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A General Framework for Multivariate Analysis

with Optimal Scaling: The R Package aspect

Patrick Mair
Wirtschaftsuniversität Wien

Jan de Leeuw
University of California, Los Angeles

Abstract

In a series of papers de Leeuw developed a general framework for multivariate analy-
sis with optimal scaling. The basic idea of optimal scaling is to transform the observed
variables (categories) in terms of quantifications. In the approach presented here the
multivariate data are collected into a multivariable. An aspect of a multivariable is a
function that is used to measure how well the multivariable satisfies some criterion. Ba-
sically we can think of two different families of aspects which unify many well-known
multivariate methods: Correlational aspects based on sums of correlations, eigenvalues
and determinants which unify multiple regression, path analysis, correspondence analysis,
nonlinear PCA, etc. Non-correlational aspects which linearize bivariate regressions and
can be used for SEM preprocessing with categorical data. Additionally, other aspects can
be established that do not correspond to classical techniques at all. By means of the R
package aspect we provide a unified majorization-based implementation of this methodol-
ogy. Using various data examples we will show the flexibility of this approach and how the
optimally scaled results can be represented using graphical tools provided by the package.

Keywords: aspect, lineals, optimal scaling, bilinearizability, R.

1. Introduction

Gifi (1990) offers a comprehensive collection of nonlinear multivariate methods based on
optimal scaling. The starting point of the underlying analysis is a 0-1 dummy matrix based
on the data which are considered as categorical. Subsequently, a loss function involving the
(unknown) object and category scores is established. During the iterations we stretch/squeeze
the variables and compute category scores such that they are optimal in the sense of a minimal
loss function. This procedure is referred to as optimal scaling. The simplest method is
homogeneity analysis which is also known as multiple correspondence analysis. By imposing
restrictions on the quantification ranks we get nonlinear principal component analysis and
by defining sets nonlinear multi-set canonical correlation analysis. More detailed descriptions
with a strong computational background and, correspondingly, the presentation of the R (R
Development Core Team 2009) package homals are given in de Leeuw and Mair (2007a).

In this paper, which is also part of our PsychoR project (http://r-forge.r-project.org/
projects/psychor/), we somewhat extend the Gifi approach in terms of a general system for
multivariate analysis which we denote as the aspect framework. The theoretical foundation of
this approach was already given by de Leeuw (1988b), some of it also in de Leeuw (1982), and
further discussed in de Leeuw (1988a), de Leeuw (1993), and de Leeuw, Michailidis, and Wang

http://r-forge.r-project.org/projects/psychor/
http://r-forge.r-project.org/projects/psychor/


2 Aspects in R

(1999). Essentially, we can subdivide this framework into two parts: optimization of functions
of the correlation matrix on the one hand, and optimization of non-correlational loss functions
on the other hand. In the first case we speak of correlational aspects. In the second case,
where we mainly focus on linearizing regressions (LINEALS), we speak of non-correlational
aspects. Eventually we get optimally scaled unidimensional category quantifications (scores).
These scores and the corresponding correlation matrix, respectively, can be used for further
multivariate modeling.

As de Leeuw et al. (1999) point out, in many situations (e.g., social and behavioral sciences)
we do not know exactly how to express the variables. For instance, we can think of regression
examples where we can apply logarithmic, exponential, or square root transformations to
the data. In the Gifi (and in our aspect) framework, the transformations are unknown:
We scale (i.e., transform or quantify) the categories with respect to a certain criterion. In
the particular aspect approach we select an target function, investigate how this function
varies over all feasible transformations of the variables, and, finally, quantify the categories
accordingly.

In the next sections we start with some basic definitions, present correlational aspects and
their optimization by means of majorization. Then, as a particular non-correlational aspect,
we focus on LINEALS, discuss implications of this approach and focus on LINEALS as a
structural equation models (SEM) preprocessing tool for categorical data. The applied part
of the paper focuses on the R package aspect by means of various examples.

2. Basic definitions and notations

2.1. Cones in n-space: The theoretical framework

Let us assume that our data are collected in a n × m matrix H = (h1, h2, . . . , hm) with
i = 1, . . . n and j = 1, . . . ,m. From a general perspective, multivariate analysis involves
computations on m random variables H1, H2, . . . ,Hm , which we can collect into a so called
multivariable. An aspect φ of a multivariable is a well-defined function that is used to measure
how well the multivariable satisfies some desirable criterion (de Leeuw et al. 1999, p. 529).
At this point we can think of many different criteria; thus, many different aspects can be
defined.

