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Systems/Circuits

Role of Plasticity at Different Sites across the Time Course of
Cerebellar Motor Learning

Yan Yang1 and Stephen G. Lisberger1,2

1Department of Neurobiology and 2Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina 27110

Learning comprises multiple components that probably involve cellular and synaptic plasticity at multiple sites. Different neural sites
may play their largest roles at different times during behavioral learning. We have used motor learning in smooth pursuit eye movements
of monkeys to determine how and when different components of learning occur in a known cerebellar circuit. The earliest learning occurs
when one climbing-fiber response to a learning instruction causes simple-spike firing rate of Purkinje cells in the floccular complex of the
cerebellum to be depressed transiently at the time of the instruction on the next trial. Trial-over-trial depression and the associated
learning in eye movement are forgotten in �6 s, but facilitate long-term behavioral learning over a time scale of �5 min. During 100
repetitions of a learning instruction, simple-spike firing rate becomes progressively depressed in Purkinje cells that receive climbing-
fiber inputs from the instruction. In Purkinje cells that prefer the opposite direction of pursuit and therefore do not receive climbing-fiber
inputs related to the instruction, simple-spike responses undergo potentiation, but more weakly and more slowly. Analysis of the
relationship between the learned changes in simple-spike firing and learning in eye velocity suggests an orderly progression of plasticity:
first on Purkinje cells with complex-spike (CS) responses to the instruction, later on Purkinje cells with CS responses to the opposite
direction of instruction, and last in sites outside the cerebellar cortex. Climbing-fiber inputs appear to play a fast and primary, but
nonexclusive, role in pursuit learning.

Key words: climbing fibers; floccular complex; long-term depression; smooth pursuit eye movement; synaptic plasticity; trial-over-trial
learning

Introduction
Learning results from “plasticity” that takes the form of changes
in the strength of synaptic transmission and/or spike generation
in the nervous system. However, plasticity and “learning” are
different phenomena. Plasticity is a physiological change in syn-
aptic or cellular function that occurs during learning, but fre-
quently is demonstrated by creating artificial patterns of electrical
activity in reduced preparations such as brain slices. Learning
defines an adaptive change in behavior and probably results from
multiple forms of plasticity at different sites in a neural circuit.

The cerebellum plays an integral role in learning of motor skills.
Much is known about cellular mechanisms in the cerebellum (Han-
sel et al., 2001; Carey, 2011). However, even the successful analysis
of the circuit basis for learning in the vestibulo-ocular reflex (Lis-

berger, 1994; Blazquez et al., 2004, 2006) showed only snapshots
of circuit function before and after learning. Classical condition-
ing of the eyelid response has yielded insights into possible loca-
tions of memory, including how and where timing is learned
(Kalmbach et al., 2010; Thompson, 2013). We do not know how
and when different plasticity mechanisms are deployed at differ-
ent sites as learning evolves.

The original theory of cerebellar learning postulated a primary
teaching role for the climbing-fiber input to the cerebellum. Sen-
sory inputs over the climbing-fiber system would report errors in
a prior movement and would serve as instructions for long-term
depression (LTD) at the synapses from active parallel fibers onto
Purkinje cells (Albus, 1971; Ito, 1972). LTD would cause semi-
permanent changes in the simple-spike responses of Purkinje
cells, and lead to a gradual improvement in motor performance.
Marr (1969) proposed a similar theory based on potentiation of
the synapses from parallel fibers to Purkinje cells. Learning in the
deep cerebellar nucleus was a later addition to the theory (Miles
and Lisberger, 1981).

Observations on the activity of neurons in learning animals
are consistent with the cerebellar learning theory (Gilbert and
Thach, 1977; Lisberger, 1994; Medina et al., 2000; Christian and
Thompson, 2003; Blazquez et al., 2006; Ke et al., 2009; Wulff et
al., 2009). But, the cerebellum contains many sites of synaptic and
cellular potentiation and depression (D’Angelo et al., 1999; Ar-
mano et al., 2000; Hansel et al., 2001; Nelson et al., 2005; Jörntell
and Hansel, 2006; Zheng and Raman, 2010; Carey, 2011; Gao et
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al., 2012). Some of the plasticity mechanisms operate in vivo
(Jörntell and Ekerot, 2002, 2003; Belmeguenai et al., 2010), but
we still need to know which mechanisms operate during behav-
ioral learning. Multiple plasticity mechanisms might operate at
different times and sites to support behavioral learning over sev-
eral time scales (Medina and Mauk, 2000; van Alphen and De
Zeeuw, 2002; Blazquez et al., 2004; Boyden et al., 2004).

In the present paper, we analyze learning across different sites
and times in pursuit eye movements. Pursuit is an excellent learn-
ing system (Kahlon and Lisberger, 1996; Medina et al., 2005;
Yang and Lisberger, 2010). The cerebellar floccular complex re-
ceives visual climbing-fiber inputs to guide learning (Maekawa
and Simpson, 1973; Stone and Lisberger, 1990b). Floccular
simple-spike firing controls pursuit (Miles and Fuller, 1975; Lis-
berger and Fuchs, 1978; Stone and Lisberger, 1990a) and drives
behavioral learning (Kahlon and Lisberger, 2000; Medina and
Lisberger, 2008). We show now that climbing-fiber inputs play a
primary role early in learning, while other cerebellar and brains-
tem mechanisms appear to contribute later. Our observations
elucidate how a temporally and spatially disparate set of cellular
and circuit mechanisms cooperate to cause motor learning.

Materials and Methods
Animal preparation. We report data from experiments on six awake,
behaving adult male rhesus monkeys. Four of the monkeys were used at
the University of California, San Francisco (UCSF) for recordings from
Purkinje cells in the floccular complex during pursuit learning; two of
these also provided recordings from Purkinje cells for other papers (Yang
and Lisberger, 2013; Yang and Lisberger, 2014) and two provided data
used by Medina and Lisberger (2008, 2009). Two of the monkeys were
used at Duke University for behavioral studies of pursuit learning. Before
experiments, we implanted a head holder to prevent head motion during
experiments, an eye coil to monitor eye position, and a stainless steel
recording cylinder to allow access to the floccular complex for single-
neuron recordings (Ramachandran and Lisberger, 2005). The surgical
procedures used sterile technique with the monkey under isofluorane
anesthesia. Monkeys received opiate and/or nonsteroidal analgesics for
several days after each surgery. Procedures were in accordance with the
National Institutes of Health Guide for the Care and Use of Laboratory
Animals and had been approved in advance by the Institutional Animal
Care and Use Committees at UCSF and Duke University.

Behavioral task. Monkeys were trained to fixate and pursue bright
spots that were 0.3 or 0.5° in diameter and appeared on a dark back-
ground. We presented visual stimuli on a CRT monitor that was 30 cm
from the monkey’s eye and subtended a visual field of 59 � 47°. The
experimental room was lit dimly. After a neuron had been isolated, we
presented a baseline block of �10 target motions for 850 ms in each of
eight directions at a constant speed of 20°/s. We used the step-ramp
trajectory of Rashbass (1961) with a 3° eccentric step to minimize the
occurrence of early saccades during the initiation of pursuit. The data
from the baseline block enabled us to assess the preferred direction of the
simple-spike responses of the Purkinje cell under study. We used aver-
ages of the firing rate and eye movement for target motion in the two
directions along the Purkinje cell’s preferred axis to quantify the baseline
relationship between firing rate and the parameters of eye movement
(Medina and Lisberger, 2009).

The main experiment delivered �2 learning blocks of 100 or 400 target
motions (“trials”) using target trajectories and sequences of target mo-
tion, which are described below and in Results. Monkeys were rewarded
with droplets of fluid at the end of each trial if they kept their eyes within
an invisible reward window around the target that was �1° during fixa-
tion, �2° during smooth target motion, and �4 or 5° after an instructive
change in target direction. To avoid punishing the monkey for his ines-
capable response latencies, fixation requirements were suspended after a
change in target position, speed, or direction. There was no explicit re-
ward (or punishment) related to the monkey’s performance in the learn-
ing conditions.

