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Articulated Human Detection with
Flexible Mixtures of Parts

Yi Yang, Member, IEEE, and Deva Ramanan, Member, IEEE

Abstract—We describe a method for articulated human detection and human pose estimation in static images based on a new
representation of deformable part models. Rather than modeling articulation using a family of warped (rotated and foreshortened)
templates, we use a mixture of small, nonoriented parts. We describe a general, flexible mixture model that jointly captures spatial
relations between part locations and co-occurrence relations between part mixtures, augmenting standard pictorial structure models
that encode just spatial relations. Our models have several notable properties: 1) They efficiently model articulation by sharing
computation across similar warps, 2) they efficiently model an exponentially large set of global mixtures through composition of local
mixtures, and 3) they capture the dependency of global geometry on local appearance (parts look different at different locations). When
relations are tree structured, our models can be efficiently optimized with dynamic programming. We learn all parameters, including
local appearances, spatial relations, and co-occurrence relations (which encode local rigidity) with a structured SVM solver. Because
our model is efficient enough to be used as a detector that searches over scales and image locations, we introduce novel criteria for
evaluating pose estimation and human detection, both separately and jointly. We show that currently used evaluation criteria may
conflate these two issues. Most previous approaches model limbs with rigid and articulated templates that are trained independently of
each other, while we present an extensive diagnostic evaluation that suggests that flexible structure and joint training are crucial for
strong performance. We present experimental results on standard benchmarks that suggest our approach is the state-of-the-art
system for pose estimation, improving past work on the challenging Parse and Buffy datasets while being orders of magnitude faster.

Index Terms—Pose estimation, object detection, articulated shapes, deformable part models

1 INTRODUCTION

AN articulated pose estimation is a fundamental task in
computer vision. A working technology would im-
mediately impact many key vision tasks such as image
understanding and activity recognition. An influential
approach is the pictorial structure framework [1], [2] which
decomposes the appearance of objects into local part
templates, together with geometric constraints on pairs of
parts, often visualized as springs. When parts are para-
meterized by pixel location and orientation, the resulting
structure can model articulation. This has been the
dominant approach for human pose estimation. In contrast,
traditional models for object recognition use parts para-
meterized solely by locations, which simplifies both
inference and learning. Such models have been shown to
be very successful for object detection [3], [4]. In this work,
we introduce a novel, unified representation for both
models which produces state-of-the-art results for the tasks
of detecting articulated people and estimating their poses.

Representations for articulated pose: Full-body pose estima-
tion is difficult because of the many degrees of freedom to
be estimated. Moreover, limbs vary greatly in appearance
due to changes in clothing and body shape, as well as
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changes in viewpoint manifested in in-plane rotations and
foreshortening. These difficulties complicate inference as
one must typically search images with a large number of
warped (rotated and foreshortened) templates. We address
these problems by introducing a simple representation for
modeling a family of warped templates: a mixture of
pictorial structures with small, nonoriented parts (Fig. 1).
Our approach is significantly faster than an articulated
model because we exploit dynamic programming to share
computation across similar warps during matching. Our
approach can also outperform articulated models because
we capture the effect of global geometry on local appear-
ance; an elbow looks different when positioned above the
head or beside the torso. One reason for this is that elbows
rotate and foreshorten. However, appearance changes also
arise from other geometric factors, such as partial occlu-
sions and interactions with clothing. Our models capture
such often ignored dependencies because local mixtures
depend on the spatial arrangement of parts.
Representations for objects: Part models are also common in
general object recognition. Because translating parts do not
deform too much in practice, one often resorts to global
mixture models to capture large appearance changes [4].
Rather, we compose together local part mixtures to model an
exponentially large set of global mixtures. Not all such
combinations are equally likely; we learn a prior over what
local mixtures can co-occur. This allows our model to learn
notions of local rigidity; for example, two parts on the same
rigid limb must co-occur with a consistent-oriented edge
structure. An open challenge is that of learning such
complex object representations from data. We find that
supervision is a key ingredient for learning structured

Published by the IEEE Computer Society
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Fig. 1. Our flexible mixture-of-parts model (middle) differs from classic
approaches (left) that model articulation by warping a single template to
different orientation and foreshortening states (top right). Instead, we
approximate small warps by translating patches connected with a spring
(bottom right). For a large warp, we use a different set of patches and a
different spring. Hence, our model captures the dependence of local part
appearance on geometry (i.e., elbows in different spatial arrangements
look different).

relational models; one can use limb orientation as a super-
visory signal to annotate part mixture labels in training data.

Efficiency: For computational reasons, most prior work on
pose estimation assumes that people are prelocalized with a
detector that provides the rough pixel location and scale of
each person. Our model is fast enough to search over all
locations and scales, and so we both detect and estimate
human poses without any preprocessing. Our model
requires roughly 1 second to process a typical benchmark
image, allowing for the possibility of real-time performance
with further speedups (such as cascaded [5] or parallelized
implementations). We have released open-source code [6]
which appears to be in use within the community.

Evaluation: The most popular evaluation criteria for pose
estimation are the percentage of correctly localized parts
(PCP) criteria introduced in [7]. Though these criteria were
crucial and influential in spurring quantitative evaluation,
they were somewhat ambiguously specified in [7], resulting
in possibly conflicting implementations.

One point of confusion is that PCP, as originally
specified, assume humans are predetected on test images.
This assumption may be unrealistic because it is hard to
build detectors for highly articulated poses (for the same
reason it is hard to correctly estimate their configurations).
Another point of confusion is that there appear to be two
interpretations of the definition of correctly localized parts
criteria introduced in [7]. We will give a detailed descrip-
tion of these issues in Section 7.

Unfortunately, these subtle confusions lead to significant
differences in terms of final performance results. We show
that that there may exist a negative correlation between
body-part detection accuracy and PCP as implemented in
the toolkit released by [8]. We then introduce new
evaluation criteria for pose estimation and body-part
detection that are self-consistent. We evaluate all different
types of PCP criteria and our new criteria on two standard
benchmark datasets [7], [9].

Overview: An earlier version of this manuscript appeared
in [10]. This version includes a slightly refined model,
additional diagnostic experiments, and an in-depth discus-
sion of evaluation criteria. After discussing related work,
we motivate our approach in Section 3, describe our model
in Section 4, describe algorithms for inference in Section 5,
and describe methods for learning parameters from
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training data in Section 6. We then show experimental
results and diagnostic experiments on our benchmark data
sets in Section 7.

2 RELATED WORK

Pose estimation has typically been addressed in the video
domain, dating back to the classic model-based approaches
of O'Rourke and Badler [11], Hogg [12], Rohr [13]. Recent
work has examined the problem for static images, assuming
that such techniques will be needed to initialize video-based
articulated trackers. We refer the reader to the recent survey
article [14] for a full review of contemporary approaches.

