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We present band structure and optical absorption spectra obtained from density functional
theory (DFT) and linear response time-dependent DFT (TDDFT) calculations using a screened
range-separated hybrid (SRSH) functional, including spin-orbit coupling, for seven prototypical
semiconductors. The results are compared to those obtained from highly converged many-body
perturbation theory calculations using the GW approximation and the GW plus Bethe-Salpeter
equation (GW-BSE) approaches. We use a single empirical parameter for our SRSH calculations, fit
such that the SRSH band gap reproduces the GW band gap at the Γ point. We then find that ground-
state generalized Kohn-Sham SRSH eigenvalues accurately reproduce the band structure obtained
from GW calculations, typically to within 0.1-0.2 eV, and optical absorption spectra obtained using
TDDFT with the SRSH functional agree well with those of GW-BSE, with a mean deviation of 0.03
eV and 0.11 eV for the location of the first and second absorption peaks, respectively, at a fraction
of the computational cost.

I. INTRODUCTION

Many-body perturbation theory, using the GW
approximation1–5 and the Bethe-Salpeter equation
(BSE),6–9 has become a standard approach for calcu-
lating accurate optical spectra of solid state materials.
In principle, time-dependent density functional theory
(TDDFT)10–13 can also provide accurate optical absorp-
tion spectra, potentially at a lower cost.9 However com-
mon TDDFT approximations, such as the adiabatic local
density approximation (ALDA), fail when calculating the
optical absorption of semiconductors,14,15 i.e., the line
shape is shifted and distorted and in particular excitonic
effects are not captured. Therefore, TDDFT methods
that are accurate yet inexpensive for solid state materials
is an ongoing challenge.9,11,16–19

There are two main challenges that TDDFT methods
need to address in order to predict accurate optical
spectra of semiconductors. One is that Kohn-Sham
(KS) eigenvalues underestimate the fundamental band
gap.20,21 While an exact TDDFT method would be able
to compensate for the underestimated fundamental gap,
a TDDFT method using the adiabatic approximation is
unable to compensate for it.11 Thus common TDDFT
spectra are red shifted with respect to experiment.14

The second challenge is that the exchange-correlation
kernel, fxc(q+G, q+G′) (where G and G′ are reciprocal
lattice vectors and q is a reciprocal-space vector in the
Brillouin zone), must accurately capture the necessary 1

q2

behavior in the long wavelength limit, i.e. G = G′ = 0
and q → 0, in order to accurately describe excitonic
effects.15,22,23 Unfortunately, this is not satisfied by
self-consistently derived semilocal exchange-correlation
kernels, i.e., those obtained by taking the functional
derivative of the exchange-correlation potential with
respect to the density.

Several solutions to these difficulties have been pro-
posed. For example, the so-called nanoquanta kernel is
constructed from the BSE kernel, though this inevitably
makes it as expensive as BSE.22 Long range corrected
kernels have been proposed, which approximate the ker-
nel as α

q2 (or some variation of this form), where α is a pa-

rameter to be set.18,24 The bootstrap method iteratively
builds the kernel using the random-phase approximation
(RPA) for the dielectric function until self-consistency is
reached.17,25 Another proposed method involves a kernel
based on the dielectric function of the jellium with a
gap model (JGM).19,26 Methods using a meta-GGA self-
consistently derived kernel have also been proposed.27

Finally, methods have been proposed which use self-
consistently derived kernels from hybrid functionals in
the generalized Kohn-Sham framework.16,28–30

In all but the hybrid functional approaches, the band
gap problem is handled separately from the issue of
developing a kernel with a 1

q2 dependence. Usually the

fundamental band gap is corrected via a scissor shift
or by GW calculations. In hybrid functionals these
two issues can be dealt with simultaneously without the
need for corrections from methods beyond DFT. The

dahvydw
Highlight

dahvydw
Highlight

dahvydw
Highlight



2

formalism remains fully within DFT/TDDFT, because
hybrid functionals are within the generalized Kohn-Sham
scheme.31,32 In particular, screened range-separated hy-
brid (SRSH) functionals were specifically developed to
demonstrate the ability of hybrid functionals to solve
both issues simultaneously.30 SRSH functionals accom-
plish this by taking advantage of the degrees of free-
dom afforded by their functional form, which varies the
fraction of exact exchange used based on the distance
between the interacting electrons.

