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Characterization of WY 14,643 and 
its Complex with Aldose Reductase
Michael R. Sawaya1, Malkhey Verma2,‡, Vaishnavi Balendiran3, Nigam P. Rath4, Duilio Cascio1 
& Ganesaratnam K. Balendiran3

The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the 
aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence 
emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) 
and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd 
values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced 
(hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex 
structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding 
to hAR. These observations demonstrate how fibrate molecules such as WY 14,643, besides being 
valued as agonists for PPAR, also inhibit hAR.

Hyperlipidemia is a medical condition involving elevated levels of lipids in the blood, such as cholesterol and 
triglycerides. It causes blood vessels occlusion and increases the risk of developing atherosclerosis, coronary heart 
disease, strokes, hypertension or diabetes. According to March 2015 CDC report over 73.5 million adults (31.7%) 
in the United States have high low density lipoprotein, or “bad,” cholesterol. Clofibrate amphipathic carboxylic 
acids of a class known as fibrates, or peroxisome proliferators, are drugs once widely used in the clinical manage-
ment of hyperlipidemia1. However, use was discontinued in the year 2002 due to its adverse effects of myopathy, 
myositis and rhabdomyolysis leading to acute renal failure. Pleiotropic response to fibrates, is characterized in the 
short term by upregulation of peroxisomal fatty acid P-oxidation enzymes and cytochrome P450 IVA in liver, per-
oxisomal proliferation, increased cell division and liver weight gain and in the longer term, pre-neoplastic lesions 
and eventually carcinomas of the liver. Clofibric acid glucuronide has been shown to mediate the formation of 
covalently bound clofibric acid-albumin adducts in vitro2 and clofibric acid-plasma protein adducts are identified 
in man and rat3. The covalent binding of drugs to tissue macromolecules has traditionally been associated with 
toxicity4–7.

Interestingly, a synthetic derivative of clofibrate, [4-Chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic 
Acid (WY 14,643) (Fig. 1), is a potent anti hypercholesterolemic agent8. It is currently under investigation for 
prevention of heart failure resulting from hyperlipidemia. WY 14,643 has been shown to produce an 18-fold 
increased capacity in oxidization of palmitoyl-coenzyme A in rat livers9 and exert cardioprotection in a rat model 
of ischemia-reperfusion injury10. Also, WY 14,643 has been shown to improve metabolic indices, steatosis and 
ballooning in diabetic mice with non-alcoholic steatohepatitis11. A major mediator of WY 14,643 action is the 
ligand-activated transcription factor, peroxisome proliferator-activated receptor alpha (PPARα )12. Overall WY 
14,643 is considered a potent murine (PPAR)α  agonist and a weak PPARγ  agonist13. Through this agonistic 
behavior, WY 14,643 increases PPAR transcriptional activity, thereby increasing levels of fatty acid oxidation, cell 
division, and cancer.

WY 14,643 has been known as a specific PPARα  agonist since 1990. Only more recently, in 2006, this same 
inhibitor was also discovered to target Aldose reductase (hAR)14,15 and AKR1B1016, the Aldo-keto reductase pro-
tein family members. Inhibition kinetic data for WY 14,643 are Kii (intercept inhibition constant) =  Kis (the slope 
inhibition constant) =  1.8 μ M and 1.67 μ M and 1.63 μ M for hAR catalyzed forward reaction and reverse reac-
tion, respectively15. This finding suggested WY 14,643 follows a classical non-competitive pattern of inhibition 
with respect to the reduction of DL-glyceraldehyde and pure non-competitive mode in the oxidation of benzyl 
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alcohol15. However molecular interactions, their corresponding binding affinity, stoichiometry, or location asso-
ciated with hAR and WY 14,643 were yet to be revealed. AR catalyzed reduction of glucose to sorbitol is the first 
step of the polyol pathway through which less than 3% of the glucose flow in healthy human cells. However, under 
hyperglycemic or pre-diabetes conditions AR is overexpressed and the activity of this enzyme is implicated in 
the pathogenesis of most of the diabetic complications17–21. The sorbitol that is formed is not readily metabolized 
and leads to accumulation within the cell22,23. In addition, AR has also been linked in increased cardiovascular 
mortality rate with diabetic autonomic neuropathy patients24. These observations form the foundation to develop 
specific effective AR inhibitors.

We have determined the crystal structures of WY 14,643 and the hAR• NADP+• WY 14,643 ternary complex. 
Also we have applied fluorescence quenching methodologies to determine equilibrium dissociation constants 
binding of NADPH and NADP+ individually to apo hAR and binding of WY 14,643 to hAR• NADPH and hAR• 
NADP+ binary complexes separately. Here we report 1) these binding results, 2) protein free structure of WY 
14,643, 3) hAR• NADP+• WY 14,643 ternary complex structure and describe conformational changes due to WY 
14,643 binding to the hAR• NADP+ binary complex.

Results
Fluorescence phenomenon seen by cofactor and inhibitor binding to hAR may be affected partly by charge 
transfer processes between groups/atoms. The characteristics of fluorescence reflect the outcome of the binding 
strength between the ligand and the protein that corresponds to the microenvironment and the conformational 
changes associated with hAR and other components.

Fluorescence effect induced by cofactor and WY 14,643 binding. The fluorescence intensities of 
hAR decreased gradually when the concentrations of quenchers (i.e. inhibitor and cofactors) were increased. The 
observed fluorescence data were used for calculating the fluorescence quenching (Q% =  (F0 −  F)/F0) where F is 
the measured fluorescence and F0 is the fluorescence in the absence of quenchers.

The fractional change in fluorescence increased parabolically as the concentration of NADPH, NADP+ 
rose. The correlation between the average of triplicate measurements and simulated trend is shown in Fig. 2a,b 
(Table 1) for binding of NADPH to hAR and NADP+ to hAR, respectively. Our fluorescence emission meas-
urements indicate that the equilibrium dissociation constants, Kds, are 0.210 μ M and 0.48 μ M for NADP+ and 
NADPH, respectively. Similar fractional changes in fluorescence followed a saturation pattern with increasing 
concentration of WY 14,643 in the presence of 60 μ M NAPDH and NADP+ (Fig. 2c,d; Table 1). Furthermore the 
Kd values are very similar for WY 14,643 binding with hAR• NADP+ (0.104 μ M) and hAR• NADPH (0.110 μ M) 
binary complexes.

Structure of hAR•NADP+•WY 14,643 Complex. The ternary complex structure, hAR• NADP+• WY 
14,643, contains two protein molecules in the asymmetric unit (molA and molB). The two protein molecules are 
related by a non-crystallographic two-fold rotation axis. They superimpose with an RMS deviation of 0.07 Å over 
316 pairs of Cα  atoms. The ternary complex structure was refined to 1.65 Å resolution with the final R factor of 
16.8%, and Rfree of 19.5%. The structure contains a total of 632 protein residues corresponding to 316 amino acids 
for each protein molecule, two cofactors NADP+, two WY 14,643 molecules, 8 sulfate ions, and 569 water sites. 
The mean B values for the protein, cofactor, WY 14,643, sulfate and water atoms are 23.0, 14.6, 27.5, 49.6, and 
33.9 Å2, respectively. Further crystallographic parameters are listed in Table 2.

Atomic Interactions in hAR•NADP+•WY 14,643 Complex. Polar and vdW interactions stabilize an 
extended conformation of the cofactor. The detailed polar interactions between the cofactor and the protein 
atoms are shown in Table 3. One NADP+ molecule binds each molecule of the dimer of hAR in the ternary com-
plex and the two cofactors in the asymmetric unit have an RMS deviation of 0.05 Å over 48 pairs of atoms.

WY 14,643 binds hAR at the C-terminal opening of the α /β  barrel, near the cofactor binding site (Fig. 3a). In 
our characterization of inhibitor binding, we divide the inhibitor into three regions, the carboxylate moiety, the 
pyrimidine moiety, and the 2,3-xylidino moiety. The carboxylate moiety of WY 14,643 anchors the inhibitor to 
hAR through three hydrogen bonds (Table 4) with Tyr48(OH), His110(NE2) and Trp111(NE1). It also makes a 

Figure 1. Chemical Structure of 4-Chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid, WY 14,643, 
Pirinixic acid. 
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vdW contact with the nicotinamide ring, atom C3N (Fig. 3a; Table 4). Proximal to the carboxylate, the pyrimidine 
moiety of the inhibitor makes vdW contacts with the aromatic rings of Trp20, Trp219, and Phe122. Furthest from 
the carboxylate, the 2,3-xylidino moiety makes limited vdW contact with only one residue, Phe122. The density 
for this moiety is correspondingly weaker compared to the pyrimidine and carboxylate moieties. This evidence 
suggests that the two torsion angles between the pyrimidine and xylidino rings are free to rotate (i.e. rotate around 
the single bonds C4-NAM and NAM-CAT, nomenclature defined in Fig. 3b). We observe one molecule of WY 
14,643 bound to each of the two hAR molecules. The RMS deviation between the two WY 14,643 molecules is 
0.05 Å over 21 pairs of inhibitor atoms. Broken residual density at the 3.5 σ  level suggests there may be an addi-
tional, lower occupancy, mode of binding of WY 14,643 in this same pocket.

The conformation of the cofactor in the binary and ternary hAR complexes that is found in the dimeric crys-
tal form is very similar. The RMS deviation is 0.25 Å between the dimer of hAR in the holoenzyme (PDB ID 
3Q65) and the dimer of WY 14,643-bound ternary complex (624 pairs of Cα  atoms). Notably, in the ternary hAR 
complex, the loop from residue 114 to 137 shifts closer to the 2,3-xylidino moiety of the inhibitor (Fig. 4a,b) in 
both molA and molB compared to the binary complex crystallized in the same space group. The RMS deviation 
corresponding to this loop (258 to 258 atoms) alone is 0.47 Å between the binary and ternary hAR complexes.

The WY 14,643 inhibitor itself undergoes striking conformational changes upon binding to hAR. Comparison 
of WY 14,643 conformations in the protein free (Fig. 3b; Table 5) and hAR ternary complex structure reveals large 

Figure 2. Fluorescence measurements for the determination of binding dissociation constant corresponding to (a). 
NADPH titration curve for hAR• NADPH complex formation (b). NADP+ titration curve for hAR• NADP+ 
complex formation (c). WY 14,643 titration curve for WY 14,643• hAR• NADPH complex formation and (d). 
WY 14,643 titration curve for WY 14,643• hAR• NADP+ complex formation, respectively.

Quencher (L)

Complex

Kd(E-NADP
+) (μM) Kd(E-NADPH) (μM)

NADP+ 0.210 ±  0.01; 
n =  1.05 ±  0.03

NADPH 0.48 ±  0.04;  
n =  1.25 ±  0.1

Complex

hAR•NADP+ hAR•NADPH

WY 14,643 104.6 ±  4.2; 
n =  1.37 ±  0.05

110 ±  5.0;  
n =  1.25 ±  0.06

Table 1.  Equilibrium dissociation constants (Kd) and stoichiometry coefficients (n) of NADP+ and 
NADPH binding with hAR and those of WY 14,643 binding with hAR•NADP+/NADPH complexes.
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deviations in two torsion angles (Fig. 5a,b). The first deviation is near the carboxylate moiety, involving ~180° 
rotation around the SAN-CAJ bond. This rotation is required to accommodate the hydrogen bonding geometry 
of the carboxylate with Tyr 48, His110, and Trp111 side chains and simultaneously avoid the clash between the 
pyridinium ring Cl atom and the side chain of Val47. The second deviation involves a ~180° rotation between the 
two aromatic rings, around the CAT-NAM bond. The rotation avoids collision between the methyl groups of WY 
14,643 and the side chain atoms of Phe122. Due to the two flips, the overall the RMS deviation is large (1.7 Å) for 
the 21 pairs of inhibitor atoms corresponding to the protein free and hAR bound complex.

Binding of WY 14,643 does not perturb the core of the hAR active site especially near anion binding vicinity, 
but causes small structural changes in a loop proximal to the active site location. Several hydrophobic and other 
residues Trp20, Val47, Tyr48, His110, Trp111, Phe121, Phe122, Pro218, Trp219, Cys298 of hAR and nicotinamide 
ring of NADP+ 318 encompass the WY 14,643 binding site. Upon WY 14,643 binding to the holoenzyme, much 
of molA remains unperturbed, as evidenced by an RMS deviation of 0.12 Å over 312 pairs of Cα  atoms; residues 
Trp20, Val47, Tyr48, His110, Trp111, Pro218, Trp219, Cys298 and nicotinamide ring of NADP+ 318 show no 
substantial conformational change. However residues Phe121 and Phe122 show the most noticeable structural 
movement, about 0.5 Å (Fig. 4b). Interestingly, residue Phe122 undergoes a conformational change with the cor-
responding RMS deviation of 0.67 Å over its 11 atoms. This change causes the adjacent residue Phe121 to move its 
side chain as well. The conformational changes that residues Phe122 and Phe121 undergo make their side chains 
parallel to the 2,3-xylidino moiety of WY 14,643 in the ternary complex.

The RMS deviation is 0.09 Å between the 48 atoms of molA NADP+ and corresponding atoms in the WY 
14,643 ternary complex. Movements of the atoms in NADP+ triggered by WY 14,643 binding are minor.

Although most of the bound water molecules in the binary structure are present without significant changes in 
the ternary complex, we note additional water molecules form a network of hydrogen bonds between WY 14,643 
and hAR in the ternary complex. Among the water molecules, some that occupy specific sites in the hAR binary 
complex, are still present in the WY 14,643 ternary complex almost around the same locations, but a few have 
shifted slightly. However, in the WY 14,643 ternary complex a distinct cluster of water molecules, W352, W392, 
W484, and W528 are situated around the polar atoms of the inhibitor of molA to form bridging interactions with 
hAR atoms (Fig. 5b). The corresponding water molecules in molB are W390, W386, W396, and W553, respectively.

Comparison of hAR•NADP+•WY 14,643 complex with other ternary complexes. There are sev-
eral hAR inhibitor complex structures available but WY 14,643 is chemically divergent from all these inhibitors. 
Structures of PDB entries 4prr and 4qr6 of hAR ternary complexes with inhibitors 3-[3-(5-nitrofuran-2-yl)phe-
nyl]propanoic acid and 2-[2-(1,3-benzothiazol-2-ylmethylcarbamoyl)-5-fluoro-phenoxy]acetic acid were com-
pared with the WY 14,643 complex structure because these inhibitors partially share in common the presence 
of a carboxylate moiety with a connector atom (CH2, O, S) linking it to an aromatic ring by the same number of 

Structures hAR•NADP+•WY 14,643

Data collection, processing and structure refinement

 Wavelength (Å) 0.9795

 Space group P212121

Unit cell parameters

 a, b, c (Å) 83.3, 85.9, 104.4

 α , β , γ  (°) α  =  β  =  γ  =  90

Diffraction data

 Resolution range (Å) 100–1.65 (1.74–1.65)

 Unique reflections 90,282 (12,715)

 Rmerge (%) 5.8 (45.2)

 Completeness (%) 99.5 (97.2)

 Redundancy 5.7 (3.9)

 I/σ  (I) 14.8 (2.5)

Refinement

 Resolution range used in refinement (Å) 66–1.65 (1.69–1.65)

 Reflections used in refinement (work/free) 85,620 (4,556)

 Final R values (work/free) (%) 16.8 (31.5)/19.5 (29.9)

 Protein atoms 5,099

 Cofactor atoms 96

 Water molecules 569

 Sulfate atoms 40

rmsd values

 Bonds (Å) 0.014

 Angles (°) 1.7

 PDB ID code 5HA7

Table 2.  Crystallographic Statistics of the hAR•NADP+•WY 14,643 complex structure.
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bonds. These complex structures superimpose RMSDs of 0.26 Å and 0.23 Å over 247 and 251 CA atoms of the 
WY 14,643 complex structure. However residues Phe115, Phe121-Val130, Ala299-Ser302 have shifted in WY 
14,643 compared to these complexes. The carboxyl moiety of all these three inhibitors make very similar inter-
actions with same residues of hAR but the phenoxy ring of 4qr6 overlaps with pyridine of WY 14,643 more than 
the phenyl group of 4prr (Fig. 6). Nevertheless furan and benzothiazol groups of 4prr and 4qr6 collide into the 

NADP+
Atoms

dimeric hAR (ternary) complex dimeric hAR (binary) complex

atom residue distance (Å) atom residue distance (Å)

AOP1 OG Ser263 2.7 OG Ser263 2.67

OG1 Thr265 2.7 OG1 Thr265 2.64

AOP2 NZ Lys262 2.7 NZ Lys262 2.63

N Val264 3.1

AOP3 H W135 2.6 H W132 2.79

H W203 2.6 H W49 2.54

AO2* H W135 3.0 H W132 2.9

AO2* NH1 Arg268 3.3 NH1 Arg268 3.18

AO3* NE2 BGln26 3.0 OE1 BGln26 3.16

AO3* H W135 2.8 OD2 Asp216 3.12

AN7 ND2 Asn272 3.07

AN1 H W35 2.55

AN6 OD1 Asn272 2.93

OE2 Glu272 2.81

AO1 N Ser214 3.1 N Ser214 3.12

N Leu212 2.8 N Leu212 2.86

AO2 N Lys262 2.9 N Lys262 2.97

NO1 NZ Lys21 2.9 NZ Lys21 2.83

NO2 OG Ser210 2.9 OG Ser210 2.76

OG Ser214 2.7

NO5* N Ser210 3.2 N Ser210 3.07

NO2* OD2 Asp43 2.7 OD2 Asp43 2.58

NO3* N Trp20 2.9 N Trp20 2.88

NO3* N Trp19 3.2 N Thr19 3.11

NN7 OE1 Gln183 3.0 OE1 Gln183 3.09

OG Ser159 2.8 OG Ser159 2.80

NO7 ND2 Asn160 2.8 ND2 Asn160 2.79

Table 3.  Distances between cofactor polar atoms and that of hAR or solvent. A-first molecule (molA); 
B-second molecule (molB) of the dimer; W-water molecule.

WY 14,643
Atom

dimeric hAR (ternary) B1468•PPARα molB (4BCR) A1469•PPARα molA (4BCR)

atom residue distance (Å) atom residue distance (Å) atom residue distance (Å)

O1 OH Tyr48 2.9 OH Tyr314 2.9 ND1 His274 2.6

NE His110 2.7 NE2 His440 3.5

OH Tyr464 3.0

O2 NE His110 3.2 OH Tyr314 3.1

NE1 Trp111 3.1 OG Ser280 2.4

S SH Cys298 3.9

H W381 3.3

N3 NE1 Trp20 3.2

N2 H W381 2.7 OG Ser280 3.5

N1 OG Ser280 3.3

Table 4.  Atomic distances between polar atoms of WY 14,643 and that in hAR ternary complex and PPAR 
complex. W-water molecule; WY 14,643 atoms are labeled differently in hAR and PPARα  structure coordinate 
set 4BCR. Atom labels matched in protein complexes hAR/4BCR-B1468/B4BCR-B1470 are C1/CAA/CAA,  
C2/CAP/CAP, C3/CAG/CAG, C4/CAF/CAF, C5/CAH/CAH, C6/CAT/CAT, C13/CAR/CAR, C14/CAB/CAB, 
N1, NAM/NAM, C7/C4/C4, N2/N3/N3, C8/C2/C2, N3/N1/N1, C9/C6/C6, C10/C5/C5, Cl/Cl6/Cl6, S/SAN/SAN, 
C11/CAJ/CAJ, C12/CAO, O1/OAD/OAD, O2/OAC/OAC.
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Leu300 as found in the WY 14,643 structure. The shift seen in the loop 299–302 between these complexes may be 
to accommodate different inhibitors in the 4prr and 4qr6 parallel to Tyr111 and perpendicular to Phe122 whereas 
in WY 14,643 perpendicular to Tyr111 and parallel to Phe122. This is because the bend around the CH2/O/S is 
different and phenyl/fluorophenoxy/pyrimidinyl groups and the rest of the inhibitors occupy different sites of the 
cavity/pocket than WY 14,643 in the hAR complexes.

Discussion
Fluorescence spectroscopy is one of the most sensitive methods for studying structural changes in molecules. 
It can provide important information about (1) the overall conformation, (2) the presence of ligands, cofac-
tors, substrates or inhibitors and (3) the interactions with and about intramolecular distances between specific 
chromophoric groups. For this reason the knowledge of the fluorescence properties is important in studies of 
structure-binding-function relationships. Quenching reactions are particularly key in this respect25 to follow 
binding events. Quenching of protein fluorescence by external quenchers is a useful technique for understanding 
the extent of exposure of the aromatic, side chains and to characterize their microenvironment26 especially to 
evaluate non-polar/vdW type interactions. As a result a variety of fluorescence quenching methodologies have 
been established27,28 to study ligand binding to biological molecules.

Current fluorescence quenching data imply oxidized cofactor NADP+ binds hAR with 2-fold higher affin-
ity than the reduced cofactor NADPH. The difference between the oxidized and reduced forms of the cofactor 
resides in the nicotinamide ring which is aromatic and nonaromatic, respectively. The difference in planarity/
electronics between the nicotinamide rings of the oxidized and reduced cofactors may be the major cause for the 
2-fold difference reflected in the current measurements. The microenvironment surrounding the nicotinamide 
ring binding pocket might fit the ring in two unalike oxidation states differently. Hence the alterations in their 
interactions are reflected in the fluorescence signals.

Depending on the inhibitor used, inhibition patterns against aldehyde substrate for inhibition of AR are 
observed to be either uncompetitive or non-competitive. These observed inhibition patterns may imply the fol-
lowing scenarios that not all ARI bind at the enzyme active site, that the conformational change associated with 
nucleotide exchange is responsible for the rate determining step, that ARIs bind to both *E• NADP+ and *E• 

Figure 3. (a) Omit map corresponding to WY 14,643 in the hAR ternary complex. Simulated annealing 
refinement was performed on a copy of the coordinates omitting the inhibitor. The resulting Fo-Fc omit map 
is contoured at ± 3.5 sigma (blue density is positive, red density is negative). In the refined structure, WY 
14,643 is bound to hAR through a network of interactions O1• • • OH of Tyr48, O1• • • NE of His110, O2• • • 
NE of His110, O2• • • NE1 of Trp111, S• • • SH of Cys298, S• • • H of H2O381, N3• • • NE1 of Trp20, N2• • • H of 
H2O381. (b) Low temperature crystal structure of protein free WY 14,643 with thermal ellipsoid representation. 
Nomenclature adopted by the PDB V3 is shown in orange.
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NADPH, that competition between substrate and inhibitor is masked in the overall rate of the reaction, or that 
tight binding causes non-competitive inhibition pattern.

Though the differences in pH, concentrations and different types of buffers may contribute to the disparity 
seen in the values/patterns of the parameters under consideration, employing fixed but different NADPH concen-
trations (0.15 mM compared to 60 μ M) with different protein concentrations (0.5 mM versus 0.5 μ M) will make 
significant variations observed by the above two methods. Furthermore 3-APADP+ used in the kinetic studies is 
chemically diverse with different affinity than NADP+ which is used in the quenching studies as 3-APADP+ is not 
currently commercially readily available. Therefore as Dr. Grimshaw demonstrated29 hAR• NADP+• WY 14,643 
complex is anticipated to show significant inhibition of the steady-state turnover rate. The binding location of WY 
14,643 in the active site as revealed by this ternary hAR complex structure reinforces such functional phenomenon.

Figure 4. (a) Superposition of hAR binary hAR• NADP+ (PDB ID 3Q65) and ternary hAR• NADP+• WY 
14,643 complexes. The Cα  trace is shown for all atoms. Cartoon strands illustrate the orientation of the barrel. 
The binary complex is shown in light colors; the ternary complex is shown in dark colors. Overall, the structural 
differences between the binary and ternary complexes are very small. The red dots highlight the loop region 
120–137 in which F122 (labeled) contacts the WY 14,643 (orange) 2,3-xylidino moiety and moves up to 0.5 Å. 
(b) Zoomed view around the active site of binary and ternary complex of hAR molA with NADP+ and WY 
14,643. Residues are colored as in panel (a).
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The non-selective kinase inhibitor, staurosporine is an ATP non-competitive inhibitor of protein kinase C30 
but the crystal structure of its complex with another form of protein kinase C31 as well as with protein kinase 

Identification code CCDC 1476501

Empirical formula C14H14ClN3O2S

Formula weight 323.79

Temperature 100(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P 21/c

Unit cell dimensions

a =  7.1294(3) Å α  =  90°

b =  22.6174(9) Å β  =  105.003(2)°

c =  9.2174(4) Å γ  =  90°

Volume 1435.63(10) Å3

Z 4

Density (calculated) 1.498 Mg/m3

Absorption coefficient 0.419 mm−1

F (000) 672

Crystal size 0.21 ×  0.21 ×  0.21 mm3

Theta range for data collection 1.801 to 30.555°

Index ranges − 9 ≤  h ≤  10, − 32 ≤  k ≤  31, − 13 ≤ l ≤  12 

Reflections collected 36,288

Independent reflections 4,396 [R (int) =  0.0452]

Completeness to theta =  25.242° 100.0%

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.8622 and 0.7643

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 4,396/0/200

Goodness-of-fit on F2 1.042

Final R indices [I >  2sigma (I)] R1 =  0.0321, wR2 =  0.0740

R indices (all data) R1 =  0.0427, wR2 =  0.0797

Largest diff. peak and hole 0.451 and − 0.296 e.Å−3

Table 5.  Crystal data and structure refinement for protein free WY 14,643.

Figure 5. (a) Superposition of free and hAR-bound conformations of the WY 14,643 molecule. The two 
conformations are superimposed using only the atoms in their the pyrimidine rings. Arrows show the two 
torsion angles that rotate ~180° upon binding hAR in the ternary complex. (b) Waters (cyan spheres) stabilized 
by the presence of the WY 14,643 ligand in molA of hAR• NADP+• WY 14,643. The waters shown here are 
particular to the ternary complex and not observed in the hAR• NADP+ binary complex (PDB ID 3Q65). The 
corresponding water molecules in molB are W390, W386, W396, and W553, respectively.
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A32,33 indicates binding in the ATP-binding pocket. Also the tyrphostin inhibitor PP1, is an ATP non-competitive 
inhibitor of pp60c−src 34 however it is shown to bind to the ATP-binding pocket of another kinase, Hck35. Similarly 
the structure reveals binding of WY 14,643 in the active site of the hAR ternary complex.

Fluorescence data show WY 14,643 binds hAR• NADP+ as well as hAR• NADPH binary complexes with 
almost equal affinity. The x-ray crystal structure reported here confirms the binding of WY 14,643 to the hAR• 
NADP+ binary complex. In addition the structure of the hAR• NADP+• inhibitor ternary complex reveals small 
conformational changes associated with residues Phe122 and Phe121 upon WY 14,643 binding to hAR• NADP+ 
the binary complex. The carboxylate moiety of WY 14,643 interacts with polar atoms of His, Tyr, Trp and NAPD+ 
that have aromatic character and is surrounded by other side chains that are aromatic too. However these resi-
dues do not demonstrate significant conformational or positional changes upon binding of the inhibitor’s car-
boxyl moiety; large conformational changes would likely interfere with the long range Π  interactions across this 
pocket. Therefore the majority of the differences reported by the fluorescence titration may originate from the 

Figure 6. Comparison of binding geometries of WY 14,643 and two related ligands in the active site 
of hAR. Panel (a) shows WY 14,643 forms three hydrogen bonds between its carboxylate moeity and hAR 
(dashed red lines). These bonds are conserved among all thre analogs. Panel (b) shows 2-[2-(1,3-benzothiazol-
2-ylmethylcarbamoyl)-5-fluoro-phenoxy]acetate bound to hAR (PDB code 4qr6). Note Leu300 moves to 
accommodate binding of its 1,3-benzothiazol ring. Panel (c) shows a similar movement in the hAR complex 
(PDB code 4prr) with 3-[3-(5-nitrofuran-2-yl)phenyl] propanoate.
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microenvironment. Overall the current observations reinforce interpretations from previous kinetic data that 
WY 14,643 targets the hAR active site selectively in the presence of oxidized as well as reduced cofactors, NADP+ 
and NADPH.

WY 14,643 with its strong hypolipidemic effects is known to be an agonist of PPARα  and an inhibitor of 
hAR; structural evidence suggests that these two biological roles are facilitated by different conformations of this 
molecule. As reported (PDB entry 4BCR)36 WY 14,643 binds to two types of sites on PPARα –an active site and a 
secondary site. Since PPARα  was observed in homodimeric form, there are two examples of each site: molecules 
labeled A1468 and B1468 bind to the agonist pocket and are fully buried by the protein, and molecules labeled 
A1469 and B1470 bind to secondary sites which are partially exposed to solvent. The conformation of WY 14,643 
differs between agonist and secondary sites, varying by the same torsion angles that were found to differ between 
free and hAR-bound inhibitor molecules (Fig. 7) and by similar magnitudes. The variation can be explained by 
the large difference between the structure of the agonist and secondary sites. In the agonist pocket, WY 14,643 
is bound through all three of its functional moieties with numerous polar and nonpolar contacts, whereas in the 
secondary site, the carboxylate moiety is mostly solvent exposed with only a single polar contact less than 3.4 Å 
(Table 4). Moreover, these two PPARα -bound conformations of WY 14,643 differ from the hAR-bound and free 
inhibitor conformations. The PPARα  agonist pocket and secondary site conformations (21 atoms) superimpose 
with RMSD of 1.5 Å and 1.3 Å with the hAR• NADP+• WY 14,643 complex and 1.7 Å and 1.8 Å with free WY 
14,643, respectively.

Administration of WY 14643 has been shown to protect against cardiomyocyte apoptosis following ischemia/
reperfusion or biomechanical stress in the mouse heart37. In patients with type 2 diabetes, myocardial energetic 
status index (phosphocreatine-to-ATP ratio) negatively correlates with plasma free fatty acid (FFA) concentra-
tions38. Diabetic patients have abnormal cardiac energy metabolism associated with high FFA concentrations. 
Direct energy-dissipating methods such as reduction of fat accumulation in adipocytes, or alteration of fatty acid 
metabolism, could be used to improve insulin resistance in type 2 diabetic patients39. In type 2 diabetes and even 
in individuals with family history of diabetes, mitochondrial metabolism, ATP synthesis are reduced in concert 
with a reduction of key factors regulating mitochondrial biogenesis, including amino acid biosynthesis and fatty 
acid oxidation40–42. Findings reported in the current study along with the information in the literature imply 
hAR is a target for WY 14,643 mechanism of action. Therefore the hAR mediated actions may contribute to the 
physiological outcomes of the clinical application of WY 14,643. Besides results from current binding and struc-
ture determination demonstrate that only one molecule of WY 14,643 binds to hAR and its carboxylate moiety 
occupies in the anion binding pocket under experimental conditions explored.

Methods
Production of recombinant hAR. His-tagged recombinant hAR was expressed in E. coli BL21 cells that 
were grown in Luria-Bertani broth containing 50 mg/L ampicillin with constant shaking in rotary shaker to reach 
the OD600 =  0.6–0.8 at 37 °C and 240 rpm. The protein expression was induced by supplementing 1 mM isopro-
pyl-1-thio-galactopyranoside (IPTG) in the culture medium. The cells were harvested after 3–4 hrs by centrifu-
gation (6000 g, 10 min) and resuspended in 50 mM sodium phosphate buffer (pH 7.0) containing 300 mM NaCl 
and 1 mM 2-mercaptoethanol and lysed by ultra-sonication. The hAR was isolated from the lysate separated by 
centrifugation at 10,000 g for 1.0 hr at 4 °C. The supernatant containing hexa-His-hAR was incubated for 1–2 hr 
by constant gentle mixing with Talon metal affinity matrix (Clontech, Mountain View, USA), later matrix slurry 
was passed through column and washed with 50 mM sodium phosphate buffer (pH 7.0) having 300 mM NaCl and 
1.0 mM 2-mercaptoethanol. The protein was eluted with 150 mM imidazole in 50 mM sodium phosphate buffer 
(pH 7.0) containing 300 mM NaCl and 1 mM 2-mercaptoethanol and dialyzed in the 50 mM sodium phosphate 
buffer (pH 7.0) containing 1 mM 2-mercaptoethanol. The His-tag was removed by thrombin cleavage (Novagen, 
USA) as per manufacturer’s instructions. hAR was further purified by anion exchange on DEAE Sephadex A25 
column by binding with DEAE Sephadex A 25 matrix. The concentration of hAR was determined by the Bradford 
assay (Bio-Rad, Hercules, USA), the purity was assessed by SDS-PAGE and the enzyme activity was determined 
by using 10 mM DL-glyceraldehyde and 0.15 mM NADPH as substrate and cofactor respectively.

Fluorescence titration for the binding of cofactors and inhibitors to hAR. Fluorescence titra-
tion was performed for the binding of NADPH to hAR at a protein concentration of 0.5 μ M in 5 mM sodium 

Figure 7. Superposition of free and PPAR bound conformations of WY 14,643. Conformations of WY 
14,643, B1468 (white) B1470 (brown) bound to PPARα  are superimposed using only the atoms in their the 
pyrimidine rings of protein free WY 14,643 (purple).
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phosphate buffer (pH 7.0) containing 100 μ M DTT. The titration for NADP+ binding to hAR was conducted at 
a protein concentration of 0.5 μ M in 10 mM Tris-HCl buffer (pH 9.0) containing 100 μ M DTT in 1.4 ml quartz 
cuvette by measuring fluorescence by SpectraMax M2 (Molecular Device, CA). The concentration of protein• 
NADP+/NADPH complexes formed were measured by extensive quenching of protein fluorescence by vary-
ing the concentrations of NADP+/NADPH at excitation and emission wavelengths of 295 and 365 nm, respec-
tively following the procedure described by43,44. This method was extended for inhibitor (WY 14,643) binding 
to enzyme• NADPH complex at protein concentration of 0.5 μ M in 5 mM sodium phosphate buffer (pH 7.0) 
containing 100 μ M DTT by keeping saturated fixed 60 μ M concentration of NADPH and by varying the concen-
trations of WY 14,643. The binding of inhibitor (WY 14,643) to enzyme• NADP+ complex was measured at 0.5 μ 
M protein concentration in 10 mM Tris-HCl buffer (pH 9.0) containing 100 μ M DTT by keeping saturated fixed 
60 μ M concentration of NADP+ and varying the WY 14,643. The concentrations of enzyme• NADP+/NADPH• 
inhibitor complex formed were measured by quenching of fluorescence protein• NADP+/NADPH complexes 
with excitation and emission wavelengths 295 and 365 nm, respectively.

Determination of binding dissociation constants and stoichiometric coefficients of cofactors 
and WY 14,643 to hAR using fluorescence titration data. The methodology described by van de 
Weert 2010 was followed in the binding constant determination27,28. The fractional saturation (α ) of protein by 
cofactors (NADP+/NADPH) and by inhibitor (WY 14,643) binding to protein can be expressed in the form of 
fluorescence as follows;

α =
−

− ∞
F F

F F
( )

( ) (1)

0

0

where F0 is the fluorescence in absence of quenchers (cofactors and inhibitor) denoted by L. F is the fluorescence 
at a given quencher concentration and F∞ is the fluorescence from a protein “saturated” of quencher. Assuming 
that quenchers bind to protein with molar stoichiometry of 1:n as shown in the equation (2);

+ ⇔ ·P nL P nL (2)

where n represents the order (stoichiometry) of kinetic reaction, k+1 and k−1 represent binding and dissociation 
rate constants respectively. The equilibrium dissociation constant can be expressed as below;
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The equilibrium dissociation constant can be expressed as below;
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This equation can be re-arranged to,
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when quencher concentration (L) ≈  Initial concentration (L0) then equation (8) can be expressed as follows;
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The binding dissociation constants and stoichiometry for the binding of quenchers (cofactors and inhibitor) 
to protein were calculated by non-linear fitting to the experimental fluorescence data and results are shown in 
Table 1.

X-ray crystal structure determination of protein free WY 14,643. Crystals suitable for structure 
determination were obtained by crystallization of 4-Chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid  
(also called WY 14,643 or Pirinixic acid) from its solution in aqueous ethanol at room temperature. A single crys-
tal with dimensions 0.21 ×  0.21 ×  0.21 mm3 was mounted on a glass fiber in a random orientation. Initial exam-
ination and data collection were performed using a Bruker APEX II Charge Coupled Device (CCD) Detector 
single crystal x-ray diffractometer using graphite monochromated Mo Kα  radiation (λ  =  0.71073 Å). Preliminary 
unit cell constants were determined with a set of 36 narrow frames. Intensity data were collected using ϖ  and φ  
scans at a crystal to detector distance of 4.00 cm. The collected frames were integrated using an orientation matrix 
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determined from the narrow frame scans. Bruker Apex2 and SAINT software packages45 were used for data col-
lection and integration. Final unit cell constants were determined by global refinement of xyz centroids of thresh-
old reflections from the complete data set. Collected data were corrected for systematic errors using SADABS46 
based on the Laue symmetry using equivalent reflections. Crystal data and intensity data collection parameters 
for WY 14,643 obtained at low temperature are listed in Table 5.

Structure solution and refinement were carried out using the SHELXTL- PLUS software package47. The struc-
ture was determined by direct methods and refined successfully in the monoclinic space group, P 21/c. Full matrix 
least-squares refinement was carried out by minimizing Σ w(Fo

2 −  Fc
2)2. The non-hydrogen atoms were refined 

anisotropically to convergence with final residual values: R1 =  3.2% and wR(F2) =  8.0%. All OH and NH hydro-
gen atoms were located from difference Fourier maps and were refined freely using isotropic thermal parameters 
like in the structure determination of fenofibric acid and fenofibrate following established procedure47–49. All 
other H atoms were treated using appropriate riding models (AFIX m3). Refinement parameters for the final 
structure of WY 14,643 are listed in Table 5. See supplementary information.

Crystal structure determination of hAR with WY 14,643. Crystals of hAR• NADP+• WY 14,643 were 
generated using the hanging drop vapor diffusion method following a procedure that we previously established 
for the holoenzyme50. Protein, NADP+ and WY 14,643 solutions were mixed to achieve a molar ratio of 1:3:1.2 
for the protein to cofactor to inhibitor. Crystals were briefly transferred to a solution containing the reservoir 
solution supplemented with 35% glycerol and flash-cooled by plunging them into liquid nitrogen. Data were 
collected at 100 K using beamline 9-2 at the Stanford Synchrotron Radiation Laboratory (SSRL) with an exposure 
time of 90 sec per 0.5° frame, a 250 mm crystal-to-detector distance, and wavelength of 0.9795 Å. The beamline 
was equipped with an ADSC Quantum 315 CCD detector. The data were processed and scaled to 1.8 Å resolu-
tion with XDS51, AIMLESS52,53 and AUTOPROC54 yielding an Rmerge of 12.2%. The crystal belonged to space 
group P212121 and contained two hAR• NADP+• WY 14,643 complexes in the asymmetric unit. Initial phases 
were obtained by the difference Fourier method, using the holoenzyme (PDB ID 3Q65) (excluding solvent mol-
ecules) as the starting model. Initial rigid-body refinement and subsequent individual atomic refinement were 
performed using the programs REFMAC53,55 and BUSTER56. Model building was performed with the program 
COOT57. Clear electron density allowed the positioning of the WY 14,643 ligand and solvent molecules. The final 
model was validated with the following structure validation tools: PROCHECK58, ERRAT59 and VERIFY3D60. 
The Ramachandran plot indicates 91% of the residues lie in the most favoured regions and 9% of the residues lie 
in the additionally favoured regions. The ERRAT score was 96.7%. Details of the data collections and the refine-
ment statistics are shown in Table 2.

References
1. Bencze, W. L., Hess, R. & DeStevens, G. Hypolipidemic agents. Prog Drug Res 13, 217–292 (1969).
2. van Breemen, R. B. & Fenselau, C. Acylation of albumin by 1-O-acyl glucuronides. Drug Metab Dispos 13, 318–320 (1985).
3. Sallustio, B. C., Knights, K. M., Roberts, B. J. & Zacest, R. In vivo covalent binding of clofibric acid to human plasma proteins and rat 

liver proteins. Biochem Pharmacol 42, 1421–1425 (1991).
4. Caldwell, J., Grugg, N., Sinclair, K. A., Weil., A. & Fournel-Gigleux, S. In Cellular and Molecular Aspects of Glucuronidation (eds G. Siest, 

Magdalou, J. & Burchell, B.) 185–192 (John Libbey Eurotext Ltd, 1988).
5. Spahn-Langguth, H. & Benet, L. Z. Acyl glucuronides revisited: is the glucuronidation process a toxification as well as a 

detoxification mechanism? Drug Metab Rev 24, 5–47 (1992).
6. Caldwell, J., Sinclair, K. & Weil, A. Acylation of amino acids and other endobiotics by xenobiotic acids. (Taylor and Francis, 1988).
7. Faed, E. M. Properties of acyl glucuronides: implications for studies of the pharmacokinetics and metabolism of acidic drugs. Drug 

Metab Rev 15, 1213–1249 (1984).
8. Santilli, A. A., Scotese, A. C. & Tomarelli, R. M. A potent antihypercholesterolemic agent: (4-chloro-6-(2,3-xylidino)-2-

pyrimidinylthio) acetic acid (Wy-14643). Experientia 30, 1110–1111 (1974).
9. Lazarow, P. B. Three hypolipidemic drugs increase hepatic palmitoyl-coenzyme A oxidation in the rat. Science 197, 580–581 (1977).

10. Bulhak, A. A., Sjoquist, P. O., Xu, C. B., Edvinsson, L. & Pernow, J. Protection against myocardial ischaemia/reperfusion injury by 
PPAR-alpha activation is related to production of nitric oxide and endothelin-1. Basic Res Cardiol 101, 244–252 (2006).

11. Larter, C. Z. et al. Peroxisome proliferator-activated receptor-alpha agonist, Wy 14,643, improves metabolic indices, steatosis and 
ballooning in diabetic mice with non-alcoholic steatohepatitis. J Gastroenterol Hepatol 27, 341–350 (2012).

12. Issemann, I. & Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 
347, 645–650 (1990).

13. Berger, J. & Moller, D. E. The mechanisms of action of PPARs. Annu Rev Med 53, 409–435 (2002).
14. Balendiran, G. K., Verma, M. & Perry, E. Chemistory of Fibrates. Current Chemical Biology 1, 311–316 (2007).
15. Klemin, S. et al. WY 14,643 inhibits human aldose reductase activity. J Enzyme Inhib Med Chem 21, 569–573 (2006).
16. Verma, M. et al. Inhibiting wild-type and C299S mutant AKR1B10; a homologue of aldose reductase upregulated in cancers. 

European Journal of Pharmacology 584, 213–221 (2008).
17. Gabbay, K. H. The sorbitol pathway and the complications of diabetes. N Engl J Med 288, 831–836 (1973).
18. Greene, D. A., Lattimer, S. A. & Sima, A. A. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of 

diabetic complications. N Engl J Med 316, 599–606 (1987).
19. Kinoshita, J. H. & Nishimura, C. The involvement of aldose reductase in diabetic complications. Diabetes Metab Rev 4, 323–337 

(1988).
20. Brankston, E. R. et al. Effect of AR Inhibition on Heart Rate Variability in Patients with Severe or Moderate Diabetic Autonomic 

Neuropathy. Clin Drug Invest 15, 111–121 (1998).
21. Hodgkinson, A. D. et al. Aldose reductase expression is induced by hyperglycemia in diabetic nephropathy. Kidney Int 60, 211–218 

(2001).
22. Van Heyningen, R. Formation of polyols by the lens of the rat with sugar cataract. Nature 184, 194–195 (1959).
23. Hers, H. G. The mechanism of the formation of seminal fructose and fetal fructose. Biochim Biophys Acta 37, 127–138 (1960).
24. Ikeda, T., Iwata, K. & Tanaka, Y. Long-term effect of epalrestat on cardiac autonomic neuropathy in subjects with non-insulin 

dependent diabetes mellitus. Diabetes Res Clin Pract 43, 193–198 (1999).
25. Eftink, M. R., Selva, T. J. & Wasylewski, Z. Studies of the efficiency and mechanism of fluorescence quenching reactions using 

acrylamide and succinimide as quenchers. Photochemistry and Photobiology 46, 23–30 (1987).



www.nature.com/scientificreports/

13Scientific RepoRts | 6:34394 | DOI: 10.1038/srep34394

26. Werner, T. C., Peak, D. & Danziger, J. L. An evaluation of charge effects on the quenching of tryptophan fluorescence in small 
peptides by iodide ion. Photochemistry and Photobiology 42, 25–28 (1985).

27. van de Weert, M. Fluorescence quenching to study protein-ligand binding: common errors. J Fluoresc 20, 625–629 (2010).
28. van de Weert, M. & Stella, L. Fluorescence quenching and ligand binding: A critical discussion of a popular methodology. Journal of 

Molecular Structure 998, 144–150 (2011).
29. Bohren, K. M. & Grimshaw, C. E. The sorbinil trap: a predicted dead-end complex confirms the mechanism of aldose reductase 

inhibition. Biochemistry 39, 9967–9974 (2000).
30. Ward, N. E. & O’Brian, C. A. Kinetic analysis of protein kinase C inhibition by staurosporine: evidence that inhibition entails inhibitor 

binding at a conserved region of the catalytic domain but not competition with substrates. Mol Pharmacol 41, 387–392 (1992).
31. Xu, Z. B. et al. Catalytic domain crystal structure of protein kinase C-theta (PKCtheta). J Biol Chem 279, 50401–50409 (2004).
32. Prade, L. et al. Staurosporine-induced conformational changes of cAMP-dependent protein kinase catalytic subunit explain 

inhibitory potential. Structure 5, 1627–1637 (1997).
33. Zheng, J. et al. 2.2 A refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP 

and a peptide inhibitor. Acta Crystallogr D Biol Crystallogr 49, 362–365 (1993).
34. Karni, R. et al. The pp60c-Src inhibitor PP1 is non-competitive against ATP. FEBS Lett 537, 47–52 (2003).
35. Schindler, T. et al. Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. Mol Cell 3, 639–648 

(1999).
36. Bernardes, A. et al. Molecular mechanism of peroxisome proliferator-activated receptor alpha activation by WY14643: a new mode 

of ligand recognition and receptor stabilization. J Mol Biol 425, 2878–2893 (2013).
37. el Azzouzi, H. et al. Peroxisome proliferator-activated receptor (PPAR) gene profiling uncovers insulin-like growth factor-1 as a 

PPARalpha target gene in cardioprotection. J Biol Chem 286, 14598–14607 (2011).
38. Scheuermann-Freestone, M. et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. 

Circulation 107, 3040–3046 (2003).
39. Bogacka, I., Ukropcova, B., McNeil, M., Gimble, J. M. & Smith, S. R. Structural and functional consequences of mitochondrial 

biogenesis in human adipocytes in vitro. J Clin Endocrinol Metab 90, 6650–6656 (2005).
40. Petersen, K. F., Dufour, S., Befroy, D., Garcia, R. & Shulman, G. I. Impaired mitochondrial activity in the insulin-resistant offspring 

of patients with type 2 diabetes. N Engl J Med 350, 664–671 (2004).
41. Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human 

diabetes. Nat Genet 34, 267–273 (2003).
42. Patti, M. E. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential 

role of PGC1 and NRF1. Proc Natl Acad Sci USA 100, 8466–8471 (2003).
43. Stinson, R. A. & Holbrook, J. J. Equilibrium binding of nicotinamide nucleotides to lactate dehydrogenases. Biochem J 131, 719–728 

(1973).
44. Ehrig, T., Bohren, K. M., Prendergast, F. G. & Gabbay, K. H. Mechanism of aldose reductase inhibition: binding of NADP+ /NADPH 

and alrestatin-like inhibitors. Biochemistry 33, 7157–7165 (1994).
45. Bruker. (Madison, WI, 2012).
46. Sheldrick, G. M. (Madison, WI, 2012).
47. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr A 64, 112–122 (2008).
48. Rath, N. P., Haq, W. & Balendiran, G. K. Fenofibric acid. Acta Crystallogr C 61, o81–o84 (2005).
49. Balendiran, G. K. et al. Biomolecular chemistry of isopropyl fibrates. J Pharm Sci 101, 1555–1569 (2012).
50. Balendiran, G. K. et al. The role of Cys298 in aldose reductase function. J Biol Chem 286, 6336–6344 (2010).
51. Kabsch, W. Xds. Acta Crystallogr D Biol Crystallogr 66, 125–132 (2010).
52. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr 69, 1204–1214 

(2013).
53. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235–242 (2011).
54. Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr D Biol Crystallogr 67, 293–302 (2011).
55. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta 

Crystallogr D Biol Crystallogr 53, 240–255 (1997).
56. Bricogne, G. et al. BUSTER version 2.10.0. (Global Phasing Ltd, 2011).
57. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126–2132 

(2004).
58. Laskowski, R. A., McArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: A program to check the stereochemical quality of 

protein structures. J. Appl. Cryst. 26, 283–291 (1993).
59. Colovos, C. & Yeates, T. O. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2, 1511–1519 

(1993).
60. Luthy, R., Bowie, J. U. & Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature 356, 83–85 (1992).

Acknowledgements
This work is supported by National Institutes of Health Grant. We thank David Eisenberg and Todd Yeates for the 
use of their facilities; the staff at SSRL beamline 9-2 for their expert assistance; Dino Moras and Alberto Podjarny 
for the gift of the recombinant hAR overexpression cells. Data collection facilities at the Stanford Synchrotron 
Radiation Laboratory (SSRL) are funded by The Office of Biological and Environmental Research, U.S. 
Department of Energy, the National Institutes of Health, National Center for Research Resources, Biomedical, 
and the National Institute of General Medical Sciences.

Author Contributions
M.R.S. determined the ternary complex crystal structure. M.V. carried out the binding studies. N.P.R. performed 
the protein free crystal structure determination of WY 14,643. V.B. produced single crystals of WY 14,643. G.K.B. 
collected the x-ray data from ternary complex crystals. M.R.S., D.C., M.V., N.P.R., V.B. and G.K.B. analysed the 
data, wrote sections of the manuscript and, reviewed and approved the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Sawaya, M. R. et al. Characterization of WY 14,643 and its Complex with Aldose 
Reductase. Sci. Rep. 6, 34394; doi: 10.1038/srep34394 (2016).

http://www.nature.com/srep


www.nature.com/scientificreports/

1 4Scientific RepoRts | 6:34394 | DOI: 10.1038/srep34394

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	Characterization of WY 14,643 and its Complex with Aldose Reductase
	Results
	Fluorescence effect induced by cofactor and WY 14,643 binding. 
	Structure of hARNADP+WY 14,643 Complex. 
	Atomic Interactions in hARNADP+WY 14,643 Complex. 
	Comparison of hARNADP+WY 14,643 complex with other ternary complexes. 

	Discussion
	Methods
	Production of recombinant hAR. 
	Fluorescence titration for the binding of cofactors and inhibitors to hAR. 
	Determination of binding dissociation constants and stoichiometric coefficients of cofactors and WY 14,643 to hAR using flu ...
	X-ray crystal structure determination of protein free WY 14,643. 
	Crystal structure determination of hAR with WY 14,643. 

	Acknowledgements
	Author Contributions
	Figure 1.  Chemical Structure of 4-Chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid, WY 14,643, Pirinixic acid.
	Figure 2.  Fluorescence measurements for the determination of binding dissociation constant corresponding to (a).
	Figure 3.  (a) Omit map corresponding to WY 14,643 in the hAR ternary complex.
	Figure 4.  (a) Superposition of hAR binary hARNADP+ (PDB ID 3Q65) and ternary hARNADP+WY 14,643 complexes.
	Figure 5.  (a) Superposition of free and hAR-bound conformations of the WY 14,643 molecule.
	Figure 6.  Comparison of binding geometries of WY 14,643 and two related ligands in the active site of hAR.
	Figure 7.  Superposition of free and PPAR bound conformations of WY 14,643.
	Table 1.   Equilibrium dissociation constants (Kd) and stoichiometry coefficients (n) of NADP+ and NADPH binding with hAR and those of WY 14,643 binding with hARNADP+/NADPH complexes.
	Table 2.   Crystallographic Statistics of the hARNADP+WY 14,643 complex structure.
	Table 3.   Distances between cofactor polar atoms and that of hAR or solvent.
	Table 4.   Atomic distances between polar atoms of WY 14,643 and that in hAR ternary complex and PPAR complex.
	Table 5.   Crystal data and structure refinement for protein free WY 14,643.



 
    
       
          application/pdf
          
             
                Characterization of WY 14,643 and its Complex with Aldose Reductase
            
         
          
             
                srep ,  (2016). doi:10.1038/srep34394
            
         
          
             
                Michael R. Sawaya
                Malkhey Verma
                Vaishnavi Balendiran
                Nigam P. Rath
                Duilio Cascio
                Ganesaratnam K. Balendiran
            
         
          doi:10.1038/srep34394
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep34394
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep34394
            
         
      
       
          
          
          
             
                doi:10.1038/srep34394
            
         
          
             
                srep ,  (2016). doi:10.1038/srep34394
            
         
          
          
      
       
       
          True
      
   