So far we did not mention that our approach will rescale the categories of each hj by means
of optimal scaling. A convenient mathematical formulation is offered by the concept of cones.
Note that we are not only interested in the variables as we observe them but rather in transfor-
mations of the observed data (monotonic, polynomial, “splinical”). If one such transformation
or re-expression of the variable suits our criterion better than the original expression, we use
the transformed version (de Leeuw 1988a). So let us assume that the observed hj and its
transformations are in a known closed convex cone Kj , which is a subset of Rn. Hence, in
our multivariate setting, we have the cones K1,K2, . . .Km. Various cones are important: K
can be a polyhedral convex cone of monotone transformations, a linear subspace of low-order
polynomial transformations, a linear subspace for imputation of missing data, or a whole
space for latent variables. A thorough historical discussion of the cone concept in connection
with well-known multivariate techniques can be found in de Leeuw (1988b).
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2.2. Dummy matrix and category scores: Practical issues

As mentioned above, we emphasize optimal scaling of categorical variables where each variable
Hj has number of categories kj . For each variable we define an indicator or dummy matrix
Gj of dimension n × kj . Within each row i we have one non-zero element indicating in
which category of variable j observation i falls. These indicator matrices can be collected
in an indicator supermatrix G = (G1| . . . |Gm) of dimension n × K where K =

∑m
j=1 kj .

The contingency table of variables j and l is Cjl = G′jGl. Similar to G we can define the
K ×K supermatrix C which is known as the Burt matrix. These notations bring us closer to
correspondence analysis (CA) which, within the context of our PsychoR project, is described
in de Leeuw and Mair (2007b). We think of CA and related methods mainly in an analytical
way, as opposed to the (more common) geometrical approach.

The crucial part of the whole computation is the determination of the optimally scaled cate-
gory scores yj for each variable. The yj are vectors of length kj which are normalized, either
to y′jDjyj = 1 or to y′jDjyj = N where Dj is the diagonal matrix with the univariate margins
on the diagonal (i.e. Dj = Cjj). Moreover we require yj ∈ Kj , where Kj is a suitable cone in
Rkj . Consequently

sjl = y′jCjlyl (1)

are the elements of the covariance matrix S(Y) of the transformed variables. As quoted
in the last section we work with cones and to exclude trivial solutions we have to impose
normalization. This implies that, rather then using S(Y), for correlational aspects we will
use the correlation matrix R(Y) with its elements rjl.

An additional task in optimal scaling are restrictions on the scale levels of the variables.
Basically, we regard each variable as categorical. A nominal scale level involves no restrictions
on the resulting scores. An ordinal scale level requires monotonicity and numerical variables
additionally require equidistance between the scores. For Gifi methods the formulas are given
in de Leeuw and Mair (2007a) and, consequently, implemented in the homals package. In our
aspect framework the task it quite simple. Regardless whether we have correlational or non-
correlational aspects, all that is needed to impose ordinal scale levels is to perform isotone
regression within each iteration of the optimization. We use the Pool-Adjacent-Violators
Algorithm (PAVA; see e.g. Barlow, Bartholomew, Bremner, and Brunk 1972) which is
implemented in the isotone package (de Leeuw, Hornik, and Mair 2009). This guarantees
monotonically increasing category scores.

3. Correlational aspects and their optimization

3.1. Types of correlational aspects

First we examine aspects directly defined on the correlation matrix. Formally, we study
problems of the form φ(R(Y)). If we have only m = 2 variables we only have one correlation
coefficient and, therefore only one aspect we can study: The variation of the correlation
coefficient under the choice of category quantification. References and discussions for the
m = 2 can be found in de Leeuw (1983b).

Here we focus on the general case of a multivariate dataset with m variables. Basically, the
aspect φ defines the criterion to be optimized and Y = (y1, y2, . . . , ym) with yj as the vector
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of category scores to be computed. From a general point of view the optimization problem
can be formulated as

φ(R(Y))→ max! (2)

In other words: We scale the observed variables (categories) in a manner such that an aspect
of choice on the correlation matrix, which is based on these scores, is maximized.

At this point we specify various aspects based on R(Y) which are referred to as correlational
aspects. Note that the following listing is just a collection of possible correlational aspects.
In fact, the aspect package allows the user to specify his own aspects. For the following
convex correlational aspects, which are pre-specified in the package, we also give the first
order derivatives needed for optimization. The aspect specification in the package (by means
of the aspect argument; see Section 5) is given in parenthesis.

� Sum of correlations ("aspectSum"): We can define a very simple aspect by taking the
sum of the correlations. Optionally the correlations can be transformed by an even
power q > 1. Formally, the aspect and its derivative can be expressed as

φ(R(Y)) =
∑
l<j

(rjl)q (3a)

∂φ

∂rjl
= q(rjl)q−1 (3b)

where rjl are the elements of the correlation matrix R. Trivially, for q = 1 the elements
of the matrix of partial derivatives ∂φ/∂R are all 1. This special case corresponds to
the SUMCOR model proposed by Horst (1961b, 1965); the q = 2 case to the SSQCOR
method in Kettenring (1971).

� Sum of absolute correlations ("aspectAbs"): This aspect is based on the sum of absolute
correlations (again, with the option of including power q, which now does not have to
be even) and can be expressed as

φ(R(Y)) =
∑
l<j

|rjl|q (4a)

∂φ

∂rjl
= q sgn(rjl)|rjl|q−1. (4b)

Of course we need to take suitable measures if one of the correlations is zero, because
in that case the derivative will not exist.