From a formal perspective, Kohn-Sham DFT produces
incorrect band gaps even in principle owing to the
derivative discontinuity, i.e., a uniform “jump” in the
exchange-correlation potential across an integer number
of electrons.20,21,33,34 SRSH functionals can in principle
overcome this limitation as they arise from generalized
Kohn-Sham theory, where an appropriately chosen non-
local potential operator can strongly reduce the deriva-
tive discontinuity.31,35–37 The optimal choice of the non-
local potential, however, may be system dependent.35

Thus, when one parameter controlling the fraction of
exact exchange included in the SRSH functional is fit
so that the functional reproduces the fundamental band
gap of a GW calculation, as was done in Ref 30, this
indirectly reduces the derivative discontinuity. Notably,
in that work, fitting for the fundamental band gap greatly
improved the agreement between SRSH eigenvalues and
GW quasiparticle energies across the entire band struc-
ture, including locations in the Brillouin zone far away
from the band gap minimum.

SRSH functionals include the correct 1/q2 behavior
in the kernel by using screened exact exchange for
large distances, r, and thus have the correct asymptotic

1
ε∞r behavior, where ε∞ is the high-frequency (elec-

tronic response only) dielectric constant. This leads to
the exchange-correlation kernel having the correct 1

q2

behavior.16,30

From a pragmatic point of view, the flexibility of
SRSH’s functional form to match the GW band structure
allows one to investigate how well TDDFT using a
kernel derived from a hybrid functional can approximate
GW-BSE results. In Ref. 30, time-dependent SRSH
(TD-SRSH) and GW-BSE were compared for silicon
and lithium fluoride, with promising results. Here we
compare SRSH to GW and TD-SRSH to GW-BSE for
a broader class of seven prototypical semiconductors,
including spin-orbit coupling effects. We find excellent
agreement between SRSH and GW for bands close to the
band edges and excellent agreement between TD-SRSH
and GW-BSE optical absorption spectra.

II. METHODOLOGY

A. Benchmark systems

In this work, we study seven prototypical semicondu-
tors: Si, AlP, AlAs, AlSb, GaP, GaAs, and InP. The

materials investigated are selected from an extensively
used benchmark of semiconductors38,39 because they
allow us to compare our one-shot G0W0 results to previ-
ous calculations,40 and because these semiconductors do
not suffer from severe starting point issues that require
special attention in the GW approximation, notably
the spurious metallic state predicted by semi-local DFT
calculations for small band gap semiconductors. Experi-
mental room-temperature lattice parameters are used for
all calculations, see Table I.

B. Many-body perturbation theory calculations

Our many-body perturbation theory calculations pro-
ceed from a DFT starting point computed within
the Perdew-Burke-Ernzerhof (PBE) semi-local approx-
imation for the exchange-correlation functional.41 Our
DFT starting point calculations are performed using
the Quantum Espresso42,43 plane-wave code and em-
ploy fully relativistic optimized norm-conserving (NC)
Vanderbilt pseudopotentials44 obtained from the online
repository, pseudo-dojo. For Ga, In, and Sb, we
include one complete shell of semicore states as valence.
This is known to be important for correctly describing
the electronic structure.45 For all materials considered,
DFT ground state densities are computed on a shifted
8 × 8 × 8 Monkhorst-Pack k-grid, centered around the
(1⁄2 1⁄2 1⁄2) point. A kinetic energy cutoff of 200 Ry is
used for materials containing either Ga or In; for all other
materials the cutoff is set to 100 Ry. Calculations include
spin-orbit coupling for all materials except Si and AlP,
where it is negligible.