Data acquisition and analysis. Voltages from a magnetic search coil
system provided a measure of eye position and were processed by an
analog differentiator to create voltages proportional to horizontal and
vertical eye velocity. The differentiator included a filter that rejected
signals at frequencies �25 Hz (�20 dB per decade). We sampled the
signals at 1 kHz on each channel and stored them for offline analysis with
the spikes from single-unit recordings.

We introduced homemade glass-insulated platinum-iridium micro-
electrodes daily through the previously implanted cylinder and advanced
them into the floccular complex of the cerebellum. Purkinje cells showed
occasional complex-spike (CS) responses that interrupted a high level of
spontaneous simple-spike firing. We amplified extracellular action po-
tentials conventionally, filtered them with a bandpass of 300 Hz to 3 kHz,
and digitized the raw traces at 25 kHz for offline spike sorting. We viewed
the spike train for each trial on the computer screen and used a software
window discriminator to identify simple spikes and CS responses. We
estimated the firing rate for simple spikes with a reciprocal interval algo-
rithm (Lisberger and Pavelko, 1986). We also counted CS responses in
bins with a width of 100 ms, and converted the counts to the probability
of a CS in each bin.

Most of our data analyses involve averaging firing rate or eye velocity
across specific brief time windows, and we detail the analyses and present
statistical tests either in the Results or in the relevant figure legends. One
more complex data analysis that appears frequently involved measuring
how simple-spike firing (or eye velocity) changed between two consecu-
tive learning trials. We call the first and second of each pair of consecutive
trials the “instruction” and “test” trials. We sorted the pairs of consecu-
tive trials according to the presence or absence of a CS response to the
instructive change in target direction on the instruction trial. Within
each group of pairs, we computed the firing rate (or eye velocity) on the
test trial minus that on the instruction trial for each millisecond from 350
ms before to 50 ms after the time of the instructive change in target
direction. We call the values that emerge from this analysis the “trial-
over-trial change” in neural or behavioral responses. Our goal was to
demonstrate and study trial-over-trial changes that are linked to a CS
response to the instruction on the first of a pair of trials.

Selection of Purkinje cells for study and experimental design. We studied
Purkinje cells in the floccular complex that showed strong modulation of
simple-spike firing rate during the smooth pursuit eye movements
evoked by “step-ramp” target motions (Stone and Lisberger, 1990a). The
eight small peristimulus time histograms in Figure 1A summarize the
simple-spike direction tuning during pursuit for a typical floccular Pur-
kinje cell. Firing rate showed a strong increase for rightward pursuit, a
decrease for leftward pursuit, and very slight increases for upward and
downward pursuit. We would say that the simple-spike firing of this
Purkinje cell had a rightward “on direction” and a leftward “off direc-
tion.” Most Purkinje cells in the floccular complex had on directions for
simple-spike responses that were toward the side of recording or down-
ward (Krauzlis and Lisberger, 1996).

We customized the learning target motion for each Purkinje cell to
match its direction tuning (Fig. 1B, after Medina et al., 2005). In each
learning trial, target motion started in a direction orthogonal to the on
direction of the Purkinje cell under study at a speed of 20°/s (Fig. 1C,
downward). The target underwent an “instructive” change in direction
250 ms after the onset of target motion through the addition of target
motion at 30°/s in the cell’s on direction or off direction for simple-spike
responses (Fig. 1C, rightward). In the “repeated-direction” paradigm, we
presented the same instruction on 100 consecutive trials and induced
“long-term” learning. Comparison of the eye velocity in the first and
100th trials (Fig. 1C, blue vs red traces) reveals the expected learned
component in horizontal eye velocity (arrowhead) that precedes the in-
struction, peaks at the time of the instruction, and lasts for �200 ms
(Medina et al., 2005).

We also used the “random-order” learning paradigm outlined in Fig-
ure 1D and described thoroughly by Yang and Lisberger (2010). The
learning trials are like those used in the repeated-direction paradigm, but
the direction of the instruction is selected randomly on each trial to be in
either the on direction or the off direction for the simple-spike responses
of the Purkinje cell under study. The random-order learning paradigm
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does not induce long-term learning, but causes trial-over-trial learning
that can be seen in the examples of Figure 1D. At the time of the instruc-
tion, eye velocity in the learning direction shows a small deflection in the
direction of the instruction on the prior trial. The nth trial (red traces) has
a small leftward deflection caused by the leftward instruction on the
prior, “n-first” trial (blue traces). The n-first trial has a small rightward
deflection caused by the rightward instruction on the n-second trial (data
not shown). The learned eye velocity precedes both the instruction and
the visually guided eye movement caused by the instruction in the cur-
rent trial. This implies that the responses indicated by the shaded analysis
window are related to the instruction in the prior trial, rather than to that
on the current trial. In the random-order learning paradigm, trial-over-
trial learning is expressed stably across all 400 trials in a random-order
learning block, and therefore can be studied quantitatively in a “station-
ary” state. Randomness in the direction of the instruction discourages
anticipation by the monkey, and precludes long-term learning that
would change the baseline “state” of the system (Yang and Lisberger,
2010).

Results
We recorded from Purkinje cells in the floccular complex of the
cerebellum because prior research has implicated these Purkinje
cells in normal pursuit and pursuit learning (Miles and Fuller,
1975; Lisberger and Fuchs, 1978; Zee et al., 1981; Kahlon and
Lisberger, 2000; Rambold et al., 2002; Medina and Lisberger,
2008). We selected Purkinje cells for study if they had strong,
directional simple-spike responses during pursuit of step-ramp
target motions (Fig. 1A). Almost all responsive Purkinje cells had
CS responses with direction selectivity opposite to the simple-
spike responses (Stone and Lisberger, 1990b; Medina and Lis-
berger, 2008). Because we are studying effects linked to CS
responses, we will refer to Purkinje cells for the rest of the paper

according to the direction tuning of their CS responses: learning
instructions will be either in the “ON-CS direction” or “OFF-CS
direction.” Note that the ON-CS direction was the off direction
for simple-spike responses, and vice versa (Fig. 1B). Initially, we
discuss the responses of a large fraction of our sample that we call
“CS-frequent” Purkinje cells because the probability of an
ON-CS direction response to a learning instruction was �3 times
the mean spontaneous probability of 0.09 (�0.02 SD).

Trial-over-trial neural and behavioral learning are forgotten
within 6 s
We recorded from 19 Purkinje cells during two random-
direction learning blocks of 400 trials each, with “instruction–
test” intervals of 2.5 s between pairs of trials in one block and 6 s
between pairs of trials in the other block. We analyzed pairs of
trials where the first trial contained an instructive change in target
direction in the ON-CS direction. The next trial served as the test
to probe for neural and behavioral learning (schematic at top of
Fig. 2). We sorted the pairs according to whether the instruction
trial contained a CS in the analysis window from 75 to 175 ms
after an instruction.

We measured how simple-spike firing rate (or eye velocity)
changed between the instruction and test trials, and determined
how those differences depended on (1) the presence versus ab-
sence of a CS response to the instruction and (2) the interval
between the instruction and test trials. We computed trial-over-
trial changes in firing rate (or eye velocity) for each millisecond
from 350 ms before to 50 ms after the time of the instructive
change in target direction (see Materials and Methods). Our re-
sults evaluate learning even though each test trial also contained

Figure 1. Background information about pursuit learning and the responses of floccular Purkinje cells. A, Direction tuning of a Purkinje cell that prefers rightward pursuit. Each peristimulus time
histogram shows firing rate as a function of time, and is positioned to represent the direction of pursuit on a polar plot. The black curve is the tuning curve for simple-spike responses. B, The arrow
labeled “Pursuit” indicates the direction of initial pursuit for an instruction trial. The arrows along the “Learning” axis indicate the directions of the instructive changes in target motion for learning.
The zigzags inside the gray squares show the position trajectories for target motion in ON-CS and OFF-CS direction learning trials. C, D, The zigzags at the top show sequences of instructive target
motions in the repeated-direction (C) and random-order (D) paradigms. C, The four pairs of superimposed traces show vertical and horizontal velocity and position as a function of time in example
trials. Dashed and continuous traces show target and eye movement. Blue and red traces show responses in the first versus 100th trial of a repeated-direction learning block. The arrowhead on the
horizontal velocity records points out the effect of learning. D, The top and bottom pairs of superimposed traces show vertical and horizontal velocity as a function of time in example trials during
a random-direction learning block. Dashed and continuous traces show target and eye velocity. Different colored traces show responses in consecutive trials, and are linked to the colors of the zigzags
at the top. The arrowhead on the horizontal velocity records points out trial-over-trial learning.
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an instructive change in target direction: any responses driven by
visual inputs would occur �50 ms after the instruction, and
therefore after the end of the analysis window.