Spatial structure: One area of research is the encoding of
spatial structure, often described through the formalism of
probabilistic graphical models. Tree-structured graphical
models allow for efficient inference [1], [15], but are plagued
by double counting; given a parent torso, two legs are
localized independently and often respond to the same
image region. Loopy constraints address this limitation but
require approximate inference strategies such as sampling
[1], [16], [17], loopy belief propagation [18], or iterative
approximations [19]. Recent work has suggested that
branch-and-bound algorithms with tree-based lower
bounds can globally solve such problems [20], [21]. Another
approach to eliminating double counting is the use of
stronger pose priors [22]. However, such methods may
overfit to the statistics of a particular dataset, as warned by
[18], [23]. We find that simple tree models, when trained
contextually with part models in a discriminative frame-
work, are fairly effective.

Learning: An alternate family of techniques has explored
the tradeoff between generative and discriminative mod-
els. Approaches include conditional random fields [24],
margin-based learning [25], and boosted detectors [26],
[27], [21]. Most previous approaches train limb detectors
independently, in part due to the computational burdens
of inference. Our representation is efficient enough to be
learned jointly; we show in our experimental results that
joint learning is crucial for accurate performance. A small
part trained by itself is too weak to provide a strong
signal, but a collection of patches trained contextually are
rather discriminative.

Image features: An important issue for computer vision
tasks is feature description. Past work has explored the use
of superpixels [28], contours [26], [29], [30], foreground/
background color models [9], [7], edge-based descriptors
[31], [32], and gradient descriptors [27], [33]. We use
oriented gradient descriptors [34] that allow for fast
computation, but our approach could be combined with
other descriptors. Recent work has integrated our models
with steerable image descriptors for highly efficient pose
estimation [35].

Large wversus small parts: In recent history, researchers
have begun exploring large-scale, nonarticulated parts that
span multiple limbs on the body (“Poselets”) [3]. Such
models were originally developed for human detection, but
[36] extends them to pose estimation. Large-scale parts can
be integrated into a hierarchical, coarse-to-fine representa-
tion [37], [38]. The underlying intuition behind such
approaches stems from the observation that it is hard to
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Fig. 2. We show that four small, translating parts can approximate
nonaffine (e.g., perspective) warps.

build accurate limb detectors because they are nondescript
in appearance (i.e., limbs are defined by parallel lines that
may commonly occur in clutter). This motivates the use of
larger parts with more context. We demonstrate that jointly
training small parts has the same contextual effect.

Object detection: In terms of object detection, our work is
most similar to pictorial structure models that reason about
mixtures of parts [39], [1], [4], [15]. We show that our model
generalizes such representations in Section 4.1. Our local
mixture model can also be seen as an AND-OR grammar
where a pose is derived by AND’ing across all parts and
OR’ing across all local mixtures [4], [40].

3 MOTIVATION

Our model is an approximation for capturing a continuous
family of warps. The classic approach of using a finite set of
articulated templates is also an approximation. In this
section, we present a straightforward theoretical analysis of
both. For simplicity, we restrict ourselves to affine warps,
though a similar derivation holds for any smooth warping
function, including perspective warps (Fig. 2).

Let us write z for a 2D pixel position in a template and
w(z) = (I + AA)z + b for its new position under a small
affine warp A = I + AA and any translation b. We use AA
to parameterize the deviation of the warp from an identity
warp. Define s(z) = w(x) — z to be the shift of position x.
The shift of a nearby position z + Az can be written as

s(x + Az) = w(x + Az) — (z + Azx)
={I+AA)(z+Az)+b—x— Az
= s(z) + AAAz.

Both pixels « and « + A shift by the same amount (and can
be modeled as a single part) if the product AAAz is small,
which is true if AA has small determinant or Az has small
norm. Classic articulated models use a large family of
discretized articulations, where each discrete template only
needs to explain a small range of rotations and foreshorten-
ing (e.g., a small-determinant AA). We take the opposite
approach, making Az small by using small parts. Since we
want the norm of Ax to be small, this suggests that circular
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parts would work best, but we use square parts as a discrete
approximation. In the extreme case, one could define a set
of single-pixel parts. Such a representation is indeed the
most flexible, but becomes difficult to train given our
learning formulation described below.

4 MoODEL

Let us write I for an image, I; = (z,y) for the pixel location
of part i and t; for the mixture component of part i. We write
1e€{l,...K},l, e{1,...L},and t; € {1,...T}. We call ¢; the
“type” of part i. Our motivating examples of types include
orientations of a part (e.g., a vertical versus horizontally
oriented hand), but types may span out-of-plane rotations
(front-view head versus side-view head) or even semantic
classes (an open versus closed hand). For notational
convenience, we define the lack of subscript to indicate a
set spanned by that subscript (e.g., ¢t = {ti1,...tx}). For
simplicity, we define our model at a fixed scale; at test time,
we detect people of different sizes by searching over an
image pyramid.

Co-occurrence model: To score a configuration of parts, we
first define a compatibility function for part types that
factors into a sum of local and pairwise scores:

Sty = b+ > bt (1)

iV ijek

The parameter b favors particular type assignments for
part ¢, while the pairwise parameter szff favors particular
co-occurrences of part types. For example, if part types
correspond to orientations and parts ¢ and j are on the same
rigid limb, then b;’;.’f’j would favor consistent orientation
assignments. Specifically, bi’j’tj should be a large positive
number for consistent orientations ¢; and ¢;, and a large
negative number for inconsistent orientations ¢; and ¢;.

Rigidity: We write G = (V,E) for a (tree-structured)
K-node relational graph whose edges specify which pairs of
parts are constrained to have consistent relations. Such a
graph can still encode relations between distant parts
through transitivity. For example, our model can force a
collection of parts to share the same orientation so long as
the parts form a connected subtree of G = (V, E). We use
this property to model multiple parts on the torso. Since co-
occurrence parameters are learned, our model learns which
collections of parts should be rigid.

We can now write the full score associated with a
configuration of part types and positions:

S(ILt) =St + Y wi - o(I,1;)
eV

+ 3wl - 1),

ijel

(2)

where ¢(1,1;) is a feature vector (e.g., HOG descriptor [34])
extracted from pixel location I; in image I. We write
Ol — 1) = [de da* dy dif]", where do=x; —x; and
dy = y; — yj, the relative location of part ¢ with respect to j.
Notably, this relative location is defined with respect to the
pixel grid and not the orientation of part i (as in classic
articulated pictorial structures [1]).
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Appearance model: The first sum in (2) is an appearance
model that computes the local score of placing a template
wf for part ¢, tuned for type ¢;, at location ;.