Kohn-Sham (KS) states obtained from the aforemen-
tioned calculation are subsequently used to perform a
fully relativistic, full-frequency, one-shot G0W0 calcula-
tion of the electronic self-energy operator, Σ = iGW 4

using the BerkeleyGW package.46 Here, G denotes
the single particle Green’s function and W the dynam-
ically screened Coulomb interaction. The irreducible
polarizability, χ, is computed within the random phase
approximation and related to W through the inverse
dielectric function ε−1 in the usual manner, namely,
ε = 1 − vχ and W = ε−1v, where v is the bare
Coulomb interaction. By fully relativistic, we mean to
indicate that G is constructed using the two component
(spinor) KS states computed at the DFT level.47–51 This
is to be contrasted with prior GW calculations where G
was computed with the scalar KS states and the effects
of spin-orbit coupling were included perturbatively.52

Additionally, in this work, we explicitly compute the
full-frequency (FF) dielectric tensor, χG,G′(q, ω), as op-
posed to using a plasmon-pole model.4,53 For the FF
convolution of G with W , we use the standard contour-
deformation technique54,55 and evaluate χG,G′(q, ω) at 15
frequencies along the imaginary axis. To further reduce
the substantial computational cost of computing the FF
dielectric tensor, we use the static subspace approxima-
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tion. In this approximation, a low-rank decomposition
of the static polarizability, χG,G′(q, 0), is performed,
obtaining the largest 40 eigenvectors. These eigenvectors
are subsequently used as a basis for expanding the FF
polarizability, χG,G′(q, ω). The above procedure greatly
reduces the overall cost of the FF calculation while
still maintaining a high level of accuracy. A detailed
description of this and similar methods can be found in
Refs. 56–60. The dielectric cutoff and the number of
empty states used in our computation of χ and Σ are
detailed in Table I. These values are chosen based on
previous calculations carried out by Malone and Cohen.40

These values and our other choices for convergence are
estimated to converge the quasiparticle gap to within 10
meV.

Finally, excitonic wavefunctions and energies are com-
puted by solving the Bethe-Salpeter equation for the
electron-hole correlation function in the basis of Kohn-
Sham states.7,8 A detailed discussion of the equations
solved and their relation to response properties can be
found in, e.g., Refs. 9, 46, and 61. Here, for the electron-
hole kernel, we use the approximation Keh = δVH

δG + δΣ
δG ≈

−Wd(ω = 0) + Vx, where VH is the Hartree potential,
Wd(ω = 0) denotes the statically screened direct opera-
tor, and Vx is the Coulomb exchange operator. We make
the Tamm-Dancoff approximation9 when constructing
the electron-hole kernel, and we expand Keh in a set
of 4 valence and 3 conduction bands for Si, 3 valence
and 3 conduction bands for AlP, and 6 valence and 6
conduction states for all other compounds. Finally, to
obtain converged exciton properties Keh is interpolated
from an 8 × 8 × 8 to a 14 × 14 × 14 k-grid shifted by
(0.1, 0.45, 0.75). Further details on the convergence of
these calculations with respect to number of bands used
and k-point sampling can be found in the supplementary
material (SM).

C. DFT - SRSH Calculations

1. General

In the SRSH functional,62 the exchange part of the
Coulomb interaction is partitioned using the identity

1

r
=
α+ β erf(γr)

r
+

1− [α+ β erf(γr)]

r
, (1)

with exchange owing to the first term treated by a Fock-
like operator and exchange owing to the second term
treated by semi-local exchange, in our case based on the
PBE functional. The full form of the SRSH exchange-
correlation functional can then be expressed as:

ESRSH
xc = (1− α)ESRKSx + αESRxx + [1− (α+ β)]ELRKSx

+ (α+ β)ELRxx + EKSc, (2)

where the subscripts KSx and KSc denote (semi)local
KS exchange and correlation, respectively, and xx is

exact (Fock) exchange. Exchange is partitioned into
short range (SR) and long range (LR) components
that are scaled by the error function such that there
is seamless transition between the two regimes. α,
β, and γ are parameters. α controls the fraction of
short range exchange and in this work it is set to 0.25
throughout, as in the PBE0 global hybrid functional.
This choice is not unique, however (see the SM). In line
with previous work,30 we set α+β = 1