For a 2.5 s instruction–test interval (Fig. 2A) but not for a 6 s
instruction–test interval (Fig. 2D), a CS response on the instruc-
tion trial was linked to trial-over-trial depression of simple-spike
firing rate (red traces) like that reported previously (Medina and
Lisberger, 2008; Yang and Lisberger, 2013). Our analysis com-
pares the results on “1– 0” pairs where the first trial contained a
CS response to the instruction and the second trial did not, and
“0 – 0” pairs where neither trial contained a CS response. For the
long instruction–test interval, trial-over-trial depression of
simple-spike firing rate was entirely absent for both 1– 0 and 0 – 0
pairs of trials (Fig. 2D). For the short interval, trial-over-trial
depression of simple-spike firing occurred for 1– 0 pairs of trials,
but not for 0 – 0 trials, and reached its nadir at the time of the
instruction (Fig. 2A, red vs blue traces).

In agreement with a previous paper (Yang and Lisberger,
2013), some trial-over-trial potentiation was visible in the 0 – 0
pairs of trials for the short instruction–test interval (Fig. 2A, blue
trace). The mean trial-over-trial change in simple-spike firing in
the 150 ms analysis interval (Fig. 2A, gray shading) was not sta-
tistically different from that in the prior 150 ms interval in the 19
neurons studied with short versus long instruction–test intervals

(p � 0.05 paired t test). However, the small potentiation for 0 – 0
trials in Figure 2A became statistically significant for a larger
group of neurons shown later in the paper. The same potentia-
tion did not appear for 0 – 0 pairs of trials for an instruction–test
interval of 6 s, perhaps because it is forgotten as quickly as trial-
over-trial depression.

The trial-over-trial changes in eye velocity paralleled the trial-
over-trial changes in simple-spike firing, as we have reported
before (Yang and Lisberger, 2013). The presence of a CS response
on the instruction trial was linked to a trial-over-trial transient
change in eye velocity on the test trial when the instruction–test
interval was 2.5 s (Fig. 2C), but not when the instruction–test
interval was 6 s (Fig. 2F). For the 19 Purkinje cells studied with
the 2.5 s instruction–test intervals in the present dataset, trial-
over-trial learning in eye velocity did not appear if the Purkinje
cell under study did not emit a CS in response to the change in
target direction on the instruction trial. For other samples of
Purkinje cells, trial-over-trial learning in eye velocity was present
but much smaller for 0 – 0 versus 1– 0 pairs (Yang and Lisberger,
2013). As we have noted before (Medina and Lisberger, 2008;
Yang and Lisberger, 2013), the difference in the trial-over-trial
learned eye velocity between 1– 0 and 0 – 0 pairs implies that the
presence and absence of CS responses tends to be correlated
across the Purkinje cell population. If CS responses occurred with

Figure 2. Effect of duration of instruction–test interval on trial-over-trial depression of simple-spike firing rate and trial-over-trial learning in eye velocity. The schematic at the top of the figure
shows that target motions used to control the instruction–test interval. Top and bottom traces indicate target velocity in the pursuit and learning directions. A–C, Instruction–test interval was 2.5 s.
D–F, Instruction–test interval was 6 s. A, D, Trial-over-trial difference in simple-spike firing rate as a function of time. B, E, Trial-over-trial difference in eye velocity as a function of time. Time 0 and
the vertical dashed line show the time of the instruction. Red and blue traces show the average across 19 CS-frequent Purkinje cells for 1– 0 versus 0 – 0 pairs of successive trials. The ribbon around
each trace indicates 1 SEM across the sample of Purkinje cells. The black trace in A indicates the change in simple-spike firing rate predicted by the baseline relationship to eye movement during
pursuit before learning. C, F, Each symbol shows data for one Purkinje cell. Black crosses show the means and the SDs across Purkinje cells.
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independent probabilities in each Purkinje cell, then the fluctua-
tions across the population in trial-over-trial depression would
average out; the trial-over-trial learned eye velocity would be the
same for 1– 0 and 0 – 0 pairs.

Figure 2A,B,D,E shows mean and SEs as a function of time
across recordings from the 19 Purkinje cells we studied with both
instruction–test intervals. Figure 2C,F plots summary data from
each neuron as a separate point to illustrate the presence of the
same effects in individual Purkinje cells. The red and blue
symbols were statistically different for the 2.5 s instruction–
test interval in Figure 2C (paired t test; n � 19, p � 0.001), but
not for the 6 s instruction–test interval in Figure 2F (paired t
test; n � 19, p � 0.5).

Next, we tested whether the absence of trial-over-trial depres-
sion or learning for longer intervals reflects a failure to learn
versus failure to remember. We took advantage of the fact that 2.5
and 6 s instruction–test intervals actually alternated in the same
learning block when we tested trial-over-trial depression and
learning with a 6 s interval. This allowed us to analyze data for
both instruction–test intervals in the same stream of data. The
pairs with short intervals served as a control to validate that the
system was in a learning mode, while the pairs with intervals of 6 s
evaluated how much learning was remembered after 6 s. The
probability of a CS response to the instruction was almost iden-
tical for the two instruction–test intervals (schematic at top of
Fig. 3). However, trial-over-trial depression of simple-spike fir-
ing was present for 2.5 s instruction–test intervals and absent for
6 s intervals (Fig. 3C). Trial-over-trial learning in eye velocity also
was forgotten after a 6 s instruction–test interval (Fig. 3D). The
effect of instruction–test interval was statistically significant in
Figure 3C,D (p � 0.01, paired, two-sided Wilcoxon signed rank
test). We conclude that CS-linked trial-over-trial effects on both
neural and behavioral learning are forgotten in �6 s.

Maruta et al. (2007) discovered that CS responses often oc-
curred more frequently than the average of �1 CS/s. In our data
for an instruction–test interval of 2.5 s, 8.5% of learning trials
contained �1 CS response during the 400 ms instruction. The
magnitude of trial-over-trial depression of simple-spike re-
sponses, however, did not depend on whether an instruction
caused one versus two CS responses.

Relationship between trial-over-trial learning and learning
over a longer time course
Next, we asked whether long-term learning would be compro-
mised under conditions when trial-over-trial effects were forgot-
ten between instructive stimuli. We used the “repeated-direction
paradigm” with the same direction of instruction and same in-
struction–test interval in all 100 trials of a learning block (sche-
matic at top of Fig. 4A). Different learning blocks on a given
experimental day presented different instruction–test intervals
(2.5, 6, or 10 s) and/or different directions of instructive target
motion. We measured the “learned eye velocity” as the mean
across the interval from 100 ms before to 50 ms after the time of
the instruction (Fig. 4A, gray shading on eye velocity traces). This
interval covers the time when learning is expressed, and ends
before any visually guided response to the instruction on that
trial.

The duration of the instruction–test interval had a large effect
on the magnitude of long-term learning during the repeated-
direction paradigm. For upward instructions (Fig. 4B), learning
was twice as large over the entire course of the learning block
when the instruction–test interval was 2.5 s (red) versus 6 (blue)
or 10 s (yellow). The same was true for rightward and leftward

learning (data not shown). For downward instructions, in con-
trast, the learning curves did not vary as a function of instruc-
tion–test interval (Fig. 4C). We quantified the effect of
instruction–test interval and instruction direction by averaging
the final magnitude of learning across the last 10 trials in each
learning block, and across 10 learning blocks for each direction of
instruction in each monkey.