Deformation model: The second term can be interpreted as
a “switching” spring model that controls the relative
placement of parts i and j by switching between a collection
of springs. Each spring is tailored for a particular pair of
types (t;,t;), and is parameterized by its rest location and
rigidity, which are encoded by w;f’ Our switching spring
model encodes the dependence of local appearance on
geometry, since different pairs of local mixtures are
constrained to use different springs. Together with the co-
occurrence term, it specifies an image-independent “prior”
over part locations and types.

4.1 Special Cases

We now describe various special cases of our model. The
first three correspond to special cases that have previously
occurred in the literature, while the last refers to a special
case we implement in our experiments.

Stretchable human models: Sapp et al. [41] describe a
human part model that consists of a single part at each joint.
This is equivalent to our model with K = 14 parts, each
with a single mixture T' = 1. Similarly to us, Sapp et al. [41]
argue that a joint-centric representation efficiently captures
foreshortening and articulation effects. However, our local
mixture models (for 7" > 1) also capture the dependence of
global geometry on local appearance; elbows look different
when positioned above the head or beside the torso. We
compare to such a model in our diagnostic experiments.

Semantic part models: Epshtein and Ullman [39] argue that
part appearances should capture semantic classes and not
visual classes; this can be done with a type model. Consider
a face model with eye and mouth parts. One may want to
model different types of eyes (open and closed) and mouths
(smiling and frowning). The spatial relationship between
the two does not likely depend on their type, but open eyes
may tend to co-occur with smiling mouths. This can be
obtained as a special case of our model by using a single
spring for all types of a particular pair of parts:

’LUZL-}-"L'V = ’UJU (3)

Mixtures of deformable parts: Felzenszwalb et al. [4]
define a mixture of models, where each model is a star-
based pictorial structure. This can be achieved by restrict-
ing the co-occurrence model to allow for only globally
consistent types:

it 0 if t;=¢;
bij - { —oo otherwise. )

Articulation: In our experiments, we explore a simplified
version of (2) with a reduced set of springs:

’LUT/I bt (r)

i = W 5

The above simplification states that the relative location of
part with respect to its parent is dependent on part type,
but not parent type. For example, let ¢ be a hand part, j its
parent elbow part, and assume part types capture
orientation. The above relational model states that a
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sideways-oriented hand should tend to lie next to the
elbow, while a downward-oriented hand should lie below
the elbow, regardless of the orientation of the upper arm.

5 INFERENCE

Inference corresponds to maximizing S(I,1,t) from (2) over
l and t. When the relational graph G = (V, E) is a tree, this
can be done efficiently with dynamic programming. To
illustrate inference, let us rewrite (2) by defining z; = (I;,¢;)
to denote both the discrete pixel location and discrete
mixture type of part

S(L2) =Y il 2) + > wii(2i,2),
% ijer
where  &;(I,2) = w - ¢(I,1;) + b’

lil

t,t
wu(zl’zj) = wij i)

Yl — ;) + b5

From this perspective, it is clear that our final model is a
discrete, pairwise Markov random field. When G = (V, E)
is tree structured, one can compute max,S(I,z) with
dynamic programming.

To be precise, we iterate over all parts starting from the
leaves and moving “upstream” to the root part. We define
kids(7) be the set of children of part i, which is the empty set
for leaf parts. We compute the message part ¢ passes to its
parent j by the following:

score;(z) = ¢i(1,z) + Y mi(z) (6)
keekids(i)
mi(zj) = max[score; (z;) + vij(2i, 2))]- (7)

Equation (6) computes the local score of part ¢, at all pixel
locations I; and for all possible types t;, by collecting
messages from the children of ¢. Equation (7) computes for
every location and possible type of part j, the best scoring
location and type of its child part i. Once messages are
passed to the root part (i = 1), score; (z1) represents the best
scoring configuration for each root position and type. One
can use these root scores to generate multiple detections in
image I by thresholding them and applying nonmaximum
suppression (NMS). By keeping track of the argmax indices,
one can backtrack to find the location and type of each part
in each maximal configuration. To find multiple detections
anchored at the same root, one can use N-best extensions of
dynamic programming [42].

Computation: The computationally taxing portion of
dynamic programming is (7). We rewrite this step in detail:

m;(t;, 1) = max [bf;;tj + max score; (ti, ;) -
tist;
+ wij . ¢(l7 — l])]

One has to loop over L x T possible parent locations and
types, and compute a max over L x 7T possible child
locations and types, making the computation O(L*T?) for
each part. When (l; — I;) is a quadratic function (as is the
case for us), the inner maximization in (8) can be efficiently
computed for each combination of ¢; and ¢; in O(L) with a
max-convolution or distance transform [1]. Since one has to
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perform T? distance transforms, message passing reduces
to O(LT?) per part.

Special cases: Model (3) maintains only a single spring per
part, so message passing reduces to O(L). Models (4) and
(5) maintain only T' springs per part, reducing message
passing to O(LT). It is worthwhile to note that our
articulated model is no more computationally complex
than the deformable mixtures of parts in [4], but is
considerably more flexible because it searches over an
exponential number (7%) of global mixtures. In practice, the
computation time is dominated by computing the local
scores of each type-specific appearance models w! - ¢(I,1;).
Since this score is linear, it can be efficiently computed for
all positions /; by optimized convolution routines.

6 LEARNING

We assume a supervised learning paradigm. Given labeled
positive examples {I,,l,,t,} and negative examples {I,},
we will define a structured prediction objective function
similar to those proposed in [4], [25]. To do so, let us write
zp = (I, 1) and note that the scoring function (2) is linear in
model parameters = (w,b), and so can be written as
S(I,z) = p-®(I,z). We would learn a model of the form:

. 1
arg min 506+ C;&L
9
st. VYnepos B-®(1,,2,)>1-¢, ©)
Vn € neg,Vz [-P(1,,2) < —-1+¢,.

The above constraint states that positive examples
should score better than 1 (the margin), while negative
examples, for all configurations of part positions and types,
should score less than —1. The objective function penalizes
violations of these constraints using slack variables &,.

Detection versus pose estimation: Traditional structured
prediction tasks do not require an explicit negative training
set, and instead generate negative constraints from positive
examples with misestimated labels z. This corresponds to
training a model that tends to score a ground-truth pose
highly and alternate poses poorly. While this translates
directly to a pose estimation task, our above formulation
also includes a “detection” component: It trains a model
that scores highly on ground-truth poses, but generates low
scores on images without people. We find the above to
work well for both pose estimation and person detection.

Optimization: The above optimization is a quadratic
program with an exponential number of constraints since
the space of z is (LT)". Fortunately, only a small minority
of the constraints will be active on typical problems
(e.g., the support vectors), making them solvable in practice.
This form of learning problem is known as a structural
SVM, and there exist many well-tuned solvers such as the
cutting plane solver of SVMStruct [43] and the stochastic
gradient descent solver (SGD) in [4]. To allow greater
flexibility in scheduling model updates and active-set
pruning, we implemented our own dual coordinate-descent
solver, briefly described below.