� Eigenvalue aspects ("aspectEigen"): The basic definition of an eigenvalue aspect is to
maximize the largest eigenvalue λ of R. The finding of such quantifications is the same
as finding the dominant eigenvalue in MCA. In literature it was pointed out repeatedly
(e.g. de Leeuw 2006) that the first MCA dimension should be distinguished clearly from
the others because the remaining solutions provide additional (suboptimal) solutions of
the stationary equations. In other words, maximizing the first eigenvalue implies that
we want to scale the variables in a way that they are as uni-dimensional as possible. In
the psychometric literature this approach is sometimes referred to as MAXVAR (Horst
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1961a, 1965). As a multidimensional generalization, we can look at the sum of the first
p eigenvalues

φ(R(Y)) =
p∑
j=1

λj(R) = max
Z′Z=I

tr(Z ′RZ) (5a)

∂φ

∂R
= ẐẐ ′ (5b)

where Ẑ is the m × p matrix of the first p eigenvectors. This generalization is used in
nonlinear PCA (cf. de Leeuw 2006; de Leeuw and Mair 2007a). The aspect is convex
because it is the pointwise maximum of a family of linear functions.

� Determinant aspects ("aspectDeterminant"): This aspect, which is related to the
multinormal negative log-likelihood, corresponds to the GENVAR criterion by Steel
(1951). It can be expressed as

φ(R(Y)) = − log(det(R)) (6a)
∂φ

∂R
= R−1. (6b)

The aspect log(det(R)) is concave, because it is the minimum over Γ of the linear
functions log(det(Γ)) + tr(Γ−1R), and thus its negative is again convex. This aspect
can also be defined using covariances instead of correlations (de Leeuw 1988b). The
covariance-based version is related to the Box-Cox approach in regression (Box and Cox
1964) and can be used for structural relation models. The latter relationship is studied
extensively in Meijerink (1996).

� Squared multiple correlations ("aspectSMC"): One variable j is defined as target (out-
come, response) variable. The squared multiple correlation (SMC) of them−1 remaining
variables and its derivative can be written as

φ(R(Y)) = max
bj

(1− b′(j)Rb(j)) (7a)

∂φ

∂R
= −b̂(j)b̂

′
(j) (7b)

where b(j) = b1, b2, . . . bm is a vector of weights and restricted to have bj = 1. This
apect is the multiple regression aspect (cf. de Leeuw 1986). Again it is convex, because
it is a pointwise maximum of linear functions.

� Sum of squared multiple correlations ("aspectSumSMC"): The previous aspect can be
extended in a way such that we compute SMC’s between various combinations of indi-
cators and target variables and take the sum of the resulting SMC’s. Let us define J
as an arbitrary index set for j = 1, . . .m. Thus (7) generalizes to

φ(R(Y)) = max
bj

∑
j∈J

(1− b′(j)Rb(j)) (8a)

∂φ

∂R
=
∑
j∈J
−b̂(j)b̂

′
(j). (8b)
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This aspect can be used for path analysis where J is determined by targets in the path
model. Note that it is not necessary for b(j) to contain all remaining predictors but
rather those determining a path to target j. If J is the full index set and each predictor
is regarded in each SMC (in other words we take the sum over all m SMCs), this results
in image analysis discussed in Guttman (1953). The latter version is implemented in
our package.

These are the correlational aspects pre-specified in the aspect package. More aspects can be
found in de Leeuw (1988b) and de Leeuw et al. (1999). As mentioned above, the package
allows for the specification of user-defined aspects by means of functions which must return
the function value of φ(R(Y)) and the derivatives ∂φ/∂R.

3.2. Optimization using majorization

This optimization problem is tackled by a majorization algorithm (de Leeuw 1994). Within
our PsychoR project the majorization principle is introduced within the context of multidi-
mensional scaling (MDS) in the SMACOF paper (de Leeuw and Mair 2008). Here we will
just quote briefly the most important results from de Leeuw (1988b) and de Leeuw et al.
(1999) which are relevant for our aspect framework.
Majorization is a very general optimization approach. It is based on the principle that we
have to find a minimum of a complicated function f(x). The idea is to find a simple surrogate
function g(x, y), which for fixed y, is larger than f(x): We say that g majorizes f . This
surrogate function is then subject of optimization. In our correlational aspect setting φ(R(Y))
has to be maximized. We have to make sure that φ is convex. As we indicated above, most
of the interesting aspects fulfill these assumptions (de Leeuw 1988b).
Within each majorization step k we have to update the category scores yj for a particular
variable j at a time, recompute the aspect including it derivatives ∂φ/∂rjl and then update
yj for the subsequent variable j. At the optimum, the following stationary equation holds (de
Leeuw 1988a):

m∑
l=1

∂φ

∂rjl
Cjlyl = λjDjyj . (9)

