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ABSTRACT OF THE DISSERTATION

Use of Data Assimilation to Determine Features of Neuron Structure and
Connectivity

by

Michael J. Eldridge

Doctor of Philosophy in Physics with a specialization in Computational Science

University of California, San Diego, 2016

Professor Henry D.I. Abarbanel, Chair

Neurons and the synaptic connections between them underlie the computational

power of the brain. We present numerical models of neural behavior and show how to

tune these models based on experimental evidence. Though the basic principles behind

the creation and propagation of action potentials are understood, it is experimentally

feasible to measure only a small number of the quantities that go into our models,

substantially increasing the difficulty of making accurate predictions. Additionally,

because biologically motivated models are very often nonlinear, we will focus on tools

and techniques which do not require linearity.

xi



We present novel methods of using time series of measurements to determine

the features of nonlinear systems and predict their future behavior. We show how

time-delayed coordinates can substitute for additional measurements and provide

us with a better estimation of the state and parameters of the underlying system.

A general expression for our objective function as a path integral is derived from

probabilistic considerations and methods for evaluating the expression are discussed.

We demonstrate how the techniques developed can be used to determine

properties of a biophysical system from a realistic set of limited measurements. We

examine experimental electrophysiological recordings of zebra finch neurons and use

them to hone the predictive powers of our models for single cells. Then, moving beyond

the single cell level, we demonstrate how our approach can be used to determine changes

in network connectivity due to synaptic plasticity in ways that direct experiment

cannot.
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Chapter 1

Data Assimilation

In order to test a given hypothesis, a scientist may construct a mathematical

model of a system. Using measurements, the scientist creates a specific instance of

that model, developing a version of the mathematical model which better describes a

particular set of observations. Data assimilation is the process by which observations

are incorporated into such a model.

For our purposes, the term numerical model refers to a set of differential

equations consisting of state variables, which change in time, and parameters which

have fixed values. If the vector of state variables is x, and the set of parameters used

in the model is p, then the equations describing the numerical model can be written,

dx

dt
= f(x,p). (1.1)

We will focus on dynamical models, or those which evolve in time. Typically, the

systems we will consider are autonomous, meaning that time does not appear explicitly

in the dynamical equations. From the perspective of the underlying physics we focus

1
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exclusively on classical, as opposed to quantum mechanical, systems. Additionally,

the underlying dynamics of the models we consider are assumed to be deterministic,

though we will allow for the introduction of random additive noise in the measurement

of the underlying system.

Typically, only a subset of the states and parameters in the model can be

measured directly and are referred to as observed states and parameters. In some

cases, the number of observations available may be orders of magnitude less than the

number of states required to fully describe the model, as may be the case in weather

prediction models (Lorenc and Payne [40]). More generally, we may measure only

some function of the states and parameters in the model. This function is called the

measurement function and produces a time series of observations Y, which can be

written Y = h(x,p).

Further complicating things, the models themselves are typically only an

approximation to the underlying physics of the system, an adage which tends to

be especially true when dealing with biophysical systems. Typically the systems

we consider are either too large for a first principles description to be practical, or

a precise description of the underlying biophysics is unknown. In practice, most

mathematical models of biological systems try to balance an approximate description

of the underlying processes with the goal of creating a simple model that accurately

describes empirical results.

Data assimilation also allows us to test the accuracy of these models. Based

on the measurements made data assimilation provides estimates for the unknown

states and parameters of the model. The assimilated model can then be used to make

predictions which can be measured against other data sets to test the model’s accuracy.
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In this way data assimilation can aid in validating or rejecting various models based

on experimental data.

1.1 General problem

The problem of data assimilation is closely related to problems of optimization

(Gill et al. [20]) and optimal control theory (Kirk [30]). To test whether or not the

model hypothesized to describe a data set is accurate, it is necessary to formulate a

function which can be used to quantify any discrepancies between data and model.

The function which describes how well the model and data agree is called the cost

function or objective function. This function defines what it means for one estimate

to be better than another. The goal of data assimilation is then to minimize the cost

function through numerical optimization, thereby achieving the best fit of the model

to the data.

The process of iterative optimization can be thought of as consisting of two

distinct steps. In the first step, a vector of estimated states and parameters is chosen.

Different optimization routines are defined by the methods employed to choose this

vector. In the second step, the cost function is evaluated to determine whether or not

the estimated vector is an improvement. By repeating these steps, one can iteratively

search for the minimum of the cost function, which corresponds to the optimal estimate

for the states and parameters.

In all the examples given here, we treat both states and parameters in our

models as being bounded above and below. These bounds can be ad hoc or motivated

from the underlying mathematical, physical, or biological description of the system. For

example, when employing models of cells, we may know from experimental observation
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that concentrations of some chemical above or below some values will kill the cell and

therefore choose to bound the concentration to within the survivable range. Typically

optimization problems become more difficult as the bounds are relaxed, meaning that

the more restricted our search, the greater the chance for success.

1.1.1 Formal Description

Formally, we can describe the optimization procedure as a search over a space of

dimension N for the optimal point called w∗. Suppose we wish to determine the initial

conditions of a dynamical system along with its parameters or the set w∗ = {x(0),p}.

If the vector of initial conditions x has dimension D and there are P parameters, then

the dimension of the search space is N = D+P . For many of the examples considered

here, we look for the complete state of the system at NT different points in time using

collocation methods, which search for the state at all times simultaneously. In this

case the dimension of the search space is N = D ·NT + P . It is typically desirable

to split time into small discrete steps in order to approximate continuous differential

equations by finite discrete mappings. However, the smaller the time steps, the larger

the number of them NT required to cover any interval. In other words, the higher

the temporal resolution we employ, the more states we must estimate, and the more

difficult the optimization problem becomes.

Calculus provides us with a mathematical description of what it means to

be a minimum through so-called optimality conditions. A minimum point of a one

dimensional function has a zero first derivative and positive concavity. Generalized to
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a multidimensional function, these conditions can be written

dφ

dw

∣∣∣∣
w∗

= 0

d2φ

d2w

∣∣∣∣
w∗

> 0,

and correspond to a vanishing Jacobian and a positive definite Hessian. When dealing

with non-linear functions, there is no guarantee that these conditions will give us the

lowest of all possible minima, called the global minimum. Indeed, any local minimum

will satisfy the optimality conditions. As we will see, the failure of the optimality

conditions to define a global minimum greatly complicates the optimization process.

1.1.2 Constraints

The problem in which we need only find a solution which satisfies the optimality

conditions is called the unconstrained optimization problem. In addition to the

optimality conditions, we may wish to restrict the search space through equations

of constraint. By imposing constraints we obtain a modified optimization problem,

the goal of which is to minimize φ(w) subject to a set of equations r(w) = 0 called

constraints. One common way of incorporating the equations of constraint is through

the method of Lagrange multipliers (see for example Nearing et al. [47]).

For linear systems, we can easily answer the question of what effect constraints

have on the uniqueness of the solution (i.e. is the system over-determined, under-

determined, or uniquely determined). However, for nonlinear systems of equations this

question can not be easily answered and poses one of the chief difficulties of nonlinear

optimization. Compounding this, we have seen that the optimality conditions alone are



6

not sufficient to determine if we have found the global minimum. Thus, in nonlinear

optimization problems not only are we unable determine if any point is the global

minimum, we cannot even be sure such a point (or points) exists.

So far, we have discussed constrained and unconstrained optimization problems.

A third possibility called weak constraint exists between these limiting cases. In the

weakly constrained form, the equations of constraint are added into the cost function

so that there is some additional penalty associated with violating the constraints. To

illustrate this, we consider a modified cost function ψ(w), in which we have introduced

the equations of constraint along with a weighting parameter α, such that

ψ(w) = φ(w) +
(1− α)

α
r(w). (1.2)

Letting α→ 1, the penalty associated with the constraints vanishes, and we recover

the unconstrained optimization problem. Conversely, in the limit α→ 0, the penalty

associated with violating the constraints approaches infinity, and we recover the

constrained optimization problem.

The formulation given in eqn. (1.2) is by no means the only way of enforcing

weak constraints. Indeed, approaches to enforcing constraints in an active area of

research and will be visited again in the discussion of simulated annealing.
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1.2 Overview of Techniques

1.2.1 Numerical Integration

In order to integrate the dynamical equations computationally, we must first

determine a discrete approximation to the continuous dynamics. First, we discretize

time into NT steps of size dt. We then employ a forward mapping F, which moves

the state vector forward in time by an amount dt. In other word, F is the discrete

mapping described by

x(t+ dt) = F ◦ x(t), (1.3)

and can be applied repeatedly NT times in order to yield the state at end of the time

interval. We denote this as

x(t+NT · dt) = FNTx(t). (1.4)

There are many schemes for choosing the function F, which actually does the

numerical integration.

1.2.2 Overview of Optimization Techniques

No single technique yet exists which can find the global minimum of a nonlinear

system of equations. Indeed, some make the argument that such a technique is highly

unlikely to even exist (see for example Press et al. [52]). There exist a wide variety

of approaches which each have various strengths and weaknesses. Here, we briefly

examine several of the wide categories of techniques.
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With rare exceptions, all known methods of nonlinear optimization are iterative.

In the broadest sense, the strategy of optimization methods is to move in the direction of

decrease for the cost function. Determining the direction of decrease requires computing

derivatives, typically using finite difference techniques. Methods for optimization

are typically categorized by whether they require evaluating the gradient and/or

Hessian. While calculating the Hessian typically improves a search, this evaluation

is computationally expensive and so in many implementations the Hessian is only

approximated.

Most of the techniques considered here fall under the umbrella of sequential

Bayesian estimation (see for example Särkkä [56]). Bayesian estimation provides a

general probabilistic framework for estimating the distribution of unknown states

and parameters given some set of measurements. Subclasses of Bayesian estimation

methods, such as filters and smoothers are defined based on what subset of measure-

ments are used. Many of the approaches, including filters (Judd and Stemler [28]) and

estimators (Cessna et al. [10]), are designed for the large scale assimilation problems

associated with weather forecasting.

1.3 Twin Experiments

The ultimate goal of data assimilation is to use numerical techniques to deter-

mine attributes of some unknown system which produces experimental data. However

when using experimental data, if the assimilation procedure fails to accurately capture

the behavior of the data, we are left guess as to the causes of failure. It could be that

the underlying model we have chosen to describe the data is incorrect and cannot

adequately explain the observations for any values of states and parameters. A second
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possibility is that the model is correct, but that the data assimilation procedure itself

has failed. It is therefore desirable to test out the assimilation procedures developed in

cases where we know the underlying model which produced the data. The procedures

we use to test the assimilation procedures themselves are called twin experiments and

are examined below.

In a twin experiment artificial data are produced using a dynamical model

of our choosing. Noise may be added to the data produced, and the data are then

assimilated to an identical system called the model system. In this way, we can

eliminate the possibility of model error and also control the amount of measurement

noise recorded. Because we know the full details of the data system, we can compare

estimations for states and parameters that were not directly observed as one check on

the accuracy of the assimilation procedure. This process is broken into following steps:

1. Choose a dynamical model to investigate, specified by a set of differential

equations f

2. Select a set initial conditions and parameters {y(0),q} to represent the data

system

3. Integrate the data system, dy
dt

= f(y(0),q) forward from the initial data condi-

tions to produce a data trajectory Y

4. Create a twin model, dx
dt

= f(x(0),p), obeying the same dynamics as the data

system, but with undetermined states and parameters.

5. Using some assimilation technique, produce estimates for the states and param-

eters of the data system x∗ = {x∗(0),p∗}
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6. Set the model’s state and parameters equal to the estimated values, dx
dt

=

f(x∗(0),p∗), and integrate the dynamics beyond the assimilation window

7. Compare the model trajectory to the data trajectory via the cost function

1.4 Software

In the examples presented here, the optimization problem is handled using

IPOPT, an interior point solver (Wächter [65]). IPOPT is available as open source

code under the Eclipse Public License and can be found at (https://projects.coin-

or.org/Ipopt).

To translate dynamical equations into the C++ source code required by IPOPT,

we employ a front end which parses text files containing the equations. The front end

uses python scripts developed through the work of Brian Toth, Chris Knowlton, and

Jingxin Ye (Ye et al. [69]). Numerical integration to produce twin data is handled by

the odeint libraries in python. The code used to produce the results and figures in

this document is available upon request.

1.5 Path Integral Formulation

When using real data, the measurements will necessarily be noisy and we rarely

know whether the model chosen is an accurate description of the underlying system.

Because of these complications, it is desirable to develop a statistical description of the

data assimilation procedure. In particular, we would like the probability distribution

for the states and parameters appearing in the model. If we have a distribution for

the parameters and initial states (we can assume a uniform distribution for example),



11

then there are two factors which shape our distribution as we go forward in time.

First, we need to account for how the dynamics of the system change the distribution

at each time step. Second, we must include the impact of measurements on the

distribution. Formally, this process is described by the recursive Bayesian estimation

(see for example Särkkä [56]). Before delving into the detailed form of our approach,

we will review the necessary basic probability theory.

Throughout this section, we will assume that the time interval [0, T ] has been

split into discrete time steps t0, t1, ..., tN , each of length ∆t. We write the distribution

for the state of the system at each time as a D dimensional vector xi and the state of the

system up until some time tm as Xm = {x0,x1, ...,xm}. We denote the measurements

as L dimensional vectors yj , where L ≤ D and the set of measurements up until time

tm as Ym = {y0,y1, ...,ym}. The case of measurements at all times can be trivially

generalized to measurements at an arbitrary subset of times by letting some yj = 0.

Additionally, we note that the set of measurements is separable, allowing us to write

Ym = {Ym−1,ym}.

1.5.1 Conditional Probability

Conditional probability is defined as the probability that one event has occurred

given knowledge of a second prior event. We will call the event in question event A

and the prior event B. The probability that both A and B occur is then computed

by multiplying the probability of B occurring by the probability that A occurs, given

that B has occurred, which we write as

P (A,B) = P (A|B) ∗ P (B). (1.5)



12

In this context, we can rephrase the estimation problem to ask what is the

distribution of final states given knowledge of the measurements, or using the definition

given in eqn. (1.5), what is P (xN |YN).

1.5.2 Conditional Mutual Information

Conditional mutual information (CMI) provides a useful way to think about the

estimation process. We can think of the measurements as transferring new information

to the model estimate in the sense described in Fano and Hawkins [15]. The conditional

mutual information can be written in terms of the conditional probability as

CMI(xm,ym|Ym−1) = log

[
P (xm,ym|Ym−1)

P (xm|Ym−1)P (ym|Ym−1)

]
, (1.6)

and if the logarithm is taken in base 2, the resulting quantity has units of bits. CMI

thus provides a quantitative measure of the information transferred to the model

system by each measurement.

1.5.3 Markov Processes

It is assumed that the discretized dynamics of the equations we consider obey

the Markov property, which is to say that the state of the system at a time tm+1 is

completely determined by the state of the system at time step tm. This is the case

for the ordinary differential equations considered here, but would not be the case for

delay differential equations, for example.

The Markov assumption allows us to greatly simplify expressions for the joint
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probability distribution by recognizing

P (xm|xm−1,xm−2, ...,x0,Ym) = P (xm|xm−1), (1.7)

where the dependence on anything other than the previous state, xm−1, has been

dropped in the last term.

1.5.4 Derivation of Path Integral

Once measurements are introduced to inform the model used in assimilation,

what we seek is the final probability distribution of states and parameters conditioned

on the time series of measurements. We can write the distribution of state and

parameters at time tm as P (xm|Ym). The basic idea is to obtain an expression for the

distribution which depends only on the previous time, and then apply this technique

recursively. Following this procedure ultimately leads an expression for the model

state at the final time.

We begin by using an identity which gives P (xm|Ym) in terms of only proba-

bilities which are conditioned on the previous m− 1 measurements. By twice applying
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a factor of unity we find,

P (xm|Ym) =
P (xm,Ym)

P (Ym)
(1.8)

=
P (xm,ym,Ym−1)

P (ym,Ym−1)
(1.9)

=
P (xm,ym|Ym−1)P (Ym−1)

P (ym|Ym−1)P (Ym−1)
(1.10)

=
P (xm,ym|Ym−1)

P (ym|Ym−1)
(1.11)

=
P (xm,ym|Ym−1)

P (ym|Ym−1)

P (xm|Ym−1)

P (xm|Ym−1)
(1.12)

In going from the first line to the second, we have used separability, while in going

from the second to the third, we have used the definition of conditional probability

given in eqn. (1.5).

What we would like to have is the final probability distribution given in terms

of the distribution of initial states. In other words, while the identity appearing in

eqn. (1.8), steps us back in time by one measurement (connecting Ym−1 and Ym),

we now need an equation that steps us back by one state (connecting xm to xm−1).

We use the Markov property, along with the Chapman-Kolmogorov equation (see for

example Van Kampen [64]) to connect the distribution of states at different points in

time. In the form needed here, the Chapman-Kolmogorov equation reads

P (xm|Ym−1) =

∫
dDxm−1P (xm|xm−1,Ym−1)P (xm−1|Ym−1) (1.13)

=

∫
dDxm−1P (xm|xm−1)P (xm−1|Ym−1), (1.14)

where the last equality comes from application of the Markov property. Repeating this

process allows us to connect distribution at the initial time to the time in question.
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Now we can expand using eqn. (1.13) to expand the expression derived in eqn.