ε∞
, where ε∞ is the

high-frequency dielectric constant. This constraint on β
ensures that the SRSH functional has the correct 1

ε∞r
asymptotic behavior. In this work, the range-separation
parameter, γ, is fit to obtain the direct fundamental band
gap at Γ as calculated by GW, in the absence of spin-
orbit coupling for either approach. A priori selection
of the parameters of the SRSH functional is an ongoing
challenge.62–65 Our parameter choice removes differences
due to band gaps so that TD-SRSH and GW-BSE can
be directly compared.

We use the Vienna ab initio simulation pack-
age (VASP), a plane-wave code,66 using PBE-based
projector-augmented waves (PAWs) for treating core
electrons, to perform SRSH functional calculations.67

For gallium and indium the PAWs include semi-core
d-states. PBE eigenvalues calculated using VASP are
found to agree to within ∼20 meV with the eigenvalues of
the starting point calculations for GW using Quantum
Espresso with norm-conserving pseudopotentials. This
ensures that significant differences between SRSH and
many-body perturbation theory calculations, if any, do
not arise from the different treatment of core electrons.

2. Dielectric response

The ion-clamped, high-frequency dielectric constant,
ε∞, is calculated from the change in polarization in
response to a finite electric field68,69 using VASP.
The Heyd-Scuseria-Ernzerhof (HSE)70 short-range hy-
brid functional is used for this calculation, as it has
been shown to lead to relatively accurate dielectric
constants.28 Due to the fact that the semiconductors in
this study have large dielectric constants, SRSH band
structures and optical spectra of semiconductors are not
strongly affected by the exact value of the dielectric
constant, as long as the SRSH functional is fitted so that
the fundamental band gap is matched to that of GW
(see SM). Thus the choice of which functional to use to
calculate the dielectric constant is of little consequence.
In these calculations local field effects are included for
both Hartree and exchange-correlation potentials, and
spin-orbit coupling is included for all materials except Si
and AlP. The plane wave cutoff is 300 eV for all materials.
An 11×11×11 Monkhorst-Pack k-grid is used, converging
the dielectric constant to within 0.1 for PBE calculations.
Dielectric constants are reported in Table I.
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3. Band gap and band structure

For fitting the SRSH gap to that obtained from
GW and calculating the band structure, an 8 × 8 × 8
Monkhorst-Pack k-grid is used with a 300 eV plane
wave energy cutoff. With these parameters, the total
energy is converged to ∼3 meV/atom and the SRSH
KS band gap to ∼15 meV. The fitted values for the
range-separated parameter are presented in Table I. The
Wannier90 software package71 is then used to obtain
band structures.

4. TD-SRSH

TDDFT linear response calculations are performed
by solving the Casida equations74 within the Tamm-
Dancoff approximation.12,75 For a detailed discussion of
the equations in the TD-SRSH case, see Refs. 30 and
61. The exchange-correlation kernel, fxc, is evaluated
using 3 valence bands and 4 conduction bands for AlP,
4 valence bands and 4 conduction bands for Si, and
6 valence bands and 6 conduction bands for all other
materials. In addition, an energy window of 15 eV is used
to reduce the number of poles considered. The energy
plane wave cutoff is set to 200 eV for Si, AlP, AlAs, and
AlSb, 230 eV for GaP and GaAs, and 210 eV for InP.
Increasing all these parameters affected the imaginary
part of the dielectric function by less than 0.3% at the
first few absorption peaks.