If the convex aspect is not differentiable we can substitute any subgradient for the partial
derivatives. The corresponding Langrange multipliers λj are

λj =
m∑
l=1

∂φ

∂rjl
rjl. (10)

Based on theorems in de Leeuw (1988b) and de Leeuw et al. (1999) the update for the category
quantifications for variable j is given by

ỹj
(k+1) =

m∑
l=1
l 6=j

∂φ

∂rjl
Cjly

(k)
l , (11a)

y
(k+1)
j = NORM

(
PROJj

(
ỹj

(k+1)
))

, (11b)

where PROJj is projection on the cone Kj . Within each iteration k we update the category
scores using (11a). The resulting ỹj

(k+1) have to be projected and normalized by means
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of (11b) such that y′(k+1)′

j Djy
(k+1)
j = n. We perform these steps for each variable j and

convergence is reached when |φ(R(Y(k+1))) − φ(R(Y(k)))| < ε. Convergence is proved (for
convex aspects) in de Leeuw (1988b). Eventually, we get optimal scored categories (optimal
with respect to the corresponding aspect) which we can organize as n×m score data matrix.
This score matrix, or the corresponding correlation matrix based on Pearson correlations, can
be used for subsequent analyzes.

4. Non-correlational aspects: Linearizing regressions

4.1. Bilinearizability

Before we describe the LINEALS approach we elaborate general statements about the prop-
erty of bilinearizability. Bilinearizability means that we can find transformations of the vari-
ables such that all bivariate regressions are exactly linear. In the following paragraphs we
present some conditions, implications, and consequences of bilinearizability. In these discus-
sions we must clearly distinguish between bilinearizability as a population characteristic and
as a sample characteristic.

Having m = 2 variables only, linearization is achieved if (see Hirschfeld 1935)

Cy2 = rD1y1 (12a)
C ′y1 = rD2y2. (12b)

This equation system can be solved by singular value decomposition (SVD) of D−1/2
1 CD

−1/2
2 .

In fact, this is what simple CA does (see e.g. de Leeuw and Mair 2007b). In other words,
if we perform optimal scaling for the m = 2 case (e.g. using any aspect), we always achieve
bilinearizability. This is true for any discrete bivariate distribution, either population or
sample.

In the m > 2 case things become more complicated. For this case, requiring bivariate linearity
amounts to (cf. de Leeuw 1982)

Cjlyl = rjlDjyj , (13)

where j and l represent variable indices. The crucial question at this point is: Under which
conditions can we achieve bivariate linearization for the m > 2 case? To examine this question
we can summarize the following statements about bilinearizability, based on elaborations in
de Leeuw’s preceeding papers :

� The m = 2 case: As mentioned above, simple CA linearizes the regressions by means of
SVD.

� Binary variables: This case is trivial since having two categories only we always achieve
linearization (Bekker and de Leeuw 1988, p.27).

� Bilinearizable distributions: Assuming bilinearizability of the population distribution
is weaker than assuming multivariate normality or multivariate ellipticity (de Leeuw
1988a, p. 446). Bilinearizability also applies to mixtures of standardized multinormals
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or to Yule’s strained multinormal1 family. For Yule’s family, aspect-based techniques
“unstrain” the distribution by finding the inverse transformations which makes the dis-
tribution of the variables multinormal (de Leeuw 1993; de Leeuw et al. 1999).

� Complete bilinearizability: In this even more restrictive case, bilinearizability holds for
each dimension of an MCA solution. The conditions are that there exist matrices Yj
with Y ′jDjYj = I such that

CjlYl = DjYjΓjl, (14)

with Γjl diagonal. The continuous multinormal statisfies these equations with Yj the
Hermite polynomials.

� In a data matrix with bilinearizability it does not matter which aspect we choose because
they all give the same transformations (de Leeuw 2006, p. 120). Or, more precisely, if a
system of transformations satisfies the stationary equations for one correlational aspect,
it satisfies the stationary equations for other aspects as well.

� If bilinearizability holds in the population, the sample correlation coefficients computed
by maximizing an aspect have the same standard errors as the sample correlation co-
efficients computed from known scores (de Leeuw 2006, p. 120). This property will be
examined more detailed in Section 4.3.

The most important implication is based on expression (9): If we substitute the bilinearizabil-
ity condition (14) into (9) we find that the linearizing y’s satisfy the stationary equation with
the corresponding expression (10) for the Lagrange multiplier. This proves the following: If
linearizing transformations exist, they will be found by optimal scaling techniques (de Leeuw
1988a, p. 447). Of course if they exist in the population distribution, then they will exist ap-
proximately in the sample. But if bilinearizability can be achieved, the corresponding scores
can be found by any aspect optimization. The degree of linearization can be examined by
means of regression plots (see Section 5), or by bootstrap approaches similar to van der Burg
and de Leeuw (1988). Regression plots can also be used as diagnostics to study deviations,
for example, from multivariate normality.

