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ABSTRACT

The problem of simple extension of a multicrystalline silicon
beam is discussed, by numerically analyzing the 3-D elastic fields
as functions of the grain morphological and orientational
portraits. These are computer-generated in accordance with assigned
probability density functions. Macroscopic quantities(as centerline
elongation) and the maxima of local fields (stresses, lateral
boundary displacements) are <correlated to distributional
parameters, and are compared with those predicted by the theory of
homogenization of textured polycrystals. The most significant
deviations from the classic beam response are the large transverse
displacements, and the moderate cross-sectional stresses,
associated with certain microdistributions. The numerical analysis
is performed with the software ABAQUS on a DEC 5000 workstation.

INTRODUCTION

Standard beam and plate theories are based on the as§umptions
on material isotropy and homogeneity. Such assumptions are
generally justifiable for polycrystalline aggregates, i.e. bodies
for which the typical grain-to-structural ratio is very small, and
the number of constituent crystals is consequently very l§rge.
However,these assumptions are inappropriate, for the analysis of
structures consisting of a limited number of grains. Such
arrangements, which have been dubbed 'multicrystalline', need in
general be analyzed as composite structures, with each graln'belng
a uniform, anisotropic substructure, surrounded by typically
inhomogeneous grain boundary regions.

While some advances in the analysis of miniaturized structures
(MEMS) have been accomplished through the anisotropic composite
structure model [1], such approach is clearly prohibitive, at the
current technological stage, in view of the still large number of
component crystals present in such objects. On the other hand, the
typical cross section of a micro-scale structure may contain very
few grains, or possibly only one, thus rendering the use of



standard structural theories open to questioning.

The need thus arises to develop a structural theory that
incorporates grain-level effects, while maintaining macroscopic
predictive capabilities and a manageable format. Toward this goal,
the appropriateness of both stochastic and deterministic methods
are currently under investigation.

On the deterministic side, a viable approach consists of
obtaining the homogenized (effective) material response as a
function of the grain distributions and properties, and then
applying the conventional analytical or numerical methods for
homogeneous structures. Such technigque yields the average
mechanical fields only, but is in principle applicable to any
partition of the structure into homogenized sub-structqres, tpus
obtaining a closer approximation to the actual elastic fields with
each finer re-partitioning [2]. ]

The obvious drawbacks of this technique reside in 1) the
difficulty of experimental observation of the local_ grain
distributions, 2) the computational and analytical complex;ty,.3)
the generally unsatisfactory predicting abilities of homogenization
theory, and 4) most improtantly, the inability to distlngulgh among
microdistributions that result in identical averages, thus ignoring
the local fluctuations that are typically responsible for failure.

When integrated with sufficient material characterization, the
use of the stochastic finite element method offers valuable
information for the overcoming of the drawbacks 3 and 4. Such
methods have been applied in [3] for the analysis of flexural two-
dimensional beams to yield the expected stresses and their
fluctuations in the presence of different, computer-simulated,
equiprobable microdistributions. .

In this paper, the three-dimensional analysis of extensional
polysilicon elements is undertaken, using the software ABAQUS [4]
on beams with simulated grain distributions. The objective of this
work is the assessment of the material and structural domains in
which the mean field values are significant for the purposes of
analysis and design. In particular, the scatter of local and glob§l
quantities is investigated, as a function of the beam geometry, in
an effort to identify the domain of validity of _ the
homogenization/standard theory approach. The local gquantities
considered include the maximum stresses and transverse
displacements, while the global ones include the centerline axial
displacements (and thus the effective longitudinal modulus). The
accuracy of the constant field homogenization approaches of
Voigt/Reuss, and of the assumption of overall isotropy are also
discussed.

HOMOGENIZATION TECHNIQUES

Consider a monophase polycrystalline structure, consisting.of
perfectly bonded grains of stiffness ¢®, with inverse s°. The grains
are oriented according to the orientation probability density
function f(g) where g is used to denote the triad of Euler angles
(¥4,9,¥,), defined as in Fig. 1-1, 1-2. The structure is subjected
to homogeneous boundary condition, either of the displacement type:

]

u = g° (1)

or of the stress type:
t =z (2)

Here, u is the displacement vector, t is the traction vector ,n is



stress and strain tensors, and a superscript '0O' denotes symmetry,
arbitrariness, and spatial homogeneity.