Dual coordinate descent: The currently fastest solver for
linear SVMs appears to be liblinear [44], which is a dual
coordinate descent method. A naive implementation of a
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dual SVM solver would require maintaining an M x M
kernel matrix, where M is the total number of active
constraints (support vectors). The innovation of liblinear is
the realization that one can implicitly represent the kernel
matrix for linear SVMs by maintaining the primal weight
vector 3, which is typically much smaller. In practice, dual
coordinate descent methods are efficient enough to reach
near-optimal solutions in a single pass through large
datasets [45]. Algorithmically, such a pass takes no more
computation than SGD, but is guaranteed to always
increase the dual objective, while stochastic methods may
take wrong steps along the way. We have derived an
extension of this insight for structural SVMs, described
further in [46]. Briefly put, the main required modification
is the ability for linear constraints to share the same slack
variable. Specifically, the negative examples from (9) that
correspond to a single window I, with different latent
variables z share the same slack &,. This somewhat
complicates a dual coordinate step, but the same principle
applies; we solve the dual problem coordinate-wise, one
variable at a time, implicitly representing the kernel matrix
with 8. We also find that we reach optimal solutions in a
single pass through our training set.

6.1 Learning in Practice

Most human pose datasets include images with labeled
joint positions [9], [7], [3]. We define parts to be located at
joints, so these provide part position labels [, but not part
type labels ¢t. We now describe a procedure for generating
type labels for our articulated model (5).

We first manually define the edge structure E by
connecting joint positions based on average proximity.
Because we wish to model articulation, we can assume that
part types should correspond to different relative locations
of a part with respect to its parent in E. For example,
sideways-oriented hands occur next to elbows, while
downward-facing hands occur below elbows. This means
we can use relative location as a supervisory cue to help
derive type labels that capture orientation.

Deriving part type from position: Assume that our
nth training image I, has labeled joint positions /,,. Let I}
be the relative position of part ¢ with respect to its parent in
image I,. For each part ¢, we cluster its relative position
over the training set {I/ : Vn} to obtain T clusters. We use
K-means with K =T. Each cluster corresponds to a
collection of part instances with consistent relative loca-
tions, and hence, consistent orientations by our arguments
above. We define the type labels for parts t;' based on
cluster membership. We show example results in Fig. 3.

Partial supervision: Because part type is derived heur-
istically above, one could treat ¢! as a latent variable that is
also optimized during learning. This latent SVM problem
can be solved by coordinate descent [4] or the CCP
algorithm [47]. We performed some initial experiments
with latent updating of part types using the coordinate
descent framework of [4], but we found that type labels
tend not to change over iterations. We leave such partially
supervised learning as interesting future work.

Problem size: On our training datasets, the number of
positive examples varies from 200 to 1,000 and the number
of negative images is roughly 1,000. We treat each possible
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Fig. 3. We take a “data-driven” approach to orientation modeling by clustering the relative locations of parts with respect to their parents. These
clusters are used to generate mixture labels for parts during training. For example, heads tend to be upright, and so the associated mixture models
focus on upright orientations. Because hands articulate to a large degree, mixture models for the hand are spread apart to capture a larger variety of

relative orientations.

placement of the root on a negative image as a unique
negative example z,, meaning we have millions of
negative constraints. Furthermore, we consider models
with hundreds of thousands of parameters. We found that
a careful optimized solver was necessary to manage
learning at this scale.

7 EXPERIMENTAL RESULTS
7.1 Datasets

We evaluate results using the Image Parse dataset [9] and
the Buffy Stickmen dataset [7], [48]. The Parse set contains
305 pose-annotated images of highly articulated full-body
human poses. The Buffy dataset contains 748 pose-
annotated video frames over five episodes of a TV show.
Both datasets include a standard train/test split. To train
our models, we use the negative training images from the
INRIAPerson database [34] as our negative training set.
These images tend to be outdoor scenes that do not contain
people. Our good performance on other datasets (such as
Buffy, which tends to include indoor images) suggests our
model generalizes well.

7.2 Evaluation Criteria

In this section, we describe our new proposed evaluation
criteria for evaluating pose estimation, and compare it to
existing evaluation methods.

PCP: Ferrari et al. [7] describe a broadly adopted
evaluation protocol based on the probability of a correct
pose (PCP), which measures the percentage of correctly

Fig. 4. We show images from the Parse benchmark for which the best
scoring pose of our model lies on a figure in the background and not
the central annotated figure. Previous evaluation criteria either
penalize such matches as incorrect or match multiple candidate
poses to the ground truth (inadvertently favoring algorithms that return
more candidates). We propose two new evaluation criteria that
address these shortcomings.

localized body parts. A candidate body part is labeled as
correct if its segment endpoints lie within 50 percent of the
length of the ground-truth annotated endpoints. This
criteria was clearly crucial and influential in spurring
quantitative evaluation, thus considerably moving the field
forward. However, there are three difficulties associated
with using it in practice. First, the Buffy toolkit [8] released
with [7] uses a relaxed definition that scores the average of
the predicted limb endpoints, and not the limb endpoints
themselves. It is not clear which previously published PCP
values use the evaluation code versus the original defini-
tion. Second, PCP is sensitive to the amount of foreshorten-
ing of a limb, and so can be too loose a measure in some
cases and too strict a measure in others. Finally, PCP
requires candidate and ground-truth poses to be placed in
correspondence, but does not specify how to obtain this
correspondence. Common solutions include evaluating the
highest scoring candidate given: 1) an image with a single
annotated person or 2) a window returned by a person
detector. Option 1 is not satisfactory because the candidate
may fire on an unannotated person in the background
(Fig. 4), while option 2 is not satisfactory because this biases
the test data to be responses of a (rigid) person detector, as
warned by [23]. The Buffy toolkit [8] instead matches
multiple candidates to multiple ground-truth poses. Un-
matched ground-truth poses (missed detections/false ne-
gatives) are penalized as incorrect localizations, but notably,
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Fig. 5. We compare our “gold standard” evaluation criteria of APK with
PCP and PCK. Recall that APK treats pose estimation as a body-part
detection problem, and computes average precision from a precision-
recall detector curve. On the left, we plot different PCP and APK values
obtained by tweaking NMS strategies. By generating more candidates,
one produces a low APK but an artificially high PCP (as defined in the
Buffy toolkit [8]), suggesting PCP does not correlate well with our gold
standard. On the right, we show that PCK correlates positively with APK.
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T, s

Fig. 6. A visualization of our model for K = 14 parts and T’ = 4 local mixtures, trained on the Parse dataset. We show the local templates above, and
the tree structure below, placing parts at their best scoring location relative to their parent. Though we visualize four trees, there exist TX ~ 2¢7
global combinations, obtained by composing different part types together with different springs. The score associated with each combination
decomposes into a tree, and so is efficient to search over using dynamic programming (1).

unmatched candidates (false positives) are not penalized. This
gives an unfair advantage to approaches that predict a large
number of candidates, as we will show.