A concluding remark concerns the importance of bivariate linear regressions within the as-
pect framework. As mentioned above, it guarantees that different aspects lead to the same
quantifications. As a theoretical consequence, this implies that classical asymptotic tests and
estimates can still be used on the transformed data. We will further investigate this issue in
Section 4.3 when using LINEALS for SEM preprocessing.

4.2. LINEALS formulation and its optimization

In the listing above we state that if bilinearizability is achieved it does not matter which
aspect we choose. However, we do not know a priori whether we find linearizing scores or
not. Therefore, a somewhat natural aspect is desirable which optimizes a bilinearizability
criterion. Such a criterion can be established by means of the following two components (de
Leeuw 1988a): On the one hand we have the elements rjl of the Pearson correlation matrix

1The strained multinormal was introduced by Yule (1912, p. 613). This distribution implies that the
observed variables are smooth monotonic (i.e. strained) transformations of multinormals.
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R which measure the linear association between the variables. On the other hand we can use
Pearson’s correlation ratio

η2
jl = y′jCjlD

−1
l Cljyj (15)

for judging non-linear relationships. Note that the correlation ratio is not symmetric. In the
case of exact bilinearizability, η2

jl− r2jl = 0. Now we can define the (non-correlational) aspect

φ(Y) =
m∑
j=1

m∑
l=1

(η2
jl − r2jl)→ min! (16)

which transforms the variables by minimizing the sum of differences between the correlation
ratios and the squared correlation coefficients. Equation 16 is also known as LINEALS (de
Leeuw 1988a; van Rijckevorsel 1987). Stating the loss function in this way tackles the lin-
earizing regressions problem in a direct manner unlike correlational aspects or various homals
versions.

Eventually, the value of the LINEALS loss function can be used as total discrepancy index.
The smaller the value the closer we achieve bilinearizability. Again, in the case of perfect bi-
linearizability we get the same optimal scaling with any method of choice and the discrepancy
index becomes 0. Perfect bilinearizability is not realistic for real-life applications. In fact,
de Leeuw et al. (1999) mention that we may be able to find approximate bilinearizability in
ordinal data but it is very unlikely in purely nominal variables. However, minimization of (16)
leads to a lower discrepancy compared to other optimal scaling techniques. Therefore, if the
aim is to achieve bilinearization, LINEALS should be considered. The difference between the
squared correlation coefficients and squared correlation ratio’s can also be used to diagnose
deviations from linearity.

Minimizing (16) is relatively simple and no majorization is required. Basically we optimize
(16) over one yj at the time, keeping all others fixed at current values. Each of these sub-
problems is a generalized eigenvalue problem (de Leeuw 1988a). Note that in the current
implementation there are no cone restrictions on the transformations.

We start with normalized scores Y(0), compute r(0)
jl and η

(0)
jl , and, finally, φ(Y(0)) according

to (16). The last computation reflects the loss update within each iteration k.

To update the category scores yj for a fixed variable j we compute the kj × kj matrix

Ũ
(k)
j =

m∑
l=1
l 6=j

Cjl

(
D−1
l − 2y(k)

l y
′(k)
l

)
Clj (17)

and its normalized version
U

(k)
j = NORM(Ũ (k)

j ). (18)

Let v(k)
j denote the last eigenvector of U (k)

j . The score update is given by

y
(k+1)
j = v′(k)j D

1/2
j . (19)

Analogous to the majorization for correlational aspects in Section 3.2, these computations are
performed for each variable j separately until |φ(Y(k+1))− φ(Y(k))| < ε.
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4.3. LINEALS as SEM preprocessing

In the case of categorical (ordinal) data, SEM software such as EQS (Bentler 1995) and
LISREL (Jöreskog and Sörbom 2005) computes the polychoric correlation matrix based on
the indicators. EQS uses the Lee, Poon, and Bentler (1992) approach whereas LISREL
provides the PRELIS module (Jöreskog 2005). Note that polychoric correlations require an
underlying normality assumption.

Meijerink (1996) combines optimal scaling with SEM. He proposes an ML estimation for
monotonously transformed numerical indicators. The assumption is that by means of the
nonlinear transformation multinormality is achieved. This 1-step estimation approach unifies
Gifi-based optimal scaling and path modeling.

The starting point of our 2-step LINEALS-SEM approach is the computation of the induced
correlations based on the resulting scores yj :

ρjl =
y′jCjlyl√

y′jDjyj
√
y′lDlyl

(20)

Now let F denote a corresponding probability distribution. Applying the delta method for
determining the standard errors, de Leeuw (1988b) shows that if the population distribu-
tion satisfies bilinearizability, the derivatives of yj and yl with respect to F vanish from the
expression. This generalizes results from Steiger and Browne (1984) who show that if the
scores yj and yl are chosen in a way such that they maximize the correlation coefficient, the
distribution of the optimal correlation coefficient (i.e., our induced correlation) is the same as
the distribution of the ordinary correlation coefficient between Gjyj and Glyl with the scores
considered as fixed numbers (de Leeuw 1988b). Hence, the asymptotic distribution of the
correlation coefficients can be computed as if the optimal transformations are known a-priori
(i.e. non-random).