Introducing the orientation dependent strain and stress
concentrator tensors A and B, respectively defined as

the unit normal vector, x is the position vector, t and g are the

e =1 g° (3)

under (1) and

=381 (4)

under (2), where overbars denote spatial averages at a ;ixed
orientation g, the effective, or average, stiffness and compliance
tensors are easily shown to be respectively

€C=<CA> and S =<SB> (5)

Here, the pointed brackets denote the invariant, normalized,
texture-weighted orientational averaging:

R2X2R

<.>El/8n2fffﬂ(-)f(g) sinddy,dy,dd (6)
oo0ooO

where II(.) is the frame change operator. Thus , the typical element
of the tensor I(.) is a linear combination of R-fold products of
elements of Euler matrix, R being the tensorial rank of the
argument.

For the purpose of computation of the integrals in (5,6) it is
convenient to expand the function f(g) in a series of symmetrized,
generalized spherical harmonics, and then to truncate this series
at the order R. By the central theorem of [5], resting on the
equivalence of all representations of the same order of the group
of rotations, this procedure does not introduce any further
approximation.

The most widely used homogenization approaches consist of
taking either A and B to be equal to the fourth rank tensorial
identity, corresponding to the procedures of Voigt and Reuss
yvielding, respectively:

gvoigt = QV = ¢ QC > (7)

CReuss = CR

< 85> (8)

The intrinsic advantage of such approaches, besides their
simplicity,resides in the fact that the associated moduli are
rigorous upper and lower bounds to the actual effective moduli,
respectively.

STOCHASTIC NUMERICAL ANALYSIS

Initially straight three-dimensional beams with
square,untapered cross sections were investigated, with span-to-
height ratios of 10/3 to 100/3. The beam was subdivided into
3X3X100 = 900 cubic 8-node elements, and subject to unit axial
tension on both bases. The finite element mesh is shown in Figure
2-1. The grains were randomly assigned lateral dimensions of 1 to



3 units, and axial dimensions of 1 to 10 units ( Fig 2-2 ).

Each grain was assigned the ( cubic ) silicon elastic
constants Cll = 166 GPa, Cl2 = 63.8 GPa, C44 = 79.5 GPa, expressed
in a natural crystal-fixed frame. The following normalized
orientation distribution functions were considered:

£(g,v) = (e/mY2 G (2) 6(¥1) 6(¥2) (9)

£(g,v) = (e/m)'2 G (Y1) 6(&) 6(¥2) (10)

£(g,v) = (e/m"2 G, (¥1-n/4) 5(2) 6(¥2) (11)

£(g,y) = (e/m)'2 G, (¥1) 6(2) 8(¥2) (12)

£(g.y) = (ef/m)'2 G, (¥1-n/4) 6(®) 8(¥2)  (13)
Where, G(X) = Exp(-y X°) and &(x) are the Gaussian and Dirac's
distribution functions, respectively; y = 1/(20%°), and o is the

standard deviation [6]. The orientations of the single grains were
computer-generated according to ( 9 - 13 ).

DISCUSSION

Table 1 shows the percentile error in various quantities,
resulting from the use of the isotropic homogenization approaches
of Voigt, Reuss, and their tensoral average, for beams with aspect
ratio of 100/3, and orientation profile given by (9). This
orientation distribution corresponds to cross-sectional
misalignment, as shown in Fig. 1-2.

TABLE 1. Relative Error - Texture given by (9)

Perfect Cubic Voigt Reuss Average

u (0.7662) 0.2% -21% 80% 29%
Ell (130.51) -0.2% 27% -44% -23%
v (0.278) 0.0% -39% 143% 51%

Here, u and v are respectively the centerline axial displacement
and Poisson's ratio, while E1l1 is the axial modulus in the
longitudinal direction. The figures in parentheses, corresponding
to the means of five numerical experiments with identical textural
and orientation distribution functions are here taken as reference
values.

Table 1 demonstrates the errors associated with the
disregarding of the texture - a most common assumption. Errors
identical to the third decimal to those exhibited in Table 1,
persist for more in-plane misoriented distributions - corresponding
to (9) with lny up to 1, or standard deviation of (2e)™"2.

For all cases of pure cross-sectional texturing, this
numerical analysis exhibits spatial constancy of the longitudinal
stress, up to the fourth decimal, and zero non-longitudinal
stresses, up to the third decimal. This is in agreement with the
expectations, based on the near perfect alignment of the crystals.

The slenderness of the beam was shown to be irrelevant, given
the present grain size and orientation distributions, down to
aspect ratios of 10/3.

Microbeams with grains with only one cubic axis parallels to
the cross-sectional planes ( Fig. 1-2 ) are considered next. The



orientation distributions (9 - 13) are characterized in Table 2,
together with the results of the simulations.

Table 2. Simulation Results - Texture given by (9-13),

1/d = 100/3
mean lny o u El1l Vi Vg3 Vmax
(9) @ 0.0 1 (232_”2 0.7662 130.51 0.278 0.278 7.0034E-3
(12) 91 0.0 4 (2e*)""2 0.7587 131.80 0.282 0.272 1.1008E-2
(10) $1 0.0 1 (2e)2 0.6996 142.67 0.200 0.304 0.1204
(11) %1 nm/4 1 (2e24/2 0.6577 152.10 0.158 0.327 0.1814
(13) ¥1 n/4 4 (2e*)""2 0.5983 167.15 0.075 0.355 1.4937E-2

Here, Vmax denotes the maximum transverse displacement recorded in
the simulations.

(12) and (13) represent distributions near perfect alignment,
since the corresponding standard deviation is 0.0036. In this
context, for (12) the axes of alignment coincide with the
structural axes, while for (13) there are skewed by mn/4. Thus,
distribution (12) yields the microbeam with the most compliant
response, while (13) yields the stiffest one, as verified in Table
2. The axial elastic modulus for (12) is a little larger than that
for (9), as the former contains a slight out-of-plane cubic axis
misalignment.

For (12) & (13), with corresponding deviation of 0.0036, the
maximum longitudinal stress fluctuation is approximately 5%, while
the transverse normal stresses and shears reach 6% and 9% of the
applied tensile 1load, respectively. For (10) & (1l1), with
corresponding deviation of 0.4289, the axial stress fluctuations
reach 20%, and the peak transverse normal stresses and shears are
17% and 15% of the applied load, respectively. These stresses are
caused by the different axial moduli and Poisson's ratios in the
same cross section.

The responses of the microbeams with distributions (10) & (11)
differ from those of standard tension members, in that large
transverse defections are present (see Fig. 3). These are caused by
the different axial elongations of crystals in the same cross
section, which in turn are the result of the relative crystal
misalignment. To confirm this, the special cases of Fig. 4 were
analyzed:

Cage 1. The structure is divided into 10 equal sections
longitudinally. The y1 distribution varies from 0 at both ends to
n/4 at center with the increments of n/l6.

Case 2. The structure is divided into three strips vertically.
The y1 distribution is 0 at one side,n/8 at the middle, and n/4 at
the other side.

Case 3. The structure is divided into three strips horizontally.
The 1 distribution is 0 at the top, n/8 at the middle, and /4 at
the bottom.

Table 3 shows the results of this analysis.



Table 3. Comparison between (12),(13),and case 1-3

u Ell Via Vi3
(12) 0.7587 131.80 0.28 0.27
Case 1 0.6791 147.25 0.19 0.31
Case 2 0.7353 136.00 0.17 0.29
Case 3 0.7330 136.43 0.17 0.29
(13) 0.5983 167.15 0.08 0.36

In agreement with the expectations, the longitudinal moduli for the
cases 1-3 fall between those for (12) and (13), and the differences
in the axial moduli in the cross-sectional element generate large
lateral displacements in cases 2 & 3 (Fig. 5 & 6).

CONCLUSIONS

1. Multicrysatlline microbeams characterized by grains with two
cubic axes normal to the beam axis exhibit a longitudinal -elastic
response that is quite independent from the details of the textural
and grain morphological distributions, and as thus adequately
simulated by homogenization approaches. However, even for these
cases the homogenization approaches of Voigt/Reuss are
insufficient.

2. Microbeams with grains with a single cubic axis in the cross-
sectional planes are longitudinally stiffer than those considered
in 1. The stiffest such beam corresponds to perfect alignment of
the grains at ¢l = /4, with a modulus only about 1% smaller than
the overall maximal one ( E = 169.2 GPa in the cubic diagonal
direction ).

3. In the simulations, the longitudinal modulus of the stiffest
beam was El11 = 167.15 GPa, and associated with it was the highest
in-plane coordinate anisotropy ( Vv,, = 0.075, wv,3 = 0.355 ).
Conversely, the most compliant beam, corresponding to (9), had Ell
= 130.51 GPa and identical Poisson's ratios in the cross-sectional
coordinate directions ( v = 0.278 ). By contrast, for a perfect
cubic grain, the most compliant responses are found with Ell =
130.58 GPa, and v = 0.278, corresponding to ® = 0 & y1 = 0.

4. Large lateral displacements, variations in the longitudinal
stresses, and significant non-longitudinal stresses may be found in
a misoriented microbeam in tension, resulting from different axial
elongations of adjacent grains. The severity of these phenomena
increases with increasing standard deviation in the textural
portrait.
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Fig. 1-1 Convention on Euler Angles



Fig. 2-1 Finite Element Mesh

Fig. 2-2 Typical Grain Distribution
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Fig. 3 Deformed Mesh for Eg. (10)
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Fig. 4 Orientation Distribution for Cases 1-3
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Fig. 5 Deformed Mesh for Case 2
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Fig. 6 Deformed Mesh for Case 3