When we considered learning for instructions in all four car-
dinal directions, the asymptotic magnitude of learning was larger
for an instruction–test interval of 2.5 versus 6 s, and was direction
dependent (Fig. 4D,E, red vs blue symbols). The difference be-
tween the means for instruction–test intervals of 2.5 versus 6 s
was statistically significant for upward, leftward, and rightward
target motion in both monkeys (p � 0.01, two-tailed t test), but
not for downward target motion in either monkey (p � 0.1). As
expected from inspection of the graphs in Figure 4D,E, ANOVA
yielded significant effects of both direction and instruction–test
interval, with an interaction term that was statistically significant.

Figure 4 suggests that long-term learning in pursuit is fa-
cilitated by a neural correlate of CS-linked trial-over-trial learn-
ing. The directional organization of the simple-spike and CS
responses of floccular Purkinje cells (Stone and Lisberger, 1990b;

Figure 3. Use of interleaved long and short instruction–test intervals to demonstrate for-
getting in trial-over-trial depression and learning. Top panel shows schematic of target motions
used to interleave instruction-test intervals of 2.5 and 6 s. Trial #n-1 is the instruction trial, and
trial #n is the test trial. A, B, CS response probability as a function of time averaged across the 19
Purkinje cells. Vertical dashed lines show the time of the instruction. Gray shading indicates the
analysis interval for CS probability. C, D, Comparison of trial-over-trial depression of simple-
spike firing rate (C) and trial-over-trial learning in eye velocity (D) for different instruction–test
intervals. Each symbol shows data for recordings from a single Purkinje cell. The black X’s and
error bars show the mean�1 SD across the population of 19 CS-frequent Purkinje cells. Red and
blue traces (A, B) and symbols (C, D) indicate instruction–test intervals of 2.5 versus 6 s.
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Krauzlis and Lisberger, 1996) suggests
that trial-over-trial depression in the floc-
cular complex is a strong candidate for a
neural event that might facilitate long-
term learning. In each floccular complex,
CS responses for vertical learning direc-
tions will be evoked by upward instruc-
tions in Purkinje cells that prefer pursuit
along the vertical axis. Purkinje cells on
both sides of the cerebellum will exhibit
trial-over-trial depression of simple-spike
firing rate. The two floccular complexes
will cooperate to create a large learned up-
ward eye movement. Trial-over-trial ef-
fects could facilitate long-term learning
strongly on both sides of the cerebellum.
For Purkinje cells that prefer horizontal
pursuit, CS responses will be evoked by
rightward or leftward target motion in the
left or right floccular complex, respec-
tively. Trial-over-trial depression will oc-
cur only in one floccular complex, long-
term learning would be facilitated in one
floccular complex at a time, and each side
would work individually to create a
learned eye movement of moderate
amplitude.

The absence of a large population of
Purkinje cells with CS responses for
downward instructions (Stone and Lis-
berger, 1990b; Krauzlis and Lisberger,
1996) could explain the asymmetry be-
tween upward and downward trial-over-
trial learning (Yang and Lisberger, 2010).
Downward instructions will cause very little CS-linked trial-over-
trial simple-spike depression in the floccular complex. The ab-
sence of downward trial-over-trial plasticity may deprive the
system of the facilitation provided by trial-over-trial learning,
and could explain (1) the almost identical downward learning
curves for instruction–test intervals of 2.5 and 6 s (Fig. 4C) and
(2) the larger upward long-term learning for the short instruc-
tion–test interval. We conclude that CS responses may play a
primary role in the neural changes that lead to long-term learn-
ing, and that the floccular complex may be the site where plastic-
ity occurs earliest during pursuit learning.

Direction-dependent learning curves for simple-spike
firing rate
The previous section suggests that CS-linked plasticity facilitates
long-term learning over a time course of 100 trials. This tentative
conclusion implies that we should compare the neural learning
curves over the same time course for instructions in the ON-CS
versus OFF-CS directions. From first principles, the presence of
CS responses to the instruction should cause depression of
simple-spike firing rate while the absence should cause potentia-
tion of simple-spike firing rate. Given that separate cellular
mechanisms may be involved, we might see a difference in the
time course or magnitude of depression versus potentiation in
simple-spike firing rate, depending on the presence or absence of
CS responses to the instructions.

Figure 5 validates the prediction of different time courses of
neural learning for instructions in the ON-CS versus OFF-CS
directions. To obtain the curves in Figure 5, we divided the 100

trials in a repeated-direction learning block into sets of 10
trials. We then computed how the learned component of the
simple-spike response evolved from set to set. We used the
method outlined in Figure 5A to isolate the learned compo-
nent of the simple-spike response from the small increase in
simple-spike firing rate associated with the initiation of pur-
suit in the learning trials. We superimposed the average firing
rates for target motion without an instruction before the
learning block and for data obtained during learning (Fig. 5A,
top, red and black traces). We computed the “learned” change
in simple-spike firing rate as the difference between these two
traces at each millisecond of the traces (Fig. 5A, bottom, red
trace). We then reported averages across the analysis interval
(gray shading).

For Purkinje cells that preferred horizontal eye motion,
learned depression of the simple-spike responses of floccular
Purkinje cells evolved more quickly when the instruction was in
the ON-CS direction (Fig. 5B, red symbols), compared with the
potentiation when the instruction was in the OFF-CS direction
(blue symbols). The pink ribbons assist in direct comparison of
the time courses of learned depression and potentiation in
simple-spike firing rate. The ribbons show the absolute values (in
the algebraic sense) of the red symbols in the same figure. They
provide visual documentation that the depression appears more
quickly in the early part of the learning block. Yet, potentiation
catches up so that the changes in simple-spike firing rate are
symmetrical by the end of a repeated-direction learning block of
100 trials. The time courses of horizontal eye velocity learning are
almost identical throughout the learning block for the ON-CS

Figure 4. Effect of instruction–test interval on longer-term learning in pursuit. A, Zigzags at the top show the learning target
motions for the repeated-direction paradigm, and traces show how we measured learning. Blue and red eye velocity traces show
the eye velocity on the second and 100th learning trial. Dashed black traces show target velocity. The arrowhead on the vertical
velocity points to the learned movement. Gray shading shows the analysis interval for the graphs in the rest of the figure. B, C, Eye
velocity learning curves for repetitions of the same instruction for 100 consecutive trials with an upward (B) or downward (C)
learning direction. Different color symbols show data for different values of instruction–test interval. D, E, Polar plots summarize
the magnitude of asymptotic learning for two monkeys for upward, downward, rightward, and leftward learning directions. Red
and blue symbols show data for instruction–test intervals of 2.5 versus 6 s, averaged across 10 experiments in each monkey. Error
bars show SDs. Note that in the experimental design, Trial #1 of any repeated learning block was Trial #101 of the prior learning
block. As a result, Trial #1 expressed eye velocity learning that was appropriate for the end of a learning block in the opposite
direction, and each block began with what appears to be very rapid learning but really is rapid recovery from prior learning. Thus,
Trial #2 would be a better index of the eye velocity at the start of a block.

7082 • J. Neurosci., May 21, 2014 • 34(21):7077–7090 Yang and Lisberger • Sites and Time Courses of Cerebellar Learning



and OFF-CS directions (Fig. 5C, compare red ribbons, blue sym-
bols). We quantified the asymmetries by calculating the ratio of
the magnitudes of the learned changes of simple-spike firing rate
and the eye velocity in the two directions: �ON-CS�/OFF-CS. The
asymmetry in firing rate (Fig. 5D, filled symbols) was twofold in
the first set of 10 trials, and declined over the first 40 trials until it
was close to 1. The asymmetry in eye velocity (Fig. 5D, open
symbols) was close to 1 throughout the learning curves.

For Purkinje cells that preferred vertical eye motion (Fig. 5, bot-
tom row of graphs), the conclusions are the same. However, the
asymmetry in eye velocity learning for upward versus downward
instructions (Figs. 4D,E, 5F) rendered the data more complicated.
Comparison of the learning curves for the OFF-CS direction (Fig.
5E,F, blue symbols) with the absolute value of the data for the
ON-CS direction (red symbols and pink ribbon) shows asymmetries
in the time course of the learned changes in both simple-spike firing
rate and eye velocity. The data also reveal an asymmetry in the
amount of asymptotic learning in the 10th set of 10 trials for both
neural activity and behavior. To assess the time course of the asym-
metries, we first eliminated the magnitude asymmetry in the 10th set
of 10 trials. We normalized the data for the OFF-CS direction by
scaling to match the amplitude of the data for the ON-CS direction
(blue traces without symbols). Then, we computed the ratio: �ON-
CS�/(A � OFF-CS), where A is the scaling factor used for normaliza-
tion. Now, both simple-spike firing rate and eye velocity show strong
and nearly equal asymmetries in the first two sets of 10 trials; the
firing rate shows a larger asymmetry in the third through fifth sets of
10 trials; and the asymmetries match after the fifth set of 10 trials (Fig.
5G).

We suggest that the organization of preferred directions for
the population of floccular Purkinje cells (Krauzlis and Lisberger,
1996) can explain the time course and magnitudes of the neural

and behavioral learning curves for Purkinje cells that prefer hor-
izontal versus vertical eye motion.

We further suggest that behavioral learning in horizontal pur-
suit is symmetrical because of the reciprocal organization of the
Purkinje cells in the floccular complexes on the two sides of the
cerebellum. We think that the asymmetry of the time courses of
neural learning for the ON-CS and OFF-CS directions reflects
simple-spike depression that occurs more quickly than does
potentiation.

Finally, we suggest that learning in vertical pursuit shows
an up– down asymmetry throughout 100 learning trials be-
cause of the absence of Purkinje cells with ON-CS directions that
are downward. The asymmetry is most pronounced early in a
repeated-direction learning block because of the absence of
CS-linked trial-over-trial depression for downward instruc-
tions. We suggest that the residual asymmetry in simple-spike
learning after normalization again reflects quicker simple-
spike depression versus potentiation.

Learned simple-spike firing rate exaggerates the magnitude of
learned eye velocity
The learned changes in the simple-spike firing rate of floccular
Purkinje cells might result from plasticity that occurs outside the
cerebellum and that is transmitted to the cerebellum over mossy
fiber afferents. For example, the floccular complex receives feed-
back from the brainstem about the ongoing eye movement (Lis-
berger and Fuchs, 1978; Stone and Lisberger, 1990a; Lisberger,
2009). If the changes in simple-spike firing are inherited from
plasticity in precerebellarpathways,however,wemightpredictthatthe
magnitude of the learned changes would agree with the magnitude
of what we would call the “baseline” response during control
pursuit before learning. It follows that changes in Purkinje cell

Figure 5. Differences in time course of neural learning for instructions that did versus did not evoke CS responses. A, Top, Black arrow shows the prelearning control target motion and
the red zigzags show the target motion in learning trials. In the upper graph, the black and red traces and error ribbons show the time course of absolute simple-spike firing rate averaged
across the prelearning trials and the last 10 learning trials. In the lower graph, the red trace of learned simple-spike firing rate shows the millisecond-by-millisecond difference between
the firing rate in the last 10 learning trials and the prelearning control. Gray shading shows the analysis interval for the graphs in the rest of the figure, and the vertical dashed line shows
the time of the instruction. B–G, Top versus bottom rows of graphs show data for Purkinje cells that preferred horizontal versus vertical eye motion. B, E, Learning curves for simple-spike
firing rate. C, F, Learning curves for eye velocity. Blue and red symbols show data for learning in the OFF-CS direction versus ON-CS direction for the Purkinje cell under study. B, C, E, F,
Pink ribbons show the red traces inverted to allow direct comparison with the blue traces. Bold blue traces without symbols in E and F show the data for the ON-CS direction scaled to equal
the inverse of the OFF-CS direction in the 10th set of 10 trials. Error bars show SEMs across 19 and 18 CS-frequent Purkinje cells that preferred horizontal and vertical pursuit. D, G,
Asymmetry between OFF-CS and ON-CS directions, normalized to be equal to 1 in the 10th set of 10 trials. Filled and open symbols show data for learned changes in simple-spike firing
rate and eye velocity.
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simple-spike firing rate must be larger
than those expected from feedback to pro-
vide evidence that plasticity in the cerebel-
lum drives behavioral learning.

Our next step was to compare the
actual learning curves for simple-spike
firing rate with those expected from
feedback about the millisecond-by-milli-
second time course of the learned eye ve-
locity. We define the change in simple-
spike firing rate expected from feedback
according to what we call the “baseline”
relationship between firing rate and the
parameters of eye movement during pre-
learning smooth pursuit eye movements
(Medina and Lisberger, 2009). In the floc-
cular complex, the baseline relationship
between firing rate and eye movement
during pursuit of step-ramp target mo-
tion is defined by the following regression
equation (Eq. 1):

fr � rr � kE � rĖ � aË (1)

where E, Ė, and Ë represent eye position,
velocity, and acceleration; rr is the spon-
taneous firing rate during fixation at
straight-ahead gaze; and k, r, and a are
regression coefficients that are unique
to each Purkinje cell. Equation 1 does an
excellent job of reproducing the trajectory of mean simple-
spike firing rate during pursuit of step-ramp target motions
(Medina and Lisberger, 2009).

For each Purkinje cell, we computed the regression coeffi-
cients for Equation 1 separately for the OFF-CS and ON-CS di-
rections of pursuit of step-ramp target motions. Inspection of the
traces revealed that the regression model fit the data well for all
neurons, except for noise in firing rate due to averaging across
only �10 target/eye movements. We then applied Equation 1 to
the time-varying trajectory of the learned eye velocity to predict
simple-spike firing rate as a function of time for each learning
trial. Finally, we quantified the predicted firing rate in exactly the
same way as we had quantified the actual firing rates, by averaging
across the analysis interval and across groups of 10 trials. One
sample for this analysis came from the data used in the rest of
the present paper (n � 28), and one was mined from the
dataset for a prior paper (Medina and Lisberger, 2008; n � 9).
We had a larger number of Purkinje cells in the present sample
because our experimental design depended on excellent isolation
of CS responses; we had made CS isolation a priority during data
collection. All 37 recordings satisfied the criteria for “CS-
frequent” Purkinje cells.

For learning in the ON-CS direction, the actual depression of
simple-spike firing rate (Fig. 6A,C, red symbols) exceeded by
2.5-fold the depression predicted from the baseline relationship
between firing rate and eye movement (black symbols). The dif-
ference was present in the first set of 10 learning trials, and for
both horizontal (Fig. 6A) and vertical (Fig. 6C) pursuit. The ac-
tual change in firing rate was 2.6 and 2.4 times the predicted
change after 20 and 100 learning trials. For learning in the
OFF-CS direction, the actual potentiation of simple-spike firing
rate was smaller: only 1.5 and 1.7 times the predicted change after
20 and 100 learning trials.

The CS-linked trial-over-trial depression of simple-spike fir-
ing rate documented in the random-direction learning paradigm
also exaggerated the behavioral learning. For the 19 Purkinje cells
that were studied in the random-direction learning paradigm in
Figure 2B, the parameters from the regression analysis predict a
trial-over-trial change in simple-spike firing rate (Fig. 2B, black
trace) that is tiny compared with the actual trial-over-trial de-
pression (red trace). The actual CS-linked depression of simple-
spike firing was almost 10 times that predicted from the baseline
relationship to eye movement.

