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EPIGRAPH

Tlön may be a labyrinth,
but it is a labyrinth plotted by men,

a labyrinth destined to be deciphered by men.

Jorge Luis Borges
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When software is designed, even with security in mind, assumptions are made about

the details of hardware behavior. Unfortunately, the correctness of such assumptions can be

critical to the desired security properties. In this dissertation we first demonstrate how incorrect

assumptions about the hardware abstraction lead to side-channels that threaten modern software

security, and second we propose a principled method of timing channel defense for modern web

browsers.

We show how performance variations in floating-point math instructions enable the

first demonstrated instruction-data timing side-channel on commodity hardware. We use this

side-channel in two case studies to prove it’s viability. First, we redesign a previous attack on an
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older version of the Firefox web browser to violate the Same Origin Policy. Second, we break

the guarantees of a differentially private database designed to resist timing attacks. We show

how the timing side-channel arises from hardware optimization decisions that have been well

understood in the architecture, numerical analysis, and game-engine communities, but largely

ignored in security.

Using a detailed measurement and analysis of floating-point performance, we examine

the progress and potential of defenses against floating-point timing side-channels. We find that

all deployed defensive schemes for desktop web browsers were insufficient, and most are still

vulnerable. Using the same analysis methods, we show how a proposed defensive scheme makes

incorrect assumptions about the hardware features it leverages, negating its guarantees.

As a possible remediation to the problem of floating-point timing side-channels, we

present libfixedtimefixedpoint as an alternative to floating-point. It provides a fixed-

point implementation of most available floating-point operations and is designed to run in

constant time regardless of the input values.

Finally, we discuss structural problems in modern web browser design that make them

amenable to all timing attacks. Adapting solutions from parallel problems solved by early trusted

operating systems projects, we propose a modified browser architecture providing a provable

defensive guarantee against all timing attacks. We then demonstrate the viability of this scheme

by prototyping aspects of the architecture in a modified web browser.
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Introduction

Computer science is built on layered abstractions. Each step up, from transistor to script-

ing language, requires abstracting away the lower layers to some degree. Layered abstraction

has been, and is, one of the great successes of computer science and engineering as disciplines.

As David Wheeler once said: “We can solve any problem by introducing an extra level of

indirection.”

But in security research we focus on where assumptions are made and there is no greater

trove of assumptions in computing than the hardware abstractions we rely on. It is an unfortunate

reality that our software executes on the same silicon gates that we abstract away to make

it possible to write. As the security community has deepened its understanding of how to

measure hardware’s behaviors the recent years have seen a rise in attacks on systems that were,

by reasonable previous evaluations, well designed and security aware. New techniques for

measurement, reverse-engineering of hardware, and increased community understanding of the

components of our modern computers have all made this acceleration possible.

This dissertation is a slice of that progress, with a specific focus on understanding the true

behavior of the FPU (Floating-Point Unit) and on adapting the lessons of the trusted operating

system efforts of the late 1980s to mitigate timing side-channels. Our attack structures, defensive

designs, and measurement techniques have all contributed to the growth of this area, with other

researchers responding and improving each.

We accomplish two goals: to demonstrate that instruction-data timing side-channels are

a real threat to modern software, and to show how principled degradation of clocks can mitigate

timing side-channels in web browsers. Specifically, we demonstrate a series of vulnerabilities
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spread over years in most major desktop web browsers and other software caused by timing

variability in floating-point operations. As well as propose and demonstrate a prototype of a new

browser architecture that relies on timing defense concepts from the VAX secure kernel project.

Outline

Chapter 1 presents a new type of timing side-channel attack that uses the execution time

of individual floating-point math operations to attack software, specifically the Firefox web

browser and the Fuzz differentially private database scheme.

Chapter 2 introduces a new strategy for evaluating floating-point performance with a

focus on identifying value classes that can be used in timing side-channels. This evaluation is

also applied to existing and proposed defenses, and finds small timing channels in them. As part

of this evaluation of defenses we present new floating-point timing side-channel attacks against

Firefox, Chrome, and Safari, despite their respective mitigations.

Chapter 3 presents a potential solution to the floating-point timing side-channel, lib-

fixedtimefixedpoint (libftfp), a constant time fixed-point math library. We evaluate

the library’s performance, and discuss difficulties in constructing constant-time math.

Finally, Chapter 4 describes a defensive model for web browsers adapted from the

VAX secure kernel project. We motivate this by demonstrating a series of time-measurement

techniques for web browsers to bypass deployed defenses by both improving the accuracy of

degraded clocks, as well as by using unorthodox browser interfaces as clocks. The VAX fuzzy

time defensive scheme is shown to be effective at defeating our new techniques, and is shown to

be applicable to the web browser context through a verifiable design proposal (Fermata) and an

engineering prototype (Fuzzyfox).
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Chapter 1

On Subnormal Floating Point and
Abnormal Timing

1.1 Introduction

The running time of floating point addition and multiplication instructions can vary by

two orders of magnitude depending on their operands. This fact, known for decades by numerical

analysts, has not been sufficiently recognized by the security community.

Floating point operations, if performed on secret data, expose software to data timing

channels: timing side channels that arise not because the trace of instructions executed or

the trace of memory locations accessed vary according to secret inputs, but because the same

instructions, acting on the same memory locations, vary in their running time.

Data timing channels were hypothesized by Kocher in his 1996 paper introducing timing

side-channel analysis to cryptography [52], but the intervening years have yielded only one

exploitable example: integer multiplication on some small-die embedded processors [38].

In this paper, we show that data timing channels are not a hypothetical threat but a

real and pervasive danger to software security. We use the timing variability of floating point

operations, specifically surrounding special-case “subnormal” numbers very close to zero, to

break the security of two real-world systems.

First, we demonstrate that subnormal floating point data timing channels can be used

to break the isolation guarantees of Web browsers. From release 23 (when the request-
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AnimationFrame API was added), the Firefox browser has allowed JavaScript to measure

the running time of SVG filters applied to Web content through CSS. Paul Stone showed that

timing variations arising from a data-dependent branch in one filter, feMorphology, could be

exploited to perform history sniffing or reveal the content of cross-origin iframes [81]. We show

that floating point data timing channels in the computation of filters (without any data-dependent

branches) enable similar attacks. Our attack applies to Firefox versions 23 through 27, including

the “Extended Support Release” of Firefox 24, which formed the basis of the Tor Browser in the

1.0 and 1.1 releases of the TAILS operating system.

Second, perhaps more startlingly, we show how subnormals can be used to break the

differential privacy guarantees of an extremely carefully engineered data analytics system that

was specifically crafted to prevent such leaks. Haeberlen et al. [40] identified a timing covert

channel by which malicious queries could break the differential privacy guarantees of the PINQ

and Airavat databases. They designed and implemented Fuzz, a differentially private database

that “effectively closes all known remotely exploitable channels,” including timing channels. We

show that carefully chosen values returned by Fuzz microqueries can affect the running time of

floating point computation performed by the Fuzz kernel, introducing an exploitable timing side

channel. Fuzz has had trouble with floating point before: As Mironov showed [63], Fuzz and

several other differentially private databases sample from the Laplacian distribution using an

algorithm that interacts badly with fixed-precision floating point arithmetic, allowing sensitive

information to leak in the least significant bits of computed results.

A key technical challenge our attacks overcome is how to amplify a timing signal of just

a few processor cycles. Ours are the first attacks to exploit data timing channels through timing

alone; Großschädl et al.’s attack on integer multipliers with early termination [38] relied on SPA

power traces to amplify the timing signal, hence requiring invasive access to the system.

To sum up, in this paper we demonstrate that data timing channels are a real danger to

software security and identify potential mitigation strategies by making the following contribu-

tions:

4



• We show that operations over potentially subnormal values are a data timing channel on

modern x86 processors, by measuring the timing variability of floating point operations

(Section 1.2),

• We demonstrate how floating point timing variability can be used to mount practical attacks

on the security of the Firefox browser (versions 23 through 27) (Section 1.3) and the Fuzz

differentially private database (Section 1.4).

1.2 IEEE-754 Floating Point, As Implemented

Floating point computation is found throughout modern software development, enabling

applications to represent a much larger range of values than integers alone. Although floating

point formats have been in use for many decades, they have recently gained particular promi-

nence as the exclusive numerical format in JavaScript. There has historically been a variety of

competing floating point formats, each defining unique, incompatible encodings with differing

properties [47]. In 1985, the Institute of Electrical and Electronics Engineers published a techni-

cal standard for floating point formats: IEEE-754 [20]. This specification has seen wide adoption

and is implemented by nearly all computers in use today.

Although successful, the IEEE-754 standard poses a difficult challenge for hardware

implementors and software developers alike. The complexity of the implementation has led to

real-world bugs, such as the Intel Pentium FDIV bug [1], and led to efforts to verify hardware

implementations [65, 75, 74, 5]. Software has equally struggled to handle floating point numbers

correctly; for example, PHP has had an infinite loop bug when attempting to interpret a specific

number [71].

In this section, we will cover the intricacies of IEEE-754 floating point numbers, looking

in particular at corner cases defined by the standard, how they are handled by a processor, and

how timing information can be extracted.
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Table 1.1. IEEE-754 Formats

Format
Name

Size
Bits

Subnormal
Min

Normal
Min

Normal
Max

Half 16 6.0e−8 6.10e−5 6.55e4
Single 32 1.4e−45 1.18e−38 3.40e38
Double 64 4.9e−324 2.23e−308 1.79e308
Quad 128 6.5e−4996 3.36e−4932 1.19e4932

1.2.1 IEEE-754 Floating Point Format

In contrast to the relatively simple two’s complement format used for signed integers,

IEEE-754 floating point numbers have a more complicated, multi-part format with numerous

special cases. Each number is composed of a sign bit, an exponent, and a significand, together

representing the real number (−1)sign× significand×2exponent. The raw exponent is stored as an

unsigned integer, but its effective value is calculated by adding a negative bias value, allowing

representation of negative exponents. In normal operation, the significand is stored with an

implicit “leading 1”: the bits making up the significand actually represent the binary number

1.b0b1 . . .bN . To support different precision requirements, the standard defines formats varying

from 16 bits to 64 bits. Table 1.1 summarizes the formats defined by the IEEE-754 standard.

To accommodate values that cannot be represented in the above format, the standard

reserves special encodings for zero, infinity, and not-a-number. Additionally, the standard

specifies an encoding for an alternate class of numbers, referred to as subnormal (also called

denormal). Unlike normal numbers, subnormals are restricted to using the smallest possible

exponent, and their significand uses a fixed leading 0 bit, with the form 0.b0b1 . . .bN . By

removing the leading 1 bit, subnormals allow the representation of values very close to zero.

Table 1.2 summarizes the special values and their encoding.

1.2.2 Processor Implementations

PC processors have supported IEEE-754 floating point values since the introduction

of the Intel 8087 floating point coprocessor in 1980. The x87 instruction set was created
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Table 1.2. IEEE-754 Special Value Encoding

Value Exponent Significand

Zero All Zeros Zero
Infinity All Ones Zero
Not-a-Number All Ones Non-zero
Subnormal All Zeros Non-zero

to communicate with this coprocessor and was later integrated directly into 80486 and later

processors. In x87, all computations are internally performed using the 80-bit “double-extended”

format, only converting to the 32-bit or 64-bit formats when performing a load or store. x87

instructions support typical arithmetic (addition, subtraction, multiplication, division) as well as

transcendental functions (trigonometry, exponentiation, and logarithms).

Beginning with the Pentium III in 1999, Intel introduced the Streaming SIMD Extensions

(SSE) instructions for operating on floating point values, with the ability to perform multiple

operations simultaneously. Unlike x87, SSE instructions operate directly on 32-bit and 64-bit

operands without using a high-precision internal format. SSE supports simple operations, but

does not implement transcendental functions. Although nearly all current Intel-based hardware

supports SSE, compilers targeting 32-bit systems do not typically assume SSE support. As result,

most 32-bit software uses the x87 instruction set.

IEEE-754 floating point is widely implemented, including in graphics processing units

and many mobile processors. Hardware support for subnormal numbers is less common, with

some processors rounding subnormals to zero and others falling back on software emulation.

1.2.3 Subnormal Performance Variability

Due to the complex nature of the floating point numbers, processors struggle to handle

certain inputs efficiently. In particular, it is well understood that operating on subnormal values

can cause extreme performance issues, including slowdowns of up to 100× [26]. As an example,

on a Core i7 processor using SSE instructions, performing standard multiply between two normal
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numbers takes 4 clock cycles, whereas the same multiply given a subnormal input takes over 200

clock cycles. Although the timing signal from a single subnormal computation can be difficult to

measure, a timing signal can be amplified when computation occurs in a tight loop — a situation

that is common with floating point numbers.

The SSE instruction set includes the processor flags flush-to-zero (FTZ) and denormals-

are-zero (DAZ), to prevent subnormal values from occurring as inputs to or outputs from

instructions. When flags are set, the performance problems associated with subnormals disap-

pears on all processors we tested, although there are no guarantees that these flags will always

solve these performance issues. Unfortunately, the x87 instruction set does not provide any

method to disable subnormal values.

Beginning with the Fermi microarchitecture, NVIDIA graphics cards support subnormal

floating point values [2]. NVIDIA has stated that, consequently, certain operations can suffer

from performance problems when operating on subnormal values [42], generating a measurable

effect. As graphics card processors have not historically supported subnormal numbers, this

provides evidence that subnormals and timing channels will likely become more prominent on

future graphics cards.

1.2.4 Floating Point Benchmarks

To better understand and characterize the slowdowns of floating point instructions, we

created a benchmark to measure the execution speed of varying combinations of operations and

inputs. We tested x87 and SSE instructions for addition, multiplication, and division, including

both scalar and packed SIMD versions. For inputs, we tested every combination of normal

values, subnormals, zero, infinity, and not-a-number. For SSE instructions, we performed each

test under every combination of the DAZ and FTZ flags. Because x87 instructions slow down

when loading and storing into registers, whereas SSE instructions have slowdown when the

mathematical operation occurs, we normalize all tests by measuring the number of clock cycles

to complete the sequence of loading two values from memory into registers, performing an
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operation on the two registers, and storing the result back into memory. This load-operation-

store cycle corresponds closely with code likely to be found in the wild. We averaged 1000

runs for each combination of instructions and operands, and all results are consistent and

reproducible.

Figure 1.1 summarizes the most interesting results from the benchmark. In particular,

multiplying or dividing with a subnormal in either operand or as output produces slowdown on

all processors, whether SSE or x87 instructions were used. On all architectures other than the

Core i7 using SSE, we found similar slowdowns on add instructions with a subnormal input

or output. Using SIMD instructions to operate on multiple subnormals at once amplified the

measured performance hit. It is important to note that slowdowns occur when the computation

result is a subnormal, even if both inputs were normal values.

The x87 instructions caused highly varying slowdowns that were not limited to subnormal

values. Performing a division by zero produces the special value infinity, and dividing by

infinity produces the special value zero. In both cases, these operations caused significant

slowdown with the x87 fdiv instruction and, more surprisingly, the timing of the two operations

were measurably different. Additionally, operations involving not-a-number suffered large

performance degradation. These slowdowns effected all tested Intel architectures, although the

selection of AMD machines we tested showed no performance penalty for operating on special

values beside subnormals.

All slowdowns discussed so far have centered around exceptional inputs and outputs:

infinity, subnormal, and not-a-number. However, we have measured variable timing with typical

values: zero, and normal numbers. For example, the division instructions produce a minor

speedup on SSE when dividing zero in comparison to dividing a normal number — a case that

uses the extremely innocuous values of zero and two. In one very specific instance, we even

measured a speedup by a Core i7 when dividing one by one.

These results show that the timings of floating point operations vary wildly based on

data input. The amount of slowdown and on which values is highly dependent on the processor,
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Figure 1.1. Timing variability of instructions based on input operands. Each test measures the
time taken to complete a sequence of loading two values from memory into registers, performing
the specified operation using the registers as input, and storing the result back in memory. The
y-axis gives the ratio of time taken to perform the specified operation versus the time taken to
perform an addition between two normal numbers.
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varying significantly between different architectures by the same manufacturer. As a takeaway,

developers have absolutely no guarantees about the timing of floating point operations unless

they are able to know exactly which processor is used, what instructions are executed, and what

inputs are fed into those instruction. Even accounting for all these factors, we cannot say with

confidence whether or not these timing differences will persist in future processors, or whether

new data-dependent timing channels will be discovered later.

1.2.5 Subnormal Rationale

Subnormal support incurs a significant overhead, so why should processors support sub-

normals? And if they are supported, why should they be enabled by default? The most compelling

reason for subnormal support involves reasoning about code like this [33, Section 2.2.4]:

if(a != b)

y = 1 / (a - b);

Checking that the variables a and b are not equal would appear to guarantee that the

result a−b could never be zero and the division would be safe. The result a−b could be a

subnormal value, causing a division by zero if subnormals are rounded to zero. Subnormals make

possible “gradual underflow,” preserving the property that two unequal values can be subtracted

yielding a non-zero result.

1.3 Firefox Pixel Stealing

In this section, we demonstrate the use of subnormal floating point numbers to subvert

Firefox’s single-origin policy, and show how a malicious website can use modern browser

features to extract page content from unaffiliated victim sites in an iframe, or to sniff user

browsing history.
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1.3.1 A History of Stolen Pixels

In 2013, Paul Stone [81] (and, independently, Kotcher et al. [55]) demonstrated a new

technique for cross-origin pixel stealing in the browser: a timing side-channel present in CSS

Scalable Vector Graphics (SVG) transforms. These transforms can be applied (via CSS) to any

element of a webpage, including iframes. Notably, when cross-origin content is contained in

an iframe, the containing page can apply SVG transformation filters at will to that iframe

(whose content the page does not control). By choosing specific SVG filters and measuring page

render times, Stone was able to repeatably extract any pixel value from a website he did not

control.

The SVG filters available in browsers include blurs, clipping, color transforms, and

generalized convolutions. When applied to a DOM element via CSS, the SVG filter must be

computed over the rendered pixels of the filtered element every time the content of that element

changes. Stone discovered that the feMorphology (erosion and dilation) SVG filter was

written with a particular optimization, allowing for a fast path on nearly homogeneous input.

For each output pixel, this filter considers a sliding window of input pixels, taking the darkest

individual pixel in the window as the output. As long as the previous darkest pixel remains in the

window, the filter is designed to consider only new pixels in the window, rather than all pixels in

the window. Obviously, this minor optimization will trigger much more often on an single-color

image rather than a highly noisy one. This presents a timing side-channel, where the amount of

time rendering the transformed image takes leaks information about the content. By layering

iframes, Stone’s attack is able to isolate individual pixels of interest, multiply them against a

noisy image, and repeatedly time the rendering of the feMorphology filter on the result to

extract pixel values. The exact methods used to isolate and extract the value are very similar to

the methods we used, as described in Section 1.3.2.
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Figure 1.2. Cross-Origin SVG Filter Pixel Stealing Attack in Firefox

1.3.2 Pixel Extraction via SVG Filters & Floating Point

We have implemented a new SVG filter timing attack, using floating point instruction

timing rather than the source code fast path described above. Our attack takes advantage of

longer wall-clock execution times of floating point instructions with subnormal arguments versus

normal arguments, as described in Section 1.2.4. This attack can read arbitrary pixels from any

victim webpage, as long as the victim page can be rendered in an iframe. A full description

of our attack follows, and is illustrated in Figure 1.2.

Pixel Isolation and Expansion

To amplify the timing side channel enough to be measurable, we first must isolate and

expand the targeted pixel. First, the victim iframe (1) is set to a very large size (to avoid

scrolling) and its source is set to the page of interest. Next, to select the target pixel, we place the

iframe in a 1×1 pixel div (2). We scroll this iframe relative to the div via JavaScript such

that the 1×1 pixel div displays only the currently selected target pixel. We additionally apply

a thresholding feColorMatrix and feComponentTransfer to the 1×1 pixel div, to

binarize the color to black or white. The targeted pixel is now ready to be attacked. Next, we

introduce a second div with the background:-moz-element attribute set to the isolating

1×1 div. With this, we generate an arbitrarily sized pixel-inspection div (3) whose fill color
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matches the thresholded target pixel.

SVG Filter and Timing

To read the pixel value, we need to time a computation on the targeted pixel. We attach a

feConvolveMatrix SVG filter (4) to the pixel-inspection div, which introduces the timing

side channel. feConvolveMatrix is a generalized filter that allows for the definition of

an arbitrary kernel matrix that is then run over the input pixels. In our case, we use a 2× 2

matrix, all of whose entries are set to the subnormal value 1e−42. When this filter computes an

output pixel, if the source pixels are non-zero (white), the floating point operation performed

is norm× subnormal = subnormal. When the source pixels are zero (black), the operation

is zero× subnormal = zero. These multiplications are then summed, non-black images result

in several summations of subnormal+ subnormal = subnormal while a black image results in

several zero+ zero = zero floating point operations. Depending on the processor, this will result

in some amount of computation time difference (see Section 1.2.4) based on the source image’s

color. Our test page timed the following SVG filter to extract pixels.

<feConvolveMatrix in="SourceGraphic"

order="2 2" edgeMode="duplicate"

kernelMatrix=

"1e-42 1e-42 1e-42 1e-42"

preserveAlpha="false" />

We time the rendering of the filtered div (5) using requestAnimationFrame,

which allows registration of a function to be called on completion of the next frame. We time

the render by adding the feConvolveMatrix filter to the pixel-inspection div, taking a

high resolution time reading, and registering a function that will take another time stamp after

the frame is completed. We use performance.now() as our high-resolution timer. For

each pixel, we repeat this process once, and make a guess (6) as to its original color using the

calibrated threshold described below. Note that timing the filter over only the original 1×1 div
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would not have worked, since the render timings must be greater than the minimum frame render

time for there to be a difference between black and white pixels. By applying this filter to the

pixel-inspection div we obtain a timing for an individual pixel that is perceptible by the timer.

Calibration

Since every machine, browser install, and even page render can be slightly different, we

run a calibration phase before attempting to steal pixels. The goal of the calibration phase is

to obtain average render times for black and white pixels, and then calculate a threshold for

classifying target pixels. The calibration phase sets the color of the isolating div to black and

white alternating, while timing the rendering of the filtered output each time using the above

timing scheme. By averaging several white render times and black render times, and taking the

midpoint between the averages, we calculate a threshold T . During the pixel steal attack, we

time the filtered rendering of each pixel, and compare to T . We categorize the pixel as black or

white based on if the time is above or below T .

We found proper calibration to be one of the trickiest parts of making the attack reliable.

Render times are generally relatively stable, but will unexpectedly be very slow or fast. We found

that different systems needed a different sized pixel-inspection div before render times showed

a difference between black and white. If the div is too small, the rendering time always lies

within a single frame (16ms) and we can see no difference from JavaScript between black and

white. If the div is too large, Firefox will often give obviously incorrect times for the render,

far smaller than is possible. This occurs, for example when the div is larger than the browser

window, and our registered function is mistakenly called when the non-displayed portions of the

page finish rendering (that is, instantly). One version of the attack attempted to automatically find

an optimal size for each target machine, but consistently ran into problems with undependable

render times, causing this calibration to choose much larger pixel-inspection div sizes than

needed. We settled on expanding the target pixel to a 200×200 region by default, as this was

reliable on all tested vulnerable configurations.
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1.3.3 Building an Attack

The loss of a single pixel value may not seem important; however, by reading multiple

arbitrary pixel values, an attacker can perform several attacks. These are the same attacks

proposed by Stone [81], since under our attack model, an attacker has similar capabilities.