PCK: We propose two measures for pose estimation that
address these issues. Our first evaluation explicitly factors
out detection by requiring test images to be annotated with
tightly cropped bounding box for each person. Crucially,
we do not limit ourselves to evaluating a subset of verified
bounding boxes found by a detector as this biases the test
windows to be rigid poses (as warned by [23]). Our
approach is similar to the protocol used in the PASCAL
person layout challenge [49]. Given the bounding box, a

Performance vs # of parts (K) and mixtures (T)
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Fig. 7. We show the effect of model structure on pose estimation by
evaluating PCK performance on the Parse dataset. Overall, increasing
the number of parts from 14 to 26 (by instancing parts at limb midpoints
in addition to joints) improves performance. Instancing additional middle
parts between limb midpoints and joints (from 26 to 51) yields no clear
improvement. In all cases, increasing the number of mixtures improves
performance, likely due to the fact that more orientations and
foreshortening can be modeled. We find that a 26-part model with six
mixtures provides a good tradeoff of performance versus computation.

pose estimation algorithm must report back keypoint
locations for body joints. The person layout challenge
measures the overlap between keypoint bounding boxes,
which can suffer from quantization artifacts for small
bounding boxes. We define a candidate keypoint to be
correct if it falls within o - max(h,w) pixels of the ground-
truth keypoint, where h and w are the height and width of
the bounding box, respectively, and « controls the relative
threshold for considering correctness. We use « = 0.1 for
the Parse dataset and o = 0.2 for the Buffy dataset due to
the fact that Buffy contains half-body people while Parse
contains full-body people. Instead of manually annotating
bounding boxes as PASCAL person layout challenge does,
we generate each of them as the tightest box that covers the
set of ground truth keypoints.

Average precision of keypoints (APK): In a real system,
however, one will not have access to annoated bounding

K = 26 parts

Fig. 8. We visualize our 14 and 26 part model. In Fig. 7, we demonstrate
that the additional parts in the 26-part model significantly increase
performance.
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TABLE 1
We Evaluate Various Strategies for Training Parts

Joint, Independent, and Invariant parts (PCK)

[ Model | Joint | Indep | Indep+Invar |
14 parts | 67.8 56.8 48.4
26 parts | 72.9 56.8 39.6

We jointly train rotationally variant part models, but much past work
trains rotationally invariant part detectors. We demonstrate the latter
decreases our performance by nearly a factor of 2, suggesting that
joint training and rotationally variant detectors are crucial for high
performance.

boxes at test time, and so must address the detection
problem as well. One can cleanly combine the two problems
by thinking of body parts (or rather joints) as objects to be
detected, and evaluate object detection accuracy with a
precision-recall curve [49]. As above, we deem a candidate
to be correct (true positive) if it lies within « - max(h, w) of
the ground truth. We call this the APK. This evaluation
correctly penalizes both missed detections and false
positives. Note that correspondence between candidates
and ground-truth poses are established separately for each
keypoint, and so this only provides a “marginal” view of
keypoint detection accuracy. But such marginal statistics
are useful for understanding which parts are more difficult
than others. Finally, APK requires all people to be labeled in
a test image, unlike PCP and PCK. We have produced such
annotations for Parse and Buffy, and will make them public.

PCP wversus PCK wversus APK. We compare different
evaluations for the Parse dataset in Fig. 5, using the
implementation of PCP in the Buffy toolkit. Because APK
is the most realistic and strictest evaluation, we deem it the
“gold standard.” By tweaking the NMS strategy for our
detector to return more candidate poses, we do worse at
APK but artificially do better at PCP (as implemented in the
Buffy toolkit). This behavior makes sense given that false
positives are not penalized by PCP, but are penalized by
APK. We would like to produce a similar curve comparing
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TABLE 2
We Consider the Effect of Other Aspects of Our Model (Using
26 Parts Model as an Example), Including No Latent Updating,
the Use of a Star Structure versus a Tree Structure, and the
Addition of Rotated Training Images to Increase
the Size of Our Training Set

Diagnostic analysis (PCK)
[ Joint | No Iatent | Star | Add rotated images |
[729 | 734 | 567 746

We find that the latent updating of mixture labels is not crucial, a star
model definitively hurts performance, and adding rotated copies of our
training images increases performance by a small but noticeable amount.

APK and PCK under different NMS strategies, but recall
that PCK is not affected by NMS because ground-truth
windows are given. Rather, we select a arbitrary dimension
of our model to evaluate (such as the number of mixtures),
and show a positive correlation of PCK with APK. Because
PCK is easier to interpret and faster to evaluate than APK,
we use PCK to perform diagnostic experiments exploring
different aspects of our model in the next section.

7.3 Diagnostic Experiments

We define a full-body skeleton for the Parse set, and a
upper body skeleton for the Buffy set. To define a fully
labeled dataset of part locations and types, we group parts
into orientations based on their relative location with
respect to their parents (as described in Section 6.1). We
show clustering results in Fig. 3. We use the derived type
labels to construct a fully supervised dataset, from which
we learn flexible mixtures of parts. We show the full-body
model learned on the Parse dataset in Fig. 6. We set all parts
to be 5 x 5 HOG cells in size. To visualize the model, we
show four trees generated by selecting one of the four types
of each part, and placing it at its maximum-scoring position.
Recall that each part type has its own appearance template
and spring encoding its relative location with respect to its
parent. This is because we expect part types to correspond
to orientation because of the supervised labeling shown in

TABLE 3
We Compare Our Model to All Previous Published Results on the Parse Dataset

Image Parse Testset

[ Method | Torso | Head [ Upper legs [ Lower legs | Upper arms | Lower arms [ Total |
Ramanan [9] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
Andriluka [27] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
Johnson [33] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
Singhi [21] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Johnson [50] 85.4 76.1 734 65.4 64.7 46.9 66.2
Johnson [51] 87.6 76.8 74.7 67.1 67.4 45.9 67.4
Us [52] single+both (strict) 78.5 81.5 72.2 65.9 55.6 33.7 61.5
Us [6] single+both (strict) 85.9 86.8 74.9 68.3 63.4 427 67.1
Us [6] match+avg (buffy tk) | 96.1 99.0 85.9 79.0 79.0 53.4 79.0
Us [6] match+both 91.7 94.6 79.3 71.0 66.3 43.9 70.7

