ¼ BLSðk; sÞ; ð86Þ

which is the minimal requirement for this function. For the
remainder piece of K̂3, we use a simple pole

½K̃TðJPÞ
3 ðsÞ�βα ¼ −

cβcα
s − s0

; ð87Þ

where we will vary cβ, cα and s0.
For simplicity, we only considers kinematics above the

ρπ threshold, sρπ ¼ ðmρ þmπÞ2, where mρ ¼ ffiffiffiffiffi
σρ

p , but

FIG. 1. Shown is the resulting P-wave amplitude using the Breit-Wigner parametrization, Eq. (85), for mBW ¼ 1.8mπ and gBW ¼ 5.8.
The pole on the right of the figure is the desired physical ρ pole, while the one on the left is the unphysical pole, which is avoided by
introducing a hard cutoff at σk ¼ 0.5m2

π .
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below the 3π threshold, s3π ¼ ð3mπÞ2. In this region,
S matrix unitarity ensures that

Im½ðMTðJPÞ
φb Þ−1�

βα
¼ −δβα

qα
8π

ffiffiffi
s

p : ð88Þ

Although this is not shown explicitly, we observe all
numerical results satisfy this at subpercent levels with
our solution parameters.

1. TðJPÞ = 2ð1+ Þ channel with stable ρ

As our first example, we compute the T ¼ 2 channel
with JP ¼ 1þ. This system can include with I ¼ 1 or 2ππ
processes. If we consider partial waves restricted by S ≤ 1

and L ≤ 2, the possible values that LSI can take include
S11, D11, and P02, where we have used spectroscopic
notation for L. If we instead use the more standard 2Sþ1LJ

notation for these states, the possible channels are 3S1, 3D1,
and 1P1, respectively. In this notation, although the isospin
of the two-body system is not specified explicitly, it can be
readily worked out. The matrix elements of d2ð1þÞ are then
denoted dð2S0þ1L0

Jj2Sþ1LJÞ≡ d2ð1
þÞ

L0S0I0;LSI.
First, we consider the dependence of the results on the

values of a0;2. If a0;2 ≠ 0, and we fix L ≤ 2, we have three
open channels. To be more explicit, let us label the I ¼ 2
channel as tπ, where t refers to the isotensor ππ state. This
will not be assumed to be stable. If we then fix the external
momenta, we can write the symmetric d2ð1þÞ matrix as

d2ð1þÞ ¼

0
BB@

dρπ;ρπð3S1j3S1Þ dρπ;ρπð3S1j3D1Þ dρπ;tπð3S1j1P1Þ
dρπ;ρπð3D1j3D1Þ dρπ;tπð3D1j1P1Þ

dtπ;tπð1P1j1P1Þ

1
CCA; ð89Þ

where we are only showing the upper triangle of the
symmetric matrix. Each element of this matrix is labeled
by the particle content of the in/out state as well as the
2Sþ1LJ quantum numbers.
We obtain dρπ;ρπð3S1j3S1Þ, dρπ;ρπð3S1j3D1Þ,

dρπ;ρπð3D1j3D1Þ elements in two different ways. The first
is by solving the coupled set of integral equations that the
three-channel system satisfies for a nonzero value of a0;2.
The second approach, which holds for the a0;2 ¼ 0 limit,
we solve the coupled-integral equations for a system

with only ρπ channels. In other words, the integral
equations yield the matrix

d2ð1þÞ ¼
�
dρπ;ρπð3S1j3S1Þ dρπ;ρπð3S1j3D1Þ

dρπ;ρπð3D1j3D1Þ

�
: ð90Þ

In Fig. 2, we show the Mρπ;ρπð3S1j3S1Þ amplitude in the
K̃3 ¼ 0 limit, i.e., g2ρdρπ;ρπð3S1j3S1Þ where we have fixed
the spectator momenta to qρπ ¼ λ1=2ðs;m2

π; σρÞ=2
ffiffiffi
s

p
. In the

figure, we show results for a range of values of a0;2. As can

FIG. 2. Shown is the jMρπ;ρπð3S1j3S1Þj in the TðJPÞ ¼ 2ð1þÞ channel as a function of s. The I ¼ 1 parameters are fixed to those
described in the text, and we fix K̃3 ¼ 0. As labeled in the figure, the different colors represent different values for the scattering length
in the isotensor channel, a0;2 ¼ −ja0;2j.
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be seen, the results for small a0;2 monotonically approach
the a0;2 ¼ 0 results. This result is expected because the tπ
contribution to ρπ → ρπ will be suppressed by at least one
power of a0;2.
Given this observation, we fix a0;2 ¼ 0 and consider a

smaller channel space, Eq. (90), throughout this and other
cases. By then proceeding to fix K̃3 ¼ 0, we can predict the
full M21þ

φb matrix,

M2ð1þÞ
φb ¼

�
Mρπ;ρπð3S1j3S1Þ Mρπ;ρπð3S1j3D1Þ

Mρπ;ρπð3D1j3D1Þ

�
: ð91Þ

The results are shown in Fig. 3 as a function of s. As
previously mentioned, these results satisfy two-body uni-
tary, Eq. (88), in this kinematic region. Furthermore, one

can see from the figure that the amplitudes satisfy the
expected threshold behavior

Mρπ;ρπð3L0
1j3L1Þ ∼ qL

0þL
ρπ ; ð92Þ

which serves as an additional cross-check for the partial-
wave projection.

2. TðJPÞ= 1ð1+ Þ channel with stable σ and ρ

We examine the TðJPÞ ¼ 1ð1þÞ system, where the a1
resonance resides. Ignoring the tπ contribution and restrict-
ing to L ≤ 2, the a1 can couple to three channels, two ρπ

and one σπ partial waves. As a result, the matrix forM1ð1þÞ
φb

can be written as

M1ð1þÞ
φb ¼

0
BB@

Mρπ;ρπð3S1j3S1Þ Mρπ;ρπð3S1j3D1Þ Mρπ;σπð3S1j1P1Þ
Mρπ;ρπð3D1j3D1Þ Mρπ;σπð3D1j1P1Þ

Mσπ;σπð1P1j1P1Þ

1
CCA: ð93Þ

FIG. 3. Shown are the different matrix elements of the T ¼ 2Mρπ;ρπ amplitude for K̃3 ¼ 0 and ignoring contributions from the I ¼ 2
channel. The parameters are as described in the text. In red is the real part of the amplitude, while in dark cyan is the imaginary part of the
amplitude.
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In order to mimic the a1 resonance, we parametrize K̃3

with a simple pole according to Eq. (87), with a pole
position sρπ < s0 < s3π . Figure 4 shows results where we
fix s0 ¼ 8m2

π , cρπ;3S1 ¼ 20m2
π , cρπ;3D1

¼ cσπ;1P1
¼ 5m2

π .

For comparison, we show the amplitudes for K̃3 ¼ 0
as faint dashed lines. In addition to checking that the
amplitudes have the right analytic structure and that
they satisfy unitarity, we see the canonical behavior of
a narrow resonance. In particular, one sees a narrow
peak. Naively, one would expect such a peak at
s ¼ 8m2

π since this is the location of the K̃3 pole.

However, poles in the K matrices do not coincide with
poles in amplitude.12

3. TðJPÞ= 0ð1− Þ channel with stable ρ

Finally, we consider the TðJPÞ ¼ 0ð1−Þ channel where
the narrow ω resonance lies. For unphysically heavy quark
masses, the ω is observed to be bound. To mimic this

FIG. 4. Shown are results for the various components of the TðJPÞ ¼ 1ð1þÞ amplitude. This amplitude has the quantum numbers of
the a1, and the flavor content of the different channels can be found in Eq. (93). The dashed lines denote the amplitude in the limit that
K̃3 ¼ 0, while the solid lines include a pole parametrization for K̃3 described in the body of the text.

12Although we do not do the exercise here, using the tools
presented in Ref. [88], we could analytically continue to the
nearest unphysical sheet to find the resonance pole.
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scenario, we use a K̃3 parametrization with a bound state
below the ρπ threshold. We use same simple pole para-
metrization Eq. (87) as above but with s0 < sρπ.
Assuming the same restrictions in the partial waves as

previously discussed, the scattering amplitude in this
system is composed of a single channel, the 3P1. As a
result, we have

M0ð1−Þ
φb ¼ Mρπ;ρπð3P1j3P1Þ: ð94Þ

In Fig. 5, we show the result for this amplitude for both
K̃3 ¼ 0 (dashed lines) and K̃3 ≠ 0 (solid lines). For the
latter case, we set the pole and coupling of the K matrix to
s0 ¼ 7.6m2

π and cρπ;1P1
¼ 90m2

π , respectively. Again, we
see the expected threshold behavior for a P-wave ampli-
tude, and unitarity is well satisfied for both examples
shown.

VI. SUMMARY AND OUTLOOK

Using the results derived in Ref. [19] for the OPE, we
have constructed integral equations for partial-wave pro-
jected three-body relativistic scattering amplitudes. The
integral equations are presented in Sec. II, with details
presented in Appendix A, for two equivalent formalisms
where the three-body K matrix is symmetric or asymmetric
under particle interchange. While a practitioner can choose
either framework for analyses, we advocate for the asym-
metric formalism due to the relative ease for parameterizing
the three-body K matrix, which is illustrated in our
numerical applications in Sec. V. In particular, a class of
flexible parametrizations useful for data analysis is pre-
sented in Sec. III, whereK3 is factorizable in the kinematics

of the initial and final state allowing one to parametrize K3

in a manner similar to analyses in the two-body sector. In
addition, it is shown that factorizable parametrizations for
K3 reduce the computational complexity of the integral
equations.
In Sec. IV, we consider the scenario where one of the

two-particle pairs forms a bound state. In particular, we
show how the LSZ formalism can be used to reconstruct
two-body amplitudes from the three-body amplitudes.
Finally, in Sec. V, we explore numerical solutions of the
three-body amplitudes for toy models for the 3π channels in
total isospin T ¼ 2, 1, 0 that include the ρ and σ as ππ
bound states. Using the expressions derived in Sec. IV for
the asymmetric formalism, we find that our results satisfy
two-body unitarity below the three-body threshold for all
models considered, as well as the expected threshold
behavior for partial-wave projected amplitudes.
Given the rapid developments in this line of research, it is

worthwhile summarizing some key outstanding problems
related to the scattering theory of three-body systems. First,
in this work, we considered amplitudes that have not been
symmetrized under the interchange of the spectator. Using
the notation used in the literature, these are theMðu;uÞ

3 . The
next step is to symmetrize these and construct amplitudes
that may be used to generate Dalitz plots, as was done, for
example, in Ref. [29], for the TðJPÞ ¼ 3ð0−Þ lattice QCD
calculation. Using formalism presented in, for example,
Ref. [16], we believe this should be straightforward. As
already mentioned, the formalism presented here is built
from the partial-wave projection of the OPE performed in
Ref. [19], which only assumed that the particles involved
had no intrinsic spin. Lifting such an assumption, although
technical, can and will be done. Additionally, including
coupled two- and three-particle systems, while attempted in

FIG. 5. Shown are the real (red) and imaginary (cyan) components of the amplitude in the TðJPÞ ¼ 0ð1−Þ channel. As in Fig. 4,
dashed and solid lines depict amplitudes with K̃3 ¼ 0 and K̃3 ≠ 0, respectively. The parameters for K̃3 ≠ 0 are described in the text.
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Ref. [33], requires further investigation. Going beyond
these immediate problems, one can envision formulating
dispersive representations for the three-body amplitudes.
As the connection between scattering theory and lattice
QCD matures for few-body systems, preserving S matrix
principles such as unitarity and analyticity is vital to
exploring the excited QCD spectrum.
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APPENDIX A: PARTIAL-WAVE PROJECTION

We follow the procedure as presented in Refs. [16,19] and
further references therein, namely first projecting to definite
helicity amplitudes of definite J, then forming definite JP

amplitudes by taking linear combinations to the LS basis.
Given the three-body helicity amplitude M3;l0λ0;lλ, one

can expand it in terms of amplitudes of definite total
angular momentum J of the three-particle system:

M3;l0λ0;lλðp;kÞ ¼
X∞
J¼Jmin

ð2J þ 1ÞMJ
3;l0λ0;lλðp; kÞdðJÞλλ0 ðθpkÞ;

ðA1Þ

where Jmin ¼ maxðjλj; jλ0jÞ, d is the Wigner matrix ele-
ments,13 and θpk is the CM frame scattering angle θpk,
defined through cos θpk ¼ p̂ · k̂. Using the orthogonality
relation for Wigner d matrices, we use Eq. (A1) to project
the helicity amplitudes to definite angular momentum J,

MJ
3;l0λ0;lλðp; kÞ ¼

1

2

Z
1

−1
d cos θpkdJλλ0 ðθpkÞM3;l0λ0;lλðp;kÞ:

ðA2Þ

As discussed in detail in Ref. [19], one can transform
from the helicity-state basis, whose corresponding partial

waves do not have definite parity, to the spin-orbit state
basis using the spin-orbit coupling coefficients PðlÞ

λ to be
defined below. This allows one to obtain amplitudes that
have both definite angular momentum and parity, which
can be written as

Mðl0lÞ;JP
3;L0S0;LSðp;kÞ
¼
X
λ0;λ

Pðl0Þ
λ0 ð2S0þ1L0

JÞMJ
3;l0λ0;lλðp;kÞPðlÞ

λ ð2Sþ1LJÞ: ðA3Þ

For particles with no intrinsic spin, the spin-orbit coupling
coefficient is given by [99]

PðlÞ
λ ð2Sþ1LJÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

2J þ 1

r
hJλjL0; SλiδSl: ðA4Þ

The inner product in brackets is the usual Clebsh-Gordan
coefficient, which relates different complete sets of the
combined system. Note that the spin-orbit couplings are
orthonormal,

X
l;λ

PðlÞ
λ ð2S0þ1L0

JÞPðlÞ
λ ð2Sþ1LJÞ ¼ δL0LδS0S: ðA5Þ

For spinless particles, we have identically S ¼ l as
enforced by the Kronecker δSl appearing in Eq. (A4),
making the superscripts in Eq. (A3) redundant. Therefore,
we adopt the simpler notation,

MJP
3;L0S0;LSðp;kÞ
¼
X
λ0;λ

Pðl0Þ
λ0 ð2S0þ1L0

JÞMJ
3;l0λ0;lλðp;kÞPðlÞ

λ ð2Sþ1LJÞ: ðA6Þ

In summary, one can use Eq. (A2) to first project to
definite J and then Eq. (A3) to project the subsequent
amplitude to the JLS basis with definite parity. Recall that
M3 can be written as the sum of two terms: the ladder
amplitude,D, and a divergent free amplitude,M3;df (or the
asymmetric M̂3;df ). We now apply the procedure outlined
above to write the partial-wave projection of these different
contributions to the three-particle scattering amplitude.

1. Partial-wave projected D

We start with the partial-wave projection of D. For
convenience, we repeat here the expression for D in the
helicity basis given in Eq. (3):

Dl0λ0;lλðp;kÞ¼−M2;l0 ðσpÞGl0λ;lλðp;kÞM2;lðσkÞ

−M2;l0 ðσpÞ
X
l1;λ1

Z
d3k0

ð2πÞ32ωk0
Gl0λ0;l1λ1ðp;k0Þ

×Dl1λ1;lλðk0;kÞ: ðA7Þ
13Note this d is not to be confused with the amputated ladder

amplitude, Eq. (10), which has been defined in Sec. II A.
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Using Eq. (A2), the partial-wave projection ofD to definite
angular momentum J can be obtained by integrating over
the angular dependence

DJ
l0λ0;lλðp;kÞ¼

1

2

Z
1

−1
dcosθpkdJλλ0 ðθpkÞDl0λ0;lλðp;kÞ ðA8Þ

¼−M2;l0 ðσpÞGJ
l0λ;lλðp;kÞM2;lðσkÞ

−M2;l0 ðσpÞ
X
l1;λ1

Z
dk0k02

ð2πÞ22ωk0
GJ
l0λ0;l1λ1

ðp;k0Þ

×DJ
l1λ1;lλ

ðk0;kÞ: ðA9Þ

The explicit form of GJ
l0λ0;lλ can be found in Eq. (57) of

Ref. [19]. Next, Eq. (A6) is used to obtain the desired
amplitudes of definite total angular momentum and parity
that we are interested in this work,

DJP
L0S0;LSðp;kÞ¼

X
λ0;λ

Pðl0Þ
λ0 ð2S0þ1L0

JÞDJ
l0λ0;lλðp;kÞPðlÞ

λ ð2Sþ1LJÞ

¼−M2;S0 ðσpÞGJP
L0S0;LSðp;kÞM2;SðσkÞ

−M2;S0 ðσpÞ
X
L1;S1

Z
dk0k02

ð2πÞ22ωk0

×GJP
L0S0;L1S1

ðp;k0ÞDJP
L1S1;LS

ðk0;kÞ: ðA10Þ

Here, GJP is the partial wave projected OPE explicitly given
in Eq. (5) in Sec. II.

2. Partial-wave projection of asymmetric formalism

As discussed in the main body of this work, there are two
equivalent classes of formalism for the “divergent free” part
of M3. We first discuss in some detail the partial-wave
projection of M̂3;dfðp;kÞ, which appears in the asymmetric
formalism. In the helicity basis [20], this object can be
written as

M̂3;df;l0λ0;lλðp;kÞ ¼
X
l1;λ1

X
l0
1
;λ0

1

Z
p0

Z
k0
L̂l0λ0;l1λ1ðp;p0Þ

× T̂ l1λ1l01;λ
0
1
ðp0;k0ÞR̂l0

1
λ0
1
;lλðk0;kÞ;

ðA11Þ

where we introduce the following compact notation for the
three-dimensional integral14

Z
k
≡
Z

d3k
ð2πÞ32ωk

: ðA12Þ

Using this notation, the different building blocks are
defined by

L̂l0λ0;lλðp;kÞ ¼ ð2πÞ32ωkδ
ð3Þðp − kÞδl0lδλ0λ

−Mðl0Þ
2 ðσpÞΓl0λ0;lλðp;kÞ

−
X
l1;λ1

Z
k0
Dl0λ0;l1λ1ðp;k0ÞΓl1λ1;lλðk0;kÞ;

ðA13Þ

R̂l0λ0;lλðp;kÞ ¼ ð2πÞ32ωkδ
ð3Þðp − kÞδl0lδλ0λ

− Γl0λ0;lλðp;kÞMðlÞ
2 ðσkÞ

−
X
l1;λ1

Z
p0
Γl0λ0;l1λ1ðp;p0ÞDl1λ1;lλðp0;kÞ;

ðA14Þ

where

Γl0λ0;lλðp;kÞ ¼ ð2πÞ32ωkδ
ð3Þðp − kÞδl0lδλ0λρ̃ðσkÞ

þ Gl0λ0;lλðp;kÞ: ðA15Þ

Finally, the remaining object appearing in Eq. (A11)
needing to be defined is T̂ ,

T̂ l0λ0;lλðp;kÞ ¼ K̂3;l0λ0;lλðp;kÞ

−
X
l1;λ1

X
l0
1
;λ0

1

X
l2;λ2

Z
p0

Z
q0

Z
k0
K̂3;l0λ0;l1λ1ðp;p0Þ

× Γl1λ1;l01λ
0
1
ðp0;q0ÞL̂l0

1
λ0
1
;l2λ2ðq0;k0Þ

× T̂ l2λ2;lλðk0;kÞ: ðA16Þ

Here, we note that there is a freedom in the definition of ρ̃.
Throughout the main body of this work, we use the
minimal definition, Eq. (14). In Appendix B, we discuss
the possible shifts in the definition ρ̃, as well as to why this
might be necessary.
We can apply the above-mentioned procedure to obtain

the partial-wave projection of the different building blocks.
For a given functional form of K̂3, one can use the analogs
of Eqs. (A2) and (A6), to project this to definite J and
subsequently to the JLS basis

K̂J
3;l0λ0;lλðp; kÞ ¼

1

2

Z
1

−1
d cos θpkdJλλ0 ðθpkÞK̂3;l0λ0;lλðp;kÞ;

ðA17Þ

K̂JP
3;L0S0;LSðp; kÞ ¼

X
λ0;λ

Pðl0Þ
λ0 ð2S0þ1L0

JÞK̂J
3;l0λ0;lλðp; kÞ

× PðlÞ
λ ð2Sþ1LJÞ: ðA18Þ

14This is not to be confused with Eq. (9), where only the
magnitude of the momentum is being integrated over.
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The only element that remains to be partial-wave
projected is the term proportional to the δ function
appearing in the two rescattering functions defined in
Eqs. (A13) and (A14). To do this, we write the δ function
in the spherical basis,

δð3Þðp − kÞ ¼ δðp − kÞ
k2

δð2ÞðΩp − ΩkÞ; ðA19Þ

where, as defined in Ref. [19], Ωk is the solid angle of the
pair in the CM frame, i.e., the vector −k̂. We then use the
completeness relation for Wigner D matrices to rewrite
the angular part of the δ function as

δð2ÞðΩp − ΩkÞ ¼
X
J;mJ;λ

2J þ 1

4π
DðJÞ

mJλ
ðΩpÞDðJÞ�

mJλ
ðΩkÞ;

¼
X
J;λ

2J þ 1

4π
dJλλðθpkÞ; ðA20Þ

where we have used the fact that
P

J
mJ¼−J D

ðJÞ�
mJλ

0 ð−p̂Þ×
DðJÞ

mJλ
ð−k̂Þ ¼ dðJÞλλ0 ðθpkÞ with cos θpk ¼ ð−k̂Þ · ð−p̂Þ. With

this, the δ function term appearing in Eqs. (A13) and (A14)
becomes

ð2πÞ32ωkδ
ð3Þðp − kÞ

¼ ð2πÞ32ωk
δðp − kÞ

k2
δð2ÞðΩp −ΩkÞ;

¼ ð2πÞ2ωk

k2
δðp − kÞ

X
J;λ

ð2J þ 1ÞdJλλðθpkÞ: ðA21Þ

The first equality of Eq. (A20) is easy to prove using the
orthogonality relation of the Wigner D matrices,

DðJÞ
mJλ

ðΩpÞ ¼
Z

dΩkδðΩp −ΩkÞDðJÞ
mJλ

ðΩkÞ; ðA22Þ

¼
Z

dΩk

X
J0;m0

J;λ
0

2J þ 1

4π
DðJ0Þ

m0
Jλ

0 ðΩpÞDðJ0Þ�
m0

Jλ
0 ðΩkÞ

×DðJÞ
mJλ

ðΩkÞ; ðA23Þ

¼
X

J0;m0
J;λ

0

2J þ 1

4π
DðJ0Þ

m0
Jλ

0 ðΩpÞ
Z

dΩkD
ðJ0Þ�
m0

Jλ
0 ðΩkÞ

×DðJÞ
mJλ

ðΩkÞ; ðA24Þ

¼
X

J0;m0
J;λ

0

2Jþ1

4π
DðJ0Þ

m0
Jλ

0 ðΩpÞ
�

4π

2Jþ1
δJJ0δmJm0

J
δλλ0

�
;

ðA25Þ

¼ DðJÞ
mJλ

ðΩpÞ; ðA26Þ

where we emphasize that the normalization of the
Wigner D matrices is due to the fact that we have integer
spin systems and describe the particle orientation by only a
polar and azimuthal angle. Using Eq. (A21), and the
analogs of Eqs. (A2) and (A6), we can project the δ
function and consequently the rescattering functions for the
J and the JLS basis. For example, the Γ function appearing
in Eq. (A15) is projected to these two basis as

ΓJ
l0λ0;lλðp; kÞ ¼

ð2πÞ2ωk

k2
δðp − kÞδl0lδλ0λρ̃ðσkÞ

þ GJ
l0λ0;lλðp; kÞ; ðA27Þ

ΓJ
L0S0;LSðp; kÞ ¼

ð2πÞ2ωk

k2
δðp − kÞδL0LδS0Sρ̃ðσkÞ

þ GJ
L0S0;LSðp; kÞ: ðA28Þ

Using these results, one then arrives to Eqs. (12), (13), and
(17) for the partial-wave projected L̂, R̂, and T̂ functions.

3. Partial-wave projection of symmetric formalism

The partial-wave projection for the symmetric formalism
is identical to the asymmetric formalism. This is because
the angular dependence of these two formalisms is encoded
in the same building blocks, namely D, M2, the three-
dimensional δ function, and a short distanceK3. As a result,
wewill not repeat the steps outlined above for the asymmetric
formalism. Instead, we will just write out the expression for
M3;df , L, and R in the helicity basis [17],

M3;df;l0λ0;lλðp;kÞ ¼
Z
p0

Z
k0
Ll0λ0;l2λ2ðp;p0ÞT l2λ2;l1λ1ðp0;k0Þ

×Rl1λ1;lλðk0;kÞ; ðA29Þ

Ll0λ0;lλðp;kÞ ¼
�
1

3
− ρ̃ðσpÞM2;lðσpÞ

�

× δl0lδλ0λ2ωkð2πÞ3δ3ðp − kÞ
−Dl0λ0;lλðp;kÞρ̃ðσkÞ; ðA30Þ

Rl0λ0;lλðp;kÞ ¼
�
1

3
− ρ̃ðσpÞM2;lðσpÞ

�

× δl0lδλ0λ2ωpð2πÞ3δ3ðp − kÞ
− ρ̃ðσpÞDl0λ0;lλðp;kÞ; ðA31Þ

where the T function satisfies an integral equation

T l0λ0;lλðp;kÞ ¼ K3;l0λ0;lλðp;kÞ

−
Z
p0

Z
k0
K3;l0λ0;l2λ2ðp;p0Þ ρ̃ðp

0Þ
2ωp0

× Ll2λ2;l1λ1ðp0;k0ÞT l1λ1;lλðk0;kÞ: ðA32Þ
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Following the steps discussed for partial wave projecting the
asymmetric formalism, one arrives at Eqs. (19)–(22) forMJP

3

and its various contributions.

APPENDIX B: SHIFTING THE PHASE SPACE ρ̃

There is freedom in defining the phase space, ρ̃, appearing
in the definition of both M̂3;df andM3;df , in Eqs. (A11) and
(A29), respectively. Throughout this work, we have assumed
the simplest definition for ρ̃, given by Eq. (14). This freedom
stems from the fact that the two-body scattering amplitude,
M2;l, must be scheme independent, but one can modify the
phase space and the two-bodyKmatrixK2;l simultaneously,
in such a way that M2;l is invariant [20].
To make this more explicit, let us writeM2;l in terms of

two-body K matrix, K2;l, and the standard two-body phase
space, ρ, defined in Eq. (15),

M−1
2;l ¼ K−1

2;l − iρ; ðB1Þ

¼ K̃−1
2;l þ ρ̃; ðB2Þ

where we in the second equality we introduced

K̃−1
2;l ≡K−1

2;l − ið1 −HÞρ: ðB3Þ

This makes it evident that M2;l is invariant under a
simultaneously shift of K2;l and ρ̃ of the form,

K̃−1
2;l → K̃−1

2;l −
ĨðlÞPV

q⋆2lk

; ðB4Þ

ρ̃ → ρ̃þ ĨðlÞPV

q⋆2lk

; ðB5Þ

where ĨðlÞPV has to be a real and nonsingular function of σk to
ensure unitarity, and the barrier factors have been intro-
duced to guarantee the correct threshold behavior of M2;l.
Reference [90] showed that one can use this freedom to

generalize previous finite-volume three-body formalism [32]
to describe systems where the K̃2;l can have poles. Because
K̃2;l depends on the cutoff, these poles are unphysical, but
they can appear for systemswhere there are two-body bound
states and/or resonances. A minimal choice introduced in

there is to use ĨðlÞPV to move these poles away from the
kinematic region considered.

Because D only depends onM2;l, as opposed to K̃2;l or
ρ̃, it is unaffected by this shift. Meanwhile, M3;df does
depend on ρ̃, implying that the functional form does
change. For example, the L function within the symmetric
formalism, Eq. (A30), will be shifted to

Ll0λ0;lλðp;kÞ → Ll0λ0;lλðp;kÞ

−
ĨðlÞPV

b⋆2lp
M2;lðσpÞ2ωpð2πÞ3δ3ðp − kÞ

−Dðu;uÞ
l0λ0;lλðp;kÞ

ĨðlÞPV

q⋆2lk

: ðB6Þ

Note, this shift leads to an implicit redefinition of K3 to
absorb this modification to M3.
Since the phase space ρ̃ appears inside an integral in, for

example, the definition ofM2;df;, this must be proportional

to the cut-off function, H. Consequently, ĨðSÞPV must also be
proportional to H. Following a similar convention to the

one introduced in Ref. [90], we can explicitly write ĨðSÞPV via,

ĨðSÞPV

q⋆2Sk

¼ H
32π q⋆2Sk

XN
n¼0

cnsn; ðB7Þ

where cn are real constants fixed to assure that K̃2 does not
have poles in the kinematic region where H has support.
Because this shift is done for partial-wave projected two-

body amplitudes, it does not introduce any further subtle-
ties in the partial-wave projecting procedure outlined in
Appendix A. In other words, one can use the formalism
presented in the main body after making the global
replacement

ρ̃δS0S → ρ̃δS0S þ
ĨðSÞPV

q⋆2Sk

: ðB8Þ

These artifacts of the finite-volume formalism are not of
immediate relevance for the infinite-volume formalism,
which is the concern of this work, but it is important to keep
these details in mind, if one is interested in using lattice
QCD results for K3, which may require performing these
shifts in ρ̃ to then determine physical partial-wave projected
amplitudes.
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