First, the attacker can sniff browser history by applying a custom style to links on the

sniffing page — black background for visited and white for unvisited, for example — and reading

a single pixel of the background of the link. Web pages normally cannot determine what color

the browser has applied to links they include, precisely because this would allow an attacker to

learn what URLs a user has visited [12]. For robustness in the face of noisy rendering times,

the attack would likely need to read several background pixels. Given 3 pixel reads per link, an

attacker can check 10 or more links per second on a machine similar to our test setup.

The attacker can also read cross-origin pixels for pages that allow themselves to be

iframed. This would allow an attacker to read any sensitive data on the target site, such as

usernames, account information, or login status. Many sites disallow embedding in iframes

for sensitive pages, and these pages would be protected from this attack [76].

Firefox 30 and onwards1 disallowed the view-source: scheme in iframes, but

prior to that change the attacker could steal CSRF tokens from even protected pages. Since a

victim page’s frame-busting JavaScript did not run under the view-source: scheme, and

CSRF tokens are exposed in the source, the attacker could simply read these using a primitive

OCR as suggested by Stone [81]. Once in possession of CSRF tokens, the attacking page can

mount standard CSRF attacks [13].

1.3.4 Attack Implementation and Measurement

We developed a test page version of the attack described in Section 1.3.2, that attempted

to steal a 48×48 region of pixels containing a black and white checkerboard pattern. As the

pattern was static, the page was able to calculate the number of errors. We ran this page in
1https://bugzilla.mozilla.org/show_bug.cgi?id=624883
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Table 1.3. Firefox Checkerboard Recovery 32-bit

Firefox
Duration
(min)

B&W
delta
(ms)

Black
errors

White
errors

23 7.24 39.68 41.7 3.9
24 5.50 40.04 146.5 1.0
25 5.54 47.08 103.3 1.3
26 6.27 43.17 0.0 1.2
27 6.41 42.88 0.2 2.4

Table 1.4. Firefox Checkerboard Recovery 64-bit

Firefox
Duration
(min)

B&W
delta (ms)

Black
errors

White
errors

23 2.33 27.76 0.0 4.4
24 2.19 26.06 0.0 3.7
25 2.24 26.06 0.2 10.0
26 2.15 24.66 0.1 3.0
27 2.21 25.86 0.0 2.0

official Firefox major releases on a Debian Linux machine with an Intel Core i7-2600 CPU. The

machine was under a normal desktop load, with another browser running an email client. We

tested each affected major version of Firefox. We ran the experiment ten times, with a forced

page reload between runs; only the attack page was open. Tables 1.3 and 1.4 show the averaged

results for each vulnerable major Firefox release. Duration measures the total time to steal the

48×48 region took in minutes. B&W delta is the difference found during calibration for black

pixel vs white pixel render time with filter in milliseconds. Errors measure the respective number

of pixels that were not labeled with the correct color. We included an option on the test page

to change how many copies of the target pixel were created, defaulting to a 200×200 region;

all data was collected with this default. We found that at larger areas, the filter took predictably

longer. Since timing fluctuations were not amplified the same amount, there were fewer timings

near the threshold, resulting in fewer pixel errors.

Note that table 1.3 has several entries with very high black errors. These are entirely due
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Figure 1.3. Stealing a 48×48 pixel checkerboard

to individual runs with poor calibration. It is unclear what caused some renders of the SVG filter

to take two orders of magnitude longer than average, but it occurred much more frequently on

the 32-bit version of Firefox than the 64-bit.

When we went to investigate the high rate of black errors in table 1.3, we discovered

that the test machine had undergone an OS package update. This has caused the same 32-bit

binary versions of Firefox as before to exhibit similar error rates to the 64-bit versions. Average

timings and deltas of 32-bit Firefox versions have not been affected, but the occasional large

timing differences are no longer present. The likely culprit is some aspect of the GTK and glibc

software stack that has changed in such a way that older Firefox 32-bit releases are more stable.

We were unable to determine exactly what aspect of the update caused this change.

Figure 1.3 shows a common run from 64-bit Firefox 27 on a Debian Linux machine. This

instance has a single white pixel error, which was present in almost every test run. In our testing,

the first recorded animation frame render time is unexpectedly fast, which causes a single error.

Figure 1.4 shows the stolen pixels from the front page of http://www.bbc.com using

different pixel-inspection div sizes. These tests were run on Firefox 27 64-bit on the same

Debian Linux machine as the other tests. As the size of the filtered region (pixel-inspection div)

increases, the render time and the delta between black and white pixels increases. Thus, the

minor fluctuations in timing have less impact on the total render time, and the output has less

errors. This effect is more pronounced on larger websites running JavaScript and loading other

resources than on our test checkerboard image.

While stealing a 48×48 checkerboard takes several minutes, an attack does not have to

steal all the pixels on a page to be useful. As demonstrated in [81], with intelligent selection

of pixels, OCR can be run reading only log2(N) pixels per character for a target font with N
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Figure 1.4. Stealing a 48×48 pixel region from www.bbc.com, at 100×100, 200×200, and
300×300 pixel-inspection div size.

characters. Since our attack reads around 16.4 pixels-per-second in the best case, we can read

alphanumeric text at ≈ 3.23 characters per second. Alternatively, history sniffing requires one

pixel per URL, so we can scan 16.4 potential URLs per second in the best case.

1.3.5 Vulnerable Browsers

While the attack described in Section 1.3.2 works on any SVG filter that will accept

subnormal floating point values, it relies on the FPU to exhibit timing differences based on

arguments. We found that the only major browser (as of mid-2014) that ran SVG filters on the

CPU was Firefox. Other major browsers run filters on some combination of GPU and/or CPU.

We do not investigate the vulnerability of other browsers in this paper. While some GPUs [42]

exhibit similar timing differences, our test design was unable to detect them.

to this attack from version 23 (released August 6, 2013) through 27. From Firefox 28

(released March 18, 2014) onward, the SVG filter implementation changed, and the convolu-

tion filter switched to fixed-point arithmatic. Prior to Firefox 23, the browser did not support

requestAnimationFrame, and thus timing the rendering of the filtered pixels was impos-

sible. We have demonstrated our test page extracting pixels from Firefox 23–27 686 (32-bit) and

AMD64 (64-bit) builds on Debian Linux. We have also demonstrated the attack on Windows 7,

Mac OS X, and TAILS prior to 1.2. While there are no substantive differences between versions

within an architecture, there were notable performance differences between 32-bit and 64-bit

builds.

These differences arose because the 32-bit builds use the x87 FPU, while the 64-bit builds

use SSE instructions for floating point computations. As described in Section 1.2.4 the timing of
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various floating point operations differs wildly between x87 and SSE instructions. Interestingly,

Windows builds of Firefox were only available in 32-bit during this period, so all floating point

math was done on the x87 FPU.

1.3.6 Firefox Response

The original Mozilla SVG filter timing attack bug thread [80] included a long discussion

of how to avoid exploitable timing side-channel vulnerabilities. Paul Stone suggested (as the

working draft of the spec did at the time) that filters not be allowed to run over cross-origin

pixels. However, the general sentiment was that moving filters to the GPU would eliminate

these channels, and that, until then, constant time implementations of the filters could be written

in C++. While it appears that, after significant engineering effort, they were able to close the

specific feMorphology filter timing side-channel used by Stone, our attack demonstrates that

not all timing side-channels were removed. Benoit Jacob expressed concern2 that there was no

particular reason to believe that GPUs would be constant time where CPUs were not. Jacob has

noted3 several likely timing side-channels, arising from different floating point inputs to various

browser components. We have disclosed the pixel-stealing attack and our concerns to Mozilla.

1.3.7 Recommendations

Engineering truly timing side-channel resistant SVG filters is a complex task with two

competing goals. Browsers are evaluated heavily on speed, and their developers often focus on

improving performance by fractions of a percent. Thus, SVG filters must be fast, and serious

performance degradations as a result of hardening filters is unacceptable. Simultaneously, for

a filter to be resistant, it must be constant time. Any predictable variability in render times

will result in a side channel. Building a very fast and yet completely constant time SVG filter

implementation is not only very difficult, it is platform specific! As our data in Section 1.2.4

2https://bugzilla.mozilla.org/show_bug.cgi?id=711043#c52
3See https://www.khronos.org/webgl/public-mailing-list/archives/1310/msg00030.html and http://permalink.g

mane.org/gmane.comp.mozilla.devel.platform/5293
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shows, operations that are safe on one platform are unsafe on another, requiring many more

complex filters to have hand-crafted assembly per-CPU model for genuinely constant time

operation. This amount of work is likely infeasible for browser developers, and the performance

impacts (as seen in [80]) are likely to make such filters unusable even if developed.

of the CSS filters specification4 mandates that all filters must be made completely constant

time, but notes that there are often hardware or platform specific timing side-channels in various

computations. A previous version (2012) of the working draft5 suggested fetching the cross-

origin resource with CORS, and stated, “. . . a filter effect that is applying to a cross-origin

‘iframe’ element would receive a completely blank input image.” We believe that due to the

challenges in creating fast constant-time SVG filters, the latter approach is advisable. Allowing

any attacker-observable and attacker-controlled computation over sensitive cross-origin pixels is

dangerous. It is important to note that even if this recommendation is followed, history sniffing

will still be possible with non-constant time filters. Since history sniffing does not require any

cross-origin pixels to be involved, an attacker can continue to implement our attack using any

timing variability found in SVG filters. Current versions of Firefox (33 at the time of writing)

will still perform attacker-controlled SVG filter transforms over cross-origin content, albeit

with a new partially fixed-point implementation. The eventual move to the GPU should not be

considered a fix. As Mark Harris, NVIDIA’s Chief Technologist for GPU Computing [42] notes,

some GPUs do exhibit measurable performance impact with subnormal values; see Section 1.2.3

for more. We believe that as page-visible timing precision improves, even GPU floating point

calculations (as used in other browsers) will become vulnerable.

1.4 Differentially Private Databases

While “big data” has the potential of offering valuable insights from aggregating in-

formation about large populations (for example, genetic markers that are predictive of serious

4https://dvcs.w3.org/hg/FXTF/raw-file/705f723192d2/filters/Overview.html
5https://dvcs.w3.org/hg/FXTF/raw-file/4b53107dd95d/filters/index.html
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diseases), it carries with it the danger of violating the privacy of individuals in those populations

(for example, that a given person is afflicted by a particular condition).

Differential Privacy (DP) is a relatively recent approach [27, 28] which aims to reconcile

the ability to make precise statistical estimates about the properties of large data sets without

violating the privacy of any individual sample in the data set.

At a high level DP works by adding noise — random values from a carefully chosen

distribution — to the results, in a way that masks the exact value of the individual samples while

approximately preserving the overall aggregate result over all the samples.

1.4.1 Mathematics of Differential Privacy

More concretely, imagine a data set D, and a query program Q which the querier would

like to run. For example, D could be the admission data for a hospital, and Q might compute the

number of heart patients and the average length of their stays. Person A, who visited the hospital

after a heart attack, has a single entry in D: a. We can create a new database D′ by removing a

from D: D′ = D−{a}. Differential privacy means that a querier cannot tell which database Q

runs on — Q(D) is indistinguishable from Q(D′). In this way, a malicious attacker cannot learn

whether A has heart problems, but an honest querier can roughly learn the average duration of

the hospital’s heart patient visits.

A basic parameter of differential privacy schemes is ε , which scales the privacy of the

scheme. Smaller ε gives a more secure scheme, but introduces more uncertainty into the query

results.

There are several approaches to achieving differential privacy, but the most common is

the addition of noise from a Laplacian distribution. Addition of properly scaled noise (which can

be positive or negative), will completely mask the existence of any single entry a. For details on

the Laplacian distribution, see Dwork [27, 28].
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1.4.2 Differential Privacy Databases

Several groups have used the theory of differential privacy to construct differentially

private databases, like PINQ [62] and Airavat [73], which allow the user to ask queries of

datasets, and which transparently add noise to preserve privacy.

At a high-level, these databases work by carefully restricting the queries into a map-

reduce format. That is, the user supplies a “microquery” that maps each row of the database to

some numeric result, and a “macroquery” that reduces the (mapped) results from each row into

the overall aggregate result.

By structuring queries in this manner, the DP database can add noise at the appropri-

ate points after the aggregation (reducing), in order to provide rigorous differential privacy

guarantees.

1.4.3 Timing Channels Break Privacy

Unfortunately, the DP guarantees crucially rely on the fact that the user is privy only to

the primary numerical results of the query, and not other unintended results or attributes, such as

query running times.

Indeed, Haeberlen et al. [40] demonstrate that if the user can also determine the running

time of queries she posed to the system, then the resulting covert channel can be used to

compromise the DP guarantees.

In particular, Haeberlen et al. show how to mount classical timing attacks on PINQ and

Airavat by carefully crafting queries that follow the same basic pattern: if a highly sensitive

record is seen, the microquery performs an unexpected action (such as spinning in a loop for

several seconds, or using extra memory). By then observing the running time (or memory

consumption), the querier can infer that the sensitive record is present in the database.
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1.4.4 Restoring Privacy by Eliminating Timing Channels

Haeberlen et al. [40] also present a new database called Fuzz, which aims to restore

privacy by carefully designing the query language and run-time to ensure that all queries execute

in exactly the same amount of time, independent of the database contents. This property is

achieved by a series of measures. A rough sketch of Fuzz is presented next in this work; for a

full treatment, please refer to the original paper [40].

Fuzz Queries

In the differential database model, queries are written and supplied by an attacker, while

the database is operated by a trusted party. With this in mind, Fuzz’s designers spent most of

their effort protecting and sanitizing queries. Each query is submitted to Fuzz as source code,

written in a subset of Caml, and is heavily restricted in the actions it can take.

Queries are written using the map-reduce programming model: a microquery maps over

each individual row to produce a result, and the macroquery combines the row results into

aggregate statistics. To produce a differentially private result, Fuzz modifies the macroquery’s

results slightly, by adding a random value drawn from a Laplacian distribution.

The differential privacy guarantee concerns a single row—a malicious attacker should

be unable to determine the existence of, or indeed anything about, a single row. Fuzz therefore

requires each query program to declare the possible output range of its microqueries, and this

parameter is used to generate the distribution of Laplacian noise. Once the noise is added, the

contribution of each individual row to the final result is masked.

Further, to achieve a global constant execution time, Fuzz requires each microquery

to execute in a constant amount of time. Therefore, query authors must also specify a “time-

out” and a “default value” for each microquery. To enforce these limits, Fuzz requires a

somewhat involved operating system and hardware configuration, including running on its

own dedicated machine. While each microquery is executing, a tight loop, calling rdtsc

to read the clock cycle counter, waits for the microquery deadline to arrive. When it does,
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the watcher issues a longjmp call, resetting the Caml interpreter to a previously-established

setjmp location, ready to record the microquery result. If the microquery has finished and

produced a value, that value will be used; otherwise, the default value will be substituted for this

row.

This interpreter reset also guarantees another essential property of Fuzz: microquery

non-communication. If microqueries could communicate, and base their result on the result of

a previous microquery, they could, in aggregate, overwhelm the Laplacian noise addition step

and break the differential privacy guarantee. The Fuzz query language has no communication

primitives, and the interpreter reset eliminates any side-channels.

Once the query is written and ready to run, Fuzz uses a modified version of the

Caml Light6 runtime to compile it into a 32-bit x86 executable, suitable for executing on a

database.

Query Aggregation and Environment

Macroqueries aggregate the results of microqueries, which are computations performed

in isolation on each row of the database. Fuzz-provided library functions bridge the gap between

macro- and micro-queries.

Fuzz provides queries with four Caml functions for this purpose: bagmap, bagsplit,

bagsize, and bagsum (in Fuzz parlance, collections of data are known as “bags”). These

correspond roughly to map (bagmap), filter (bagsplit), and reduce (bagsize and

bagsum) in functional programming, but have been specifically designed and implemented to

support constant-time operation.

Internally, these functions are implemented in two parts: a small Caml shim and a

backend function written in C. They are written to ensure constant-time execution; for example,

bagsplit creates a new copy of the database, identical in size to the original, with non-existent

rows marked via metadata.
6http://caml.inria.fr/caml-light/

25

http://caml.inria.fr/caml-light/


value cbagsum(value dbhandleV) {
dbHandle db =

database[Int_val(dbhandleV)];
double d = 0;
int i;
for (i=0; i<__numRows; i++) {

char *theRow = db +
(__numBytesPerRow*i);

assert((theRow[0] == ’N’) ||
(theRow[0] == ’X’));

/* don’t forget the 0x01 */
if (theRow[0] == ’N’)

d += atof(&theRow[2]);
}
return copy_double(d);

}

Figure 1.5. C implementation of bagsum, Fuzz’s function to aggregate the results of per-row
query computation. Attacker-controlled values are highlighted.

Fortunately, bagsum and bagsize are fairly simple to write in a constant-time way:

they need to perform a very simple operation once for each active row in a bag. Since the

database size is considered public information, they simply run a for loop over the bag. Fuzz’s

C implementation of bagsum can be seen in Figure 1.5. Note that, as aggregating functions,

they will only run once per macroquery, and are assumed to be constant-time in the size of

the database, which is public information. Fuzz, therefore, does not try to restrict them via

technical means (like longjmp) to run in constant time. Also, Fuzz’s strategy for timeout-based

limitation will not work on these aggregating functions — there is no default value that will not

immediately indicate to the querier that a timeout has occurred, and that fact alone could be

enough to break differential privacy.

In contrast, bagmap and bagsplit allow a query to run arbitrary code on each item

in a bag. To execute such queries in constant-time, Fuzz makes various modifications to the

Caml runtime and operating system configuration, as described in the preceding section and in
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the original Fuzz paper [40].

1.4.5 Subnormal-based Timing Attack on Fuzz

As part of its software distribution, Fuzz includes several sample queries — including

several example “evil” queries, which demonstrate the constant-time nature of Fuzz. These

queries are modified versions of Haeberlen et al.’s timing attacks against PINQ and Airavat,

mentioned earlier. Fuzz’s protections close these timing attack vectors, and the malicious queries

that ship with Fuzz are unable to expose sensitive records.

When we look closely at the implementation of cbagsum (Figure 1.5), other potential

issues reveal themselves. First, untrusted metadata (theRow[0]) is used to decide control flow.

While the time spent on a single atof and an add is quite small, a meticulous attacker could

learn details about approximately how many rows were summed.

However, if the attacker is interested in the existence or non-existence of a single row,

this is a very weak signal — to reliably extract information, the attacker needs a way to amplify

the transmission, letting the result somehow impact the processing of other rows. To do this, we

leverage the data type Fuzz uses for the accumulator: double.

Amplification by Accumulation

Simply, the attacker writes three nearly-identical queries, and submits each for execution.

The first query uses bagmap to process each row, and produces 0 for each element. The second

query is much the same, but produces a subnormal for each row — this represents the worst case

scenario, where every row is of interest. The third query almost always produces 0 as well, but

includes a probe: if a row of interest is seen, it produces a subnormal floating point number (in

our case, 10−310); otherwise, zero.

If the sensitive row is the first row of a 1,000,000 row database, the first query will add 0

to itself 1,000,000 times. The probe query, if it finds an interesting row, will add a subnormal to

zero 1,000,000 times. As described in Section 1.2.4, due to timing differences in floating point
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Table 1.5. Fuzz query wall-clock duration. Each query was run 4 times on a database of 1M
rows. The probing query was run twice: on a database which contained the row of interest and a
database that did not. The non-probing queries produce a constant value for each row.

Probing?
Mean

(s)
Min
(s)

Max
(s)

No (all zero) 50.300 50.295 50.304
Yes (row not present) 50.309 50.299 50.336
Yes (row present) 50.489 50.488 50.493
No (all subnorm) 51.515 51.493 51.552

hardware, the probe query will take very slightly longer than the baseline, and from this, the

attacker can deduce the presence of the sensitive row.

Experimental Setup

Our dedicated Fuzz test machine was an Intel Core 2 Duo E8400 at 3.00 GHz, equipped

with 4 GiB of memory. We installed Ubuntu 12.04.4 with a 64-bit 3.11.0 Linux kernel. Following

Fuzz’s suggestions, we disabled all non-kernel daemons, restricted all processes and threads to

run on a single CPU core, disabled CPU frequency scaling, disabled disk flushing, ran Fuzz from

a ramdisk, mounted all disk-based filesystems as read-only, and ran Fuzz as root so that it could

assign its timing loop exclusively to the free processor core.

We ran our malicious probing query and the non-probing baseline benchmarks on this test

machine over a sample census database of 1 million rows. The 31st row indicated a 59-year-old

woman of indeterminate race making over $200,000, exactly what our malicious query is trying

to find. We also ran the malicious query against a “clean” version of the database, which lacked

that particular row.

The running time of these queries is presented in Table 1.5. Note the large difference

(1.2 s) between the two baseline queries: this is due to both the subnormal addition delay and

variable time atof execution (“0” is easier to parse than “1e-308”).

By running the all-zeroes baseline query along with the all-subnormal baseline query, the

attacker generates a range of possible timings, and can then place the probe query somewhere on
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this range. In our case, we see a clear separation of about 0.18 s between the successful probe

query, which finds the row of interest, and the all-zeroes baseline. When the database does not

have the row of interest, the probe query fails, and the timings are indistinguishable from the

baseline. After all the work Fuzz puts in to achieve constant-time query execution, it achieves

a total variance of 0.009 s on the all-zeros baseline query. An increase in running time of even

0.18 s is clearly distinguishable, even over a network connection.

By comparing the total execution times of the three queries, the attacker can deduce the

presence or absence of any row she is interested in, breaking the differential privacy guarantee

that Fuzz is built to provide.

1.5 Related Work

In our survey of related work, we focus on side-channel attacks, in which an unwilling

victim’s secret information is revealed, rather than covert-channel attacks where two cooperating

processes communicate despite the presence of a monitor; on timing attacks, in which secret

information is revealed by how long a process takes to run, rather than through, e.g., power

draw or electromagnetic emissions; and on attacks on software and general purpose computing

platforms, rather than pure hardware implementations.

Code Paths

Timing side-channel attacks on cryptographic software were introduced by Kocher in a

seminal 1996 paper [52]. The most straightforward mechanism for timing side-channel attacks is

when software takes different code paths depending on secret values; Kocher’s concrete example

was the choice (based on secret key bits) of whether to multiply in a round of RSAREF’s

square-and-multiply exponentiation routine. In some cases such attacks are feasible even over

the network [18, 16].
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Memory Accesses

A second mechanism for timing side-channel attacks is when the memory access pattern

of software or its use of microarchitectural functional units varies depending on secret values.

Kocher’s suggestion that this class of attacks might be feasible has been more than borne out; see

Acıiçmez and Koç’s extensive survey [3], which describes attacks that take advantage of the data

cache, the instruction cache, the branch prediction unit, and functional unit contention. Unlike

simple timing attacks, microarchitectural timing attacks usually require an observer process to

run on the same machine as the victim; virtual-machine co-tenancy in a cloud environment can

suffice [91].

Data Timing Channels

A third mechanism for timing side-channel attacks is for individual instructions to take

a variable amount of time depending on secret inputs. Kocher hypothesized that, on some

platforms, integer multiplication and rotation instructions might have variable running time,

putting implementations of ciphers like IDEA and RC5 at risk. In 2000, Hachez and Quisquater

noted in passing that the ARM7M core implements 32-bit multiplication using four applications

of a 32× 8 functional unit, terminating early if the most significant bits of one operand are

zero [39]; Großschädl et al. [38] showed that such partial multiplier designs are common in

small embedded cores, and that early termination gives rise to a side channel. Großschädl et al.

exploited the early termination together with SPA power traces to break implementations of AES,

RC6, RSA, and ECIES on the ARM7TDMI core. Note that while early termination induces a

timing side channel, Großschädl et al.’s attack model was more invasive, requiring power traces.