Because authors are likely using different definitions/implementations of PCP, previous values may not be comparable to each other. Here, we list all
possible interpretations of PCP for our model in the last four rows. We also include a preliminary version of model [52]. Single+both is the strictest
interpretation of PCP, which evaluates only a single detection (given by the maximum scoring detection of an algorithm) for one image and it requires
both endpoints of a limb to be correct. Match+avg is the Buffy toolkit [8] implementation, which allows an algorithm to report multiple detections per
image and performs an explicit correspondence matching with the ground truth without penalizing false positives. It also requires only the average of
the endpoints of a limb to be correct, rather than both endpoints. Match+both matches multiple candidates without penalizing false positive, but
requires both endpoints to be correct. Even under the strictest criteria, our current model (67.1 percent) still outperforms all the others and works
almost the same as Johnson [51], which uses a separate dataset of 10,000 images. We argue that none of these interpretations are satisfactory, and
propose new evaluation criteria (PCK and APK) described at length in the text.
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Fig. 9. We present our new evaluations of PCK and APK on the Parse
test set, using a full-body model of K = 26 parts and 7' = 6 mixtures.
PCK is the fraction of times a predicted keypoint was close to a ground-
truth keypoint given a human bounding box on a test image. APK
evaluates the average precision of keypoint detections obtained without
access to any annotations on the test image; this requires a pose
estimation algorithm to perform NMS.

TABLE 4
The Buffy Test Set Is Distributed with a Subset of Windows
Detected by a Rigid HOG Upper Body Detector

Subset of Buffy Testset

[ Buffy [ Torso | Head | U.arms | Larms | Total |
Tran [23] 62.3
Andr. [27] 90.7 95.5 79.3 41.2 73.5
Eich. [53] 98.7 97.9 82.8 59.8 80.1
Sapp [29] 100 | 100 91.1 657 | 859
Sapp [20] 100 96.2 95.3 63.0 85.5
Us [52] buffy tk 98.8 99.2 97.8 68.6 88.5
Us [52] strict 98.4 98.8 94.3 57.5 83.5

We compare our results to all published work on this set. We obtain the
best overall PCP while being orders of magnitude faster than the next-
best approaches. These results have the caveat that authors may be
using different definitions/implementations of PCP, making them
incomparable. Our total pipeline requires 1 second to process an
image, while [29], [26] take 5 minutes. We outperform or (nearly) tie all
previous results on a per-part basis. As pointed out by [23], this subset
contains little pose variation because it is biased to be responses of a
rigid template. We present results on the full test set using our novel
criteria of PCK and APK in Fig. 10.

Fig. 3. Though we visualize four trees, we emphasize that
there exists an exponential number of trees that our model
can generate by composing different part types together.
Structure: We consider the effect of varying T (the
number of mixtures or types) and K (number of parts) on
the accuracy of pose estimation on the Parse data set in
Fig. 7. We experiment with a 14-part model defined at 14
joint positions (shoulder, elbow, hand, and so on) and a 26-
part model where midway points between limbs are added
(mid-upper arm, mid-lower arm, etc.) to increase coverage
(see Fig. 8). Following the clustering procedure in Section
6.1, multiple parts on the same limb will have identical
mixture type assignments, and so will have consistent
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TABLE 5
We Score the Publicly-Available Code of [48]
Using Our New APK Criteria

Buffy Testset

[ Buffy [ Head | Sho [ Elb [ Wrist | Hip | Total |
Eich. [48] | 845 | 799 | 70.5 | 43.8 69.7
Us 86.8 87.0 | 81.2 | 594 | 77.9 | 78.5

Our method performs considerably better for all keypoints.
(a) PCK on Buffy
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Fig. 10. We present our new evaluations of PCK and APK on the Buffy
test set, using a model of K = 18 parts and T' = 6 mixtures. Note that the
overall average APK (across all keypoints) is 78.5 percent, indicating
this test set is easier than the Parse image benchmark.
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Fig. 11. We plot upper body detection on the Buffy dataset, comparing
our articulated pose detector with the state-of-the-art deformable part
model of [4] trained on the same data as our model.

orientation states. Performance increases with denser cover-
age and an increased number of part types, presumably
because additional orientations are being captured.
Independently-trained parts: In Table 1, we consider
different strategies for training parts. Our model jointly
trains all parts and their relational constraints with a
structured SVM. We also consider a variant of our model
where part templates are trained independently with an
SVM (the middle column); at test time, we use still dynamic
programming to find full-body configurations. We see a
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Fig. 12. Results on the Parse dataset. We show 26 part bounding boxes reported by our algorithm along with skeletons computed from the bounding
boxes for each image. The top 3 rows show successful examples, while the bottom 2 rows show failure cases. Examining failure cases from top left
to bottom right, we find that our model is not flexible enough to model horizontal people, is confused by overlapping people, suffers from the double-
counting phenomena common to tree models (both the left and right legs fire on the same image region), and is confused when objects partially

occlude people.

significant drop in performance, indicating that joint
contextual training is crucial. For example, a forearm part
trained independently will be inaccurate because many
negative examples will contain parallel lines and be “hard”
(e.g., support vectors for an SVM). However, structured
SVMs (that jointly train all parts) need collect hard
negatives only from backgrounds that trigger a full-body

part configuration. This vastly reduces the amount of
background clutter that the forearm part must compete
against at train time. We see a larger drop for our 26-part
model compared to our 14-part model. Because parts in the
larger model tend to overlap more, we posit that they need
to be trained jointly to properly calibrate the influence of
overlapping regions.
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Fig. 13. Results on the Buffy dataset. We visualize all skeletons (instead of boxes) reported by our algorithm for a given image, after NMS. Our model
hence serves as both an articulated detector and pose estimation algorithm, as evidenced by our APK measure.

Rotationally-invariant parts: We also consider the effect of
rotationally invariant parts in the third column of Table 1.
We train independent, rotationally invariant parts (for say,
the elbow) as follows: For each discrete rotation, we warp
all elbow training patches to that rotation and train an
SVM. This means each oriented elbow part is trained with
the entire training set, while our mixture model uses only
a subset of data belonging to that mixture. We see a large
drop in performance, suggesting that elbows (and other
parts) look different even when rotated to an appropriate
coordinate system. We posit this is due to geometric
interactions with other parts, such as partial occlusions
and effects from clothing. Our local mixtures capture this
geometric dependency. Most previous approaches to pose
estimation use independently trained, invariant parts. We
find that joint training of orientation-variant parts in-
creases performance by nearly a factor of 2, from 39 to
72 percent PCK.