A simple algebraic model explains why we might find that the
neural expression of learning exaggerates the behavioral learning.
Assume that the signals that drive baseline pursuit before learning
can be represented as having three sources. Smooth eye velocity
will be defined by the sum of the signals that emanate from the
three pathways as expressed in the following equation (Eq. 2):

	E � 	PCON-CS � 	PCOFF-CS � 	BS. (2)

If equal changes in firing rate in all three pathways support
the eye movement during baseline pursuit (i.e., 	PCON-CS 

	PCOFF-CS 
 	BS), then Equation 2 reduces to 	E � 3 � 	PCON-CS.
The baseline “sensitivity” to eye velocity in the Purkinje cells
represented by PCON-CS will be 	PCON-CS/	E � 0.33. Suppose
that a learned change in eye movement is caused by changes in
firing rate only in PCON-CS. Then, 	E�	PCON-CS and the sensi-
tivity to eye velocity will be 	PCON-CS/	E � 1.0. Learned changes
in firing rate in only one of three pathways in the pursuit circuit
would predict that the sensitivity to learned eye velocity in that
pathway would be three times the baseline sensitivity. The logic of
Equation 2 is simplest under our assumption of equal contributions
from each of the three sites in the model, but the general conclusions
hold if there are more sites or if the contributions are unequal. Also,
our earlier analysis of learning in the vestibulo-ocular reflex substan-

Figure 6. Neural learning curves in the cerebellum for Purkinje cells with frequent versus infrequent CS responses. A, C, Data for
CS-frequent Purkinje cells with horizontal (n � 19) or vertical (n � 18) preferred directions. D, Data for CS-infrequent Purkinje
cells (n � 10). A, C, D, Blue and red symbols show the progression of simple-spike learning for the OFF-CS direction versus ON-CS
direction for the Purkinje cell under study. Black traces show predictions for learned firing rate if the simple-spike response was
determined solely by the baseline relationship between firing rate and the parameters of eye movement during pursuit of step-
ramp target. B, CS probability as a function of time. Dashed and continuous traces show data for CS-frequent and CS-infrequent
Purkinje cells. In all panels, error bars and bands show SEMs across neurons.
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tiated the logic of Equation 2. One group of brainstem interneurons
in the vestibulo-ocular reflex pathways showed changes in firing rate
that far exaggerated the changes predicted by the learned eye move-
ment behavior (Lisberger et al., 1994). Those interneurons almost
certainly are one site of plasticity that drives motor learning (Lis-
berger et al., 1994; Blazquez et al., 2006).

In the context of Equation 2, our data show that sensitivity is
much higher in Purkinje cells for learned changes in eye velocity
than for normal, baseline pursuit (Fig. 6A,C). For instruction
directions that cause a high probability of CS responses, learned
simple-spike firing rate far exaggerates the learned eye movement
on the first learning trial, and remains �2.5 times larger than
predicted on the 100th trial. For instruction directions that in-
hibit CS responses, learned potentiation of simple-spike firing
rate is quite small on the first learning trial, and increases up to a
level that is �1.5 times larger than predicted on the 100th trial.
We suggest that Purkinje cells are primary sites of learning and
that other parts of the pursuit circuit become engaged in learning
later. We take the differences in time course and amplitude of
depression and potentiation as evidence for separate mechanisms
that have different time courses and that do versus do not depend
on CS responses.

CS-frequent versus CS-infrequent Purkinje cells
Up to this point in the paper, we have analyzed only Purkinje cells
that we call “CS-frequent” because they showed CS responses to
the instruction with a probability �3 times the spontaneous
probability (Fig. 6B, dashed traces). A smaller, second group of
“CS-infrequent” Purkinje cells showed a much lower probability
of CS responses to the instruction (Fig. 6B, continuous traces).
We introduce the latter group of Purkinje cells now.

As documented in a previous study (Medina and Lisberger,
2008), CS-infrequent Purkinje cells showed “wrong-way” learn-
ing in simple-spike firing rate during 100 trials of learning in the
ON-CS direction. Even though CS responses to the instruction
occurred on �20% of the learning trials, simple-spike firing rate
was progressively potentiated, rather than depressed (Fig. 6D, red
symbols). The wrong-way simple-spike learning for the ON-CS
direction in CS-infrequent Purkinje cells cannot be attributed
to the baseline response properties during pursuit for CS-
infrequent Purkinje cells (Fig. 6D, black symbols). Indeed, CS-
frequent and CS-infrequent Purkinje cells had similar responses
during baseline pursuit in our data. The same was true for the
Group 1 versus Group 2 Purkinje cells of Medina and Lisberger
(2008). In the OFF-CS direction, simple-spike learning of the
CS-infrequent Purkinje cells (Fig. 6D, blue symbols) was very
similar to that for the CS-frequent Purkinje cells, and again exag-
gerated the behavioral learning.

The differences between CS-frequent and CS-infrequent Pur-
kinje cells also appeared in the analysis of learning in individual
neurons (Fig. 7). Here, symbols for learning in the ON-CS direc-
tion (Fig. 7A) would plot to the left of the oblique line if the actual
simple-spike learning exaggerated the learned change in behav-
ior. Symbols would plot to the right of the oblique line if the
amount of simple-spike learning was less than predicted by the
baseline pursuit response. In our samples, 8 of 10 CS-infrequent
Purkinje cells (filled symbols) but none of the CS-frequent Pur-
kinje cells (open symbols) plotted to the right of the oblique line.
Thus, we conclude that CS-frequent and CS-infrequent Purkinje
cells show different signs of learned changes in simple-spike fir-
ing during 100 trials of learning, at least in the ON-CS direction.
The learning of the CS-infrequent Purkinje cells in the ON-CS
direction adds to the evidence that learned depression of simple-

spike firing rate requires abundant CS responses during the
learning block.

For the OFF-CS direction (Fig. 7B), CS-frequent and CS-
infrequent Purkinje cells showed more similar learning. Here,
symbols plotting to the right versus left of the oblique line would
exaggerate versus underestimate the learned change in behavior.
In our data, 6 of 10 CS-infrequent Purkinje cells and 32 of 37
CS-frequent Purkinje cells plotted to the right of the oblique line
and therefore show simple-spike learning that exaggerates the
behavioral learning.

We realize that CS-frequent and CS-infrequent Purkinje cells
may actually be two ends of a continuum, and we chose to divide
them into two groups for simplicity of analysis. Our results agree
completely with those from Medina and Lisberger (2008), even
though they divided the Purkinje cells into two groups according
to the direction of the learned change in simple-spike firing rate
whereas we divided them according to the CS probability. These
two features are tightly related. Because we suspect that the CS
probability is causal, we prefer to use that measure to divide the
neurons into groups.

Basis for different learning in CS-frequent versus CS-
infrequent Purkinje cells
Why do CS-frequent versus CS-infrequent Purkinje cells show
learned changes with opposite signs during repetition of ON-CS
direction learning trials? One possibility is that the differences in
the density of climbing-fiber input to the two groups determine
the differences in simple-spike learning. For example, the low
probability of CS responses during ON-CS direction learning
may allow synaptic potentiation to occur on �80% of the trials,
and to dominate the small amount of synaptic depression created
by the paucity of CS responses to the instruction. A second pos-
sibility is that the CS-infrequent Purkinje cells lack CS-linked
trial-over-trial depression of simple-spike responses.

CS-frequent and CS-infrequent Purkinje cells both show CS-
linked trial-over-trial plasticity of simple-spike firing. In both groups
of neurons (Fig. 8A,B), the trial-over-trial change in simple-spike
firing rate shows a depression timed to the instruction when the
instruction trial contains a CS response to the instruction (red
traces). The trial-over-trial change in simple-spike firing rate is
nearly flat when the instruction trial lacks a CS response to the in-
struction (blue traces). The data are somewhat noisier for the CS-
infrequent Purkinje cells partly because of small neuron numbers
and partly because of smaller numbers of CS responses.

Figure 7. Cell-by-cell analysis of whether learned changes in simple-spike firing rate exag-
gerate the behavioral changes in eye velocity. Each symbol shows results from an individual
Purkinje cell. Filled and open symbols show results for CS-infrequent versus CS-frequent Pur-
kinje cells. A, Changes in simple-spike firing rate exaggerate behavioral learning if the symbol
plots to the left of the oblique line. B, Changes in simple-spike firing rate exaggerate behavioral
learning if the symbol plots to the right of the oblique line.
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CS-linked trial-over-trial depression of simple-spike firing is
genuinely somewhat smaller in the 18 CS-infrequent versus the
90 CS-frequent Purkinje cells (Fig. 8A, compare red, black
traces). We can ascribe the difference to the presence versus ab-
sence of “same-trial facilitation” of simple-spike firing. In the
CS-frequent, but not the CS-infrequent, Purkinje cells simple-
spike firing rate is higher on instruction trials that have a CS
response (Fig. 8G,H). The presence of same-trial facilitation on
the instruction trial but not the test trial in CS-frequent Purkinje
cells inflates the trial-over-trial depression of simple-spike firing.
In a previous paper, we provided evidence that same-trial facili-
tation reflects the degree of control of inferior olive firing by the
disynaptic pathway from Purkinje cells to the inferior olive (Yang
and Lisberger, 2013).