We are not aware of any prior work that exploits instructions with data-dependent timing through

timing alone.

For programs expressed in a high-level language, timing channels may arise from in-

teractions between layers in the software stack. For example, as shown by Barbosa et al. [11],

JIT compilation may cause two branches that perform the same high-level operations to have
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different runtime performance.

Timing attacks are also relevant beyond crypto software. For example, timing attacks

have been shown to reveal sensitive information such as a user’s browsing history [30], the

number of private photos in a Web gallery [17], what signature database a user’s antivirus

program runs [6], and how many items are in a user’s shopping cart [92].

Mitigations

Due to the serious ramifications of timing channel attacks, there is a wide literature on

ways to defend against them. Roughly speaking, they fall under the categories of static and

dynamic mitigations.

One approach is to use a typing discipline to ensure that all control flow paths have

the same number of instructions, by ensuring that conditionals have equal sized branches, and

prohibiting the use of secret information in loop guards, i.e., all loop guards are constant or only

depend on public, non-secret values [85, 77, 79]. If the type system rejects a program because

it has “uneven” branches, the program can still be transformed, for example by adding suitable

“padding” instructions along shorter branches [4, 15, 43, 14], by using “conditional execution”

implemented via bit-masking and ternary choice [64] or by using if-conversion [21]. All of

the above approaches are limited to situations where the instruction count is a proxy for actual

performance, and do not protect against lower level, e.g., instruction cache attacks [3] or the data

timing variation attacks we demonstrated.

Purely static or compilation methods are unlikely to be effective against attacks that

exploit the timing behavior of microarchitectural entities like branch predictors or caches [3].

One approach to thwarting such attacks is to modify the hardware [54], OS, or use a virtualization

layer [51] to ensure that certain cache lines containing secret data are never evicted. Another

alternative, called secure multi-execution, uses multiple threads to simultaneously execute all the

different branches of code that depend on secret data, but using different values that represent

projections (or facets) of the values at different security levels [25]. By then controlling the
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scheduler, one can ensure that a deterministic number of steps are taken at each security level [50].

An orthogonal approach is to ensure the absence of hardware based timing channels

by synthesizing the hardware from description languages equipped with a notion of non-

interference [58]. While this approach is invasive, it could eliminate timing variations at the

hardware source.

Black-box Mitigation

Another, more general, approach, which could in principle account for any timing chan-

nel, is to treat the machine as a black box emitting observable events and to interpose a mitigation

layer that pauses the output of events to make the output timing deterministic [9]. The main

drawback with this approach is the large overhead imposed by the pauses. To get around this,

one can use a gray-box language based approach where the mitigator is exposed as a language

primitive mitigate(e) {c} where the command c is executed and a pause is inserted until e

time units have elapsed. The resulting system can guarantee the absence of timing leaks, as long

as the duration e is independent of secret data, and regardless of the computations performed

in c, overcoming the loop-restrictions in the original static approaches. Furthermore, the pauses

are only inserted at specific places where the static methods are insufficient [90].

1.6 Conclusion

In this paper, we have shown how an arcane detail about timing variations in floating

point operations opens up a data timing side channel that can be used to break the security of real

world systems, including a Web browser and a differentially private database carefully designed

to block such attacks. While numerical analysts have known about these timing variations for

decades, our results indicate that that data timing channels are a viable vector for exfiltrating

sensitive information, for which, currently, there is no form of detection, let alone prevention,

and which therefore warrant attention from the security community. In particular, we hope that

future work will: (1) reexamine how security-relevant software relies on floating point operations,
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not just for timing variation but also determinism (see, e.g., [22, 23]); (2) perform a systematic

and comprehensive evaluation of the variation in the way other kinds of instructions run on

different inputs and on different architectures such as GPGPUs, with the goal of understanding

how these variations can be used for data timing channel-based exfiltration attacks and other

security concerns like fingerprinting; and (3) identify patterns for data timing vectors that can be

the basis of static or dynamic mitigation tools, using language based techniques for compiling or

transforming away potential channels, or run-time techniques for rewriting binaries or virtualizing

problematic operations to block data timing channels.
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Chapter 2

On the effectiveness of mitigations against
floating-point timing channels.

2.1 Introduction

The time a modern processor takes to execute a floating-point instruction can vary with

the instruction’s operands. For example, subnormal floating-point values consumed or produced

by an instruction can induce an order-of-magnitude execution slowdown. In 2015, Andrysco

et al. [8] exploited the slowdown in subnormal processing to break the privacy guarantees of a

differentially private database system and to mount pixel-stealing attacks against Firefox releases

23–27. In a pixel-stealing attack, a malicious web page learns the contents of a web page

presented to a user’s browser by a different site, in violation of the browser’s origin-isolation

guarantees.

Andrysco et al. proposed mitigations against floating-point timing attacks:

• Replace floating-point computations with fixed-point computations relying on the proces-

sor’s integer ALU.

• Use processor flags to cause subnormal values to be treated as zero, avoiding slowdowns

associated with subnormal values.

• Shift sensitive floating-point computations to the GPU or other hardware not known to be

vulnerable.
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At USENIX Security 2016, Rane, Lin, and Tiwari [70] proposed additional mitigations:

• Use program analysis to identify floating-point operations whose inputs cannot be subnor-

mal; these operations will not experience subnormal slowdowns.

• Run floating-point operations whose inputs might be subnormal on the the processor’s

SIMD unit, loading the a SIMD lane with a dummy operation chosen to induce consistent

worst-case execution time.

Rane, Lin, and Tiwari implemented their proposed mitigations in a research prototype

Firefox browser. Variants of the Andrysco et al. mitigations have been adopted in the latest

versions of Firefox, Safari, and Chrome.

We evaluate how effective the proposed mitigations are at preventing pixel stealing. We

find that, other than avoiding the floating point unit altogether, the proposed mitigations are not

effective at preventing pixel stealing — at best, they reduce the rate at which pixels can be read.

Our attacks make use of details of floating point performance beyond the subnormal slowdowns

observed by Andrysco et al.

Our contributions are as follows:

1. We give a more refined account of how floating-point instruction timing varies with

operand values than did Andrysco et al. In particular, we show that operands with a zero

exponent or significand induce small but exploitable speedups in many operations.

2. We evaluate the SIMD defense proposed by Rane, Lin, and Tiwari, giving strong evidence

that processors execute the two operations sequentially, not in parallel.

3. We revisit browser implementations of SVG filters two years after the Andrysco et al.

attacks. Despite attempts at remediation, we find that the latest versions of Chrome,

Firefox, and Safari are all vulnerable to pixel-stealing attacks.

4. We show that subnormal values induce slowdowns in CUDA calculations on modern

Nvidia GPUs.
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Taken together, our findings demonstrate that the floating point units of modern processors are

more complex than previously realized, and that defenses that seek to take advantage of that unit

without creating timing side channels require careful evaluation.

Ethics and disclosure.

We have disclosed the pixel-stealing attacks we found to Apple, Google, and Mozilla.

Mozilla has already committed to deploying a patch. We will give Apple and Google adequate

time to patch before publishing our findings.

2.2 Background

Many floating point instructions are known to exhibit performance differences based

on the operands. Andrysco et al. [8] leveraged these timing differences to defeat the claimed

privacy guarantees of two systems: Mozilla Firefox (versions 23–27) and the Fuzz differentially

private database. Andrysco et al.’s attack on Firefox, and the attacks on browsers we present,

use SVG filter timing to break the Same-Origin Policy, an idea introduced by Stone [81] and

Kotcher et al. [55].

2.2.1 IEEE-754 floating point

For the purposes of this paper we will refer to floating point, floats, and doubles to mean

the IEEE-754 floating point standard (see Table 2.1) unless otherwise specified. The floating

point unit (FPU) accessed via Intel’s single scalar Streaming SIMD (Single Instruction, Multiple

Data) Extensions (SSE) instructions adheres to this standard on all processors we discuss. We

omit discussion of the x87 legacy FPU that is still accessible on a modern x86_64 processor.

The IEEE-754 floating point standard is the most common floating point implementation

available on commodity CPUs. Figure 2.1 shows the layout of the IEEE-754 single precision float

and the value calculation. Note that the actual exponent used in the 2exp portion is exponent−bias

where the bias is half the unsigned maximum value of the exponent’s range. This format allows
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Table 2.1. IEEE-754 Format type ranges (Reproduced with permission from [8])

Format
Name

Size
Bits

Subnormal
Min

Normal
Min

Normal
Max

Half 16 6.0e−8 6.10e−5 6.55e4
Single 32 1.4e−45 1.18e−38 3.40e38
Double 64 4.9e−324 2.23e−308 1.79e308

SignificandExponent

8 231

(�1)sign ⇥ 2exponent�127 ⇥ 1..significand

Figure 2.1. IEEE-754 single precision float

for the full range of positive and negative exponent values to be represented easily. If the

exponent has any non 0 bits the value is normal, and the significand has an implicit leading 1

bit. If the exponent is all 0 bits (i.e., exponent−bias =−bias) then the value is subnormal, and

there is no implicit leading 1 bit. As shown in Table 2.1 this means that subnormal values are

fantastically small. Subnormal values are valuable because they enable gradual underflow for

floating point computations. Gradual underflow guarantees that given any two floats, a 6= b, there

exists a floating point value c 6= 0 that is the difference a−b = c. The use of this property is

demonstrated by the simple pseudocode “if a 6= b then x
/
(a−b),” which does not expect to

generate an infinity by dividing by zero. Without subnormals the IEEE-754 standard could not

guarantee gradual underflow for normals and a number of adverse scenarios such as the one

above can occur. As Andrysco et al. [8] observe, subnormal values do not frequently arise, and

special hardware or microcode is used to handle them on most CPUs.

Andrysco et al.’s attacks made use of the substantial timing differences between operations

on subnormal (or denormal) floating point values and on normal floating point values. See Table

2.2 for a list of non-normal IEEE-754 value types. In this paper we present additional benchmarks
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Table 2.2. IEEE-754 Special Value Encoding (Reproduced with permission from [8])

Value Exponent Significand

Zero All Zeros Zero
Infinity All Ones Zero
Not-a-Number All Ones Non-zero
Subnormal All Zeros Non-zero

that demonstrate that (smaller) timing differences arise from more than just subnormal operands.

Section 2.3 describes our benchmarking results.

2.2.2 SVG floating point timing attacks

Target 
pixel white

Target 
pixel black(1) iframe of target page

(3) Pixel multiplication <div>

(4) SVG Filter

(5)

(6)

     (2)
 Target pixel in red

Filtered rendering

Browser Window

Figure 2.2. Cross-Origin SVG Filter Pixel Stealing Attack in Firefox, reproduced from [8] with
permission

Andrysco et al. [8] presented an attack on Firefox SVG filters that is very similar to the

attacks detailed later in this paper. Thus, we provide an overview of how that attack works for

reference.

Figure 2.2 shows the workflow of the SVG timing attack.

1. The attacking page creates a large iframe of the victim page inside of a container <div>

2. The container <div> is sized to 1x1 pixel and can be scrolled to the current target pixel

on the iframe using the scrollTop and scrollLeft properties.
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3. The target pixel is duplicated into a larger container <div> using the -mozelement

CSS property. This creates a <div> that is arbitrarily sized and consists only of copies of

the target pixel.

4. The SVG filter that runs in variable time (feConvolveMatrix) is applied to the the

pixel duplication <div>

5. The rendering time of the filter is measured using requestAnimationFrame to get a

callback when the next frame is completed and performance.now for high resolution

timing.

6. The rendering time is compared to the threshold determined during the learning phase and

categorized as white or black.

Since the targeted iframe and the attacker page are on different origins, the attacking

page should not be able to learn any information about the iframe’s content. However, since

the rendering time of the SVG filter is visible to the attacker page, and the rendering time is

dependent on the iframe content, the attacking page is able to violate this policy and learn

pixel information.

2.3 New floating point timing observations

Andryso et al. [8] presented a number of timing variations in floating point computation

based on subnormal and special value arguments. We expand this category to note that any value

with a zero significand or exponent exhibits different timing behavior on most Intel CPUs.

Table 2.3 shows a summary of our findings for our primary test platform running an Intel

i5-4460 CPU. Unsurprisingly, double precision floating point numbers show more types of, and

larger amounts of, variation than single precision floats.

Figures 2.3, 2.4, 2.5, and 2.6 are crosstables showing average cycle counts for division

and multiplication on double and single precision floats on the Intel i5-4460. We refer to the
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Table 2.3. Observed sources of timing differences under different settings on an Intel i5-4460.
– : no variation, S : Subnormals are slower, Z : all zero exponent or significand values are faster,
M : mixture of several effects

Operation Default FTZ & DAZ -ffast-math

Single Precision
Add/Sub – – –
Mul S – –
Div S – –
Sqrt M Z –

Double Precision
Add/Sub – – –
Mul S – –
Div M Z Z
Sqrt M Z Z

type of operation (add, subtract, divide, etc) as the operation, and the specific combination of

operands and operation as the computation. Cells highlighted in blue indicate computations that

averaged 1 cycle higher than the mode across all computations for that operation. Cells in orange

indicate the same for 1 cycle less than the mode. Bold face indicates a computation that had a

standard deviation of > 1 cycle (none of the tests on the Intel i5-4460 had standard deviations

above 1 cycle). All other crosstables in this paper follow this format unless otherwise noted.

We run each computation (operation and argument pair) in a tight loop for 40,000,000

iterations, take the total number of CPU cycles during the execution, remove loop overheads,

and find the average cycles per computation. This process is repeated for each operation and

argument pair and stored. Finally, we run the entire testing apparatus 10 times and store all the

results. Thus, we execute each computation 400,000,000 times split into 10 distinct samples.

This apparatus measures the steady-state execution time of each computation.

The entirety of our data across multiple generations of Intel and AMD CPUs, as well as

tools and instructions for generating this data, are available at https://cseweb.ucsd.edu/~dkohlbre/

floats.

It is important to note that the Andrysco et al. [8] focused on the performance difference
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between subnormal and normal operands, while we observe that there are additional classes of

values worth examining. The specific differences on powers-of-two are more difficult to detect

with a naive analysis as they cause a slight speedup when compared to the massive slowdown of

subnormals.

0.0 1.0 1e10 1e+30 1e-30 1e-41 1e-42 256 257

Cycle count
0.0 6.57 6.57 6.60 6.58 6.59 6.57 6.59 6.58 6.59
1.0 6.59 6.59 6.59 6.57 6.56 130.90 130.85 6.58 6.57

1e10 6.57 6.59 6.58 6.59 6.56 130.90 130.91 6.58 6.58
1e+30 6.59 6.56 6.58 6.59 6.57 130.90 130.91 6.59 6.58
1e-30 6.57 6.59 6.59 6.57 6.59 6.59 6.58 6.58 6.57
1e-41 6.56 130.90 130.89 130.87 6.56 6.57 6.57 130.96 130.90
1e-42 6.59 130.89 130.88 130.90 6.57 6.58 6.57 130.85 130.89
256 6.58 6.58 6.55 6.57 6.58 130.92 130.88 6.57 6.56
257 6.56 6.55 6.59 6.58 6.57 130.89 130.88 6.57 6.58

Figure 2.3. Multiplication timing for single precision floats on Intel i5-4460

Dividend
Divisor

0.0 1.0 1e10 1e+30 1e-30 1e-41 1e-42 256 257

Cycle count
0.0 6.55 6.50 6.58 6.57 6.54 6.57 6.56 6.58 6.59
1.0 6.58 6.58 6.58 6.57 6.57 152.59 152.57 6.59 6.60

1e10 6.58 6.58 6.58 6.59 6.58 152.57 152.56 6.56 6.58
1e+30 6.57 6.57 6.59 6.57 6.56 152.59 152.51 6.58 6.60
1e-30 6.57 6.57 155.37 6.57 6.58 152.54 152.59 6.57 6.54
1e-41 6.58 149.75 6.57 6.56 152.56 152.57 152.59 149.72 152.55
1e-42 6.59 149.72 6.56 6.56 152.60 152.56 152.49 149.74 152.54
256 6.58 6.60 6.56 6.60 6.55 152.53 152.70 6.58 6.58
257 6.58 6.58 6.57 6.57 6.54 152.59 152.51 6.57 6.55

Figure 2.4. Division timing for single precision floats on Intel i5-4460

2.4 Fixed point defenses in Firefox

In version 28 Firefox switched to a new set of SVG filter implementations that caused

the attack presented by Andrysco et al. [8] to stop functioning. Many of these implementations

no longer used floating point math, instead using their own fixed point arithmetic.
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0.0 1.0 1e10 1e+200 1e-300 1e-42 256 257 1e-320

Cycle count
0.0 6.59 6.56 6.59 6.58 6.58 6.57 6.58 6.59 6.57
1.0 6.57 6.59 6.55 6.57 6.57 6.56 6.56 6.56 130.89

1e10 6.55 6.55 6.56 6.58 6.56 6.56 6.56 6.57 130.95
1e+200 6.55 6.57 6.56 6.58 6.59 6.53 6.55 6.58 130.92
1e-300 6.51 6.57 6.56 6.59 6.57 6.57 6.55 6.58 6.54
1e-42 6.55 6.57 6.55 6.57 6.55 6.58 6.58 6.58 6.55
256 6.58 6.53 6.56 6.54 6.56 6.56 6.58 6.57 130.94
257 6.59 6.57 6.60 6.56 6.58 6.56 6.57 6.59 130.90

1e-320 6.59 130.90 130.92 130.94 6.59 6.58 130.95 130.91 6.56

Figure 2.5. Multiplication timing for double precision floats on Intel i5-4460

Dividend
Divisor

0.0 1.0 1e10 1e+200 1e-300 1e-42 256 257 1e-320

Cycle count
0.0 6.56 6.59 6.58 6.55 6.57 6.58 6.57 6.57 6.59
1.0 6.58 6.58 12.19 12.17 12.22 12.24 6.57 12.24 165.76

1e10 6.58 6.55 12.25 12.20 12.23 12.25 6.57 12.22 165.81
1e+200 6.60 6.60 12.25 12.20 12.22 12.22 6.58 12.24 165.79
1e-300 6.59 6.57 175.22 12.24 12.17 12.22 6.52 12.23 165.83
1e-42 6.60 6.53 12.23 12.22 12.21 12.24 6.58 12.21 165.79
256 6.57 6.55 12.24 12.20 12.20 12.20 6.53 12.22 165.79
257 6.55 6.58 12.24 12.22 12.24 12.23 6.56 12.21 165.80

1e-320 6.56 150.73 165.79 6.59 165.78 165.76 150.66 165.80 165.78

Figure 2.6. Division timing for double precision floats on Intel i5-4460

As the feConvolveMatrix implementation now consists entirely of integer opera-

tions, we cannot use floating point timing side channels to exploit it. We instead examined a

number of the other SVG filter implementations and found that several had not yet been ported

to the new fixed point implementation, such as the lighting filters.

2.4.1 Fixed point implementation

The fixed point implementation used in Firefox SVG filters is a simple 32-bit format with

no Not-a-Number, Infinity, or other special case handling. Since they make use of the standard

add/subtract/multiply operations for 32-bit integers, we know of no timing side channels based

on operands for this implementation. Integer division is known to be timing variable based on
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the upper 32-bits of 64-bit operands, but none of the filters can generate intermediate values

requiring the upper 32-bits. Thus, none of the filters we examined using fixed point had any

instruction data timing based side channels. Handling the full range of floating point functionality

in a fixed point and constant time way is expensive and complex, as seen in [8].

A side effect of a simple implementation is that it cannot handle more complex operations

that could induce NaNs or infinities and must process them.

2.4.2 Lighting filter attack

Our Firefox SVG timing attack makes use of the feSpecularLighting lighting

model with an fePointLight. This particular filter in this configuration is not ported to fixed

point, and performs a scaling operation over the input alpha channel. The surfaceScale

property in feSpecularLighting controls this scaling operation and can be set to an

arbitrary floating point value when creating the filter. With this tool, we perform the following

attack similar to the one in section 2.2.2. We need only to modify step 4 as seen below to enable

the use of the new lighting filter attack.

1. Steps 1-3 are the same as section 2.2.2.

4.1. Apply an feColorMatrix to the pixel multiplier <div> that sets the alpha channel

based entirely on the input color values. This sets the alpha channel to 1 for a black pixel

input, and 0 for a white pixel input.

4.2. Apply the timing variable feSpecularLighting filter with subnormal surface-

Scale and an attached fePointLight as the timing vulnerable filter.

5. Steps 5 and 6 are the same as section 2.2.2.

In this case, we differentiate between n2 multiplications of subnormal× 0 (black) vs

subnormal × 1 (white) where n is the width/height of the copied pixel <div>. Since our

measurements show a difference of 7 cycles vs 130 cycles for each multiplication (see Figure
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2.3), we can easily detect this difference once we scale n enough that the faster white pixel case

takes longer than 16ms (circa n = 200) in our tests. We need to cross this 16ms threshold as

frames take a minimum of 16ms to render (60fps) on our test systems.

In our tests on an Intel i5-4460 with Firefox 49+ we were able to consistently obtain >

99% accuracy (on black and white images) at an average of 17ms per pixel. This is approximately

as fast as an attack using this method can operate, since Firefox animates at a capped 60fps on

all our test systems.

We notified Mozilla of this attack and they are working on a comprehensive solution.

Firefox has patched the surfaceScale based attack on the feSpecularLighting filter

in Firefox 52 and assigned the attack CVE-2017-5407.

2.5 Safari

At the time of writing this paper, Safari has not implemented any defensive mechanisms

that hamper the SVG timing attack presented in [8]. Thus, with a rework of the attack framework,

we are able to modify the attack presented in Andrysco et al against the feConvolveMatrix

filter for Firefox 25 to work against current Safari.

Webkit (Safari) uses its own SVG filter implementations not used in other browsers.

None of the SVG filters had GPU support at the time of this paper, but some CSS transforms

could be GPU accelerated.

The Webkit feConvolveMatrix filter is implemented in the obvious way; multiply

each kernel sized pixel region against the kernel element-by-element, sum, and divide the result

by the divisor. We can therefore cause operations with 0×subnormal or normal×subnormal

depending on the target pixel. Since as we have seen these can a 0×subnormal can be 21× faster

than a subnormal times a normal, we can easily detect the difference between executing over a

black pixel or a white pixel.

We disclosed the vulnerability to Apple, and they have released a patch for Safari that
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<div id="pixel" style="width:500px;height:500px;overflow:
hidden">
<div id="scroll" style="width:1px; height:1px; overflow

:hidden; transform:scale(600.0);margin:249px auto">
<iframe id="frame" position="absolute" frameborder="0"

scrolling="no" src="TARGET_URL"/>
</div>

</div>

Figure 2.7. HTML and style design for the pixel multiplying structure used in our attacks on
Safari and Chrome

completely removes cross-origin SVG filter support. We believe this to be the most comprehen-

sive solution. The vulnerability was assigned CVE-2017-7006.

2.5.1 Tweaks for Safari

Two challenges arise from this switch; the -moz-element feature is not present in

Safari, and there is a 1 frame delay in processing the SVG filter application.

Rather than use -moz-element to duplicate pixels as in [8], we instead use the

-transform : scale(x) CSS transform. This corresponds to modifying step 3 in section

2.2.2. Due to the way the scale operation works, the scaled DOM element must first be centered

in a parent element, and then the parent element can have SVG filters applied. The ordering of

transforms, elements, and filters to cause the desired effect is brittle, and we detail our exact

setup in figure 2.7. The “pixel” element is the element that has the vulnerable filter applied to it

during the attack. The “scroll” element selects a pixel to extract (by setting the scrollTop and

scrollLeft properties) as well as multiplying the target pixel. Finally the “frame” element is

the iframe containing the victim page.

We address the 1-frame delay by simply measuring the total time it takes to render

2 frames after the SVG filter is applied to the element. This is accomplished by chaining 2

requestAnimationFrame callbacks. This consistently allowed us to measure the render

time of the target SVG filter on our test machine. However, this does limit the maximum rate of
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pixel extraction since we only get at best a pixel every 33ms.

2.6 DAZ/FTZ FPU flag defenses in Chrome

Google Chrome implements CSS and SVG filter support through the Skia 1 graphics

library. As of July of 2016, when executing Skia filters on the CPU, Chrome enables an

FPU control flag based countermeasure to timing attacks. Specifically, Chrome enables the

Flush-to-Zero (FTZ) and Denormals-are-Zero (DAZ) flags.

These flags are two of the many FPU control flags that can be set. Flags determine

options such as when to set a floating point exception, what rounding options to use, and how

to handle subnormals. The FTZ flag indicates to the FPU that whenever it would produce a

subnormal as the result of a calculation, it instead produces a zero. The DAZ flag indicates to

the FPU that any subnormal operand should be treated as if it were zero in the computation.

Generally these flags are enabled together as a performance optimization to avoid any use or

generation of subnormal values. However, these flags break strict IEEE-754 compatibility and so

some compilers do not enable them without specific optimization flags. In the case of Chrome,

FTZ and DAZ are enabled and disabled manually in the Skia rendering path.

Dividend
Divisor

0.0 1.0 1e10 1e+200 1e-300 1e-42 256 257 1e-320

Cycle count
0.0 6.58 6.59 6.58 6.55 6.59 6.54 6.54 6.56 6.56
1.0 6.55 6.55 12.23 12.19 12.22 12.22 6.56 12.25 6.56

1e10 6.58 6.59 12.22 12.22 12.21 12.21 6.59 12.23 6.59
1e+200 6.57 6.59 12.22 12.20 12.17 12.21 6.58 12.17 6.57
1e-300 6.59 6.57 12.18 12.23 12.24 12.22 6.59 12.24 6.57
1e-42 6.58 6.56 12.21 12.25 12.23 12.18 6.56 12.21 6.58
256 6.57 6.60 12.20 12.22 12.24 12.24 6.57 12.23 6.54
257 6.57 6.58 12.22 12.23 12.25 12.20 6.57 12.23 6.58

1e-320 6.57 6.58 6.60 6.51 6.59 6.57 6.58 6.55 6.58

Figure 2.8. Division timing for double precision floats on Intel i5-4460+FTZ/DAZ

1https://skia.org/
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2.6.1 Attacking Chrome

We present a cross-origin pixel stealing attack for Google Chrome using the fe-

ConvolveMatrix filter. As in our previous attacks, we observe the timing differences

between white and black pixels rendered with a specific convolution matrix. This attack works

without any changes on all major platforms for Chrome that support GPU acceleration. We have

tested it on Windows 10 (Intel i7-6700k), Ubuntu Linux 16.10 (Intel i5-4460), OSX 10.11.6 (Intel

i7-3667U Macbook Air), and a Chromebook Pixel LS ChromeOS 55.0.2883.105 (i7-5500U) on

versions of Chrome from 54-56. The attack is very similar to the one detailed in section 2.2.2

and Figure 2.2.

Unlike Firefox, we cannot trivially supply subnormal value like “1e-41”, as the Skia

SVG float parsing code treats them as 0s. The float parsing in Skia attempts to avoid introducing

subnormal values by disallowing exponents ≤−37. Thus we use the value 0.0000001e−35 or

simply the fully written out form, which is correctly parsed into a subnormal value. Since the

FTZ and DAZ flags are set only on entering the Skia rendering code, the parsing is not subject to

these flags and we can always successfully generate subnormals at parse time.

The largest obstacle we bypass is the use of the FTZ and DAZ control flags. These

flags reduce the precision and representable space of floats, but prevent any performance impact

caused by subnormals for these filters in our experiments. As shown in section 2.3 even with

these flags enabled the div and sqrt operations still have timing variation. Unfortunately none

of the current SVG filter implementations we examined have tight division loops over doubles,

or tight square root operations over floats. Thus, our attack must circumvent the use of the FTZ

and DAZ flags altogether.

Chrome enables the FTZ and DAZ control flags whenever a filter is set to run on the

CPU, which disallows our Firefox or Safari attacks from applying directly to Chrome. However,

we found that the FTZ and DAZ flags are not set when a filter is going to execute on the GPU.

This would normally only be useful for a GPU-based attack but we can force the feConvolve-
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Matrix filter to abort from GPU acceleration at the last possible moment and fall back to

the CPU implementation by having a kernel matrix over the maximum supported GPU size of

36 elements. Chrome does not enable the FTZ and DAZ flags when it executes this fallback,

allowing our timing attack to use subnormal values.

We force the target <div> to start on the GPU rendering path by applying a CSS

transform:rotateY() to it. This is a well known trick for causing future animations and

filters to be performed on the GPU, and it works consistently. Without this, the feConvolve-

Matrix GPU implementation would never fire, as it will not choose the GPU over the CPU

on its own. It is only because of our ability to force CPU fallback with the FTZ and DAZ flags

disabled that allows our CPU Chrome attack to function.

Note that even if FTZ/DAZ are enabled in all cases there are still scenerios that show

timing variation as seen in Figure 2.8 and Table 2.3. Chrome’s Skia configuration currently uses

single precision floats, and thus only need avoid sqrt operations as far as we know. However,

any use of double precision floats will additionally require avoidance of division. We did not

observe any currently vulnerable uses of single precision sqrt, or of double precision floating

point operations in the Skia codebase.

We notified Google of this attack and a patch enabling FTZ/DAZ even on GPU bail is

now available on Chrome. Google assigned this issue CVE-2017-5107.

2.6.2 Frame timing on Chrome

An additional obstacle to our Chrome attack was obtaining accurate frame render times.

Unlike on Firefox or Safari, adding a filter to a <div>’s style and then calling getAnimation-

Frame is insufficient to be sure that the time until the callback occurs will accurately represent

the rendering time of the filter. In fact, the frame that the filter is actually rendered on differs

by platform and is not consistent on Linux. We instead run algorithm 1 to get the approximate

rendering time of a given frame. Since we only care about the relative rendering time between

white and black pixels, the possibly extra time included doesn’t matter as long as it is moder-
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ately consistent. This technique allowed our attack to operate on all tested platforms without

modification.

Result: Duration of SVG filter rendering
total_duration = 0ms;
long_frame_seen = False;
while true do

/* Wait for next frame */
requestAnimationFrame;
if duration > 40ms then

/* Long frame probably containing the SVG
rendering occurred */

long_frame_seen = True;
total_duration += duration;

else
if long_frame_seen then

/* A short frame after a long frame */
return total_duration;

end
end
total_duration += duration;

end
Algorithm 1: How to measure SVG filter rendering times in Chrome

2.7 Revisiting the effectiveness of Escort

Escort [70] proposes defenses against multiple types of timing side channels, notably a

defense using SIMD vector operations to protect against the floating point attack presented by

Andrysco et al in [8].

Single Instruction, Multiple Data (SIMD) instructions are an extension to the x86_64

ISA designed to improve the performance of vector operations. These instructions allow 1-4

independent computations of the same operation (divide, add, subtract, etc) to be performed at

once using large registers. By placing the first set of operands in the top half of the register, and

the second set of operands in the bottom half, multiple computations can be easily performed

with a single opcode. Intel does not provide significant detail about the execution of these

49



instructions and does not provide guarantees about their performance behavior.

2.7.1 Escort overview

Escort performs several transforms during compilation designed to remove timing side

channels. First, they modify ’elementary operations’ (floating point math operations for the

purpose of this paper). Second, they perform a number of basic block linearizations, array access

changes, and branch removals to transform the control flow of the program to constant time and

minimize side effects.

We do not evaluate the efficacy of the higher level control flow transforms and instead

evaluate only the elementary operations.

Escort’s tool is to construct a set of dummy operands (the escort) that are computed at

the same time as the secret operands to obscure the running time of the secret operands. Escort

places the dummy arguments in one lane of the SIMD instruction, and the sensitive arguments in

another lane. Since the instruction only retires when the full set of computations are complete,

the running time of the entire operation is hypothesized to be dependent only on the slowest

operation. This is true if and only if the different lanes are computed in parallel. To obscure the

running time of the sensitive operands, Escort places two subnormal arguments in the dummy

lane of all modified operations under the assumption that this will exercise the slowest path

through the hardware.

Escort will replace most floating point operations it encounters. However, if it can

prove (using the Z3 SMT solver [24]) that the operation will never have subnormal values as

operands it declines to replace the operation. This means that if a function filters out subnormals

before performing computation, the computation will be done with standard scalar floating

point operations and not vector operations. This results in significant performance gains when

applicable, as the scalar operations can be two orders of magnitude faster than the subnormal

vector operations. The replacement operations consist of hand-coded assembly contained in a

library; libdrag.
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Table 2.4. Timing differences observed for libdrag vs default operations on an Intel i5-4460.
– : no variation, S : Subnormals are slower, Z : all zero exponent or significand values are faster,
M : mixture of several effects

Operation Default libdrag

Single Precision
Add/Sub – –
Mul S –
Div S Z
Sqrt M Z

Double Precision
Add/Sub – –
Mul S –
Div M Z
Sqrt M Z

Dividend
Divisor

0.0 1.0 1e10 1e+200 1e-300 1e-42 256 257 1e-320

Cycle count
0.0 186.46 186.48 186.50 186.44 186.42 186.49 186.50 186.48 186.51
1.0 186.45 186.48 195.93 195.94 195.93 195.86 186.48 195.87 186.48

1e10 186.51 186.49 195.92 195.90 195.92 195.87 186.47 195.86 186.46
1e+200 186.50 186.50 195.90 195.94 195.89 195.91 186.46 195.90 186.50
1e-300 186.48 186.44 195.91 195.88 195.93 195.92 186.53 195.95 186.44
1e-42 186.44 186.51 195.92 195.94 195.87 195.89 186.51 195.93 186.47
256 186.49 186.49 195.91 195.91 195.87 195.89 186.45 195.91 186.44
257 186.46 186.47 195.96 195.92 195.92 195.96 186.49 195.98 186.45

1e-320 186.49 186.49 186.43 186.48 186.49 186.49 186.50 186.52 186.46

Figure 2.9. Division timing for double precision floats on Intel i5-4460+Escort

However, operations that do not receive subnormals can still exhibit timing differences.

As seen in Figure 2.6 and summarized in Table 2.3 timing differences arise on value types that

can commonly occur (0, powers of 2, etc). While significantly less obvious than the impact of

subnormals, these still constitute a potential timing side channel. libdrag can easily fix this,

at serious performance cost, by enabling the floating point replacements for all floating point

operations with no exceptions.

To determine if Escort closes floating point timing side channel when enabled, we

measured the timing behavior of Escort’s libdrag floating point operations, as well as the
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Table 2.5. Timing differences observed for libdrag vs default operations on an AMD Phenom
II X2 550.
– : no variation, S : Subnormals are slower, Z : all zero exponent or significand values are faster,
M : mixture of several effects

Operation Default libdrag

Single Precision
Add/Sub S S
Mul S –
Div S –
Sqrt S –

Double Precision
Add/Sub S S
Mul S –
Div S –
Sqrt S –

end-to-end runtime of toy programs compiled under Escort.

2.7.2 libdrag micro-benchmarks

For the micro-benchmarking of the libdrag functions we use a simple tool we de-

veloped for running timing tests of library functions based on Intel’s recommendations for

instruction timing. This is the same tool we used to produce measurements for section 2.3.

We benchmarked each of libdrag’s functions against a range of valid numbers on

several different CPUs. We do not present results for Not-a-Number (NaN) or infinities.

Results on Intel i5-4460

Our results for the Intel i5-4460 CPU roughly correspond to the variations presented

in [70] (which tested on an Intel i7-2600) for libdrag. We do not observe any measurable

timing variation in any add, multiply, or subtract operations for single or double precision

floating point. We do observe notable timing differences based on argument values for single and

double precision division and square-root operations. The cross table results for double precision

division are shown in Figure 2.9. Table 2.4 summarizes the timing variations we observed.
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Dividend
Divisor

0.0 1.0 1.0e-10 1.0e-323 1.0e-43 1.0e100 256 257

Runtime (Seconds)
0.0 10.09 10.08 10.08 10.08 10.08 10.08 10.08 10.10
1.0 10.08 10.08 10.55 10.08 10.55 10.55 10.08 10.55

1.0e-10 10.08 10.08 10.55 10.08 10.55 10.55 10.08 10.55
1.0e-323 10.08 10.08 10.08 10.08 10.08 10.08 10.08 10.08
1.0e-43 10.08 10.08 10.55 10.08 10.55 10.55 10.08 10.55
1.0e100 10.08 10.08 10.55 10.08 10.55 10.55 10.08 10.55

256 10.08 10.08 10.55 10.08 10.57 10.55 10.08 10.57
257 10.09 10.08 10.55 10.08 10.57 10.55 10.08 10.55

Figure 2.10. Division timing for double precision floats on Intel i5-4460 macro-test

For division, it appears that the numerator has no impact on the running time of the

computation. The denominator shows variation based on if the significand or exponent is all

zero bits. When either portion is zero in the denominator computations run consistently faster in

both single and double precision floating point. Differences observed range from 2% to 5% in

contrast to the 2500% differences observed in section 2.3.

Square root shows a similar behavior, where if either the significand or exponent is all 0

bits the computation runs consistently faster. This matches the behavior seen for many operations

in scalar computations. (See Table 2.3)

An interesting outcome of this behavior is that subnormal values cause a speedup under

libdrag rather than the slowdown observed under scalar operations.

We speculate that this is the result of fast paths in the microcode handling for vector

operations. Using performance counters we determined that all vector operations containing a

subnormal value execute microcode rather than hardwired logic on the FPU hardware. As all

values with a zero significand or exponent experienced a speedup, we believe that the division

and square root microcode handles these portions separately with a shortcut in the case of zero.

Intel did not release any details on the cause of these timing effects when asked.
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AMD Phenom II X2 550

Table 2.5 summarizes our results on the AMD Phenom II X2 550. As with the Intel

i5-4460 we observe timing variation in the AMD Phenom II X2 550. However, the variation

is now confined to addition and subtraction with subnormal values. By examining the cycle

times for each operation in the default and libdrag case we found that the total cycle time

for an escorted add or subtract is approximately equal to the sum of the cycle counts for a

subnormal,subnormal operation and the test case. Thus, we believe that the AMD Phenom II

X2 550 is performing each operation sequentially and with the same hardware or microcode as

scalar operations for addition and subtraction.

2.7.3 Escort compiled toy programs

For end-to-end tests we wrote toy programs that perform a specified floating point

operation an arbitrary number of times, and compiled them under Escort and gcc. We then

use the Linux time utility to measure runtimes of the entire program. We designed the test

setup such that each run of the test program performed the same value parsing and setup steps

regardless of the test values, with only the values entering the computation differing between

runs. We ran the target computation 160,000,000 times per execution, and ran each test 10 times.

We see the same effects as in our microbenchmarks. Figure 2.10 shows the crosstable for these

results. Note that cells are colorized if they differ by 2% rather than 1 cycle.

2.7.4 libdrag modified Firefox

We modified a build of Firefox 25 in consultation with Rane et al [70] to match the

version they tested. Since multiply no longer shows any timing variation in libdrag we are

restricted to observing a potential ≤ 2% difference in only the divide, which occurs once per

pixel regardless of the kernel. Additionally, since the denominator is the portion controlled by

the attacker and the secret value is the numerator, we are not able to update the pixel stealing

attack for the modified Firefox 25.
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The modifications to Firefox 25 were confined to hand made changes to the fe-

ConvolveMatrix implementation targeted in [8]. We did not test other SVG filters for

vulnerability under the Escort/libdrag modifications.

Given the observed timing variations in the AMD Phenom II X2 550 in section 2.7.2 we

believe that multiple SVG filters would be timing side channel vulnerable under Escort on that

CPU.

2.7.5 Escort summary

Unfortunately our benchmarks consistently demonstrated a small but detectable timing

difference for libdrag’s vector operations based on operand values. For our test Intel CPUs

it appears that div and mul exhibit timing differences under Escort. For our AMD CPUs we

observed variation only for add/sub. Additionally, these differences are no more than 5% as

compared to the 500% or more differences observed in scalar operations. We have made Rane,

Lin and Tiwari aware of these findings.

The ’escort’ mechanism can only serve as an effective defense if vector operations are

computed in parallel. In all CPUs we tested the most likely explanation for the observed timing

difference is that vector operations are executed serially when in microcode. As mentioned in

section 2.7.2 we know that any vector operation including a subnormal argument is executed in

microcode, and all evidence supports the microcode executing vector operations serially. Thus,

absent substantial architectural changes, we do not believe that the ’escort’ vector mechanism

can close all floating point data timing channels.

2.8 GPU floating point performanace

In this section we discuss the results of GPU floating point benchmarks, and the use of

GPU acceleration in SVG filters for Google Chrome.
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Dividend
Divisor

0.0 1.0 1e10 1e+30 1e-30 1e-41 1e-42 256 257

Cycle count
0.0 5.17 5.85 5.85 5.85 5.85 5.89 5.89 5.85 5.85
1.0 6.19 2.59 2.59 2.59 2.59 8.64 8.64 2.59 2.59

1e10 6.19 2.59 2.59 2.59 5.96 8.64 8.64 2.59 2.59
1e+30 6.19 2.59 2.59 2.59 5.96 8.64 8.64 2.59 2.59
1e-30 6.19 2.59 7.82 6.51 2.59 8.40 8.40 2.59 2.59
1e-41 6.19 10.21 8.92 8.92 8.13 8.41 8.41 10.23 10.23
1e-42 6.19 10.21 8.92 8.92 8.13 8.41 8.41 10.23 10.23
256 6.19 2.59 2.59 2.59 2.59 8.64 8.64 2.59 2.59
257 6.19 2.59 2.59 2.59 2.59 8.64 8.64 2.59 2.59

Figure 2.11. Division timing for single precision floats on Nvidia GeForce GT 430

2.8.1 Browser GPU support

All major browsers make use of GPU hardware acceleration to improve performance

for various applications. However, only two currently make use of GPUs for SVG and CSS

transforms; Safari and Chrome. Currently, Safari only supports a subset of CSS transformations

on the GPU, and none of the SVG transforms. Chrome supports a subset of the CSS and SVG

filters on the GPU. Firefox intends to port filters to the GPU, but there is currently no support.

2.8.2 Performance

We performed a series of CUDA benchmarks on an Nvidia GeForce GT 430 to determine

the impact of subnormal values on computation time. The results for division are shown in

Figure 2.11. All other results (add, sub, mul) were constant time regardless of the inputs..

As Figure 2.11 shows, subnormals induce significant slowdowns on divsion operations

for single precision floats. Unfortunately, no SVG filters implemented in Chrome on the GPU

perform tight division loops. Thus, extracting timing differences from the occational division

they do perform is extremely difficult.

If a filter were found to perform tight division loops, or a GPU that has timing variation

on non-division operations were found, the same attacks as in previous sections could be ported

56



to the GPU accelerated filters.

We believe that even without a specific attack, the demonstration of timing variation

based on operand values in GPUs should invalidate “move to the GPU” as a defensive strategy.

2.9 Related work

Felten and Schneider were the first to mount timing side-channel attacks against browsers.

They observed that resources already present in the browser’s cache are loaded faster than ones

that must be requested from a server, and that this can be used by malicious JavaScript to learn

what pages a user has visited [30]. Felten and Schneider’s history sniffing attack was later refined

by Zalewski [89]. Because many sites load resources specific to a user’s approximate geographic

location, cache timing can reveal the user’s location, as shown by Jia et al. [46].

JavaScript can also ask the browser to make a cross-origin request and then learn (via

callback) how long the response took to arrive and be processed. Timing channels can be

introduced by the code that runs on the server to generate the response; by the time it takes

the response to be transmitted over the network, which will depend on how many bytes it

contains; or by the browser code that attempts to parse the response. These cross-site timing

attacks were introduced by Bortz, Boneh, and Nandy [17], who showed they could be used

to learn the number of items in a user’s shopping cart. Evans [29] and, later, Gelernter and

Herzberg [32], showed they could be used to confirm the presence of a specific string in a user’s

search history or webmail mailbox. Van Goethem, Joosen, and Nikiforakis [83] observed that

callbacks introduced to support HTML5 features allow attackers to time individual stages in the

browser’s response-processing pipeline, thereby learning response size more reliably than with

previous approaches.

The interaction of new browser features — TypedArrays, which translate JavaScript

variable references to memory accesses more predictably than general arrays, and nanosecond-

resolution clocks — allow attackers to learn whether specific lines have been evicted from the
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processor’s last-level cache. Yossi Oren first showed that such microarchitectural timing channels

can be mounted from JavaScript [67], and used them to learn gross system activity. Recently,

Gras et al. [34] extended Oren’s techniques to learn where pages are mapped in the browser’s

virtual memory, defeating address-space layout randomization. In response, browsers rounded

down the clocks provided to JavaScript to 5 µs granularity. Kohlbrenner and Shacham [53]

proposed a browser architecture that degrades the clocks available to JavaScript in a more

principled way, drawing on ideas from the “fuzzy time” mitigation [45] in the VAX VMM

Security Kernel [49].

Browsers allow Web pages to apply SVG filters to elements including cross-origin

iframes. If filter processing time varies with the underlying pixel values, those pixel values will

leak. Paul Stone [81] and, independently, Kotcher et al. [55], showed that such pixel-stealing

attacks are feasible; the filters they exploited had pixel-dependent branches. Andrysco et al. [8]

showed that pixel-stealing was feasible even when the filter executed the same instruction trace

regardless of pixel values, provided those instructions exhibit data-dependent timing behavior, as

floating-point instructions do. Rane, Lin, and Tiwari [70] proposed program transformation that

allow the processor floating-point unit to be used while eliminating data-dependent instruction

timing, in the hope of defeating Andrysco et al.’s attacks.

2.10 Conclusions and future work

We have extensively benchmarked floating point performance on a range of CPUs under

scalar operations, FTZ/DAZ FPU flags, -ffast-math compiler options, and Rane, Lin, and

Tiwari’s Escort. We identified operand-dependent timing differences on all tested platforms and

in all configurations; many of the timing differences we identified were overlooked in previous

work.

In the case of Escort, our data strongly suggests that processors execute SIMD operations

on subnormal values sequentially, not in parallel. If this is true, a redesign of the vector processing
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unit would be required to make Escort effective at closing all floating-point timing channels.

We have revisited browser implementations of SVG filters, and found (and responsibly

disclosed) exploitable timing variations in the latest versions of Chrome, Firefox, and Safari.

Finally, we have shown that modern GPUs exhibit slowdowns in processing subnormal

values, meaning that the problem extends beyond x86 processors. We are currently evaluating

whether these slowdowns allow pixel stealing using SVG filters implemented on the GPU.

We have uncovered enough variation in timing across Intel and AMD microarchitectural

revisions that we believe that comprehensive measurement on many different processor families —

in particular, ARM — will be valuable. For the specific processors we studied, we believe we

are in a position to identify specific flags, specific operations, and specific operand sizes that

run in constant time. Perhaps the best one can hope for is an architecture-aware library that

could ensure no timing variable floating point operations occur while preserving as much of the

IEEE-754 standard as possible.

Tools, proof-of-concept attacks, and additional benchmark data are available at https://

cseweb.ucsd.edu/~dkohlbre/floats.

We close with broader lessons from our work.

For software developers:

We believe that floating point operations as implemented by CPUs today are simply

too unpredictable to be used in a timing-security sensitive context. Only defensive measures

that completely remove either SSE floating point operations (fixed-point implementations) or

remove the sensitive nature of the computation are completely effective. Software that operates

on sensitive, non-integer values should use fixed-point math, for example by including Andrysco

et al.’s libfixedtimefixedpoint, which Almeida et al. recently proved runs in constant

time [7].
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For browser vendors:

Some browser vendors have expended substantial effort in redesigning their SVG filter

code in the wake of the Andrysco et al. attacks. Even so, we were able to find (different)

exploitable floating-point timing differences in Chrome, Firefox, and Safari. We believe that the

attack surface is simply too large; as new filters and features are added additional timing channels

will inevitably open. We recommend that browser vendors follow Safari’s lead in disallowing

cross-origin SVG filters and other computation over cross-origin pixel data in the absence of

Cross-Origin Resource Sharing (CORS) authorization.

It is important that browser vendors also consider patching individual timing side channels

in SVG filters as they are found. Even with a origin policy that blocks the cross-origin pixel

stealing, any timing side channel allows an attacking page to run a history sniffing attack. Thus,

a comprehensive approach to SVG filters as a threat to user privacy combines disallowing

cross-origin SVG filters and removes timing channels with constant time coding techniques.

For processor vendors:

Processor vendors have resisted calls to document which of their instructions run in

constant time regardless of operands, even for operations as basic as integer multiplication. It is

possible that floating point instructions are unusual not because they exhibit timing variation but

because their operands have meaningful algebraic structure, allowing intelligent exploration of

the search space for timing variations; even so, we identified timing variations that Andrysco et al.

overlooked. How much code that is conjectured to be constant-time is in fact unsafe? Processor

vendors should document possible timing variations in at least those instructions commonly used

in crypto software.
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Chapter 3

Constant time fixed-point math

3.1 Introduction

In this chapter, we examine one approach to solving the problem of floating-point timing

side-channels: substituting constant time fixed-point math in place of floating-point.

We design and evaluate a new library, libfixedtimefixedpoint, for non-integer

math for which all operations run in constant time. We have manually verified that an AMD64

binary of our library uses only integer instructions that we believe are constant-time. Emulating

non-integer operations in constant time imposes overheads, but the overheads may be acceptable

for security-critical applications: addition and multiplication in our library take just 15 and 43

cycles, respectively, on a Core i7 2635QM. Our library is available under an open source license.

In independent work, libfixedtimefixedpoint was shown to be constant time

when compiled to LLVM bytecode[7]. While this does not imply that when compiled to

x86_64 assembly libftfp remains constant time, we believe this result validates our structural

approach.

3.2 Designing Constant-Time Operations

Floating point numbers have long been a source of frustration for programmers and

nondeterminism in programs. Further, their use (even for basic arithmetic) can lead to security

and timing issues in the host program, as we have seen in this paper. However, it is entirely
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infeasible to limit programmers to using only constant-time integer data types — applications

involving trigonometry or logarithms require representing numbers between integers.

To bridge the gap between the input-dependent, hardware-contingent, variable-time world

of the floating point and the world of constant-time arithmetic operation on pure integer types,

we built and are releasing libfixedtimefixedpoint(LibFTFP). a C library supplying a

fixed-point data type, with all library operations running in constant time. LibFTFP is available

online at https://github.com/kmowery/libfixedtimefixedpoint.

LibFTFP provides the fixed data type. As with IEEE-754 floating point, a particular

fixed variable can hold the value of a real number, of positive Infinity, of negative Infinity, or

of not-a-number (NaN). These extra numeric states supply a means of signaling and propagating

exceptional behavior through LibFTFP computations — for example, dividing 1 by 0 produces

NaN, while raising 10 to the 100th power will produce positive Infinity.

3.2.1 Representation

As much as programmers would like to use pure, perfectly precise real numbers in our

programs, actually representing a number in a binary-based computer involves making choices

about compromises. A N-bit data type can only ever represent 2N different things.

LibFTFP fixeds are 64-bit values, the same size as a IEEE-754 double. Two of

these bits are allocated for the state flags (see Figure 3.1), which allow us to store the status

of the number: normal, +Infinity, -Infinity, or NaN. This leaves 62 bits for the storage of the

number. Any particular choice of allocation here will be suboptimal for some application: one

programmer might only care about numbers between 0 and 10, but want very good precision,

while another is willing to trade precision to handle numbers up to 250. Therefore, LibFTFP

allows the programmer to choose, at library compilation time, the use of the remaining 62 bits:

anywhere between 1 integer bit (in practice, a single sign bit) and 61 fractional bits, to 61 integer

bits and 1 fractional bit, in single-bit increments. The number ranges representable by LibFTFP,

then, are limited by this choice, but all LibFTFP numbers have 62 bits of precision. With I
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Integer Portion Fractional Portion Flags

32 bits 30 bits

3 bits 59 bits

61 bits 1 bit

2 bits

2 bits

2 bits

Figure 3.1. 3 possible internal layouts of a LibFTFP fixed. LibFTFP supports anywhere
between 1 and 61 fractional bits, chosen at library compilation time.

integer bits and F fractional bits (I +F = 62), the smallest possible positive value is ε = 2−F .

The largest possible positive value is 2I−1− ε , while the largest-magnitude negative number is

−2I−1 (the representable difference is due to two’s complement sign storage).

3.2.2 Operations on Numbers

A single string of bits, by itself, is useless. It only has meaning when associated with a set

of operations, transforming it from a binary sequence into a number. Thus, LibFTFP implements

nearly every x87 floating point operation, each with its own input-agnostic constant running

time, tested on each possible configuration of representable bits:

• Arithmetic: Add, Subtract, Multiply, Divide

• Comparison: Equality, Value Comparison

• Sign adjustment: Absolute Value, Negation

• Rounding: Floor and Ceiling
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• Exponentials: ex, log2(x), loge(x), log10(x)

• Powers: xy, Square root

• Trigonometry: Sine, Cosine, Tangent

• Conversion: Printing (Base 10), to/from double, to/from int64_t

Composing these operations should be sufficient to produce almost any needed mathe-

matical function, in a secure and input-agnostic manner.

Several operations are implemented as approximations, and have associated error; see

the LibFTFP documentation for details.

3.2.3 Performance in Constant Time

Writing performant constant-time software is a unique challenge: the fastest and slowest

paths through the code must take exactly the same amount of time, and that amount should be as

small as possible.

LibFTFP uses a few simple strategies to supports its claim of constant-time operation:

First, compute all possible needed values. That is, each time through each function, every code

path is exercised and results are produced, even if nonsensical. For example, when dividing

by zero, instead of failing immediately and returning NaN, a full division is carried out (albeit

with made-up numbers). Second, use no data-directed branches. Whenever possible, we use

straight-line code, devoid of any flow control, and rely on bit shifting and masking to choose

between values (such as the NaN and nonsense division result mentioned above). The few loops

in LibFTFP all have a constant iteration count. Third, use basic integer operations at all times,

with the expectation that integer operations will be constant-time independent of input. This is

widely regarded as true on modern hardware; however, this assumption does not always hold.

Notably, Großschädl et al. [38] showed that, on particular embedded processors, the time to

perform integer multiplication varies with the input operands. Note that if the hardware platform

65



cannot guarantee constant-time performance on some subset of integer operations, it is nearly

impossible (if not actually impossible) to do constant-time math on that CPU, regardless of

programmer effort.

While building LibFTFP, we discovered that the Intel x86 instructions for integer division

(div and idiv) have an input-dependent running time. Both of these instructions divide a

128-bit number by a 64-bit number to produce a 64-bit number. In the case of overflow, a

hardware Divide Error exception is raised, which is certainly not constant time, but this can

be avoided with careful inspection and modification of division inputs. Unfortunately, even

normal, non-overflowing operation is variable time. Notably, on a Core 2 Duo E8400, we

have seen idiv take anywhere from 31 to 71 cycles, with multiple possible timings along

the way, depending on the input. With these characteristics, LibFTFP must avoid div or

idiv, leaving us with no constant-time hardware-accelerated division instructions. LibFTFP

contains an alternative software implementation of integer division, using only addition, sub-

traction, and bit shifts, but taking this path reduces performance considerably, causing a 400%

slowdown in our fixed division operation as compared to a version using non-constant-time

idiv.

Writing LibFTFP required the creation of a significant amount of infrastructure to support

translating even simple operations into constant time variants. Basic C language control structures

like if, logical and (&&), and the ternary operator are unavailable in constant time programming.

To emulate common operations, we built a library of C macros that would perform repeated

operations. For example, the MASK_UNLESS macro will zero a given value if and only if the

expression evaluates to false, otherwise it passes through unchanged. This is used extensively, as

a replacement for control-flow-mediated assignment, to combine different possible result values

for a mathematical operation into a final value. Evaluating the expression cannot result in a

branch. The result of the expression is forced to 1 or 0 via !!, and MASK_UNLESS then uses

the SIGN_EXTEND macro to generate a mask that is all 1 or all 0 bits to control the final value.

Finally, the mask is combined with the initial value via binary and (&). This is only a single,
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int64_t fix_to_int64(fixed op1) {
return ({ uint8_t isinfpos = (((op1)&((fixed) 0x3)) == ((

fixed) 0x2)); uint8_t isinfneg = (((op1)&((fixed) 0x3))
== ((fixed) 0x3)); uint8_t isnan = (((op1)&((fixed) 0

x3)) == ((fixed) 0x1)); uint8_t ex = isinfpos |
isinfneg | isnan; fixed result_nosign = (({uint64_t
SE_m__ = (1ull << ((64 - ((60 + 2)))-1)); (((uint64_t)
((op1) >> ((60 + 2)))) ^ SE_m__) - SE_m__;}) + !!(
(!!((op1) & (1LL << (((60 + 2))-1))) & !!((op1) & ((1LL
<< (((60 + 2))-1))-1))) | ((((op1) >> (((60 + 2))-2))

& 0x6) == 0x6) )); ((({uint64_t SE_m__ = (1ull << ((1)
-1)); (((uint64_t) (!!(isinfpos))) ^ SE_m__) - SE_m__
;}) & (9223372036854775807LL)) | (({uint64_t SE_m__ =
(1ull << ((1)-1)); (((uint64_t) (!!(isinfneg))) ^
SE_m__) - SE_m__;}) & ((-9223372036854775807LL -1))) |
(({uint64_t SE_m__ = (1ull << ((1)-1)); (((uint64_t)
(!!(!ex))) ^ SE_m__) - SE_m__;}) & (result_nosign)));
});

}

Figure 3.2. Conversion of a LibFTFP value to an int64, after the C pre-processor has been
run.

rather simple example of the style of coding necessary to generate code that can even be argued

to run in constant time. See Figure 3.2 for an example of our C code with macros fully expanded.

This style of coding for LibFTFP causes most compilers to output assembly conforming

to our above specifications. Unfortunately, we cannot guarantee that any compiler will output

such assembly. Users should be careful to use only the build files we have provided, and run

the provided correctness tests. As a best possible effort, we are distributing a binary copy of

the LibFTFP shared library, built for AMD64 Linux. This binary copy has been exhaustively

manually verified via disassembly to not use any known variable time instructions or control

flow structures. This, of course, assumes that the target platform has a constant time integer unit,

and that basic x86 instructions are constant time. Unless users are willing to verify their local

builds to this degree, we suggest using only the distributed binary version of LibFTFP.

Due to our conservative coding style, LibFTFP uses only 39 distinct x86 instructions.
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Opcodes

add mov pop setg
and movabs push setl
call movsd rep setle
cdqe movsx ret setne
cmp movsxd sar shl
imul movzx sbb shr
je mul seta sub
jmp neg setae test
jne not setbe xor
lea or sete

Figure 3.3. Every x86 instruction used by LibFTFP.

The full list can be found in Figure 3.3.

With regards to performance, running times (in cycles) for each of LibFTFP’s operations

(and their SSE counterparts, where available) can be found in Figure 3.1. We also include the

running times for the same operations using native SSE assembly, as well as example operations

from the multiple precision floating point library MPFR. While constant-time software operation

does, in fact, take longer than optimized hardware, LibFTFP offers enough performance to be

usable outside of the academic setting. By allowing the use of some approximations, it usually

runs faster than the very precise, but extremely variable time MPFR.

To generate these numbers, we timed performance carefully, making sure to warm up

both the cache and CPU frequency scaling. Each function is tested by taking a cycle count using

rdtsc before and after running the function 2,000,000 times. Each test runs twice in succession,

discarding the first set of results to warm the cache. The overhead of running the loop without

the function call is then subtracted, and the remaining time is divided by the number of runs to

obtain an average cycles-per-call.

3.2.4 Real-World Implementation

To determine LibFTFP’s suitability for use in real-world programs, we modified the Fuzz

differentially-private database and its Caml Light compiler to use fixeds rather than doubles as
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Table 3.1. LibFTFP performance tests, as compared against the same operations via SSE and
the multiprecision floating point library MPFR.

Measured in cycles per function call on an Intel Core i7 2635QM at 2.00GHz. MPFR was
configured with 62 bits of precision, and a few sample inputs were chosen; ranges may not be
completely accurate. Note that MPFR’s results are exactly correct, where LibFTFP approximates
some values.

Function FTFP SSE MPFR

neg 6 5 12-20
abs 9 4 10-17
cmp 21 5 10-15
add 15 4 15-58
sub 15 5 14-61
mul 43 5 16-76
div 381 7-15 15-170
floor 8 5 12-48
ceil 11 5 12-56
exp 1,460 7-16 37-13,330
ln 681 11-20 18-6,900
log2 679 9-20 19-24,000
log10 674 9-21 19-18,000
sqrt 7,870 7-16 9-154
pow 2,330 11-78 40-72,000
sin 1,998 – 11-33,000
cos 1,990 – 34-29,000
tan 2,380 – 13-37,000
print 443 350-600 210-230

its non-integer data type. The small, streamlined nature of Caml Light made this modification

fairly easy, adding or modifying around 120 lines of code in Caml Light itself.

We also had to modify Fuzz’s custom additions and library functions. This mostly con-

sisted of writing a more constant-time cbagsum and approach to number handling: originally,

for each row, Fuzz serialized the microquery’s double output as a string, and called atof

on each number. atof is a variable-time function (intuitively, “0” is easier and faster to parse

than “3.145e-60”), and so we replaced this human-readable information passing with a binary

encoding of each fixeds bits.

Our custom version of Fuzz computes all of our database queries from Chapter 1.4.5,
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malicious or not, in 50.717 s–50.771 s. We attempted to customize our timing attack query for

LibFTFP (as opposed to subnormals), but were unable to cause any appreciable timing difference.

The original Fuzz, using doubles, completes the queries in 50.300 s–51.552 s. While Fuzz’s

overall running times are not the most enlightening comparison (since so much work was spent

making each microquery take exactly the same amount of time), we think that this shows

LibFTFP is capable of handling important mathematical calculations without sacrificing too

much raw performance.

Acknowledgements

Chapter 3, in part, is a reprint of the material as it appears in IEEE Security and Privacy

(Oakland) 2015. Andrysco, Mark; Kohlbrenner, David; Mowery, Keaton; Jhala, Ranjit; Lerner,

Sorin; Shacham, Hovav, 2015. The dissertation author was a primary investigator and a primary

author of this paper.

70



Chapter 4

Trusted browsers for uncertain times

4.1 Introduction

Web browsers download and run JavaScript code from sites a user visits as well as third-

party sites like ad networks, granting that code access to system resources through the DOM.

Keeping that untrusted code from taking control of the user’s system is the confinement problem.

In addition, browsers must ensure that code running in one origin does not learn sensitive

information about the user’s interaction with another origin. This is the compartmentalization

problem.

A failure of confinement can lead to a failure of compartmentalization. But JavaScript can

also learn sensitive information without escaping from its sandbox, in particular by exploiting

timing side channels. A timing channel is made possible when an attacker can compare a

modulated clock — one in which ticks arrive faster or slower depending on a secret — to a

reference clock — one in which ticks arrive at a consistent rate. For example, browsers allow

web pages to apply SVG transformations to page elements, including cross-origin frames, via

CSS. Paul Stone showed that a fast-path optimization in the feMorphology filter created

a timing attack that allowed attackers to steal pixels or sniff a user’s browsing history, using

Window.requestAnimationFrame() as a modulated clock [81]. More recently, Oren

et al. showed that, in the presence of a high-resolution reference clock like performance.now,

attackers could use JavaScript TypedArrays to measure instantaneous load on the last-level
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processor cache [67].

Browser vendors are aware of the danger that timing channels pose compartmentalization

and have made efforts to address it.

First, they have attempted to eliminate modulated clocks by making any code that

manipulates secret values run in constant time. In a hundred-message Bugzilla thread, for

example, Mozilla engineers decided to address Stone’s pixel-stealing work by rewriting the

feMorphology filter implementation using constant-time comparisons.1

Second, they have attempted to reduce the resolution of reference clocks available to

JavaScript code. In May, 2015, the Tor Browser developers reduced the resolution of the perf-

ormance.now high-resolution timer to 100 ms as an anti-fingerprinting measure.2 In late 2015,

some major browsers (Chrome, Firefox) applied similar patches (see Figure 4.1), reducing timer

resolution to 5 µs to defeat Oren et al.’s cache timing attack [67].

These efforts are unlikely to succeed, because they seriously underestimate the complexity

of the problem.

First, eliminating every potential modulated clock would require an audit of the entire

code base, an ambitious undertaking even for a much smaller, simpler system such as a mi-

crokernel [19]. Indeed, the Mozilla fix for feMorphology did not consider the possibility

that floating-point instructions execute faster or slower depending on their inputs, allowing

pixel-stealing attacks even in supposedly “constant-time” code [8].

Second, there are many ways by which JavaScript code might synthesize a reference clock

besides naively querying performance.now. In this paper, we show that clock-edge detection

allows JavaScript to increase the effective resolution of a degraded performance.now clock

by two orders of magnitude. We also present and evaluate multiple, new implicit clocks:

techniques by which JavaScript can time events without consulting an explicit clock like perf-

ormance.now at all. For example, videos in an HTML5 <video> tag are decoded in a

1https://bugzilla.mozilla.org/show_bug.cgi?id=711043
2https://trac.torproject.org/projects/tor/ticket/1517
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separate thread. JavaScript can play a simple video that changes color with each frame and

examine the current frame by rendering it to a canvas. This immediately gives an implicit clock

with resolution 60 Hz, and the resolution can be improved using our techniques.

In short, timing channels pose a serious danger to compartmentalization in browsers;

browser vendors are aware of the problem and are attempting to address it by eliminating or

degrading clocks attackers would rely on, but their ad-hoc efforts are unlikely to succeed. Our

thesis in this paper is that the problem of timing channels in modern browsers is analogous to the

problem of timing channels in trusted operating systems and that ideas from the trusted systems

literature can inform effective browser defenses. Indeed, our description of timing channels as

the comparison of a reference clock and a modulated clock is due to Wray [87], and our fuzzy

mitigation strategy technique is directly inspired by Hu [44] — both papers resulting from the

VAX VMM Security Kernel project, which targeted an A1 rating [49].

In this paper, we show that “fuzzy time” ideas due to Hu [44] can be adapted to building

trusted browsers. Fuzzy time degrades all clocks, whether implicit or explicit, and it reduces the

bandwidth of all timing channels. We describe the properties needed in a trusted browser where

all timing sources are completely mediated. Today’s browsers tightly couple the JavaScript

engine and the DOM and would need extensive redesign to completely mediate all timing

sources. As a proof of feasibility, we present Fuzzyfox, a fork of the Firefox browser that works

within the constraints of today’s browser architecture to degrade timing sources using fuzzy time.

Fuzzyfox demonstrates a principled clock fuzzing scheme that can be applied to both mainstream

browsers and Tor Browser using the same mechanics. We evaluate the performance overhead and

compatibility of Fuzzyfox, showing that all of its ideas are suitable for deployment in products

like Tor Browser and a milder version are suitable for Firefox.
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double PerformanceBase::clampTimeResolution(double
timeSeconds)

{
const double resolutionSeconds = 0.000005;
return floor(timeSeconds / resolutionSeconds) *

resolutionSeconds;
}

Figure 4.1. Google Chrome performance.now rounding code

4.2 Clock-edge attack

Web browser vendors have attempted to mitigate timing side channel attacks like [67] by

rounding down the explicit clocks available to JavaScript to some grain g. For example, Google

Chrome and Firefox have implemented a 5µs grain. Figure 4.1 shows the C++ code used for

rounding a performance.now call in Google Chrome. Tor Browser makes a different privacy

and performance tradeoff and has implemented an aggressive 100ms grain.

Unfortunately, rounding down does not the guarantee that an attacker cannot accurately

measure timing differences smaller than g. We present the clock-edge technique for improving

the granularity of time measurements in the context of JavaScript clocks. Experimentally, this

technique results in an increase in resolution of at least two orders of magnitude to large grained

clocks. This technique can be generalized to any pair of clocks: a major clock, which has a

known large period, and a a minor clock, which has a short unknown period. The major clock

is used to establish the period of the minor clock, and together they can time events with more

accuracy than alone.

Consider the case of a page wishing to time some JavaScript function attack() with

a granularity smaller than some known performance.now grain g. The major clock in this

case is the degraded performance.now, and we use a tight incrementing for loop as the

minor clock. Figures 4.2 and 4.3 show how a page might execute this technique and a visual

representation of the process.
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// Find minor ticks until major edge
function nextedge(){

start = performance.now();
stop = start;
count = 0;

while(start == stop){
stop = performance.now();
count++;

}

return [count,start,stop];
}

// run learning
nextedge();
[exp,pre,start] = nextedge();

// Run target function
attack();

// Find the next major edge
[remain,stop,post] = nextedge();

// Calculate the duration
duration = (stop-start)+((exp-remain)/exp)*grain;

Figure 4.2. Clock-edge fine-grained timing attack in JavaScript

The page first learns the average number of loop iterations (Lexp) between the major clock

ticks Cl1 and Cl2. After learning, the page then runs until a major clock edge is detected (Cstart)

and then executes attack(). When attack() returns at major clock time Cstop, the page

runs the minor clock (for Lremain ticks) until the next major clock edge (Cpost) is detected. The

page then calculates the duration of attack() as (Cstop−Cstart)+g∗ (Lexp−Lremain)/(Lexp).

In the case of g not remaining constant, we scale the Lexp by (Cpost−Cstop)/(Cl2−Cl1) and set

g =Cpost−Cstop.

Since (Lexp−Lremain)/(Lexp) represents a fractional portion of g, the duration measure-
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Figure 4.3. Clock-edge learning and timing

ment can plausibly obtain measurements as fine grained as g/Lexp. Thus, as long as the attacker

has access to a suitable minor clock, the degradation of a major clock to g by rounding does not

ensure an attacker cannot measure at a grain less than g.

Table 4.1 shows the results of applying the clock-edge technique on a degraded perf-

ormance.now major clock on 4 different targets at different grains. The code in figure 4.2

is an abbreviated version of the testing code. Each duration column represents a different

number of iterations in the attack() function, which is an empty for loop. The minor

ticks column indicates the number of iterations the learning phase detected that each major tick

takes. The “None” row indicates the runtime of attack with no rounding enabled, and other

rows indicate the durations measured at different grain settings using the clock-edge technique.

Measurements were performed with a modified build of Firefox that enabled setting arbitrary

grains via JavaScript.
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Table 4.1. Results for running the clock-edge fine-grained timing attack against various grain
settings. Averages for 100 runs shown.

Grain(ms) Minor Measured Durations(ms)

None – 0.003 0.030 0.298 3.033

0.001 2 0.002 0.029 0.299 3.103
0.005 94 0.004 0.032 0.304 3.031
0.01 192 0.003 0.030 0.298 2.998
0.08 1649 0.003 0.030 0.303 3.009
0.1 1965 0.011 0.027 0.299 3.006
1 20470 0.053 0.038 0.296 3.010
10 193151 0.112 0.208 0.332 3.159
100 1928283 0.436 0.469 0.560 3.330
500 9647265 1.045 1.076 1.294 3.437

As Table 4.1 shows, the clock-edge attack recovers durations significantly smaller than the

grain settings. Notably, grains in the millisecond and higher range still permit the differentiation

of events lasting only tens of µs!

Simply rounding down the available explicit clocks only has a notable impact if the

attacker is attempting to differentiate between events each lasting less than a microsecond, at

which level the clock-edge attack often provides no additional resolution to the rounded clock.

4.3 Measuring time in browsers without explicit clocks

In this section, we demonstrate different methods an attacker can use measure the duration

of events in JavaScript. An attacker wishing to mount a timing attack against a web browser is not

restricted to the use of performance.now for timing measurements, this section will present

a number of alternative methods available. Browser features that enable these measurements

are implicit clocks. Depending on the how the target and the clock interact with the JavaScript

runtime, we define them as exiting or exitless. We do not present an exhaustive list of implicit

clocks. Rather, this section should be considered the tip of the iceberg for clock techniques in

browsers.
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4.3.1 Measurement targets

Recall that the adversary’s goal in a timing attack is to measure the duration of some

event and differentiate between two or more possible executions. We assume our adversary’s

goal is to measure the duration of some piece of JavaScript target() or to measure the time

until some event target fires a callback. There are many potential targets, exemplified by two

different timing attacks on web browsers. We categorize targets and attacks into exiting and

exitless and describe a canonical example for each.

Exiting targets: privacy breaches with requestAnimationFrame

Previous work [8] [81] has shown several different ways to achieve history sniffing or

cross frame pixel reading via timing the rendering of an SVG filter over secret data. Andrysco et

al [8] demonstrate a timing attack on privacy that differentiates pixels based on how long ren-

dering an SVG convolution filter takes. This timing requires that the attacking JavaScript know

exactly when the SVG filter is applied to the target and when the SVG filter finishes rendering.

This is accomplished by sampling a high resolution time stamp (performance.now) when ap-

plying the CSS style containing the filter and when a callback for requestAnimationFrame

fires. In this case, JavaScript must exit to allow some other computation to occur and then re-

ceives a notification via a callback that the event has completed. We refer to this type of target as

an exiting target, as it exits the JavaScript runtime before completion.

Exitless targets: cache timing attacks from JavaScript

Conversely, there are exitless targets, such as Oren et al’s [67] cache timing attack.

This attack does not need to exit JavaScript for the target to run, instead they need only

perform some synchronous JavaScript function call, and measure the duration of it. Any exitless

target can be scheduled in callbacks, thus making it an exiting target, but an exiting

target cannot be run in an exitless manner.
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4.3.2 Implicit clocks in browsers

Supposing that all explicit clocks were removed from the browser, it is still possible that

a motivated attacker can measure fine-grained durations. Rather than query an explicit clock, the

attacker can find some other feature of the browser that has a known or definable execution time

and use that as an implicit clock.

We did not test any clocks that resolve durations at an external observer, such as a

cooperating server. For example, a piece of JavaScript could generate a network request, run a

target, and then generate another network request. These clocks are mitigated by the defenses

discussed in section 4.4.

We observe that just as with exiting and exitless targets, there are exiting and exitless

implicit clocks. We will refer to a clock or timing method that does not need to leave JavaScript

execution for the value reported by the clock to change as exitless. Similarly, a timing method

that requires JavaScript execution to exit before time moves forward is exiting.

All exitless clocks can work for both exiting and exitless targets. However, an exitless

target cannot function with an exiting clock, as the execution of the target will take control of

the main thread, stopping regular callbacks or events that the exiting clock needs from firing.

There may be exotic exiting clocks that do not have this restriction, but all of the ones detailed

below do. An exitless attack requires using both an exitless target and clock (such as in the cache

timing attack.)

Depending on the implementation of a browser feature, the clock technique may be

exiting or exitless. A good example is the updating of the played information for an <audio>

or <video> tag. This information is updated asynchronously to the main browser thread in

Google Chrome but will not update during JavaScript execution in Firefox. Thus, it can be used

to construct a exitless clock in Chrome but only an exiting clock in Firefox.

See Table 4.2 for how the following clocks manifest in Chrome 48 (stable), Firefox3, and

3commit 0ec3174fe63d8139f842ce9eb6639349759ff4e5
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Table 4.2. Implicit clock type in different browsers
L Exitless , X Exiting , — Not implemented, + Buggy

Description Clock type
Firefox Chrome Safari

Explicit clocks L L L
Video frames L L L
Video played X L L
WebSpeech API L + —
setTimeout X X X
CSS Animations X X X
WebVTT API X X X
Rate-limited server X X X

Safari 9.0.3.

Exitless clocks

Since JavaScript is single threaded and non-preemptable, exitless clocks do not have

to worry about the scheduling of other JavaScript callbacks or any other events occurring

between the target and timing measurements. By the semantics of JavaScript, an exitless clock

is considered a run-to-completion violation[66] and is a bug. Any time JavaScript can observe

changes caused externally during a single callback qualifies as such a bug; it is only when their

timing is dependable that we can construct a clock. Mozilla has explicitly stated their goal to

make SpiderMonkey (the Firefox JavaScript engine) free of run-to-completion violations.

We found several exitless clocks available to JavaScript in different browsers.

1. Explicit clock queries. While expected, explicit clock queries are run-to-completion violations

and expose the most accurate timing data. performance.now is the best source of explicit

timing data in JavaScript.

2. Video frame data. By rendering a <video> to <canvas>, JavaScript can recover the

current video frame. Since the video updates asynchronous to the browser event loop, this

can be used to get a fine grained time-since-video-start value repeatedly.
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On Firefox, video frame data updates at 60 FPS, giving a granularity of 17ms. We can load a

video at 120FPS, which does not allow JavaScript access to new frames faster, but the frames

JavaScript gets are a more accurate clock. We demonstrate this by generating a long-running

video at 120FPS that changes the color of the entire video every frame. Thus, by sampling the

current color via rendering the video to <canvas>, the page can measure how much time

has elapsed since the video started. Video can be rendered off-screen or otherwise invisible to

the user and will still update at 60FPS, making it an ideal choice for an implicit clock. We

have also found that using multiple videos and averaging the reported time between them

provides additional accuracy.

3. WebSpeech API. This can start/stop the speaking of a phrase from JavaScript and will

give a high-resolution duration measurement when stopped. The WebSpeech API allows

JavaScript to define a SpeechSynthesisUtterance, which contains a phrase to speak.

This process can be started with speak() and then stopped at any time with cancel().

The cancelation can fire a callback whose event contains a high resolution duration of

how long the system was speaking for. Thus, the attacker can start a phrase, run some

target JavaScript function, and then cancel the phrase to obtain a timing target. Note that

while the callback must fire to get the duration value, the duration measurement stops when

window.speechSynthesis.cancel() is called, not when the callback eventually

fires. This makes the WebSpeech API a pseudo-exitless clock in Firefox, even though we

must technically wait for a callback to get back the duration measurement. Time moved for-

ward, we just couldn’t observe repeatedly. Since we can only measure the clock by stopping

it, the clock-edge technique cannot be used to enhance the accuracy of the clock.

The WebSpeech API is only supported in Firefox 44+, and on many systems will need to

be manually enabled in about:config. Additionally, unless the OS has speech synthesis

support, the clock cannot be used as it will never start speaking. Ubuntu can get this support

by installing the speech-dispatcher package.
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4. SharedArrayBuffers. While we did not test these, as the implementation is still ongoing,

any sort of shared memory between JavaScript instances constitutes an exitless clock. As

demonstrated in [78], this can be used as a very precise clock in real attacks.

Exiting clocks

Exiting clocks are far more numerous but also significantly less useful to an attacker, as

their measurements and target execution are unlikely to be continuous.

1. setTimeout. Set to fire every millisecond, these then set a globally visible “time” variable

when they do. This is the most basic of the exiting clocks. We set timeouts every millisecond

as this is lowest resolution that can be set.

2. CSS animations. Set to finish every millisecond, these then set a globally visible “time”

variable in their completion callback. These behave almost identically to setTimeouts and

are measured in the same way.

3. WebVTT. This API can set subtitles for a <video> with up to millisecond precision and

check which subtitles are currently displayed. The WebVTT interface provides a way for

<video> elements to have subtitles or captions with the <track> element. These captions

are loaded from a specified VTT file, which can specify arbitrary subtitles to appear for

unlimited duration with up to millisecond precision. By setting a different subtitle to appear

every millisecond, the page can determine how much time has elapsed since the video

started by checking the track.activeCues attribute of the <track> element. This only

updates when JavaScript is not executing.

4. A rate limited download. Using a cooperating server to send a file to the page at a known rate

causes regular progress updates to be queued in callbacks. Using the onprogress event

for XMLHTTPRequests (XHRs), the page can get a consistent stream of callbacks to a clock

update function. Note that the rate of these callbacks is related to the size of the file being
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retrieved, as well as the upload rate of the server. In our experiments, we used a file 100mB in

size, with a server rate limited to 100kB/s using the Linux utility trickle. The page then

assumes that the server is sending data at exactly 100kB/s and has an initial learning period to

determine the rate at which the onprogress callbacks fire. After that is complete, the page

can continue running as usual, with the assumption that it now has a regular callback firing at

the calculated rate. Note that the onprogress events can also be requested to fire during

the loading of <video> elements.

5. Video/audio tag played data. These contain the intervals of the media object that have

thus far been played. By checking the furthest played point repeatedly, we can measure the

duration of events. In Firefox, this only updates after JavaScript exits, but in Chrome, it

updates asynchronously (making it an exitless clock for Chrome).

6. Cooperating iframes/popups from same origin. By creating a popup in the same origin, or

by embedding iframes from the origin, two pages can cooperate and act on the same DOM

elements. In our testing there was no way to get exitless DOM element manipulations updates

in this situation. Thus, this case reduces to the setTimeout case or another similar method.

We do not present any timing results for these clocks. Critically, if a method of sharing DOM

element updates exitlessly were found this would become an exitless clock.

4.3.3 Performance of implicit clocks

The granularity, precision, and accuracy of implicit clocks varies widely by technique.

We observe that most implicit clocks can be improved with the clock-edge technique from section

4.2. By substituting the performance.now major clock with the implicit clock technique,

and using a suitable minor clock, most techniques showed notable improvements in accuracy. In

this case, we want to examine how easy it would be to differentiate two different duration events.

Thus, tight error bounds that are consistent are ideal.
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Figure 4.4. WebVTT error measurements with and without clock-edge technique

Applying the clock-edge technique to exitless clocks only requires the replacement of the

explicit performance.now call to some other exitless clock; no change to the minor clock

is needed. Exiting clocks require a new minor clock technique; instead of a tight loop, the minor

clock must schedule regular timeouts that check the state of the implicit major clock. Otherwise,

the exiting major clock would not change state while the minor clock is running. While repeated

setTimeout calls would work, setTimeout of 0 is actually a 4ms timeout per the HTML5

spec, making it a major clock. Instead, we use repeated postMessage calls to the current

window. These execute at a much higher rate, but the period is unknown. Thus the new implicit

major clock now has a fast, unknown period minor clock, just as in the exitless case.

Measurements were done with the same Firefox as in section 4.2. Error (y values) was

calculated as the difference between the clock technique measurement and the actual duration

as reported by performance.now. Target durations (x values) are the expected duration (N

milliseconds) of the target event, which may differ slightly from actual duration due to system
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Figure 4.5. setTimeout error measurements with and without clock-edge technique

load or even the implicit clocks themselves interfering in the case of exiting clocks. Each target

was measured 100 times, with measured durations of 0 or less removed. While actual durations

varied slightly from expected, there was not considerable noise.

The exitless target we measure is a loop that runs for N milliseconds, as determined by

performance.now. Our exiting target is a setTimeout for N milliseconds.

Figures 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9 show the clock technique error with and without

clock-edge improvements for a variety of clock techniques described above. WebSpeech has

no clockedge data for the reasons detailed in 4.3.2. Note that the y-axis differs per figure, to

allow for easier comparison between clock-edge and non-clock-edge results. As can be seen

in WebVTT, throttled XHRs, and video frame data, many clock techniques have a large native

period that they operate at. These large periods leave plenty of space for clock-edge to improve

accuracy. WebVTT shows massive improvement in the clock-edge case due to the precision of

its major clock ticks; the more precise the original technique, the more accurate clock-edge can
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Figure 4.6. Video frame error measurements with and without clock-edge technique

be.

Figures 4.10b and 4.10a show the comparison of the averaged error for all techniques

and all techniques with clock-edge respectively. The closer a line is to 0 on these graphs, the

more accurate the averaged measurements will be for that technique. Again, the exceptional

accuracy of WebVTT with clock-edge for long-duration events is evident.

4.4 Fermata

In this section we describe Fermata, a theoretical browser design that provably degrades

all attacker visible clocks. Sections 4.5 and 4.6 describe our prototype implementation, Fuzzyfox,

and an evaluation. Fermata is an adaptation of the fuzzy time operating systems concept detailed

in [44] to web browsers.

Since browser vendors have expressed an interest in degrading time sources available

to JavaScript, we present Fermata as a design ideal for a browser that will provably degrade all
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Figure 4.7. Throttled XMLHTTPRequest error measurements with and without clock-edge
technique

clocks. Fermata’s goal is to provide the attacker with only time sources that update at a rate such

that all possible timing side channels have a bounded maximum bandwidth. This includes the

use of all the implicit clocks described in section 4.3 as well as any other such clock unknown to

us.

4.4.1 Why Fermata?

We propose Fermata because we believe that attempting to audit and secure all possible

channels in a modern web browser is infeasible. The evaluation of a provable security focused

microkernel found several tricky timing channels [19]. In that case, the microkernel was designed

to be audited and already had a number of concerns accounted for; this is not true in the case of a

modern web browser. Rather than allow any unknown channel to leak data arbitrarily until fixed,

Fermata restricts all known and unknown channels to leak at or below a target acceptable rate.

Fermata proposes a principled alternative to the “find and mitigate all clocks” methodol-
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Figure 4.8. CSS animation error measurements with and without clock-edge technique

ogy that Tor Browser has already begun. Rather than manually examine every DOM manipulation,

extension, or new feature, Fermata requires minimal defined interfaces between all components.

By automatedly proving that all information passes through these interfaces and that all such

interfaces are subject to the fuzzying process, Fermata will drastically reduce the burden of code

that needs to be examined. This is analogous to other such approaches in the programming

languages and formal software community.

Limiting the channel bandwidth for an attacker leaking information is not a complete

solution to timing attacks on browsers, but it is a realistic one. Previous attacks on history

sniffing [8] [81] have consistently cropped up. These privacy breaches are only as valuable as

the amount of data they can collect. Learning that a user has visited 2-3 websites is not likely

to create a unique profile of them. Learning tens of thousands of websites likely would [86].

History sniffing attacks are therefore classified based on how fast they can extract the visited

status of a URL. By limiting the rate at which this information can leak, Fermata can make
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Figure 4.9. WebSpeech error measurements without clock-edge technique

history sniffing impractical. As an example, [86] indicates that an attacker may need to sniff in

excess of 10,000 URLs to create a reasonable fingerprint for a user. With an attack like [81]

the attacker can read 60 or more URLs per second. Previous attacks not utilizing timing side

channels read in excess of 30,000 URLs per second.

We expect that Fermata would allow a channel bandwidth of ≤ 50 bits per second in

the general case, and ≤ 10 for security critical workflows. The protection is even stronger than

initially obvious, as attacks that rely on small timing differences are entirely unusable. Only

attacks that can scale their detection thresholds up (for example, Andrysco et al [8]) can still leak

data. If the attack relies on a small, inherent microarchitecture timing, such as Oren et al’s [67]

cache timing attack, which measured differences around 100ns, this timing difference may no

longer be perceptible at all. An additional benefit is that many of these attacks require intensive

learning phases, during which many measurements must be taken to establish timing profiles.

Fermata would force this learning phase to take significantly longer, adding to the time-per-bit of
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(a) Error without clock-edge (b) Error with clock-edge where available

Figure 4.10. Average error for all clock techniques with and without clock-edge

information extracted. From this survey of previous attacks, we believe that a strong limitation

on channel bandwidth represents an powerful defense against timing attacks in browsers.

4.4.2 Threat model

We define our attacker as the canonical web attacker who legitimately controls some

domain and server. They are able to cause the victim to visit this page in Fermata and run

associated JavaScript. The attacker thus has two viewpoints we must consider: any external

server controlled by the attacker and the JavaScript running in Fermata.

The attacker in our case possesses a timing side-channel vulnerability they wish to use

on Fermata. The specific form of the vulnerability does not matter, only that it can be abstracted

as a single JavaScript function that is called either synchronously or asynchronously. The

attacker uses the duration of this function to derive secret information about the victim, possibly

repeatedly.

We do not present a solution for plugins like Adobe Flash or Java applets. Significant

changes to the runtime of these plugins on-par with Fermata itself would need to be made for

them to be similarly resistant. Considering the number of known vulnerabilities and privacy

disclosures in most of these plugins, we do not believe they should be a part of a browser design
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focusing on security and privacy. Alternatively, such plugins should be disabled during sensitive

work flows.

The attacker succeeds against Fermata if they are able to extract bits using their side

channel at a higher rate than the maximum channel bandwidth.

4.4.3 Design goals and challenges for Fermata

Fermata must mediate the execution of JavaScript to remove all exitless clocks and

degrade all exiting clocks. This would include mediating and randomly delaying all network I/O,

local I/O, communication between JavaScript instances (iframes, workers, etc), and communica-

tion to other processes (IPC). If Fermata were additionally able to make all DOM accesses by

JavaScript asynchronous and delay them in the same principled fashion, this would accomplish

our goals. The coupling of JavaScript’s globally accessible variables to the DOM represents the

most significant challenge to such a design and presents a shared state problem not found in the

model for this work [44].

Given this shared state problem, Fermata has two options for JavaScript: redesign

JavaScript execution to be entirely asynchronous or degrade explicit clocks and mediate known

APIs in a principled manner. The former provides a formal guarantee but cannot be done in

current browser architectures. We explore options for the latter later in this section and in

Fuzzyfox.

4.4.4 Fermata guarantees

We believe that the analysis of Hu’s fuzzytime by Gray in [35] applies to Fermata. The

means that we can place an upper bound on the leakage rate of Fermata at 1
g/2 symbols per

second, assuming the median tick rate of g
2 .

As in [35], we assume that increasing the size of the alphabet used will provide negligible

benefits. Thus, this bound is an upper bound for the bits-per-second leakage rate of Fermata.

We view the vulnerable functionality targeted by the attacker in the strongest possible way: the
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attacker has complete control over when and how it leaks timing information. This is effectively

the high/low privilege covert channel scenario the fuzzytime disk contention channel is analyzed

under. Similarly, in Fermata, the leaking feature may have access to the same fuzzy clock as

the attacker. This allows them to synchronize instantly from “low to high” privilege as in the

fuzzytime analysis. Thus, the side channel threat model Fermata operates under is a subset of

the fuzzy time model.

There is further analysis of the capacity of covert channels with fuzzy time defenses

in [37]. The general case problem of covert channel capacity under fuzzy time appears to be

intractable but can be bounded under specific circumstances.

Transmitted bits vs information learned

Fermata makes a guarantee about the actual transmitted bitrate of some side channel.

This has obvious benefits in the case of leaking a CSRF token or a cryptographic key: the bits

the attacker needs to learn equals the number of bits in the key or token. However, this becomes

trickier to quantify with a goal like history sniffing where the details of the side channel can

influence what the attacker learns with each leaked bit.

Consider a timing side channel that can indicate if a single URL has been visited by the

victim one at a time. Each time the channel is used one bit of information (visit status of the

URL) is leaked. If the attacker wishes to learn the visit status of 10,000 URLs they must check

each individually.

If instead a timing side channel could indicate if any URLs from an arbitrary set were

visited, the attacker could use this along with prior knowledge that almost all URLs have not been

visited to learn about more URLs in less bits. Given some set of 10,000 URLs, the side channel

indicates that at least one was visited and then, in a divide-and-conquer approach, the first half

indicates that none were visited. How many bits were leaked? Two bits were transmitted: that

some URLs were visited in the 10,000, and that no URLs in the first 5,000 were visited. However,

we have learned the visit status of 5,000 URLs. This is only possible because the attacker can
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assume the majority of URLs are not visited.

We believe that Fermata’s guarantees still constitute a valuable defense against using

timing side channels for history sniffing. First, not all history sniffing side channels have allowed

checking the visit status of batches of URLs. In these cases Fermata limits learning the visit

status of each URL individually. Second, if the attacker wishes to learn specific URLs from

the browsing history (ex: to launch a targeted phishing attack), rather than just learn a rough

fingerprint, they will still need to examine each individual URL regardless of how the side

channel can operate.

Fermata cannot provably prevent a timing side channel from operating; it can only

constrain the rate of bits transmitted across the channel. For any side channel it is important to

consider the attacker’s goals along with how the side channel operates to understand what level

of mitigation Fermata will provide. There are multiple reasons (compression, prior knowledge,

etc.) that might lead to a side channel exhibiting behavior like described above. In all of these

cases Fermata provides the same guarantee about channel bandwidth.

4.4.5 Isolating JavaScript from the world

A potential solution for JavaScript is to remove all run-to-completion violations, effec-

tively ensuring that JavaScript cannot observe any state changes to the DOM or otherwise during

a single execution. This necessarily includes all realtime clock accesses, as well as any other

discovered exitless clocks. Since JavaScript will always have access to a fine grained minor

clock (the for loop), it is critical that all exitless major clocks be removed. In the case of

performance.now, this will result in the feature becoming an exiting clock, requiring that

JavaScript stop execution before the available clock value changes.

The catch of the latter method is in how to remove all potential exitless clocks. If the

upcoming SharedArrayBuffer API becomes available, this presents a highly accurate exitless

clock that Fermata cannot mitigate without returning it to a message passing interface. Removing

all of these potential exitless clocks requires an examination of all interfaces the JavaScript
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runtime has.

With all exitless clocks removed, the design need only focus on degrading exiting clocks

to meet the target maximum channel bandwidth.

4.4.6 Degrading explicit clocks

Explicit clocks (ex: performance.now, Date, etc.) are degraded to some granularity

g and update unpredictably. As in Hu [44], we accomplish this by performing updates to the

clock value (at the granularity g) at randomized intervals. g is a multiple of the native OS

time grain gn (generally 1ns). Each randomized interval is a “tick,” during which the available

explicit clocks do not change. At the beginning of each tick, we update the Fermata clock to the

rounded-down wallclock. Since the tick duration is not the same as g, the Fermata clocks will

not always change in value every tick. This design guarantees that the available explicit clocks

are only ever behind and are behind by a bounded amount of time, g−gn +(g/2). Note that a

clock’s granularity does not alone define the accuracy to which it can be used to time some event,

as seen with section 4.2.

Tick duration is not constant but is instead drawn from a uniform distribution with a

mean of g/2. If intervals were constant and thus clock updates occurred exactly on the grain, the

attacker could use the same clock-edge technique as in section 4.2.

4.4.7 Delaying events

The randomized update intervals (ticks) are further divided into alternating upticks and

downticks for the purposes of delaying events and I/O. This mimics their usage in Hu [44].

Downticks cause outbound queued events to be flushed, and upticks cause inbound events to be

delivered.
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4.4.8 Tuning Fermata

Since the defensive guarantee provided by Fermata is only a maximum channel band-

width, a few users may want to change the tradeoff between responsiveness and privacy. Fermata

will provide this option via a tunable privacy setting that allows setting the acceptable leaking

channel bandwidth. In turn, this will modify the average tick duration and the explicit time

granularity, both of which affect usability. We expect that only developers (including of browser

forks like Tor Browser) or users with specific privacy needs would interact with these settings.

4.5 Fuzzyfox prototype implementation

In this section we describe Fuzzyfox4, a prototype implementing many of the principles

of the Fermata design in Mozilla Firefox. Fuzzyfox is not a complete Fermata solution but does

show that the removal of exitless clocks and the delaying of events is a feasible design strategy

for a browser.

Fuzzyfox attempts to mitigate the clocks of sections 4.2 and 4.3 by using the ideas in

Fermata. Web browsers have an interest in degrading clocks available to JavaScript to reduce the

impact of both known and unknown timing channel attacks. Fuzzyfox is a concrete demonstration

of techniques that will make a browser more resistant to such timing attacks. As in Fermata,

Fuzzyfox has a clock grain setting (g) and an average tick duration (ta = g/2). All explicit clocks

in Fuzzyfox report multiples of g.

We will refer to Firefox when discussing default behavior and Fuzzyfox when discussing

the changes made.

4.5.1 Why Fuzzyfox?

We built Fuzzyfox for three reasons:

1. Building a new web browser is a monumental task.
4Fuzzyfox is available as a branch at https://github.com/dkohlbre/gecko-dev. It should be treated as an engineer-

ing prototype.
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2. We did not know if a Fermata-style design would result in a usable experience. It was entirely

possible that the delays induced would render any Fermata-style designs unusable.

3. We want to deploy the insights of channel bandwidth mitigation to real systems like Tor

Browser.

Fuzzyfox does not have the complete auditability advantages that Fermata would. How-

ever, we believe that our insights about principled fuzzying of explicit clocks can be directly

applied to Tor Browser as an improvement to their ongoing efforts.

4.5.2 PauseTask

The core of the Fuzzyfox implementation is the PauseTask, a recurring event on the

main thread event queue. The PauseTask provides two primary functions: it implicitly divides

the execution of the event queue into discrete intervals, and it serves as the arbiter of uptick and

downtick events.

Once Firefox has begun queuing events on the event queue, Fuzzyfox ensures that the

first PauseTask gets added to the queue. From this point on, there will always be exactly one

PauseTask on the event queue.

PauseTask does the following on each execution: determines remaining duration,

generates retroactive ticks, sleeps remaining duration, updates clocks, flushes queues, and queues

the next PauseTask.

Determine remaining duration

The PauseTask checks the current OS realtime clock (T1) with microsecond accuracy

using gettimeofday. Comparing this against the expected time between ticks (De) and the

end of the last PauseTask (T2) gives the actual duration (Da). If Da ≤ De, PauseTask skips

directly to sleeping away the remaining duration, De−Da.
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Optional: Retroactive ticks

Otherwise, PauseTask must retroactively generate the upticks and downticks that

should have occurred. This ensures that even by being long running JavaScript cannot force a 0

sleep duration PauseTask.

Sleep remaining duration

PauseTask finishes out the remaining duration via usleep. usleep is not perfectly

accurate, and has a fixed overhead cost. In our testing, usleep error varies based on the duration

but is never enough to be an issue for Fuzzyfox.

Update all system clocks and flush queues

PauseTask now generates the new canonical system time. This is accomplished by

taking the OS realtime clock and rounding down to the Fuzzyfox clock grain setting.

There are two underlying explicit time sources available to JavaScript, Time and

performance. PauseTask directly updates the canonical TimeStamp time, which is used by

performance, and delivers a message to the JavaScript runtimes to update Time’s canonical

time. Our review found that all of the other time sources we knew of used TimeStamp.

In our prototype, the only I/O queue that needs to be flushed is the DelayChannelQueue

(see section 4.5.3.) This only occurs if the currently executing PauseTask is a downtick.

Queue next PauseTask event

Finally, PauseTask queues the next PauseTask on the event queue. This sets the

start time (T1), marks the new PauseTask as either uptick or downtick, as well as drawing a

random duration from the uniformly random distribution between 1 to 2× ta. PauseTasks are

queued exclusively on the main thread to ensure they block JavaScript execution as well as all

DOM manipulation events.
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4.5.3 Queuing

All events visible to JavaScript must be queued in Fuzzyfox. Unfortunately, there

is not a singular place or even explicit queues available for all events in Firefox. We use

PauseTask to create implicit queues for all main thread events (including JavaScript callbacks,

all DOM manipulations, all animations, and others) and construct our own queuing for network

connections.

Timer events (including CSS animations, setTimeout, etc.) do not need to be explicitly

modified from Firefox behavior, as they run in a separate thread that checks when timers should

fire based on TimeStamp. As Fuzzyfox ensures all TimeStamps are set to our canonical Fuzzyfox

time, this is not a problem.

DelayChannelQueue

We implemented a simple arbitrary length queue for outgoing network connections

called DelayChannelQueue. This queue contains any channels that have started to open

and stops them from connecting to their external resource. In the Fuzzyfox prototype, we only

queue outgoing HTTP requests, although it could easily be extended to more channel types.

Upon receiving a downtick notification from PauseTask, the queue is locked and all currently

queued channel connections are completed and flushed from the queue.

4.6 Fuzzyfox evaluation

We evaluated our prototype Fuzzyfox in both effectiveness (how it degrades clocks) and

performance.

All evaluations are compared against a clean Firefox build without the Fuzzyfox patches.

Firefox trunk5 was used as the basis and built with default build settings. Fuzzyfox patches

are then applied on top of this commit and built with the same configuration. All tests were

5Firefox tests were done with commit 0ec3174fe63d8139f842ce9eb6639349759ff4e5 for clock tests, and
c4afaf3404986ccc1d221bc7f4f3f1dcf39b06fc for the page load tests

98



performed on an updated Ubuntu 14.04 machine with an Intel i5-4460 and 14GB of RAM.

The only applications running during testing were the XFCE window manager and Fuzzyfox.

Fuzzyfox and Firefox were both tested using the experimental e10s Firefox architecture. NSPR

logging was enabled to capture data about Fuzzyfox internals.

4.6.1 Limitations

Fuzzyfox is not a complete Fermata implementation and is unable to guarantee a max-

imum channel bandwidth. Since we did not isolate the JavaScript engine from the DOM or

all I/O operations, we did not interpose on all interfaces as would be required in a Fermata

implementation. This is purely a practical decision, as accomplishing this in Firefox would

require manually auditing the entire codebase. We do not, for example, interpose on synchronous

IPC calls from JavaScript. See section 4.6.2 for an example of how this can break the Fermata

guarantees.

Unfortunately, since our PauseTasks can be delayed by long running JavaScript on

the main thread, we can no longer bound the difference between the OS realtime clock and

the available explicit clocks. We do still guarantee that all explicit clocks are only ever behind

realtime.

While we experimented with a number of different grain settings, the settings providing

very high privacy guarantees (100s of milliseconds) have severe usability impact. We believe

that a clean Fermata implementation may not incur such a strong usability impact at similar grain

settings.

4.6.2 Effectiveness

Effectiveness is measured as the available resolution for a given clock. In the ideal case,

all clocks in Fuzzyfox should be degraded provide a resolution no less than g. We measure the

observed properties of the clocks described in section 4.3 between Firefox and Fuzzyfox. We set

the explicit time granularity (g) to 100ms and the average PauseTask interval (ta) to 50ms for
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Figure 4.11. performance.now measurements with clock-edge on Fuzzyfox (exiting) and
Firefox (exitless, 100ms grain)

these tests. We chose g = 100ms because a large g value most clearly illustrates the difference

between Fuzzyfox and Firefox. See section 4.6.3 for an evaluation of the impact of high g values

on performance.

The following figures show scatter plots for several clock techniques as they operate in

Firefox and in Fuzzyfox. In each, a perfectly accurate clock would follow the dashed grey line

on x = y. Note that these figures show actual duration and clock technique duration, rather than

target duration and error as in section 4.3.3. This is due to Fuzzyfox being unable to dependably

schedule targets less than g (100ms) in duration. Thus, while the same testing code was used in

Fuzzyfox and in Firefox, the actual durations of events are much longer in Fuzzyfox. Finally,

there are no exitless clocks that we know of in Fuzzyfox to test, which would have been a closer

comparison.
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Figure 4.12. Frame data clock measurements on Firefox and Fuzzyfox

performance.now

Since time no longer moves forward during JavaScript execution, performance.now

is now an exiting clock. Figure 4.11 shows the results of using the clock-edge technique on

performance.now for both Fuzzyfox and Firefox with a grain set to 100ms. Notably, clock-

edge no longer improves the accuracy of the measurements! This demonstrates that the Fuzzyfox

model successfully degrades explicit clocks.

Video frame data

Unexpectedly, Fuzzyfox transforms the video frame data clock from exitless to exiting.

This is probably because the frame extracted for canvas is determined using the current explicit

clock values (TimeStamp.) Since time does not move forward during JavaScript execution, frame

data is now an exiting clock. In general, we expect that run-to-completion violations (and by

extension most exitless clocks) would not be properly degraded by Fuzzyfox. Figure 4.12 shows

the exiting frame data clock on Fuzzyfox and Firefox.
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Figure 4.13. WebVTT clock measurements on Firefox and Fuzzyfox

WebSpeech API

Fuzzyfox degrades the WebSpeech API only because the elapsedTime field is drawn

using the explicit clocks in Fuzzyfox. The starting and stopping of the speech is still synchronous,

so it is possible some other piece of information passed back by the speech synthesis provider

could provide a more accurate clock. WebSpeech should not be considered properly isolated

by Fuzzyfox. Only if the starting and stopping of speech synthesis were queued like other events

would Fuzzyfox correctly handle WebSpeech.

setTimeout

As setTimeout events are fired from the timer thread based on the degraded explicit

clocks, they are no longer able to fire more often than the explicit time grain g of 100ms.
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CSS Animations

As with setTimeout, CSS animation events are fired from the timer thread based on

the degraded explicit clocks. Thus, they too are not able to be used as a clock of finer grain than

the explicit time grain g.

XMLHTTPRequests

XMLHTTPRequests are properly degraded by Fuzzyfox. Since the callbacks for on-

progress are queued on the main event queue and then gated by PauseTask, they are no

longer timely when processed.

WebVTT subtitles

We examined the WebVTT subtitle implicit exiting clock in detail, as it performed among

the best with the clock-edge technique on vanilla Firefox. Figure 4.13 shows the results for the

same WebVTT clock techniques as described in section 4.3.2 on both Fuzzyfox and Firefox.

Note that the clockedge code provided no benefits to the Fuzzyfox case.

4.6.3 Performance

Generalized performance impact is difficult to measure, as most performance tools for

browsers rely on accurate time measurements via JavaScript.

We performed a series of page load time tests, which show predictable results. We

measure the impact of both depth of page loads and the spread of initial requests. Our testing

setup consisted of 20 test pages and 5 different fuzzyfox/Firefox configurations. The depth

of the test pages represents how many sequential requests are made. Each request consists of

inserting a script file of the form in figure 4.15. Each one has the loaded script be the next “layer”

down, with layer 0 being an empty script. Thus, a test page that is 3 deep makes 4 sequential

requests: page.html, layer2.js, layer1.js, layer0.js. Spread is achieved by

the base page.html performing several duplicate initial requests to the top layer. Thus, a
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Figure 4.14. Page load times with variable depth for all Fuzzyfox configurations at a spread of 2

var njs=document.createElement(’script’)
njs.setAttribute(’type’,’text/javascript’)
njs.setAttribute(’src’,’layer2.js’)
document.getElementsByTagName(’head’)[0].appendChild(njs)

Figure 4.15. Iterative page load JavaScript

spread of 2 and a depth of 2 results in requests for: page.html, layer1.js, layer1.js,

layer0.js, layer0.js. After the final page load completes, the total time from initial page

navigation until completion is stored, and this process is repeated 1000 times per page test. We

generate 20 test pages by combining up to 5 layers of depth with a spread from 1 to 5. We served

the test pages via a basic nginx configuration running on the same host as the browser.

Figures 4.14 and 4.16a show two different views of some of the results, with the 95th

percentile of load times being shown for g = 100ms. As expected, increasing the spread for

a given depth (as shown in figure 4.16a) results in almost no change to load times. All other

browser configurations (see figure 4.16b for g = 5ms) had nearly identical results, with differing
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(a) Page load times for g = 100ms (b) Page load times for g = 5ms

Figure 4.16. Page load times with variable spread and depth

y-intercepts based on g. This occurs because outgoing HTTP requests in Fuzzyfox are batched,

so queuing multiple requests at once does not incur any g-scaled penalties. However, as figure

4.14 shows, increasing the depth incurs a linear overhead with the slope and intercept scaled

by the value of g. The worst case for Fuzzyfox are pages that do large numbers of sequential

loads, each requiring JavaScript to run before the next load can be queued. Unfortunately, many

modern webpages end up performing repeated loads of various libraries and partial content. One

potential solution would be more widespread use of HTTP2’s Server Push which would alleviate

the repeated g scaled penalties for resource requests.

JavaScript engine tests, such as JetStream, reported identical scores of 181 for both

Firefox and Fuzzyfox.6 Fuzzyfox predictably records a maximum FPS equal to the average

PauseTask fire rate or 20 FPS for g = 100ms, as compared to 60 FPS in the Firefox case.

Tor Browser

We also ran our page load tests on vanilla Tor Browser7. Rather than access the pages

over the localhost interface, they are accessed over the Tor network. No other changes to the

6Fuzzyfox was modified to report valid performance.now results for performance testing
7Tor Browser git revision: b60b8871fa08feaaca24bcf6dff43df0cd1c5f29 modified to report accurate perfor-

mance.now values
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(a) Page load completion times at a spread of 0 (b) Page load completion times at a spread of 4

Figure 4.17. Range of page load completion times with variable depth and spread for Tor
Browser and Fuzzyfox g = 100ms

test setup were made. Due to the major changes in routing, the load times we observed are far

more variable than in the Firefox or Fuzzyfox case and show no significant trends on the whole.

If we compare the range of page load times between Fuzzyfox (g = 100ms) and Tor Browser

in figures 4.17a and 4.17b, we see that Tor Browser imposes a significantly higher overhead

most of the time in both initial page load and in page load completion. Other spread levels show

similar behavior. As in previous figures we show the 95th percentile load completion times but

we additionally show the range from the minimum completion (onload fires) time as a shaded

region.

Real world page loads

Table 4.3 shows a rough macro-benchmark of real-world page load times for Firefox,

Fuzzyfox (various grains), and Tor Browser. In each case, the same Google search results page

was loaded. These tests were manually performed and the reported page load time comes from

the Firefox developer tools. Each load requested between 9 and 12 resources. The “force reload”

column corresponds to a cache-less reload of the page, whereas the “reload” column indicates the

load time with caching allowed. Minor differences between the reload and force reload results

for a given browser are not statistically significant as we only have 10 samples.
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Table 4.3. Average page load times for https://www.google.com/?gws_rd=ssl#q=test+search
with 10 reloads and 10 force reloads (no caching) on Firefox, Fuzzyfox, and Tor Browser

Browser or Grain(ms) Reported load time(s)
Reload Force Reload

Firefox 0.82 0.86
0.5 0.84 0.79
1 0.85 0.85
5 0.94 0.94
10 1.03 1.04
50 2.09 1.71
100 2.86 2.60
Tor 3.78 7.18

While a larger study of more real-world pages would be valuable, such a study is larger in

scope than this paper can cover. To perform such a measurement, we would need to individually

determine a “load complete” point for each test page and re-instrument Fuzzyfox to enable

measurements at these exact points. Google search results were chosen specifically because they

do not continue to load resources indefinitely as many major websites do. (Ex: nytimes.com,

youtube.com, etc.) We therefore leave a more detailed real-world page load time and user

experience impact study to future work.

These metrics are incomplete, as they do not measure interactivity of the pages, which

can suffer in the Fuzzyfox case more than in Tor Browser. We leave further analysis of various

performance impacts to future work.

While higher g settings cause significant page load time increases, these overheads are

acceptable to some privacy conscious users and developers as demonstrated by Tor Browser. We

do not have metrics for the impact of using both Tor Browser and our Fuzzyfox patch set, but

we expect the overheads to be additive in the worst case. One option for integration with Tor

Browser specifically would be to tune the value of g based on the setting of the “security slider”

[68].

In light of these metrics, a g setting of g≤ 5ms is likely tolerable for average use cases,

while higher settings (up to and including g = 100ms) would likely be tolerated by users of Tor
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Browser. Ideally the clock fuzzing and other features as appropriate will be deployed in Firefox,

and can be configured for a higher g in Tor Browser. If a more complete version of Fermata is

developed, it will be worthwhile to run user studies before deploying g settings.

4.7 Related work

Popek and Kline [69] were the first to observe that the presence of clocks opens covert

channels. They suggested that virtual machines be presented only with virtual clocks, not “a real

time measure.” Lipner [60] responded that keeping virtual machines from correlating virtual

time to real time is a “difficult problem,” since time is “the one system-wide resource [. . . ] that

can be observed in at least a coarse way by every user and every program.” Lipner suggested

“randomizing the relation of virtual and real time” to add noise to the channel. Lipner also

reported private communication from Saltzer that timing channels had been demonstrated in

Multics by mid-1975.

Digital’s VAX VMM Security Kernel project( initiated in 1981 and canceled in 1990

before its evaluation at the A1 level could be completed [49]) was the first system to attempt

to randomize the relationship of virtual and real time. The VAX VMM Security Kernel team

published three important papers describing their system. The first, by Karger et al. [48, 49], gave

an overview of the system. The second, by Wray [87], presented a theory of time (“[w]e view

the passage of time as being characterized by a sequence of events which can be distinguished

one from another by an observer") and of timing channels and is the source for our view, in this

paper, of timing channels as arising from the comparison of a reference clock with a modulated

clock. Wray noted that a process that increments a variable in a loop can be used as a clock.

The third, by Hu [44, 45], described the VAX VMM’s fuzzy time system and is the inspiration

for our paper. (A 2012 retrospective [59], though not the contemporaneous papers, reveals that

the fuzzy time idea was developed in collaboration with the National Security Agency’s Robert

Morris.) We describe many of the details of the fuzzy time system elsewhere in the paper. The
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1992 journal version [45] of Hu’s paper gives a more complete security analysis than does the

1991 conference version [44]. In particular, it notes that fuzzy time would be defeated if the

VM could devote a processor thread to incrementing a counter in memory shared with its other

processor threads. This attack did not affect the Vax VMM Security Kernel, since it limited

virtual machines to a single processor and did not support shared memory; it would apply to

browsers if the proposed Shared Memory and Atomics specification [41] is implemented.

Several followup papers examined the security of fuzzy time. Trostle [82] observed that

if scheduler time quanta coincide with upticks and if the scheduler employs a simple FIFO policy,

then the scheduler can be used as a covert channel with 50 bps channel capacity. To send a bit, a

high process either takes its entire time quantum or yields the processor; low processes try to send

messages to each other in each time quantum. Which and how many messages arrived reveals

the high process’ bit. Gray showed attacks on fuzzy time that exploit bus contention [36] and

calculated a channel capacity for shared buses under fuzzy time under the assumption (satisfied in

the case of the VAX VMM Security Kernel) that a low receiver can immediately notify the high

sender when it receives an uptick [35]. A later tech report combines both papers by Gray [37].

Martin et al. [61] translated fuzzy time to the microarchitectural setting, proposing and

evaluating a new microarchitecture in which execution is divided into variable-length “epochs.”

The rdtsc instruction delays execution until the next epoch and returns a cycle count randomly

chosen from the last epoch. Because their focus is microarchitectural timing channels, Martin

et al. argue that other sources of time, such as interrupt delivery, are inherently too coarse grained

to need fuzzing. Martin et al. observe that simply rounding rdtsc to some granularity would

be susceptible to clock-edge effects.

The success of infrastructure-as-a-service cloud computing brought with it the risk of

cross-VM side channels [72]. Aviram et al. [10] proposed to close timing channels in cloud

computing by enforcing deterministic execution and experimented with compiling a Linux kernel

and userland not to use high-resolution timers like rdtsc, observing a drop in throughput.

Vattikonda et al. [84] showed that it is possible to virtualize rdtsc for Xen guests, reducing
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its resolution (but allowing clock-edge attacks). Ford [31] proposed timing information flow

control, or TIFC, “an extension of DIFC for reasoning about [. . . ] the propagation of sensitive

information into, out of, or within a software system via timing channels,” and proposed two

mechanisms for implementing TIFC: deterministic execution and “pacing queues,” which are

an extension of the VAX VMM Security Kernel’s interrupt queue mechanism.

Li et al. [56, 57] describe StopWatch, a virtual machine manager designed to defeat

timing side channel attacks. In StopWatch, clocks are virtualized to “a deterministic function of

the VM’s instructions executed so far”; multiple replicas of each VM are run in lockstep, and

I/O timing for all of them is determined by the (virtual) time observed by the median replica.

Finally, Wu et Al. [88] present Deterland, a hypervisor that runs legacy operating systems

deterministically. Deterland splits time into ticks and allows I/O only on tick boundaries. As in

StopWatch, virtual time in Deterland is a function of the number of instructions executed.

4.8 Conclusions and future work

Restricting or removing timing side channels is a complex task. Simple degradation of

available explicit clocks is an insufficient solution, allowing clock-edge techniques and implicit

clocks to obtain additional timing information.

By drawing upon the lessons learned from trusted operating systems literature, we

believe that browsers can be architected to mitigate all possible timing side channels. We propose

Fermata as a design goal for such a verifiably resistant browser. Our Fuzzyfox patches to

Firefox show that a Fermata-like design can intelligently make tradeoffs between performance

and security, while not breaking the current interactions with JavaScript. Fuzzyfox empirically

degrades clocks in a way that is not susceptible to clock-edge techniques, protecting timing

information.

Fuzzyfox requires a number of engineering improvements before it is ready to deploy

to users, but it has proved that the fuzzy time concept can be applied to browsers. Notably,
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more experiments with setting channel bandwidth and exposing such settings to users need to be

performed. Additionally, Fuzzyfox does not hook inbound network events, which a cooperating

server could use to derive the duration of events in Fuzzyfox. Other interfaces (WebSockets,

WebAudio, other media APIs) should be investigated for behavior that would break the Fuzzyfox

design. We expect that with these changes Fuzzyfox could be adapted for use in projects like Tor

Browser and protect real users against timing attacks.

Acknowledgements

We thank Kyle Huey, Patrick McManus, Eric Rescorla, and Martin Thomson at Mozilla

for helpful discussions about this work, and for sharing their insights with us about Firefox

internals. We are also grateful to Keaton Mowery and Mike Perry for helpful discussions, and to

our anonymous reviewers and to David Wagner, our shepherd, for their detailed comments.

We additionally thank Nina Chen for assistance with editing and graph design.

This material is based upon work supported by the National Science Foundation under

Grants No. 1228967 and 1514435, and by a gift from Mozilla.

Chapter 4, in part, is a reprint of the material as it appears in USENIX Security 2016.

Kohlbrenner, David; Shacham, Hovav, 2016. The dissertation author was the primary investigator

and the primary author of this paper.

111



Bibliography

[1] FDIV replacement program: Description of the flaw. Whitepaper: Onnline: http://www.int
el.com/support/processors/pentium/sb/CS-013007.htm, July 2004. Fetched: Nov 12, 2014.

[2] NVIDIA’s next generation CUDA compute architecture: Fermi. Whitepaper: On-
line: http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_arc
hitecture_whitepaper.pdf, 2009.

[3] Onur Acıiçmez and Çetin Kaya Koç. Microarchitectural attacks and countermeasures. In
Çetin Kaya Koç, editor, Cryptographic Engineering, chapter 18, pages 475–504. Springer-
Verlag, 2009.

[4] Johan Agat. Transforming out timing leaks. In Thomas Reps, editor, Proceedings of POPL
2000, pages 40–53. ACM Press, January 2000.

[5] Behzad Akbarpour, Amr T. Abdel-Hamid, Sofi‘ene Tahar, and John Harrison. Verifying a
synthesized implementation of IEEE-754 floating-point exponential function using HOL.
The Computer Journal, 53(4):465–488, May 2010.

[6] Mohammed I. Al-Saleh and Jedidiah R. Crandall. Application-level reconnaissance: Timing
channel attacks against antivirus software. In Christopher Kruegel, editor, Proceedings of
LEET 2011. USENIX, March 2011.

[7] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael
Emmi. Verifying constant-time implementations. In Thorsten Holz and Stefan Savage,
editors, Proceedings of USENIX Security 2016, pages 53–70. USENIX, August 2016.

[8] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner, and
Hovav Shacham. On subnormal floating point and abnormal timing. In Lujo Bauer and
Vitaly Shmatikov, editors, Proceedings of IEEE Security and Privacy (“Oakland”) 2015.
IEEE Computer Society, May 2015.

[9] Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. Predictive black-box mitigation of
timing channels. In Angelos Keromytis and Vitaly Shmatikov, editors, Proceedings of CCS
2010, pages 297–307. ACM Press, October 2010.

[10] Amittai Aviram, Sen Hu, Bryan Ford, and Ramakrishna Gummadi. Determinating timing
channels in compute clouds. In Adrian Perrig and Radu Sion, editors, Proceedings of
CCSW 2010. ACM Press, October 2010.

112

http://www.intel.com/support/processors/pentium/sb/CS-013007.htm
http://www.intel.com/support/processors/pentium/sb/CS-013007.htm
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf


[11] Manuel Barbosa, Andrew Moss, and Dan Page. Constructive and destructive use of
compilers in elliptic curve cryptography. J. Cryptology, 22(2):259–81, April 2009.

[12] L. David Baron. Preventing attacks on a user’s history through CSS :visited selectors, April
2010. Online: http://dbaron.org/mozilla/visited-privacy.

[13] Adam Barth, Collin Jackson, and John Mitchell. Robust defenses for cross-site request
forgery. In Paul Syverson and Somesh Jha, editors, Proceedings of CCS 2008, pages 75–88.
ACM Press, October 2008.

[14] Gilles Barthe, Gustavo Betarte, Juan Diego, Carlos Luna, and David Pichardie. System-
level non-interference for constant-time cryptography. In Moti Yung and Ninghui Li,
editors, Proceedings of CCS 2014. ACM Press, November 2014.

[15] Gilles Barthe, Tamara Rezk, and Martijn Warnier. Preventing timing leaks through trans-
actional branching instructions. Electron. Notes Theor. Comput. Sci., 153(2):33–55, May
2006.

[16] Nicola Tuveri Billy Bob Brumley. Remote timing attacks are still practical. In Vijay Atluri
and Claudia Diaz, editors, Proceedings of ESORICS 2011, volume 6879 of LNCS, pages
355–71. Springer-Verlag, September 2011.

[17] Andrew Bortz, Dan Boneh, and Palash Nandy. Exposing private information by timing
Web applications. In Peter Patel-Schneider and Prashant Shenoy, editors, Proceedings of
WWW 2007, pages 621–28. ACM Press, May 2007.

[18] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer Networks,
48(5):701–16, aug 2005.

[19] David Cock, Qian Ge, Toby Murray, and Gernot Heiser. The last mile: An empirical study
of timing channels on seL4. In Moti Yung and Ninghui Li, editors, Proceedings of CCS
2014, pages 570–81. ACM Press, November 2014.

[20] Jerome Coonen, William Kahan, John Palmer, Tom Pittman, and David Stevenson. A
proposed standard for binary floating point arthmetic. SIGNUM Newsl., 14(si-2):4–12,
October 1979.

[21] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter. Practical
mitigations for timing-based side-channel attacks on modern x86 processors. In Andrew
Myers and David Evans, editors, Proceedings of IEEE Security and Privacy (“Oakland”)
2009, pages 45–60. IEEE Computer Society, May 2009.

[22] Bruce Dawson. Floating-point determinism. Online: http://randomascii.wordpress.com/
2013/07/16/floating-point-determinism/, July 2013. Fetched: Nov 14, 2014.

[23] Bruce Dawson. Intel underestimates error bounds by 1.3 quintillion. On-
line: http://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-b
y-1-3-quintillion/, October 2014. Fetched: Nov 14, 2014.

113

http://dbaron.org/mozilla/visited-privacy
http://randomascii.wordpress.com/2013/07/16/floating-point-determinism/
http://randomascii.wordpress.com/2013/07/16/floating-point-determinism/
http://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/
http://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/


[24] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[25] Dominique Devriese and Frank Piessens. Noninterference through secure multi-execution.
In David Evans and Giovanni Vigna, editors, Proceedings of IEEE Security and Privacy
(“Oakland”) 2010, pages 109–24. IEEE Computer Society, May 2010.

[26] Isaac Dooley and Laxmikant Kale. Quantifying the interference caused by subnormal
floating-point values. In Matthew Sottile, Fabrizio Petrini, and Ronald Mraz, editors,
Proceedings of OSIHPA 2006, September 2006. Online: http://osihpa.cs.utep.edu/2006/
DooleySubnormal06.pdf.

[27] Cynthia Dwork. A firm foundation for private data analysis. Commun. ACM, 54(1):86–95,
January 2011.

[28] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3–4):211–407, August 2014.

[29] Chris Evans. Cross-domain search timing. Online: https://scarybeastsecurity.blogspot.com/
2009/12/cross-domain-search-timing.html, December 2009.

[30] Edward W. Felten and Michael A. Schneider. Timing attacks on Web privacy. In Sushil
Jajodia, editor, Proceedings of CCS 2000, pages 25–32. ACM Press, November 2000.

[31] Bryan Ford. Plugging side-channel leaks with timing information flow control. In Rodrigo
Fonseca and Dave Maltz, editors, Proceedings of HotCloud 2012. USENIX, June 2012.

[32] Nethanel Gelernter and Amir Herzberg. Cross-site search attacks. In Christopher Kruegel
and Ninghui Li, editors, Proceedings of CCS 2015, pages 1394–1405. ACM Press, October
2015.

[33] David Goldberg. What every computer scientist should know about floating-point arithmetic.
ACM Computing Surveys, 23(1):5–48, March 1991.

[34] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida. ASLR on
the line: Practical cache attacks on the MMU. In Ari Juels, editor, Proceedings of NDSS
2017. Internet Society, February 2017.

[35] James W. Gray. On analyzing the bus-contention channel under fuzzy time. In Catherine
Meadows, editor, Proceedings of CSFW 1993, pages 3–9. IEEE Computer Society, June
1993.

[36] James W. Gray. On introducing noise into the bus-contention channel. In Richard Kemmerer
and John Rushby, editors, Proceedings of IEEE Security and Privacy (“Oakland”) 1993,
pages 90–98. IEEE Computer Society, May 1993.

114

http://osihpa.cs.utep.edu/2006/DooleySubnormal06.pdf
http://osihpa.cs.utep.edu/2006/DooleySubnormal06.pdf
https://scarybeastsecurity.blogspot.com/2009/12/cross-domain-search-timing.html
https://scarybeastsecurity.blogspot.com/2009/12/cross-domain-search-timing.html


[37] James W. Gray. Countermeasures and tradeoffs for a class of covert timing channels.
Technical Report HKUST-CS94-18, Hong Kong University of Science and Technology,
1994. Online: http://hdl.handle.net/1783.1/25.

[38] Johann Großschädl, Elisabeth Oswald, Dan Page, and Michael Tunstall. Side-channel
analysis of cryptographic software via early-terminating multiplications. In Donghoon
Lee and Seokhie Hong, editors, Proceedings if ICISC 2009, volume 5984 of LNCS, pages
176–92. Springer-Verlag, 2010.

[39] Gaël Hachez and Jean-Jacques Quisquater. Montgomery exponentiation with no final
subtractions: Improved results. In Çetin K. Koç and Christof Paar, editors, Proceedings of
CHES 2000, volume 1965 of LNCS, pages 293–301. Springer-Verlag, August 2000.

[40] Andreas Haeberlen, Benjamin C. Pierce, and Arjun Narayan. Differential privacy under fire.
In David Wagner, editor, Proceedings of USENIX Security 2011, pages 507–21. USENIX,
August 2011.

[41] Lars T. Hansen. ECMAScript shared memory and atomics. Online: http://tc39.github.io/
ecmascript_sharedmem/shmem.html, February 2016.

[42] Mark Harris. CUDA pro tip: Flush denormals with confidence. Online: http://devblogs.nvi
dia.com/parallelforall/cuda-pro-tip-flush-denormals-confidence/, January 2013. Fetched:
Nov 13, 2014.

[43] Daniel Hedin and David Sands. Timing aware information flow security for a JavaCard-like
bytecode. Electron. Notes Theor. Comput. Sci., 141(1):163–82, December 2005.

[44] Wei-Ming Hu. Reducing timing channels with fuzzy time. In Teresa F. Lunt and John
McLean, editors, Proceedings of IEEE Security and Privacy (“Oakland”) 1991, pages
8–20. IEEE Computer Society, May 1991.

[45] Wei-Ming Hu. Reducing timing channels with fuzzy time. J. Computer Security, 1(3-
4):233–54, 1992.

[46] Yaoqi Jia, Xinshu Dong, Zhenkai Liang, and Prateek Saxena. I know where you’ve been:
Geo-inference attacks via the browser cache. In Larry Koved and Matt Fredrikson, editors,
Proceedings of W2SP 2014. IEEE Computer Society, May 2014.

[47] William Kahan. Why do we need a floating-point arithmetic standard? Whitepaper: On-
line: http://www.eecs.berkeley.edu/~wkahan/ieee754status/why-ieee.pdf, February 1981.
Fetched: Nov 12, 2014.

[48] Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason, and Clifford E.
Kahn. A VMM security kernel for the VAX architecture. In Deborah M. Cooper and
Teresa F. Lunt, editors, Proceedings of IEEE Security and Privacy (“Oakland”) 1990,
pages 2–19. IEEE Computer Society, May 1990.

115

http://hdl.handle.net/1783.1/25
http://tc39.github.io/ecmascript_sharedmem/shmem.html
http://tc39.github.io/ecmascript_sharedmem/shmem.html
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-flush-denormals-confidence/
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-flush-denormals-confidence/
http://www.eecs.berkeley.edu/~wkahan/ieee754status/why-ieee.pdf


[49] Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason, and Clifford E.
Kahn. A retrospective on the VAX VMM security kernel. IEEE Trans. Software Engineer-
ing, 17(11):1147–65, November 1991.

[50] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. Timing- and termination-sensitive
secure information flow: Exploring a new approach. In Giovanni Vigna and Somesh Jha,
editors, Proceedings of IEEE Security and Privacy (“Oakland”) 2011, pages 413–28. IEEE
Computer Society, May 2011.

[51] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTHMEM: System-level
protection against cache-based side channel attacks in the cloud. In Tadayoshi Kohno,
editor, Proceedings of USENIX Security 2012, pages 189–204. USENIX, August 2012.

[52] Paul Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Neal Koblitz, editor, Proceedings of Crypto 1996, volume 1109 of LNCS, pages
104–13. Springer-Verlag, August 1996.

[53] David Kohlbrenner and Hovav Shacham. Trusted browsers for uncertain times. In Thorsten
Holz and Stefan Savage, editors, Proceedings of USENIX Security 2016, pages 463–80.
USENIX, August 2016.

[54] Jingfei Kong, Onur Aciicmez, Jean-Pierre Seifert, and Huiyang Zhou. Architecting against
software cache-based side-channel attacks. IEEE Trans. Comput., 62(7):1276–88, July
2013.

[55] Robert Kotcher, Yutong Pei, Pranjal Jumde, and Collin Jackson. Cross-origin pixel stealing:
Timing attacks using CSS filters. In Virgil Gligor and Moti Yung, editors, Proceedings of
CCS 2013, pages 1055–62. ACM Press, November 2013.

[56] Peng Li, Debin Gao, and Michael K. Reiter. Mitigating access-driven timing channels in
clouds using StopWatch. In George Candea, editor, Proceedings of DSN 2013. IEEE/IFIP,
June 2013.

[57] Peng Li, Debin Gao, and Michael K. Reiter. StopWatch: A cloud architecture for timing
channel mitigation. ACM Trans. Info. & System Security, 17(2), November 2014.

[58] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T. Chong, Timothy
Sherwood, and Ben Hardekopf. Caisson: A hardware description language for secure
information flow. In Steve Blackburn, editor, Proceedings of PLDI 2011, pages 109–20.
ACM Press, June 2011.

[59] Steve Lipner, Trent Jaeger, and Mary Ellen Zurko. Lessons from VAX/SVS for high-
assurance VM systems. IEEE Security & Privacy, 10(6):26–35, Nov.–Dec. 2012.

[60] Steven B. Lipner. A comment on the confinement problem. ACM SIGOPS Operating
Systems Review, 9(5):192–96, November 1975.

116



[61] Robert Martin, John Demme, and Simha Sethumadhavan. TimeWarp: Rethinking time-
keeping and performance monitoring mechanisms to mitigate side-channel attacks. In
Josep Torrellas, editor, Proceedings of ISCA 2012, pages 118–29. ACM Press, June 2012.

[62] Frank McSherry. Privacy integrated queries. In Alexandros Labrinidis, editor, Proceedings
of ACM SIGMOD 2009. ACM Press, June 2009.

[63] Ilya Mironov. On significance of the least significant bits for differential privacy. In George
Danezis and Virgil Gligor, editors, Proceedings of CCS 2012, pages 650–61. ACM Press,
October 2012.

[64] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program counter
security model: Automatic detection and removal of control-flow side channel attacks. In
Dongho Won and Seungjoo Kim, editors, Proceedings of ICISC 2005, volume 3935 of
LNCS, pages 156–68. Springer-Verlag, February 2006.

[65] J Strother Moore, Thomas W. Lynch, and Matt Kaufmann. A mechanically checked proof
of the AMD5K86 floating-point division program. IEEE Trans. Computers, 47(9):913–26,
September 1998.

[66] Mozilla. Javascript concurrency model and event loop, 2016. Online: https://developer.m
ozilla.org/en-US/docs/Web/JavaScript/EventLoop#Run-to-completion.

[67] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D Keromytis.
The spy in the sandbox: Practical cache attacks in JavaScript and their implications. In
Christopher Kruegel and Ninghui Li, editors, Proceedings of CCS 2015, pages 1406–18.
ACM Press, October 2015.

[68] Mike Perry. Tor browser 4.5 is released, April 2015. Online: https://blog.torproject.org/
blog/tor-browser-45-released.

[69] Gerald J Popek and Charles S Kline. Verifiable secure operating system software. In
Proceedings of the May 6-10, 1974, National Computer Conference and Exposition, pages
145–51. ACM, May 1974.

[70] Ashay Rane, Calvin Lin, and Mohit Tiwari. Secure, precise, and fast floating-point
operations on x86 processors. In Thorsten Holz and Stefan Savage, editors, Proceedings of
USENIX Security 2016, pages 71–86. USENIX, August 2016.

[71] Rick Regan. Bug #53632: PHP hangs on numeric value 2.2250738585072011e-308.
Online: https://bugs.php.net/bug.php?id=53632, December 2010. Fetched: Nov 12, 2014.

[72] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get off of
my cloud! Exploring information leakage in third-party compute clouds. In Somesh Jha
and Angelos Keromytis, editors, Proceedings of CCS 2009, pages 199–212. ACM Press,
November 2009.

117

https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop#Run-to-completion
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop#Run-to-completion
https://blog.torproject.org/blog/tor-browser-45-released
https://blog.torproject.org/blog/tor-browser-45-released
https://bugs.php.net/bug.php?id=53632


[73] Indrajit Roy, Srinath T.V. Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett Witchel.
Airavat: Security and privacy for mapreduce. In Miguel Castro and Alex C. Snoeren,
editors, Proceedings of NSDI 2010. USENIX, March 2010.

[74] David M. Russinoff. A mechanically checked proof of IEEE compliance of the floating
point multiplication, division and square root algorithms of the AMD-K7 processor. LMS J.
Comput. Math., 1:148–200, 1998.

[75] David M. Russinoff. A mechanically checked proof of correctness of the AMD K5 floating
point square root microcode. Formal Methods in System Design, 14(1):75–125, January
1999.

[76] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson. Busting frame busting: a
study of clickjacking vulnerabilities at popular sites. In Collin Jackson, editor, Proceedings
of W2SP 2010, May 2010.

[77] Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded pro-
grams. In Paul F. Syverson, editor, Proceedings of CSFW 2000, CSFW ’00, pages 200–14.
IEEE Computer Society, July 2000.

[78] Mark Seaborn. Security: Chrome provides high-res timers which allow cache side channel
attacks, 2015. Online: https://bugs.chromium.org/p/chromium/issues/detail?id=508166.

[79] Geoffrey Smith. A new type system for secure information flow. In Steve Schneider, editor,
Proceedings of CSFW 2001, pages 115–25. IEEE Computer Society, June 2001.

[80] Paul Stone. Bug 711043 – (CVE-2013-1693) SVG filter timing attack. Online: https://
bugzilla.mozilla.org/show_bug.cgi?id=711043, June 2011. Fetched: Nov 13, 2014.

[81] Paul Stone. Pixel perfect timing attacks with HTML5. Presented at Black Hat 2013, July
2013. Online: https://www.contextis.com/documents/2/Browser_Timing_Attacks.pdf.

[82] Jonathan T. Trostle. Modelling a fuzzy time system. In Richard Kemmerer and John
Rushby, editors, Proceedings of IEEE Security and Privacy (“Oakland”) 1993, pages
82–89. IEEE Computer Society, May 1993.

[83] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. The clock is still ticking: Timing
attacks in the modern web. In Christopher Kruegel and Ninghui Li, editors, Proceedings of
CCS 2015, pages 1382–93. ACM Press, August 2015.

[84] Bhanu C. Vattikonda, Sambit Das, and Hovav Shacham. Eliminating fine grained timers in
Xen (short paper). In Tom Ristenpart and Christian Cachin, editors, Proceedings of CCSW
2011. ACM Press, October 2011.

[85] Dennis Volpano and Geoffrey Smith. Eliminating covert flows with minimum typings. In
Simon Foley, editor, Proceedings of CSFW 1997, pages 156–69. IEEE Computer Society,
June 1997.

118

https://bugs.chromium.org/p/chromium/issues/detail?id=508166
https://bugzilla.mozilla.org/show_bug.cgi?id=711043
https://bugzilla.mozilla.org/show_bug.cgi?id=711043
https://www.contextis.com/documents/2/Browser_Timing_Attacks.pdf


[86] Gilbert Wondracek, Thorsten Holz, Engin Kirda, and Christopher Kruegel. A practical
attack to de-anonymize social network users. In Security and Privacy (SP), 2010 IEEE
Symposium on, pages 223–238. IEEE, 2010.

[87] John C. Wray. An analysis of covert timing channels. In Teresa F. Lunt and John McLean,
editors, Proceedings of IEEE Security and Privacy (“Oakland”) 1991, pages 2–7. IEEE
Computer Society, May 1991.

[88] Weiyi Wu, Ennan Zhai, David Isaac Wolinsky, Bryan Ford, Liang Gu, and Daniel Jackowitz.
Warding off timing attacks in Deterland. In Liuba Shrira, editor, Proceedings of TRIOS
2015. ACM Press, October 2015.

[89] Michal Zalewski. Rapid history extraction through non-destructive cache timing. Online:
http://lcamtuf.coredump.cx/cachetime/, December 2011.

[90] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-based control and
mitigation of timing channels. In Frank Tip, editor, Proceedings of PLDI 2012, pages
99–110. ACM Press, June 2012.

[91] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-vm side
channels and their use to extract private keys. In George Danezis and Virgil Gligor, editors,
Proceedings of CCS 2012, pages 305–16. ACM Press, October 2012.

[92] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-tenant side-
channel attacks in PaaS clouds. In Moti Yung and Ninghui Li, editors, Proceedings of CCS
2014. ACM Press, November 2014.

119

http://lcamtuf.coredump.cx/cachetime/

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	On Subnormal Floating Point and Abnormal Timing
	Introduction
	IEEE-754 Floating Point, As Implemented
	IEEE-754 Floating Point Format
	Processor Implementations
	Subnormal Performance Variability
	Floating Point Benchmarks
	Subnormal Rationale

	Firefox Pixel Stealing
	A History of Stolen Pixels
	Pixel Extraction via SVG Filters & Floating Point
	Building an Attack
	Attack Implementation and Measurement
	Vulnerable Browsers
	Firefox Response
	Recommendations

	Differentially Private Databases
	Mathematics of Differential Privacy
	Differential Privacy Databases
	Timing Channels Break Privacy
	Restoring Privacy by Eliminating Timing Channels
	Subnormal-based Timing Attack on Fuzz

	Related Work
	Conclusion

	On the effectiveness of mitigations against floating-point timing channels.
	Introduction
	Background
	IEEE-754 floating point
	SVG floating point timing attacks

	New floating point timing observations
	Fixed point defenses in Firefox
	Fixed point implementation
	Lighting filter attack

	Safari
	Tweaks for Safari

	DAZ/FTZ FPU flag defenses in Chrome
	Attacking Chrome
	Frame timing on Chrome

	Revisiting the effectiveness of Escort
	Escort overview
	libdrag micro-benchmarks
	Escort compiled toy programs
	libdrag modified Firefox
	Escort summary

	GPU floating point performanace
	Browser GPU support
	Performance

	Related work
	Conclusions and future work

	Constant time fixed-point math
	Introduction
	Designing Constant-Time Operations
	Representation
	Operations on Numbers
	Performance in Constant Time
	Real-World Implementation


	Trusted browsers for uncertain times
	Introduction
	Clock-edge attack
	Measuring time in browsers without explicit clocks
	Measurement targets
	Implicit clocks in browsers
	Performance of implicit clocks

	Fermata
	Why Fermata?
	Threat model
	Design goals and challenges for Fermata
	Fermata guarantees
	Isolating JavaScript from the world
	Degrading explicit clocks
	Delaying events
	Tuning Fermata

	Fuzzyfox prototype implementation
	Why Fuzzyfox?
	PauseTask
	Queuing

	Fuzzyfox evaluation
	Limitations
	Effectiveness
	Performance

	Related work
	Conclusions and future work

	Bibliography



