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ABSTRACT: Scour of rock in unlined rock spillway channels is a critical issue 
facing many of the world’s dams. From a modeling point of view this poses a 
challenging and interesting problem that combines rock mechanics and 
hydraulics of turbulent flow. We analyze this interaction between the blocky 
rock mass and water by directly modeling the solid and fluid phases—the 
individual polyhedral blocks are modeled using the Discrete Element Method 
(DEM) while the water is modeled using the Lattice Boltzmann Method (LBM).
The LBM mesh is entirely independent of the DEM discretization, making it 
possible to refine the LBM mesh such that transient and varied fluid 
pressures acting of the rock surface are directly modeled. This provides the 
capability to investigate the effect of water pressure inside the fractured rock
mass, along potential sliding planes, and can be extended to rock falls and 
slides into standing bodies of water such as lakes and reservoirs. Herein we 
present preliminary results to demonstrate the capabilities of the 
methodology.

1. INTRODUCTION

Scour of rock is a very challenging and interesting problem that combines 
rock mechanics and hydraulics of turbulent flow. On a practical level, rock 
erosion is a critical issue facing many of the world’s dams at which excessive
scour of the dam foundation or spillway can compromise the stability of the 
dam resulting in significant remediation costs, if not direct personal property 
damage or even loss of life. The most current example of this problem is 
Oroville Dam in Northern California—massive scour damage to both the 
service and emergency spillways during the flood events of February 2017 
led to the evacuation of more the 188,000 people living downstream of the 
dam.



In order to effectively model rock scour, it is necessary to consider the 
interaction between the blocky rock mass and the water flowing over and 
through it. Simulations modeling this process can follow one of two 
approaches:

 Account for fluid-solid interaction based on a locally averaged 
approach (Anderson & Jackson, 1967, Tsuji et al., 2008, Furuichi et al., 
2014)

 Directly simulate hydrodynamic forces on the solid particles (Noble & 
Torczynksi, 1998, Holdych, 2003, Hölzer & Sommerfeld, 2009)

In the locally averaged approach, the number of solid particles is greater 
than the number of fluid cells, making this approach less computationally 
expensive. However, since the fluid-solid coupling is done on a 
volumeaveraged basis, all particles within a local region will experience the 
same hydrodynamic forces. In certain applications this may be appropriate, 
but for rock scour this approach does not offer sufficient resolution.

The second approach attempts to overcome this shortcoming by directly 
simulating the hydrodynamic forces on the solid particles. To achieve this, it 
is necessary to have a much higher resolution fluid mesh and consequently 
many more fluid cells compared to solid particles. This added accuracy 
makes direct simulations significantly more computationally expensive.

Our approach falls into the second category where fluidsolid interaction is 
directly simulated. This is achieved by coupling the Discrete Element Method
(DEM) with the Lattice Boltzmann Method (LBM) in three dimensions. The 
solid polyhedral particles are modeled using DEM while the fluid phase is 
simulated using LBM. As previously mentioned, this approach is 
computationally intensive and requires parallel computing to accelerate 
computations. We implemented our computations in parallel using the 
Kokkos C++ library (Edwards et al. 2014). Kokkos achieves performance 
portability among different computing platforms, allowing the same code to 
be compiled to target the hardware it will be executed on. The resulting 
software, written in C++, is capable of modeling fluid-solid interaction in 
three dimensions and can be executed in parallel to accelerate 
computations.

2. SOLID PHASE MODEL

In fractured rock, the displacements occur primarily along the joints within 
the fractured rock mass—the three dimensional orientation of the 
discontinuities largely influence the block removability, kinematics and 
stability (Goodman & Shi, 1985). Therefore, it is important that any 
numerical model used to describe the mechanical behavior of rock is able to 
capture the discontinuous nature of the rock. Continuum models are not able
to capture this behavior since the rock is not continuous at all. Distinct 
particle methods such as the Discrete Element Method (Cundall & Strack, 
1979) and Discontinuous Deformation Analysis (Shi & Goodman, 1988) 



directly model individual particles, making them ideal for modeling fractured 
rock.

We chose to use DEM since the time integration formulation is explicit. This 
means that all block force and moment computations are local and, once all 
contact detection has been completed for a particular time step, the block 
displacements and rotations can be updated without needing any additional 
information about neighboring blocks. This local nature of the calculations 
makes them attractive for parallel computing.

2.1. Formulation

The equations of translational and rotational motion for an individual rock 
block are:

where  and  represent the translational and rotational acceleration of the
block; Fi and Mi are the total force and moment acting on the block; α is the 
damping constant; and gi is the gravitational acceleration. These equations 
are integrated over time using a velocity Verlet time integrator for 
translation and a quaternion-based time integrator (Johnson et al., 2008) for 
rotation.

The total force and torque acting on the block are determined based on 
contact between blocks. Contact forces and moments are calculated 
following the method of Hart et al., 1988.

2.2. Contact Detection

In order to determine the contact forces and moments, it is necessary to 
establish which blocks are in contact with each other. This is the most 
computationally expensive portion of DEM—approximately 80% of 
computation time is spent here (Horner et al., 2000).

Establishing contact between blocks is done in two phases: first, a neighbor 
search to establish which blocks are close enough to possibly be in contact 
and, second, checking whether those blocks are actually in contact. We 
implemented the CGRID algorithm (Williams et al., 2003) to perform the 
neighbor search. Unlike other neighbor search algorithms, such as NBS 
(Munjiza & Andrews, 1998), CGRID is able to maintain O(N) operations to 
complete spatial binning even if the particle sizes are substantially different
—often the case for fractured rock.



Once the neighbor search has established which blocks could possibly be in 
contact, the neighboring blocks are checked to determine which pairs are 
actually in contact. For this phase of the computations, we used a linear 
programming approach as described by Boon et al., 2012. As shown in 
Figure 1, each polyhedral block can be defined as a set of linear inequalities 
describing the faces of the block. Using this formulation, contact detection 
can be recast as a convex optimization. This algorithm greatly simplifies the 
contact detection process—the only data necessary for describing the blocks 
is the normal of each of the block faces and the distance of that face from 
the block centroid. Contact is established by solving a linear program; if 
contact exists, the contact point is taken as the analytical center of the 
region of overlap, indicated by the hashed region in Figure 1. The contact 
normal is calculated using the gradient vector of “potential particles” within 
each of the contacting blocks.

3. FLUID PHASE MODEL

The behavior of viscous fluid is described by the Navier Stokes equation. In 
computational fluid dynamics, several methods have been used to simulate 
the behavior of fluid by approximating the Navier Stokes equation 
numerically. The Finite Element Method (FEM) and Finite Volume Method 
(FVM) are two of the most popular methods; they can capture shocks and 
can offer higher order accuracy. However, when a solid phase is allowed to 
move through the fluid phase; these methods can become prohibitively 
computationally expensive and complicated: As the fluid moves through the 
FEM domain, it is necessary to re-mesh the fluid in the vicinity of the block 
and translate solutions from the old mesh to the updated one. For the FVM, 



establishing the support for higher order solutions is no longer clear when 
fluid cells are covered by solids.

An alternative to using the FEM or FVM, is the Lattice Boltzmann Method 
(LBM). Instead of solving the Navier Stokes equations, the LBM is based on 
kinetic theory and solves a mesoscopic description of fluid behavior— 
distributions of particles form the fundamental description of fluid behavior. 
It can be shown that the LBM recovers the macroscopic Navier-Stokes 
equations through a Chapman-Enskog expansion (Succi, 2001). The LBM 
formulation is intrinsically parallelizable and the method is able to deal with 
complex geometries and solids moving through the fluid mesh in a relatively 
straightforward fashion.

3.1. Formulation

In addition to discretizing physical space and time, the LBM also discretizes 
velocity space in the Boltzmann equation. The set of discrete velocities and 
accompanying weights are selected to satisfy the correct macroscopic 
conservation laws (Krüger et al., 2016). Figure 2 shows two such sets, one 
with 9 discrete velocities in two dimensions and another with 27 discrete 
velocities in three dimensions.

This discretization in time, physical and velocity space of the Boltzmann 
equation leads to the lattice Boltzmann equation:

This equation describes the two steps in the LBM: streaming and collision. In 
the streaming step, particle populations fi(x,t) move to neighboring point x +
ciΔt with velocity ci at the next time step t + Δt. The collision step is 
described by the collision operator, Ωi, which models particle collisions by 
redistributing particles among the populations fi(x,t) at each node in the fluid
mesh.



There are many different collision operators available. The simplest is the 
single relaxation time BhatnagarGross-Krook (BGK) operator (Bhatnagar et 
al., 1954) while other models offer increasingly more relaxation times to 
account for the difference in rates at which hydrodynamic quantities relax 
toward equilibrium. We implemented a three-dimensional, 27 discrete 
velocity, multiple relaxation time model (D3Q27 MRT) as described by Suga 
et al., 2015. This model offers more numerical stability and accuracy by 
decoupling the relaxation of different hydrodynamic quantities in moment 
space rather than population space, allowing them to relax to equilibrium at 
different rates. Once relaxation is completed, moments are transformed back
to population space where the streaming step is done as described in the 
lattice Boltzmann equation.

A full description of the D3Q27 MRT collision operator is available in Suga et 
al., 2015, but it is important to mention that as with all LBM methods the 
spatial and temporal discretization are tied to the fluid viscosity by at least 
one of the relaxation times. The relation for the D3Q27 MRT model is:

where cs is the sound speed ratio, , and s5 and s7 are relaxation times.

3.2. Body Forces

The lattice Boltzmann equation in its original formulation does not account 
for body forces. Several approaches can account for body forces in LBM as 
summarized by Huang et al., 2011. We use the approach proposed by Guo et
al., 2002, in which the body forces are added as an additional source term in 
the lattice Boltzmann equation

3.3. Turbulent Flow

Turbulence is accounted for using the Large Eddy Simulation (LES) approach.
In this approach, scales smaller than the fluid mesh size are accounted for 
through an added subgrid scale eddy viscosity as a function of a subgrid 
scale tensor. We applied the wall-adapting local eddy-viscosity (WALE) model
(Nicoud & Ducros, 1999) which is a function of the velocity gradient tensor.

The velocity gradient tensor can be calculated using second order finite 
differences—this requires only knowing the fluid velocity at the nearest 
neighboring fluid nodes. Using the WALE model, the subgrid scale viscosity is
then calculated based on the velocity gradient at each node and added to 
the fluid viscosity at that node:



4. FLUID-SOLID COUPLING

There are several different approaches to describe boundary conditions for 
fluid-solid interaction. We adopted the so-called partially saturated method 
(PSM) of Noble & Torczynski, 1998, as modified by Holdych, 2003. As shown 
in Figure 3, as a solid particle moves through the fluid mesh it will partially or
completely cover fluid cells—near the boundary of the solid particle, cells will
be part solid and part fluid while they will be entirely solid in the interior of 
the particle. This is accounted for by modifying the lattice Boltzmann 
equation to have an additional collision operator for the solid phase:

where  is the fluid collision operator and  is a collision operator for 
solid nodes:

Here,  is the local velocity of the fluid and  is the velocity of the solid at 

point x;  is the particle equilibrium population where the subscript 
indicates the population with opposite velocity to i. The weighting factor, B, 
is determined based on the volumetric solid fraction, ε, of the fluid cell:

The additional collision operator accounts for the presence of the solid in the 
fluid, but the fluid action on the solid also needs to be accounted for. The 
hydrodynamic forces and torques on the solid are calculated according to 
Owen et al., 2010:



where xn are all the lattice nodes covered or partially covered by the solid 
and Xp is the location of the center of mass of the solid particle.

5. PARALLEL IMPLEMENTATION

Direct simulation of hydrodynamic forces on polyhedral blocks is 
computationally expensive, especially when simulations are three 
dimensional. Accurate resolution of the hydraulics surrounding the rock 
blocks requires the number of fluid nodes to be far greater than the number 
of solid particles. This makes the fluid domain solution the most 
computationally expensive portion of simulations and the most important 
part of the analyses to accelerate. As previously mentioned, the LBM is 
intrinsically parallelizable. The collision step is entirely localized for laminar 
flow and information only about a node’s nearest neighbors is required for 
turbulent flow. During the streaming step, information is shared only with 
nodes immediately surrounding each other—those nodes connected to each 
other by the discrete velocity set. This localized nature of the LBM is what 
makes it an attractive candidate for parallel computing.

Computing systems and hardware are evolving rapidly, providing tools to 
expand the types and sizes of analyses possible. However, these 
developments are heterogenous and do not necessarily interface easily with 
each other or maintain backward compatibility. When developing software 
that exploits a certain accelerator, it can be challenging and cumbersome to 



update the source code as the hardware that it targets is updated. To help 
alleviate some of the difficulties associated with this aspect of code 
development, the Kokkos C++ library (Edwards et al., 2014) abstracts both 
the data parallelism and memory access on a range of multi-core 
architectures. This allows the same source code to be compiled for different 
architectures while still maintaining performance.

Using Kokkos, we parallelized the fluid portion of the computations such that 
the most computationally cumbersome calculations can be executed on 
either the central processing unit (CPU) or graphics processing unit (GPU). 
Approximately 30% of computing time is spent on the collision step, 30% on 
generating the output for visualizations and 20% on the fluid-solid coupling 
in terms of identifying which nodes are covered by solids moving through the
fluid mesh. The collision step can be accelerated using either the CPU or 
GPU, while the fluidsolid coupling and output generation can be accelerated 
using the CPU.

6. EXAMPLES

The following examples are presented to demonstrate the capability of our 
software. It is capable of modeling coupled fluid-solid interaction but can also
be used to model only fluid or dry rock. The figures in the examples were 
rendered using ParaView (Ayachit, 2015).

6.1. DEM Example: Rock Slope Failure

The source code for the application has been heavily unit tested to ensure 
that the underlying formulation is working as expected. Additionally, we have
compared numerical results to the analytical solution for a block sliding down
an inclined plane to verify the correctness of the DEM implementation. This 
provides confidence in the ability of the software to capture the behavior of 
more complex analyses, such as shown in the rock avalanche example in 
Figure 4. The initial configuration of the fractured rock mass was generated 
using SparkRocks (Gardner et al., 2017) using joint set data from a field site 
in the Sierra Nevada. The software is capable of capturing the behavior of 
the individual blocks and how they interact with each other as they move 
downslope.



6.2. LBM Example: Stagnation Point Analysis

The LBM portion of the source code has also been rigorously unit tested and 
compared to the analytical solution of several fluid dynamics problems—
Couette flow, gravity-driven planar Poiseuille flow and flow down and inclined
plane. Beyond that, we ran a simplified stagnation point analysis to verify 
that the software can correctly predict the location of the stagnation point 
compared to the work done by Frizell, 2007.



Figure 5 shows the velocity magnitude in the channel and Figure 6 shows the
accompanying pressure profile. Figure 7 shows stream tracers for a single 
snapshot in the solution—the stream tracers indicate how particles might 
travel through the velocity field at that instant in time. These results match 
the location of the stagnation point and show the recirculation zone 
identified in similar analyses by Frizell, 2007.

6.3. Coupled DEM-LBM Example: Block in Flow Down Inclined Plane

This example shows the results from a coupled, threedimensional analysis 
considering hydrodynamic forces on a polyhedral rock block in water flowing 
down n plane inclined at 30°. Figure 8 shows the block as it moves through 
the fluid mesh, effecting the fluid solution. Stream tracers show how fluid is 
forced to flow around the block and, in turn, applying hydrodynamic forces 
and moments to the block.



7. CONCLUSION

We present the formulation for a coupled 3-D DEM-LBM solution of fluid-solid 
interaction capable of directly simulating hydrodynamic forces and moments 
acting on individual polyhedral blocks, along with preliminary results to 
demonstrate the capability of the methodology. The software 
implementation is structured so that it can be compiled to execute in parallel
on either the CPU and GPU or CPU only. This is made possible by applying 
the Kokkos library to execute the most computationally expensive portions of
the analyses.

Future work will be focused on further comparisons of coupled fluid-solid 
numerical analyses with analytical and experimental results to validate the 
accuracy of the numerical schemes. Ultimately, multiphase capability can be 
added to the LBM such that free-surface simulations involving rock falls and 
slides into water can be modeled as well. Additionally, the software will be 
expanded to have the capability to run on multiple compute nodes, whether 
on a super computer or on the Cloud, such that larger, real-world scale 
problems can be analyzed. This scalability will allow users to run large scale 
simulations on the Cloud, eliminating the need for investing and maintaining 
their own local computing resources.
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