(1.8). This yields

P (xm|Ym) =
P (xm,ym|Ym−1)

P (ym|Ym−1)

P (xm|Ym−1)

P (xm|Ym−1)

=
P (xm,ym|Ym−1)

P (ym|Ym−1)P (xm|Ym−1)

∫
dDxm−1P (xm|xm−1)P (xm−1|Ym−1),

Next, we apply the same formula to the term P (xm−1|Ym−1) appearing inside

the integral. This yields

P (xm|Ym) =
P (xm,ym|Ym−1)

P (ym|Ym−1)P (xm|Ym−1)

∫
dDxm−1P (xm|xm−1)

× P (xm−1,ym−1|Ym−2)

P (ym−1|Ym−2)P (xm−1|Ym−2)

∫
dDxm−2P (xm−1|xm−2)P (xm−2|Ym−2),

which allows us to go from xm−2 to xm−1 to xm. Applying this formula recursively

NT times, we eventually arrive at the term P (x0|Y0) = P (x0|y0) = P (x0), since no

measurement is made at y0. The full formula resulting from the repeated application

of the Chapman-Kolmogorov equation is given by

P (xm|Ym) =

∫ NT∏
m=1

dDxm−1
P (xm,ym|Ym−1)

P (ym|Ym−1)P (xm|Ym−1)
P (xm|xm−1)P (x0) (1.15)

which has the interpretation of a path integral. Alternatively, we can express the path

integral in terms of the conditional mutual information,

P (xm|Ym) =

∫ NT∏
m=1

dDxm−1exp(
m∑
n=0

CMI(xn,yn|Yn−1)+log(P (xn|xn−1))+log(P (x0)))

(1.16)

In either case, we are left with a high dimensional integral, which cannot be easily
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evaluated in general. Techniques for approximating the integral are discussed further

on.

1.5.5 Action

From comparison to other well studied path integral problems in physics

(Feynman and Hibbs [16], Zinn-Justin [70]), we can define a quantity called the action,

based on the definition

P (xm|Ym) =

∫
dX exp(−A0(Xm,Ym)), (1.17)

which leads to the formulation of the action according to

A0(X,Ym) = −
m∑
n=0

CMI(xn,yn|Yn−1)−
m−1∑
n=0

log(P (xn+1|xn))− log(P (x0)). (1.18)

The first term represents the information transferred between the measurements and

model state and the second represents the transition probabilities from the state at

one time to the state at the next.

In analogy to statistical physics, we can compute expectation values of quantities

of interest via the formula

E[G(X)|Y] =

∫
dXG(X)exp[−A0(X,Ym)]∫
dXexp[−A0(X,Ym)]

(1.19)

From inspection of eqn. (1.19), we can see that the term − log(P (x0)) appearing in

eqn. (1.18) will cancel when computing expectation values and can be dropped from

the effective action.
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1.5.6 Transition Probabilities

So far, we have glossed over the explicit form for the transition probabilities.We

treat the transitions differently depending on whether or not we account for the

presence of noise, and consider the noise-free case first. Assuming the correctness

of our model dynamics, then the transition probability is given by a delta function

through the equation

P (xm+1|xm) = δD(xm+1 − F · xm). (1.20)

In the case of model noise, it is not immediately clear how we should broaden the

distribution. However, in the limit that the noise goes to zero, we should be able to

recover the delta function. If the model errors are given by a Gaussian, we then have

P (xm+1|xm) = exp

[
−

D∑
a,b=1

(Fa(xm)− xm+1)
[R(m)]ab

2
(Fb(xm)− xm+1)

]
, (1.21)

where [R(m)]ab is the inverse of the covariance matrix specifying the model noise at

each time point.

In practice F◦xm, the discretized forward mapping is, given by some numerical

rule. In selecting F, we typically choose a function which depends only on the end

points of the interval, such as the trapezoidal rule.
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1.5.7 Computational Form of the Action

We now consider the impact of additive noise in the measurements. Taking

the noise to be independent in the measurements and Gaussian distributed,

CMI(xm,ym|Ym−1) = −
L∑

l,k=1

(hl(xm)− ylm)
[Rf ]lk

2
(hk(xm)− ykm) (1.22)

Combining equations 1.22 and 1.21 results in an expression for the action,

A(xm,ym) =
RF

2NT

NT−1∑
t=0

M∑
i=1

(hi(x(t))− yi(t))2 +
RM

2NT

NT−2∑
t=0

Nx∑
i=1

(xi(t+ 1)− Fi(x(t)))2.

(1.23)

1.5.8 Approximating the Path Integral

The path integral appearing in eqn. (1.19) is high dimensional and therefore

computationally expensive to evaluate directly. To approximate the path integral we

consider two methods: Laplace’s method and Monte-Carlo techniques. We will discuss

Laplace’s method in some detail and refer the reader to Kostuk [32] for a discussion

of how Monte Carlo techniques can be implemented to evaluate the path integral.

Laplace’s method is a well established technique for evaluating integrals of

exponentials (see for example Orszag and Bender [48]). By requiring a stationary

path, we get additional criteria that the Jacobian vanishes,

∂A0(X)

∂X
|X=Xq = 0 (1.24)
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and that the Hessian,

∂2A0(X)

∂2X
|X=Xq (1.25)

is positive definite. Non-extremum paths give contributions to the integral which

vanish exponentially.

One advantage of this formulation is that Laplace’s method also gives us a

way to compute higher order corrections if we desire higher accuracy. In geophysical

literature, finding the extremum path is called 4DVar. The general case given by eqn.

(1.23) is weakly constrained and is referred to as weak4Dvar. Note that if we consider

the limit Rf →∞, we recover the strongly constrained case.

1.6 Simulated Annealing

There exists a class of heuristic optimization algorithms which perform a process

called simulated annealing. The driving idea behind these algorithms is to start with a

distribution that matches the measurements and slowly impose constraints. This has

the physical analog of the eponymous annealing process, in temperature is changed to

adjust the effective height of a potential well.

To accomplish this process computationally, we parameterize RF = αβ (α and

β are sometimes referred to as hyperparameters). We begin with some small value

for RF and step through values of β to some desired maximum. As this happens, the

constraints are slowly imposed on the model. The idea behind the method is to start

with paths in the vicinity of the data points, and slowly enforce the dynamics in order

to obtain a path that is both close to the data, and obeys the equations of motion.

We will employ this technique in the subsequent chapters.



Chapter 2

Nonlinear Dynamics

Nonlinear dynamical systems are both qualitatively and quantitatively different

from those described by linear equations. Nonlinear dynamical systems provide a

general framework that allows us to produce more accurate approximations to the

behavior of the underlying system, but at the expense of depriving us of the many

tools which depend on linearity.

Many of the tools developed to visualize and intuitively explain the results of

nonlinear dynamics are intended for low dimensional spaces. As the spaces we typically

work in are very high dimensional these tools can sometimes gives us intuition, but

rarely hold the same explanatory power as in lower dimensional space.

Throughout this section, we will use the Hodgkin-Huxley model as any example

of a nonlinear system. A full description of the equations and their biophysical

motivation can be found in Chapter 4.

20
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Figure 2.1: Simulation of an NaKL neuron. The left panel shows the voltage
time series produced by the model, and the right panel shows the same
trajectory in the V̇ vs. V projection of the phase space.

2.1 Phase Space

For a nonlinear system defined by the dynamical equation ẋ = f(x,p), after

integrating forward from some initial condition, we obtain a time series representing

the motion of the system through state space. The dynamics of the system are fully

determined by specifying x and ẋ, the coordinates of the system in phase space. We

can plot trajectories in phase space by plotting ẋ vs. x. For more than a 1-dimensional

system, these plots will be cross-sections of a higher dimensional phase space, and

may not accurately capture the structure of the underlying dynamics.

When trajectories are plotted in this way, it becomes possible to define graphi-

cally several important concepts in nonlinear dynamics. The first of these concepts

is called a fixed point, and is defined as the solution xf to f(xf ,p) = 0. If a system

reaches a fixed point, because the time derivative vanishes, the system remains at the

point for all future time. For nonlinear systems, we cannot say in general where such

points occur, how many there are, or even whether such points exist, but the concept

is still useful in classifying the behavior of nonlinear systems. A related concept is
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that of the nullcline, which is defined as the line in phase space along which a single

coordinate xi satisfies f(xi,p) = 0. From the definition of the nullcline, one may draw

the conclusion that fixed points of the system exist at the intersection of nullclines.

Once we have found the fixed points of the system (if any exist), we begin to

classify the system based on its stability. Stability refers to the behavior of trajectories

which begin in the vicinity of a fixed point. When trajectories which begin near a fixed

point tend to converge to that point, we say such a point is attracting. Conversely,

when trajectories which begin near a fixed point tend to diverge from that point, we

say such a point is repelling. Trajectories which begin and end on the same fixed point

are referred to as homoclinic, while trajectories which begin and end on different fixed

points are called heteroclinic.

For the Hodgkin-Huxley model shown in Figure 2.1, the same simulation was

run twice, but with different forcing currents. The model used to produce the blue

trace was injected with a constant value of current (Iinj = 0.3nA) while the red trace

resulted from a model injected with a current in the shape of a chaotic waveform

generated from the Lorenz 63 system. In the phase space diagram, it can be seen that

the trajectory of the model injected with a chaotic waveform explores much more of

the phase space.

Many nonlinear systems tend to explore a relatively limited subset of phase

space. We characterize this tendency for the system to remain localized in a region

through the concept of an attractor. Borrowing from Strogatz [60], we can define

an attractor as an invariant closed set A for which any trajectory starting in A will

stay in A for all time. Additionally, for some set of initial conditions outside of A,

the trajectories will converge to A as t→∞. The set of all starting points for which
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trajectories will converge to A is referred to as the basin of attraction. These criteria

fit with the intuitive definition of an attractor as a region of phase space which tends

to attract nearby trajectories.

From examining Figure 2.1, we can see that both trajectories (which begin

from initial condition x(t0) = 0) quickly converge to the same region of phase space.

Once they reach this region, they repeatedly trace out the shape of the limit cycle

for the system. In general we should not expect that a lower dimensional projection

of trajectories in the phase plane will capture the structure of the attractor, but

the Hodgkin-Huxley model is an exception to this. Similarly, in Figure 2.2 we start

trajectories at various different places in n-V phase plane. As can be seen in the figure,

regardless of the initial condition, the trajectories converge to the same limit cycle.

So far we have not discussed the dependence of the dynamics on the set of

parameters p. While the behavior of the systems we consider will clearly depend on

the specific values we choose p, tools such as bifurcation diagrams, which are designed

to show the dependence of a nonlinear system on a particular parameter are not

typically useful because of the high dimensions of the systems we consider.

2.2 Chaos

To explain some of the potential difficulties of dealing with nonlinear systems,

it is useful to introduce the concept of chaos. Chaotic phenomena span the chasm

between repetitive and random behavior. The trajectories of chaotic systems are often

highly structured, yet not periodic. They are deterministic and yet their behavior

cannot be predicted for arbitrarily long times, no matter how good the finite precision

of our measurements. They may tend to occupy particular regions of phase space, but
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Figure 2.2: NaKL models started from different regions of state space all
converge onto the same limit cycle.

do not settle down to fixed points or limit cycles.

Chaos is loosely defined as a sensitive dependence on initial conditions. More

precisely, what we mean is that two trajectories which begin very close to one another

diverge exponentially in time. For our eventual goal of data assimilation chaos has

both positive and negative implications. The good news is that even if we are slightly

off in our estimates of the state of a chaotic system, if we wait long enough the

divergence in trajectories will become apparent (i.e. bad estimates won’t give answers

which look good). Conversely, even if our estimate for the state of the system is close

to the true solution we may end up with a trajectory which looks very different from

the data.

From the Poincare-Benedixson theorem, we know that chaotic trajectories are

not possible for a two-dimensional system. In order to observe chaos, we require a
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system with n ≥ 3. This requirement provides a necessary, but by no means sufficient

condition for a system to exhibit chaos. To directly measure whether or not a particular

dynamical system exhibits chaos, we need a more precise definition provided by the

concept of Lyapunov exponents.

2.2.1 Lyapunov Exponents

To quantify the behavior of chaotic systems, we consider the divergence of two

trajectories which start with separation δx(t0). We wish to know the separation of

these two points at a later time T = t0 +τ . If the two trajectories diverge exponentially,

we can write the separation at the later time as δx(T ) = δx(t0)eλ1τ . Here λ1 is called

a Lyapunov exponent.

From the perspective of data assimilation, this exponent can be used to obtain

an estimate for the time horizon beyond which our predictions will fail. We now

interpret δx(t0) as the error, or limit in precision, of our estimation of the state x at

time t0. If our prediction for the state of the system becomes intolerably bad when

it is off by some error δx, then the prediction may be considered valid for a time of

length t ≈ 1
λ1

ln ∆x
δx(t0)

. The logarithmic dependence on δx(t0) means that we need

exponentially more precise measurements to predict accurately for another length of

time 1
λ1

.

While this discussion provides some intuition into the definition of a Lyapunov

exponent, it glosses over the subtlety that there are actually D unique Lyapunov expo-

nents. The impact of these exponents on the system can be imagined by considering

the evolution of an infinitesimal D-dimensional sphere of radius δx(t0), representing

perturbed initial conditions. During its evolution, the sphere will become distorted



26

into an ellipsoid with D different principal axes. The D different Lyapunov exponents

(λ1, ..., λD) will yield perturbations described by

δxi(T ) ≈ δxi(t0)eλiτ (2.1)

In order to actually compute Lyapunov exponents, it is useful to consider a

definition of the exponents stemming from Oseledet’s theorem (Oseledec [49]). For

numerical calculation, we first break a continuous time interval [0, T ] into NT discrete

chunks of time dt. We use a discrete forward mapping F to connect these according

to xi(t + dt) = Fi ◦ (x,p). Next, we consider the linearized dynamics local to each

point in space, which can be approximated by the Jacobian of the mapping given by

Jij =
∂xi(t+ dt)

∂xj(t)
|x (2.2)

By repeatedly applying the Jacobian, we can get the transformation of the

system over the entire time interval. This equation can be written,

x(T ) = JNT (x(t0)) = J|x(tNT−1) · J|x(tNT−2) · · · J|x(t1) · J|x(t0) · x(t0) (2.3)

We then take the long time limit of the product of this repeated mapping with

its transpose, which ensures the eigenvalues are real. Expressing this matrix in terms

of the product given in eqn. (2.3), we can write

OSL(x(t0)) = lim
NT→∞

[
(JNT )T (JNT )

]NT
2 (2.4)

The eigenvalues of this matrix are the Lyapunov exponents of the system. A practical
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method for using QR decomposition to compute the Lyapunov exponents is described

in Abarbanel [1] and Sandri [55].

2.3 Synchronization

Synchronization is one of the more interesting discoveries in nonlinear dynamics

(see for example Pecora and Carroll [50]). The discovery of synchronization can

arguably be traced to Christiaan Huygen’s 17th century discovery that clocks connected

to a common beam will synchronize, but has much more general applications. In

particular, nonlinear and even chaotic nonlinear systems can synchronize when coupled

together.

We will now explore how synchronization can be used in numerical data

assimilation. The general ideas behind this concept have been developed over some

time (see for example So et al. [57] and Sorrentino and Ott [58]). Consider a data

system whose dynamics are specified by a D-dimensional set of equations,

dy

dt
= f(y,g), (2.5)

where g is the P-dimensional set of parameters. If we could measure all of the

components of y and g, the problem of state estimation would be trivial. Therefore,

we will assume that we can measure only the first L components (note that this case

can be generalized to the set of any L components by simply reordering the equations

for the data system). The idea behind synchronization is that we will use the time

series of measurements to drive our estimation towards the data in much the same

way that a spring force drives a mass towards its equilibrium position.
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To represent our estimation we introduce a twin system called the model system.

The model system has the same dynamics as the data system, but not necessarily

the same state or parameters. We then augment the model dynamics by adding a

coupling term along the L measured dimensions. The strength of the coupling in each

component is given by γi where i = 1, ..., L. We can write the set of D differential

equations giving the state of the model as

dx1

dt
= f1(x,p) + γ1(y1 − x1)

...

dxL
dt

= fL(x,p) + γL(yL − xL)

dxL+1

dt
= fL+1(x,p)

...

dxD
dt

= fD(x,p), (2.6)

where we have only included coupling terms for the components which can be measured.

Sometimes γ is referred to as the control parameter, a term commonly used when this

technique is applied to problems of control theory.

The coupling term is not part of the dynamics describing the data system, will

tend to drive the model toward the measured components of the data. A priori this is

no great accomplishment, because the best estimates of the measured components can

be determined directly from using the measurements at a given time. What makes

this result remarkable is that the D-L unmeasured components will also synchronize,

allowing us to also estimate the unmeasured components of the state.

There are several limitations to this technique. First, in the form given in eqn.
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(2.6), there is no way to estimate the parameters. Second, if the underlying dynamics

or dimensionality of the model and data systems differ, we cannot account directly for

this discrepancy. Third, by introducing a control parameter, we alter the dynamics of

the system. The larger the value of the control parameter, the faster model is driven

towards data, but the more erroneous the dynamics. This last complication can be

addressed by adding a penalty term for a large control into the cost function. Adding

a term such as γ2 to the cost function is referred to as regularization, and prevents

search algorithms from simply maximizing the coupling term to drive model and data

together, preventing overfitting of the data.