The CS-linked trial-over-trial learning of eye velocity is
quite different between the CS-frequent and the CS-
infrequent Purkinje cells. For the CS-frequent Purkinje cells,
the trial-over-trial learning in eye velocity is linked to whether
or not a CS response occurred on the instruction trial (Fig.
8D). Learning is large when the instruction evokes a CS re-
sponse, and quite small when it does not. We have argued
before for the CS-frequent Purkinje cells that the link from the
presence of a CS on the instruction trial to much larger trial-

over-trial learning in the behavior is caused by correlations in
the CS responses across the Purkinje cell population (Yang
and Lisberger, 2013; Yang and Lisberger, 2014). For the CS-
infrequent Purkinje cells, the trial-over-trial learning in eye
velocity is independent of the occurrence of a CS on the in-
struction trial (Fig. 8E). We suggest that the absence of corre-
lations in their CS responses accounts for the absence of a link
from the CS of the CS-infrequent Purkinje cells to the size of
trial-over-trial behavioral learning.

Thus, CS-frequent and CS-infrequent Purkinje cells appear to
differ in the reliability of their CS responses to the instruction, and in
the absence of correlation among the CS responses of the CS-
infrequent neurons. However, the basic CS-linked trial-over-trial
plasticity is similar in the two groups. We suggest that CS-infrequent
Purkinje cells show “wrong-way” learning in the ON-CS direction
because synaptic potentiation on most trials dominates over the
small amount of depression that can be mustered on the 20% of
trials that show a CS response to the instruction.

CS-frequent versus CS-infrequent Purkinje cells: comparison
with a prior sample population
It might make sense to stop after Figure 8, except that slight
differences between the results in Figure 6 and the conclusions of

Figure 8. Comparison of CS-linked trial-over-trial plasticity and learning in CS-frequent and CS-infrequent Purkinje cells. Left column shows data for CS-frequent Purkinje cells; middle and right columns show data for
CS-infrequentPurkinjecells.A,B,Eachtraceshowstheaveragetrial-over-trialchangeinfiringrateasafunctionoftimerelativetotheinstructiononset.BlacktraceinA isthemeanfromtheredtraceforCS-infrequentPurkinje
cellsinB.D,E,Eachtraceshowsthetrial-over-trialchangeineyevelocityasafunctionoftimerelativetotheinstructiononset.A,B,D,E,Paleribbonsindicate1SEMacrossPurkinjecells,theverticaldashedlineshowsthetime
oftheinstruction,andthegrayshadedareaindicatestheanalysisinterval.C,F,Eachsymbolplotsthemeantrial-over-trialchangeinsimple-spikefiringrate(C)oreyevelocity(F )foranindividualPurkinjecell,withsymbolsfrom
thesamecellconnectedbygraylines.A–F,Redandbluetraces/symbolsshowdatafor1– 0versus0 – 0pairsoftrials.G,H,Absolutesimple-spikefiringrateasafunctionoftimerelativetotheoccurrenceofaCSresponse.Red
andblacktracesshowaveragesfortrialswithandwithoutaCSresponse.In“�CS”trials,wealignedthetracesonthetimeofoccurrenceoftheCSresponsetotheinstructionontheprior“�CS”trial.ThetracesinAandDare
reproducedfromourpriorpaper(YangandLisberger,2013)underthetermsoftheCreativeCommonsAttributionLicense.
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a prior publication from our laboratory (Medina and Lisberger,
2009) require careful attention. The apparent, slight discrepancy
lies in the comparison of the actual learned changes in simple-
spike firing rate and those predicted by the sensitivities to eye
movement during baseline pursuit.

In our sample, we were able to use the probability of a CS
response to the instruction to divide the Purkinje cells into two
groups. We see differences in the general features of the learning
in the two groups when we plot the learned change in simple-
spike firing in the last 10 trials of 100 consecutive learning trials
with the same direction of instruction. The CS-frequent Purkinje
cells (Fig. 9A) show positive or negative simple-spike learning for
the same signs of behavioral learning, and plot around the line of
slope 1. The CS-infrequent Purkinje cells plot around the line of
slope 1 for the OFF-CS direction, but they show either very little
or positive (wrong-way) simple-spike learning for the ON-CS
direction.

In the sample of Medina and Lisberger (2008, 2009), few
Purkinje cells had well isolated CS responses and it was not
possible to divide the sample according to the probability of a
CS response to the instruction. As a result, we have plotted the
entire sample on the same graph (Fig. 9D). The overall distri-
bution of their sample is similar to the overall distribution of
ours (Fig. 9C). However, their sample showed a higher density
of Purkinje cells with zero or positive (wrong-way) simple-
spike learning in the ON-CS direction. On this basis, we sug-
gest that they recorded from a higher proportion of CS-infrequent
Purkinje cells than we did.

We think that the apparent sampling
difference accounts for a small discrep-
ancy between our report and the previous
one. In our report, the actual learned fir-
ing rate of the CS-frequent Purkinje cells
exceeds that predicted firing rate from the
sensitivity to eye movement during base-
line pursuit for both the ON-CS and
OFF-CS directions (Fig. 6A,C). In Figure
14 of Medina and Lisberger (2009), the
actual and predicted firing rates were ap-
proximately equal. In their paper, the
analysis combined Group 1 Purkinje cells
with an apparent excess of Group 2 Pur-
kinje cells, leading to smaller averages
across the sample population of learned
changes in firing rate (Fig. 9D, filled trian-
gles). In contrast, our analysis included
only identified CS-frequent Purkinje cells
(Fig. 9A, filled triangles).

Discussion
We have recorded from Purkinje cells in
the cerebellum during motor learning in
the direction of smooth pursuit eye
movements. Our experimental para-
digms and analysis methods allow us to
draw conclusions about what happens
at multiple sites in the cerebellum dur-
ing learning of a motor skill. We suggest
that CS-linked trial-over-trial depres-
sion is a primary cause of trial-over-trial
learning and also facilitates long-term
learning. Other sites of plasticity would
contribute over longer time courses and
at later times.

A primary role for CS-linked trial-over-trial plasticity in
the cerebellum
Our first conclusion is that CS-linked trial-over-trial depression
of simple-spike firing in floccular Purkinje cells causes trial-over-
trial learning in eye velocity. Two facts support this conclusion:
(1) trial-over-trial learning and depression endure for the same
duration: both are forgotten within 6 s; (2) as described by Yang
and Lisberger (2010), trial-over-trial learning shows a direction
dependence that is related to the preferred directions for CS re-
sponses of the Purkinje cells in the floccular complex. Trial-over-
trial learning is weak or nonexistent for downward instructions
(Yang and Lisberger, 2010), in agreement with the paucity of
Purkinje cells that have CS responses to downward instructions
(Krauzlis and Lisberger, 1996). The disynaptic connection from
floccular Purkinje cells to extraocular motoneurons (Highstein,
1973) also supports the causal link we propose.

Our second conclusion suggests a causal link to long-term
learning from CS-linked trial-over-trial depression of simple-
spike responses and/or trial-over-trial learning. Again, two facts
support this conclusion: (1) long instruction–test intervals do not
support trial-over-trial depression and learning and lead to re-
duced long-term learning; and (2) the effect of instruction–test
interval on long-term learning did not appear for downward in-
structive changes in target direction, in agreement with the ab-
sence of a large number of Purkinje cells that could undergo

Figure 9. Comparison of asymptotic learning in CS-frequent and CS-infrequent Purkinje cells. Scatter plots show the learned change in
simple-spike firing rate in the last 10 trials of a repeated-direction learning block versus the learned change in eye velocity in the same trials.
Each symbol shows data for an individual neuron, red and blue symbols show data for the ON-CS and OFF-CS directions, and the same black
line appears in each graph as the regression fit to the data in A. A–C, Data from our sample; open and filled symbols show CS-frequent and
CS-infrequent Purkinje cells. D, Data from Purkinje cells used in Medina and Lisberger (2009). The filled red and blue triangles in A and D
show the averages across the populations for ON-CS versus OFF-CS directions of learning.
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CS-linked trial-over-trial depression for
downward instructions (Krauzlis and Lis-
berger, 1996).

We suggest that a neural mechanism
related to trial-over-trial learning is a nec-
essary prerequisite for one component of
long-term learning in pursuit (Smith et
al., 2006; Ethier et al., 2008). We favor the
idea that CS-linked short-term depression
of simple-spike firing is the obligate mech-
anism. However, trial-over-trial learning and
long-term learning might be controlled in
parallel by the same neural signals, with-
out a causal link from trial-over-trial
learning to long-term learning. In addi-
tion, some long-term learning occurs
without any trial-over-trial effects. Long-
term learning in the cerebellar cortex may
be only partially dependent on CS-linked trial-over-trial depres-
sion, or plasticity might occur at other sites in the pursuit circuit.

We think of our experimental design as a strategy for deducing
what happens in the cerebellum during motor learning. But, the
effect of the instruction–test interval on long-term learning also
raises a functional question. Under what circumstances do we
repeat a movement frequently enough to take advantage of the
extra learning power provided by short instruction–test inter-
vals? Possible examples include the impressive results yielded by
practice strategies, such as hitting a tennis ball against a back-
board, or repeating a very brief line of piano music many times.
Perhaps we should think of the extra learning that occurs with
short intervals between movements as a clue for the best way to
perfect a motor skill.

Plasticity mechanisms at different sites expressed at different
times during learning
We interpret the progression of changes in simple-spike firing
rate under different learning conditions as evidence that learning
occurs initially at a subset of sites in the pursuit pathways and gets
distributed across the circuit over time (Fig. 10). We suggest that
the earliest learning results from CS-linked trial-over-trial de-
pression of simple-spike firing rate, where the actual depression is
�10 times that predicted from the neurons’ baseline relationship
to the parameters of pursuit eye movement. We conclude that the
Purkinje cells with ON-CS directions are carrying 10-times their
normal burden in terms of driving eye movement. They may even
be the sole site of trial-over-trial plasticity and may be solely
responsible for the learned changes in eye velocity.

After the initial trial-over-trial changes, learning appears to
progress partly through depression of the simple-spike re-
sponses in CS-frequent Purkinje cells that have CS responses
for target motion in the direction of the instruction. Neural
depression that exaggerates the behavioral learning in the CS-
frequent Purkinje cells would compensate for the wrong-way
changes in the CS-infrequent Purkinje cells, and the possible
absence of learning in other pursuit pathways. Potentiation
occurs in a variety of sites in the cerebellar circuits and is
therefore another candidate mechanism for motor learning
(Armano et al., 2000; Lev-Ram et al., 2002; Jörntell and Han-
sel, 2006; Belmeguenai et al., 2010). Indeed, our data suggest
that learning involves potentiation in Purkinje cells whose
ON-CS directions are opposite to the direction of the instruc-
tion. However, potentiation seems to evolve more slowly than
depression in vivo and is somewhat weaker.

That the learned changes in simple-spike firing exaggerate the
learned change in behavior after 100 repetitions of the same
learning instruction suggests that Purkinje cells are shouldering a
greater burden for driving learned eye velocity than for normal
pursuit. This would be expected if some components of the pur-
suit circuit have not (yet) undergone plasticity. We predict that
truly asymptotic learning would be distributed through the pur-
suit circuit so that every neuron’s learned change in firing would
match to its original baseline sensitivity to the eye movements of
pursuit. It follows that (1) 100 learning trials creates an interme-
diate stage of learning, and (2) we would identify additional sites
of plasticity and new components of learning if we followed pur-
suit learning for 2000, or maybe 20,000, trials. More distributed
learning could arise through transfer of plasticity from the cere-
bellar cortex to the deep cerebellar nucleus (Miles and Lisberger,
1981; Zhang and Linden, 2006; Zheng and Raman, 2010), later
learning in the cerebellar vermis (Suzuki and Keller, 1988; Takagi
et al., 2000) or other brainstem areas, or engagement of other
mechanisms of plasticity in the cerebellar cortex (Hansel et al.,
2001; Carey, 2011).

Participation in pursuit versus participation in learning
One of the striking features of our data is that all Purkinje cells
show CS-linked trial-over-trial depression of simple-spike firing
rate. Yet, a small subset of CS-infrequent neurons nevertheless
shows wrong-way changes in simple-spike responses after 100
learning trials in the ON-CS direction. We suggest that both trial-
over-trial depression and LTD are intact in CS-infrequent Pur-
kinje cells, but that the number of CS responses is too small to
support right-way learning. In addition, it appears that the CS
responses of CS-infrequent Purkinje cells are not correlated with
each other or with those in the larger group of CS-frequent Pur-
kinje cells. Thus, the wrong-way learning in CS-infrequent Pur-
kinje cells appears to be a consequence of the organization of their
climbing fiber inputs, not of their intrinsic physiology.

Our data confirmed that the two groups of Purkinje cells show
similar responses during baseline pursuit (Medina and Lisberger,
2008), raising the possibility that they work together to drive
pursuit. However, they appear to work against each other during
learning in the ON-CS direction. As an alternative, it is possible
that CS-infrequent Purkinje cells do not have output connections
to the pursuit circuit even though they respond strongly during
baseline pursuit. Our methods do not allow us to test this viable
alternative.

Figure 10. Conceptual scheme for distribution of cerebellar learning across sites and time. Each bar suggests the time during a
block of learning trials when a given plasticity mechanism might be active at a given site. Sites in the cerebellar cortex are defined
according to whether the instruction for learning is in the ON-CS or OFF-CS direction of Purkinje cells at that site. Dark shading
indicates sites and times when the data give us reasonable confidence; light shading indicates sites and times when the evidence
is scant and/or our confident is lower.
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Pursuit learning mechanisms in a broader context
Others have provided evidence for multiple components of mo-
tor learning with different plasticity mechanisms, sites, and time
courses. In the vestibulo-ocular reflex, plasticity occurs in both
the cerebellar cortex and the deep cerebellar nucleus (Lisberger,
1994; Blazquez et al., 2006). There are two components of learn-
ing that do versus do not depend on climbing-fiber inputs (Ke et
al., 2009). Learning occurs on multiple time courses (van Alphen
and De Zeeuw, 2002). Vestibulo-ocular reflex learning to in-
crease versus decrease the size of the reflex employs different
cellular mechanisms of plasticity (Boyden et al., 2006). In eyelid
conditioning, one popular hypothesis is that learning occurs first
in the cerebellar cortex and then is transferred to the deep cere-
bellar nucleus (Ohyama et al., 2006). Only learned timing re-
mains in the cerebellar cortex (Kalmbach et al., 2010). In learning
for arm movements and saccadic eye movements, there are mul-
tiple sites of learning (Ethier et al., 2008) and a diversity of time
courses (Smith et al., 2006).

Our paper goes beyond the prior papers by showing how dif-
ferent parts of a circuit and different mechanisms of plasticity
participate in motor learning over different time courses. We
show that the climbing-fiber input plays a special, primary role in
pursuit learning. We also demonstrate a critical relationship be-
tween short-term and long-term learning. We suggest that the
primary site of learning is in Purkinje cells that show frequent CS
responses for the instruction direction. These Purkinje cells un-
dergo learning from the very first learning trial, and seem to
employ two important mechanisms of plasticity: short-term and
long-term CS-linked synaptic depression. We suggest that learn-
ing occurs more slowly in Purkinje cells with CS responses that
prefer the opposite direction relative to the instruction, and that
the mechanism of plasticity for them involves synaptic potentia-
tion. Still later learning may occur at a variety of sites. Our sug-
gestions emphasize the systems nature of motor learning and the
likely participation of multiple forms of plasticity at different sites
and different times.
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