In order to avoid any distribution assumption we can use the formulas given in Isserlis (1916)
to compute the fourth moment weight matrix which includes standard errors and covariances
(see also de Leeuw 1988a, p. 450):

wjl,uv = rjl,uv − 1
2rjl(rjj,uv + rll,uv)− 1

2ruv(ruu,jl + rvv,jl)
+1

4rjlruv(rjj,uu + rjj,vv + rlluu + rllvv) (21)

with

rjl,uv =
sjl,uv√

sjjsllsuusvv
, (22a)

sjl,uv = n−1
n∑
i=1

(yij − yj)(yil − yl)(yiu − yu)(yiv − yv). (22b)

In (22a), the s·· represent the sample variances whereas in (22b), the yi· represent the i-th
element of the resulting score matrix and y· the corresponding mean.

Now assume that we estimate the induced correlation matrix with LINEALS which, in turn,
acts as SEM input. If the SEM software offers an asymptotical distribution free (ADF) ap-
proach to estimate the parameters (Browne 1984), we get consistent and efficient estimates
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of the structural parameters if the population distribution of the observed variables is bilin-
earizable. As mentioned above, this theory covers elliptic distributions, mixtures of standard
multinormals, Yule’s strained multinormals, etc. Relaxations of the multinormal assumption
affecting correlation-based methods is studied in de Leeuw (1983a). Elaborations concerning
the connection with the likelihood theory for multinormal distributed data can be found in
de Leeuw (1988b).

5. The R package aspect

5.1. Description of main functionalities

According to the explanations in Sections 3 and 4 the aspect package consists of two main
functions: corAspect() and lineals(). The corAspect() function for computing corre-
lational aspects provides the argument aspect which allows the user to specify the type of
correlational aspect (according to the listing in Section 3.1 where we also gave the string
specifications for the argument). If additional parameters are needed (e.g., exponent, number
of eigenvalues, target variable, etc.), they can be passed through "..." (see corresponding
help file). Alternatively, the user can specify his own correlational aspect and pass the whole
function to the aspect argument. Again, an example can be found in the corAspect() help
file. In addition, by means of the level argument the scale level for each variable can be
defined separately (i.e., mixed scale levels are allowed).

Both functions return the final value of the target function, the number of iterations, the
resulting (optimally scored) category quantifications, the correlation matrix, and the Burt
matrix. Note that corAspect() returns additionally the eigenvalues of the correlation matrix
and lineals() returns the matrix of correlation ratios. Both functions return an object of
class "aspect" where print, summary, and plot methods (transformation plot, regression
plot) are provided.

5.2. Correlational aspects: Internet terminal data

In this section we give examples for correlational aspects using part of the data collected in
Wurzer (2006). The dataset is about the use of public Internet terminals in Vienna. The
eight items we use are the following:

� Do you know at least one place where you can find such a terminal? (yes/no)

� Have you already used such a terminal? (yes/no)

� How often do you use the Internet on each of the following locations: home, work, cafe,
terminal, cellphone? (5-point scales; see below)

� Which of the following descriptions fits you best? (I’m here on vacation/I am from
here/I’m here on business travel)

The 5-point items we have the following categories: daily (1), almost daily (2), several times a
week (3), several times a month (3), once a month (4), less frequently (5). As we see, the first
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two items are nominal (dichotomous), the next five are ordinal, and the last one is nominal
(polytomous) again.

The first example uses the largest eigenvalue aspect which implies that we are basically doing
a multiple CA scaling. The level restrictions on the variables are imposed according to their
scale levels.

> require("aspect")

> data(wurzer)

> res.cor <- corAspect(wurzer, aspect = "aspectEigen",

+ level = c(rep("nominal", 2), rep("ordinal", 5), "nominal"))

> plot(res.cor, plot.type = "transplot", ylim = c(-3.5, 6))

To visualize the category transformations we produce transformation plots for each variable.
They are given in Figure 1. On the x-axis we have the original (observed) scores, on the
y-axis the optimal category scores. We see clearly what the different level restrictions imply
(monotonicity for the ordinal variables, no restrictions for the nominal variables).

Next, we compute the SMC aspect by setting “terminal-used” as target variable.

> res.smc <- corAspect(wurzer, aspect = "aspectSMC",

+ level = c(rep("nominal", 2), rep("ordinal", 5), "nominal"), targvar = 2)

> plot(res.smc, plot.type = "transplot", ylim = c(-4, 2))

Again, we produce transformation plots which are given in Figure 2. We have the same level
restrictions but it is obvious that we get different category quantification since we optimize
with respect to a different criteria.

5.3. LINEALS-SEM example

The data we use to show how LINEALS can be used within an SEM context (as described
in Section 4.3) were collected by Duncan, Duncan, and Hops (1998). The duration of this
longitudinal study was 5 years and the number of subjects (adolescents) n = 1204. At 4
points in time the participants were asked to rate cigarette and marijuana consumption on a
5-point scale:

� (1) Never consumed.

� (2) Previous but no use over the last 6 months.

� (3) Current use of less than four times a month.

� (4) Current use of between 4 and 29 times a month.

� (5) Current use of 30 or more times a month.

Note that this dataset, which is included in the package, provides also the amount alcohol
comsumption. For illustrational issues we only use marijuana (POT T1, ..., POT T4) and
cigarettes (CIG T1, ..., CIG T4).
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Figure 1: Transformation plots for eigenvalue aspect.
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Figure 2: Transformation plots for SMC aspect.
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> require("sem")

> require("polycor")

> data(duncan)

> duncan.pc <- duncan[, 1:8]

> head(duncan.pc)

POT_T1 POT_T2 POT_T3 POT_T4 CIG_T1 CIG_T2 CIG_T3 CIG_T4
1 4 5 5 5 3 4 2 2
2 1 1 1 1 1 1 1 1
3 1 1 1 3 2 3 3 4
4 1 1 1 3 2 3 3 4
5 3 3 5 3 2 3 2 3
6 3 3 5 3 2 3 2 3

On these data we will fit a 2-factor model using the classic polychoric solution on the one
hand, and our LINEALS approach on the other hand. We start with the computation of the
correlation matrices of the indicators. The polychoric correlation we estimate by means of
the polycor package (Fox 2007) which uses ML. For both cases we first print out the resulting
correlation matrices.

> dpc.polychor <- as.data.frame(apply(duncan.pc, 2,

+ function(xx) cut(xx, c(0, 1, 2, 3, 4, 5))))

> Rp <- hetcor(dpc.polychor, ML = TRUE)$correlations

POT_T1 POT_T2 POT_T3 POT_T4 CIG_T1 CIG_T2 CIG_T3 CIG_T4
POT_T1 1.000 0.880 0.839 0.751 0.648 0.594 0.554 0.461
POT_T2 0.880 1.000 0.914 0.832 0.610 0.635 0.627 0.536
POT_T3 0.839 0.914 1.000 0.905 0.582 0.613 0.657 0.589
POT_T4 0.751 0.832 0.905 1.000 0.513 0.576 0.607 0.642
CIG_T1 0.648 0.610 0.582 0.513 1.000 0.930 0.904 0.813
CIG_T2 0.594 0.635 0.613 0.576 0.930 1.000 0.942 0.870
CIG_T3 0.554 0.627 0.657 0.607 0.904 0.942 1.000 0.909
CIG_T4 0.461 0.536 0.589 0.642 0.813 0.870 0.909 1.000

> res.lin <- lineals(duncan.pc, level = "ordinal")

> Rl <- res.lin$cormat

POT_T1 POT_T2 POT_T3 POT_T4 CIG_T1 CIG_T2 CIG_T3 CIG_T4
POT_T1 1.000 0.820 0.757 0.700 0.524 0.472 0.440 0.362
POT_T2 0.820 1.000 0.891 0.799 0.521 0.534 0.520 0.447
POT_T3 0.757 0.891 1.000 0.881 0.511 0.534 0.551 0.495
POT_T4 0.700 0.799 0.881 1.000 0.477 0.523 0.534 0.533
CIG_T1 0.524 0.521 0.511 0.477 1.000 0.898 0.852 0.755
CIG_T2 0.472 0.534 0.534 0.523 0.898 1.000 0.925 0.842
CIG_T3 0.440 0.520 0.551 0.534 0.852 0.925 1.000 0.899
CIG_T4 0.362 0.447 0.495 0.533 0.755 0.842 0.899 1.000
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Comparing these two correlation matrices we get the interesting result that the LINEALS
correlations Rl are uniformly smaller than their polychoric counterparts Rp. This has to be
examined in more detail in simulation studies (see Discussion) but we can make the following
statements. Under population bilinearizability in a discretized multinormal the LINEALS
correlations are consistent estimates of the maximal correlation coefficients. The polychorics
are consistent estimates of the correlation coefficients in the continuous multinormal, which
are actually also the maximal correlation coefficients for the continuous multinormal. The
maximal correlations coefficients for the continuous normal are larger than those for the
discretized normal. Thus, in the discretized multinormal case, polychorics are larger than
LINEALS correlations.