Other aspects: We consider the effect of other aspects of
our model in Table 2, including no latent updating, the use
of a star structure versus a tree structure, and the addition
of rotated training images to increase the size of our training
set. We find that latent updating of mixture labels is not
helpful, a star model definitively hurts performance, and
adding small copies of our training data rotated by +15°
increases performance by a small but noticeable amount.
The latter probably holds true because the training set on
PARSE is rather small (100 images), so artificially augment-
ing the training set helps somewhat. Our final system used
in the benchmark results below makes use of the augmen-
ted training set.

7.4 Benchmark Results

Parse: We give quantitative results for PCP in Table 3, PCK
and APK in Fig. 9, and show example images in Fig. 12. It is
difficult to directly compare PCP performance due to the
ambiguities in the definition and implementation that were
discussed earlier. We refer the reader to the captions for a
detailed analysis, but our method appears to be at or above
the state-of-the-art. We suspect that previous authors either
report a single candidate pose per image, or multiple poses
that are matched using the code of [7]. Our analysis
suggests both of these reports are unsatisfactory since the
former unfairly penalizes an algorithm for finding a person
in the background (Fig. 4), while the latter unfairly favors
algorithms that report many candidate detections (Fig. 5).
We report our performance for all possible interpretations
of PCP. Under all variants, our algorithm still outperforms
all prior work that makes use of the given benchmark
training set, while being orders of magnitude faster.

Our diagnostic analysis suggests our high performance is
due to the fact that our mixtures of parts are learned jointly
in a discriminative framework, and the fact that our model
is efficient enough to search over scales and locations. In
contrast, articulated models are often learned in stages
(using pretrained, orientation-invariant part detectors), and
are often applied at a fixed scale and location due to the
computational burden of inference.

Buffy: We give quantitative results for PCP in Table 4,
PCK and APK in Fig. 10, and show example images in
Fig. 13. To compare to previous results, we evaluate pose
estimation on a subset of windows returned by upper body
detector (provided in the evaluation kit). Notably, all
previous approaches use articulated parts. Our algorithm
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is several orders of magnitude faster than the next-best
approaches of [29], [26]. As pointed out by [23], this subset
contains little pose variation because it is biased to be
responses of a rigid template. The distributed evaluation
code [7] also allows one to compute performance on the full
test videos by multiplying PCP values with the overall
detection rate, but as we argue, this unfairly favors methods
that report back many candidate poses (because false
positives are not penalized). Indeed, the original perfor-
mance we reported in [10] appears to be inflated due to this
effect. Rather, we evaluate the full test videos using our new
criteria for PCK and APK. Our PCK score outperforms our
PCP score, likely due to foreshortened arms in the data that
are scored too stringently with PCP. Finally, we compare
the publicly-available code of [48] with our new APK
criteria, and show that our method does significantly better
(see Table 5).

Detection accuracy: We can use our model as an upper
body detector on the Buffy dataset shown in Fig. 11. We
compare to the popular DPM model [4], trained on the same
training set as our model (but without supervised part
annotations). We see that we obtain higher precision for
nearly all recall values. These results indicate the potential
of our flexible representation and supervised learning
framework for general object detection.

8 CONCLUSION

We have described a simple, but flexible extension of part
models to include local mixtures of parts. We use local
mixtures to capture the appearance changes of parts due to
articulation. We augment part models, which reason about
spatial relations between part locations, to also reason about
co-occurrence relations between part mixtures. Our models
capture the dependence of local appearance on spatial
geometry, outperforming classic articulated models in both
speed and accuracy. Our local part mixtures can be
composed to generate an exponential number of global
mixtures, greatly increasing their representational power
without sacrificing computational efficiency. Finally, we
introduce new evaluation criteria for pose estimation and
articulated human detection which address limitations of
previous scoring methods. We demonstrate impressive
results for the challenging task of human pose estimation.

REFERENCES

[1] P. Felzenszwalb and D. Huttenlocher, “Pictorial Structures for
Object Recognition,” Int’l ]. Computer Vision, vol. 61, no. 1, pp. 55-
79, 2005.

[2] M. Fischler and R. Elschlager, “The Representation and Matching
of Pictorial Structures,” IEEE Trans. Computers, vol. 22, no. 1,
pp- 67-92, Jan. 1973.

[3] L. Bourdev and ]J. Malik, “Poselets: Body Part Detectors Trained
Using 3D Human Pose Annotations,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2009.

[4] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan,
“Object Detection with Discriminatively Trained Part-Based
Models,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 32, no. 9, pp. 1627-1645, Sept. 2010.

[5] P. Felzenszwalb, R. Girshick, and D. McAllester, “Cascade Object
Detection with Deformable Part Models,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2010.

o]

(7]

(8]

]

(10]

(1]

[12]

[13]

(14]
(15]

[16]

(171

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

[20]

(27]

(28]

[29]

(30]

(31]

(32]

2889

Y. Yang and D. Ramanan, “Flexible Mixtures of Parts for
Articulated Pose Detection, Release 1.3,” http://phoenix.ics.
uci.edu/software/pose/, 2013.

V. Ferrari, M. Marin-Jimenez, and A. Zisserman, “Progressive
Search Space Reduction for Human Pose Estimation,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2008.

V. Ferrari, M. Eichner, M. Marin-Jimenez, and A. Zisserman,
“Buffy Stickmen v3.01: Annotated Data and Evaluation Routines
for 2D Human Pose Estimation,” http://www.robots.ox.ac.uk/
vgg/data/stickmen/, 2013.

D. Ramanan, “Learning to Parse Images of Articulated Bodies,”
Proc. Advances in Neural Information Processing System, 2007.

Y. Yang and D. Ramanan, “Articulated Pose Estimation with
Flexible Mixtures-of-Parts,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2011.

J. O'Rourke and N. Badler, “Model-Based Image Analysis of
Human Motion Using Constraint Propagation,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 2, no. 6, pp. 522-
536, 1980.

D. Hogg, “Model-Based Vision: A Program to See a Walking
Person,” Image and Vision Computing, vol. 1, no. 1, pp. 5-20, 1983.
K. Rohr, “Towards Model-Based Recognition of Human Move-
ments in Image Sequences,” CVGIP-Image Understanding, vol. 59,
no. 1, pp. 94-115, 1994.

D. Ramanan, “Part-Based Models for Finding People and Estimat-
ing Their Pose,” Visual Analysis of Humans, pp. 199-223, 2011.

S. Ioffe and D. Forsyth, “Human Tracking with Mixtures of
Trees,” Proc. IEEE Int’l Conf. Computer Vision, 2001.

M. Lee and I. Cohen, “Proposal Maps Driven MCMC for
Estimating Human Body Pose in Static Images,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2004.

S. loffe and D. Forsyth, “Probabilistic Methods for Finding
People,” Int’l ]. Computer Vision, vol. 43, no. 1, pp. 45-68, 2001.

L. Sigal and M. Black, “Measure Locally, Reason Globally:
Occlusion-Sensitive Articulated Pose Estimation,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2006.