To measure whether or not synchronization has occurred it is useful to define

the synchronization error (SE). The synchronization error between two time series is

a running average of the squared distance between the two given by

SE(X,Y) =
1

NT + 1

NT∑
t=0

D∑
i=0

(xi(t)− yi(t))2. (2.7)

Note that we can only compute this quantity when we can directly measure all

components. Techniques for approximating the synchronization error in the case of

limited measurements will be explored in the next chapter. Nevertheless, the concept

of SE is theoretically useful especially when we consider the long time limit. For

functionally equivalent systems (systems which have the same dynamical equations

and parameters) then as NT → ∞ we will have SE → 0. However, for systems

with different parameters we will have SE → c where c > 0 even as NT → ∞. A

discussion of SE in relation to critical phenomena and the necessary conditions for

synchronization to occur can be found in Kostuk [32].
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2.3.1 Conditional Lyapunov Exponents

It is desirable to know under what conditions two systems will synchronize. We

can offer a criterion for synchronization by considering properties of the coupled system

described by eqn. (2.6). We can characterize the behavior of the coupled system by

calculation of its Lyapunov exponents called conditional Lyapunov exponents (CLEs).

If all of the CLEs are negative, the two systems will eventually converge.



Chapter 3

Time Delayed Newton’s Method

3.1 Introduction

In this section, we consider an approach to estimate the initial state of a system

given a time series of measurements. This estimation problem is distinct from those

discussed previously in that we will seek only the estimate of the state at the initial

time t0 and do not explicitly solve for the path at every time.

For the sake of simplicity, we will consider only cases in which a single component

of the data can be measured (yielding a 1-D time series of measurements). Additionally,

we will primarily consider the case of noise free measurements. Both of theses

constraints can be generalized.

Imagine that we are observing a D-dimensional system whose state is given

by yi(t) where i = 1, ..., D. We will assume our measurements have some finite time

resolution dt and can be recorded only during the interval t = [t0, T ]. Of the D states,

we will assume that we can measure only the first, y1(t). In terms of a measurement

function, we can define h (y(t)) = y1(t). Geometrically, we can think of think of the

31
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measurement operator as projecting the D-dimensional path taken by the system

down onto the y1-axis.

We will call the true state of the data system at the initial time y∗(t0). Our

goal is to determine y∗(t0) from the time series of available measurements and our

estimate can be checked through a model system described by F(x(t), t) = ẋ(t). Since

we can directly measure y1(t0), we can immediately use this measurement to set

x1(t0) = y1(t0) and all that remains is to find those xi(t0) for which i 6= 0. We can

define the difference between our estimate and the true state ∆x(t0) = y∗(t0)− x(t0),

and since we can directly measure the first component, in the case of a noise-free

measurement ∆x1(t0) = y∗i (t0)− x1(t0) = 0. In general, we can think of the problem

as trying to drive all components of ∆x(t0) = 0. Under this condition, the initial

state of the model system is identical to the initial state of the data system and we

have achieved an arbitrarily accurate estimate.

The broad idea of the estimation algorithm described below is to use information

passed from the components yi(t) (i 6= 1) to y1(t) by means of the dynamics. Using

numerical integration allows us to look forward in time and see any divergence of our

model from the data along the measured x1(t) trajectory. At the initial time, because

we can measure y∗1(t0) directly our model and the observed data coincide. However,

when we integrate forward in time the other components of y∗i (t0) start to influence

y1(t) and we can begin to see the effects of any errors in our estimate. We will use the

separation between y1(t) and x1(t) to inform our estimate of the initial state.
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3.2 Time Delay Embedding

The well established concept of time delay embedding (Abarbanel [1]) allows

us to extract additional information from a scalar time series. The general idea is to

choose temporally separated points the time series to serve as independent coordinates

of a proxy or embedding space. The scalar time series can then be unfolded or

unprojected onto the embedding space in a way that preserves system topology if

the number of time delayed coordinates is large enough. The embedding process

depends on two parameters, τ and DM . The time delay, τ , is the temporal separation

between points used as independent coordinates in the embedding space. The time

delay should be sufficiently long that points separated by a time τ can be considered

independent. If the dynamics under consideration were linear, we could search for a

zero of the autocorrelation function as a way to choose a time delay, but for nonlinear

systems this approach fails. There are many ways to determine an appropriate time

delay (Fraser and Swinney [17]).

As with the choice of an appropriate time delay, there exist multiple proscrip-

tions for choosing an appropriate embedding dimension. Takens’ theorem (Takens [61])

shows that choosing an embedding dimension of 2DA + 1, where DA is the dimension

of the attractor described by the system of differential equations, is sufficient to fully

unproject the scalar time series. Other techniques, such as the method of false nearest

neighbors (Kennel et al. [29]), and an approach based on functional continuity (Pecora

et al. [51]), provide means for determining a necessary embedding dimension that

is potentially of lower dimension than the upper limit provided in Takens’ theorem.

Twin experiments also allow for the additional option of determining the embedding

dimension experimentally.
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Once we have chosen our time delay and embedding dimension, we can construct

vectors in embedding space. However,we should note that the use of time delay

embedding here is not to fully unfold a projection, but rather to introduce additional

independent measurements that can be used to extract more information about a data

system. Assuming the temporal resolution of our data is ∆t and the series of data

points is of length T ,we can write the time series of the first component of the data

system, starting at time t0, as

y1(t) = {y1(t0), y1(t0 + ∆t), y1(t0 + 2∆t), ..., y1(t0 + T )}.

Since we measure only the first component of the system, this time series is the sum

total of what we have to use in estimation. From y1(t), we choose a time series

consisting a of a number DM − 1 of time-advanced coordinates. The set of DM time-

advanced coordinates can be obtained from the time series y1(t) by choosing samples

along the measured trajectory separated by a time τ = K ∗ ∆t, where K is some

integer. We can write the set of time advanced coordinates as

Sj(y1(t)) = {y1(t0), y1(t0 + τ), y1(t0 + 2τ), ..., y1(t0 + (DM − 1)τ)},

where j = 1, ..., DM − 1. In theory, K can range from a lower bound of 0, in the case

no time-advanced coordinates, to an upper value of K ≤ T/(DM ∗ τ)). Note that the

subscript j labels the components of S, which in turn consists entirely of the i = 1

state.

The method we use for choosing K is somewhat heuristic, though there is a

case to be made against choosing values too small or too large. In the short time limit
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K = 1 and we data points at the same frequency as the data is recorded. Depending on

the system and same frequency ∆t, the system may not have time to vary substantially

between data points and so the coordinates will not be independent. In the case

of noise, if the underlying dynamics have not had enough time to move the system

substantially, we will struggle to discern the signal from the noise. On the other

extreme, using too long a time delay will limit the number of proxy space coordinates

we can choose. Additionally, for chaotic systems errors will tend to grow in time and

so using too long of a delay may cause instabilities.

3.3 Synchronization Error

Synchronization error provides us with a way to measure the progress of our

algorithm. Synchronization error (in state space) for a D-dimensional state variable

can be defined by the equation

SEstate(t) =
1

D

D∑
i=1

(yi(t)− xi(t))2, (3.1)

which provides a running measure of the separation between the model estimation for

the state and the data state. While the definition of synchronization error provided in

equation (3.1) gives a precise measure of the proximity of model and data systems,

it is an unusable measure when we cannot directly measure each yi(t0). Indeed, a

system in which we could directly measure yi(t0) for all i would be fully observable

and require no estimation.

We can construct a version of synchronization error using only measured

quantities by including only those components we can measure directly. For the case
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in which we measure only the first component, we thus define

SE1(t) = (y1(t)− x1(t))2, (3.2)

where summing over the components is no longer necessary as the measurement

function has been assumed to pick out only the first component of the state vector.

However, this quantity provides no information on the unmeasured components and

therefore is insufficient to be used to estimate the complete state of the data system.

To do better we will construct the synchronization error in embedding space,

where all components are known by construction, and then map the synchronization

error back to state space to provide an approximation of the error in all components.

We define the synchronization error in embedding space by,

SEs(t) =
1

DM

DM∑
j=1

(∆Sj(t))
2 =

1

DM

DM∑
j=1

(Sj(y1(t))− Sj(x1(t)))2. (3.3)

This formulation will serve as our primary means of searching for the data state.

3.4 Formulation As Error Estimation

Seen in another light, estimating the state of the data system is equivalent to

determining the error in the model’s initial condition. If we have an accurate estimate

of the error, we can simply change the coordinates of the model’s initial condition to

eliminate it. The complication comes from estimating the error along those directions

for which we lack measurements, but equipped with the tool of time-delay coordinates,

we can derive an expression to approximate this error. Expanding the notation used
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in describing the model state, we will call the nth guess of the model state xni (t0) .

The superscript is here introduced to keep track of the iteration of our estimation

procedure. For example, x0
i (t0) refers to the our first guess at the data state at time

t0. If we can somehow obtain information about the unmeasured states of the model,

we may be able to improve upon our initial guess with a second estimation x1
i (t0) and

continue this process iteratively.

We will call the separation in vector space between any given guess and the

data state ∆xni (t). Thus, by definition we have ∆xni (t0) = y∗i (t0)− xni (t0). Further we

will define S to be the function that generates the a time-delay vector given an initial

set of coordinates xn(t0). Computationally, this requires integrating the dynamics of

the model forward from xn(t0), and then picking out the time-delayed coordinates.

The set of measurements available in the data system is thus given by S(y∗(t0)), while

the trajectory produced by any estimate for the initial state is given by S(xn(t0)).

We would like to use local information to improve our guess. If we are close

to the true solution, it is reasonable to use a linearized version of S to improve our

estimate. Using the equivalence of S(y∗(t0)) = S(xn(t0) + ∆xn(t0)), we can Taylor

expand the right hand side. This yields,

Sj(y
∗
i (t0)) ≈ Sj(x

n
i (t0)) +

∂Sj
∂xi

∣∣∣∣
t0

·∆xni (t0) (3.4)

Substituting into equation 3.4, we find,

∆xni ≈

[
∂Sj
∂xi

∣∣∣∣
t0

]−1

· [Sj(y∗i (t0))− Sj(xni (t0))] , (3.5)
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suggesting that a good next guess would then be

xn+1
i (t0) = xni (t0) + ∆xni (t0) (3.6)

The expression given in equation 3.6 gives us yet another way to think about synchro-

nization error. Using,

∆xi ≈
∂Sj
∂xi

∆Sj, (3.7)

we can define an estimated state space error

SEest(t) =
1

D

D∑
i=1

(∆xi)
2. (3.8)

The value of SEest tells us how large a step should be taken. This last definition

represents how close the algorithm “thinks” the model is to the true solution and

when it goes to zero the algorithm has converged on a solution.

Thus, from equations 3.5 and 3.6, we can create an iterative algorithm to seek

out y∗i (t0). A discussion of the actual implementation of this algorithm is given in

the next section. The computationally tricky step in the estimation described above

comes from determining ∂S
∂x

and ∂x
∂S

and warrants substantial further discussion.

3.5 Gauss-Newton

We can connect the algorithm shown here to a broad class of techniques based

on the Gauss-Newton method. There are many well established non-linear solvers

which draw on Gauss-Newton, so making the connection opens up a trove of existing

experience. We pause briefly to introduce and define the Gauss-Newton method.
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Gauss-Newton is used to solve the non-linear least squares problem. Consider a

vector of m functions r = r1, ..rm each of which depends on D variables x = x1, ..., xD.

The least squares cost function in then defined according to

C(x) =
m∑
i=1

r2
i (x). (3.9)

Starting from an inital guess x0, the algorithm proceeds iteratively, with the next

guess determined according to

xn+1 = xn − (Jr
TJr)

−1Jr
T r(xn), (3.10)

where Jr is the Jacobian matrix defined by

Jr =
∂ri(x

(n))

∂xj
. (3.11)

We will now show a way of using time-delays to estimate state and parameters

by applying Gauss-Newton to the cost function given in equation (3.3). We begin

by noting that the combination (Jr
TJr

−1)Jr
T is a generalized inverse, which is not

necessarily unique for rectangular matrices. The details of calculating this quantity

will be discussed below. If we choose r(x(t0)) = S(x(t0)− S(y∗(t0)) = ∆S, then the
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formula for the next Gauss-Newton step becomes

x(n+1) = x(n) − (Jr
TJr

−1)Jr
T∆S

= x(n) −

[(
∂s

∂x

)T (
∂s

∂x

)]−1(
∂s

∂x

)T
∆S

= x(n) −R−1∆S

where the second equality follows from noting Jt = ∂r
∂x

= ∂S
∂x

.

As a last remark, Gauss-Newton can in general be derived from linearly

approximating the vector of functions r. In light of this, it is clear that the derivation

given in terms of error estimation is a specific example of this.

3.6 Variational Equation

Variational calculus provides us with the tools to construct a local mapping

between embedding and state space coordinates. The variational equation describes

the relationship between two sets of coordinates as a function of time. Because we

are using embedding coordinates, the variational equation describes the impact of a

infinitesimal perturbation to a state space coordinate at a later time. If the Jacobian

is defined according to

Jab(t) =
∂Sa(x(t))

∂xb(t)
, (3.12)
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then the variational equation describing the time evolution of that Jacobian reads,

dJab(t)

dt
=

D∑
c=1

∂Fa(x(t))

∂xc(t)
Jcb(t). (3.13)

Using the variational equation, we can integrate Jab(t) forward in time. In practice,

integration of the variational equation and of the dynamics is performed simultaneously,

using the same numerical routine. Initially state and embedding coordinates are

identical (S1(t0) = x1(t0)) which implies that the appropriate initial condition to use

in equation 3.13 is Jab(t0) = I, the identity matrix.

The method used to integrate the variational equation is based on the procedure

outlined in Sandri [55]. Because the matrix grows in time, to prevent overflow we

use QR decomposition at each step. QR decomposition factors a matrix into the

product of an orthogonal matrix, Q, and an upper triangular matrix R. The Q portion

of this decomposition is propagated along to the next time step at which point it is

factored again. The decomposition procedure thus allows us to rescale our matrix as

we integrate, circumventing overflow issues. As a side note, the R portion can be used

to easily compute the Lyapunov exponents.

Some subtlety arises in extracting the appropriate coordinate mapping from

the variational equation. Specifically, we need the matrix

Rab(t) =
∂Sa(x(t))

∂xb(t0)
, (3.14)

so that we can measure the impact of a perturbation in the state space coordinate at a

fixed initial time. Assuming that we are only able to measure the x1(t) component of

the data, we form Rab(t) from the rows of the Jacobian matrix as defined in equation
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(3.12) according to the formula,

R|t =


J11(t) · · · J1D(t)

J11(t+ τ) · · · J1D(t+ τ)

...
...

...

J11(t+ (DM − 1)τ) · · · J1D
(
t+ (DM − 1)τ

)

 . (3.15)

The resulting matrix Rab(t) tells us the local relationship between an embedding

coordinate and an infinitesimal state space perturbation at t0.

3.7 Calculating the Pseudoinverse

So far, we have overlooked the thorny issue of how to compute the quantity[
∂S
∂x

]−1

, which is the bulk of the computational work required and thus warrants a

more in depth discussion. In order to find this quantity, first the variational equation is

integrated forward and used to produce ∂S
∂x

, which is then inverted numerically to find

the Moore-Penrose pseudoinverse. Because ∂S
∂x

is a DM ×D matrix, it is rectangular

in general and therefore does not necessarily have a unique inverse. This ill-posed

problem can be solved through a process known as Tikhonov regularization (Tikhonov

et al. [63]), the general idea of which is to provide an additional criterion by which to

choose which pseudoinverse we obtain.

The simplest choice for constructing the pseudoinverse involves direct inversion

to obtain the matrix product M+ = (MTM)−1MT , but results in numerical instability.

Instead it is useful to use singular value decomposition to invert the matrix, a good

discussion of which can be found in Press et al. [52].

Singular value decomposition is a generalization of the eigenvalue decomposition
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for square matrices and states that for an m×n matrix M, there exists a factorization

M = UΣVT , (3.16)

where the diagonal entries of Σ are the singular values, U is an m×m unitary matrix,

and V is an n× n unitary matrix. Furthermore, the columns of U corresponding to

non-zero σi span the range of M, and the columns of V corresponding to non-zero

singular values span the nullspace of M. This factorization is useful, amongst other

reasons because U and V do not affect the length of vectors, or the angle between

vectors. Any numerical instabilities can be identified in Σ. The SVD is unique up

to permutations and sign exchanges of the singular values and typically algorithms

order the singular values such that σ1 > σ2... > σrmax , where rmax = min(m,n). One

measure of the instability of M is the condition number defined by the ratio σ1
σn

, where

σi refers to the i-th largest singular value. The larger the condition number, the more

ill conditioned a matrix is, with a singular matrix having an infinite condition number.

Once M has been factored in this way, it is straightforward to show that the

inverse of M is

M−1 = VΣ−1UT , (3.17)

where the inverse of Σ is computed by taxing the inverse of each nonzero element

along the diagonal, leaving the zeros in place.

The numerical ambiguity associated with this procedure comes in determining

which of the singular values are so small as to be dominated by roundoff error.

Typically, this is accomplished by specifying a cutoff value below which the singular

values are simply replaced by zeros. Determining the number of singular values used
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in the inversion determines the rank of the pseudoinverse.

The pseudoinverse that comes from using SVD gives the least length solution

in the following sense. If we suppose the matrix M satisfies the equation M · x = b,

we can see from considering U and V that the solution x will not be unique. We can

add any vector in the null space to x without changing the result, so more restricted

solution is necessary for uniqueness. In particular, if the solution x = VΣ−1UT

corresponds to the least length, minimum |x|2, solution. In the case that b is not in

the range of M, the singular value decomposition finds the value of x, which minimizes

|M · x− b|. In this sense, SVD gives the best approximation to b available.

3.8 Description of Algorithm

With SVD as a tool to construct the pseudoinverse, we are now equipped to

outline the actual estimation algorithm. As discussed, the broad idea in using the

above machinations is that even if we start with some reasonably bad guess for the

state of the system, we can repeatedly improve our estimate by using equation 3.5 to

calculate the error of our current guess and stepping in such a direction as to reduce

this error. It is assumed that we have some preferred means of obtaining a time delay

τ and selecting and appropriate embedding dimension DM . Additionally, it is assumed

that we have some measured time series y1(t) sampled with a resolution ∆t. With

these stipulations, the algorithm then proceeds as follows:

1. Guess some values for the state of the model, xni (0)

2. Use the dynamical equations, Fi(x
n
i (t), t) = ẋni (t), to integrate forward in time
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to obtain a time series xni (t)

3. Construct the vectors S(xn1 (t)) and S(y1(t)) by choosing time delayed coordinates

from the time series and use these to form ∆Snj (t) = Sj(y1(t))− Sj(xn1 (t))

4. Estimate the state space error, ∆xni , using

∆xni ≈

[
∂Sj
∂xi

∣∣∣∣
t0

]−1

· [Sj(y∗i (t0))− Sj(xni (t0))]

5. Update the estimate according to the rule xn+1
i (t0) = xni (t0) + ∆xni

6. Repeat the above procedure replacing xni (0) with the improved guess, xn+1
i (0)

In order to get better convergence, it is useful to put some bounds on the search

space. This prevents the search from exploring regions far away from the attractor

and prevents some forms of numerical instability.

3.9 State Estimation in Lorenz 63

There are subtleties and complications in each of these steps, which will be

illustrated in through the examples below. Using the Lorenz 63 system (Lorenz [41])

as a test of the algorithm described above, we perform the following twin experiment.

The data system is described by the Lorenz 63 equations,

ẋ1 = σ(x2 − x1)

ẋ2 = −x1x3 + rx1 − x2

ẋ3 = x1x2 − bx3

(3.18)

where the parameters chosen are ρ = 28, σ = 10, and β = 8/3. Starting from the

initial condition y∗(t0) = [−8.2,−14.3, 15.0], the system is integrated forward in time
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with a time step ∆t = 0.01, to produce time series for y(t). From these time series,

we select only S(y1(t)) to use as measurements.

Next, we choose a time-delay and embedding dimension. Ad hoc, we select

τ = 0.03 (K = 3) and DM = 5, which means that in each step requires at least

T = DM ∗ τ = 0.15 = 15∆t of data.

Proceeding to the first step of the algorithm, we make a guess for x0(t0).

Without any measurements of the i = 2, 3 components of y∗(t0), we choose points

randomly from the dynamical range explored by these components of the system. The

starting guess for each coordinate of the condition x(t0) was drawn from a uniform

distribution centered on y∗(t0) and spanning the typical range of that coordinate.

Here we have used x2 ∈ [−80, 80] and x3 ∈ [0, 80]. In the examples given below, we

consider the case of a randomly drawn model position x(t0) = [y∗1(t0),−80.4, 96.9].

Now, starting from x0
1(t0), the model is integrated forward in time to T = 0.15.

As expected, the model trajectory quickly diverges from the measured trajectory, due

to errors in our estimations of the unmeasured components. This divergence between

trajectories is shown clearly by the n = 0 lines in Figure 3.1.

Once we have integrated the model to obtain the predicted trajectory, we choose

DM points from both the model and data trajectories to form the time-delay vectors

S(xn1 (t)) and S(y1(t)). The points along the path used to form the time delay vectors

are indicated by the large dots in the plot. After integration of the variational equation,

the pseudoinverse was constructed via singular value decomposition, implemented in

python using the scipy.linalg.pinv function. Combining the time-delay vectors and the

pseudoinverse, the guess is improved, and subsequent iterations are shown as well.

As can be seen in Figure 3.1, the result of the improving estimate for the initial
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Figure 3.1: Illustration of use of the time delayed Newton’s method applied
to the Lorenz 63 system for n = 5 iteration. In this example, only the
x-component of the data system has been measured. The prediction can be
seen to improve with each subsequent iteration of the algorithm. The large
dots along the trajectories indicate points used as time-delay coordinates.

condition is evident in the prediction generated from that estimate. As the estimate for

xi(t0) improves with each iteration of the algorithm, the prediction generated by the

model more closely aligns with the data. One exception to the trend of improvement

is estimation of x1(t0), which because it starts at the correct value, can only get worse.

Though it moves away from the correct value for a few iterations, it eventually returns

to agreement with the measured value. This is shown by the trajectories corresponding

to the higher values of n aligning better with the data. After around n = 8 iterations,

the model converges to y∗i (t0) to within machine precision. Once convergence has

passed this threshold, the model and data become numerically identical and make

indistinguishable predictions.
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Figure 3.2: Left: Synchronization error in the estimate of xi(t0). Note that
SEs and SEest are quantities that are observable. The quantity SEstate serves
as a reference to illustrate that the shape of the measurable synchronization
error approximates that of the true synchronization error. Right: Embedding
space synchronization error for 1000 randomly chosen initial conditions. Of
the 1000 initial conditions chosen, all were able to converge to the correct
value within 15 iterations.

We consider next, the various definitions of synchronization error as laid out in

equations 3.1,3.3, and 3.7. There are two questions we can ask of the synchronization

error. First, if the model converges to the data, does the synchronization error correctly

go to zero. Second, if the model and data fail to converge, does the synchronization error

indicate this failure. For the case DM = 1, both the embedding space synchronization

error and the estimated synchronization error fail to accurately represent the true

state space error. The algorithm still succeeds in the sense that it minimizes the

embedding space synchronization error, but the embedding space error is a poor proxy

for the true state space error. In higher embeddings dimensions, the embedding space

error accurately indicates when the state space error goes to zero. Additionally, the

estimated error given by equation 3.7 gives the correct value for the state space error.



49

3.10 Exploring the Cost Function for Lorenz 96

To better understand how the use of time-delays improves the searching process,

it is useful to look directly at the cost function minimized by our algorithm. As

explained above, the estimation procedure can be thought of as attempting to minimize

the synchronization error in embedding space. To do this, we consider the 5 dimensional

Lorenz 96 model (Lorenz [42]),described by the differential equations

dxa(t)

dt
= xa−1(t)(xa+1(t)− xa−2(t))− xa(t) + f (3.19)

with a = 1, 2, ..., D, x−1(t) = xD−1(t), x1(t) = xD(t), and xD+1(t) = x1(t); D = 5. We

choose the forcing parameter to be f = 8.17 and generate data by integrating forward

with a time step ∆t = 0.01. From this data we select y1(t) to serve as our measured

time series.

For the numerical experiments shown here, the four unobserved initial model

conditions were chosen at random from a uniform distribution centered around y(t0)

and with side length 1 before being integrated forward for 1 × 105∆t to ensure a

point somewhere on the attractor. The data generated for use below comes from the

randomly chosen initial data state

y∗(t0) = [9.21,−1.20,−0.98,−0.44, 0.42] (3.20)

,and the fixed initial data state

x0(t0) = [9.21, 1.90, 2.51, 0.70, 0.81]. (3.21)
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Figure 3.3: Left: Plot of SEs for select values of DM . Note that for smaller
values of DM = 2, 3, the drop in synchronization error does not result in good
prediction. Right: Prediction after 40 iterations using the time-delay Newton
method. The broad line indicates the data trajectory y1(t).

First, we can look how well the algorithm performs under a range of values

for DM and K = 1. In the cases of low embedding dimension DM = 2, 3, the

synchronization error falls off (indeed the sudden end of the line for DM = 2 indicates

that the synchronization errors is numerically indistinguishable from zero), but does

not correlate with a good prediction. This is because for small embedding dimension,

the algorithm only has access to a short time series of data. Within this small window,

the behavior of y1(t) is not significantly influenced by the initial values of the other

components and therefore the synchronization error can be driven to very small number

even for incorrect values of yi(t0), i = 2, 3, 4, 5.

By the time we have reached DM = 5, the embedding space error correctly

indicates whether or not the model has found the correct solution. In the cases

DM = 6, 7 the extremely small value of synchronization error results in a prediction

that is indistinguishable from y1(t) in the window shown. By contrast, in the cases

DM = 5, 8, the synchronization error never drops quite as low and the predictions

diverge from the data sooner.
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Figure 3.4: Plot of the cost function given in equation 3.3, with x1,x1, and
x1 fixed at their correct values. As additional time delays are added, local
minima disappear and the surface smooths out.

To explore the surface described by this function, we will look at the cost func-

tion for the Lorenz 96 system. Since we cannot easily visualize the full 5-dimensional

surface, we will restrict ourselves to a function of two independent variables by fixing

the values of the model variables xi(t0) = y∗i (t0) for i = 1, 2, 3.

To get an idea of what the search space looks like, we choose some range of

x4 and x5-coordinates and evaluate the cost function at every pair of points within

the range. To generate the plots shown in Figure 3.4, we discretized the region from

[y∗4 − 4, y∗4 + 4] into 200 distinct points and the region from [y∗5 − 5, y∗5 + 5] in to 200

pieces. For each combination (x4(t0), x5(t0)), we integrate the model forward in time

to determine the value of ∆S and then calculate the value of the cost function as
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given in equation 3.3. The logarithm of the value of the cost function is then plotted

with blue indicating lower values and red indicating higher values. By design, the

global minimum of the cost function is at the origin of the x4x5-plane.

The plots in Figure 3.4 show the plot projected into the x4x5-plane, and

illustrate the disappearance of local minima with increasing embedding dimension.

The minimal points, shown as blue areas in Figure 3.4, congregate about the global

minimum as the embedding dimension is increased. Additionally, the plots show that

the cost function more closely resembles the true the state space separation, defined

according to 1
2
(∆x2

4 + ∆x2
5), which has circular contours in the x4x5-plane. As the

time-delay and embedding dimension are increased, the surface smooths out making

it easier to find the global minimum.

The smoothing effect seen in Figure 3.4 can be partly understood as the effect

of averaging in calculating the synchronization error in equation 3.3. If the different

components of Sj vary independently of one another (the proscription for choosing

the time-delay), then the separate ∆Sj terms in the embedding space synchronization

error should average one another out.

3.11 State & Parameter Estimation in Rössler’s

System

Using this same technique, it is also possible to estimate the parameters in

a system which, by assumption, cannot be measured directly. Our strategy is to

promote the parameters to the status of state variables and apply the same techniques

as described above. By definition, parameters do not change in time and therefore
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obey the trivial equations of motion ṗ = 0. To incorporate this information into our

algorithm, the matrix used in the variational equation is now augmented to include

the terms

Rab(t) =
∂sa(x(t))

∂pb(t0)
, (3.22)

where pb(0) refers to the initial estimate for some model parameter. Using the

augmented variational equation, we can see that in a time delay scheme, parameter

estimation in determined by

pn+1
i = pni + ∆pni = pni (t0) +

∂pi
∂Sj

∆Snj , (3.23)

in precisely the same way as for regular state variables.

Rössler’s system (Rossler [53]) serves as a fruitful example to illustrate the

application of time delay synchronization to problems of nonlinear state and parameter

estimation. The Rössler attractor is described by the equations

dx

dt
=



x′1(t) = −x2(t)− x3(t)

x′2(t) = x1(t) + p1x2(t) + x4(t)

x′3(t) = p2 + x1(t)x3(t)

x′4(t) = p3x3(t) + p4x4(t)

, (3.24)

where we have chosen a = 0.25, b = 3, c = −0.5, and d = 0.05 as the parameters. It

is assumed that y1(t) is observable, and that all other variables and parameters can

not be measured directly. Rössler’s system is said to be hyperchaotic, meaning that

there are multiple positive Lyapunov exponents (two in this case) associated with

the dynamics of the system. Thus, even small imprecisions in estimations for state
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and parameters will quickly magnify into erroneous predictions as the system evolves

in time. For this system, the time-delayed Newton’s method can estimate state and

parameters even when the model initial conditions are far from the true values.

For the numerical experiments shown here, the three unobserved initial model

conditions were chosen at random from a uniform distribution that spans the re-

gion of state space visited by the system where xi(t0) ∈ [xmini , xmaxi ]. The data

generated for use below comes from the randomly chosen initial state xi(t0) =

[−20,−18.6, 25.7, 122.4] and the fixed initial data state y∗i (t0) = [−20, 0, 0, 15]. Addi-

tionally, the initial estimates for the model parameters were set at half their correct

values so that [p0
1, p

0
2, p

0
3, p

0
4] = [0.125, 1.5,−0.25, 0.025].

In the embedding process, the time delay between observations was τ = 0.05 =

5∆t and the embedding dimension fixed at DM = 20. The state and parameter

estimation algorithm thus used 20 data points from a time series of total length

T = 100∆t to perform the estimation. After the state and parameter estimation

process , we fix the model parameters at their estimated values, and integrate both

data and model forward for another 3× 104∆t, beginning the model at the estimated

initial condition.

Figure 3.6 shows prediction for the observed component of both model and

data systems. During the first 2× 104∆t of prediction, the discrepancies between data

and model cannot be discerned visually.
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Figure 3.5: After synchronization of the model component x1(t) with the
values of the equivalent data components, the model is used to predict.
Discrepancies between the predictions of the model and data system take
more than 2× 104∆t to become apparent.
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Figure 3.6: Estimated parameters for the 4D Rössler system. The correct
values appear as red lines and the estimate for that parameter is shown as
blue line plotted against the number of iterations.



Chapter 4

Neurobiology Background

The goal of this chapter is to provide sufficient background information to be

able to explain the details of the dynamical neuron models to come. We begin by

describing the function and gross anatomy of neurons. Next, we explore the processes

by which ions flow into and out of neurons and derive equations to describe this

behavior. Discussion of ion channels allows us to define a general class of dynamical

neuron models which we will includes all neuron models discussed in this and other

chapters. Lastly, we provide a broad overview of the connections between neurons

and develop basic models to describe the transmission of signals between neurons.

4.1 Gross Neuroanatomy

Neurons are specialized cells that communicate and process information by

means of both chemical and electrical signals, transmitted from one neuron to the next

by connections called synapses. There is extraordinary diversity among neurons, but

for our purposes we can ignore much of the detail of the sophisticated structures that

57
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Figure 4.1: Depiction of gross neuroanatomy, illustrating the soma, dendrites,
and axon. Reproduced under CC BY-SA 3.0 via Wikimedia Commons from
wikipedia.org

makes up real neurons, focusing instead on the functional impact biological findings

have on our models. A detailed discussion of many of the features not considered in

detail here can be found in Johnston et al. [27] and Hille et al. [24].

Neurons transmit electrical signals in the form of pulses called action potentials.

Action potentials move both within and between them and are impacted both by

intracellular chemical changes and the morphological properties of the cell. While

the morphology of most neurons is complex, from a functional standpoint we will

consider the basic components of a neuron to include the dendrites, soma, and axon.

The dendrites are long tree-like structures which receive incoming synaptic signals

and pass them along to the soma. The soma is typically the bulk of the neuron itself

and may engage in some amount of signal processing. Lastly, the axon is a branching

structure which may connect in a synapse in order to transmit a signal to another

neuron. The models used here are single-compartment neuron models, meaning that

all activity within the neuron is treated as though it occurs at a single point.
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The nerve cell is separated from the extracellular fluid by a phospholipid bilayer

called the cell membrane. Electrical signals are carried within and between neurons by

means of the dissociated ions K+, Na+, Cl−, and Ca2+. When these ions flow across

the membrane of a neuron, they cause changes in the potential across the membrane.

Embedded in the plasma membrane surrounding the cells are proteins which typically

select for a single ion species and can move that ion against the concentration gradient.

These proteins function as pumps, moving ions in the opposite direction of diffusive

forces. The pumps themselves are typically activated in one of two ways. First, they

can be voltage gated, meaning that when the potential reaches a certain level the

protein undergoes some conformal change, causing ions to pour in or out. Second, the

protein can be ligand gated, meaning that it requires a particular signalling molecule,

called a ligand, to open it.

The electrical activity within and between neurons arises because of the compli-

cated interplay between protein channels, the work of diffusive forces, and the synaptic

inputs from other neurons. Our goal will be to try to disentangle and model the effects

of the various contributions to electrical activity, typically using measurements of the

voltage alone.

4.2 Ion Flow

In order to build up to models describing the propagation of action potentials,

we begin by investigating the flow of ions in mathematical detail. An ion current will

either depolarize a cell (drive it toward a higher potential) or hyperpolarize the cell

(drive it toward a more negative potential), depending on ion species and direction of

current flow. While the basic equation governing ion flow is relatively easy to derive,
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in order to obtain analytic results it is necessary to make simplifying assumptions.

4.2.1 Nernst-Plank

There are three large categories of ion motion which contribute to the distribu-

tion of ions and thus affect the membrane potential. First, there is thermodynamic

diffusion of ions, causing flow down the concentration gradient. Second, there is drift

caused by an electric potential gradient (i.e. ion motion caused by an electric field).

Lastly, there is the active transport of ions through protein pores.

The flux of particles, represented by the variable J (mol/(cm2 · s)), moving

under the influence of drift and diffusion can be described by the equation

J = Jdiff + Jdrift = −D∇[C]− µz[C]∇V, (4.1)

where [C] is the concentration (mol/cm3), µ is the mobility (cm2/(V · s))and z is the

valence of the ion (dimensionless). The constant D, the diffusion coefficient can be

related to the mobility through the Einstein relation, D = kT
q
µ, where k is Boltzmann’s

constant, T is the absolute temperature (◦K), and q is the charge of the molecule (C).

The description given in equation 4.1 is called the Nernst-Planck equation and can be

solved analytically for the value of the potential which results in no net current flow.

Under these circumstances, it can be found that

Ei = Vin − Vout =
RT

zF
ln

(
[Cout]

[Cin]

)
, (4.2)

where the number Ei is referred to as the Nernst or reversal potential and indicated

the voltage at which a particular species of ion will come to equilibrium. Thought of
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another way, if the neuron is held at the potential Ei, the ith ion species will cease to

flow and will no longer contribute to the transmembrane current.

4.2.2 GHK Equation

Under simplifying assumptions, there is an analytic solution to the Nernst-

Plank equation called the GHK equation, which is necessary for the treatment of

calcium. The GHK equation provides a description of ion movement based on 3

assumptions: 1) Ion movement with membrane obeys the Nernst-Planck equation, 2)

Ions do not interact with one another, 3) the potential gradient is constant. Solving

the Nernst-Planck equation under these assumptions results in the equation derived

in Goldman [21],

I = PzFξ

(
[C]in − [C]oute

−ξ

1− e−ξ

)
, (4.3)

where ξ = zV F
RT

. Here F is Faraday’s constant (96, 480C/mol), and R is the gas constant

(1.98cal/(◦K ·mol). The value of P is determined by the expression P = βu∗RT
lF

, where

β is the dimensionless water membrane partition coefficient for the ion, l is the width

of the membrane, and u∗ is the molar mobility of the ion within the membrane

(cm2/(V · s ·mol)). Note that the GHK equation gives the membrane current as a

nonlinear function of the voltage.

For the models considered, there are two reasons why calcium must be treated

differently from other ions. First, differences between calcium concentrations inside

and outside the cell are typically much greater than for other ion species. Typical

interior concentrations for calcium range from 5-100 nM (Kostuk [32]), while exterior

concentrations are commonly in the mM range. The low interior concentrations of
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calcium mean that there is no real reversal potential, as there are insufficient calcium

ions to carry a substantive outward current. This in turn implies that the caclium

current is better represented by the GHK equation than by the Nernst equation.

Second, the timescale of calcium dynamics is typically much longer than that

of the other ion species. This can lead to chaos as shown in Ye et al. [68], and other

complications.

4.2.3 Numerical stability of GHK

The GHK equation 4.3 discussed above presents numerical stability problems

in the limit V → 0. While the exact expression remains finite in this limit, numerically

it is necessary to expand using L’Hopital’s rule to obtain an accurate value near

this limit. The evaluation of functions is often the most time-consuming step of the

optimization procedure, and therefore it is necessary to truncate the expansion at a

small number of terms.

The particular expansion used here is

JCa = VT
gout − ginexp(V/VT )∑k>25

k=0
(V/VT )k

(k+1)!

(4.4)

= VT
gout − ginexp(V/VT )

1 + V
2VT

(
1 + V

3VT

(
1 + V

4VT

(
1 + ...

(
1 + V

25VT

)))) , (4.5)

and is taken from Meliza et al. [44].

4.2.4 Ohm’s Law

When the ratio Cout
Cin

is approximately unity, the Nernst equation can be used

to approximate the current flux using Ohm’s law,
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Is = gs ·X(V ) · (Es − V ), (4.6)

where Es is the reversal potential given in 4.2. Here gs is the maximal conductance

with units of siemens (S). The unitless function X(V ) gives the probability that the

channels associated with the current are open and thus ranges between zero and one.

If X(V ) = 1, equation describes a linear membrane. A neuron whose membrane

conductance (represented by the product gs ·X(V )) changes with voltage is said to

experience rectification. For linear and non-linear membranes alike the net driving

force is then (Es − V ). The validity of this equation, a linearization of the current-

voltage relations is empirical and requires testing in each new application (Hille et al.

[24]).

The Nernst and GHK equations accounted only for drift and diffusion. To

include active transport phenomena in our model, we introduced the function X(V ),

which models the pumping behavior due to proteins embedded in the plasma membrane

actively move ions from one side to the other. The motion of ions through active

transport is a more complex, often nonlinear, phenomena to be discussed in greater

detail.

4.2.5 Energy Barrier Model

Recall that the opening and closing of the proteins is caused by conformal

changes in the protein which allow specific ions to flow into or out of the cell. Whether

caused by voltage or the presence of a ligand, these changes occur stochastically on

the level of individual channels. However, when all channels are considered as an

ensemble, the averaged behavior can be described smoothly. In order to derive an
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approximate expression for this opening and closing, we will consider an energy barrier

model in which undergoing a conformal change corresponds to crossing a single energy

barrier. The energy barrier model treats rate coefficients in chemical reactions as

thermodynamic quantities. In order for the reaction to occur, the reactants must

overcome some energy barrier (e.g. by moving from one side of a membrane to the

other).

The law of mass action states that the flux of a chemical reactant is proportional

to the concentration of the reactant, with constant of proportionality called the rate

coefficient ki. For an ion flux across a single barrier, we can write

Jin = k1β[C]out (4.7)

Jout = k2β[C]in, (4.8)

where β is called the partition coefficient of water-membrane for the ion. If we look at

conditions of thermodynamic equilibrium, then we can write the rate coefficients in

terms of the free energy of activation and Boltzmann’s constant as

k1 = Ae−∆G0/RT = k0 (4.9)

k2 = Ae−∆G0/RT = k0, (4.10)

where ∆G0 is the free energy of activation.

In this scenario, the rates are symmetric, but if an external electric field is

applied, the barrier is shifted by a factor δzFV . δ gives the fractional influence of
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V on ∆G0, meaning that it can go from an extreme of δ = 1 where the barrier has

shifted to the outside margin of the membrane to a minimum of δ = 0 on the inside

margin. In general any amount of shift δ will result in an asymmetric situation where

k1(V ) = Ae−(∆G0+(1−δ)zFV )/RT = k0e
(1−δ)zFV )/RT (4.11)

k2(V ) = Ae−(∆G0−δzFV )/RT = k0e
δzFV/RT . (4.12)

Under these circumstances we can write the current flow as

I = zF (Jout − Jin) = zFβk0

[
[C]ine

δzFV/RT − [C]oute
−(1−δ)zFV )/RT

]
(4.13)

With this model, the I-V relations depend on the ratio of concentrations and

whether they are varying. We can then define α(V ) = Ae−(∆G0−δzFV )/RT to be the

opening rate of channels and β(V ) = Ae−(∆G0+(1−δ)zFV )/RT to be the closing rate of

channels.

4.2.6 Gates

Many experimentally observed currents have nonlinear membrane properties

and so it is necessary to develop a model to deal with them. While there exist multiple

options, we will focus on the gate model proposed by Hodgkin and Huxley (Hodgkin

and Huxley [25]). This model has the advantage of allowing for both voltage dependent

and time dependent nonlinearities.

The ion channels which create passive membrane currents, or leak currents,
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are typically not ion specific and can be well represented by 4.6 by setting X(V ) = 1.

To represent active channels, we turn to the gate model to describe the opening and

closing of these active channels.

The gating model proposes that ions can flow through aqueous pores which

can be blocked by charges or gating particles. Only when the gate is open can there

be a net ion flow either into or out of the cell. When the gate is open, the ion will flow

down the concentration gradient. The behavior of the gating particle is described by

the single energy barrier model, where β(V, t) is the rate of closing and α(V, t) is the

rate of opening. It is also assumed that the reaction between open and closed states

is first-order.

The time dependence can then be determined from the reaction equation. The

rate of change in the probability that the particle is in an open state y is proportional

to the number of particles in a closed state times the opening rate, minus the number

of particles in an open state times the closing rate. Mathematically, we have

dy

dt
= α(V, t)(1− y)− β(V, t)y (4.14)

This equation can be generalized to the case where P independent particles are

are involved in gating a channel. In this case, because the particles are independent the

probability of the channel opening is simply the product of the individual probabilities

or

Y (t) = [y(t)]P . (4.15)
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4.3 Parallel Conductance Model

Using Kirchoff’s Laws and an equivalent circuit representation of a neuron,

one can derive a differential equation for the change in membrane potential. To do

this, we first recognize that the total current flowing across a membrane is due to

two sources. First, there are the ion channels which can cause a current to flow into

or out of the cell. Second, from treating the cell membrane as a capacitor we get a

capacitive current due to charges building up on either side of the cell walls.

In what is known as the parallel conductance model, we treat the different ion

channels as resistors which add in parallel. This makes biological sense, as the various

ion channels which stud the cell wall are effectively all wired to one potential outside

the cell (whatever the potential of the extracellular medium is), and another within

the cell, which defines parallel connectivity. From looking at the ionic currents due to

these parallel sources, we conclude that the total ionic current is simply the sum of

the currents due to the individual species,

Itot =
∑
s

Is, (4.16)

where Is is the current to one species, and in general can be a nonlinear function of

both the potential and time. Using this pedagogy, the problem of devising a neuron

model is thus reduced to selecting the appropriate currents and adding them together.

The change in potential across the cell wall can then be written as a function

of time by using the differential equation

Cm
dV

dt
=
∑
s

Is(V, t), (4.17)



68

where Cm is the capacitance of the cell.

4.3.1 Hodgkin-Huxley Model

The Hodgkin-Huxley model will appear in numerous examples and is worth

exploring in some detail. The model is a parallel conductance single-compartment

model for the membrane potential of a squid giant axon and consists of three currents:

potassium, sodium, and leak. Because the ratio of interior to exterior concentration

for potassium and sodium is near unity, we can use equation 4.6 to represent their

contribution to the change in membrane potential.

The leak current represents passive channels and therefore has no gating variable.

Furthermore, it is not treated as ion-specific and tends to restore the membrane to

the resting potential. The complete model is given by the equations

Cm
dV

dt
= gNam

3h(V − ENa) + gKn
4(V − EK) + gL(V − EL), (4.18)

where the gating variables have dynamics of the form

dx

dt
=
x∞(V )− x

τx
(4.19)

Using the language developed thus far, we can see that the leak current is a

passive or linear current. The potassium current is nonlinear and depends on the

simultaneous meeting of four molecules of n. Likewise, the sodium current depends

on the meeting of three molecules of m with one of h. The model used by Hodgkin

and Huxley will stand in as our go-to neuron model in many cases.
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Figure 4.2: Illustration of the parts of a synapse including the presynaptic
terminal, synaptic cleft, and postsynaptic terminal

4.4 Synaptic Transmission

Synapses are responsible for the transmission of signals between neurons. Here,

we discuss the biochemical processes underlying the transmission of an action potential

between synaptically connected neurons.

In the absence of a synapse, an electrical signal traveling between neurons

would attenuate by around four orders of magnitude (Johnston et al. [27]). Therefore,

to relay electrical signals efficiently between neurons a direct connection, or synapse,

is required. Broadly speaking, there are two types of synapses: gap junctions and

chemical synapses.

Gap junctions are fixed conductance connections which directly transmit an

electrical signal. Gap junctions typically serve specialized purposes (e.g. high speed

processing, glial cells, synchronization, retina). For our purposes they are a mathe-

matical convenience and are not intended to reflect the underlying anatomy. Chemical

synapses are variable conductance, or ‘plastic’ connections which transmits action

potentials indirectly through chemical relays. A change in the potential of the synap-

tically neuron releases compounds known as neurotransmitters which induce a change
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in the postsynaptic potential. For the discussion below, the word synapse refers to a

chemical synapse.

Anatomically and functionally, a synapse can be thought of as divided into

3 parts as shown in Figure 4.2. The synapse consists of a presynaptic terminal, a

postsynaptic terminal, and the synaptic cleft separating the the two. The presynaptic

terminal contains a reservoir of vesicles can release neurotransmitter for which the

postsynaptic neuron has receptors. The incoming electrical signal is translated into a

chemical response and back very quickly. In many neurons the transmission process

takes ∼ 1 ms but can be as low as 100 µs in insects. The process consists of seven

parts:

1. An Na+ or K+ generated action potential enters the presynaptic terminal.

2. Depolarization activates voltage gated Ca2+ channels through largely unknown

processes. Because the extracellular concentration of calcium is much higher,

when the channels open calcium ions flood in due to the steep concentration

gradient. This process occurs in around 800 µs after the arrival of the action

potential.

3. Unknown processes causes neurotransmitter vesicles to fuse to the cell membrane

in a process called exocytosis. The fusion of vesicles induces the release of

neurotransmitter into the synaptic cleft. It takes no more than 200 µs from the

introduction of increased levels of calcium to trigger this release. The amount of

neurotransmitter released by the binding of a single vesicle is called a quanta

and is the basis for the so called quantum hypothesis.

4. Neurotransmitters rapidly diffuse across the synaptic cleft in 1− 2µs. Since this
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portion of the transmission process accounts for only around .1% of the total

time for synaptic transmission, it is usually treated as instantaneous in models.

5. The neurotransmitters bind to specific receptors in postsynaptic membrane.

How this process occurs depends on the details of the receptors and will be

discussed in greater detail in the neurotransmitters section.

6. Ligand gated ion channels in the postsynaptic neuron rapidly open leading to

a change in the potential of the postsynaptic neuron. For some neurons this

happens by way of a more complicated mechanism in which neurotransmitter

binding to postsynaptic receptors releases second-messenger molecules. The

second-messengers then modulate the ion channels. As one might expect, the

second-messenger pathway is typically a slower transmission mechanism.

7. Vesicles pinch off from the membrane to be recycled in a process called endocy-

tosis.

Before going into detail about the processes underlying synaptic transmission,

it is worth pausing to consider the experimental basis for the theory of synapses.

Experimentally, much of what is known comes from the neuromuscular junction and

squid giant synapse. Therefore it is likely that the precise details will be different

for synapses in the avian brain. Below we provide a short summary of important

experimental results used in forming a theory for synapses.

The presence of the action potential in the presynaptic terminal is critical for

synaptic transmission, though whether it is due to Na+ and K+ or direct stimulation

is unimportant. Many experimental results underlie the importance of calcium in

synaptic processes. It has been shown that the release rate of neurotransmitter can be
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adjusted experimentally through baths of Ca2+ and Mg+. The details of how calcium

causes release are not fully known, but the general role of calcium is very important

for synaptic transmission and plasticity.

After calcium interacts with vesicles, neurotransmitter particles are released

into the synaptic cleft. Most fast excitatory synapses use glutamate as transmitter,

which then binds to N-methyl-D-aspartate (NMDA) receptors in the post-synaptic cell.

For our purposes, we will consider excitatory synapses associated with the transmission

of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), which mimics the

effects of glutamate. Additionally, we will look at the inhibitory neurotransmitter

γ-aminobutyric acid (GABA) fall under this category.

4.4.1 Synaptic Models

The quantitative model used to describe the synaptic current looks much like

the models used for other ion channels. In particular, the synapse is treated a being

gated by a single-particle barrier. While the actual synaptic current is determined by

the outward flow and reuptake of neurotranmitter, the phenomenological model shown

below can reproduce the qualitative form of the current and provides a simpler model.

Specifically, we model the synaptic current according to

Isyn(t) = gsynr(t)[Vpost − Erev], (4.20)

where the variable r(t) is given by

dr(t)

dt
= αT (V )[1− r(t)]− βr(t), (4.21)



73

and

T (V ) =
Tmax

1 + exp(−[Vpre(t)− θp]/σp)
. (4.22)

In this model, the presynaptic voltage determines the probability that the gate

is open through the function T (V ). With the gate open, the flow of synaptic current

depends on the difference between the reversal potential of the neurotransmitter and

the membrane potential of the post-synaptic cell. Excitatory neurotranmitters are

defined as having a reversal potential above the spiking threshold (and thus tend to

induce spiking in the postsynaptic cell). Conversely, inhibitory neurotransmitters have

a reversal potential below the spiking threshold and thus inhibit postsynaptic spikes.

4.5 Experiments

4.5.1 Electrophysiology

When examining neurons, one typically measures the electrical signals produced

by the neurons through electrophysiological experiments. In general, one can record

directly from within a single cell (intracellular measurements) or in the space between

cells (extracellular measurements). Here, we will need only consider intracellular

recordings.

The potential of an individual neuron is recorded using a device called a patch

clamp. In its most basic form, the patch clamp consists of a device such as a glass

pipette which can be used to physically attach to a neuron, within which are contained

a voltmeter, a variable current source, and an amplifier. The clamp can be operated in

one of two modes. In current-clamp mode, the current supplied by the clamp is varied

according to some experimental protocol and the voltage is recorded. Conversely, in
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voltage-clamp mode the voltage is fixed and any voltage difference between the clamp

and the cell is passed to the amplifier to produce a current which maintains a constant

voltage. The current produced by the clamp is then equal and opposite to the current

produced by the cell, allowing for recording the net current passing in our out of the

neuron.

4.5.2 Synaptic Measurements

It is substantially more difficult to make electrophysiological recordings from

synapses than from individual cells. Recording from a synapse essentially involves

the techniques described above applied simultaneously to two synaptically connected

neurons. In most experiments, the post-synaptic neuron is voltage clamped at some

voltage Vcl, so that Vpost becomes fixed. Voltage clamping the post-synaptic cell

accomplishes two things. First, because the voltage of the post-synaptic cell is no

longer changing in time, the various ion currents in the post-synaptic reach some

equilibrium, and the dynamics of the post-synaptic neuron cease to impact any

measurements. Second, the voltage clamp can measure the steady state ion current.

In order to maintain a fixed voltage, the clamp must supply a current that exactly

counterbalances the net ion current in or out of the cell. The current required to

maintain this constant voltage is called the holding current IH and is measured by

the clamp. For example, when the post-synaptic cell is at its resting potential, by

definition it requires no external current to maintain this potential and so IH = 0. If

the clamp is set to any other voltage value, the holding current is non-zero but does

not vary in time.

In the next step of the experiment, with the post-synaptic cell voltage-clamped,
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Figure 4.3: The synaptic current given by equation 4.20 for various voltage
clamp values. Note that the synaptic current vanishes when the post-synaptic
neuron is clamped at Erev = 0.

the pre-synaptic cell is stimulated so that a synaptic signal is triggered. When the

synapse transmits a signal, an additional current Isyn arrives at the voltage-clamped

post-synaptic cell. In order to maintain a fixed voltage, the voltage clamp must now

supply a total current Icl = IH + Isyn. Since the voltage of the post-synaptic cell is

fixed at the clamp’s value, the magnitude of the holding current will be the same as

before the synaptic signal arrived. Thus, after measuring the total clamp current, the

holding current subtracted off in order to yield a measurement of the synaptic current

alone.

The reversal potential can be determined simply repeating this procedure

and stepping through various values of voltage for the post-synaptic cell. When the
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post-synaptic cell is voltage clamped at a value equal to the reversal potential, then

according to 4.20 the synaptic current should vanish. Thus, by identifying the value at

which the synaptic current vanishes, the synaptic reversal potential can be determined.

This procedure was carried out numerically using the synaptic model and the results

are shown in Figure 4.3.

In order to determine maximal synaptic conductance, gsyn, the presynaptic

neuron is depolarized with a pulse long and strong enough that the gates will be fully

open, so that the factor r(t) in 4.20 goes to one. Now, the maximum value of the

synaptic current in time is recorded. Dividing the maximum of the synaptic current

by the difference [Vpost−Erev] then gives the maximal conductance. By repeating this

procedure for various values of Vpost, an I-V plot can be generated and a line fitted

through the data to determine the best value for gsyn. This portion of the experiment

was also replicated numerically and is shown in Figure 4.3.



Chapter 5

HVC Single Neuron Models

5.1 Introduction

This chapter discusses results of using the data assimilation framework presented

in earlier chapters to estimate the state and parameters for a dynamic single neuron

model. The data used are from voltage traces recorded during electrophysiological

experiments with zebra finch HVC neurons. First, we present an overview of the

relevant biological and anatomical background regarding birdsong production and the

zebra finch. This section is intended to provide motivation and justification for the

neuronal models appearing later on. Next, we introduce the models used, taking care

to justify the currents which appear. Finally, we consider the results of assimilation

on two different models and examine the conclusions that can be drawn from each.

77
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5.2 HVC Background

The songbird is an attractive candidate for the study of learning and memory

due to numerous parallels between human and oscine behavior. In particular, the

ability of a bird to sing requires learning from other birds and is often seen as a model

for human language acquisition. The effects of many stimuli on the learning and

production of birdsong have been well studied through experiments using techniques

such as playing auditory feedback, lesion studies, and modifying the temperature as

reviewed in Knudsen and Gentner [31]. However, while many aspects of the production

of birdsong are beginning to be understood, the mechanism by which song information

is encoded at the cellular level remains mysterious.

While many results apply to songbirds in general, our focus will be on models

of the zebra finch (Taeniopygia guttata). The zebra finch is studied owing to the fact

that it learns but a single song consisting of highly stereotyped vocal gestures during

a distinct learning period. Young birds learn specific songs by listening to adult tutors

and forming memories which lead to song development (Margoliash [43]). The song

itself consists of a 0.5− 1.0 s motif repeated a number of times. Each motif in turn

consists of syllables (individual bursts of sound) approximately 100ms in length and

occurring in a precise order (Long and Fee [38]).

Production, perception, and learning of birdsong occur through a set of forebrain

nuclei, called the song system. The song system is a collection of bilaterally coordinated

brain structures, organized into both feedforward and feedback pathways. Birdsong

has remarkably precise and hierarchically organized structure mediated by a number

of distinct, well-studied motor nuclei. Within the song system, the telencephalic
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nuclei HVC 1 play the role of coding for syllable order and controlling the temporal

structure of the song (Hahnloser et al. [22]). HVC is located within the avian analog of

the mammalian premotor cortex, producing instructions through the motor pathway

leading to highly stereotyped, precise, learned vocalization. It has been shown that

there are three distinct neuronal populations with HVC, which can be categorized

morphologically, electrophysiologically, or functionally. The first type, HV CRA neurons

project into an area known as the robust nucleus of arcopallium. The second type, X

projecting neurons, project from HVC to area X in the avian basal ganglia. Lastly,

cells called interneurons connect neurons within HVC to other HVC neurons and

provide a nearly constant background of inhibitory stimuli. Only data from neurons

projecting to area X (HV CX) will be considered in detail here.

In addition to providing a trove of single-cell voltage data, HVC provides an

excellent theatre in which to investigate synaptic changes associated with learning

and memory. It is known that songbirds learn to sing via audition-dependent vocal

plasticity (Mooney and Prather [45]). HVC has projection neurons that give rise to

pathways specialized for song patterning, or necessary for audition-dependent vocal

plasticity. This underlines the importance of HVC in singing and song learning and

makes it a promising place to probe for synaptic interactions.

The details of how HVC neurons encode song information are poorly understood,

owing in part to a lack of understanding of the properties of individual neurons. HVC

neurons can be investigated through electrophysiological experiments, of which we

will focus on in vitro intracellular recordings. Due to this lack of understanding,

HVC presents an opportunity to see if data assimilation can assist neurobiology in

1once High Vocal Cortex, but now a proper name
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characterizing neurons.

5.3 Assimilation Procedure

Here we present a summary of results collected from HV CX data that has

been available and analyzed using variational optimization on patch clamp data.

The available data consisted of intracellular patch clamp recordings generated from

three X-projecting neurons extracted from HVC in the zebra finch. In each case,

the data was sampled at 50 kHz and various currents were injected according to

established current injection protocols designed to explore the full dynamic range of

the model (Abarbanel et al. [4]; Kostuk [32]). The injected currents typically consist

of a combination of step currents and currents based on chaotic waveforms. The three

neurons will be referenced hereafter as N1, N2, and N3 and there is no particular

significance to the ordering of these names. For each neuron the data were divided

into epochs consisting of several milliseconds of recorded data each. For N1 a total of

213 epochs were available, for N2 174, and for N3 209.

The analysis detailed below was performed by running IPOPT on 30,000 data

points from each epoch in the collections for each neuron. Because the beginning of

each epoch consisted of a period during which no current was injected, the first 10,000

data points (200 ms) of each epoch were discarded before the optimization procedure

was performed.

After the optimization was completed, the model was integrated forward for

an additional 50,000 time points in order to check the validity of the estimates. As

many apparently good estimations resulted in poor predictions, the prediction process

provides an important way to test the validity of the state and parameter estimations
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that result from the optimization procedure.

5.4 A4 Model

The A4 model is a single compartment model and consists of 10 different ion

currents and incorporates calcium dynamics and is based on the model presented in

Daou et al. [11] and draws from several others (Destexhe et al. [12]; Dunmyre et al.

[13]; Hodgkin and Huxley [26]; Terman et al. [62]; Wang et al. [66]). The state of the

model is given by the differential equation,

Cm
dV

dt
= INaT + INaP + IK + ICaL + ICaT + ISK + Ih + IA + IL +

Iinj
ISA

. (5.1)

Additionally, because a current modulated by calcium (ISK) is included in the

model, it is necessary to explicitly model the calcium dynamics. The form used here

is a very rough approximation to the complicated processes underlying the change in

internal calcium concentration. The calcium dynamics are given by the equation

d[Ca2+]

dt
= −f

[
ε (ICaL + ICaT ) + kCa

(
[Ca2+]i − bCa

)]
, (5.2)

where f is the fraction of free-to-total cytosolic [Ca2+] (unitless), ε combines effects

of buffers,cell volume, and molar charge (units of mM/pA · ms), kCa is the pump

rate (units of ms−1) and bCa is the basal level of[Ca2+](units of mM). Conceptually,

the first term in parentheses in equation (5.2) tells us that decreases in the calcium

concentration can be attributed to the two calcium currents. The second term

represents an attempt by the calcium pumping mechanism to return the concentration
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to the basal level.

The dynamics of each of the ion currents are specified in the table below. Note

that sodium dynamics given in Daou et al. [11] are not included, nor is a sodium

dependent potassium current. The sodium dynamics and related potassium current

were found to have little impact on the model from previous studies and were therefore

excluded from this model.

INaT

There are two functionally distinct sodium currents, differing in their in-

activation properties. The first, INaT is essentially the sodium current from the

Hodgkin-Huxley model. Looking at the gating variables for INaT , we can see that the

overlap of the m∞ and h∞ curves signifies voltage values for which the sodium current

responds strongly. For this reason, this form of the current is called a window current,

due to the response in the window of overlap. Since the reversal potential for sodium

is ≈ 50mV , the sodium currents are depolarizing.

INaP

INaP is a persitent, or non-inactivating, sodium current that plays a role in

repetitive firing and subthreshold behavior. Biophysically, INaP may represent a

distinct ion channel or a different mode of the same INaT channel. The functional

form of the current comes from Dunmyre et al. [13]. The non-inactivating behavior

is included in the dynamical equation for INaP through an instantaneous activation

variable and a slow inactivation variable. The depolarization block and plateau

potential that some HVC neurons exhibit in response to positive current pulses
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(Kubota and Saito [33]) is understood to indicate some long-lasting inward current

and so INaP is included here.

IK

The typical IK , such as appears in the Hodgkin-Huxley model is called the

delayed-rectifier current and has relatively slow activation and may show voltage-

dependent inactivation. Because the reversal potential (≈ 90mV ) for potassium is

well below the threshold voltage, this current acts to reset the potential after a spike.

IA

IA is the transient potassium current. Like the IK current, IA participates in

spike repolarization and contributes to resting potential. Because it activates rapidly

and then inactivates, it prevents neurons from responding to fast depolarizations, and

contributes to a delay in spiking response. As there is some experimental evidence of

delay (Kubota and Taniguchi [34]; Mooney and Prather [45]), this current is included

to account for it.

Ih

Ih is the hyperpolarization current, with the important properties that it is

activated by hyperpolarization and undergoes no inactivation. The hyperpolarization

current accounts for the phenomenon of sag as found in Kubota and Taniguchi [34],

Kubota and Saito [33], and Dutar et al. [14]. While the effect of the hyperpolarization

current is well understood, the purpose of this current is largely mysterious. Ih has

unusual kinetics and so the model used for this current is based on the dynamic
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description provided in Destexhe et al. [12].

ISK

ISK is a calcium gated potassium current found in Kubota and Saito [33]. It

functions in much the same way as a typical ohmic current, but with the calcium

concentration playing the role typically reserved for voltage in activating the channel.

Unlike the other ion currents, the gating variable for the ISK current is characterized

by insensitivity to voltage. Activation of ISK limits the firing frequency of action

potentials and can be used to produce spike frequency adaptation (Daou et al. [11]).

Additionally, SK channels are thought to be involved in synaptic plasticity and

therefore play important roles in learning and memory (Stackman et al. [59]).

ICaL

Due to the drastic difference between intracellular and extracellular calcium

concentrations, calcium currents cannot be well represented by the usual Nernst

equation, and require the full GHK form. There are 4 pharmacologically distinct

[Ca2+] currents L, T, N, and P of which L and T are of interest here.

ICaL is a high-threshold long-lasting (hence L) and was historically the main

[Ca2+] current measured. As the name implies, this current is activated at high

potentials and deactivation depends on [Ca]in but not on voltage. L-type calcium

currents have been shown to exist in HVC neurons (Kubota and Saito [33]; Long et al.

[39]).
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ICaT

ICaT is a low-threshold transient current, suggested by Llinas and Yarom [37]

and Llinas and Yarom [36]. It exhibits strong voltage-dependence at depolarized

potentials and contributes to spontaneous burst firing and subthreshold activity

(Terman et al. [62]). In HVC neurons, ICaT is thought to be responsible for rebound

firing after a period of inhibition (Daou et al. [11]).

IL

The leak current used here is essentially the same as what appears in the

Hodgkin-Huxley model. The channel for the leak current is passive, and hence the

equation for the leak current has no gating variables, and is intended as a kind of

catch-all for ions that leak out of the cell. Because of its low reversal potential

(EL ≈ −70mV ), IL is a hyperpolarizing current important for spike repolarization.

5.4.1 Units

Currents are measured in picoAmps and voltages in millivolts. The kinetics

for the gating variables in the A4 model taken on several different possible forms and

are given in the table below. The parameter θx is the half-activation voltage for the

gating variable x and σx determines the slope of the gating variable x.

5.4.2 A4 Model Optimization Estimating Conductances

The table below summarizes the results of the attempted optimization proce-

dure for the A4 model in which only the state variables and values of the maximal
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Table 5.1: A4 model ion currents including activating and inactivating gating
variables associated with each

Current Dynamics Activating Inactivating
INaT gNaTm

3
∞h(ENa − V ) m h

INaP gNaP (mp∞)(hp)(ENa − V ) mp hp

ICaL gCaLV s
2
∞

(
Caex

1−e
2FV
RT

)
s∞ −

ICaT gCaTV [aT∞ ]3[bT∞ ]3rT

(
Caex

1−e
2FV
RT

)
aT∞ bT∞

ISK gSK

(
[Ca2+]2

[Ca2+]2+k2s

)
(EK − V ) − −

IL gL(EL − V ) − −
IH gH (krrf + (1.0− kr)rs) (EH − V ) − −
IA gAa∞e(V − VK) a∞ e

Table 5.2: Dynamical equations as functions of voltage for A4 model gating
variables

Gating Variable Kinetics
m∞,mp∞, aT∞ , s∞, n, e, hp, rT x∞(V ) = 1

1+e
V−θx
σx

n, h, e, hp dx
dt

= x∞(V )−x
τx

h h(V ) = 0.128e(
V+15
−18 )

0.128e(
V+15
−18 )+ 4

1+e
(V+27
−5 )

n, hp τx(V ) = ¯τX
cosh V−θx

2σx

aT∞ , rT∞ xT∞ = 1

1+e

V−θxT
σaT

bT∞ bT∞ = 1

1+e
rT−θb
σn

− 1

1+e
−θb
σn
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Table 5.3: A4 model optimization results including total size of available
data set and how many runs resulted in good results

Folder Recordings Completed Good Pred Points Est Points Pred
N1 213 177 57 30000 50000
N2 174 172 48 30000 50000
N3 209 151 67 30000 50000

conductances are estimated. The table follows the same format as used to present the

results of the B4 model.

Compared to the B4 conductance only estimates, the A4 model can produce

remarkably good predictions from estimating conductances alone. To produce the

predictions seen below, 30000 data points were used in the assimilation step. As before,

because the voltage trace recordings typically begin with a period during which no

current is injected, the first 10,000 data points from each recording were discarded

and were not used during the optimization procedure. All kinetic parameters were

fixed at the values given in the MATLAB file specifying the A4 model.

Unsurprisingly, because the conductance only estimation process is a linear

optimization problem, and therefore substantially more straightforward, many more

of the IPOPT runs completed for the the conductance only A4 model. A total of

500 runs completed, compared to 288 for the B4 model in which all parameters were

estimated.

Furthermore, compared to the case of estimating all kinetic parameters in

the B4 model in which a total of 125 runs produced good predictions, for the A4

conductance only estimation 172 runs produced good predictions. This suggests

that when good fixed values for kinetic parameters are chosen, varying maximal

conductances alone is sufficient to find good estimation and prediction. Four examples

of good predictions are shown in Figure 5.1, and compare well with the predictions
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generated from estimating all parameters in the B4 model.

Figure 5.1: Clockwise from top left: N1aj1 23 and N2aj1 29. Prediction of
the A4 model after using 30000 data points to estimate all of the parameters
and state variables of the model.

As in the case of the B4 model in which all states and parameters were estimated,

an analysis of the maximal conductance distribution for the A4 model was performed.

Normalized histograms giving the maximal conductances for values estimated for each

epoch are shown below. The histograms were created by binning the data from the

172 runs which produced good predictions into 15 bins representing equally spaced

regions between the upper and lower bounds of each parameter.

The distribution of the maximal conductances shows several promising trends.

The first important feature to note is that virtually none of the estimations hit the

lower bound of the estimation range. This trend is further emphasized when looking at
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Figure 5.2: Histograms of maximal conductance estimates for data sets from
three different neurons

histograms that have been created with a smaller bin size. For example, the estimates

for the maximal conductance of the potassium channel gK all cluster within the

0− 100 range, but none of the predictions deemed to be good estimate the maximal

conductance to be exactly zero. Instead, all the estimates for gK cluster in the 20− 40

range in good agreement with biophysically plausible values. The non-zero values for

all of the maximal conductances imply that all the ion currents included in the model

are contributing in some way to the model.

The second important trend to notice within the normalized maximal con-

ductance histograms is that the results seem to cluster into one of two distributions.

While it is admittedly risky to draw conclusions from a sample size of only 3 neurons,
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Figure 5.3: Maximal conductance estimates from optimizing the A4 model
on N1, N2, and N3, projected into a 2 dimensional conductance space.

it appears from the histograms that the distributions resulting from the estimates

of N2 and N3 generally agree with one another, while the estimates from N1 form

a second distribution. Again, judging from the histograms, this trend was observed

most clearly for gNaT and gH, which motivated the creation of projections of the

estimation results into a 2-dimensional maximal conductance space along gNaT and

gH axes.

The results from looking at the 2D maximal conductance projections are

shown in Figure 5.3. The data show that the A4 model consistently puts maximal

conductance estimates for a given neuron within a particular region of conductance

space, with the values generated from N2 and N3 clustering in the lower left of the

gNaT and gH axes, while the estimates from N1 cluster more broadly in the upper

right corner.
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This diagram contains two important clues that the model appears to be

working as intended. First, the results from different epochs generated from the

same neuron are self consistent. This can be seen most clearly in the tight grouping

generated from N2, but is also apparent in the clustering of estimates generated

from N1 and N3. Secondly, the A4 model appears to be capable of differentiating

between different neurons. While it is difficult to draw definitive conclusions from

only 3 neurons, it appears that both N2 and N3 cluster in the same general region

of conductance space, while N1 occupies a second region. If this result were to be

replicated using a larger number of neurons, it would suggest that there exist at least

2 subclasses of cell within HVC X-projecting neurons.

5.5 B4 Model

The B4 model is a single-compartment conductance based model drawn from

Meliza et al. [44] and consists of 9 different ion currents in addition to an injected

current. The state of the model is given by the differential equation

Cm
dV

dt
= INaT + INaP + IK1 + IK2 + IK3 + Ih + IL + ICaL + ICaT +

Iinj
ISA

., (5.3)

where the parameter ISA is used to set the scale of the injected current. The dynamics

for each of the ion currents are specified in the table below. It should be noted that

the activation and inactivation variables are different for each ion current (i.e. the m

appearing in the equation for INaT is not the same as the m appearing in the equation

for INaP ), but are called m and h respectively in order to easily compare the behavior

of different ion currents.



92

Table 5.4: B4 model ion currents including activating and inactivating gating
variables associated with each

Current Dynamics Activating Inactivating
INaT gNaTm

3h(ENa − V ) m h
INaP gNaPm(ENa − V ) m −
IK1 gK1m

4(EK − V ) m −
IK2 gK2m

4h(EK − V ) m h
IK3 gK3m(EK − V ) m −
Ih ghh(Eh − V ) − h
IL gL(EL − V ) − −

ICaL prltm
2

(
pgou−0.001e

V
13.0

e
V

13.0−1.0

)
V m −

ICaT prhtm
2h

(
pgou−0.001e

V
13.0

e
V

13.0−1.0

)
V m h

each of the gating variables (both activating and inactivating) x = m,h in the

conductance-based model described above are given by the differential equation

dx

dt
=

0.5
(

1 + tanh
(
Vx−V1/2

κ

)
− 2x

)
τo + τmax

(
1− tanh2

(
Vx−V1/2

σ

)) , (5.4)

where the hyberbolic tangent form has been used to improve numerical stability. In

this equation V1/2 is the half-activation voltage, κ is the slope of the activation function

between the closed and open state, τo is the minimum relaxation time, τmax + τo is

the peak relaxation time, and σ is the width of the relaxation time function.

5.5.1 B4 Model Optimization Results Estimating All Param-

eters

The table below summarizes the results of the optimization procedure for the

B4 model in which all parameters and the state of all variables are estimated. The

number of epochs is the number of available data sets, and agrees with the count given
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Table 5.5: B4 model optimization results including total size of available
data set and how many runs resulted in good results

Folder Recordings Completed Good Pred Points Est Points Pred
N1 213 63 22 30000 50000
N2 174 97 44 30000 50000
N3 209 128 59 30000 50000

in the introduction. IPOPT was run for the B4 model on all 596 epochs available.

After all epochs were run, a two part process was used to separate good predictions

from failures.

When run on a given data set, IPOPT can succeed or fail to complete the

optimization. The number in the Completed column is the number of epochs for which

IPOPT completed the optimization procedure. A completed run does not guarantee

that IPOPT produced a good or even reasonable answer, merely that the optimization

completed and returned a set of parameters for that data set. There was no single

obvious feature of the data which could explain why IPOPT succeeded for some epochs

but not for others. The size of the data set used to do the assimilation certainly

impacts the number of runs which succeed or fail ( with the general trend that when

more data are used, fewer runs completed), but there is nothing that distinguished

successes and failures for a fixed amount of data.

Not all of IPOPTs completions produce good predictions. For this reason

the number of IPOPT results which produce a reasonable prediction is recorded in

the GoodPred column. The judgment of what constitutes a reasonable prediction

is qualitative, but the the results thus far have typically been extremely good or

extremely bad, making such judgment easier.

For each neuron in the data set, the B4 model was able to very accurately
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predict spiking behavior at least some of the time. Nearly all of the estimates look

very good, illustrating the importance of prediction in discriminating between results.

An excellent looking estimate often gives rise to a poor prediction, but the converse

almost never happens. In order to avoid presenting potentially misleading figures, all

plots included here include both estimation and prediction windows alone.

Figure 5.4: N3aj3 40 and N2aj1 29. Prediction of the B4 model after using
30000 data points to estimate all of the parameters and state variables of the
model.

Using the parameter output from the 115 epochs which resulted in good

predictions, it is possible to look at the statistical properties of successful assimilation

runs. In both the B4 and A4 models used, we expect that the model is not as sensitive

to the kinetic parameters as to the values of the maximal conductances. In light of

this hypothesis, it makes sense to investigate the distribution of estimated maximal
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conductance values to check both for self consistency within a given data set, as well

as differentiation between different data sets.

In order to produce the maximal conductance histograms seen below, for each

of the 115 epochs which produced good prediction the parameter values for maximal

conductance were binned by neuron. The bounds constraining the possible values for

each parameter are determined in the specs.txt file and define the upper and lower

allowed values for each of the parameters. The interval between upper and lower limits

was divided into 50 equally sized bins, which were then used to create the histograms

seen below. The results do not appear to show clear differentiation between neurons,

though appear to be reasonably self consistent. The histograms for gA2, gou, and

gin show that many of the runs result in parameter estimations at the upper bound

of the search range, which suggests that the upper bound for these conductance be

increased in any future runs.

The conductances as estimated in this way do not appear to show any clear

grouping or differentiation between neurons. This result is consistent with the results

of the IPOPT assimilation procedure used in BioHH1. Several explanations of this

result are possible. Since all 3 neurons used for assimilation were X-projecting, it is

plausible that all 3 posses the same same general values of maximal conductance and

therefore cannot be distinguished in this way.

A second possibility is that the model cannot adequately distinguish between

traces from different neurons. Evidence for this is provided by the A4 conductance

only estimation results shown below (see Figure 5.3), which illustrates that for at least

some models conductance values can be used to distinguish between the 3 neurons in

this data set.
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From estimating the conductances alone it does not appear that the B4 model

is able to correctly predict spiking behavior in the cases considered. As spike timing

constitutes a crucial measure of a model’s ability to predict accurately, this implies

that a variable-conductance, but fixed-kinetics, version of the B4 model will not be

able to reproduce experimentally observed voltage traces to the desired precision.

5.5.2 B4 Model Optimization Estimating Conductances

Attempting to fix the kinetic parameters and estimate only the maximal

conductances in the B4 model did not result in good predictions for any of the cases

considered. In the first attempt, the kinetic parameters were fixed at their initial

guesses as specified in the specs.txt file. Most of the predictions agreed with the data

for a very brief 20 ms at the beginning of the prediction window, before quickly

diverging from the data trajectory. In many cases the prediction simply flat-lined

from this point onward. Since we know that accurate predictions are possible for

some set of kinetic parameters, it is likely that a better choice of kinetic parameters

at which to fix the kinetic parameters would result in a model which could provide

better predictions.

Another attempt was made at estimating maximal conductances using a better

choice for the fixed values of the kinetic parameters. Kinetic parameter values

were fixed based on values determined from a successful run of IPOPT in which all

parameters were estimated. For instance, if run 14 is identified as the successful run,

then all kinetic parameters are fixed at the values of the estimation procedure in

run 14. After the kinetic parameters were fixed, IPOPT was asked to vary maximal

conductances alone to find those values which produced the best estimation using the
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values of kinetic parameters as determined by run 14. This second approach proved

more successful than the first, though the predictions were not nearly as good as in

the case for which all parameters were estimated.



Chapter 6

Use of Assimilation on Synaptic

Plasticity Models

Synaptic plasticity is thought to provide the underlying biological mechanism

for memory and learning. However, because of the complicated chemical pathways

contributing to plasticity and the experimental challenge associated with isolating

and recording data from a synapse, much about plasticity is still unknown. Plasticity

experiments produce limited data, but plasticity models require values for states

not observed. By choosing a suitable dynamic model for synaptic plasticity it is

conceivable that data assimilation techniques can be used to reveal underlying features

of plasticity which are not directly observable using laboratory techniques.

This chapter consists of two sections. The first section explains the scope of

the models presented and provides background on developing models for plasticity. It

then reviews important experimental results and findings that any putative plasticity

model should replicate. Additionally, this section provides a coarse description of

the experimental procedures used to obtain these results, which allows for realistic

98
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considerations of what measurements are available for solving the data assimilation

problem. The second section concerns the results of applying data assimilation

techniques on a synaptic plasticity twin experiment. The model and procedures used

are explained and results are presented.

6.1 Overview of Plasticity Phenomena

Synaptic plasticity refers to changes in the strength of a synaptic connection

between neurons which modulate the synaptic signal. For modeling purposes, we

include plasticity effects by introducing a weighting variable, whose dynamics determine

the time course of changes in the maximal synaptic conductance. Synaptic plasticity

can be divided into short term plasticity and long-term plasticity based on the duration

of the effect. Typical short-term plasticity effects persist on the order of milliseconds to

minutes, while long-term plasticity effects last an hour or more. Long-term plasticity is

thought to provide a mechanism for memory and learning and is the form of plasticity

that will be discussed here.

Biochemical and physiological changes may both contribute to long-term

plasticity, though the chemical changes likely provide the dominant force. From the

physiological standpoint, changes in the shape of the dendritic spine may contribute to

long-term plasticity, by changing the electrical properties of the dendrites by altering

their physical shape. However, from estimation of the size of the change in the maximal

conductance it can be seen that the impact on the maximal conductance is small.

Additionally, the impact of physiological changes in the dendrites would depend on

the relative magnitude of the resistance of the dendrites compared to the soma and

would vary across different neurons. For these reasons, the effect of physical size will
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be neglected in the subsequent discussion and plasticity will be treated as a chemical

phenomenon.

Long-term plasticity, can be subdivided into the categories of long-term po-

tentiation (LTP) and long-term depression (LTD). LTP is defined as a long-lasting

increase in the amplitude of a synaptic response following brief, high-frequency activity

of a synapse and was described by Landfield and Deadwyler [35]. Here, high-frequency

refers to a range of 50 Hz to 200 Hz for induction protocols lasting from 0.5 to 20

seconds. LTP can be separated into an induction phase during which the change

in synaptic strength occurs and a maintenance phase during which the change is

expressed. The onset kinetics of the induction phase are not reliably known in part

because of the difficulty of separating the onset of long-term plasticity from the effects

of STP. The expression of LTP begins within minutes of induction, and the effects

can last over a time scale from days to weeks. Many of the studies of LTP come from

the study of mammalian hippocampal neurons, so the results may not generalize to

the avian case. Experimentally, the effects of LTP can be measured by recording the

amplitude of the synaptic response before and after the stimulation protocol using

field potential recordings.

The biochemical processes underlying LTP are complex. LTP can be modulated

by a number of neurotransmitter systems and appears to be different at different

synapses. Further complicating matters, it is likely that plasticity depends on second-

messenger systems.

Moving deeper down the taxonomic tree, LTP can in turn be divided into

NMDA-dependent and NMDA-independent forms. The distinction between these forms

of plasticity comes down to the way in which Ca2+ enters into the postsynaptic neurons.
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Broadly speaking, the Ca2+ concentration in the postsynaptic neuron through three

route: voltage gated channels, Ca2+-permeable NMDA receptors, and intracellular

calcium stores. It is known that induction of LTP depends on the postsynaptic Ca2+

concentration. Experiments in which postsynaptic Ca2+ was blocked using Ca2+

chelators (chemicals which preferentially bond to Ca2+, thereby preventing it from

engaging in other reactions), showed that LTP was not induced in this case. Notably,

if the Ca2+ was chelated after the induction phase, there was no observed effect on

expression. Perhaps unsurprisingly, NMDA-dependent plasticity is thought to be

caused by an influx of Ca2+ via NMDA receptors, when the depolarization of the

postsynaptic neuron is sufficient to relieve the Mg2+ block that typically prevents an

influx of Ca2+ through NMDA receptors. NMDA-independent plasticity is thought to

occur via voltage gated channels, though this form has been studied less extensively.

From the perspective of neurotransmitters, it has been observed that depo-

larization of the presynaptic neuron causes glutamate release. The most prominent

mechanism is persistent activation of one or more protein kinases associated with ex-

pression. Most experimental evidence favors increase in transmitter release accounting

for at least part of increase in synaptic efficacy. From this perspective, the conductance

of a synapse can be thought of as a sort of time average of the neurotransmitter release

rate. If Ca2+ influx in the postsynaptic neuron triggers release of transmitter, then

logically this process requires some sort of retrograde messenger to let the presynaptic

neuron know about the Ca2+ influx in the postsynaptic neuron. While evidence

suggests that the rise in the concentration of Ca2+ in the postsynaptic neuron is the

initial trigger for LTD, it possible that small increase in Ca2+ concentration leads to

LTD while larger increases lead to LTP.
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LTD is also thought to be required for learning, because otherwise all synapses

would saturate and more info can be stored in a system which can increase and decrease

strength. It has also been observed that LTD sometimes occurs under non-Hebbian

conditions.

6.1.1 Discussion of Model Features

From the considerable experimental evidence available, we must choose which

features to attempt to replicate in our model. In order to do this, it is useful to

first review relevant experimental evidence, before specifying a particular model and

discussing which features are include and left out.

Evidence for LTP was first described in rabbit hippocampal neurons (Bliss and

Lømo [8]). Typical plasticity experiments use extracellular field recordings to measure

the amplitude of an excitatory postsynaptic potential (EPSP). The time course of

the recorded extracellular field potential is then taken to be approximately equal to

the transmembrane current. Using this technique, it is then possible to measure the

amplitude of EPSPs both before and after an induction paradigm designed to invoke

plastic changes. By comparing the maximal conductances measured before and after

the induction protocols, one can quantify any changes observed in plasticity.

Usually a stimulus intensity threshold exists, below which LTP will not be

observed. As one might imagine, LTP also exhibits saturation, meaning that synaptic

strengths cannot be increased indefinitely. Many forms of long-term plasticity appear

to require activity in both the presynaptic and postsynaptic neuron, a hypothesis

which is referred to as Hebb’s rule (Hebb [23]). There is a fair amount of evidence

to support this hypothesis (Brown et al. [9]; Bi and Poo [6]),though there also exists
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some evidence for plasticity which does not obey Hebb’s rule.

Many important characteristics of synaptic plasticity are grouped together

under the heading of spike timing dependent plasticity. STDP refers to dependence

on the precise timing of presynaptic and postsynaptic activity. In typical STDP

experiments, both pre- and postsynaptic neurons are stimulated to produce pairs

of spikes separated by some time τ . The temporal separation between the spikes

is varied and the effect on the response recorded (Bi and Poo [5]). This procedure

produces a curve representing the change in maximal conductance as a function of

the temporal separation between pre- and postsynaptic spikes. However, experiments

performed using more than just 2 spikes (triplet and quadruplet induction paradigms)

have suggested that there may be more complicated processes at work that can not

be explained purely by a pairing model (Froemke and Dan [18]).

More recently, experiments have demonstrated the importance of precise timing

of calcium in determining plasticity phenomena (Zucker [71]). A brief but relatively

large increase in Ca can trigger LTP, while a more moderate prolonged rise induces

LTD (Yang et al. [67]). The importance of calcium in plasticity has been established

for some time, but the details of the model have yet to be worked out. Models for

the effect of Ca levels on plasticity often involve complicated chemical pathways with

many parameters that must be hand-tuned to achieve the expected results (Rubin

et al. [54]). The role of calcium is an important consideration that is a worthy area of

future investigation.
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6.1.2 Phenomenological Models

Because of the complexity of and uncertainty surrounding the biological pro-

cesses underlying plasticity phenomena, it is useful to consider phenomenological

models for synaptic plasticity (Morrison et al. [46]). For our purposes, a model is

deemed to be phenomenological if the states of the model are not presumed to have

a direct correspondence to any underlying chemical signals. Instead, the model is

intended to replicate general observed results, without concern for the precise descrip-

tion of the underlying mechanism. Attempts, such as the BCM rule (Bienenstock

et al. [7]), have been made to unite experimental results under a common theory, but

no single unifying rule has yet been found.

From the standpoint of data assimilation in dynamical systems, one issue with

many of the models proposed is that they are discontinuous and thus many of the

techniques discussed herein cannot be directly applied. It is therefore desirable to

consider a dynamic model of plasticity.

6.2 Plasticity Model

The model we will use will consist broadly of two smaller models: a model for

synaptic transmission and a model for spike-timing dependent plasticity. One issue

inherent in such a model is that there are two widely separated timescales associated

with the two parts described. The synapse itself transmits a signal on the order of 1 ms

and is the fast part of the model. In contrast, plasticity is usually invoked by following

a procedure that takes place on the order of minutes and thus has a much longer

time scale. The separation between these two timescales poses both experimental and
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numerical hurdles. Each part of the combined model is explored separately below and

finally a combined result is obtained.

The basic plasticity model to start with is given in Abarbanel et al. [2]. This

model has several desirable features, though it also has multiple limitations which are

in disagreement with experimental observations.The model used is specified by three

coupled differential equations given below.

dP

dt
= f(Vpre)− βPP (6.1)

dD

dt
= g(Vpost)− βDD (6.2)

d∆g

dt
= γ(PDη −DP η). (6.3)

The functions f, g are here chosen to be

f(Vpre) =
1

2

(
1 + tanh(

Vpre − θP
σP

)

)
(6.4)

g(Vpost) =
1

2

(
1 + tanh(

Vpost − θD
σD

)

)
. (6.5)

Before delving in to the numerical experiments, it is worth examining promintent

features of this model as relating to the plasticity phenomena described above. The

model given in equation 6.3 is Hebbian in the sense that both presynaptic activity

(associated with the state variable P) and postsynaptic activity (associated with the

state variable D) are required in order to produce changes in the maximal conductivity.

If either P or D is zero, no change results. The state variables P and D decay to zero

with a time scale set by the the value of βP,D, and are only pulled toward non-zero

value during times of electrical activity. When both P and D have non-zero values, a
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nonlinear competition between the two variables occurs.

From the standpoint of shortcomings, the model does not include the feature

of saturation, which refers to the finite strengthening of any given synapse. Similarly,

the model can cause ∆g to decrease to a negative value which is no longer meaningful

as a conductance. Clearly, no explicit information about calcium is included here,

though an extension of the model which included a calcium time course is presented

in Abarbanel et al. [3].

The model given in equation (6.3) has several advantages. First, it is dynamical

meaning that it can be tested against dynamical data assimilation techniques. Second,

the model is simple, meaning that the nonlinear optimization problem is easier and

the techniques applied are more likely to work. Also due to simpliicity it is easier

to interpret the meaning of some of the parameters. For example, the parameter γ

sets the time scale on which plasticity occurs. Finally, unlike many phenomenological

models the model given in equation (6.3) does not explicitly depend on any particular

matching scheme between pre and postsynaptic spikes. In principle, it can thus be

used equally well on pair, triplet, or any other arbitrary plasticity induction protocols.

6.2.1 Verification of Model

Table 6.1: Numerical values for parameters used in simulations to verify the
model given in 6.6.

Param. Value
αP 33.5
αD 33.5
βP 0.098
βD 0.035
ηP 4.0
γ 1e-6
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In order to verify the implementation of the model worked as expected. Results

were compared with the paper. As many of the results cited in the paper are based

on the limiting case of a very narrow spike, the equations for P and D were modified

to read,

dP

dt
= αP δ(t− tpre)− βPP

dD

dt
= αDδ(t− tpost)− βDD, (6.6)

and the model was integrated forward from the initial condition [P,D,∆g] = [0, 0, 0].

The parameters used are given in Table 6.1.

Note that since the functions f and g are delta function, the shape of the

incoming spike doesn’t matter in this model and it is sufficient to specify spike times

alone. The results of using this model are in good qualitative agreement with those

given in the paper as well as those cited in Bi and Poo [6] and are shown below.

6.2.2 Plasticity Twin Experiments

The simplest twin experiment we can perform on this model is one in which

we specify the form of the driving voltage for P and D and ask if we can recover

the parameters from measurements of ∆g alone. Note that this procedure is not

experimentally plausible, because techniques to inject two voltages and measure a

conductance simultaneously do not exist. Nevertheless, this twin experiment is a

direct test of whether or not the model given in 6.3 can be successfully subjected to

data assimilation. In other words, if this first test does not work, then there is no

point in attempting to use assimilation when including this plasticity rule in a larger
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Figure 6.1: Implementation of the plasticity rule using eqn. 6.6 and the
parameters specified in Table 6.1. The horizontal axis specifies the temporal
offset between pre- and postsynaptic spikes, τ = tpost−tpre. Only the frequency
of the input voltage is changed between plots.

network.

In performing twin experiments, voltage data were first created using a simple

Hodgkin-Huxley neuron. Three different current injection protocols were used in order

to test whether some injected current waveforms work better than others.

In each case, the basic procedure is the same. Two identical Hodgkin-Huxley

model neurons were injected with the currents specified in the protocol in order to

produce two voltage traces. One of these voltage traces was then used in the equation

for P , while the other was used in the equation for D. Using the voltage traces
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explained above, the full model was integrated forward from the initial condition

[P,D,∆g] = [0, 0, 0], noise was added to the data for ∆g and the state of the model

was written to a data file at an interval of dt = 0.02ms. Using 10,000 points from

this data trace, data assimilation was performed using the annealing method and the

results are shown in the tables below.

Comparison of Current Waveforms

In the first protocol, a constant injected current of 1.0nA was used to induce

spiking at a regular interval and the simulated membrane potential was used as the

voltage in the equation for P . A second voltage trace was then created using the same

procedure, but shifted by a time of τ = 2ms and used as the voltage appearing in

the differential equation for D. This procedure ensures that presynaptic spikes will

always arrive a time τ before postsynaptic spikes. After the equations were integrated

forward, Gaussian noise of amplitude A = 0.01 was added to the data for ∆g. The

estimated parameters for each of the three injection protocols are shown in Table 6.2

below.

In the second protocol, square impulses of 0.3nA were spaced so to induce

spikes at different temporal separation. The spacing of the current pulses varied from

4ms down to 0ms in increments of 0.5ms. After a pause of 20ms, the procedure was

repeated a second time with the order of the current impulses reversed. This protocol

was designed to cause first a strengthening of synaptic strength and then a weakening.

After the equations were integrated forward, Gaussian noise of amplitude A = 0.01

was added to the data for ∆g.

In the third protocol, the Lorenz 63 model was used to generate two different
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chaotic waveforms for current varying between a maximum value of 1.0nA and a

minimum value of −0.2nA. After the equations were integrated forward, Gaussian

noise of amplitude A = 0.01 was added to the data for ∆g. The results of using this

protocol on the dynamic synapse model are shown in Figure 6.2.

The results from the parameters indicate reasonably good agreement with the

true values of the parameters. The discrepancy between the two is likely due at least

in part to the close fit between the data and model. It is likely that using either a

longer data trace, or a more complicated voltage waveform would result in better

estimations.

Figure 6.2: Simulation of the plasticity rule given by eqn. 6.3 and current
injection protocol 3.
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Table 6.2: Parameter estimates from twin experiment using the three current
injection protocols described above.

Param. Correct Estimate 1 Estimate 2 Estimate 3
θP -20.0 -19.6 -20.0 -20.0

1/σP 0.25 0.137 0.159 0.270
βP 0.3 0.296 0.299 0.299
θD -5.0 -5.29 -5.13 -5.18

1/σD 0.2000 0.182 0.131 0.163
βD 0.2 0.200 0.200 0.200
γ 0.1 0.099 0.098 0.099
η 4.0 4.000 4.051 4.019

6.3 Unified Model

6.3.1 Synaptic Model

The synaptic model used here is taken from Gibb et al. [19] and given by the

equation,

Isyn(t) = gsynr(t)[Vpost − Erev], (6.7)

where

dr(t)

dt
= αT (t)[1− r(t)]− βr(t), (6.8)

and

T (t) =
Tmax

1 + exp(−[Vpre(t)− θp]/σp)
. (6.9)

In order to have a model of an actual synapse that exhibits plasticity, it is

necessary to combine the synapse model given in 6.7 with the model for plasticity

given in 6.3. What we would like is an equation of the form,

Isyn(t) = gsynw(t)r(t)[Vpost − Erev], (6.10)



112

where r(t) specifies the gating behavior of the synapse (a short time scale), and w(t)

is a weighting variable that describes any changes due to long term potentiation or

depression. Saturation specifies that w(t) should be bounded below by zero and above

by some maximum strength.

In our model for plasticity, ∆g represented the percentage change in synaptic

strength and is bounded (in principle) below by -100 and above by whatever the max-

imum strength is. ∆g = 0 represents no change in synaptic strength and corresponds

to w = 1. Thus, we can relate w and g linearly through the equation w = (g/100 + 1).

A full model for a plastic synapse can then be described by the dynamical equations

dr(t)

dt
= T (t)[1− r(t)]− βr(t) (6.11)

dP

dt
=

1

2

(
1 + tanh(

Vpre − θP
σP

)

)
− βPP (6.12)

dD

dt
=

1

2

(
1 + tanh(

Vpost − θD
σD

)

)
− βDD (6.13)

dw

dt
= γw(PDη −DP η). (6.14)

At this stage the model can begin to represent plausible experiments. In

a typical plasticity experiment, the postsynaptic neuron is voltage clamped and

the presynaptic neuron is stimulated in order to produce a synaptic current. The

experiment then proceeds in two alternating phases. In a measurement phase, low

frequency pulses are used to determine the maximal conductance as described above.

A low frequency is selected so that plasticity mechanisms will not be activated during

the measurement phase. After the conductance has been measured, a series of higher

frequency pulses are used in order to elicit plasticity phenomena. After the high
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frequency pulses, the measurement phase is repeated in order to ascertain any change

in the conductance.

This procedure has several drawbacks where numerical methods could offer

improvements. First, much of the information contained in the waveform of the

synaptic current is wasted. In order to determine the maximal conductance, only the

maximum value of the current is used. Information about the shape of the synaptic

current pulse and how it changes as a function of time is neglected in the experimental

procedure, but can be used to determine synaptic parameters numerically. Second,

the experimental procedure is more limited in resolution. Long series of pulses (on the

order of minutes) are needed in order to see a detectable change in the synaptic current.

Data assimilation techniques could potentially bypass this limitation by picking out

smaller changes than can be easily seen by eye. A third and related difficulty is that

the experimental procedure is time consuming. If data assimilation techniques can be

used to determine relatively smaller changes in synaptic strength, the length of the

experimental protocols could be correspondingly reduced.

From looking at the equations given in 6.14, we can see that the time scale

of the plasticity variable is set by γw and is typically much longer than any of the

other relevant time scales in the problem. This issue is manifested numerically

and experimentally in the long times needed to perform plasticity experiments. In

numerical experiments, we can get around this by using an artificially higher value for

γw.
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6.3.2 Unified Model Twin Experiments

As with the synaptic and plasticity components of the model, twin experiments

were performed on the unified model. The first series of twin experiments is not

intended to reflect current experimental capabilities, but still illustrates how data

assimilation using the synaptic current can determine the parameters of the underlying

system. The second series of twin experiments is intended to be experimentally

plausible and uses a voltage-clamped postsynaptic neuron. While voltage-clamping

the postsynaptic neuron makes the dynamics less interesting, this twin experiment

represents a viable experiment.

Non-voltage clamped case

Varying the voltage of both the pre- and postsynaptic neurons allows us to

explore a greater dynamical range for the model and likely makes estimating all state

and parameters easier. An example of a twin experiment performed using these criteria

is shown in Figure 6.3. In this experiment, only the synaptic current is measured and

all unmeasured states and parameter are estimated using only this measurement. The

maximal conductance and reversal potential are fixed at their correct values, because

these parameters can be accurately measured using the experimental techniques

describe above. Since the values of these parameters are taken to be fixed, they are

not included in the results appearing below.

The twin experiment was performed using the following procedure. The

Hodgkin-Huxley equations were integrated forward using an injected current modeled

on the Lorenz 63 equations. The simulated voltages produced using this procedure were

then used as Vpre and Vpost appearing in equation 6.14 and the differential equations
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were integrated forward in time. Plugging the results of this integration into equation

6.10 , a simulated synaptic current was produced. From the simulated synaptic current,

20,000 data points of spacing dt = 0.02ms were then used to assimilate the model

using the annealing procedure.

Figure 6.3: Implementation of the combined synapse model using equation
6.14 and current injection protocol 3.

Using this procedure, parameters in the model can be accurately estimated and

an example of these estimates is shown in Table 6.3. While some of the parameters

in the model gave relatively poor estimates (the parameters θP,D and σP,D appearing

in the hyperbolic tangent function proved particularly difficult to estimate), there

are two mitigating factor which make this inaccuracy less problematic. First, it can

be observed that varying the parameters in the hyperbolic tangent does not much
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change the dynamics of the P and D state variables, and therefore has even less

impact on the behavior of the model synaptic current. Second, although the model is

phenomenological and none of the parameters directly correspond to any chemical,

many of the parameters which are well estimated can be more easily interpreted. For

example, the value of η can be related through the law of mass action to the number

of molecules of some substances P and D that ultimately contribute to plasticity.

Similarly, the value of γw sets the time scale on which plasticity occurs and is therefore

also of interest.

Table 6.3: Parameter estimates from twin experiment using the three current
injection protocols described above.

Param. Correct Estimate
θP -20.0 -20.0

1/σP 0.250 1.000
βP 0.300 0.299
θD -5.00 -5.490

1/σD 0.200 0.198
βD 0.200 0.202
γw 0.110 0.112
η 4.000 4.163

a ∗ Tmax 3.300 3.089
θw 2.000 2.538

1/σw 0.100 0.094
βr 0.380 0.379

Voltage clamped case

In a viable experiment, the postsynaptic neuron is voltage clamped in order

to allow for measurement of the synaptic current. However, because the voltage is

now fixed the state associated with the postsynaptic neuron, D, now goes to a fixed

point. This makes it impossible to estimate any of the parameters appearing the

dynamical equations for this state. On the other hand, the dynamical equations
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become simplified. First, we can solve for the fixed point of the dynamic equation for

D by setting dD
dt

= 0. This gives,

Do =
1

2βD

(
1 + tanh

(
Vpost − θD

σD

))
, (6.15)

a constant value. If we imagine clamping the postsynaptic neuron and consider only

the steady-state behavior, we can thus effectively treat D as a parameter rather than a

state variable. If we now estimate only the fixed value of D, we reduce the dimension

of the the system of equations given in 6.14 by one and eliminate having to estimate 3

parameters. Because this version of the equations requires only measuring the synaptic

current in the case of a voltage-clamped postsynaptic neuron, the biological analog to

this numerical experiment should be entirely feasible. The limitation to this procedure

is that because the postsynaptic voltage is fixed, the spike-timing dependent effects

cannot be investigated directly. The more limited dynamical range explored by the

model results in greater difficulty estimating the parameters.

Using a fixed voltage value for the postsynaptic neuron, a twin experiment was

performed using 20,000 data points with a separation of dt = 0.02ms. The parameter

estimates for this procedure are shown in Table 6.4 and are generally less accurate

than the case in which the postsynaptic voltage is also allowed to vary. From looking a

the estimates given in Figure 6.4, this is likely because the measured synaptic current

can be well fit with the parameters estimated.
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Figure 6.4: Implementation of the combined synapse model using equation
6.14 and a fixed postsynaptic voltage value of Vpost = −25mV .

Table 6.4: Parameter estimates from twin experiment with fixed postsynaptic
voltage.

Param. Correct Estimate
θP -20.0 -21.3

1/σP 0.066 0.051
βP 0.300 0.295
Do 1.040 1.149
γw 0.010 0.003
η 4.000 5.933

a ∗ Tmax 3.300 3.096
θw 2.000 2.593

1/σw 0.200 0.097
βr 0.380 0.379
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