Before fitting the 2-factor model, we examine bilinearizability of the LINEALS solution which
has a loss value of .248. Having 8 variables, we have 28 bivariate combinations. For illustration
purposes we pick out 3 of them including the regression plot for the observed categories

> plot(res.lin, plot.type = "regplot", plot.var = c(1, 2))

> plot(res.lin, plot.type = "regplot", plot.var = c(1, 5))

> plot(res.lin, plot.type = "regplot", plot.var = c(5, 6))

Figure 3 represents the bivariate regressions for marijuana consumption T1 vs. T2, for
cigarette consumption T1 vs. T2, and for marijuana consumption T1 vs. cigarette con-
sumption T1. On the left hand side we have the unscaled solution based on the original
categories. Let us first look at the red lines. For the scores on the x-axis we compute the
conditional expectations in y-direction (i.e., the expected scores conditional on the x-value).
If we condition on the y-axis and compute the expected scores in x-direction, we get the blue
lines. The plot to the left represent the unscaled solutions with the underlying frequency ta-
ble. The plots on the right hand side show clearly how optimal scaling stretches and squeezes
the initial category scores. In the case of perfect bilinearizability we would get straight lines.

Now we start to specify our 2-factor model using the sem package (Fox 2006). The marijuana
responses form the first factor; the cigarette responses the second factor. The loadings are
denoted by λ, the measurement-error variances by θ, the variances of the latent variables by
φ, and the correlation between the latent variables by ρ.

Now for both correlation matrices Rp and Rl we fit the same 2-factor model.

> sem.pol <- sem(dpc.ram, Rp, N = 1204)

> sem.lin <- sem(dpc.ram, Rl, N = 1204)

Note that the sem package does not provide ADF estimation but rather uses ML assuming
multinormality. This is somewhat unfortunate for the LINEALS approach since we did not
want to impose any distribution assumption on our transformed data. Therefore, a better
way would be to use SEM software such as EQS which does ADF. Since we are somewhat
reluctant to leave the R environment, we have to deal with this shortcoming. However, for
the purpose of illustration also ML does the job and the resulting parameter estimates and
their standard errors are given in Table 1.

By looking at common fit indices such as the comparative fit index (CFI; Bentler 1990)
and the root mean squared error of approximation (RMSEA) we get a CFIp = .875 and
RMSEAp = .290 for the polychoric Rp. With LINEALS preprocessing and the resulting Rl
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Figure 3: Regression plots for marijuana and cigarette bilinearizability
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Parameter polychoric (est.) polychoric (se.) LINEALS (est.) LINEALS (se.)
λ11
∗ 1 - 1 -

λ12 1.078 .0208 1.142 .0279
λ13 1.117 .0206 1.190 .0284
λ14 1.040 .0226 1.105 .0292
λ21
∗ 1 - 1 -

λ22 1.038 .0136 1.071 .0180
λ23 1.042 .0138 1.082 .0187
λ24 .970 .0172 1.002 .0213
θ11 0.237 .0115 .343 .0160
θ12 0.113 .0071 .143 .0086
θ13 0.049 .0054 .070 .0067
θ14 0.174 .0085 .198 .0098
θ21 0.124 .0065 .198 .0102
θ22 0.057 .0045 .079 .0064
θ23 0.050 .0043 .061 .0059
θ24 0.176 .0084 .194 .0098
φ1 .763 .0402 .657 .0391
φ2 .549 .0407 .802 .0405
ρ .549 .0307 .428 .0272

Table 1: SEM parameter for polychoric and LINEALS

input matrix we get CFIl = .932 and RMSEAl = .189. Taking into account common rules
of thumb (e.g. CFI > .90) we could conclude that with LINEALS preprocessing we get a
satisfactory fit whereas with polychoric correlations we do not. However, for this example we
see that by LINEALS preprocessing we get a better fit.

6. Discussion

In this paper we presented the aspect methodology and a corresponding package in R. Aspect
represents a comprehensive framework for (correlational) multivariate analysis. The aspects
we presented are only a convenient set of functions to be optimized. The package is pro-
grammed in a way that the user can provide his own myAspect() functions as an argument.

Considering each variable as categorical is not very efficient when having many categories, as
typically in the numerical case. Therefore, in a future update we will use splines to make it
more efficient. The corresponding theory is given in several chapters in the edited volume by
van Rijckevorsel and de Leeuw (1988).

Using LINEALS for SEM preprocessing of categorical data including level restrictions seems
to be a promising approach. Though, simulation studies are needed for examining bilin-
earizability in practice. As mentioned above, we can expect approximate linearization in the
situation of ordinal data. The situation of mixed scale levels, the effect of different number
of categories, as well as examining the LINEALS performance for underlying multivariate
normal and non-normal distribution assumptions are substantial practical questions to be
studied.
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An even more sophisticated approach for optimal scaling and SEM would be to provide a
1-step procedure. Meijerink (1996) presents such an approach for numerical variables based
on Box-Cox type of methods (with spline transformations). We could define an aspect of the
form φ(R(Y)) = minθ log det Γ(θ) + tr Γ−1(θ)R(Y) with θ as structural parameters. Note
that this is again concave in R. The derivative of this aspect is simply Γ−1. This aspect
function can be calculated by fitting any correlation structure model with the sem package
or any other SEM software. Thus, just apply the SEM computations iteratively to optimally
rescaled correlation matrices. The theory for the standard errors and Chi-square statistics as
elaborated in Section 4.3 holds.
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