The k-grid used is a shifted 14 × 14 × 14 Monkhorst-
Pack grid. Convergence of the TDDFT and BSE optical
spectra is greatly facilitated by a judicious choice of a
grid shift that attempts to evenly sample the different
regions of the Brillouin zone that contribute to the
optical transitions. As all semiconductors studied here
are zinc-blende structures, their Brillouin zones and band
structures are very similar and thus we expect that
a single shift for all of them suffices. We therefore
employ the following heuristic approach: For each of
the 7 materials considered here, we generate 203 uniform
10× 10× 10 k-grids, each shifted by a different amount,
n
20b1 + m

20b2 + l
20b3, where b1, b2, and b3 are the reciprocal

lattice vectors; and n,m, and l are integers between 0-19
(in practice, we use symmetry to reduce the number of
generated k-grids to 447). A DFT calculation at the PBE
level is performed using each k-grid. We then compute a
figure of merit for each k-grid as follows. Let {Ei} be the
ordered set from least to greatest value of the direct KS
band gap at each k-point, i, in a single DFT calculation,
Ei = εCBM,i − εVBM,i. Then, define the average spacing

in energy between Ei’s as ∆E = (ENk
− E1)/Nk, where

Nk is the number of k-points for the k-grid. We may then
calculate the variance of the spacing in energy between
band gaps in the ordered set as

σ2 =
1

Nk

∑
i−1

(Ei+1 − Ei −∆E)2 (3)

We select the k-shift leading to the smallest variance for
all the materials calculated, which is found to be (0.1,
0.45, 0.75). We estimate that with this approach peak
positions are converged to ∼0.2 eV and peak heights to
∼10%; see the SM for further discussion of convergence.
A Gaussian broadening of 0.1 eV is used. With this
choice, computed absorption peaks have the same width
as room-temperature experimental ones.

III. RESULTS AND DISCUSSION

A. GW band gaps and band structures

Because we use many-body perturbation theory as a
benchmark of our SRSH results, we begin by assessing
how the present GW calculations compare with prior
work. A summary of GW- and SRSH-computed direct
and indirect band gaps is given in Table II. The indirect
band gaps are obtained from the Wannier-interpolated
band structure, as the conduction band minimum does
not lie exactly at the X point. Our GW calculations are
very similar to those of Malone and Cohen40 in that we
use the same overall approach, the same computational
software, and strive for a similar level of tight conver-
gence. Our calculations differ from Ref. 40, however, in
some details: we use a PBE starting point (as opposed
to LDA), an FF treatment of the dielectric tensor (in
contrast to the generalized plasmon-pole model), and a
fully relativistic treatment of spin-orbit coupling (instead
of a perturbative treatment). We also include semicore
states in the Sb pseudopotential, and increase the k-
point sampling for Ga and In compounds. Despite these
differences, with the exception of GaAs (elaborated on
below), we find our GW band structures to be in good
agreement with those of Ref. 40, especially for Si, AlP,
and AlAs.

For AlSb, we find a GW direct band gap which is
roughly 0.2 eV larger than that predicted in Ref. 40,
which we attribute to the semicore states we include in
the Sb pseudopotential. At the PBE level, we observe
that the fundamental band gap for AlSb, without spin-
orbit coupling, increases by 0.11 eV when one treats
the Sb 4s4p states, in addition to the 4d5s5p states,
as valence in the pseudopotential. For InP and GaP,
we find that our GW band gaps throughout the BZ
are slightly smaller (∼ 0.2 eV) than those reported in
Ref. 40, despite the fact that the PBE gaps for these
compounds are roughly 0.2 eV larger than the LDA
gaps. We attribute the majority of this discrepancy to
different treatment of the frequency dependence of the
dielectric function. Indeed, previous studies suggest that
plasmon-pole models can somewhat overestimate gaps
when compared with numerical integration schemes.77

Next, we compare GW band gaps to experimental
optical gaps, which is reasonable because the exciton
binding energies for these materials are small.72,78 We
find that GW indirect band gaps are within 0.2 eV of
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alat (Å) χcut (Ry) χbands Σbands ε
theory
∞ εexpt∞ γ (Å−1)