Y. Wang and G. Mori, “Multiple Tree Models for Occlusion and
Spatial Constraints in Human Pose Estimation,” Proc. European
Conf. Computer Vision, 2008.

T. Tian and S. Sclaroff, “Fast Globally Optimal 2D Human
Detection with Loopy Graph Models,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2010.

V. Singh, R. Nevatia, and C. Huang, “Efficient Inference with
Multiple Heterogenous Part Detectors for Human Pose Estima-
tion,” Proc. European Conf. Computer Vision, 2010.

X. Lan and D. Huttenlocher, “Beyond Trees: Common-Factor
Models for 2D Human Pose Recovery,” Proc. IEEE Int'l Conf.
Computer Vision, 2005.

D. Tran and D. Forsyth, “Improved Human Parsing with a Full
Relational Model,” Proc. European Conf. Computer Vision, 2010.

D. Ramanan and C. Sminchisescu, “Training Deformable Models
for Localization,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2006.

M. Kumar, A. Zisserman, and P. Torr, “Efficient Discriminative
Learning of Parts-Based Models,” Proc. IEEE Int’l Conf. Computer
Vision, 2009.

B. Sapp, A. Toshev, and B. Taskar, “Cascaded Models for
Articulated Pose Estimation,” Proc. European Conf. Computer
Vision, 2010.

M. Andriluka, S. Roth, and B. Schiele, “Pictorial Structures
Revisited: People Detection and Articulated Pose Estimation,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009.

G. Mori, X. Ren, A. Efros, and J. Malik, “Recovering Human Body
Configurations: Combining Segmentation and Recognition,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2004.

B. Sapp, C. Jordan, and B. Taskar, “Adaptive Pose Priors for
Pictorial Structures,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2010.

P. Srinivasan and J. Shi, “Bottom-Up Recognition and Parsing of
the Human Body,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2007.

G. Mori and J. Malik, “Estimating Human Body Configurations
Using Shape Context Matching,” Proc. European Conf. Computer
Vision, 2002.

J. Sullivan and S. Carlsson, “Recognizing and Tracking Human
Action,” Proc. European Conf. Computer Vision, 2002.



2890

(33]

[34]

(35]

[36]

(371

(38]

(39]

(40]

[41]

(42]

(43]

[44]

[45]

[40]

(47]

(48]

[49]

[50]

(51]

(52]

(53]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 12, DECEMBER 2013

S. Johnson and M. Everingham, “Combining Discriminative
Appearance and Segmentation Cues for Articulated Human Pose
Estimation,” Proc. IEEE Int’l Conf. Computer Vision Workshops, 2009.
N. Dalal and B. Triggs, “Histograms of Oriented Gradients for
Human Detection,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2005.

H. Pirsiavash and D. Ramanan, “Steerable Part Models,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2012.

W. Yang, Y. Wang, and G. Mori, “Recognizing Human Actions
from Still Images with Latent Poses,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2010.

M. Sun and S. Savarese, “Articulated Part-Based Model for Joint
Object Detection and Pose Estimation,” Proc. IEEE Int’l Conf.
Computer Vision Workshops, 2011.

Y. Wang, D. Tran, and D. Liao, and Z. Forsyth, “Discriminative
Hierarchical Part-Based Models for Human Parsing and Action
Recognition,” J. Machine Learning Research, vol. 13, pp. 3075-3102,
2012.

B. Epshtein and S. Ullman, “Semantic Hierarchies for Recognizing
Objects and Parts,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2007.

L. Zhu, Y. Chen, C. Lin, and A. Yuille, “Max Margin Learning of
Hierarchical Configural Deformable Templates (HCDTs) for
Efficient Object Parsing and Pose Estimation,” Int’l |. Computer
Vision, vol. 93, no. 1, pp. 1-21, 2011.

B. Sapp, D. Weiss, and B. Taskar, “Parsing Human Motion with
Stretchable Models,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2011.

D. Park and D. Ramanan, “N-Best Maximal Decoders for Part
Models,” Proc. IEEE Int’l Conf. Computer Vision, 2011.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun,
“Support Vector Machine Learning for Interdependent and
Structured Output Spaces,” Proc. Int’l Conf. Machine Learning, 2004.
R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, “Liblinear: A
Library for Large Linear Classification,” |. Machine Learning
Research, vol. 9, pp. 1871-1874, 2008.

A. Bordes, L. Bottou, P. Gallinari, and J. Weston, “Solving
Multiclass Support Vector Machines with Larank,” Proc. Int’l
Conf. Machine Learning, 2007.

D. Ramanan, “Dual Coordinate Descent Solvers for Large
Structured Prediction Problems,” technical report, Univ. of
California, Irvine, 2012.

A. Yuille and A. Rangarajan, “The Concave-Convex Procedure,”
Neural Computation, vol. 15, no. 4, pp. 915-936, 2003.

M. Eichner, M. Marin-Jimenez, A. Zisserman, and V. Ferrari, “2D
Articulated Human Pose Estimation and Retrieval in (Almost)
Unconstrained Still Images,” Int’l |. Computer Vision, vol. 99, no. 2,
pp- 190-214, 2012.

M. Everingham, L. Van Gool, C. Williams, ]J. Winn, and A.
Zisserman, “The Pascal Visual Object Classes (VOC) Challenge,”
Int’l ]. Computer Vision, vol. 88, no. 2, pp. 303-338, 2010.

S. Johnson and M. Everingham, “Clustered Pose and Nonlinear
Appearance Models for Human Pose Estimation,” Proc. British
Machine Vision Conf., 2010.

S. Johnson and M. Everingham, “Learning Effective Human Pose
Estimation from Inaccurate Annotation,” Proc. IEEE Conf. Compu-
ter Vision and Pattern Recognition, 2011.

Y. Yang and D. Ramanan, “Flexible Mixtures of Parts for
Articulated Pose Detection, Release 1.2,” http://phoenix.ics.
uci.edu/software/pose/, 2013.

M. Eichner and V. Ferrari, “Better Appearance Models for
Pictorial Structures,” Proc. British Machine Vision Conf., 2009.

Yi Yang received the BS degree with honors
from Tsinghua University in 2006 and the master
of philosophy degree in industrial engineering
from the Hong Kong University of Science and
Technology in 2008. He is currently working
toward the PhD degree in the Department of
Computer Science at the University of California,
Irvine. His research interests are in artificial
intelligence, machine learning, and computer
vision. He is a member of the IEEE.

Deva Ramanan received the PhD degree in
electrical engineering and computer science
from the University of California, Berkeley, in
2005. He is an associate professor of computer
science at the University of California, Irvine. His
research interests span computer vision, ma-
chine learning, and computer graphics, with a
focus on the application of understanding people
through images and video. He is a member of
the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice




