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ABSTRACT OF THE THESIS 

 

 

PathInsight: A Novel Tool for Modeling Biomolecular Pathways 

 

 

by 

 

 

Aarya Venkat 

 

Master of Science in Chemistry 

 

University of California, San Diego, 2017 

 

Professor Michael Gilson, Chair 

 

 

            Depicting biochemical relationships and predicting their consequences is an 

important facet of systems biology and pharmacology research. In particular, the 

ability to model the effects of small molecular binders in cell signaling pathways 

would be a useful as a tool to predict the effects of drugs or drug candidates.   



 

x 

PathInsight is a new Cytoscape tool whose aim is to simplify pathway complexity and 

provide a new method with which to model and analyze biological pathways. It 

models the effects of a molecular binder, such as a drug or naturally occurring protein 

ligand, downstream a pathway and annotates the affected proteins or genes with 

simple visuals indicating whether the downstream product has been activated, 

inhibited, or unaffected. Additionally, PathInsight includes support for Systems 

Biology Graphical Notation, further aiding in the comprehensibility of biological 

pathways. 
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Introduction 

 Visualizing and modeling biological pathways is an important capability for 

biomedical scientists seeking to understand a network’s biochemical relationships 

(Arakawa et al., 2005). Pathway diagrams may be used as an overview for planning 

gene knockouts or predicting the effects of ligand interactions, or as teaching tools. 

Several pathway databases like Reactome and KEGG contain digital images or XML 

files of various biological pathways (Arakawa et al., 2005; Joshi-Tope et al., 2005). 

These pathways are fundamentally composed of nodes (proteins, drugs, or other 

compounds or biomolecules) and edges (connections between one node and another). 

While useful in understanding how individual nodes relate to one another, these  

diagrams do not dynamically represent the downstream effects (Gilman and Arkin, 

2002) in a pathway when changing initial conditions or perturbing pathways, such as 

in the case of adding drug-like compounds or modeling mutations or knockouts of 

specific proteins. Programmatically predicting and modeling cause-and-effect in 

biological pathways is essential to biochemists and pharmacologists (Chindelevitch et 

al., 2012) seeking to comprehend the dynamic nature of biological pathways.  

 There are several quantitative approaches for analyzing pathways, including 

time-series analyses (Martini et al., 2014), fuzzy logic algorithms (Terfve et al., 2012), 

and Bayesian algorithms (Isci et al., 2011), and such methods are implemented in a 

few programs. For example, Ingenuity Pathway Analysis (IPA) by Qiagen has a 

quantitative causal analysis tool (Krämer et al., 2014), which uses an existing dataset 

and perform a Fisher’s Exact Test on each node to generate a scoring system that it 
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uses to predict the flow of the pathway. The issue with these quantitative methods is 

that they require pre-determined or experimental data with, and this data is not always 

available. Moreover, the IPA software requires a commercial license to use. Attempts 

have been made at open-source alternatives to IPA, such as SimBoolNet (Zheng et al., 

2010) and Cytocopter (Terfve et al., 2012). SimBoolNet allows boolean values to 

propagate downstream, declaring nodes as activated or inhibited in given pathways. 

Cytocopter is an application based on the biostatistics package CellNOptR (Terfve et 

al., 2012) for the R programming language. It performs the same general function as 

SimBoolNet, but it uses quantitative fuzzy logic algorithms and can perform time-

series analyses on given pathways, so long as an SBML file is presented. 

Unfortunately, both plugins are now obsolete, as they no longer work with the current 

Cytoscape 3 architecture.  

Although such quantitative pathway modeling techniques have great potential 

utility, simply being able to track what components of a pathway are expected to be 

affected by a targeted perturbation, and what other components downstream will be 

affected in turn, can be invaluable for biomedical scientists. Although such a 

qualitative readout may not be as detailed as that provided by a quantitative model, it 

has far broader applicability, as it can be used even when there are insufficient data to 

perform quantitative analyses. Until a curated set of experimental interaction data can 

be provided for every pathway, there will be value in having a less quantitative 

method to analyze biological networks.  
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The present project advances the state of the art in modeling and interpreting 

pathways by introducing PathInsight, a novel plugin application for the network 

visualization tool Cytoscape (Shannon et al., 2003), which enables qualitative 

modeling of cause-and-effect relationships in biomolecular pathways. Cytoscape is a 

program for creating and modifying network relationships. The base program allows 

creative freedom in designing pathways and visualizing network relationships. 

Additionally, Cytoscape has a large variety of third-party plugins that perform a 

variety of design improvements, qualitative and quantitative analyses, and other 

generally useful functions. The goal of PathInsight is to equip Cytoscape users with a 

plugin tool to predict downstream consequences of pathway perturbations, due, for 

example, to activation or inhibition of a protein by a drug-like molecule. PathInsight 

gives users an easy user-interface to use for modeling such cause-and-effect 

relationships.  

The key capabilities of PathInsight are as follows. Once the user has built or 

imported a pathway, he or she can set the background conditions for the pathway, 

including details like the presence of specific cytokines or hormones, then modify the 

activity level of one or more nodes to model the consequence of adding inhibitors 

and/or activators, and propagate the consequences through the pathway, visualizing 

how nodes downstream are affected by the perturbation(s). It is also worth noting that 

PathInsight allows pathways to be represented in Systems Biology Graphical Notation 

(SBGN) (Le Novère et al., 2009), a recent type of standardized graphical 

representation useful for consolidating pathway depictions into a single consistent and 
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recognizable format. The only other application that offers SBGN functionality in 

Cytoscape’s App Store is CySBGN, which no longer works with the Cytoscape 3 

architecture. PathInsight is therefore currently the only Cytoscape application to offer 

SBGN functionality. 

PathInsight pairs well with the BindingDB (Liu et al., 2007) plugin for 

Cytoscape, a module that pulls protein-ligand binding data from the BindingDB 

website to enumerate which proteins in a network of interest may be targeted by drugs 

or drug-like compounds. This information may then be analyzed with PathInsight to 

predict possible consequences of adding specific compounds to the biological system.   

Here I describe PathInsight and illustrate its application to the JAK signaling 

pathway, chosen for its clinical significance (Igaz et al., 2001). I consider 

perturbations to several different states of this pathway, where the state is determined 

by, for example, which hormones or cytokines are present at the time of the signaling 

cascade. By performing multiple cause-and-effect models, each of these states may be 

modeled and compared with each other. Visualizing these changes whether in 

comparing different pathway states or predicting the effects of a small molecule binder 

may be an important facet for system biology research. 
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Methods 

Software Tool 

The fundamental concept of PathInsight is as follows. Before the network of 

interest is perturbed, PathInsight considers all nodes to have some baseline level of 

activity. The user can then activate or inhibit one or more of these nodes, relative to 

this baseline. If a node is classified as activated or inhibited by the user, it gets a +1 or 

-1 value, respectively. The user may also classify edges as activating or inhibiting in 

character. The effects of any given node can then be propagated down the pathway. 

Summative values are added to each node based on whether a node immediately 

upstream gives an activating or inhibiting input to it. For example, if a node 

downstream is given an activating input, a +1 value is added to its baseline value. 

Similarly, if three nodes activate a single node, and one node inhibits the same node, 

its value then becomes +2. If it is not known whether a given edge is activating or 

inhibiting, then downstream nodes are not assigned a numerical value, but are instead 

marked as perturbed with a “?”. Nodes downstream of a node marked “?” are similarly 

assigned “?”, to indicate a perturbation of unknown character. Values are propagated 

by the PathInsight tree traversal algorithm, which is run in a series of steps, whose 

number is user-defined. In each step, any perturbations present propagate downstream 

by one edge to the next set of nodes. Carrying out multiple propagation steps shows 

the user the series of steps by which the initial perturbation spreads through the 

network.  

PathInsight version 1.0.8 is a plug-in created with the Cytoscape 3 OSGi 

(Open Services Gateway Initiative) framework built on Java 8 for the Cytoscape 3.4 
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API. In addition to supporting the concepts of activation, inhibition, unknown 

perturbation, and propagation, PathInsight also includes tools to build and modify a 

network. In particular, users may easily create, modify, annotate, and model multiple 

nodes simultaneously in a network with the following tools available on its simple 

user interface: Node Label, Edge Label, SBGN, Node Analysis, Phosphorylation, 

Reset Values, and KEGG Prepare, as now described. 

Node Label lets users begin preparing their networks for modeling by selecting a 

node, or multiple nodes, and clicking the nested menu items “Activated” or 

“Inhibited”, which annotate the node with a “1” or “-1” value respectively. 

Alternatively, users may select “Reset” to set a node as having a value of zero. These 

changes assign the starting perturbation of the baseline system, which will 

subsequently be propagated through the network. 

Edge Label performs for edges functions analogous to those of “Node Label” for 

nodes, allowing an edge to be marked as Activating, Inhibiting, or Indeterminate. An 

Activating edge activates a node downstream if the upstream node is activated, and is 

represented by a line that end in a circle (Fig 1). Note that an Activating edge will, in 

effect, inhibit a node downstream, if its upstream node is inhibited. Similar 

considerations apply to an Inhibiting edge, which is represented by a line that ends 

with a perpendicular line Fig 1). An Indeterminate edge, represented by a diamond 

terminator, can only put its downstream node into an indeterminate state. 

The Systems Biology Graphical Notation (SBGN) tool allows the user to quickly 

and precisely transform a selected network into SBGN format. For Cytoscape 3, there 
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are no other applications that allow the SBGN format, so users keen on using this 

well-developed notation will find this useful. This tool allows the user to designate 

nodes as simple chemicals, macromolecules, or genes, and to create process nodes that 

represent a process, such as translocation, transcription, or dimerization. This 

informative notation makes for a network description that is relatively easy to read and 

comprehend. Additional symbols have been added or changed within PathInsight to 

provide users a wider range of freedom in visualization, while enhancing pathway 

clarity. Fig. 1 outlines these changes with respect to the original notation. 

Node Analysis executes a tree traversal algorithm performed in one, two, or N-steps, 

as selected by the user, once the user has finished designating Nodes and Edges with 

the Label tools above. The user selects how many steps he or she wishes to perform: 

one, two, or some larger number N. For one step, the algorithm seeks out neighbors of 

the nodes labeled as perturbed and annotates them with a numerical value or “?”, 

indicating, respectively, activation, inhibition or indeterminate perturbation. If 

additional steps were requested, this process is iterated for the desired number of steps, 

each time modifying the states of the downstream neighbors of the nodes that were 

perturbed in the prior step. If a node receives, for example, two activating 

perturbations from two upstream nodes, the consequences will be summed to provide 

a count of the net degree of activation or inhibition. Figure 2 illustrates the step-wise 

propagation of a network perturbation in a simplified example network.  
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 Figure 1: Legend for pathways in the following figures. Systems Biology 

Graphical Notation versus PathInsight’s notation for each node and edge 

representation. A few additional symbols have been added for purposes of clarity. 
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Figure 2: States of a simple network before and following six successive steps of the 

PathInsight algorithm.  State 1 is the initial state, where the interferon cytokine, IRF9, 

is activated, and in turn activates the Interferon receptor (IFN). In the subsequent steps 

(States 2-7), this activates JAK2, which activates STAT3 via phosphorylation. 

STAT3, uninhibited by the STAT regulator PIAS3, transcribes the SOCS4 gene, 

whose cognate protein dephosphorylates and inhibits JAK2 to stop further STAT3 

phosphorylation, ending the loop. Changes in each step are highlighted in yellow. See 

Figure 1 for definitions of symbols.  
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KEGG Prepare automates much of the network preparation if a network is imported 

from the CyKEGGParser application, creating activating or inhibiting edges based on 

KEGG data, while Phosphorylation uses KEGG data to color these edges yellow or 

purple representing phosphorylation or dephosphorylation.  

 

Illustrative Cases 

I used the clinically important JAK pathway as a test case for PathInsight. 

JAK2 is a phosphorylating protein that can be bound to several types of membrane 

receptors; Interleukin, Interferon, and Erythropoietin (Epo) receptors are specifically 

covered in these cases. When one of these membrane proteins is bound by a cognate 

cytokine or hormone, including, respectively, interleukins, interferons, and Epo 

cytokines, it undergoes a conformational change activating an attached JAK2 dimer. 

Upon activation, JAK2 undergoes a conformational change that reveals 

phosphorylating domains(Babon et al., 2014; Feng et al., 1997) which phosphorylate a 

pair of STAT proteins; the specific STAT proteins phosphorylated depends on the 

cytokine that was initially bound(Igaz et al., 2001), such as Epo cytokines leading to 

STAT5 phosphorylation. Each of these STAT proteins may perform a variety of 

actions, including upregulating or downregulating transcription of apoptotic genes. In 

the first illustrative case, the Epo cytokine binds to the Epo receptor, activating JAK2 

and phosphorylating proteins downstream in the JAK2 pathway. The proteins 

phosphorylated are STAT5, PI3KR5 and the GRB2 complex.  
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Additionally, the Cytoscape BindingDB plugin was used to annotate JAK2 

with small molecules having significant affinity for this protein, based on its UniProt 

ID. Of these compounds, the drug Lestaurtinib was chosen and modeled as a 

demonstration of the multiple functions of PathInsight. Lestaurtinib is a drug that 

inhibits STAT5 dimer transcription, as well as the Akt/mTOR and Ras/Raf pathways, 

by inhibiting the activation of JAK2 upon ligand binding of the membrane receptor to 

which JAK2 is attached(Furumoto and Gadina, 2013). In the second illustrative case, 

PathInsight was used to model the effects of Lestaurtinib on the JAK2 pathway in the 

presence of Epo, and is hence compared with the real world effects of Lestaurtinib to 

determine the effectiveness and accuracy of PathInsight. 
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Results 

Pathways were set up initially using KEGGParser, a Cytoscape application that 

loads pathways from the KEGG catalogue. KEGG only contains generic pathways, in 

that similar pathways are grouped together without any distinguishing features, thus 

delving into the literature was necessary to make specific pathways, particularly 

representing the effects of JAK2 on the STAT5, Ras/Raf, and Akt/mTOR pathways. 

The JAK signaling pathway is a critical component of a variety of cellular 

functions and pathologies, including immunological responses, differentiation, 

proliferation, apoptosis, and oncogenesis. However, activation of this pathway 

produces different consequences, depending on the extracellular signals present. Here, 

PathInsight is used to model two cases. The first focuses on the action of 

erythropoietin (Epo) at its cognate Epo Receptor, which triggers JAK2 to 

phosphorylate STAT5, as well as activate the Ras/Raf and Akt/mTOR pathways, 

leading to gene transcription and regulation. The second case considers how this 

process is affected by the JAK2 inhibitor Lestaurtinib. 

Case I: Figure 3 illustrates the effects of Epo binding to its receptor, where 

green “1”s  indicate activated nodes predicted by PathInsight after propagation for six 

steps. Upon binding, the Epo receptor undergoes a conformational change, activating 

JAK2 and revealing JAK2’s kinase domain, which phosphorylates STAT5a/b 

(Funakoshi-Tago et al., 2010, p. 5; Gilmour et al., 1995) . These STAT proteins form a 

heterodimer and upregulate members of the bcl-2 family, promoting cell survival. The 

STAT5 complex also is involved in a negative feedback loop: it induces transcription 
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of the CIS gene, leading to the eventual formation of a cytokine-inducible SH2 protein 

that inhibits STAT5a/b, by competitively binding to the JAK2 recruitment domains 

(Croker et al., 2008; Matsumoto et al., 1997), reducing further transcription of the bcl-

2 family. PathInsight visualizes the effect of this negative feedback loop on the 

STAT5 dimer with a zero, as it is originally activated, as annotated at first with a 

green “1”, by JAK2 but then is inhibited downstream by the product of the CIS gene, 

changing the “1” to a “0”. Also phosphorylated by JAK2 are the SHP2/Grb complex, 

which leads into the Ras/Raf pathway promoting differentiation, and the PI3K protein 

necessary to promote the Akt/mTOR pathway involved in the transition from the G1 

to S phase in the cell cycle. The upregulation of these pathways is represented by the 

green “1”. In this manner, the PathInsight plugin helps the user identify the qualitative 

downstream consequences of an upstream perturbation.  
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Figure 3. Illustration of Case I, Epo activation of the JAK2 pathway. The 

diagram illustrates the state of the network following six steps of the algorithm, 

upregulating anti-apoptosis genes, genes involved in the progression of the cell cycle, 

and genes involved in differentiation, all represented by the blue pathway nodes. 

Erythropoietin, which is annotated with a green “1” symbolizing activation, binds to 

the Epo receptor. Its value is propagated to the receptor, activating it, which undergoes 

a conformational change activating JAK2. JAK2 phosphorylates the PI3KR5 subunit, 

the GRB2 complex, and the STAT5 dimer, annotating each of these with a green “1”. 

The STAT5 dimer activates and transcribes members of the bcl-2 family promoting 

cell survival, but STAT5 also transcribes the CIS gene, whose protein causes STAT5 

inhibition, thus annotating STAT5 with a “0”. The effects of the initial cytokine also 

lead to activation of the GRB2 complex, which activates the rest of the nodes in the 

RAS/RAF pathway, and PI3KR5, which activates Akt and MTOR, upregulating 

transcription of genes involved in the cell cycle. 
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Case II: Using the JAK2 UniProt accession ID, the BindingDB application 

was used to search and produce SMILES strings for all compounds capable of binding 

to JAK2. Of the compounds given, Lestaurtinib, a JAK inhibitor, was chosen as it has 

a high binding affinity and has experimentally proven inhibitory effects on STAT5 

phosphorylation, thus reducing transcriptional activity of all nodes downstream 

(Gaikwad et al., 2007; Thiant et al., 2017). JAK inhibitors prevent JAK 

phosphorylation of STAT proteins by binding to the active site of the kinase domain 

(Furumoto and Gadina, 2013). In this case (Fig 4), Lestaurtinib binds to JAK2 and 

prevents the phosphorylation of STAT5a and STAT5b, despite the simultaneous 

binding of the Epo cytokine to JAK2’s upstream receptor. By inhibiting JAK2, 

Lestaurtinib prevents everything downstream of JAK2 from being phosphorylated, 

and hence from being activated. The rest of the pathway is at an unperturbed level of 

activity. Assuming every node operates at some baseline, Lestaurtinib’s binding to 

JAK2 prevents a signaling cascade from perturbing these nodes from their baseline.  

It is worth noting that the precise, quantitative outcome, when both Epo and 

Lestaurtinib are present, is not certain, and will presumably depend in part of the 

concentrations of these two bioactive molecules. Thus, the PathInsight outputs should 

note be interpreted as implying zero change to the system. Nonetheless, the results 

with and without Lestaurtinib may be compared to understand how this compound is 

likely to modulate the effects of Epo. 

The modeled effects of Lestaurtinib in PathInsight are reflected in the research 

of Dr. Elizabeth Hexler’s team who found that Lestaurtinib’s inhibition of JAK2 



17 

 

 

phosphorylation, in the context of Epo receptor activation, led to demonstrable 

reduction of phosphorylation, suppressing the STAT5, PI3-K/Akt, and Ras/Raf 

pathways (Hexner et al., 2008). Given the anti-apoptotic and cell survival focused 

nature of these pathways, mutations make them susceptible to tumors and 

hematopoietic disorders (Um and Lodish, 2006).  By downregulating these pathways, 

Lestaurtinib reduces tumorigenesis and the effects of receptor or JAK2 mutations 

(Diaz et al., 2011; Hexner et al., 2008; Iyer et al., 2010).  
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Figure 4. Illustration of Case II, the JAK2 pathway perturbed simultaneously by Epo 

and by the JAK inhibitor Lestaurtinib, and propagated for six steps. Both Lestuartinib 

and the Epo receptor were activated, visually represented on both of these nodes by 

the green “1”. These values were propagated simultaneously, causing the effect of Epo 

receptor activation of JAK2 to be cancelled by JAK2, reducing the phosphorylation of 

all nodes downstream. STAT5, the GRB2 complex, and PI3KR5 are all not 

phosphorylated and further propagate zero values downstream, having neither 

activating nor inhibiting effects on proteins and genes regulating anti-apoptosis, 

differentiation, and cell cycle progression.  
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Discussion 

Biomolecular systems are intricate and difficult to understand, and a variety of 

modeling and informatics tools have been created to assist in the visualization and 

interpretation of biological pathways. The first step in pathway and network 

comprehension was cataloguing pathways, achieved by organizations like KEGG, 

Reactome, and Wikipathways. The second step was visualizing these pathways and 

making them interactive and modifiable, accomplished by Cytoscape, Qiagen and a 

small number of other bioinformatics programs. Tertiary steps involve being able to 

input or derive meaningful data from the pathways, performed by many apps in the 

Cytoscape App Store, by Ingenuity Pathway Analysis, and several statistical 

programs.  

In the scope of modeling the effects of biomolecules on pathways, both 

Ingenuity Pathway Analysis and the Cytoscape application Pathway Signal Flow 

Calculator (Nersisyan et al., 2015) can perform quantitative analyses to determine the 

effects of a perturbed pathway. While quantitative efforts in pathway analysis offer the 

possibility of high accuracy, they require data not often available for many pathways 

studied. Even when available, these datasets are sometimes incomplete, thus damaging 

the level of accuracy given by a quantitative tool. The lack of available quantitative 

data makes a qualitative tool like PathInsight a necessity when modeling complex 

pathways, as it provides an option to analyze and understand these pathways without 

requiring quantitative parameters. Removing this quantitative need may reduce the 

sophistication and accuracy of the pathway, but in doing so, it lowers the technological 
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and computational barrier required for scientists wanting to do pathway prediction and 

modeling. As demonstrated in the results, these pathways can resemble experimental 

evidence. Thus, PathInsight fills a niche role in the absence of quantitative data, as it is 

more generally applicable and can still be of great value in interpreting the 

implications of a pathway and how it may be perturbed.  

PathInsight provides a novel capability to build or modify a biological pathway 

and model a variety of conditions for comparison. Science educators or medical 

students may take a healthy pathway and change certain nodes to understand the 

mechanism or molecular implications of some diseased state. PathInsight strives to 

improve the clarity of biological pathways by simplifying interpretations when 

modeling. As demonstrated in the illustrative cases considered here, the program can 

help users predict the downstream consequences of perturbations to a pathway. In 

combination with the BindingDB plugin, it supports a capability of identifying 

proteins that can be bound by known inhibitors, and then predicting the network 

consequences and thus potential effects and side-effects. It can also be used to model 

the consequences of inhibiting a protein with a potential new inhibitor, thus testing 

whether the protein could represent a useful drug target. 

It is also worth noting that using PathInsight can pose challenges, because of 

the difficulty in correctly setting up a pathway of interest. Pathways acquired from 

KEGG or other sources are not always accurate, or may have been averaged, to 

represent the most common interactions in a pathway. Modifying these pathways to 

accurately reflect the literature relevant to a specific project is necessary to properly 
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model a pathway of interest. No other program is different in this regard. Whether one 

is using PathInsight or another software, building and modifying a pathway, based on 

available literature data, is a key step in ensuring that the model reflects the best 

current state of knowledge.  

Future improvements to PathInsight may involve better algorithmic processing 

for loop calculations, so negative feedback loops, for example, will stop after a period, 

if the modeling is still ongoing. Additionally, it will be useful to modify the KEGG 

Prepare function to support pathway catalogues beyond KEGG, such as 

WikiPathways. Another function being added is improving drug discovery support by 

programmatically pulling UniProt accession IDs from the pathway allowing ligand 

binding data to be added via the BindingDB application. This allows binding activity 

data to be present while modeling the effects of small molecular binders. Finally, it 

may be worth exploring modeling the phenotypic consequences of molecular 

perturbations of key pathway components to create a holistic map of effects from gene 

to phenotype. With these changes, PathInsight will mature into a capable and useful 

plugin for research and education in pharmacology, systems biology, and biomedicine. 
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