Si 5.43 25 300 500 11.3 11.97 0.62

AlP 5.46 28 500 600 7.3 7.5 0.80

AlAs 5.66 30 1000 1200 8.2 8.2 1.25

AlSb 6.14 23 1000 1400 9.8 10.24 0.63

GaP 5.45 64 1000 2000 8.9 9.11 1.15

GaAs 5.65 65 1200 2400 10.5 10.86 2.5

InP 5.87 35 800 2000 8.9 9.52a- 10.9 1.3

TABLE I. Room temperature experimental lattice parameters72 used for both our GW and SRSH calculations (left side),
convergence parameters for GW (middle section), and functional parameters for SRSH (right side). χcut is the plane wave
energy cutoff for evaluating the irreducible polarizablity; χbands and Σbands are the number of bands used to evaluate the
irreducible polarizability and the self-energy operator, respectively. εtheory∞ is the ion-clamped dielectric constant using HSE;
εexpt∞ is the experimental high-frequency dielectric constant at room-temperature (from Ref. 72, (a) from Ref. 73). In the far
right column, we provide the range-separation parameter (γ in Eq. 1) for which the SRSH direct band gap matches the GW
direct band gap

Eg,direct, fund (eV) Eg,direct, opt (eV)

SRSH GW Expt.

(no-SOC/SOC) (no-SOC/SOC)

Si 3.24 3.25 3.35a

AlP 4.26 4.25 3.63

AlAs 2.82/2.71 2.79/2.69 3.03

AlSb 2.32/2.12 2.32/2.10 2.30

GaP 2.60/2.57 2.62/2.59 2.79

GaAs 1.07/0.95 1.07/0.95 1.42

InP 1.31/1.28 1.34/1.30 1.34

Eg,indirect, fund (eV) Eg,indirect, opt (eV)

Si 1.11 1.20 1.12

AlP 2.39 2.50 2.45

AlAs 2.09/1.99 2.08/1.98 2.15

AlSb 1.80/1.55 1.77/1.55 1.62

GaP 2.22/2.17 2.33/2.30 2.27

TABLE II. SRSH and GW fundamental band gaps with and
without spin-orbit coupling. As mentioned in the text, all GW
calculations are one-shot from a PBE starting point. Owing
to very small exciton binding energies in these materials, these
can be compared to experimental optical band gaps. All
experimental data is at 300K and taken from Ref. 72 except
for a) which is at 80K from Ref. 76.

the indirect experimental optical gaps. The agreement
between GW and experimental direct band gaps is not as
good, which could be due to the fact that the assignment
of the direct optical band gap for indirect semiconductors
is experimentally challenging. In particular, for AlP
we find that the commonly reported experimental direct
band gap (3.63 eV) differs substantially from the GW gap
(4.25 eV). However, our direct band gap is in agreement
with previous GW results.39,40 Furthermore, Zhu et al.39

questioned the experimental assignment of the 3.63 eV
feature to the direct band gap,78,79 suggesting that it is
most likely the 3.56 eV Γ15v to X3c indirect transition.
As shown below, both BSE and TDDFT computed

optical spectra of AlP are in close agreement with the
experimental optical spectrum, lending further credence
to this result.

Lastly, for GaAs, we find a direct gap of 0.95 eV,
which is 0.36 eV lower than what was reported in Ref. 40
and about 0.5 eV lower than experiment. Further
testing indicates that the PBE starting point, denser
k-grid, FF treatment of the dielectric, and inclusion
of spin-orbit coupling all tend to close the gap at Γ
relative to Ref. 40 (see the SM). This result is somewhat
reduced relative to initial GW calculations for GaAs
that were in much better agreement with experiment,4,45

but is consistent with recent calculations. For example,
Klimeš et al.80 reported a one-shot G0W0 gap of 1.23
eV using a PBE starting point. They suggested that
contributions from localized Ga 3d states in the Coulomb
hole term may be responsible for the reduced gap relative
to experiment. The use of methods beyond one-shot
G0W0 may address this issue, including quasiparticle
self-consistent GW,81 or starting from hybrid or static-
COHSEX wave functions.82 Furthermore, in future work,
we plan to explore using a hybrid functional starting
point.83–85 Regardless of the discrepancy between G0W0

and experiment for GaAs, the fact that the GW results
are well converged makes them suitable for our purposes
because the SRSH functional is fit to the GW calculations
and then TD-SRSH calculations are primarily compared
to GW-BSE calculations, rather than to experiment.

B. SRSH band gaps and band structures

Comparing SRSH to GW, we first point out that while
SRSH is only fit to the GW direct band gap, the SRSH
and GW indirect band gaps also agree to within 0.11
eV. Furthermore, SRSH is fit to GW without spin-orbit
coupling and continues to exhibit good agreement after
spin-orbit coupling is independently taken into account
in both approaches. A comparison of SRSH and GW
band structures for all seven semiconductors is given
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in Figure 1. Very good agreement between SRSH and
GW band structures near the band edges is obtained
throughout. Quantitatively, the mean absolute deviation
for the top two valence bands and bottom two conduction
bands (four valence bands and four conduction bands
accounting for using spin-orbit coupling) is 0.06 ± 0.05
eV, with the largest deviation being 0.35 eV. There are
larger differences for lower lying valence bands and higher
conduction bands. This, however, is to be expected,
given that SRSH can be viewed as a static approximation
to the self-energy, which is known to produce larger
deviations away from band edges.36,86 Additionally, GW
can underbind low-lying bands, especially when those
bands derive from states with localized d-character87.
We also note that, in any case, neither SRSH nor
GW calculations fully include electron-plasmon coupling,
which may become important in this energy regime and
modify the structure of the lowest bands.88

To further assess the ability of SRSH to capture quasi-
particle (QP) corrections, in Figure 2 we plot corrections
to DFT-PBE eigenvalues, εQP − εPBE , as a function
of the DFT-PBE eigenvalues, εPBE , for silicon. Silicon
exhibits the largest differences between SRSH and GW
eigenvalues. We also include static-COHSEX eigenvalues
for comparison. For clarity, in all cases we rigidly shift
the corrections so that the valence band maximum for
the PBE, SRSH, GW, and static-COHSEX calculations
all align. We plot the three highest valence bands and
four lowest conduction bands. We first note that the FF-
GW correction narrows the bandwidth, relative to PBE,
for lower valence bands. This is consistent with previous
GW calculations using a generalized plasmon pole model,
but is more pronounced and occurs at energies closer
to the band edges.40 SRSH nearly linearly widens the
valence bandwidth and conduction bandwidth with a
slope similar to the static-COHSEX approximation. This
is in line with the interpretation of SRSH as a static
approximation of the self-energy. We also note that
the small difference between the SRSH and FF-GW
conduction band minima stems from the fact that we
fit the SRSH functional to match the direct band gap,
not the indirect band gap.

C. GW-BSE and TD-SRSH optical spectra

We now turn to the comparison of TD-SRSH and
BSE calculations of optical absorption spectra, focusing
especially on low-lying excitonic states. We empha-
size that no further fitting takes place at the TDDFT
level. Once the exchange-correlation functional is fixed,
the exchange-correlation potential and kernel are self-
consistently derived from it via first and second func-
tional derivatives, respectively. In Figure 3 we show
the optical absorption spectrum of TD-SRSH, BSE, and
experiment. Where possible, we include both room-
temperature and low temperature experimental data.
Despite the absence of full convergence with respect to

the k-grid (see section II C 4 and the SM), SRSH and
BSE predict peak locations and line shapes in close
agreement with each other and with experimental values.
Quantitatively, the mean absolute deviation between TD-
SRSH and BSE of the absorption peak position is 0.03
eV for the E1 peak and 0.11 eV for the E2 absorption
peak. It is noteworthy that both calculations correctly
describe the spin-orbit coupling-split E1 peaks of AlSb.89

Further evidence for the success of the TD-SRSH
method is that in the cases where BSE differs from
experiment, TD-SRSH follows suit. This can be seen
for the red-shift of the E1 peak (the “first” peak) for
AlAs, GaP, and GaAs; the lack of spin-orbit coupling
split E1 peaks for GaAs; and the overestimation of
oscillator strengths for the E2 peak of AlSb, GaP, and
GaAs. It is likely that the red-shift is the result of the
slight underestimation of the direct band gap for these
materials by GW. Additionally, BSE and TD-SRSH show
similar spurious peaks at the onset of absorption for
the GaP, GaAs, and InP. This is likely due to lack of
complete k-point convergence and denser k-grids would
likely smooth the onsets of absorption (see the SM).

As for the differences between the TD-SRSH and BSE
calculations, we find that E1 oscillator strengths pre-
dicted by BSE are closer to those of the low temperature
experimental data than those predicted by SRSH. Since
we neglect temperature effects in our calculations, apart
from using room-temperature lattice parameters, this
provides a more relevant comparison. Generally, the
oscillator strengths of the SRSH spectra at lower energy
are reduced relative to those of GW-BSE and experiment,
possibly indicating an underestimate of the electron-hole
interaction.

We attribute TD-SRSH’s success in reproducing BSE
results to several reasons. First, the low-lying excitations
considered here are composed primarily of electron-hole
pairs near the band edges, and we have seen in these
materials that SRSH describes the GW quasiparticle
energies in this range well. Second, in these materials, the
exciton binding energy is much smaller than the plasmon
frequency and we thus expect dynamical screening to be
of limited importance for low energy spectral features.
This is ideal for SRSH because it is inherently a static
approximation. Indeed, the importance of dynamical
screening has been investigated in early BSE calculations
and it has become common practice to take into ac-
count only the static dielectric tensor when constructing
the BSE kernel.8 Finally, SRSH captures important
exchange-correlation effects via the 1

q2 behavior in the

kernel.15,22,23,30

IV. CONCLUSION

In conclusion, we have shown that, with one material-
specific fitting parameter, the SRSH functional yields
band structures in close agreement with GW and optical
spectra in close agreement with BSE and experimental
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data, for a range of semiconductors. This shows that
TDDFT using range-separated kernels derived from ex-
act exchange can be on par with GW-BSE calculations.
Thus, SRSH can be used for semiconductor systems
where GW calculations may be too expensive, as long
as the band gap is known.
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21 L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888

(1983).
22 L. Reining, V. Olevano, A. Rubio, and G. Onida, Phys.

Rev. Lett. 88, 066404 (2002).
23 P. Ghosez, X. Gonze, and R. W. Godby, Phys. Rev. B 56,

12811 (1997).
24 S. Botti, F. Sottile, N. Vast, V. Olevano, L. Reining, H.-C.

Weissker, A. Rubio, G. Onida, R. Del Sole, and R. W.
Godby, Phys. Rev. B 69, 155112 (2004).

25 S. Sharma, J. K. Dewhurst, A. Sanna, and E. K. U. Gross,
Phys. Rev. Lett. 107, 186401 (2011).

26 P. E. Trevisanutto, A. Terentjevs, L. A. Constantin,
V. Olevano, and F. D. Sala, Phys. Rev. B 87, 205143
(2013).

27 Z. Ning, C.-T. Liang, and Y.-C. Chang, Phys. Rev. B 96,
085202 (2017).

28 J. Paier, M. Marsman, and G. Kresse, Phys. Rev. B 78,
121201 (2008).
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87 M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. B
57, 6485 (1998).

88 J. Lischner, G. K. Pálsson, D. Vigil-Fowler, S. Nemsak,
J. Avila, M. C. Asensio, C. S. Fadley, and S. G. Louie,
Phys. Rev. B 91, 205113 (2015).

89 Y. W. Jung, T. H. Ghong, J. S. Byun, Y. D. Kim, H. J.
Kim, Y. C. Chang, S. H. Shin, and J. D. Song, Appl. Phys.
Lett. 94, 231913 (2009).

90 P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona,
Phys. Rev. B 36, 4821 (1987).

91 C. M. Herzinger, P. G. Snyder, F. G. Celii, Y. Kao,
D. Chow, B. Johs, and J. A. Woollam, J. Appl. Phys.
79, 2663 (1996).

92 D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985
(1983).

93 S. Zollner, M. Garriga, J. Kircher, J. Humĺıček, M. Car-
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